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MEAN FIELD STACKELBERG GAMES: AGGREGATION
OF DELAYED INSTRUCTIONS*

A. BENSOUSSANT, M. H. M. CHAU%, AND S. C. P. YAM?

Abstract. In this paper, we consider an N-player interacting strategic game in the presence
of a (endogenous) dominating player, who gives direct influence on individual agents, through its
impact on their control in the sense of Stackelberg game, and then on the whole community. Each
individual agent is subject to a delay effect on collecting information, specifically at a delay time,
from the dominating player. The size of his delay is completely known by the agent, while to others,
including the dominating player, his delay plays as a hidden random variable coming from a common
fixed distribution. By invoking a noncanonical fixed point property, we show that for a general class
of finite N-player games, each of them converges to the mean field counterpart which may possess
an optimal solution that can serve as an e-Nash equilibrium for the corresponding finite N-player
game. Second, we provide, with explicit solutions, a comprehensive study on the corresponding
linear quadratic mean field games of small agents with delay from a dominating player. Given the
information flow obtained from both the dominating player and the whole community via the mean
field term, the filtration to which the control of the representative agent adapted is non-Brownian.
Therefore, we propose to utilize backward stochastic dynamics (instead of the common approach
through backward stochastic differential equations) for the construction of adjoint process for the
resolution of his optimal control. A simple sufficient condition for the unique existence of mean field
equilibrium is provided by tackling a class of nonsymmetric Riccati equations. Finally, via a study
of a class of forward-backward stochastic functional differential equations, the optimal control of the
dominating player is granted given the unique existence of the mentioned mean field equilibrium for
small players.
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1. Introduction. Heinrich von Stackelberg [23] introduced a hierarchical so-
lution for markets with leader and followers in 1934, which is now known as the
Stackelberg equilibrium. In the context of a two-person nonzero-sum game, a follower
would pick an optimal strategy based on the policies approved by the leader, who may
anticipate the follower’s rational reaction and announce the policies that optimize his
performance index. The notion of the Stackelberg solution was later extended to a
multiperiod setting; see Simaan and Cruz [22]. For the continuous time version, one
may find Bagar, Bensoussan, and Sethi [1] and Bensoussan, Chen, and Sethi [4] and
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the references therein. In practice, due to the heterogeneous technological advance
of different agents and the presence of transaction costs, it is natural to assume that
individuals have no choice but to respond slowly (with various magnitudes) to policy
changes. Individuals can also gather information through the interactions with the
community. This raises the importance in studying Stackelberg games which consist
of many followers that receive information from the leader with various magnitudes of
delay. To make it consistent with the general context of mean field games, “agents”
(resp., “dominating player”) would be regarded as synonymous with “followers” (resp.,
“leader”) in this article.

On the other hand, providing a tractable analysis of interactive strategic behav-
ior of a group of agents is normally challenging. One of the most popular modeling
frameworks is through the use of stochastic differential games (SDGs) to mimic the
evolutionary dynamics of interacting agents, each of whom aims to optimize his own
objective functional. For example, Elliott [12] examined the relationship between the
existence of the values of the zero-sum SDGs with two players. Bensoussan and Frehse
[5, 6] use the dynamic programming approach to solve the nonzero-sum SDGs with
N players over an infinite time horizon. In general, the nonzero-sum game problem
is getting harder to tackle with the number of agents; in contrast, the problem be-
comes much more computable for infinitely many players due to the corresponding
Hamiltonian—Jacobi-Bellman and Fokker-Planck (HJB-FP) systems. This approach
was founded by Huang, Caines, and Malhamé [13, 14], who investigated SDG prob-
lems in an infinitely many players setting; independently, Lasry and Lions [16, 17, 18]
studied similar problems from the viewpoint of mean field theory originating from
physics, and they coined the novel study as mean field games (MFGs). Under the
mean field framework, instead of highlighting the interaction between any two agents
explicitly, each individual now interacts with a common medium created in the com-
munity, precisely, the mean field term; mathematically, this mean field term converges
to a functional of the probability distribution of the whole population as the number
of agents N goes to infinity.

In the contemporary MFG problems, agents are assumed to have homogeneous
objectives and state dynamics, yet with independently and identically distributed
noises. Each agent makes a decision purely based on his own state and the mean
field term from the community; in particular, in explaining its own interaction with
the community, each individual considers the mean field term as exogenous. That is
to say, each individual’s decision has negligible effect on the whole community—the
mean field term. Thus, without loss of generality, we can just focus on one agent
in an MFG and call him the representative agent. Mathematically, given the mean
field term (as a functional of probability measure), one first solves the optimal control
problem for the representative agent. By equating the given mean field term with
the functional of the probability measure of all the agents caused by their optimal
trajectories, i.e., the corresponding fixed point, we obtain the desired mean field
term; this constitutes an equilibrium for the mean field problem and serves as an
e-Nash equilibrium for the finite-player counterparts. In general, the common MFG
possesses the following forward-backward structure: (1) a forward dynamic describes
the individual strategic behavior; (2) a backward equation describes the evolution
of individual optimal strategy. For the details of the derivation of this system of
equations with a forward-backward feature, consult the works of Huang, Caines, and
Malhamé [13, 14], Lasry and Lions [16, 17, 18], Bensoussan, Chau, and Yam [3],
Bensoussan, Frehse, and Yam [8], and Bensoussan et al. [9].

With no doubt, one can easily imagine several dimensions on generalizing the first
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batch of MFG results such as those mentioned above. For example, it is interesting to
study the problems with agents coming from heterogeneous sources; see [8]. Besides,
Huang [15] also investigated linear quadratic MFGs that consist of a significantly
“big” (major) player and a huge number of “small” (minor) players, in which they
considered the mean field term as exogenous to the major player. Nourian and Caines
[20] consider a similar problem under a generalized setting again with an exogenous
mean field term. To be precise, given the mean field term, they first solve the optimal
control problem for the major player. Then they proceed to solve for the optimal
control for the minor player. Under their proposed framework, the decision of the
major player cannot impose his immediate influence right away on the mean field
term, and this limitation restricts its scope of applications in economics and finance,
as it is easily perceived that most governors have certain power (even though are
not almighty) on overriding and guiding the future route of the whole community.
Motivated by the latter consideration, we propose a substantially different general
framework in [3], the MFGs in the presence of a “dominating player” (we rephrase
it as “dominating” in order to emphasize our distinction from all previous works in
the literature, such as that in [15] and [20]). Compared with the community of small
agents in the MFG, the nature of the dominating role of the “big” player is clear in
the sense that changes in the behavior of this dominating player would immediately
and directly affect both the perception of all individual agents and the aggregated
(coalesced) public information through the evolution of the mean field term. More
precisely, both the optimal controls of the small agents and the mean field term
are functionals of the optimal dynamics of the dominating player; see Lemma 3.4
and (3.9), respectively. In this regard, in [3], the mean field term is endogenous in
the control problem for the dominating player. That is, given the mean field term
and the policies set by the dominating player, we first solve the optimal control for
the representative agent. Regarding the aggregated (optimized) mean field term as
a functional of the dominating player, we next proceed to solve for the dominator’s
optimal control. The functional form of the optimal control of the representative
agent is adapted to the filtration influenced by the dominating player. Our setting
agrees with the philosophy of Stackelberg games, in which the dominating player has
to anticipate representative agents’ rational reaction before making his own optimal
policy.

In this paper, we make a noticeable step forward by fundamentally generalizing
the dominating small players setting in [3]. In the presence of a dominating player, we
assume that there is a technological limitation to each agent so that he can only grasp
the information coming from the dominating player at a delayed time. In the literature
for common delay problems in stochastic controls or MFGs, they usually refer to the
delay in the states or controls for agents, which are clearly adapted to Brownian-type
filtrations, at most, up to a delay. In our problem formulation, the delay information
is generated by a third party, that is, the dominating player. Each agent then solves
his own optimal control problem based on three sources of information flows, namely,

(1) agent’s own noise;
(2) delayed information coming from the dominating player;
(3) the aggregated (coalesced) public information via the mean field term.

The filtration generated by the third source through the mean field term carries
extra information over the first and the second source as other agents with smaller
size of delay would also contribute to the aggregated (coalesced) information, that
is, the mean field term. And it is clear that this new information flow to each agent
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would be neither Brownian nor a postponed filtration (up to a time lag); this kind of
context normally happens in the rate-dependent hysteresis phenomena in economics
and finance. To one specific agent, he understands his own constraints and therefore
has full knowledge of his own delay time; on the other hand, the same agent will
try his best to hide this information from others, just like as happened in adverse
selection markets (or principal-agent models). In principle, it is natural to assume
that this private information of the exact delay time of any single agent would be a
hidden random variable A to all other parties including the dominating player, and
this A can also be interpreted as the distance of a random agent from the dominating
player; we further assume that these hidden random variables originating from all
other players follow a common distribution A independently. And the knowledge of
the exact form of ma is supposed to be known by the dominating player and all small
agents from day one on.

In the present article, in section 2, we consider an N-player game, in the pres-
ence of a dominating player. Each individual agent collects information from the
dominating player. To the same agent, the magnitude of such delay is completely
known, while to all other agents and the dominating player, this delay time is a hid-
den random variable following a fixed distribution ma. It is noted that in the present
setting, each agent solves his own optimal control problem based on the mentioned
three sources of information flows, which altogether should result in a non-Brownian
filtration that makes the common application of the standard maximum principle via
the celebrated martingale representation theorem not quite immediate. We establish
the convergence of the empirical system (one over the finite number of players) to
the mean field analogical one, under a noncanonical fixed point property which is
rare even in the traditional stochastic control theory, indeed. Furthermore, unlike
the common considerations in the existing literature, we can only conclude that this
convergence is only a topological one instead of one with convergence rate of order
1/ V'N. We also show that the mentioned novel fixed point property ensures a e-Nash
equilibrium for the similar game with finitely many agents. In section 3, we explicitly
solve this new MFG under the linear quadratic setting. By first regarding both the
mean field term and the dominating player’s influence as exogenous, we solve the
control problem for the representative agent which yields the stochastic version of
a coupled HJB-FP equation. Since the control for each agent is now adapted to a
non-Brownian filtration, we utilize the lately developed technology, called backward
stochastic dynamics (see Liang, Lions, and Qian [19]), to tackle the construction issue
on the underlying adjoint process, which is now satisfying a backward (stochastic)
equation on a preassigned filtration. The ultimate importance and necessity of the
use of backward stochastic dynamics is that it overcomes the shortcoming of the re-
liance of the traditional martingale representation theorem on the Brownian filtration
for the construction of backward stochastic differential equations (BSDEs) satisfied
by the usual adjoint processes. After the establishment of the optimal control of each
agent, we apply the mentioned fixed point property in section 2 to obtain the equi-
librium trajectory of the desired mean field term. We then proceed to resolve the
corresponding optimal control problem for the dominating player, now by regarding
the mean field term as endogenous, again via the stochastic maximum principle. By
constructing an appropriate linear functional, we show that the optimal solution for
the dominating player has to correspond to the solution of a particular system of
forward-backward stochastic functional differential equations (FBSFDEs). Finally, a
simple sufficient condition on guaranteeing the unique existence of the solution for this
FBSFDE, and hence the original MFG problem, will be further discussed in section 4.
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2. e-Nash equilibrium. Consider an N-player game and let (2, F,P) be a
complete probability space. For a fixed T' > 0, let Wy and W7 be independent Wiener
processes in R% and R%, respectively, for i € {1,...,N}. Assume that the initial
path, {&(t) : t € [—b,0]}, satisfies the average Holder continuity, such that there
exists L > 0,

(2.1) E|&o(t) — &o(s)]> < Lt —s|, t,s € [-b,0].

The initial random variables {f%}ie{l ..... ,N} are square integrable, identically and in-
dependently distributed, and independent of ;. The empirical state evolutions of the
dominating player and the ith player (with delay d;) are, respectively, described by
yo and y?[s“N, or simply yi’[si if there is no ambiguity, which satisfy the SDEs

(2.2)

N 5.4
. t
W, vo(t))dt + aodWo(t),

5 .6 ZN—l j {’AJ ) s -
dy7 =0 (yi ), == }J\;él_l ;07 (1), Yo (t — 5i))dt+01de(t)a

From the ith player’s perspective, {A; }je{l,___)i_l)iﬂ,__,N} is a sequence of identically
and independently distributed random variables on R, where A; represents the delay
parameter for the jth player. One may naturally assume that each participant to-
gether with the dominating player has the knowledge of the prior probability measure
of A, which is denoted by ma. Each ith player, however, only knows the magnitude
of his own delay, not that of the others. Equivalently, each player’s delay is private
information (hidden variable) to others, which resembles an adverse selection market.
In particular, we set A € [a, b], where 0 < a < b are some fixed finite positive numbers.
Define the following filtrations:

]:0: ( () ) E[—b,O];
(2.3) C T olols), Wols) s <), £ 0;
FH =o€, Wi(s):s<t), t>0.

To the ith player, all others’ delay times are hidden random variables. Without
loss of generality, we just focus on the ith player, with his delay A; = §;. Let
v = (v o1 vf’52, o ,U{V’SN). The objective for the ith player is to minimize the cost

functional:

_ T, N Rt
@) 79 = [ (o, 2 ) o )

Since the ¢th player interacts with the population through the term
N T PO =121 Y 72 (t), the Nash equilibrium could hardly be established when N
is large. Nonetheless, the mean field framework allows the complex system to provide

with the approximate equilibrium, i.e., the e-Nash equilibrium. For details of the
e-Nash equilibrium, one can refer to [8, 9, 13, 14, 16, 17, 18|.
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Let xp and xi"si be the mean field counterpart of yo and yi’éi, respectively, satis-
fying the SDEs

{ dxo = go(zo(t), 2(¢), vo(t))dt + oodWy(t),
xo(t) = fo(t), t e [—b,O]
(25) P . |
{ ,6?711’ t= g1y (1), 2(t), vy (1), wo(t — 6:))dt + o1 dWH (1),
27" (0) = &

Here z is an appropriate process to be introduced later. In analogy, the cost functional
for the ith player is given by

T
(2.6) T (i) = E /0 P (2% (), 20,00 (1), wo (¢ - 81) ) dt.

As shown later in this section, we can choose z to be a process adapted to Fy_, such

that the empirical state yi"s converges to its mean field analogy a:ll’éi. We call this
choice of z the mean field term, which is not quite canonical in the contemporary
literature. We consider a new filtration generated by this mean field term, which is
supposed to be observable to all ith players. F7 := o(2(s) : s < t). At time ¢, the ith
player can make his own decision based on the following information:
F}': the ith player’s own noise;

F 5,: the delayed information from the dominating player;

F7: the public summarized information from the whole community through the

mean field term. . ‘

As a consequence, it is natural to assume that vi’éi (t)is Gi == FM'v Fp s N Ff
adapted. In principle, the functional form of the optimal control of the representative
agent is adapted to Fy_ sV F7, which is under the direct influence of the dominating
player, and hence within the spirit of Stackelberg games setting.

The mean field analogy system (2.5) and (2.6) is less complex than the empirical
system (2.2) and (2.4) in the sense that

1. in the mean field analogy system, for any fixed 6 € [a,b], given F? 5V F7,

i

{a%°}}, are independent;
2. the mean field analogy evolution of the dominating player, xg, is free from
each individuals’ le’A'i, while the empirical evolution, yq, requires individual
N 5B
states through the term w
Since the interacting term is now replaced by z, the equilibrium could be attained as

shown in the following. We work on the spaces for the states and controls

7o € Ly (b THR™):  vg € L ([0, T B™);
vy™ € LG ([0, T R™); - vy € LE ([0, TFR™); -z € L, ([0,T];R™)

with similar norms

IVIP=E [ IvioPar
where each integration takes over the respective appropriate domain of definition.
We impose some standard assumptions on the coefficient functions in the SDEs. For

all xo,z( € R™; 21,2, 2,2 € R™; v, v € RP?; and vy, v] € RP!, we assume the
following:
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A.1. Lipschitz continuity. go and gy are globally Lipschitz continuous in all
arguments, i.e., there exists L > 0, such that

|gO(x07 2 UO)_QO(x67 Zlv U(/))|
< L(Jzo — x| + |2 = 2'[ + vo — v);
|gl (331, Z, 01, 330)_91 (33/1, Z/, ’Uiv $6)|
< Loy — [+ |2 = 2'[ + v — 01| + |20 — 2p)).
A.2. Linear growth. go and g1 are of linear growth in all arguments, i.e., there
exists L > 0, such that
l90(w0, 2, v0)| < L(1 + [wo| + |2[ + |vol);
|g1(21, 2,01, 20)| < L(1 + |za| + |2[ + [vi] + |zol)-

A.3. Quadratic condition (see (A.5) in Carmona and Delarue [10]). There exists
L > 0 such that

(2.7)
|f1(z1, 2,01, 20) — f1(2h, 2,01, 20)] SL{l + |z | 4 |2 | 4 2]+ 2] + [o1| 4 [vp] + |0l

+ I
Jlwn =@+ 12 = )+ Jon = i + o — .

2.1. Convergence of an N-player system. Assume that the ith player adopts
the optimal controls uzl"si defined by (2.5) and (2.6), with the corresponding trajec-

and z¥ % By choosing a suitable process z(t) adapted to FY_,, we can

i

tories yi
establish the convergence of yo — xo and y% — 2% by showing a stronger result
that
E sup |yo(u) — zo(u)|* +E sup sup |yi’6( ) — 9516( 2 =0 as N — +oo.

u<T s€la,b) usT
In the following, K(c) denotes a constant only depending on ¢ (but not ), which
may vary from line to line. First, we observe that for any ¢t < T,
(2.8) .

Esup |yo(u) — zo(u)|* + E sup sup[y; (u) — 27’ (u)[?

u<t 5€a,b] u<t

t .
<K(rE [ [sgmyo(u)—xo(un% sup supyt () — o} ()
0 u<s

6e[a b u<s
n _Zj‘v—ljéAj(S) Z] L iAj © s 2]ds
For the third term, observe that
‘Za 1y1 J(S) — 2(s) 2
< gDl <N> S| Do fVA ©
= 2Ry 2 (s) — 2b 2 (s)[2 + ZE‘M - z(s) i
2

< 2E sup sup |yy° (u) — 27 (u)|* + 2E
S5€(a,b] u<s

‘Zjl S (s)
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where the equality results from symmetry as each player adopts the corresponding
optimal controls. Similar inequality could be obtained for the forth term. Hence,
using the Gronwall’s inequality, (2.8) becomes

(2.9)

7,0 7,0
Esup |yo(w) - zo(w)[* +E sup sup |y;°(u) - 2 (u)]?
u<t

d€a,b] u<t

| 2

.
< K(T, L)E/ suplyo(u) — xo(u)|2 + Sup Sgplyi"s(u) — 2y (w))?
0 cla,b] u<s
2 N FIAYS 2
xl AR s
'ZJ 1 l ( ) —Z(S) + Zj_l’]j\;él_i ( ) —Z(S) :|d$
t . .
< K(LE [ [ sup o) — aual? + sup sup st (e — 230
0 Lu<s 6€la,b] u<s
iAy 2 N WYAY 2
YAV o N —1\2 ;T s
+ zy7(s) — 2(s) n ( ) +1 j=1,j#i "1 ()—z(s) ds
N N N -1
7 AZ J A 2
< K(T.L)t /tE xy7'(s) — Zﬂ 1’37’“ n () —z(s)| ds.
= . N 1

The first term clearly vanishes as N — +oco. By putting ¢ = T, whether (2.9)
converges to zero would only depend on

POl mx%(s)
‘ ! — — 2(s)

We now proceed to estabhsh this fact step by step as follows.

2
ds — 0 or not.

2.1.1. Constant A. We first consider the simplest case that A = 0 = a = b,
i.e., the amplitude of delay is homogeneous among all players. Under our problem
formulatlon since Ff C .7-'t0 5,» the control uZ ‘ is adapted to ffﬂsi \% ftl’z. Observe

that given that FO_ s, {z7°(t)}; are independent, we have

N 5 2
E Z] 1,]751 J (S)
—N—l —z(s)
1 N ) 2 N 0 i0
sl DM ERCEECIEEED S e G HORED)
j=1,j#i G<k,j ki

REEROREO)

If the mean field term is chosen to satisfy the fixed point
z(t) = E}-'?*éxi’é,
the cross terms vanish. Hence by symmetric consideration on {x{’é(s) — z(s)};, we
obtain
N j,8
Zj_lNL:ﬁ]l(S) QZN 1]E ()—z(s)2—>0 as N — +o0.
2.1.2. Discrete A. We next consider A to be discretely distributed with

(2.10) E

P(A =ag) =pr, wherea=ag<a <---<ay,=20,
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with a fixed finite n. One can regard pj to be the population proportion with delay
ar. Recall that ma, the distribution of A, is known by all players, while the ith player
only knows his delay magnitude J;. Recall that the mean field term z(Z) is assumed
to be F2_, adapted, while u®% (t) is adapted to G} := F}*" v Fp sV FF.

LEMMA 2.1. If the mean field term satisfies the fixzed point property,

z2(t) = poz®(t) + prz™ () + -+ + pnz®" (1),

where 2% (s) = Efgfﬂiv}-szx?“i( ), then

> i 1% (s)
BB )

Proof. We denote M = (MO7 My, ..., M,) to be the multinomial random variable
so that M} counts the number of players in the kth hysteresis group. Given M, by
permutation symmetry, we can re-index the players without altering the conditional
expectation. Hence, without loss of generality, we can assume the first M, players
have A = ag. Then, the next M; players have A = a; and so on. Thus,

’zj . x{A (5)
[}

—Z(S)
s s
{ UZMO J“°(1)+ZM1 ;V‘“(l X, “"()_Z(S)‘?

2
—0 as N — +o0o.

2

ml}.

To show the convergence as N — oo, since z = pgz®° + plza1 + -+ ppz®, we have

S e e |
< nZE{E[ " ZM’“AZ%(S) ez (s)| M}

IN

Q”ZE{ “NM_k1 <2Mkj\iak(8) —Z“’“(S)> ‘2

+\( Ipak)zws)fM}}a
—2nZE{< ) UZM'« ”()—z“k(s)\z
—|—2nkZ_OE<N 1—pak)2E

Observe that given FY_, V FZ, {a7%*(s)}; are independent. By assumption 2% (s) =

0 z
E7s~ex V5 219 (s), together with the derivation as in (2.10) in section 2.1.1, we have

o () 22 o o]

(2.11)

2% (s) ‘2.

NE

k=0
n Mk 2 1 L 2
2.12 - E — o} (s) - 200 (s)|
(2.12) > {(32) G ) el -}
1 - lak ar 2
= 7 > PuE[el(9) =2 (5)]
k=0
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which goes to 0 as N — co. On the other hand, the second term

n Mk 2 . a 2
(2.13) ZIE(N 1—pak) E|2%(s ’ Zpak ~ pay )E[2(5)
k=0
clearly vanishes as N — oc. a

2.1.3. Continuum A. In this subsection, we consider A being distributed on
[a, b] with an absolutely continuous measure ma. We make some additional assump-
tions on the optimal control .

A 4. Continuity on optimal controls. There exists C' > 0 such that [a,b] 5 § — uzl’é
is Lipschitz continuous, i.e.,

T
E/ [ub0(s) — ul?(s)|?ds < C|6 —~| V6,~ € [a, b].
0

A.5. Boundedness on optimal controls. There exists C' > 0 such that

T

E/ sup |ut’(s)[2ds < oo.
0 d&€fa,b]

This condition could be verified for the optimal solution to be obtained in the rest

of this paper. Using the ideas in Lemma 2.1, we first assume the mean field term

satisfies the fixed point property

(2.14) 2(s) :/[ ) 20(s)dma(6) :/[ ) EFe-sVFi g 0 (s)dma (9).

To validate the limiting argument in this section, we make two claims in which
we omit the proofs here, as they are pretty standard.
C.1. Boundedness.

E sup |zo(u)|? + E sup sup |22 (u)]? < oo;
u<T 5€la,b] u<T

(2.15)
lim sup max [
N—ooo 15i<

i, 0
Ebup lyo(w)]* +E sup sup |y7°(u)]*| < <.
s€laLb) u<T

C.2. Holder continuity.

T . .
(2.16) B [ 1ai(s) o} (o) Pds < KI5 -] ¥y € [and],
0

where K is a constant depending on T, L, C, 09, 01, ug, and sups ui‘s.

THEOREM 2.2. Suppose that z satzsﬁes (2.14). Then we have

VRAY] 2
x s
‘Zﬂ L7 i ()—z(s) ds =0, as N — +oc.

Proof. Let {a,&")}zzo be the level n uniform partition on [a,b], i.e., a,(c") =a+

E( —a);k = 0,1,...,n. On the other hand, let M™ = (M{™ MM, ... M™M)
be the multinomial random variable on {a("), aén), R a;”)} with event probabilities

P = 7wa(al™,, al™] (hence 7, p™ = 1). Define the conditional random variable

(Aj),(cn) = Aj|AJ'€(az(cn—)1>a§cn)]7 ] = 1,...,N and k = 1,...,n
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Hence we have

(2. 17)
]A 2
s
ZJ 1#1 1 ()—z(s) ds
() i

T ZM(n) x{(A])l (s)+--+ ZMW) x-{!(AJ)n (s) )
:/ E{E“ 1 . — 2(s)| ‘M“””ds

0 N -1

)

B (70 )
- /0 ’ N-1 o

+/OT S (51 ])V _(51) - ) ‘Z‘Mw] }ds

) )
T Z (n) x? ! (5) (n) o (S) 9
+3/ E{E“Ml— oz () —z(”)(s)‘ ‘Mm)”ds
0

N -1 N -1
T
+3/ E|2(™(s) — z(s)|ds.
0
(1) _a(m no ()T am Y 1,6
Here we set 2™ () = S0 p/" 2% (t) = S p_ p,"E o ;" (t). The first

term in (2.17) is controlled by

T
[
0

A gy — (g
E{ [ZMW (a1 N_<s1> () ’

M= 11:

T (n) S (a7 E () 2357 (5)
M (n) 2
el 1) of| = (2 A o), o))
i (1 — ) M
r o n n oA () o 2
[ ( +<p§€”>>2)E[\xi‘A”k ()= 21 (o) }ds,

=1

. () . (n)
where the last equality holds due to the symmetry of {a:{’(A’)’c (s)—a7 ™ (s)}; within
each hysteresis group. Using the Lipschitz property (2.16), we have

A o™
T e (A ()~ (9)
/ ElE ‘ : .
(n) a(m)
Sup (#7760 =™ @) o IRY
- N-1 ‘ i

(2.18)

IN

T n (n)(l— (n)
p ) (n n n
=1

ni( it (n))+(p£"))2)%

1 (n >)
K| ——+su ,
(N k<2pk

\ /\

IN
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For the second term, by plugging (2.12) and (2.13) into (2.11) in Lemma 2.1, we have

2
s) ‘M(n)} }ds
py"

»a(n) . (n)
T " J,aq " WL
/ E{E“ZM( Yot (s) +ZM12)$1 (s)_z(n)(

N1 o N1

n
(W% oM 2, 20 (n) NELA” ()
/ N_1§ E‘ v ¥ (s) —_IEpk (1 |- (s)| ds
T n
2n n) ‘]agﬁ a<"> 2 2n n) ‘ga(,ﬁ 2
< —
< N—lk E (s) — = — E E
T n . . ,
— _2n n)(IE’ g s)—za; )(s) ? E’xj’ai (s) )ds.
o N-1& L

Using the bound given by (2.15), we have

(2.19)
il . (n)
T S a7 (s) S " (8) 2
M M. 1
E{E ‘— T 7 Gt S AN ) ‘ iRIRY
/0 { [ N1 +F N1 2" (s) s
< (1OTE sup sup |x§6(u)|2) Nn_ T

s€fa,b] u<T

For the third term in (2.17), observe that

(2.20)
T 2
/ Ez(")(s) z(s)| ds
0
T n FO o VF? NO) . 2
:/ E[ Y plUE el e (5)—/ EF-0VF 310 (s)dma (6)] ds
0 1 [a,b] ,
T FO VFZE (n) .
:/ E [Zﬂ(a(n> 2y (O)E * o T g (s)—Ef-i’—a”m{‘*(s)}m(a) ds
! FO VFZ? (n) 2
(n) 1,a
<2 / /[b] Zﬂ(ag)l,a(")] E 5T (xl k (S)—w% 6(8))' dra(0)ds
F o VFD 1 7 vrr e,
+2/ / ZHM o E say 21%(s) — BTV 7 01 %(s)| dma(d)ds.
a,b] k—1

For the first term on the right-hand side of (2.20), by the Lipschitz property (2.16),

00 a0 0) s
(@™, <n> xy " (s) =y (s) ma(0)ds
ab

ENONERTIS 1,6
:/ EZ ()4 (m) E ' (xl C ) ())

akla

< K —
- Z / (n) _(n) ndWA(d)
k=17 (a2 10,

2

dma(0)ds

JE

For the second term on the right-hand side of (2.20), for any fixed s and §, there
exists a sequence of (n,k;k < n) such that a(")

convergence theorem,

— J; by applying the martingale
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0
mVFS 0 _
Zﬂ(a(n) (n)] ]E ST % x%é(s) —”E]:S_‘sv}—‘*ﬂiié(s)

P-almost surely and in L?(2) sense, that is,

2

0 (n)v]_-z
“ =0 VY(J,s) ae.

: - s 16 0 Z 1,6
lim E E I (@, Yl) E ST x7°(s) — BF =V 110 (s)
k=1

n——+o0o

Moreover, since conditional expectation is a contraction, together with the bound-
edness of xi’[s obtained in C.2, we have

2

< 2K sup sup |z} (u))?,
s€lab] u<T

z
s

FO VF,
s—al™ T 1.6 0 = 1,6
() qty (OB 5y (5) = BP0V Ty (s)

where the last term is finite and independent of n. We can apply the dominated
convergence theorem (on the measure dma (0) @ ds),

T
lim / / E
n—+o0o 0 [a,b]

Hence we have

n FO VF?
P CORE I ) FO_sVFI 1,6

E ]I(agz_)l)ain)]((;)E k 7" (8)=E7 5= s % (s)

k=1

2
dra(0)ds = 0.

T 2
(2.21) lim 2 (s) — z(s)| ds = 0.
n—oo 0
By combining (2.18), (2.19), and (2.21), we have
2
s
‘ZJ 1];61 1 ()—Z(S) ds

(2.22)

1+n (n) T 2
<K N1 +supp —|—/ E[2(™ (s) — 2(s)|?ds |,
- 0

where K is a constant independent of n and N. Since 7 is an absolutely continuous
measure, together with the convergence in (2.21), for any € > 0, we can find a suffi-
ciently large n such that sup,<,, p,in) < e and fOTIE|z(”)(s) — 2(s)|?ds < e. We then
choose a sufficiently large IV such that % < €, which completes the proof. O

2.1.4. General A.
COROLLARY 2.3. Let wa be any probability measure on [a,b]. If the mean field
term satisfies the fized point property (2.14), then

JAj 2
s
Zj 1’#1 1 ()—z(s) ds =0 as N — 4o0.

Proof. By the Lebesgue decomposition theorem, we can uniquely decompose the
measure into ma = 7R + mA, where 1] < /\[a7b] and mxy L Ajgp). Here gy is
the Lebesgue measure on [a,b]. We assume 7j # 0; otherwise it is as has been
discussed in section 2.1.3. For fixed € > 0, let B = {§ € [a,b] : mA(6) > €'} and

ES = {0 € [a,b] : 0 < wA(6) < €'}. Since ma is a probability measure and hence
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finite, the cardinality E. is finite. We decompose the measure ma into 75" and 75"
in which

(2.23) Xt = 7% + 7L |ES; TN = TA|Ee,

where 7TA|EC/ is just the measure mh restrlcted on E <, so does 7TA|EE/. Clearly,
A = Tl + 7T A . Let the total measure for 7" and 75~ be p°F and p'~, respectively
(hence p°* + p!= = 1). We first consider that both pOt, pt= > 0. Denote A+

0+ 1—
— . . . ™ s .
and A!'~ the random variables with respective measures po% and p%. Consider

M = (Mg, M;_) to be a binomial random variable with parameters (p"*, p! =), which
represents the numbers of players falling into group-0+ and group-1—, respectively.
Hence, we have

A
’ZJ 1737513:]1 '(5)

ST )| ds
e21) < / s {e UZMN—_lA“ el
+2E{E“W —plazlf(s)‘2 M] }ds,

where
1 1 0 -
D) = /[ IR0 = o [ BT R )
1 _ 1 0 z A _
21 (s) == e w z‘s(s)d(ﬂlA )(9) = e - IE}-S—ﬁ\/}-Sa:i’é(s)d(ﬂlA )(9).

It should be noted that the absolute continuity assumption on the measure 7wa in
section 2.1.3 is only required for the convergence

lim bupp() 0

n—=+00 p<p

n (2.22). We can obtain similar estimates as in (2.22) and the first term in (2.24)
becomes

(2.25) .

]E{]EU ZMO;VCCE) 1j (8) p0+ 0+ ‘ ‘M] }

ol Mo\ S A“(s>_ Mo Pl
el E o) i

Moy )2 (1+ (n) / (n) 04/ |2 )}
< KE + su + E|2™(s) — 2" (s)|“ds
< {(N_l My, TSP ; |22 (s) (s)

M, 2
+ ZE[N 0+1 p0+] E‘z”(s)‘

0+ T 2
_ P’ +n) (n) / () () 0472 Mo
_K{ N1+ (supp + ; E[z'™(s) — 2°7(s)|“ds | E N1

Moy 2 2
+ ZE[N — pOJr] E’z”(s)’
1 n T 9p0+ (1 — O+ 2
<kl supp( ) +/ E|z™(s) — 29%(s)|2ds p + ME‘ZOJF(S) ,
N_1 o N-1
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a a ™)
where p(") = % and z(")(t) are defined as in Theorem 2.2. By the defini-

tion of ma in (2.23), we can find a sufficiently large n such that sup, ., p,(gn) < 2€¢' (see

Lemma A.1) and fOT E|z(™)(s) — z(s)|?ds < €. Similarly, we can choose a sufficiently
large N such that the two remaining terms are smaller than ¢’

The treatment of the second term is similar, and since W27 is a measure on a
finite set, we can directly apply the result in Lemma 2.1.

Consider the second case that p°* = 0,p'~ = 1. Since 75 is now a measure on
a finite set, we can directly apply the result in Lemma 2.1.

For the last case when p°t = 1,p'~ = 0, using the same argument, we could
obtain similar estimate as in (2.25), which is of order O(¢’). O

2.2. Equilibrium. Assume A to be a random variable on [a, b] with any prob-
ability measure ma. In section 2.1, we assume that all players adopt their own
mean field analogical optimal controls to establish the convergence of yy — x¢ and
yié — xi’éb. Suppose now, without loss of generality, the first player uses an arbi-
trary control vy, while other players still adopt the optimal control u;. Using similar
arguments as in section 2.1, the following convergence also holds.

COROLLARY 2.4. Suppose (2.14) is satisfied. Then

E sup |yo(u) — xo(w)]* +E sup sup [y (u) — 27° ()]’
u<T 6€la,b) ulT

+E sup sup [y (u) — 2y (w)]* = 0
s€la,b] u<T

as N — +oo.
On the other hand, we also have the convergence for the cost functionals.

LEMMA 2.5. Suppose that v = (vi 1,u1 ,...,uiv’éN), u = (u% 51,1&’52,...,
iv N ), where v} 91 s an arbitrary control, and {u} : i > 1} are optimal with respect

to the control problem defined by (2.5) and (2.6); then

T8N (v) = U (ph0) a5 N — 4o0.
Similarly,

TN (n) - gho (u}’[sl) as N — +o0.

Proof. With assumption A.3 in (2.7) and an application of the Holder’s inequality,
we have

TN (v) = T (0] )

T VAV
SK(TJZ)E/O [1+Iy15l()|+|w”1()|+‘ )

Zj: ) s

I+ b )

T Juols — 8)] + [zols —ao@

Y1 —2(s)| + lyo(s = 01)

[| Lo () — ‘M

- xo(s—él)@ds
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< K(T,L)(E/OT

2

+1z(s)?

1,6
L+ [y ()] + |2y

Lo (g2 4 ‘ijl '(s)

1
2

ol ()2 + (s — 8)[2 + feos — W} ds)

(5[ [t et o+ \73 LA

2
+ |yo(s — 01)

— zo(s — 51)|2} ds)
By the boundedness on controls in A.5, similarly we have

|j1,51,N(V) _ J1,61 (U%,51)|

T
SK<T,L>(E / [1+sup|y1 P+ sup ™ @) + sup sup i ()
0 u<s 6€fa,b] u<s

] 3
T sup supla S + oo (s >|2+sup|yo<u>|2+sup|xo<u>|2]ds)
6€la,b] uls u<s

(& [ i - st o+ [ 220

1

—$08—(51 ] >

=K(E/ () - 1 o) + \M—z@)

— zo(s — 61) |2]d5>

Here, K in the last row is a constant that depends on T, L,C, 09,01, and the L?
bounded controls v}’él,sup(; uzl"s, and ug under assumptions A.4 and A.5, which is
independent of N. The first and the last term go to zero as shown in previous
arguments and Corollary 2.3, while the second term goes to zero as shown in Corollary

2
+ [yo(s — 01)

2
+ [yo(s — 61)

[N

2.4. The second statement is then clear by following similar arguments. d
THEOREM 2.6. u = (ul®*, u>%, ... ul’Y), where {u} : i > 1} are optimal with

respect to the control problem defined by (2.5) and (2.6) is an e-Nash equilibrium.
Proof. Without lost of generality, we focus on the 1st player. Suppose that

1,01 2,8 N,§ i T . U
v = (v w0y %), where v is an arbitrary control. By optimality, we
first have

N (ud) < V(o] ),
By Lemma 2.5, we have the approximations

TN () = T ()
|j1,61,N(u) _ J1,61 (1& o1

Hence

JHN () < 74N (v) +o(1). O
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3. Linear quadratic case. The e-Nash equilibrium established in section 2
allows us to consider the mean field analogy, x4 (t), instead of the empirical interacting
dynamics, 4% (t). For any probability measure 7, without loss of generality, it suffices
to consider the ith player with the delay A; = §. We call him the representative agent
for the whole population. For simplicity we neglect the index and write 1 (t) = 2% (¢).
We study a linear quadratic control problem as follows. The state evolutions of the
dominating player and the representative agent are, respectively, described by

dzy = (ono (t) + Boz(t) + Covo (t)) dt + codWo(t),
zo(t) = &o(t), t€[-b,0;

dzf = (Alx‘f () + Bu2(t) + Cyoi (t) + Dao(t — 6))dt + o dWi(t),
29(0) = &,

where the mean field term z(¢) is to be defined in Problem 3.2. For simplicity, we
assume the coefficient matrices (e.g., Ao, By) to be constant. The control for the
dominating player, vo(t), is F; adapted, while the control for the representative agent,
v(t) is G = F} Vv F? 5V F7 adapted. We denote M T the transpose of any matrix
M. Suppose that Q;, R; > 0; i = 0, 1; we consider the following problems.

PROBLEM 3.1. Given the process o and z, find a control u = v{ which minimizes
the cost functional:

Ty (02, 20, 2) = ]EUOT () — Er2(t) — Fao(t — 8) — Galb, + <v‘f(t), Rlvf(t)>dt] :

where for any @Q >0, |- |g := (-, Q) and (-,x) is the usual Euclidean inner product.
PROBLEM 3.2. Find the process z such that

z(t) = / Ef?—5fozx‘ls(t)d7rA(5),
[,

where x9 is the controlled SDE using ui solved by Problem 3.1.
PROBLEM 3.3. Find a control ug = vy which minimizes the cost functional

Jo(vo) = E[/OT o (t) — Eoz(t) — Gol3, + <v0(t),Rovo(t)>dt],

where z is the solution given in Problem 3.2.

Observe that the representative agent’s decision at time ¢ is G adapted. If § = a,
then G¢ = F} v F) VvV FF = F Vv FP,, as F7 is a sub o-algebra of F__,, is a
Brownian filtration. Otherwise, G? is not necessarily Brownian. The classical FBSDE
solved with the martingale representation theorem (MRT) could not be tackled in
the absence of a Brownian filtration. Inspired by the ideas in [19], we can work on
forward-backward stochastic dynamics on a non-Brownian filtration. To motivate
our further development, we here provide a brief introduction to backward stochastic
dynamics as given in [19].

In particular, we want to solve for (y:, M,(t)) satisfying a stochastic backward
equation on an arbitrary filtration H;,

T T
(3.1) =t / o(ys)ds — / dM, (s),
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or in differential form,

dyy = —g(ye)dt + dM,y(t),
where g is the generator with suitable regularity assumptions (for example, global Lip-
schitz and linear growth properties) to guarantee the unique existence of the adapted

solution y; £ is the terminal random variable and M, is an H-martingale. Taking
conditional expectation on (3.1) yields

(3.2) ye = EMe [5 + /OTg(ys)dS} - /Otg(ys)ds,

or in differential form,

dyy = —g(ye)dt + dE™ {5 + /OTg(ys)dS].

Note that EM¢[¢ + fo g(ys)ds] is clearly an H-martingale and hence the targeted
martingale is

T
(3.3) My() = B[+ [ glu)ds].

0
Furthermore, if we define V(y); := fot g(ys)ds, then Liang, Lyons, and Qian [19]

established the method for solvmg (3.2) by tackling the fixed point problem of

ye = B* ¢+ V(y)r] -V,

in contrast to the resolution of classical BSDESs, which requires an application of MRT.
Throughout this paper, for any backward equation y, we refer to M, as the martingale
defined by its terminal and generator as in (3.3). We first solve the control problem
for the representative agent.

LEMMA 3.4 (control for the representative agent). Problem 3.1 is uniquely solv-
able and the optimal control is —Ry'CTno(t), such that n’ satisfies the backward
stochastic dynamics:

—dn® = (Aipn5(t) F O (1) — Eyz(t) — Fao(t —6) — Gl))dt—dMna (1), nS(T) =0,

where M,, is a g‘;—martingale with

s T
M,,s(t) = E9¢ [/0 ATn?(s) + Q1 (25 (s) — E12(s) — Fao(s — 6) — G1)ds

Proof. Due to the convexity and coerciveness of the objective functional, we can
apply the standard stochastic maximum principle. Consider a perturbation of the
optimal control u$ + 04, where @ is adapted to the filtration G. The original state
9 becomes x$ + 03 with

dig = (Ali‘f(t) + Cla‘{(t))dt, #4(0) = 0;
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the optimality of u{ would satisfy the following Euler condition:
(3.4)

0- 2

pr Jl(u‘ls —|—011‘15,x0,z)

6=0

- 2E[/OT (3(1),Qu (21(t) = Eaz(t) = Fao(t - 8) — G1) ) + (] (0), Rlu‘{(t)>dt] .
We have the inner product

d(n’, 30 = ( < 3(1), O (xl( ) = E12(t) — Faolt — 8) — G1)> + <n5(t),01ﬂ‘f(t)>)dt
B9 (t) - dM ().

Taking integration and expectation on both sides, and using (3.4), we obtain

0= IE/OT <c;fn5(t) + Ryul(t), af(t)>dt.

As @9 is arbitrary, the result follows. I:l
Remark 3.5. The optimal control u{ has the representation —R tefnl(t) =
—R'CT(Pal(t) + g’ (1)), where P satisfies the symmetric Riccati equation

dp
o T PAE ATP, — P,C1R;'CTP, +Q1 =0, Pr=0,

and ¢° satisfies the backward stochastic dynamics
~dg® = (AT = RCLRT CT)g (1) + (PiD — Qi F)ao (t — )
+ (B~ QUEV(t) = QiGr ) dt — dMy(t),  ¢*(T) = 0.

Clearly, ¢° is adapted to F? ; V F7, and hence the functional form of the optimal
control for the representative agent u(x1) = —R;'CT (Pxy + ¢°(t)) is adapted to
FP sV F7. This agrees with the usual Stackelberg setting.

By the main result obtained in [19], we have the unique existence of the backward
dynamic equation g°, which is also adapted to the non-Brownian filtration G°. Hence,
there exists a unique solution to Problem 3.1 that is determined by the system

da§ = ((A1 — C1R;'CTP)xi (1) 4+ Biz(t) — C1 Ry ' CF g (t) + Do (t — 5))dt

+ o1 dWi (), 29(0) = &;
—dg® = (AT = PC1RT CT)g" (1) + (PiD = QuF)ao(t - )
+ (PB1 — Q1E1)2(t) — QlGl)dt — dM,(t), §(T) =o0.

The unique existence of the following equivalent forward-backward stochastic dynam-
ical formulation follows immediately due to the unique existence of optimal control:

(3.5)
d} = (Arad(t) + Buz(t) = LR CTnd (8) + Dao(t - 8) ) dt + r1dWa (1),
29(0) = &;;
—dn® = (ATR3(t) + Qu(@(t) — Fuz(t) — Fao(t — 6) = G) )dt — dMis (1),
no(T) =0
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Remark 3.6. In general the forward-backward stochastic dynamics may not pos-
sess a unique global solution. We here provide a class of interesting examples with
such unique existence.

Remark 3.7. Tt is possible to include the mean field term (z) in the diffusion
coefficient of the dynamics for the representative agent. The adjoint equation under
this case remains unchanged as the mean field term is exogenous to the agent.

To obtain the equilibrium in Problem 3.2, we take the expectation conditional on
F{ sV F7 and integrate on § against 7 over [a, b] on both sides of (3.5), which yields

(3.6)

dz = ((A1 4 B)2(t) — CLRTICTmt) + D | ot — 5)d7rA(5))dt,

[a.)

2(0) = El&];

—dm = (Ale(t) ~ O\ F [ b]xo(t—é)dﬂA((S)-FQl(I_El)z(t)_Qlal)dt—de(t)a
m(T) =0, ’

where we write m(t) := f[mb] EFi-sVFi nd(t)dra(6). The interchange of conditional
expectation and differential is valid as (1) the noise from the dominating player Wy is
independent of the W; by definition and (2) the mean field term z is independent of
any individual noises Wi after the averaging effect. Here (z,m) are clearly adapted
to F{_,, and hence (z,m) are ordinary FBSDE (adapted to the Brownian filtration
F° ). Indeed, by MRT, dM,,(t) has to be in the form of Z(t)dW (¢t — a) for some
Z(t) € Ff_,. Before proceeding to Problem 3.3, we first discuss the existence of (3.6).

LEMMA 3.8. Given any square integrable process xg, suppose that the nonsym-
metric Riccati equation

(3.7)
dr T —1~T
_dt +Ft(A1+Bl)+A Iy — I‘tClRl Cl Ft+Q1(I—E1):O, F(T):O,

admits a unique solution on [0,T); then there uniquely exists a solution to (3.6).
Proof. Tt is easy to see that if h satisfies the BSDE

—dh = ((AT = TC1 Ry ' CT)h(t)

+ (I'eD — QlF)/ zo(t — 8)dma(d) — QlGl)dt —dMy(t),  Rh(T)=0,
[a,b]
then I'yz(t)+h(t) = m(t) as defined in (3.6); the forward equation z will automatically
exist. The uniqueness is clear. O

The unique existence of the solution of the nonsymmetric Riccati equation (3.7),
I', depends on its dimension. For ease of immediate reference, we here sketch the
proof of one of the main theorems, Theorem II1.5 in [9)].

PROPOSITION 3.9. We consider the following cases:

Case 1. If ny =1, then T always admits a solution on [0,T].

Case 2. If ny > 1, suppose that there is a representation Q1(I — E1) = Q + S,
where Q is positive definite, such that

(3.8) (1+ VT 1B (1+ 1@ hsQ ) <2

then T' admits a unique solution on [0,T]. Here,

Ile 1|—sup\// |e (s— tQ |2ds
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Proof. The first case is trivial. For the second case, we claim that if the condition
(3.8) is satisfied, then for any to € [0, T, there exists a unique solution to the following
forward-backward ordinary differential equation on [tg, T:

i ()= (o Zey ™) () =m () =0 wn=o

For the sake of reference, a sketch of the proof of this claim is provided in the appendix.
More details can be found in [9]. We thus have

=0 1) =0 D () = ne (7)o

Since the above equation admits a unique solution y(tp), we have that the matrix

[0 e ()]

is invertible for any to € [0,7]. One can set a well-defined process:

[ oo ()] fo e )]

By simply taking differentiation with respect to ¢, we have

dr’ L (0\]7! _y (~CiRTICOTY ¢

-1
0 A1+ B
M(T—t) M(T—t) 1 1
+[(0 Ie (I” (0 Ie <_Q1(I_E1))
= —ATT, + T,C1RTICTT, —T4(A1 4+ B1) — Q1(I — Ey).

Hence I solves the nonsymmetric Riccati equation (3.7). O

In the rest of this paper, we assume that the condition given by Proposition 3.9,
which is independent of the choice of xg, holds. The unique existence of system (3.6)
is then guaranteed. We next turn to the control problem for the dominating player.
Note that we can decompose the system into (zg,mo) € F° , and a deterministic
component (z.,m.), such that (z,m) = (20 + zc, mo + Mme):

dZO = ((Al + Bl)Zo(t) - ClRl_lcrlrmO(t) + D xO(t - 5)d7TA(5))dta

z0(0) = 0; .
~dmq = (ATmo(t) = QuF [ ao(t = B)dma(5) + Qu(T ~ Ev)zo(®))dt — dMo (1),
[a,b]
dzy = ((A1 + By)zo(t) — clRl—lc;fmC(t))dt,
2(0) = Eléa};
—dm, = (ATme(t) + QuI = By)ze(t) = QuGr ) dt,
m.(T) = 0.

We have zg — (20(z0), mo(x0)) = (20, mo) is linear. We consider the linear functional
L: L% ([<b,T};R™) — L%, ([0,T];R™) defined by

(3.9) L(wo)(t) = 20(t)-
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It can be shown that £ is bounded (and hence continuous); see Lemma A.3. By the
Riesz representation theorem, the Hermitian adjoint operator £* : L2, ([0,T]; R™) —

L% ([=b, T]; R™) uniquely exists such that
T T
E / (@, Lo) ) =E [ (2P0, g(0)i

—b

for all f € L%, ([0,T;R™), g € L3([~b, T];R™). In particular, we have that the

operator norm is preserved, i.e., |[£|| = |[|£*||. The dynamics and the cost functional
for the dominating player can be rewritten as

(3.10) { dzo = (Aoﬂfo(t) + Bo(L(20)(t) + 2c(t)) + Couo(t))dt + aodWo(t),
xO(t) = fO(t)a te [—b,O],

and

T
Jo(uo) = E[/O l0(t) — Bo(L(x0)(t) + 2e(t)) — Gol, + <u0(t), Rouo(t)>dt}

THEOREM 3.10 (control for the dominating player). The dominating player’s
optimal control is given by —Ralng(t), where p satisfies the backward stochastic
functional differential equation

—dp = (ATp(t) + L* (BIP)(1) + Qo(wo(t) — Bo(L(x0)(t) + z(t)) — Go)
e (EgQO(mO — By(L(x0) + 2e) — GO)) (t))dt —dM,(t),  p(T)=0,
where xq satisfies (3.10).

Proof. Let ug 4+ 6ty be the perturbation of the optimal control. The original
states xg becomes xg + 02y with

A7y = (AO:EO(t) + BoL(F0)(1) + Coao(t))dt, Fo(t) =0, te[-b,0].

Consider the first order condition,
(3.11)

6=0

@
= 28] [ (3ult) - Bullan)0.@n s0(0) - Bo(Lo)t) + 2:0) - Gi))
+ <a0(t),R0u0(t)>dt}

On the other hand,
(3.12)
o) = { (o) Cora)) + (900 BoLGa0) (1)) — (2 (B ) (0. 3000))
— (Qo(wo(t) = Fo(£(0) () + z(t)) — Go ), () )
+ <5* (Eng(xo — Eo(L(z0) + zc) — Go)) (t)7i0(t)>}dt + <fo(t)7de(t)>-
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First observe that

E /0 ' (p(t), BoL(30)(1) )dt = E [ Tb (£7(BEp)(0),30(t) )t = E /0 ' (7 (BEp)(0),30() dt.

On the other hand,
E/OT <£* (E(?Qo(xo — Eo(L(z0) + 2¢) — Go)) (1), ;go(t)>dt
_ E/Tb <g* (EEQo(xo — Eo(L(0) + 2¢) — GO)) (), jo(t)>dt
- E/OT <Qo(a:o(t) — Eo(L(z0)(t) 4 ze(t)) — Go), Eoﬁ(jo)(t)>dt.

Hence, taking integration on [0, 7] and expectation on both sides of (3.12) yields

0 — IE/OT {<p(t),Coﬂ0(t)>
= (@0lt) = Eo£(a0)(0) Qo (s0(t) ~ Ea((an)(®) + 5(0) ~ Go) ) .

Using (3.11), we finally conclude that
T
0= E[ / (cEnt) + Rguo(t),ao(t)>dt].
0

Since i is arbitrary, we have that the optimal control is — Ry ' CZ'p(t). 0
Recall that the linear operator £ : L5 ([—b, T]; R™) — L%, ([0,T];R"), for all

g € L2 ([=b, T]; R™), is defined by E
(3.13) L(g)(t) = a(t)

with

(3.14)

da = ((A1 + Ba(t) — CLR7ICTAM +D | gt — 5)d7rA(5))dt, a(0) = 0;

[ab]

—df = (AlTﬁ(t)_QlF g(t—é)dﬂA(5)+Q1(I—E1)Oé(t))dt—dMB(t)a A(T) =0,

[a,b]

where the unique existence of (a, ) is ensured by Lemma 3.8 and Proposition 3.9.
THEOREM 3.11 (explicit form of the Hermitian adjoint £*). Let f € L%, ([0,T7;

R™). The Hermitian adjoint L* : L%, ([0, T|;R™) — L% ([—b, T};R™) of L defined
by (3.13) and (3.14) is given by

£ (f)(t) = DT / E7 q(t + 8)dra (8) — (Q1F)T / BV r(t + 8)dma (),

la,b] [a,b]
where

—dg = (A1 +B))Tq(t) + £(8) + (Qu(I = E)Tr(t) ) dt — dM, (1),
( ) =0,
q(t) = 0, te[ b,0)U (T, T +b].

dr = (Avr(t) = CLRTCTa() ) dt,

r(0) = 0,

r(t) =0, te[-b0)U(T,T+Db.
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Proof. Consider the difference of inner product
d((g,0) = (r,)) = {<q<t>,D 'y 2 s @) = (0. QF /M g(t = 8)dra(6))
- <f(t)7a(t)>}dt + {a®), dMy(1)) - (r(t), dMp (1) ).

One can take integration over [0, T] and expectation on both sides; then we obtain
]E/T<f(t) aft))dt
_ /[a b] /T 5 DTq(t +6), g(t )> — <(Q1F)Tr(t+5),g(t)>dtd7rA(§)
_ /% (D /[a,b] alt + 8)dra(6). 9(t)) = ((QuF)" /[%b] ot + 0)dma(9), (1) )t
:E/b<DT/[a,b] Ef?q(t+5)d7rA(5)—(Q1F)T/ B2 (0 + 8)drs (9),0() .

[a,b]

The second equality comes from the fact that ¢, r vanish on appropriate domains. d

Observe that both £(g)(t) and L*(f)(t) are F{ adapted. Using the result obtained
in Theorem 3.11, by putting f(t) = B{'p(t) — EL Qo(z0(t) — Eo(L(w0)(t) +2.(t)) — Go),
we have the explicit formulation for the adjoint process p in Lemma 3.10. Altogether,
the solution is represented by the following six equations:

(3.15)
dzo = (Aoaro(t) + Boz(t) — coRglcOTp(t))dt + oodWo(t),
20(0) = &o;

dz = ((A1 + B)z(t) — CLRTCTm(t) + D

EIZ(O) = E[&];

zo(t — 6)d7rA(5))dt,
fa.b]

—dm = (A{m(t)—QlF/

» xo(t—d)de(6)+Q1(I—E1)z(t)—Q1G1)dt—de(t),

m(T) = 0.

~dp = (a3p(t) + D" |

+ Qo (xo( ) — Ei)a,:(]t) _ GO))dt —dM,(b),

E77 q(t + 6)dra(8) — (QuF)” / EZ7r(t + 6)dra (6)

[ab]

—dg = (<A1 + B)Ta(t) + B p(t) — BY Qolwo(t) — Boz(t)) — Go)
+ (QuI = E)Tr(t) ) dt — dM,(2),

, te[-b,0)U(T,T+10];
dr = (Alr(t) - ClRflc{fq(t)) dt
0
0

. te[-b,0)U (T, T+

Remark 3.12. If A = 0, which implies a = b = 0, then the above six equations
reduce to the results in [3] without terminal terms.

Remark 3.13. The backward equation p is also know as the “anticipated BSDE”;
see Peng and Yang [21] for details.
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Remark 3.14. If D = 0 and F' = 0, the system is degenerated in the sense that
the state of the representative agent and his objective functional are independent of
those of the dominating player, and then (3.15) reduces to a system of four equations:

(z,m) : linear quadratic mean field game problem (see [9]);
(xo,p) : standard linear quadratic control problem, given (z,m) (see [2, 11]).

The adjoints (g, ) could be neglected.

4. Unique existence for the solution of FBSFDE. It remains to discuss
the unique existence for a solution derived in Theorem 3.10, which is represented by
an FBSFDE:

{ d$0 - (Aoﬂio(t) + Bo(ﬁ(ﬂio)(t) + Zc(t)) — CORgngp(t))dt + O'QdWO(t),
fO(t) = fo(t), te [_ba 0]7

(1) [ —dp= (4Fp) + £ (BIp — B Qolwo — Eo(L(wo) + z) — Go)) (1)
+ Qo (0(t) = Bo(L(wo)(t) + 2e(1)) — Go)) ) dt — M, (2),
p(T) =0,

For a discussion on the general existence of FBSFDE, see Xu [24] and the references
therein. In particular, he extends the method of continuation in the literature of
FBSDE. The next theorem concludes this section.

THEOREM 4.1. Suppose that the condition in Proposition 3.9 holds; then the
FBSFDE (4.1) admits a unique solution.

Proof. The condition in Proposition 3.9 guarantees the existence of £. In ac-
cordance with Theorem 3.1 in Xu [24], it suffices to check the monotonicity condi-
tion. Suppose that (xg,p), (z(,p’) are two processes on R™ x R™ and (&o,p) :=
(xo — z(,p — p'). Define the operator

A(%) () = (—AoTﬁ(f)—ﬁ* (Bgﬁ—Eng(fﬁo—Eoﬁ(fO)))(’5)—@0(@0(75)—505(@0)(’5))
P Ago (t) + Boﬁ(io)(t) — OQRalcoﬁ(t) '

Consider the inner product

B [ (A0 50, (o) ) Y

_ OT (b(0). BoL (o)1) )dt ~ B /0 " (a0, CoRy CT30) Yt

-k e (B~ EEQulan — Eoblaa)) (). 0(0) i

-b

+E /0 Z <Q0 (io(t) - Eoc(:eo)(t)),gzo(t)>dt

=—-E | {(p), coRglcOTﬁ(t)>dt

[}

T
E / (0(t) = FoL(30) (), Qo (d0(t) — BoL(z0)()) t.

Since Ry and Qg are positive definite, we have

& [ (A0 50, (o0p0))a <~ [ (50, Cog" 0 < Al
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where A is the smallest eigenvalue for Cy Ry ng . With this monotonicity condition,
the usual method of continuation in FBSDE gives the unique existence result and we
omit the proof here. O

5. Conclusion. In summary, the N-player and the mean field system are de-
scribed, respectively, by Tables 1 and 2. We show that when all the ith players adopt
the optimal control defined by the above mean field dynamics and objectives, and
suppose further that the mean field term z satisfies the fixed point property (2.14)

2(t) :/ BV 77000 (1) dma (),
o

then the N-player system in Table 1 would converge to the mean field analogical
system in Table 2. The mentioned optimal controls serve as an e-Nash equilibrium,
and their function form is adapted to Fy_; V F7 and hence agrees with the spirit of
Stackelberg games. The explicit solution for the linear quadratic setting has also been
studied comprehensively.

TABLE 1
N-player system.

N 38
Zj:lyl (1)

Dominating | Dynamics | dyo = go (yo (t), N

,vo(t))dt + 00dWo(t)

N 38
Zj:lyl 7 (t)

T
Player Objective | TON (vg) = IE/ fo (yo (®),
o N_1

0 (t)) dt

N FIYAYY
2j=12i% (#)
N-1
N FYAY]
2j=1ziY1 ()
N-1

Dynamics dyi’éi =g (yi‘éi #), mi‘ai (), yo(t — 52)) dt + o1dWi(t)

ith player

(1), w0t — 6,) ) dt

T A
Objective jiv%N(v):E/ fl(yi‘éi(t),
0

TABLE 2
Mean field analogical system.

Dominating | Dynamics | dzo = go(zo(t), 2(t), vo(t))dt + oodWo(t)

T
Player Objective | JO(vg) = ]E/0 fo (mo (t), z(¢), vo (t)) dt

ith player Dynamics dzi’&i =g (:ci’(sf (t), z(¢), vi’&i (1), zo(t — 8;))dt + o1 dWi(t)

) T ) )
Objective | Ji¥i (%) = & / f (x;v“i (t), 2(t), vi% (t),zo(t_csi))dt
0

Appendix A. We provide proofs of the mentioned technical lemmas.
LEMMA A.1. Let ma be a probability measure on [a,b]. Given € > 0, let 7TOA+ be
a restricted measure as defined in Corollary 2.3. There exists N > 0 such that

sup w&*‘(a,(cn_)l, a,(c")] <2 Vn>N.
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Proof. Suppose on the contrary there is a sequence of {(nj,k;)}; such that

7r0A+(a§€?i)1, a,(;;j)] > 2¢/. Or, we also have 74" [a,(;;j_)l, a,(;;j)] > 2¢’. Let

o2 ol
2

mj; =

be the midpoint of the interval. By the Bolzano—Weierstrass theorem, up to a sub-
sequence of {m;};, there is a limit point m. Without loss of generality we just
take m; — m. For fixed r > 0, consider A, = [m — X, m + 1]. Clearly, as

{[aé?i)l,aé?j )]}j diminishes in width, we can find a large enough J such that for

all j > J, [a,(c?i)l,a,(:j)] S A,. Hence,

J

XA = 7% a7 ] > 26

J
J
Take r 1 400, we have

Tt ({m}) = lerij_noo (A > 26 > €,

which contradicts the definition of 7r2+. O

LEMMA A.2. If the condition (3.8) is satisfied, then for any to € [0,T], there ex-
ists a unique solution to the following forward-backward ordinary differential equation
on [to,T]:

i ()= (Cou Ty ) () =4 () w0 un-o

Proof. Let z,y be elements in the Hilbert space L?([tg,T];R™) endowed with
the inner product (z,y)o = fi(;v(t), Qy(t))dt. Since Q > 0, we easily observe that

the induced norm || - ||g = |(-,-)o|? is equivalent to the usual L? norm. Consider the
ordinary differential equation

[3)- (o 25T @) (3 s wnee

As both Q and C’lRl_lC;‘F > 0, the map x — X corresponds to a well-defined control
problem which guarantees the existence of (X,Y). Thus it suffices to show that it is
a contraction, indeed. We first compute the differential for the inner product

CUXY) = (CORTCTY (1) + Ba(t), Y (1) — (X(0), QX (1) + Sr(r).

Together with the initial and terminal conditions, we have

/T<ClRflch(t), Y (1)) + (X (1), QX (t))dt = /T<B;v(t), Y (1)) — (X(t), Sz(t))dt.

to tO

By the Cauchy-Schwarz inequality,

T
(A1) X[ < [ (Bolt),Y (@) ~ (X(0), Sale)dr

to
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On the other hand,

Ytz/TeA 5 t)(QX( )—|—Sa:(s))d8,

t

which implies

(A.2) sup_|[¥il| < [leT | (XNl + 1Q72SQ ¥ allo),

to<t<T

e lH— bup \// |eA 1= Q3 2 |2ds.

Combining (A.1) and (A.2) yields

where

—1 ~1 —1
X% < VT sup [%1BQ 3 lalle + X ol tSQ o
0xt>

< VTt (1X)1 o + 1278 Hllelle) I1BQ# | 2]lo
+11X/oll Q28972 |zl

= (VT 11BQ 4 +11Q 5@ ) IXllallzlo
+ VT e | QFSQ7#||BQ# |3

Hence, for all ty € [0, T], the map is a contraction if
(1+ VT 1B (1+ 107 bse ) <2

Note that this condition is in fact independent of ¢g. O
LEMMA A.3. The linear operator L defined in (3.9) is bounded.
Proof. Using Lemma 3.8 and (3.7), mo(t) = T't20(t) + ho(t), where

—dho = ((AlT—rtclRflclT Yho(t)+(T':D=Q1F) /

- xo(t—5)d7rA(5)) dt—dMy, (1),
ho(T) = 0.

For some 7 > 0, one can apply 1t6’s formula on e”|ho(t)|? to obtain the estimate

E[e™ |ho(t)[]

< ]E/tT e [2<ho(s), AL ho(s) + Bs o (s — 5)d7m(5)> a n|h0(s)|2] o

[a,b]
where A7 = AT — I‘tClRflCI‘F and B; = I'yD — Q1 F. Hence, we can choose some
n > 4[| Al|, where || A|| := sup,<r [|A¢]|, such that

T T
nIE/ e |ho(s)?ds < E/ e’ {2<ho(s),Asho(s) + B; xo(s — 5)d7TA(5)>:| ds
0 0 [a7b]
B T
< (2ar+ =4 & [ v pas
0

2|8| ) /T
()R e
(77—4|A| 0

2
ds

/ 2o(s — 8)dra (6)
[a,b]
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After rearrangement, we obtain

QIE/T e"|ho(s)[*ds < (M> E/ /T e 2zo(s — 0)[2dsdma (6)
2 Jo — \n—4[A] la.1 /0
2||B]| / 2
<|—— _E ns ds.
—(n—4||A|| ¢ Imols)fds

Since the n-weighted norm is equivalent to the original L? norm, we have
(A.3) [holl < K|[zo|-

Similarly, letting ¢ > 4||.A + Bi||, apply It6’s formula on e~%t|2q(t)|? yields
T
CIE/ e %%|20(s)|?ds
0

T
< 2K / e~ (0(5), (A + B1)zols) — CrRy ' CTho(s) + D
0

—4 B T

< (2||A+Bl| +%>E/ e %|z0(s)|*ds
0

+ ;{HQR:LCHE/T e %%|ho(s)|?ds
C—4HA;‘ By|| r 0

+ ||D||E/0 e < /ab zo(s — 8)dma(0) st}.

[a,b]
After rearrangement again, we conclude that

wo(s — 6)d7rA(6)>ds
0.t

C T —(s 2
§IE e”%%|z0(s)|?ds
] 4 1 T e 2 T 2
< ———— ClR_CTE/ e *%lho(s)|7ds + DE/ e %lzo(s ds}.
By the norm equivalence again, together with (A.3), we have ||zo|| < K (||hol|+|zol|) <

2K ||zol|. We conclude that £ and hence £* are bounded. O
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