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Functional magnetic resonance imaging (fMRI) allows researchers to analyze brain activity

on a voxel level, but using this ability is complicated by dealing with Big Data and large

noise. A traditional remedy is averaging over large parts of the brain in combination with

more advanced technical innovations in reducing fMRI noise. In this dissertation a novel

statistical approach, based on a wavelet analysis of standard fMRI data, is proposed and

its application to an fMRI study of neural plasticity of 24 healthy adults is presented. The

aim of the study was to recognize changes in connectivity between left and right motor cor-

tices (the neuroplasticity) after button clicking training sessions. A conventional method of

the data analysis, based on averaging images, has implied that for the group of 24 partici-

pants the connectivity increased after the training. The proposed wavelet analysis suggests

to analyze pathways between left and right hemispheres on a voxel-to-voxel level and for

each participant via estimation of the corresponding cross-correlations. This immediately

necessitates statistical analysis of large-p-small-n correlation matrices contaminated by large

noise. Furthermore, the distributions that we are dealing with in the analysis are neither

Gaussian nor sub-Gaussian but sub-exponential. The dissertation explains how the problem

may be solved and presents results of a dynamic analysis of the ability of a human brain to

reorganize itself for 24 healthy adults. Results show that the ability of a brain to reorganize
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itself varies widely even among healthy individuals, and this observation is important for our

understanding of a human brain and treatment of brain diseases.
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CHAPTER 1

INTRODUCTION

Big Data refers to data sets with both large sample size and high dimensionality. Advances

in today’s technology lowers the price of producing and storing data and thus causes an

explosion of information. Big Data brings new statistical and computational challenges as

its features differ from that of the traditional small- or median-scale data sets. One classic

example of Big Data is the fMRI study, see a review in Fan et al. (2014). An fMRI machine

produces 3-D time-course cerebral images by scanning human brains noninvasively. An image

contains hundreds of thousands of voxels and each voxel is scanned for hundreds of times.

The high-dimension property of fMRI data set turns it into a problem of Big Data.

Another familiar complication of an fMRI study is a large noise. An fMRI machine

captures the hemodynamic responses in the active part of brain after a certain stimulus, as

well as noise caused by physiological activities such as respiration and heartbeat. We will

show shortly that the magnitude of the nuisance physiological activities is almost comparable

to that of the signal component of interest, especially during the resting states when there

is no stimulus.

In order to simplify analysis and decrease noise, one popular statistical approach is to

average observations over a number of voxels of interest. This was the approach used by

bioengineers from the UT Southwestern Medical Center in a study of neuroplasticity based

on an fMRI experiment involving 24 healthy adults (Tung et al. 2013); technical details

of the study will be described shortly. The aim of the study was to recognize changes in

connectivity between left and right motor cortices after button clicking training sessions,

and the authors used a paired t-test for 24 participants which compared pre-training and

post-training Pearson correlations between spatially averaged signals in left and right motor

cortices. The conclusion was that the plasticity exists because the (overall over 24 partic-

ipants) correlation significantly increased. Averaging over a region of interest (ROI) is a
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well known and respectful statistical technique which simultaneously solves the Big Data

and large noise fMRI problems (Worsley et al. 1992; Lazar 2008; Anderson et al. 2010; Kelly

et al. 2011) . At the same time, it would be of interest to understand how the plasticity

can be studied on a voxel-to-voxel level and simultaneously over all voxel-to-voxel pathways

based on the available data. Note that this approach would allow us to study plasticity for

each participant in place of considering them as a sample from a generic participant.

In this work, using the fMRI data from Tung et al. (2013), we propose and then test a new

wavelet methodology for the analysis of neural plasticity. Main innovations are: (i) A special

multiresolution analysis; (ii) A new procedure for the analysis of noise in wavelet coefficients;

(iii) Thresholding analysis of large-p-small-n cross-correlation matrices; (iv) Developing si-

multaneous confidence bounds for cross-covariance and cross-correlations matrices. As we

will see shortly, the new methodology allows us to simultaneously analyze dynamic changes

in pathways between all pairs of active voxels. Let us stress that there is an acute interest

in solving these problems, see a discussion in Chang and Glover (2009); Weissenbacher et al.

(2009); Birn (2012); He and Liu (2012); Murphy et al. (2013); Efromovich and Smirnova

(2014); Chen et al. (2017); Marusak et al. (2017); Mill et al. (2017); where further references

may be found.

The above mentioned thresholding analysis of large-p-small-n matrices is a new statistical

result in the area that have seen a surge in publications, see reviews Fan et al. (2014); Cai

(2017). At the same time, so far the main emphasis has been on the study of classical

covariance and correlation matrices with the main application being microarrays. In this

work, we apply the thresholding analysis on large-p-small-n cross-correlation matrices with

fMRI data.

The work’s context reflects the above-formulated challenges and tasks. Chapter 2 reviews

the concepts of fMRI and neural plasticity, nonparametric regressioin and minimax estima-

tion, wavelets, regression with errors in both variables, and subexponential distribution and
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tail bounds. Chapter 3 describes the proposed wavelet methodology. Let us stress that the

idea of using a wavelet decomposition for fMRI signals is not new, see a discussion in Lazar

(2008); Efromovich and Valdez-Jasso (2010). Further, a wavelet analysis of plasticity was

proposed in Efromovich and Smirnova (2014). However there were two major unresolved

issues that made the wavelet approach not feasible for a simultaneous analysis of all active

voxels. The first one is that known methods of estimation of the noise in wavelet coefficients

imply levels that are too large for a feasible simultaneous inference. The second one is that

traditional asymptotic simplifications in wavelet analysis require larger sample sizes than

the fMRI data provides. As a result, a new theory and methodology are needed for dealing

with these challenging statistical issues; they are explained in Chapter 4. Evaluation of

the noise model assumptions, simulation results and practical applications of the proposed

wavelet methodology for the analysis of neuroplasticity is presented in Chapter 5. Chapter

6 presents another study related to nonparametric analysis of nonstationary asset returns.

As a final note, the results of the dissertation were published in Efromovich and Wu

(2018a,b) and Efromovich and Wu (2017).
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CHAPTER 2

CONCEPTUAL SETTING AND LITERATURE REVIEW

2.1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging or functional MRI (fMRI) is a noninvasive technol-

ogy which measures the human brain functionality by detecting alterations associated with

cerebral blood flow. The earlier MRI scanning technology provides a static structural view

of organs in the body using strong magnetic fields, radio waves, and field gradients, without

requiring people to undergo surgery or to be exposed to ionising radiation. The concept of

fMRI is to extend MRI technology to further capture the human brain functionality, not by

a direct measure of neuronal activities but through a measure of the blood-oxygen-level de-

pendent (BOLD) level contrast. The cerebral blood flow and neuronal activities are related;

the neurons’ activation causes a need for energy which could be provided by the oxygen in

the blood, and therefore local blood flow to those brain regions increases, and oxygenated

blood displaces deoxygenated blood. The fact that the oxygenated and deoxygenated forms

of blood could be detected using MRI provides an indirect measure of the brain activities.

An fMRI scanner produces 3-D time-course cerebral images. Each image contains thou-

sands of voxels and each voxel is scanned for hundreds of times, which implies the high-

dimension property of fMRI data set (Fan et al. 2014). On the other hand, an fMRI machine

captures the hemodynamic responses as well as nuisance physiological activities, which im-

plies the noisiness of fMRI data. These properties bring challenges in the data representation,

archiving, and analysis.

2.1.1 Neuroplasticity

Neuroplasticity, also known as neural plasticity, is the ability of the human brain to reorgnize

itself, even through adulthood. Examples of neuroplasiticity include brain anatomical struc-

ture change, brain functional location change, and neural connectivity change. These brain
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remodeling could be a result of personal experience, environmental stimuli, thoughts and

emotions, or drugs. We are most interested in the activity-dependent plasticity, which is

the plasticity arising from intrinsic or endogenous activities. For example, practicing one’s

less dominant hand could cause one to become ambidextrous; physical rehabilitation could

reduce neurological dysfunction. Neuroplasticity due to training has significant implications

for the development of learning and memory methods, therapies for acquired brain injuries

such as physical trauma and stroke, and therapies for brain diseases such as Alzheimer’s

disease.

Let us introduce some popular approaches that are used to analyze neuroplasticity. Voxel-

based morphometry (VBM) (Ashburner and Friston 2000) is a statistical technique that

detects the significant differences in brain anatomical structure. VBM is an application of

statistical parametric mapping (SPM), which models each voxel as a general linear model

and perform hypotheses testing on the model coefficients.

Voxel-Mirrored Homotopic Connectivity (VMHC) is proposed to measure the neural

connectivity, where the Pearson correlation of the resting state signals from the mirrored

inter-hemispheric voxels are computed (Zuo et al. 2010). However, VMHC can be only used

to indicate the synchrony in the neural fluctuations between mirrored brain regions.

The Region of Interest (ROI) analysis is very commonly used in fMRI studies. The idea is

to restrict the study to only a small area, called ROI, and average the parameter estimators

from all voxels in that ROI. Therefore, the study ends up with one averaged estimator for

one subject and these subject-wise estimators are used for a t test. Efromovich and Smirnova

(2014) attempted to extend the ROI method to a voxel-level analysis but within a single

slice due to the complications caused by high dimensionality and large noise.

In this work, we want to make a further extension of the voxel-level analysis to the whole

ROI so that all inter-hemispheric pairs of voxels could be considered under the analysis.
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2.1.2 Physiological Noise and Its Correction

Since the discovery of the spontaneous neural activity at rest in the humain brain (Biswal

et al. 1995), resting state fMRI has become an active area of investigation. However, one

big challenge in exploring the resting state fMRI is its large noise-to-signal ratio. An fMRI

scanner captures (spontaneous) BOLD signals as well as physiological activities, like cardiac

and respiratory fluctuations. They must be corrected in order to avoid any distortions in

the statistical analysis, especially when resting state fMRI are considered where the scale of

the nuisance noise is comparable to that of the spontaneous neuronal activity.

Basically, there are two classes of techniques to remove physiological noise from the

resting-state BOLD time series; see reviews in Murphy et al. (2013); Birn (2012). The

first class of techniques is using external recordings of physiological activities. For instance,

facilities like a finger (or toe) pulse oximeter and respirotory bellows are used during the fMRI

scanning, making it easy to capture cardiac and respiratory processes. The second class of

noise clean-up techniques is purely data-based. That is, these methods use the resting-state

fMRI data itself. We next briefly summarize some popular methods from the second class.

As we will see, none of these noise reduction approaches is perfect, and therefore this still is

an active area of investigation (Birn 2012).

Image-based Physiological Artifacts estimation and Correction Technique (IMPACT) is

the most straightforward method which removes the primary cardiac and respiration fluc-

tuations using bandpass filtering (Chuang and Chen 2001). The reason why this works is

because the frequencies of research interest in the resting state fMRI data are between 0.01

Hz and 0.1 Hz, while the cardiac and respiratory frequencies are usually greater than 0.25

Hz (Barrett et al. 2009). The disadvantage of this method is that it requires the scanning

repetition time (TR) to be short (< 0.5 s), otherwise the nuisance frequencies might be

aliased into the lower frequency range.

6



Under the assumption that the physiological noise is independent of the neural activity-

related signal component, an independent component analysis (ICA) can be used as a noise

reduction strategy. ICA is a commonly used computational method in signal processing,

which decomposes a signal into additive subcomponents that are statistically independent.

The two popular applications of ICA in fMRI studies are CORSICA (Perlbarg et al. 2007)

and PESTICA (Beall and Lowe 2007).

The nuisance regression approaches are also commonly used, whose idea is to consider the

signal from each voxel as a linear regression model and compute a nuisance regressor which

is supposed to be removed from the regression model. One type of the nuisance regression is

called global signal regression (GSR). The idea of GSR is to remove the brain-wise common

signal component from the raw data. That is, the fMRI data is spatially averaged over

the whole brain, and the averaged signal is used as a regressor, to be removed, in a linear

regression model for the data. The disadvantage of GSR is that the averaged signal contains

the neural activity-related component. Its removal could distort the underlying signal of

interest. To address this issue, another type of the nuisance regression method is to derive

the nuisance regressor from brain regions that are very unlikely to show neural activity-

related BOLD signal, like the white matter (WM) and cerebrospinal fluid (CSF) (Birn et al.

2009). Therefore, it is likely that only non-neuronal signal changes have been removed from

the raw data. Note that the assumption of these two nuisance regression methods is that

the physiological noise is spatially in common for the whole brain.

An extension to the above introduced nuisance regression approaches is to use a localized

averaged signal from the WM that is surrounding a voxel of interest as a nuisance regres-

sor. This method has a better reduction in noise, especially for spatially inhomogeneous

physiology occurring in the brain (Jo et al. 2010).

The fMRI data collected by Tung et al. (2013) (the data at hand, which is used in

practical applications shown in Chapter 5) has been prepocessed by regressing out the time
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courses of the whole brain WM and CSF. However, our analysis shows that the physiological

noise clean-up approach is not perfect (see Chapter 5), and hence further development is

needed for more accurate estimation of noise level.

Thanks to the frequency extraction property of wavelet decomposition, the physiological

noise is easily filtered out in our proposed wavelet analysis. On the other hand, the removed

physiological component plays an important role in the analysis of the noise level in the

empirical wavelet coefficients.

2.2 Series Approach for Nonparametric Regression

The problem of a standard nonparametric regression is to estimate the regression function

f(t), t ∈ [0, 1] from the observations (X1, Y1), ..., (Xn, Yn) in the supposed model

Yl = f(Xl) + τεl, l = 1, 2, ..., n. (2.1)

Here ε1, ..., εn are realizations of a random variable (error) ε with zero mean and unit variance,

and τ is a constant which represents the noise level. The set of values {X1, ..., Xn} is called

the design. If the design is a set of i.i.d. realizations of a random variable, the corresponding

model is called random design regression; if the design is a set of fixed values, then the

corresponding model is called fixed design regression. A fixed design regression model can

be simplified as

Yl = f(l/n) + τεl, l = 1, 2, ..., n. (2.2)

Suppose that f ∈ L2[0, 1] and a system of functions {ϕ0, ϕ1, ...} is an orthonormal basis

on L2[0, 1], i.e., ∫ 1

0

ϕi(x)ϕj(x)dx =


1, if i = j

0, if i 6= j

. (2.3)

The set of values {θ0, θ1, . . .} defined as

θj =

∫ 1

0

f(x)ϕj(x)dx, j = 0, 1, . . . ,

8



are called the Fourier coefficients of the function f with respect to an orthonormal basis

{ϕ0, ϕ1, ...}. Then f can be represented as a sum of series

f(x) =
∞∑
j=1

θjϕj(x). (2.4)

The idea of orthonormal series estimation is to approximate f by a truncated (finite)

sum of orthonormal series

fJ(x) =
J∑
j=1

θjϕj(x), (2.5)

and replace the coefficients θj by their estimators. Here J is a positive integer called cutoff,

which is a smoothing parameter, i.e., a parameter whose choice is crucial for establishing the

balance between bias and variance. The adaptive choice of J is discussed in Nonparametric

Curve Estimation (Efromovich 1999a).

The orthonormal series estimation is also known as projection estmation in the litera-

ture, as equation (2.5) is the projection of f on the linear span of the first J functions of

the basis {ϕ0, ϕ1, ...}. Through the projection (2.5), it will be possible to identify the basis

elements that play the most important role in describing the function f . The basis ele-

ments {ϕ0, ϕ1, ...} contain complementary properties which allow the decomposition of the

underlying components contained in the function f .

The choice of a basis depends on the type of underlying information the researcher wants

to identify from the function under inverstigation. The orthonormal bases that are most

frequently used in series estimation include the trigonometric bases, the wavelet bases and

ploynomial bases. Let us describe two classes of orthonormal bases which will be the math-

ematical tools we use in our proposed methodology.

A cosine orthonormal basis {ϕ0, ϕ1, ...} on [0, 1] is defined by

ϕ0(x) := 1, and ϕj(x) :=
√

2 cos(πjx), for j = 1, 2, ...

where x ∈ [0, 1].
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A wavelet orthonormal basis {ψjk(x), j, k ∈ Z} on R is defined by scaling and shifting a

single Mother function ψ(x) as following

ψjk(x) := 2j/2ψ(2jx− k), j, k ∈ Z, (2.6)

Here ψ(x) is a sufficiently smooth function with compact support. Then any function f ∈

L2(R) can be represented

f(x) =
∑
j∈Z

∑
k∈Z

θjkψjk(x), (2.7)

we have

θjk =

∫ ∞
−∞

f(x)ψjk(x)dx. (2.8)

We refer to {θjk} as wavelet coefficients. The wavelet orthonormal basis on [0, 1] is defined

in the similar way only with correction at the interval endpoints.

Both cosine basis and wavlet basis are useful mathematical tools. A cosine basis could

dissection f with respect to frequency, while a wavelet basis extracts information from f

both in the frequency domain and time domain if x is considered as a variable of time. As

we can see from the definition of wavelet basis (2.6), the index j, called the dilation (scale)

index, characterizes the frequency of the wavelet base function and the index k, called the

translation index, characterizes the position of the wavelet base function in the time domain,

i.e., the shift on the x-axis. More details on the wavlet transform will be introduced in the

next section.

2.3 Wavelets and Multiresolution Based Discrete Wavelet Transforms

A wavelet is a wave-like function defined on a compact support whose integral is zero. The

first wavelet family or basis is the Haar wavelet, which was introduced by Alfred Haar in

1910 (Haar 1910). The invention of wavelets by Meyer boosted the popularity of wavelets in

applications since 1990s. Other main contributors in the history of wavelets include Stephane

Mallat, Ingrid Daubechies and Ronald Coifman.
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(a) Haar Wavelet (b) Daubechies 4

(c) Daubechies 12 (d) Symlet 8

Figure 2.1. Examples of wavelet families.

Figure 2.1 presents examples of wavelet families. Figure 2.1 (a) displays the shape of a

Haar wavelet. Figure 2.1 (b) and (c) display the shapes of Daubechies 4 and Daubechies

12, respectively. The Daubechies wavelets are designed to achieving special properties in

vanishing moments and they are widely used in signal processing. Figure 2.1 (d) presents

the shape of Symlet 8, also known as Least Asymmetric 8. The Symlet wavelets are designed

by increasing the symmetry of Daubechies wavelets. It is one of the most commonly used

wavelets in statistical analysis. The number associated with the wavelet name is an index

of its width and smoothness. Larger index yields wider and smoother wavelets. Although

the majority of the commonly used wavelets have no closed mathematical expression, such

as the famouse Daubechies wavelets, they can be generated numerically using the cascade

algorithm.
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The definition of a wavelet orthonormal basis, introduced in (2.6),

ψjk(x) := 2j/2ψ(2jx− k), j, k ∈ Z,

indicates that the entire basis is generated by scaling and translating just one function ψ(x),

called the Mother wavelet. This means that each base function ψjk(x) has the same shape

as the Mother wavelet ψ(x) but with different scale and different location determined by the

two indices j and k. Recall that j is the dilation (scale) index, and k is the translation index;

j characterizes the frequency of the basis element which k characterizes the location. Such

a system of wavelet functions {ψjk(x), j, k ∈ Z} can be shown to be orthonormal. Using this

wavelet orthonormal basis, any function f ∈ L2(R) can be represented as

f(x) =
∑
j∈Z

∑
k∈Z

θjkψjk(x), θjk =

∫ ∞
−∞

f(x)ψjk(x)dx. (2.9)

This is called a discrete wavelet transform, as the scale and shift parameters are discrete.

The popularity of wavelets is due to their ability to extract information from a function

or a signal in both time and frequency domains. Its mechanism is described as follows.

Mathematically, a wavelet coefficient θjk, defined in (2.9), reflects the correlation between

the signal and corresponding wavelet base function ψjk. A large wavelet coefficient implies

the unknow signal contains underlying information of the corresponding frequencey at the

corresponding location. The ability to extract underlying information from a signal in both

time and frequency domains allows wavelets to study the characteristics of a signal like

sudden spikes, frequency alteration, and discontinuities in details. This ability makes them

an outstanding mathematical tool for approximation of spatially inhomogeneous curves and

images.

A multiresolution analysis was introduced to avoid numerical computational complexity

in the discrete wavelet transforms by reducing the number of elements in the wavelet basis

and therefore reducing the number of wavelet coefficients, i.e. the corresponding integrals,

12



to evaluate. The idea of a multiresolution analysis is to introduce an auxiliary function,

the so-called Father or Scaling wavelet, denoted as φ(x). The Father wavelet is coarser

than the Mother wavelet and it is not integrated to zero. Therefore, the Father wavelet is

used to extract the slowly varying information, or trend, from a signal f . Note that the

multiresolution analysis is not applicable to all discrete wavelet transforms.

We next introduce the multiresolution based discrete wavelet transform. Let φ(x) be a

Father wavelet and let ψ(x) be a Mother wavelet. For any positive integer j0, known as the

number of multiresolution components, the system of functions on R defined by

φj0k(x) := 2j0/2ψ(2j0x− k), k ∈ Z, and ψjk(x) := 2j/2ψ(2jx− k), j ≥ j0, k ∈ Z, (2.10)

forms an orthogonal basis, which generates the same space as the one which is spanned by the

system of functions defined in (2.6). For any function f ∈ L2(R), the wavelet multiresolution

expansion of f is

f(x) =
∑
k∈Z

sj0kφj0k(x) +
∑
j≥j0

∑
k∈Z

θjkψjk(x), (2.11)

where sj0k =
∫∞
−∞ f(x)φj0k(x)dx and θjk =

∫∞
−∞ f(x)ψjk(x)dx are called wavelet coefficients.

The set of wavelet coefficients is called the discrete wavelet transform (DWT) of the function

f(x).

Additional background on wavelets and wavelet transform can be found in Vidakovic and

Mueller (1994); Hernández and Weiss (1996); Mohlenkamp and Pereyra (2008).

2.4 Empirical Wavelet Coefficients and Thresholding Estimation

The wavelet multiresolution expansion introduced in (2.11) is defined for a continuous func-

tion f ∈ L2(R). However, in practical applications, a signal is only observed and recorded

at certain discrete time points, which means we only obtain a discrete signal or a sample

of the unobservable continuous signal. Therefore, the two indices j and k in an empirical
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wavelet transform will not exceed certain levels that are specified by the observed signal

length. Moreover, the observations of a signal are usually not pure but contaminated by

noise. That is, in practice, we are dealing with problems that could be described using a re-

gression model as defined in (2.2), where f is the underlying unobservable signal of interest,

n is the observed signal length, εl is the noise or random component, and Yl is the observation

at time l/n. This fact induces a corresponding random component in the empirical wavelet

coefficients, and shortly we will discuss this random component.

Due to the algorithm design of the numerical wavelet transform, most wavelet transform

toolkits require an equidistantly sampled time series of a dyadic length, that is n = 2J for

some positive integer J , as the algorithm input. Under the assumption that n is divisible by

2j0 , where j0 is the number of multiresolution components (or scales) predetermined by the

researcher, the multiresolution based wavelet expansion for a time series is defined by the

following

Yl =

n/2j0∑
k=1

s̃j0kφj0k(l/n) +

j0∑
j=1

n/2j∑
k=1

θ̃jkψjk(l/n). (2.12)

Here, {Yl, l = 1, ..., n} is the observed time series. The system of functions {φjk(x) :=

2−j/2φ(2−jx−k), k = 1, . . . , n/2j0 ;ψjk(x) := 2−j/2ψ(2−jx−k), j = 1, . . . , j0, k = 1, . . . , n/2j}

forms an orthogonal wavelet basis, where φ(x) is called the Father wavelet, and ψ(x) is called

the Mother wavelet. The index j is called the dilation (scale) index which characterizes

the frequency of the wavelet base function, and the index k is called the translation index

which characterizes the shift of the wavelet base function on the x-axis. Here, {s̃j0k, k =

1, ..., n/2j0 ; θ̃jk, j = 1, ..., j0, k = 1, ..., n/2j} are traditionally referred to as empirical wavelet

coefficients (Johnstone and Silverman 1997; Efromovich 1999a; Nason 2008). Note that we

use the notation s̃j0k and θ̃jk with tilde to emphasize that these wavelet coefficients contain

random components inherited from the observations {Yl, l = 1, ..., n}.
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On the other hand, the underlying signal of interest has the corresponding wavelet ex-

pansion given by

f(l/n) =

n/2j0∑
k=1

sj0kφj0k(l/n) +

j0∑
j=1

n/2j∑
k=1

θjkψjk(l/n). (2.13)

Here {sj0k, k = 1, ..., n/2j0 ; θjk, j = 1, ..., j0, k = 1, ..., n/2j} are the underlying wavelet coef-

ficients.

Under mild conditions, the fixed design regression model (2.2) can be converted by the

wavelet tranform (2.12) and (2.13) into the Gaussian sequence model with respect to the

wavelet coefficients,

θ̃jk = θjk + n−1/2τξjk, (2.14)

where {ξjk, j = 1, ..., j0, k = 1, ..., n/2j} are i.i.d. Gaussian noise components with zero mean

and unit varance and τ is the standard deviation of the noise in the original regression model

(2.2). Note that wavelet transform has a “decorrelating” feature. That is, even though the

observed signal may be strongly autocorrelated, the wavelet transform will very often yield

much less correlated wavelet coefficients (Johnstone and Silverman 1997).

The underlying noiseless wavelet coefficients are usually a sparse representation of the

underlying signal f , that is, only a small number of the wavelet coefficients are effectively

nonzero compared to the signal length. One way of estimating a sparse set of underlying

wavelet coefficients is to “threshold” the empirical wavelet coefficients by comparing them

with the Gaussian noise background. This estimation approach is called wavelet thresholding,

where each empirical wavelet coefficient is compared with a threshold whose value depends on

the background noise level, so that we can decide whether the nonzero value of the empirical

wavelet coefficient is due to a corresponding feature of the underlying signal or it is purely

a result of the background noise.
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There are two types of thresholding functions that are commonly used. The hard thresh-

olding function is defined by

hH(θ̃, λ) =


θ̃, if |θ̃| > λ,

0, if |θ̃| ≤ λ,

(2.15)

where θ̃ is the empirical wavelet coefficient, and λ is the threshold level. The idea of hard

thresholding is to “kill” all empirical wavelet coefficients if they are less than the threshold

level. It keeps the amplitude of the signal but hurts the smoothness. In contrast to hard

thresholding, the soft thresholding function “shrinks” the empirical wavelet coefficients by λ

towards zero,

hS(θ̃, λ) =


θ̃ − λ, if θ̃ > λ,

θ̃ + λ, if θ̃ < −λ,

0, if |θ̃| ≤ λ.

(2.16)

A commonly used threshold is

λ = n−1/2τ
√

2 ln(n), (2.17)

called “Universal” threshold. According to our notation, τ is the noise level of the original

signal (2.2) while n−1/2τ is the corresponding noise level in the empirical wavelet coefficients

(2.14). A threshold proportional to
√

2 ln(n) is considered to be “conservative”, because

lim
n→∞

P

(
max
1≤i≤n

|ξi| >
√

2 ln(n)

)
= 0,

where ξ1, ..., ξn are, not neccessarily independent, standard Gaussian random variables. Thus,

if the sample size is large, it is very unlikely that the nonzero empirical wavelet coefficients

due to pure noise will “survive” the threshold. In that sense, the “Universal” thresholding

provides “noise-free” estimation.
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To apply any denoising procedure, such as the “Universal” thresholding (2.17), we need

to know the standard deviation τ of the noise in empirical wavelet coefficients (2.14). A

standard method, used by wavelet denoising algorithms and recommended in the literature,

is to assume that the wavelet transform on the finest first scale is purely a result of random

noise and the standard deviation n−1/2τ could be estimated using the finest scale via a

robust procedure, say the sample median, which is then rescaled into the empirical standard

deviation. One approach is to use a robust estimator such as

τ̂ = n1/2mad(θ1k, k = 1, ..., n/2j)/0.6745. (2.18)

Here, mad represents median absolute deviation, which is defined as the median of the

absolute deviations from the data’s median,

mad(X1, ..., Xn) = mediani∈{1,...,n}(|Xi −medianj∈{1,...,n}(Xj)|),

where X1, ..., Xn are realizations of a distribution. The factor 0.6745 in the formula (2.18)

is approximately Φ−1(3/4) (Φ(·) is the c.d.f. of a standard normal distribution), and it is

chosen for calibration with the normal distribution, i.e., E{mad(X1, ..., Xn)/0.6745} = σ if

X1, ..., Xn are normally distributed with standard deviation σ. Other estimates of τ could

be used; see Ogden (1996); Vidakovic (1999); Efromovich (1999a,b); Nason (2008).

2.5 Minimax Risk and Rate Optimal Estimation

A nonparametric estimation problem is characterized by the following three components:

(i) A nonparametric class of estimands, Θ. For instance, we will discuss a problem of

estimation of large sparse cross-covariance matrices in Chapter 4, where we introduce a class

of sparse p1 × p2 matrices

Uq(s0(p1, p2)) :=
{
{σrl} : max

r∈{1,2,...,p1}

p2∑
l=1

(σrrσll)
(1−q)/2|σrl|q ≤ s0(p1, p2),
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max
r,l
| ln(σrr/σll)| ≤ C0 <∞, q ∈ [0, 1)

}
. (2.19)

(ii) A family of probability measures {Pθ, θ ∈ Θ}.

(iii) A distance d(·, ·) which is used to quantify the loss. For instance, the l1-norm for a

p1 × p2 matrix A = (aij)p1×p2 is defined by

||A||1 := max
i∈{1,2,...,p1}

p2∑
j=1

|aij|,

and the corresponding distance between two p1 × p2 matrices A and B is defined by

d(A,B) := max
i∈{1,2,...,p1}

p2∑
j=1

|aij − bij|.

An important concept of performance measure in nonparametric estimation is the so-

called minimax. The idea of minimax estimation is to choose the estimator which minimize

the risk in the worst case scenario. We will describe this concept in a general framework.

Suppose there are n observations X1, ..., Xn. A statistic θ̂n := θ̂n(X1, ..., Xn) is introduced

as an estimator of θ. The maximum risk of θ̂n on (Θ, d) is defined as

rw(θ̂n) := sup
θ∈Θ

Eθ[w(ψ−1
n d(θ̂n, θ))].

Here, {ψn, n = 1, 2, ...} is a positive sequence and ψn → 0 as n → ∞. w(·) is a monotone

increasing function mapping from [0,∞) to [0,∞), and w(0) = 0. A commonly used example

of w(·) is w(u) = up, p > 0. The minimax risk on (Θ, d) is defined by

Rn := inf
θ̂n

rw(θ̂n), (2.20)

where the infimum is over all estimators θ̂n based on a sample of size n. The positive

sequence {ψn, n = 1, 2, ...} is called an optimal rate of convergence of estimators on (Θ, d) if

there exists two positive constants C and c such that

lim sup
n→∞

Rn ≤ C and lim inf
n→∞

Rn ≥ c.
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An estimator θ̃∗n is called rate optimal on (Θ, d) if there exists a constant C ′ > 0 such that

rw(θ̃∗n) = sup
θ∈Θ

Eθ[w(ψ−1
n d(θ̃∗n, θ))] ≤ C ′,

where {ψn, n = 1, 2, ...} is the optimal rate of convergence. See Tsybakov (2009) for an

introduction to nonparametric estimation.

2.6 Regression with Errors in Both Variables

A “standard” regression model assumes no measurement error in the explanatory variables.

If this assumption is violated, then the “standard” estimator, i.e., the ordinary least squares

(OLS) estimator, is no longer consistent. That is, the estimators do not tend to the true

parameter values as the sample size increases to infinity. Therefore, the “standard” regression

model is generalized to take the measurement errors in the explanatory variables into account.

Such model is called regression with errors in variables (EIV), also known as the measurement

error model. In a regression model with EIV, the predictor is considered as a random variable

just like the response. Estimation and statistical inference of this model are very different

from that of the “standard” regression model.

A regression with EIV model can be described using latent variables in general. Let Y be

the response variable and X be the explanatory variable, both of which are random variables.

It is assumed that there is a latent variable Y ∗ associated with Y and a latent variable X∗

associated with X such that there exists some functional relationship g(·) between the two

latent variables X∗ and Y ∗. The variables Y and X can be observed; suppose {(Xi, Yi), i =

1, ..., n} are i.i.d. observations from the random variables (X, Y ). Here, {(Xi, Yi), i = 1, ..., n}

can be considered as the noisy observations of a latent sequence {(X∗i , Y ∗i ), i = 1, ..., n} which
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are not observed. Using these notations, a regression with EIV model is defined as follows
Xi = X∗i + εi,

Yi = Y ∗i + δi,

Y ∗i = g(X∗i |θ),

(2.21)

where θ is the parameter of the functional relationship, εi and δi are independent random

components.

There are two approaches to modeling the latent sequence X∗1 , ..., X
∗
n. They can be

considered as unknown constants in which case the corresponding model is called a functional

model. Or they can be regarded as a random sequence and the corresponding model is called

a structural model. We will only introduce the estimation of simple linear models here.

A simple linear functional relationship model can be described as
Yi = α + βX∗i + δi, δi

i.i.d.∼ N(0, σ2
δ ),

Xi = X∗i + εi, εi
i.i.d.∼ N(0, σ2

ε ),

(2.22)

where δi and εi are independent random components. Remember that X∗i are constants

in a functional relationship (2.22). Thus, E(Xi) = X∗i and the functional relationship can

be represented as E(Yi) = α + βE(Xi). For a simple linear structural relationship, the

model (2.21) can be simplified into
Yi = α + βX∗i + δi, δi

i.i.d.∼ N(0, σ2
δ ),

Xi = X∗i + εi, εi
i.i.d.∼ N(0, σ2

ε ),

X∗i
i.i.d.∼ N(x∗, σ2

x∗),

(2.23)

where δi and εi are independent random components, and they are also independent of X∗i .

Under the assumption that σ2
ε = λσ2

δ where λ is known, the maximum likelihood estimates

for the coefficients α and β are same for both functional relationship model and structural
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relationship model,

α̂ = ȳ − β̂x̄ and β̂ =
−(Sxx − λSyy) +

√
(Sxx − λSyy)2 + 4λS2

xy

2λSxy
, (2.24)

where Sxx =
∑n

i=1(xi − x̄)2, Syy =
∑n

i=1(yi − ȳ)2, Sxy =
∑n

i=1(xi − x̄)(yi − ȳ). When λ = 1,

the MLE estimators agree with the orthogonal least squares estimators. The MLE estimators

for σ2
ε are different for these two models. For a functional relationship model,

σ̂2
ε =

λ

2n(1 + λβ̂2)

n∑
i=1

(yi − (α̂ + β̂xi))
2. (2.25)

Note that σ̂2
ε is not consistent, and σ̂2

ε is convergent in probability to 1
2
σ2
ε . For a structural

relationship model, the variance estimators are

σ̂2
ε =

1

n

(
Sxx −

Sxy

β̂

)
, σ̂2

δ =
σ̂2
ε

λ
, and σ̂2

x∗ =
1

n

Sxy

β̂
.

Note that these estimators are all consistent. See details in Casella and Berger (2002).

Finally, note that the variance of Xi is different in these two models. In the functional

relationship model, V ar(Xi) = σ2
ε , while in the structural relationship model, V ar(Xi) =

σ2
ε + σ2

x∗

2.7 Subexponential Distributions and Tail Bounds

One commonly used heavy-tailed distribution family is the subexponential family. A random

variable X with mean µ = E(X) is called subexponential with parameters (ν2, b) if there

exists constants ν > 0 and b > 0 such that

E{exp(λ(X − µ))} ≤ exp

(
ν2λ2

2

)
, for all |λ| < 1

b
. (2.26)

The most familiar example of subexponential distributions is the chi-square distribution.

Suppose X follows chi-square distribution with one degree of freedom and therefore E(X) =

1. With some algebra, we can show that

E{exp(λ(X − 1))} =
exp(−λ)√

1− 2λ
≤ exp(

4λ2

2
), for all |λ| < 1

4
.
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This implies that the chi-square random variable X is subexponential with parameters (4, 4).

In statistical inference, it is always of interest to obtain probability bounds on the tails

of a distribution. Let us introduce the subexponential tail bounds. If a random variable X is

subexponential with parameters (ν2, b), then

P (X ≥ µ+ t) ≤


exp

(
− t2

2ν2

)
, if 0 ≤ t ≤ ν2

b
,

exp
(
− t

2b

)
, if t > ν2

b
,

(2.27)

where µ = E(X). We can see from (2.27) that when t is small, a subexponential distribution

and a Gaussian distribution have the same probability bounds; when t is large, a subex-

ponential distribution has a larger tail bound than a Gaussian distribution. The similar

probability bounds apply on the left tail

P (X ≤ µ− t) ≤


exp

(
− t2

2ν2

)
, if 0 ≤ t ≤ ν2

b
,

exp
(
− t

2b

)
, if t > ν2

b
,

(2.28)

We next describe the statistical properties of a sum of independent sub-exponential

random variables. Suppose X1, ..., Xn are independent random variables where each Xi is

subexponential (ν2
i , bi) with mean µi. Then

∑n
i=1Xi is subexponential with (ν ′2, b′), where

ν ′2 =
∑n

i=1 ν
2
i and b′ = max1≤i≤n bi. Together with formula (2.27) and (2.28), this implies

that

max

(
P (

n∑
i=1

(Xi − µi) ≤ −t), P (
n∑
i=1

(Xi − µi) ≥ t)

)
≤


exp

(
− t2

2ν′2

)
, if 0 ≤ t ≤ ν′2

b′
,

exp
(
− t

2b′

)
, if t > ν′2

b′
.

(2.29)
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CHAPTER 3

WAVELET METHODOLOGY FOR NEURAL PLASTICITY

3.1 Methodology

Let us consider a general neural plasticity study, where our aim is to investigate the alter-

ations in the inter-hemispheric neural connectivity due to a certain training. Suppose the

experiment involves three stages: pre-training, training (or task), and post-training. The

pre-training and post-training states are also known as resting states. Suppose the fMRI

data in the region of interest (ROI) is available. The ROI in the right and left hemispheres

contain p1 and p2 voxels, respectively. The fMRI data is collected every second at each voxel

and the sample size (signal length) during each scan run is n. The above is also a summary

of the fMRI data in Tung et al. (2013) and we will apply our proposed method on this data

set in Chapter 5. A detailed description of the experiment in Tung et al. (2013) can be found

in Chapter 5. Examples of observed resting-state signals are presented in Figure 3.1.

In particular, during the motor task designed in Tung et al. (2013), a subject is asked to

use his right thumb to press a button. Left motor cortex is responsible for this movement,

and hence we may expect to see pronounced BOLD signals in some voxels in the left hemi-

sphere. If there is a connectivity between the right and left hemispheres, then we may see

a similar activity among voxels in the right hemisphere. We would like to understand how

neurons in left and right hemispheres of each participant are connected and work together

during two resting and four training runs. In this work, our aim is to define and quantify this

connectivity, suggest methods of its estimation and then develop feasible methods for statis-

tical inference. In what follows it is convenient to first describe main steps of the proposed

statistical analysis and then justify them.

We say that a right-hemisphere’s voxel is connected to and activated by a left-hemisphere’s

voxel if components of BOLD signals, representing neural activity, resemble each other. We
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Figure 3.1. Available BOLD signals from one voxel during pre- and post-training resting
runs.

refer to such signal components as BOLD-components of interest. Since BOLD signals de-

pend on the blood-oxygen-level, they contain components that have nothing to do with the

neural activities. For example, they may be affected by the cardiac activity, respiration and

stochastic noise in the background of the MRI scanner. Our approach to addressing these

problems is described next.

The first step should be a procedure for extracting a BOLD-component of interest from

a BOLD signal. This will be done using a special wavelet decomposition and a special
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denoising procedure proposed for the fMRI data; see Section 3.2 and Section 3.3 . We will

show examples of BOLD-components of interest in Section 3.4. The second step is to

quantify a relationship between a pair of BOLD-components of interest in left and right

hemispheres. This is done using the definition of cross-covariance and cross-correlation; see

Section 3.4. In the last step, for the data at hand, it is proposed to estimate cross-correlation

matrices for possible pathways between left and right hemispheres for the 6 runs of fMRI

experiments with 24 participants. This requires estimation of and inference for 6 matrices

with dimension 1000× 1000 (p1 × p2) for each participant in the fMRI study.

3.2 Wavelet Decomposition of an fMRI Signal

The available fMRI data were preprocessed using the standard software AFNI. Physiological

fluctuations in the signal time course were removed by regressing out time courses of the

whole brain white matter and cerebral spinal fluid (Tung et al. 2013). However, as we will

see in Chapter 5, this preprocessing is not perfect and we still observe physiological and MRI

induced components in the BOLD signals. In this and next Sections, it is explained how a

proposed wavelet denoising method deals with this issue.

For a particular voxel, the BOLD signal is observed every second with 300 observations for

the pre- and post-training fMRI runs, and 340 observations for the training runs. Wavelet

analysis is based on a dyadic number n of observations, and we choose n = 256 = 28

observations for each run. Further, we may rescale signals for all runs to the unit interval

[0, 1]. Then an observed continuous BOLD signal Ỹ (t), t ∈ [0, 1] for an fMRI run may be

written as

Ỹ (t) =

n/2j0∑
k=1

s̃j0kφj0k(t) +

j0∑
j=1

n/2j∑
k=1

θ̃jkψjk(t), (3.1)

where j0 is the number of multiresolution components (or scales). We use five wavelet scales,

i.e., j0 = 5, in our application. Here φj0k(x) = 2−j0/2φ(2−j0x − k), k = 1, . . . , n/2j0 and
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ψjk(x) = 2−j/2ψ(2−jx − k), j = 1, . . . , j0, k = 1, . . . , n/2j, where φ(t) and ψ(t) are called

scaling (Father) and wavelet (Mother) functions in the wavelet analysis, and t ∈ [0, 1]. Recall

that Father functions are coarser than Mother functions and are used to extract the slowly

varying trend in the Ỹ . Here {s̃j0k, k = 1, . . . , n/2j0} and {θ̃jk, j = 1, . . . , j0, k = 1, . . . , n/2j}

are empirical wavelet coefficients which can be obtained via a cascade algorithm supported

by all wavelet software packages (Vidakovic 1999; Lazar 2008; Nason 2008).

Now we are in a position to explain how the wavelet expansion (3.1) allows us to define

the BOLD-component of interest which reflects either a spontaneous neural activity during

pre- or post-training runs or a hemodynamic response due to a stimulus during training runs

(the motor signal). Each scale j in a wavelet multiresolution decomposition corresponds to a

specific frequency. In our case, because a signal is observed every second, the corresponding

frequency of each scale is 2−j Hz. As a result, the frequency of the first scale is 0.5 Hz, the

second is 0.25 Hz, the third is 0.125, etc. During rest runs, traditional bandpass for the

BOLD-component of interest is 0.01-0.1 Hz, while hemodynamic responses during training

runs last 15-20 seconds and the stimuli occur every 27-32 seconds (Lazar 2008; Birn 2012;

Tung et al. 2013). Table 3.1 illustrates the detailed relationship among the wavelet scales,

the freqencies and the signal components. As a result, the observed BOLD-component of

interest B̃(t) may be written as a combination of scales 3, 4 and 5, namely

B̃(t) =
5∑
j=3

n/2j∑
k=1

θ̃jkψjk(t). (3.2)

The low-frequency component
∑n/2j0

k=1 s̃j0kφj0k(t) in the wavelet expansion (3.1) represents

the fMRI background trend and is not of interest to us. The frequency of physiological

fluctuations is greater than 0.25 Hz (Barrett et al. 2009), and this is why these fluctuations

are captured by the two finest scales. While we are not interested in the signals on the

two finest scales, their analysis will be the pivotal part of the proposed wavelet denoising

procedure discussed in the next section.
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Table 3.1. The frequency and corresponding component of an fMRI signal on each wavelet
scale.

wavelet scale frequency resting task

D1 0.5 Hz cardiac cardiac

D2 0.25 Hz respiration respiration

D3 0.125 Hz

D4 0.0625 Hz component of interest hemodynamic responses

D5 0.03125 Hz

3.3 Noise Model

Empirical wavelet coefficients θ̃jk in the observed BOLD-component of interest B̃(t), defined

in (3.2), are contaminated by noise. Namely, if B(t) is the underlying BOLD-component of

interest and

B(t) =
5∑
j=3

n/2j∑
k=1

θjkψjk(t), (3.3)

then the underlying wavelet coefficients θjk and the empirical θ̃jk are related as follows,

θ̃jk = θjk + n−1/2τξjk. (3.4)

Here ξjk is a standard Gaussian noise (zero mean and unit variance normal random variable)

and τ is the standard deviation of the wavelet noise. The interested reader can find a

discussion of the model (3.2) – (3.4) in Johnstone and Silverman (1997); Efromovich (1999a);

Nason (2008), and the model was tested in Efromovich and Valdez-Jasso (2010) for the same

type of fMRI experiment.

As a result, to restore the underlying BOLD-component of interest B(t), we need to

develop a feasible denoising procedure. There are a number of denoising procedures pro-

posed in the wavelet literature that allow us to estimate B(t) based on B̃(t), but they all
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require knowledge of the parameter τ in (3.4). A standard estimation procedure, used by

wavelet software and recommended in the literature, is to assume that a signal on the finest

first scale is a pure stochastic noise. Its standard deviation is then estimated via a robust

procedure, say by the sample median, and then rescaled into the empirical standard devi-

ation. The corresponding procedure is called mad which was used for wavelet analysis of

fMRI data in Efromovich and Valdez-Jasso (2010) and Efromovich and Smirnova (2014). A

detailed description of the mad procedure can be found in (2.18). While this approach was

successful in Efromovich and Valdez-Jasso (2010), the outcome of Efromovich and Smirnova

(2014) was less encouraging. The source of the difference will be explained shortly. Other

methods of estimating τ proposed in the literature by Ogden (1996); Vidakovic (1999); Efro-

movich (1999a,b); Nason (2008) were also explored and the outcomes were similar to the

mad procedure.

To address the issue of estimation of parameter τ (the standard deviation of the noise in

empirical wavelet coefficients), let us first explain the nature of the noise. First of all, follow-

ing Johnstone and Silverman (1997); Efromovich (1999a); Nason (2008), let us recall that

in a classical (and ideal) theoretical model, we are dealing with observations of a regression

model

Yl = f(l/n) + τζl, l = 1, . . . , n,

where ζl are independent standard normal random variables and f(t) is a regression function

of interest. Then, if θjk are wavelet coefficients of f(t), then the corresponding empirical

wavelet coefficients θ̃jk calculated from Yl, l = 1, . . . , n, satisfy the expression (3.4) with ξjk

independent standard normal random variables. Keeping this in mind, the only chance for

the mad procedure to be consistent is if on the first scale all underlying wavelet coefficients

{θ1k, k = 1, ..., n/2j}

are zero. In other words, the assumption is that the first scale contains only white Gaussian

noise and no deterministic component.
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Keeping this in mind, let us return to the wavelet expansion (3.1). If the first scale of the

wavelet decomposition contains some physiological components, then the mad procedure may

overestimate the parameter τ in (3.4). And indeed, despite the above-discussed denoising

procedures, it is shown in Efromovich and Valdez-Jasso (2010) that the first and second

scales may contain physiological components due to respiratory (breathing) and cardiac

(heart beats) activities since this is what allows the oxygen to be delivered to brain neurons.

Further, cardiac and respiratory signals occur on frequencies larger than 0.25 Hz (Barrett

et al. 2009), and this is why they may be present on the two finest scales. In Efromovich

and Valdez-Jasso (2010) a unique fMRI experiment is discussed when BOLD signals are

measured every 50 milliseconds so that no physiological signal is present on the finest scale.

A discussion of physiological noise in fMRI can be found in Birn (2012); Chang and Glover

(2009); He and Liu (2012); Murphy et al. (2013); Weissenbacher et al. (2009).

This explanation motivates the following idea of estimating τ . Denote by

Ỹ ′l :=
2∑
j=1

n/2j∑
k=1

θ̃jkψjk(l/n)

the sum of first and second wavelet scales for a voxel of interest, and by

Y ′l :=
2∑
j=1

n/2j∑
k=1

θjkψjk(l/n)

the corresponding underlying deterministic component, l = 1, . . . , n. According to the above-

presented explanation, the deterministic component may be explained by physiological fac-

tors and hence it should be close to the deterministic component

X ′l :=
2∑
j=1

n/2j∑
k=1

θ′jkψjk(l/n)

of a nearby voxel. More precisely it is reasonable to assume that

Y ′l = βX ′l , (3.5)
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(note that signals on the first and second scales are integrated to zero so there may be only

the scale/slope term β in the relation). As a result, we may regress the observed Ỹ ′ :=

{Ỹ ′l , l = 1, 2 . . . , n} on the observed X̃ ′ := {X̃ ′l , l = 1, 2, . . . , n}. Note that discrete wavelet

transform is a linear operator. Therefore, relationship (3.5) holds for the corresponding

wavelet coefficients and we can describe the problem as a regression model with errors in

variable (EIV), 
θ̃jk = βθ′jk + n−1/2τξjk, ξjk

i.i.d.∼ N(0, 1),

θ̃′jk = θ′jk + n−1/2τξ′jk, ξ′jk
i.i.d.∼ N(0, 1),

(3.6)

where j = 1, 2, k = 1, . . . , n/2j, and ξjk and ξ′jk are independent. Here, we assume the

underlying wavelet coefficients {θ′jk, j = 1, 2, k = 1, . . . , n/2j} are fixed constants, and

therefore we are dealing with a functional relationship model. Then we estimate the standard

deviation τ of the regression noise using maximum likelihood estimation,

τ̂MLE =

√√√√ 2

3(1 + β̂2)

2∑
j=1

n/2j∑
k=1

(θ̃jk − β̂θ̃′jk)2. (3.7)

Here, β̂ is the MLE of the coefficient β,

β̂ =
−(S ′xx − S ′yy) +

√
(S ′xx − S ′yy)2 + 4S ′2xy

2S ′xy
, (3.8)

where

S ′xx =
2∑
j=1

n/2j∑
k=1

(θ̃′jk)
2, S ′yy =

2∑
j=1

n/2j∑
k=1

(θ̃jk)
2, S ′xy =

2∑
j=1

n/2j∑
k=1

θ̃′jkθ̃jk. (3.9)

Note that the noise model (3.6) is a functional relationship model, where τ̂ 2
MLE is con-

vergent in probability to 1
2
τ 2 (Casella and Berger, 2002). On the other hand, the number of

empirical wavelet coefficients that are used to calculate the MLE is 3
4
n (which is 192 in our

case). Therefore, the proposed estimator of τ is

τ̂ =
√

2τ̂MLE =

√√√√ 4

3(1 + β̂2)

2∑
j=1

n/2j∑
k=1

(θ̃jk − β̂θ̃′jk)2. (3.10)
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The assumption of this approach is that two “nearby” voxels have similar physiological

fluctuations. Hence, we select a “nearby” voxel from those that adjoin the voxel of interest.

In order to avoid the slice timing issue and to align with the assumption, it is suggested to

choose a “nearby” voxel as the one with largest correlation among the 3 × 3 vicinity within

the same slice. Let us also note that the choice of a larger vicinity, tested in simulations and

on real data, made no difference. The above is the recommended approach for estimation of

parameter τ .

Now, we will show that expressions (3.7) and (3.8) are maximum likelihood estimations

of τ and β, respectively, given the model (3.6). First, we write the likelihood function,

L
(
β, θjk, τ

∣∣(θ̃jk, θ̃′jk), j = 1, 2, k = 1, . . . , n/2j
)

=
1

(2π)
3
4
n

n
3
4
n

τ
3
2
n

exp

−
2∑
j=1

n/2j∑
k=1

(θ̃′jk − θjk)2 + (θ̃jk − βθjk)2

2n−1τ 2

 . (3.11)

Second, let us maximize the likelihood with respect to θjk, j = 1, 2, k = 1, . . . , n/2j, which is

equivalent to minimizing
∑2

j=1

∑n/2j

k=1 {(θ̃′jk − θjk)2 + (θ̃jk − βθjk)2}. The function is convex

and differentiable, and thus by taking derivatives, for each (j, k), we obtain

θ∗jk =
θ̃′jk + βθ̃jk

1 + β2
. (3.12)

Substitution of (3.12) into (3.11) gives

max
θjk

L
(
β, θjk, τ

∣∣(θ̃jk, θ̃′jk), j = 1, 2, k = 1, . . . , n/2j
)

=
1

(2π)
3
4
n

n
3
4
n

τ
3
2
n

exp

− 1

2τ 2n−1

 1

1 + β2

2∑
j=1

n/2j∑
k=1

(θ̃jk − βθ̃′jk)2

 . (3.13)

Maximization of the likelihood (3.13) with respect to β is equivalent to minimization of

1

1 + β2

2∑
j=1

n/2j∑
k=1

(θ̃jk − βθ̃′jk)2 =
1

1 + β2
(S ′yy − 2βS ′xy + β2S ′xx). (3.14)
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Here S ′xx, S
′
yy, and S ′xy are defined in (3.9). Note that (3.14) is differentiable with respect to

β and it tends to S ′xx as β approaches positive or negative infinity. The derivative of (3.14)

with respect to β is

− 2β

(1 + β2)2
(S ′yy − 2βS ′xy + β2S ′xx) +

1

1 + β2
(−2S ′xy + 2βS ′xx). (3.15)

Equating (3.15) to zero and simplifying the equation, we obtain

β2S ′xy + β(S ′xx − S ′yy)− S ′xy = 0. (3.16)

Solving quadratic equation (3.16) for β, we obtain two possible values of β,

β± =
−(S ′xx − S ′yy)±

√
(S ′xx − S ′yy)2 + 4S ′2xy

2S ′xy
. (3.17)

Substitution of both solutions for β into (3.14), respectively, gives the following two results

S ′xx −

√
(S ′xx − S ′yy)2 + 4(S ′xy)

2

1 + β2
+

and S ′xx +

√
(S ′xx − S ′yy)2 + 4(S ′xy)

2

1 + β2
−

. (3.18)

Obviously, the first term in (3.18) is the minimum value that is attained by (3.14), and hence

β̂ = β+ defined in (3.8) minimizes (3.14). Finally, we want to maximize

max
β,θjk

L
(
β, θjk, τ

∣∣(θ̃jk, θ̃′jk), j = 1, 2, k = 1, . . . , n/2j
)

=
1

(2π)
3
4
n

n
3
4
n

τ
3
2
n

exp

− 1

2τ 2n−1

 1

1 + β̂2

2∑
j=1

n/2j∑
k=1

(θ̃jk − β̂θ̃′jk)2

 . (3.19)

with respect to τ (τ > 0), which is equivalent to maximizing

t
3
4
n exp

−nt2
 1

1 + β̂2

2∑
j=1

n/2j∑
k=1

(θ̃jk − β̂θ̃′jk)2

 , (3.20)

with respect to t (t > 0). Note that (3.20) is differentiable with respect to t and it tends to

0 as t approaches 0 and positive infinity. The derivative of (3.20) is

3

2
− t

 1

1 + β̂2

2∑
j=1

n/2j∑
k=1

(θ̃jk − β̂θ̃′jk)2

 . (3.21)

32



Equating (3.21) to zero, we obtain the MLE of t by

t̂MLE =
3/2

1

1+β̂2

∑2
j=1

∑n/2j

k=1 (θ̃jk − β̂θ̃′jk)2
. (3.22)

Due to the invariance property of MLEs,

τ̂MLE =

√√√√ 2

3(1 + β̂2)

2∑
j=1

n/2j∑
k=1

(θ̃jk − β̂θ̃′jk)2. (3.23)

3.4 Quantifying the Plasticity

Our second step in the proposed methodology is to quantify a relationship between a pair

of BOLD-components of interest in left and right hemispheres. Figure 3.2 shows us four

diagrams with pairs of BOLD-components of interest; the solid black and dashed red lines

show BOLD-components of interest in the left and right hemispheres respectively (colored

figures can be found in the online supplementary materials Efromovich and Wu (2018a)).

The method of obtaining these signals will be explained shortly. The top diagram (a) ex-

hibits signals of interest with the left voxel being from the 3rd slice and the right one from

the 6th slice; hence, the time of delay between them is 57 ms (the slice timing issue is

due to the mechanism of a MRI scanner where the human brain is scanned slice by slice

sequentially). Despite the fact that voxels are from different slices and, of course, from dif-

ferent hemispheres, the BOLD-components of interest are remarkably similar. In information

theory a (normalized) cross-correlation is a popular measure of similarity between two con-

tinuous signals. Namely, for continuous functions f(t) and g(t), t ∈ [0, T ], the (normalized)

cross-covariance (at lag zero) is defined as

σfg :=

∫ T

0

[f(t)−
∫ T

0

f(τ)dτ/T ][g(t)−
∫ T

0

g(τ)dτ/T ]dt,

and then the corresponding cross-correlation is defined as

ρfg := σfg/[

∫ T

0

(f(t)−
∫ T

0

f(τ)dτ/T )2dt

∫ T

0

(g(t)−
∫ T

0

g(τ)dτ/T )2dt]1/2.
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Note that these definitions resemble classical covariance and correlation for two random

variables.

0 50 100 150 200 250

(a)

0 50 100 150 200 250

(b)

0 50 100 150 200 250

(c)

0 50 100 150 200 250

(d)

Left Right

Figure 3.2. BOLD-components of interest for four pairs of voxels from left and right hemi-
spheres.

Now consider the diagrams in Figure 3.2. In the top diagram (a) we see a pronounced

similarity between signals in the two different hemispheres, and the corresponding cross-

correlation is 0.96. Diagram (b) shows us a pair of signals for voxels from the same slice.

The signals exhibits some similarities (look at the right tails and larger peaks in the left

tail and in the middle) but overall the resemblance is not perfect and worse than in the
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top diagram. The cross-correlation is equal to 0.61 and this quantifies the decrease in the

similarity. Diagram (c) again exhibits BOLD-components of interest for voxels from the same

slice and hence there is no delay between them. While we can see here some similarities during

several intervals of time, overall the resemblance is worse than in the two top diagrams. The

latter is reflected by the cross-correlation equal to 0.51. Finally, the bottom diagram (d)

presents a pair of signals for the left voxel from the 5th slice and the right voxel from the

3rd slice. This yields the delay time of 38 ms, but taking this into account cannot change

our opinion that the signals do not resemble each other. This visual analysis is supported

by the value 0.015 of the cross-correlation.

Figure 3.2 presents an example of how a quantitative scale for the degree of a rela-

tionship between neurons in left and right hemispheres may be proposed, and we will use

cross-correlation to quantify the relationship. Our analysis of a number of similar diagrams

indicates that values of cross-correlation larger than 0.75 indicate that there is an active

pathway between two voxels while values larger than 0.6 indicate that it is reasonable to

believe that a pathway is at least periodically active.

Now, we are in a position to describe how to calculate the cross-covariance and cross-

correlation based on the proposed wavelet decomposition of a fMRI signal. We begin with a

convenient notation. Consider an rth voxel and an lth voxel in the right and left hemispheres,

respectively, and assume that we are interested in pairs (r, l) from a set N . In what follows

indexes r and l explicitly indicate that we are dealing with voxels from the right and left

hemispheres. Then, following (3.3) and (3.4) , denote by Br(t) and Bl(t) underlying BOLD-

components of interest,

Br(t) =
5∑
j=3

n/2j∑
k=1

θr,jkψjk(t), Bl(t) =
5∑
j=3

n/2j∑
k=1

κl,jkψjk(t),

(note the new notation for wavelet coefficients) and also introduce the corresponding empir-

ical wavelet coefficients (statistics)

θ̃r,jk = θr,jk + n−1/2τrξr,jk, κ̃l,jk = κl,jk + n−1/2νlηl,jk.
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Recall that ξr,jk and ηl,jk are independent standard normal random variables, and τr and

νl are the standard deviations of the noise. If no confusion may occur, then we may skip

indexes r and l and simply use θjk := θr,jk, ν := νl, etc. to simplify visualization of formulas.

Using orthogonality of wavelet functions, the Parseval identity, and the fact that the

wavelet functions are integrated to zero, we can write for the cross-covariance between Br(t)

and Bl(t),

σrl :=

∫ 1

0

Br(t)Bl(t)dt =
5∑
j=3

n/2j∑
k=1

θjkκjk. (3.24)

Then the natural unbiased estimate of the cross-covariance is the plug-in estimate

σ̃rl =
5∑
j=3

n/2j∑
k=1

θ̃jkκ̃jk (3.25)

Now, we introduce a cross-correlation between BOLD-components of interest in rth and

lth voxels,

ρrl :=

∫ 1

0
Br(t)Bl(t)dt

[
∫ 1

0
B2
r (t)dt

∫ 1

0
B2
l (t)dt]

1/2
=:

σrl
[σrσl]1/2

. (3.26)

Then, similarly to (3.25), the plug-in estimate may be used. Here,

σr :=

∫ 1

0

B2
r (t)dt =

5∑
j=3

n/2j∑
k=1

θ2
jk and σl :=

∫ 1

0

B2
l (t)dt =

5∑
j=3

n/2j∑
k=1

κ2
jk. (3.27)

Using the fact E{θ̃2
jk} = θ2

jk+n−1τ 2
r and E{κ̃2

jk} = κ2
jk+n−1ν2

l , we propose the corresponding

plug-in estimates

σ̃r :=
5∑
j=3

n/2j∑
k=1

(θ̃2
jk − n−1τ̂ 2), and σ̃l :=

5∑
j=3

n/2j∑
k=1

(κ̃2
jk − n−1ν̂2). (3.28)

We restrict attention to voxels with large power in the BOLD component of interest relative

to the wavelet noise, for example,
∑5

j=3

∑n/2j

k=1 θ̃
2
jk > τ̂r/4 and

∑5
j=3

∑n/2j

k=1 κ̃
2
jk > ν̂l/4. Our

analysis of the fMRI data has shown that no BOLD signal of interest is observed in voxels

not satisfying this assumption. This remark allows us to avoid a complex denominator in

(3.26). The plug-in estimator for the cross-correlation (3.26) is

ρ̃rl =
σ̃rl

[σ̃rσ̃l]1/2
. (3.29)
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CHAPTER 4

NONPARAMETRIC ESTIMATION AND STATISTICAL INFERENCE FOR

CROSS-COVARIANCE AND CROSS-CORRELATION MATRICES IN AN

FMRI STUDY

We begin with the analysis of the randomness in estimators of cross-covariance and cross-

correlation that were proposed in (3.25) and (3.29). Recall that we have the following

relationship between empirical wavelet coefficients (statistics) and the underlying wavelet

coefficients (parameters),

θ̃r,jk = θr,jk + n−1/2τrξr,jk, κ̃l,jk = κl,jk + n−1/2νlηl,jk. (4.1)

Also recall that ξr,jk and ηl,jk are independent standard normal random variables, and τr

and νl are the standard deviations of the noise. If no confusion may occur, then we may skip

indexes r and l and simply use θjk := θr,jk, ν := νl, etc. to simplify visualization of formulas.

Substitution of (4.1) into the estimator of cross-covariance defined in (3.25) gives

σ̃rl =
5∑
j=3

n/2j∑
k=1

θ̃jkκ̃jk

=
5∑
j=3

n/2j∑
k=1

(θjk + n−1/2τξjk)(κjk + n−1/2νηjk)

= σrl + n−1/2

5∑
j=3

n/2j∑
k=1

(τκjkξjk + νθjkηjk + n−1/2τνξjkηjk) =: σrl + n−1/2ζjk. (4.2)

Note that the variance of ζjk is

v2
rl :=

5∑
j=3

n/2j∑
k=1

[τ 2κ2
jk + ν2θ2

jk + n−1τ 2ν2]. (4.3)

Similarly, σ̃r and σ̃l can be written as following,

σ̃r :=
5∑
j=3

n/2j∑
k=1

(θ̃2
jk − n−1τ 2)
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= σr + n−1/2

5∑
j=3

n/2j∑
k=1

(
2τθjkξjk + n−1/2τ 2(ξ2

jk − 1)
)
, (4.4)

and

σ̃l :=
5∑
j=3

n/2j∑
k=1

(κ̃2
jk − n−1ν2)

= σl + n−1/2

5∑
j=3

n/2j∑
k=1

(
2νκjkηjk + n−1/2ν2(η2

jk − 1)
)
. (4.5)

Finally, let us identify the randomness component in the estimator of cross-correlation,

ρ̃rl =
σ̃rl

[σ̃rσ̃l]1/2
. (4.6)

From Taylor’s formula

1√
x

=
1
√
x0

− 1

2
(x− x0)

1

x
3/2
0

+R(x, x0) (4.7)

is used where x > 0, x0 > 0 and |R(x, x0)| ≤ (1/4)(x− x0)2[min(x, x0)]−5/2. Application of

(4.7) to (4.6) gives

ρ̃rl = σ̃rl

[
1

√
σrσl

− 1

2

σ̃rσ̃l − σrσl
σ

3/2
r σ

3/2
l

+ R̂

]
(4.8)

where |R̂| ≤ (σ̃rσ̃l−σrσl)2
4[min(σ̃rσ̃l,σrσl)]5/2

. Skipping smaller in order terms to simplify formulae, consider

ρ̂rl := ρrl + n−1/2 1
√
σrσl

5∑
j=3

n/2j∑
k=1

(τκjkξjk + νθjkηjk + n−1/2τνξjkηjk)

+n−1/2 σrl

2σ
3/2
r σ

1/2
l

5∑
j=3

n/2j∑
k=1

(
2τθjkξjk + n−1/2τ 2(ξ2

jk − 1)
)

+ n−1/2 σrl

2σ
1/2
r σ

3/2
l

5∑
j=3

n/2j∑
k=1

(
2νκjkηjk + n−1/2ν2(η2

jk − 1)
)
. (4.9)

After some reorganization of the terms in (4.9), we obtain

ρ̂rl = ρrl + n−1/2ρrl

5∑
j=3

n/2j∑
k=1

{
τ(κjkσ

−1
rl + θjkσ

−1
r )ξjk + ν(θjkσ

−1
rl + κjkσ

−1
l )ηjk

+
1

2
n−1/2τ 2σ−1

r (ξ2
jk − 1) +

1

2
n−1/2ν2σ−1

l (η2
jk − 1) + n−1/2τνσ−1

rl ξjkηjk

}
. (4.10)
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4.1 Thresholding Estimation of Large-p-Small-n Cross-covariance Matrices

Estimation of the cross-covariance matrices is a large-p-small-n problem, and so regulariza-

tion is required. A thresholding estimator is proposed and its minimax property is shown in

Theorem 1.

Let us comment on relations (4.2) and (4.3). It is a tradition in an asymptotic wavelet

analysis (as n→∞) to ignore asymptotically negligible terms. Here this would imply

σ̃∗rl = σrl + n−1/2
∑
j∈Nn

n/2j∑
k=1

(τκjkξjk + νθjkηjk) (4.11)

in place of (4.2) , and

[v∗rl]
2 :=

∑
j∈Nn

n/2j∑
k=1

(τ 2κ2
jk + ν2θ2

jk) (4.12)

in place of (4.3). Here Nn is the set of scales corresponding to frequencies of the BOLD

signal.

Then, similarly to recent results on estimation of sparse covariance matrices (see a com-

prehensive review Cai (2017)), a number of interesting theoretical results that shed light on

asymptotic estimation may be established for the cross-covariance. Let us formulate one

such result which is of a particular interest for the problem at hand. Define a class of sparse

p1 × p2 matrices by

Uq(s0(p1, p2)) :=
{
{σrl} : max

r∈{1,2,...,p1}

p2∑
l=1

(σrσl)
(1−q)/2|σrl|q ≤ s0(p1, p2),

max
r,l
| ln(σr/σl)| ≤ C0 <∞, q ∈ [0, 1)

}
. (4.13)

In what fiollows I(·) is the indicator function.

Theorem 1. Assume that random variables ξjk and ηjk in (4.11) are standard normal

for all p1 + p2 studied voxels. Consider a hard-thresholding oracle-estimate of the p1 × p2

cross-covariance matrix {σrl} := {σrl, r = 1, . . . , p1, l = 1, . . . , p2},

σ̂rl := I(|σ̃∗rl| >
√

2 ln(p1p2) n−1/2v∗rl)σ̃
∗
rl, (4.14)

39



where σ̃∗rl and v∗rl are defined in (4.11) and (4.12), respectively. Then this hard-thresholding

is rate minimax over the class Uq(s0(p1, p2)) and a minimax risk with the matrix l1-norm as

a loss function. That is, for some finite constant C > 0,

sup
{σrl}∈Uq(s0(p1,p2))

E
{

max
r∈{1,2,...,p1}

p2∑
l=1

|σ̂rl − σrl|
}
≤ Cs0(p1, p2)[ln(p1p2)n−1](1−q)/2. (4.15)

Remark 1. The assumption of Theorem 1 about normality of the noise in empirical coeffi-

cients is a standard one. See a discussion in Efromovich (1999a,b); Lazar (2008); Valdez-Jasso

(2010).

Remark 2. The threshold proposed in (4.14) is very similar to the commonly-used “Uni-

versal” threshold described in (2.17) with only the noise level being replaced by n−1/2v∗rl, the

standard deviation of the estimator σ̃∗rl.

Proof of Theorem 1. Set λ :=
√

2 ln(p1p2) and write,

p2∑
l=1

|σ̂rl − σrl|

=

p2∑
l=1

|I(|σrl| > n−1/2λv∗rl)σ̃rl − (I(|σrl| > n−1/2λv∗rl) + I(|σrl| ≤ n−1/2λv∗rl))σrl|

≤
p2∑
l=1

I(|σrl| > n−1/2λv∗rl)|σ̃rl − σrl|+
p2∑
l=1

I(|σrl| ≤ n−1/2λv∗rl)|σrl|. (4.16)

Now we consider the two terms in (4.16) in turn. For the first term we study separately

cases of large and small |σ̃rl − σrl|. Write,

p2∑
l=1

I(|σrl| > n−1/2λv∗rl)|σ̂∗rl − σrl|

≤
p2∑
l=1

[I(|σrl| > n−1/2λv∗rl)|σ̃rl − σrl|[I(|σ̃rl − σrl| < λv∗rln
−1/2) + I(|σ̃rl − σrl| ≥ λv∗rln

−1/2)]

≤
p2∑
l=1

[I(|σrl| > n−1/2λv∗rl)λv
∗
rln
−1/2
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+

p2∑
l=1

I(|σrl| > n−1/2λv∗rl)I(|σ̃rl − σrl| ≥ λv∗rln
−1/2)|σ̃rl − σrl|. (4.17)

Combining the first sum in (4.17) with the second sum in (4.16) we get

p2∑
l=1

[I(|σrl| > n−1/2λv∗rl)λv
∗
rln
−1/2 + I(|σrl| ≤ n−1/2λv∗rl)|σrl|]

≤
p2∑
l=1

[(λv∗rln
−1/2)1−q|σrl|q + (λv∗rln

−1/2)1−q|σrl|q

≤ (λn−1/2)1−q[max
r,l

v∗rl[σrσl]
1/2

p2∑
r=1

(σlσr)
(1−q)/2σrl|q ≤ [λn−1/2]1−qs0(p1, p2). (4.18)

For the second term in (4.17) we can write,

E{ max
r∈{1,2,...,p1}

p2∑
l=1

I(|σ̃rl − σrl| > λv∗rln
−1/2)|σ̃rl − σrl|}

≤ Cn−1/2

p1∑
r=1

p2∑
l=1

E{I(|σ̃rl − σrl| > λv∗rln
−1/2)|σ̃rl − σrl|}. (4.19)

Recall that σ̃rl − σrl is normally distributed. Further, using xe−x
2/2 = de−x

2/2/dx we get∫
|x|>
√

2 ln(p1p2)

|x|e−x2/2dx ≤ Ce− ln(p1p2) = C(p1p2)−1. (4.20)

Application of (4.20) to (4.19) gives the desired result.

Remark 3. The proof shows that a similar result may be established for any known dis-

tribution of σ̃rl − σrl with a corresponding modification in evaluation of the expectations in

(4.19).

Theorem 1 sheds a new light on estimation of and inference for cross-covariances and

cross-correlations. We may conclude that, even if n is large but the fMRI noise is still

relatively large (implying that values v∗rl are large), no feasible simultaneous inference, like

simultaneous confidence intervals, may be obtained for all pairs of voxels. This is why very

accurate estimation of the level of noise is paramount.

Further, there is another issue that must be considered. For many settings the available

sample size n = 256 would be considered as a large one that fits the classical wavelet
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asymptotic theory. This is no longer the case here due to the following. Since the BOLD-

component of interest “occupies” scales 3, 4 and 5, then (4.3) implies that (compare with

(4.12))

v2
rl :=

5∑
j=3

n/2j∑
k=1

[τ 2κ2
jk + ν2θ2

jk] + (7/32)τ 2ν2. (4.21)

Note that the term (7/32)τ 2ν2 may be comparable with the double sum in (4.21) and hence

it cannot be ignored. This issue will be addressed in the next section.

4.2 Theory of Simultaneous Analysis of Cross-covariance Matrices

In this and the following sections, without introducing ambiguity, we replace the double

index jk by the single index i to simplify the formulae. Also, recall the definition of a

subexponential random variable: a random variable X with mean µ = E(X) is called

subexponential with parameters (ν2, b) if there exists constants ν > 0 and b > 0 such that

E{exp(λ(X − µ))} ≤ exp

(
ν2λ2

2

)
, for all |λ| < 1

b
. (4.22)

Express (4.2) as

σ̃rl = σrl + n−1/2
∑
i

(τκiξi + νθiηi + n−1/2τνξiηi) =: σrl + n−1/2
∑
i

Xi, (4.23)

where

Xi := τκiξi + νθiηi + n−1/2τνξiηi. (4.24)

The aim of this section is to prove the following theoretical result.

Theorem 2. Assume that ξi and ηi in (4.23) are independent standard normal variables.

Introduce a parameter b ∈ (0, 1). Then the following statements hold for Xi:

(i) The random variable Xi, defined in (4.24), is subexponential with parameters (Ai,
1
B

),

where

Ai := Ai(b) = − ln(1− b)τ 2ν2

bn
+

2bτνκiθi + τ 2κ2
i + ν2θ2

i

1− b
and B := B(b) =

√
bn

τν
. (4.25)
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(ii) The sequence of X1, . . . , XN with corresponding Ai and B being defined in (4.25) are

independent and satisfy the following inequality,

max
(
P (

N∑
i=1

Xi ≤ −t), P (
N∑
i=1

Xi ≥ t)
)

≤ exp
{
− t2

2A

}
I(0 ≤ t ≤ AB) + exp

{
− tB

2

}
I(t ≥ AB), A := A(b) =

N∑
i=1

Ai(b). (4.26)

(iii) For any α ∈ (0, 1), t(α) such that

max
(
P (

N∑
i=1

Xi ≤ −t(α)), P (
N∑
i=1

Xi ≥ t(α))
)
≤ α, (4.27)

can be obtained by

t(α) := t(α, bα) =
2 ln(α−1)τν

(bαn)1/2
, (4.28)

where bα is the solution to the equation

A(bα)[B(bα)]2 = 2 ln(α−1). (4.29)

To shed some light on function t(α), note that as n/(τν)2 increases, bα becomes proportional

to ln(α−1), and then in its turn t(α) becomes proportional to
√

ln(α−1).

(iv) For any α ∈ (0, 1), the solution t′(α) to the equation

(4/B(bα))[t′(α) + (2/B(bα))]e−t
′(α)B(bα)/2 = α, (4.30)

where bα is defined in (4.29), satisfies

E
{
|
N∑
i=1

Xi|I(|
N∑
i=1

Xi| > t′(α))
}
≤ α. (4.31)

Remark 4. We obtained exponential inequalities (4.26) and (4.27) for the probability of

large deviations as well as the corresponding inequality (4.31) for the first moment. In

particular, (4.27) may be used to obtain 1 − α0 level confidence intervals and confidence
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lower bounds by choosing α = α0/2 and α = α0, respectively. This concludes the procedure

of inference for a cross-covariance.

Proof of Theorem 2. (i) A direct calculation shows that

E{exp(tXi)} = E{exp{t(τκiξi + νθiηi + n−1/2τνξiηi)}}

=
1

[1− n−1τ 2ν2t2]1/2
exp

{2n−1/2τ 2ν2κiθit
3 + (τ 2κ2

i + ν2θ2
i )t

2

2[1− n−1τ 2ν2t2]

}
for t2 <

bn

τ 2ν2
. (4.32)

Introducing a parameter b ∈ (0, 1) and considering the following inequality

1

[1− x2]1/2
≤ exp{ax2} for 0 < x2 ≤ b < 1, (4.33)

which is equivalent to

a ≥ − ln(1− x2)

2x2
for 0 < x2 ≤ b < 1.

Since the function − ln(1−y)
2y

for 0 < y < 1 is increasing in y, the minimum a such that (4.33)

holds is a = − ln(1−b)
2b

. Using

1

[1− x2]1/2
≤ exp

{
− ln(1− b)

2b
x2

}
for 0 < x2 ≤ b < 1,

we conclude that

1

[1− n−1τ 2ν2t2]1/2
≤ exp

{
− ln(1− b)τ 2ν2t2

2bn

}
for t2 <

bn

τ 2ν2
. (4.34)

Now we plug (4.34) in the right side of (4.32) and get after simplifications,

E{exp{t(τκiξi + νθiηi + n−1/2τνξiηi)}}

≤ exp
{
t2
[
− ln(1− b)τ 2ν2

2bn
+

2bτνκiθi + τ 2κ2
i + ν2θ2

i

2(1− b)

]}
=: exp

{t2Ai
2

}
, for 0 ≤ t <

b1/2n1/2

τν
=: B. (4.35)

Note that Ai = Ai(b) and B = B(b) depend on parameter b. From (4.35) we conclude that

the random variable Xi, defined in (4.24), is sub-exponential with parameters (Ai,
1
B

).
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(ii) Considering (4.23), in our wavelet analysis of cross-covariances, we are dealing not with

a single sub-exponential Xi but with a sum of independent sub-exponential variables. Note

that the independency in Xi’s is due to the independency in ξi’s and ηi’s. Hence, let us

consider a sequence of independent random variables X1, . . . , XN with corresponding Ai and

B being defined in (4.25). Then Theorem 3.16 in Petrov (1975), together with (4.35), allow

us to get the following exponential inequality,

max
(
P (

N∑
i=1

Xi ≤ −t), P (
N∑
i=1

Xi ≥ t)
)

≤ exp
{
− t2

2A

}
I(0 ≤ t ≤ AB) + exp

{
− tB

2

}
I(t ≥ AB), A :=

N∑
i=1

Ai. (4.36)

Note that (4.36) gives us an explicit upper bound that may be used in statistical analysis of

large deviations.

(iii) Next, suppose that we would like to find a threshold t(α, b) such that the right side of

(4.36) is equal to α ∈ (0, 1]. Inequality (4.36) implies that

t(α, b) = [2 ln(α−1)A]1/2I(α ≥ e−AB
2/2) + [2 ln(α−1)/B]I(α < e−AB

2/2). (4.37)

The function A(b)[B(b)]2 monotonically increases from zero to infinity as b increases from

zero to 1. Hence, there exists a solution bα of the equation

A(bα)[B(bα)]2 = 2 ln(α−1). (4.38)

This, together with (4.37), imply that

t(α) := t(α, bα) =
2 ln(α−1)τν

(bαn)1/2
. (4.39)

To shed some light on function t(α), note that as n/(τν)2 increases, the bα becomes propor-

tional to ln(α−1), and then in its turn t(α) becomes proportional to
√

ln(α−1). We now may

conclude that

max
(
P (

N∑
i=1

Xi ≤ −t(α)), P (
N∑
i=1

Xi ≥ t(α))
)
≤ α. (4.40)
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(iv) Further, recall Remark 3, and then let us explain how we can get a corresponding

exponential inequality for
∑N

i=1 Xi. Using elementary

2

∫ ∞
t

xe−xB/2dx = (4/B)[t+ (2/B)]e−tB/2, (4.41)

introduce a t′(α) such that (in what follows B := B(bα))

(4/B)[t′(α) + (2/B)]e−t
′(α)B/2 = α. (4.42)

Note that t′(α) > t(α) and t′(α)/t(α) → 1 as α → 0. Then the useful property of t′(α) is

that

E
{
|
N∑
i=1

Xi|I(|
N∑
i=1

Xi| > t′(α))
}
≤ α. (4.43)

This completes the proof of Theorem 2.

4.3 Theory of Simultaneous Analysis of Cross-correlation Matrices

Consider (4.10) and introduce a new notation X ′i,

ρ̂rl = ρrl + n−1/2ρrl
∑
i

{
τ(κiσ

−1
rl + θiσ

−1
r )ξi + ν(θiσ

−1
rl + κiσ

−1
l )ηi

+
1

2
n−1/2τ 2σ−1

r (ξ2
i − 1) +

1

2
n−1/2ν2σ−1

l (η2
i − 1) + n−1/2τνσ−1

rl ξiηi

}
=: ρrl + n−1/2ρrl

∑
i

X ′i. (4.44)

To make calculations more transparent, introduce the following notations,

A := τ(κiσ
−1
rl + θiσ

−1
r ), a := ν(θiσ

−1
rl + κiσ

−1
l ),

B :=
1

2
n−1/2τ 2σ−1

r , b :=
1

2
n−1/2ν2σ−1

l , (4.45)

c := n−1/2τνσ−1
rl .

Then we can write down X ′i as (we may skip index i whenever no confusion occurs)

X ′i = Aξ + aη +B(ξ2 − 1) + b(η2 − 1) + cξη. (4.46)
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Theorem 3. Assume that ξi and ηi in (4.44) are independent standard normal variables.

Also introduce a parameter β ∈ (0, 1). Then the following statements hold for X ′i:

(i) The random variable X ′i, defined in (4.46), is subexponential with parameters (A′i,
1
B′

),

where

B′ := B′(β) =
−(B + b) +

√
(B + b)2 + β(c2 − 4Bb)

c2 − 4Bb
, (4.47)

and

A′i := A′i(β) = c2 − 4Bb+
(B′)2(c2 − 4Bb)2

2(1− β)

+
2(B + b) + a2 + A2 + 2B′[(B + b)(c2 − 4Bb)− a2B − A2b+ Aac]+

1− β
, (4.48)

and [x]+ := max(x, 0) denotes the positive part of x.

(ii) The sequence of X ′1, . . . , X
′
N with corresponding A′i and B′ being defined in (4.47) and

(4.48) are independent and satisfy the following inequality,

P (
N∑
i=1

X ′i ≥ λ)

≤ exp
{
− λ2

2A′

}
I(0 ≤ λ ≤ A′B′) + exp

{
− λB′

2

}
I(λ ≥ A′B′), A′ :=

N∑
i=1

A′i. (4.49)

(iii) Based on the inequality (4.49), for any α ∈ (0, 1), an optimal t(α) such that

max
(
P (

N∑
i=1

X ′i ≤ −t(α)), P (
N∑
i=1

X ′i ≥ t(α))
)
≤ α, (4.50)

can be obtained using the following formula

t(α) := t(α, βα) =
2 ln(α−1)

B′(βα)
, (4.51)

where βα is the solution to the equation

A′(βα)[B′(βα)]2 = 2 ln(α−1). (4.52)
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(iv) Based on the inequality (4.49), for any α ∈ (0, 1), the solution to the following equation

with respect to t′(α)

(4/B′(βα))[t′(α) + (2/B′(βα))]e−t
′(α)B′(βα)/2 = α, (4.53)

with βα defined in (4.52), has the following property,

E
{
|
N∑
i=1

X ′i|I(|
N∑
i=1

X ′i| > t′(α))
}
≤ α. (4.54)

Proof of Theorem 3. (i) Following (4.32) - (4.35), we are evaluating E{eλX′i} where

λ := tn−1/2|ρrl|, t > 0. (4.55)

We are doing this in two steps. The first step is to write the expectation via conditional

expectation

E{eλX′i} = E{exp(λ[Aξ +B(ξ2 − 1)− b])E{exp(λ(aη + bη2 + cξη))|ξ}} (4.56)

and calculate the conditional expectation E{exp(λ(aη+ bη2 + cξη))|ξ}. Let us do the latter.

Write,

E{exp(λ(aη + bη2 + cξη))|ξ}

=
1√
2π

∫
exp

{
−y

2

2
+ λby2 + λ(a+ cξ)y

}
dy

=
1√

1− 2λb
exp

{
λ2(a+ cξ)2

2(1− 2λb)

}
, λ < 1/(2b). (4.57)

Step two is to plug (4.57) into (4.56). We get after some algebra,

E{eλX′i} = E

{
exp(λ[Aξ +B(ξ2 − 1)− b]) 1√

1− 2λb
exp

{
λ2(a+ cξ)2

2(1− 2λb)

}}

=
1√
W

exp

{
−λ(B + b) +

λ2a2

2(1− 2bλ)
+

[(1− 2bλ)λA+ λ2ac]2

2(1− 2bλ)W

}
, W > 0, (4.58)
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where

W := 1− 2λ(B + b)− λ2(c2 − 4Bb) = (1− 2bλ)(1− 2Bλ)− λ2c2. (4.59)

Note that the Cauchy–Schwarz inequality yields c2 − 4Bb ≥ 0 and hence W > 0 implies the

restriction λ < 1/(2b) imposed in (4.57). The expression on the right side of (4.59) allows

us to simplify (4.58) and get

E{eλX′i} = W−1/2 exp

{
−λ(B + b) +

λ2(a2 + A2)− 2λ3(a2B + A2b− Aac)
2[1− 2λ(B + b)− λ2(c2 − 4Bb)]

}
. (4.60)

Now, we introduce a parameter β ∈ (0, 1) such that

0 ≤ 2λ(B + b) + λ2(c2 − 4Bb) ≤ β < 1. (4.61)

Note that the corresponding λ imply W > 0 and we get the restriction on considered λ,

0 ≤ λ ≤
−(B + b) +

√
(B + b)2 + β(c2 − 4Bb)

c2 − 4Bb
=: λ∗. (4.62)

Clearly if (4.62) holds then W ≥ 1− β.

Now recall the inequality

1√
1− u

≤ exp

(
u

2
+

u2

4(1− u)

)
, 0 ≤ u < 1. (4.63)

This inequality allows us to evaluate W−1/2 by an exponential function if we set u = 2λ(B+

b) + λ2(c2 − 4Bb). Write,

E{eλX′i} ≤ exp
{
λ(B + b) +

1

2
λ2(c2 − 4Bb) +

[2λ(B + b) + λ2(c2 − 4Bb)]2

4[1− 2λ(B + b)− λ2(c2 − 4Bb)]

−λ(B + b) +
λ2(a2 + A2)− 2λ3(a2B + A2b− Aac)

2[1− 2λ(B + b)− λ2(c2 − 4Bb)]

}
= exp

{1

2
λ2(c2 − 4Bb) +

[2λ(B + b) + λ2(c2 − 4Bb)]2

4[1− 2λ(B + b)− λ2(c2 − 4Bb)]

+
λ2(a2 + A2)− 2λ3(a2B + A2b− Aac)

2[1− 2λ(B + b)− λ2(c2 − 4Bb)]

}
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= exp
{1

2
λ2(c2 − 4Bb) +

4λ2(B + b) + 4λ3(B + b)(c2 − 4Bb) + λ4(c2 − 4Bb)2

4[1− 2λ(B + b)− λ2(c2 − 4Bb)]

+
λ2(a2 + A2)− 2λ3(a2B + A2b− Aac)

2[1− 2λ(B + b)− λ2(c2 − 4Bb)]

}
, for 0 ≤ λ ≤ λ∗. (4.64)

We may continue evaluation of (4.64) and write using (4.55) that

E{eλX′i} ≤ exp{λ2A
′
i

2
}, 0 ≤ λ ≤ λ∗ =: B′, (4.65)

where

A′i := c2 − 4Bb+
(λ∗)2(c2 − 4Bb)2

2(1− β)

+
2(B + b) + a2 + A2 + 2λ∗[(B + b)(c2 − 4Bb)− a2B − A2b+ Aac]+

1− β
, (4.66)

and [x]+ := max(x, 0) denotes the positive part of x. Note that A′i = A′i(β) and B′ = B′(β)

depend on parameter β. From (4.65) we conclude that the random variable X ′i is sub-

exponential with parameters (A′i,
1
B′

).

(ii) The independency in X ′i’s is due to the independency in ξi’s and ηi’s. Hence, let us

consider a sequence of independent random variables X ′1, . . . , X
′
N with corresponding A′i and

B′ being defined in (4.47) and (4.48). Then Theorem 3.16 in Petrov (1975), together with

(4.65), allow us to obtain the inequality in (4.49). Note that (4.49) gives us an explicit upper

bound that may be used in statistical analysis of large deviations.

(iii) – (iv) can be obtained by following the same steps (4.37) –(4.43).

This completes the proof of Theorem 3.

Finally, we are going to summarize the proposed procedure as an algorithm. Let us

review the Holm procedure for simultaneous inference about pathways with cross-correlation

exceeding a given threshold (in our particular case the considered threshold is 0.6). While it

is more complicated than the Bonferroni procedure (the latter will simply use 1− α/(p1p2)

individual levels of confidence where α is the family-wise error rate), in our case the Holm

procedure yields a larger number of active pathways due to a large range in underlying

cross-correlations.
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To introduce the Holm procedure, recall that a confidence lower bound for a cross-

correlation may be constructed by inverting a corresponding one-tailed test. Suppose that

we have p-values p̂1, . . . , p̂s of s individual tests. Denote ordered from the smallest to the

largest p-values by p̂(1), . . . , p̂(s) and associated hypotheses by H(1), . . . , H(s). Suppose the

family-wise error rate (FWER) is α. Holm procedure begins by determining whether the test

that looks most significant should be rejected. Suppose the family-wise error rate (FWER)

is α. Let αi = α
s−i+1

. Then Holm procedure uses the following criteria:

If p̂(1) ≥ α1, accept all hypotheses.

Otherwise, for r = 1, . . . , s, reject H(1), . . . , H(r) if p̂(1) < α1, . . . , p̂(r) < αr.

In the simultaneous inference about cross-correlations, an individual test for a particular

ρrl is

H0 : ρrl ≤ ρH0 versus Ha : ρrl > ρH0 . (4.67)

In our particular application we use ρH0 = 0.6. To simplify the following formulas we may

skip index rl and write ρ := ρrl. The p-value for the above-considered individual test is

p-valuerl = P (ρ̂theoretical > ρ̃observed|H0)

= P (ρH0 + n−1/2ρH0

∑
X ′i > ρ̃observed|H0)

= P (
∑

X ′i > n1/2[ρ̃observed/ρH0 − 1]|H0). (4.68)

Note that only cases with ρ̃observed > ρH0 are of interest and in what follows only these cases

are analyzed. Using inequality (4.49) we continue evaluation of the p-value,

p-valuerl

≤ exp
{
− n(ρ̃observed − ρH0)

2

2A′(β)ρ2
H0

}
I
(
0 ≤ ρ̃observed − ρH0 ≤ n−1/2ρH0A

′(β)B′(β)
)

+ exp
{
− n1/2(ρ̃observed − ρH0)B

′(β)

2ρH0

}
I
(
ρ̃observed − ρH0 ≥ n−1/2ρH0A

′(β)B′(β)
)
. (4.69)
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Algorithm 1 Simultaneous Inference for Cross-Correlations

1 procedure PathwayIndicator({θ̃r,jk, κ̃l,jk}, {τ̂r, ν̂l}, α, ρH0)

2 pValue← initialize a p1 × p2 matrix by setting each element as 1

3 for r from 1 to p1 do

4 for l from 1 to p2 do

5 σ̃rl ←
∑

jk θ̃jkκ̃jk

6 σ̃r ←
∑

jk(θ̃
2
jk − n−1τ̂ 2)

7 σ̃l ←
∑

jk(κ̃
2
jk − n−1ν̂2)

8 ρ̃rl ← σ̂rl/(σ̃
1/2
r σ̃

1/2
l )I(σ̃r > τ̂/4)I(σ̃l > ν̂/4)

9 if ρ̃rl < ρH0 then break

10 end if

11 β∗ ← argmin of (4.69) with parameters being replaced by their corresponding
etimators

12 pValue[r, l] ← right-hand side of (4.69) with β = β∗ and with parameters
being replaced by their corresponding etimators

13 end for

14 end for

15 pathwayIndicator← HolmProcedure(pValue, α)

16 return pathwayIndicator

17 end procedure

By choosing β = β∗ ∈ (0, 1) which minimizes the right side of (4.69), we get an expression

(upper bound) for the individual p-value which is used in the Holm procedure.

Algorithm 1 summarizes the proposed procedure. In our practical applications, we will

use α = 0.05 and ρH0 = 0.6. The assumption that a neural pathway is at least periodi-

cally active when the cross-correlation between the corresponding the BOLD-components of

interest is greater than 0.6, is based on a visual analysis explained in Section 3.4.
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CHAPTER 5

NUMERICAL ANALYSIS AND PRACTICAL APPLICATIONS FOR

NEURAL PLASTICITY

In this Chapter, we will first give a detailed description of the neural plasticity experiment

and the available fMRI data set in Section 5.1. The concepts of a hemodynamic response

will be introduced in Subsection 5.1.1, the understanding of which is very helpful for the

evalution of noise model and for the design and analysis of the simulation experiment (see

Section 5.2). Then, the proposed wavelet methodology is applied on the fMRI data at hand.

Informative figures and the corresponding discussions are given in Section 5.3. Finally, a

conclusion of this fMRI neural plasticity study is made in Section 5.4.

5.1 fMRI Neural Plasticity Experiment

The neural plasticity experiment, conducted on twenty-four healthy right-handed adult vol-

unteers (participants) by the University of Texas Southwestern Medical Center, includes

three scan states:

(1) A five-minute pre-training fMRI run when a volunteer was instructed to just look

at a white crosshair. Due to the five minute time and the repetition time (TR) of 1 second,

300 observations of the BOLD signal were obtained for each voxel.

(2) A twenty-three-minute motor task period when a volunteer was asked to press by a

right-hand thumb a button three times when the color of the crosshair changed. The color

change occurred every 27-32 seconds randomly and there were 40 stimuli. The data for the

motor task period was divided and recorded into 4 parts and 340 observations of the BOLD

signal were obtained for each part (This is due to the computer memory limitation).

(3) A five-minute post-training fMRI run when a volunteer was instructed to just look

at a white crosshair, and 300 observations of the BOLD signal were obtained for each voxel.
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The experiment was performed on a 3T system and the data involves 11 slices. All

technical details can be found in Tung et al. (2013).

Data, available for statistical analysis, is as follows. For 1000 voxels in each hemisphere

(located in the motor cortices), we have time series of BOLD signals for: pre-training

(resting) run with 300 observations; four motor-task parts with 340 observations per part;

post-training (resting) run with 300 observations. Note that the MRI machine scans the

brain slice by slice. The original raw data contains 54 slices and the signals from the whole

brain. A standard procedure in an fMRI study is to extract signals within the ROI (motor

cortices in our study) and work with the selected data only. Remember that the data at

hand contains signals from 11 slices. Also note that the slices are scanned successively, which

therefore implies the slice timing issue. However, the delay between each slice scan is negli-

gible if compared to the low frequency signal component of our interest. Some illustrations

can be found in the descriptions of Figure 3.2 in the Section 3.4. Hereafter, slice timing will

not be considered.

Because of the large number of interhemispheric voxel-pairs and large fMRI noise, the

solution proposed in Tung et al. (2013) is based on averaging images in each hemisphere,

calculating cross-correlations for average images in pre- and post-training runs, and then

using a paired t-test for the 24 participants. This testing procedure supported a conjecture

about the increase in cross-correlation after training sessions among the 24 participants and,

as a result, supported the conjecture about the brain plasticity. Efromovich and Smirnova

(2014) made an attempt to analyze plasticity via a wavelet approach, however using a stan-

dard procedure of denoising has allowed the authors to analyze only a single slice with large

signal-to-noise ratio.

We would like to investigate the alterations in the inter-hemispheric neural connectivity

due to the motor task on a voxel-to-voxel level throughout the entire ROI. This implies the

statistical analysis of 1000× 1000 (inter-hemispheric) cross-covariance and cross-correlation
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matrices during each scan using n = 256 observations, which is considered as a large-p-small-

n problem. The technical solutions to this Big Data challenge are presented in the Chapter

3 and Chapter 4. In this Chapter, evaluations of the model and analysis of the real data will

be given.

5.1.1 Hemodynamic Response

Hemodynamic response is a spontaneous body reaction to physical activities or environmental

stimuli by delivering oxygenated blood to the functioning tissues or neurons in order to supply

energies. Therefore, neural activities are associated with the distribution of cerebral blood

flow. The fact that oxygenated and deoxygenated forms of blood are detectable with fMRI

provides an indirect measure of the hemodynamic response.

Figure 5.1 presents a standard hemodynamic response function (HRF) from a single voxel

due to a single stimulus. The x-axis represents the time in seconds. The y-axis represents

the percentage of the BOLD signal change. Therefore, y = 0 is the baseline level of a BOLD

signal. It is supposed that a stimulus occur at time zero. According to Figure 5.1 there is a

delay of approximately 2 seconds before any change in the BOLD signal is observed. At the

beginning of the change, the HRF increases gradually (using about 4 seconds) and reaches

it peak around 6 seconds after the stimulus. Then, the HRF decreases slowly to the lowest

point which is slightly below the baseline level of a BOLD signal and then slowly recovers

to the baseline level. The observed whole process of the hemodynamic response (or the

BOLD signal change) due to a single stimulus can last for approximately 15 to 20 seconds,

depending on the type of stimulus.

The knowledge of the HRF also sheds light on the motor task design in the fMRI plasticity

experiment conducted by Tung et al. (2013). Recall that during the motor task period, the

stimulus (button clicking following the cross-hair color change) occurred every 27 to 32

seconds randomly. Note that the time gap between two successive stimuli is greater than
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Figure 5.1. Hemodynamic response function.

the support of the an HRF. Therefore, overlapping of two HRF can be avoided and we are

expecting to observe approximately 8 to 9 HRF in the BOLD signal every n = 256 seconds

during the motor task.

5.2 Evaluation of Noise Model and Simulations

Recall the noise model proposed in Section 3.3, where we assume that the physiological fac-

tors might be present on two finest scales in the wavelet decomposition of a BOLD signal and

the physiological activity in two neighboring voxels are similar. Based on these assumptions,

a simple functional relationship regression with EIV model is built in (3.6). In this section,

we will evaluate this noise model.
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For each voxel, consider its 3× 3 vicinity in the same slice (to avoid slice timing issue).

Consistent with the notations used in the Section 3.3, let

Ỹ ′l :=
2∑
j=1

n/2j∑
k=1

θ̃jkψjk(l/n)

be the sum of first and second wavelet scales in an empirical wavelet decomposition of an

observed BOLD signal from a voxel of interest, and let

X̃ ′l :=
2∑
j=1

n/2j∑
k=1

θ̃′jkψjk(l/n)

be the counterpart from a voxel in its 3 × 3 vicinity. The correlations between a signal

component Ỹ ′ for a particular voxel and the signal components X̃ ′ for all voxels within its

3×3 vicinity are computed. Figure 5.2 shows a set of histograms, based on all voxels in both

hemispheres of a participant, for weakest correlations between a signal Ỹ ′ for a particular

voxel and signals X̃ ′ for all other voxels from the same slice within its 3 × 3 vicinity. Each

histogram corresponds to one of the 6 runs of the studied fMRI experiment for a single

patient, so we can visualize the dynamics of changes. Figure 5.3 shows similar histograms

only now for the strongest correlations. We clearly see that signals on the finest scales are

correlated, and hence this fact may be used in estimation of the parameter τ .

There is one more possibility to shed light on the proposed estimation of the standard

deviation of the noise in empirical wavelet coefficients in Section 3.3. Let us consider a wavelet

estimate of Efromovich (1999a,b) recommended for fMRI signals. Figure 5.4 presents two

outcomes for a particular voxel in the left hemisphere during second training session when we

should observe a hemodynamic response due to a finger’s clicking stimulus that occurs every

27-32 seconds. The only difference in the two columns of diagrams is that in the left the

wavelet estimate uses the mad procedure to estimate the level of noise in empirical wavelet

coefficients while in the right the proposed regression procedure. The rows of diagrams show

(from the top to the bottom): Observed signal and estimate of the underlying signal (the
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Figure 5.2. Histograms of the weakest correlation between the sums of signals on the first
and second scales for a motor-cortex voxel and other voxels in its 3× 3 vicinity.

denoised signal); Noise estimated as the sum of signals on the first and second scales minus

the denoised signals; Denoised signal on the first scale denoted as iwt1 which stands for
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Figure 5.3. Histograms of the strongest correlation between the sums of signals on the first
and second scales for a motor-cortex voxel and other voxels in its 3× 3 vicinity.

inverse-wavelet-transform for the first scale; Denoised signal on the second scale denoted as
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Figure 5.4. Wavelet denoising a signal during a second training scan. Left and right columns
show the Universal denoising method of Efromovich (1999a) with the mad and the proposed
method of estimation of the noise standard deviation.

iwt2; the sum of denoised signals on scales 3, 4, and 5 which is the denoised BOLD-component

of interest denoted as iwt345.

The third to fifth rows of Figure 5.4 are of our special interest. Note that the mad

estimate, equal to 2.1 is too large and it implies no deterministic signals on scales 1 and 2,

and what is even more important, we do not see hemodynamic responses every 27-32 seconds
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and lasting for about 15-20 seconds (Lazar 2008). (Recall the definition of a hemodynamic

response and the shape of a HRF presented in Figure 5.1.) For instance, the time gap

between the first two hemodynamic responses is more than 50 s, and this is not reasonable

because stimulus occurs every 27-32 seconds. We may conclude that the mad clearly hides

hemodynamic responses that are clearly observed in the right-bottom diagram.

In order to evaluate the proposed estimate of the standard deviation of the noise in the

empirical wavelet coefficients, we design a simulation experiment. Details of the simulation

setting are given below.

The simulation study adopts an additive data generation model in which three main

components can be distinguished: (1) BOLD activation (2) physiological fluctuations (3)

white noise. The BOLD activation is simulated by assuming that the hemodynamic response

function is double-gamma, stimulus present every 32 seconds and each lasts for 15 seconds.

Physiological fluctuation is modeled as sine and cosine functions with different frequencies.

White noise is assumed to follow Gaussian distribution. We design the simulation to mimic

a real fMRI experiment where TR = 1s, the scan session lasts 5 min which implies 300

observations at each voxel. The above described three components are generated using the

R package neuRosim (Moerkerke et al. 2015; Welvaert et al. 2011).

A 3 by 3 vicinity of voxels is simulated based on the assumption that the BOLD activation

and physiological fluctuations are the same among the 9 voxels but with random white noise.

N=10000 simulations of such vicinity are conducted with varied simulation parameters, in-

cluding frequency of heart beat (freq.heart), frequence of respiration (freq.resp), A
τN

and τp
τw

.

Here A is the amplitude of the BOLD activation, τp is the standard deviation of the phys-

iological fluctuations, τw = τ is the standard deviation of white noise and τN =
√
τ 2
w + τ 2

p

is the standard deviation of the additive composition of physiological fluctuations and white

noise. Note that A
τN

is called contrast-to-noise ratio (CNR) (Welvaert and Rosseel 2013).
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Table 5.1. Results of simulations. An entry in the Table is written as MdAPE/MdRAE.

τp
τw

freq.heart freq.resp 0.5 1 2 0.5 1 2

1.17 0.2 0.05/0.62 0.04/0.33 0.04/0.09 0.05/0.62 0.04/0.33 0.04/0.09

1.17 0.3 0.04/0.41 0.04/0.10 0.04/0.03 0.04/0.40 0.04/0.10 0.04/0.03

1 0.2 0.05/0.58 0.04/0.23 0.04/0.06 0.04/0.57 0.04/0.23 0.04/0.06

1 0.3 0.04/0.23 0.04/0.05 0.04/0.02 0.04/0.23 0.04/0.05 0.04/0.02

A
τN

= 0.5 A
τN

= 1

Two error measures are computed and presented in Table 5.1. One is the Median Absolute

Percentage Error (MdAPE), which is defined as,

MdAPE = mediani=1,...,N

(
|τ̂ iw − τw|

τw

)
;

another is Median Relative Absolute Error (MdRAE), which is defined as,

MdRAE = mediani=1,...,N

(
|τ̂ iw − τw|
|madi − τw|

)
,

where τ̂ iw is the proposed estimate of the standard deviation of the noise in the empirical

wavelet coefficients in the ith simulation andmadi is the standard method implemented in the

wavelet softwares. See equations (3.6) - (3.9) for the definition of τ̂ iw and see equation (2.18)

for the definition of madi.

According to Table (5.1), we can see that the proposed estimate is very stable. The

MdAPE of the proposed estimate is always 4% to 5% no matter what is the heartbeat fre-

quency, respiratory frequency, CNR or τp
τw

. By looking into the mad procedure, we discover

that the mad of the finest scale of the wavelet decomposition always overestimates the under-

lying true standard deviation of the white noise τw. By comparing MdRAEs under different
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simulation parameters, we can see that the error of the mad highly depends on the heartbeat

frequency, respiratory frequency and τp
τw

. The higher the ratio τp
τw

is, the more error in mad.

This is because when TR = 1 s, the finest scale contains some physiological components,

which dramatically reduce the performance of mad as an estimate for τw especially when τp

is large relative to τw.

5.3 Practical Results

The proposed wavelet methodology of simultaneous inference about large cross-correlation

matrices allows us to shed new light on the fMRI study described in Section 5.1. In this

section three interesting results are presented that illustrate capabilities of the new method-

ology.

Let us recall some terminology and specific parameters used in the analysis. An inter-

hemispheric neural pathway is the connectivity between neurons to enable a signal to be

sent from one brain hemisphere to another. According to our explanation in Section 3.4,

we are saying that there is an active pathway between two voxels in different hemispheres if

the cross-correlation between the hemodynamic responses exceeds a specific threshold, and

in particular threshold 0.6 is chosen. The reason for choosing cross-correlation 0.6 as the

threshold is discussed in Section 3.4. Because we estimate pairwise cross-correlations with

errors and would like to make a simultaneous conclusion for all possible pairs of voxels, the

approach proposed in Chapter 4 is used with the simultaneous 0.95 degree of confidence

(confidence coefficient). Note that we are using lower confidence bounds (and not inter-

vals) to define if underlying cross-correlations exceed the threshold 0.6, and then the Holm

procedure is used to get the simultaneous 0.95 degree of confidence.

Now we are in a position to present the first result. Figure 5.5 summarizes changes in the

number of active inter-hemispheric pairs (pathways) from the pre-training to post-training

for each of 24 participants. The two top rows show statistics for patients with increased,
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Figure 5.5. Bar chart of the number of active interhemispheric neural pathways for each
participant during pre-training and post-training.

from pre- to post-training, number of active pairs (note the different scales used in these

rows). These are cases that support the neural plasticity phenomenon. On the other hand,

the bottom row present results for 8 participants with decreased number of active pairs.

Note the large volatility in the number of active pathways among the 24 young and healthy

participants.

Next, let us look at Figure 5.6 which allows us to understand what is going on during

4 training tasks and compare them with pre- and post-training sessions. In other words,

we are visualizing the dynamic of active pathways. Figure 5.6 presents the dynamics for
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(b) Participant 4

Figure 5.6. Heat map of the motor cortices during each scan as labeled. The color of each
voxel represents the number of interhemispheric neural pathways in which the corresponding
voxel is involved. Brighter color yields more interhemispheric neural pathways.

Participant 11 and Participant 4. Note that, according to Figure 5.5, the former exhibited

the increased number of active pathways from pre-training to post-training while the latter

the decrease number. Each row of diagrams in Figure 5.6 presents a so-called heat map of

the motor cortices in the fifth fMRI slice during each of 6 scans in chronological sequence.

The color of each voxel represents the number of active pathways in which the corresponding

voxel is involved. In the white-black figure, the darker the color the smaller the number of

active pathways, and vise versa the whiter the color the larger this number. More informa-
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tive colored figures can be found in the online supplementary material Efromovich and Wu

(2018a).

There are several interesting observations. First of all, we see a dramatic increase in

active pathways during the initial training tasks (sessions) but then toward the last training

session this number decreases. The decrease is especially noticeable for Patient 4 (recall

that this is the one whose number of active pathways decreased after training). At the

same time, for Patient 11 we observe the increase in activity during the post-training period.

Second, we may notice that the brighter color occurs in clusters, and hence active neurons

also work together in clusters. Third, for the both patients the yellow regions, seen for the

pre-training state, are enlarged and brightened during training states. Fourth, the active

regions during Task 4 are shrunk and darkened with respect to the previous training tasks.

Fifth, Patient 11 exhibits an interesting pattern in the increased number of active pathways

during post-training period with respect to Task 4.

The dynamic analysis of heat maps again confirms our conclusion that brain activity and

its reaction to training vary widely among individuals.

Finally, let us show how the proposed methodology allows us to point upon performance

of individual voxels. Let us define 4 types of voxels. A voxel is called: (i) “Active” if it

is active (has at least one active interhemispheric pathway) during pre- and post-training;

(ii) “Inactive” if it has no active interhemispheric neural pathways during pre- and post-

training; (iii) “New” if it is not active during pre-training and active during post-training;

(iv) “Disappear” if it is active during pre-training and not active during post-training.

Figure 5.7 and Figure 5.8 display the motor cortices for participant 12 and participant

16, respectively, in 11 slices sequentially, where the color of each voxel represents one of

the above-defined types of the voxels. (More informative colored figures can be found in

the online supplementary material Efromovich and Wu (2018a).) Figure 5.7 and Figure 5.8

allow us to visualize the location of different types of voxels throughout the whole motor
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Stay Active
Stay Inactive
New
Disappear

Figure 5.7. Motor cortices of participant 12. The 11 slices are placed sequentially along the
rows beginning with the top row.

cortices. For the plasticity phenomenon, the most interesting are “new” voxels, and note

that they are primarily located near the boundary of “active” voxels.

5.4 Conclusion

Functional magnetic resonance imaging (fMRI) is a powerful tool that may allow us to

analyze brain activity on a voxel level. To achieve such a possibility, new wavelet estimation

and inference procedures are proposed that allow us to simultaneously analyze BOLD signals

at each voxel in the right and left hemispheres. Further, a feasible statistical procedure for
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Stay Active
Stay Inactive
New
Disappear

Figure 5.8. Motor cortices of participant 16. The 11 slices are placed sequentially along the
rows beginning with the top row.

estimation of and inference about large-p-small-n cross-correlation matrices is developed.

The innovative features are the robust procedure of estimation of the level of fMRI noise

in empirical wavelet coefficients and the numerical procedure of taking into account sub-

Gaussian distributions arising in the analysis of cross-correlation matrices. The proposed

statistical methods are supported by the asymptotic theory and tested in a numerical study.

The developed statistical methods have been used for analysis of an fMRI study of neuron

plasticity of 24 healthy adults. The aim of the study was to recognize changes in connectivity

between left and right motor cortices after button clicking training sessions. A conventional
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method of the data analysis, based on averaging images, has implied that for the group of

24 participants the connectivity increased after the training. The proposed wavelet analysis

has allowed us to conduct a corresponding statistical analysis for each participant. Namely,

for each participant and a simultaneously analysis of all potential neural pathways between

left and right hemispheres was conducted via analysis of corresponding cross-correlation

matrices.

Obtained results shed a new light on the dynamic of changing the number of active

pathways over the time of pre-training, 4 training and post-training sessions. Further, now

it is possible to identify pathways that always stay active, become active during training and

then remain active during post-training session (the plasticity). The results clearly indicate

the ability of a human brain to reorganize itself due to a training, but they also indicate that

the ability varies widely even among healthy individuals. The latter observation is important

for our understanding of the human brain and possible treatments of brain diseases.
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CHAPTER 6

DYNAMIC NONPARAMETRIC ANALYSIS OF NONSTATIONARY ASSET

RETURNS AND ITS APPLICATIONS

6.1 Introduction

Construction of many actuarial models is based on the knowledge of the probability dis-

tribution of asset returns. Statistical description of financial data often assumes that the

returns are independent and identically distributed (Kosta and Stepanova 2015; Rapach and

Zhou 2013; Tan and Chu 2012). However, empirical finance has already shown that the asset

return time series is subject to data dependence as well as the distribution of returns tend

to have heavy tails (Chen and Tang 2005). This paper relaxes this assumption and proposes

a new approach based on nonparametric method of analysis.

Conventionally, asset returns are assumed to be identically distributed over time. The

classical parametric distribution assumptions for returns include normal distribution, lognor-

mal distribution and non-Gaussian stable distributions. However, each of these distributions

has its own disadvantage, which could be crucial for an accurate analysis. Besides the three

conventional distributions, other paremetric distribution assumptions of asset returns include

the Student t, the skewed Student t, the generalized t, and more sophisticated, autoregres-

sive conditional heteroskedastic (ARCH) or generalized ARCH (GARCH) models (Tan and

Chu 2012).

There are also model-free nonparametric attempts in the distribution estimation of finan-

cial data. Nonparametric estimation of the distribution of asset returns has two advantages:

(i) being free of distributional assumptions on the asset returns, and meanwhile being able

to capture tail behavior automatically; (ii) requiring milder assumptions on the dynamics of

the asset return time series, which means being free of identical distribution or stationarity

assumption on asset returns.
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This work is motivated by the above-described advantages of nonparametric approaches.

We propose a novel nonparametric estimetor for the distribution of asset returns. The

approach can be applied to dependent and nonstationary financial data and it captures the

dynamics in the distribution of asset returns over time. The proposed estimation procedure

contains two steps. Our first step is to denoise the asset price time series and compute the

asset returns using the denoised prices. By doing this step, we reduce the noise in returns

which is introduced by the sizable unpredictable component in the prices. It is proposed

to use an aggregated wavelet estimator for asset prices denoising. Our second step is to

estimate the time-varying probability density of the asset returns. The time-varying density

refers to a density function which take two arguments: the value of return and the time.

The estimation of the time-varying density is done in an indirect way. It is proposed to

consider the asset returns under a nonparametric heteroscedastic regression model, where

the probability density of the regression errors is estimated. Then, an density estimator of

the asset returns is defined as the transfomed (shifted and rescaled) regression errors density

estimator.

The work is organized as follows. Section 6.2 gives a review on the nonparametric estima-

tion. An aggregated Wavelet estimator is described in Section 6.2.1 along with its minimax

property. Section 6.2.2 descibes a density estimator of regression errors in a nonparametric

heteroscedastic regression model. Section 6.3 presents the propsed methodology and models.

Practical applications can be found in Section 6.4.

6.2 Literature Review

6.2.1 Aggregated Wavelet Estimator

Consider a time series

Yl = f(l/n) + σεl, l = 1, 2, . . . , n. (6.1)
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where εl are zero mean and unit variance noise and n is the number of observations (sample

size, or signal length). Note that we may refer to the time series as homoscedastic equidistant

regression and hence we can consider f(t) as a trend (plus possibly a seasonal component).

If there is no prior knowledge of f , it is natural to use an adaptive nonparametric curve

estimation. A nonparametric procedure is data-driven and requires neither information

about shape or smoothness of f nor tuning of smooting parameters. A variety of adaptive

nonparametric procedures is described in Efromovich (1999a).

One way to improve the performance of an estimation is to aggregate several estimators

in a suitable manner. That is, given a collection of estimates {f̃1(t), f̃2(t), . . . , f̃K(t)}, an

aggregated estimate is defined as

f̃(t) :=
K∑
i=1

λif̃i(t),

where
∑K

i=1 λi = 1. We introduce the aggregated wavelet estimator porposed in Efromovich

and Valdez-Jasso (2010).

Let us recall the wavlet expansion of a square integrable function f on [0, 1]. Given

wavelet basis {φj0k(x) = 2j0/2φ(2j0x− k), k = 0, 1, . . . , 2j0 − 1} and {ψjk(x) = 2j/2ψ(2jx−

k), k = 0, 1, . . . , 2j − 1, j ≥ j0}, x ∈ [0, 1], where φ and ψ are scaling function and wavelet

function, respectively, we have

f(x) =
2j0∑
k=1

sj0,kφj0,k(x) +
∑
j≥j0

2j∑
k=1

θj,kψj,k(x). (6.2)

Here, sj0,k =
∫ 1

0
f(t)φj0,k(t)dt and θj,k =

∫ 1

0
f(t)ψj,k(t)dt are wavelet coefficients of f .

Due to the design of the numerical discrete wavelet transform, the input signal to this

algorithm must be of a dyadic length. Therefore, let us suppose n =: 2J for some integer

J > 0. Then we can obtain n empirical wavelet coefficients {s̃j0,k, k = 1, . . . , 2j0 , θ̃j,k, k =

1, . . . , 2j, j = j0, . . . , J−1} through standard discrete wavelet transform of the observed time

series {Yl, l = 1, . . . , n}. Empirical wavelet coefficients are essentially statistics, which are
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used to construct estimators of underlying wavelet coefficients. Note that empirical wavelet

coefficients are noisy. Therefore, the wavelet denoising procedure is critical in building a

good estimator.

Let us introduce the SureBlock wavelet denoising proposed by Cai et al. (2009). For

wavelet scale j ∈ {j0, . . . , J − 1}, and for translation index k ∈ {(b− 1)L∗j + 1, . . . , bL∗j} with

some b ∈ {1, 2, . . . , 2j/L∗j}, the SureBlock estimator is defined as

θ̂j,k :=

1−
λ∗jσ

2n−1∑bL∗j
k′=(b−1)L∗j+1 θ̃

2
j,k′


+

θ̃j,k. (6.3)

The following procedure describes how λ∗j and L∗j are selected. First, define a function with

two arguments λ and L,

hj(λ, L) :=

mj∑
b=1

[
L+ n−1σ2[λ2 − 2λ(L− 2)]Ŝ−2

j,b I(Ŝ2
j,b > n−1σ2λ)

+ (nσ−2Ŝ2
j,b − 2L)I(Ŝ2

j,b ≤ σ2n−1λ)
]
, (6.4)

where mj := 2j/L, Ŝ2
j,b :=

∑bL
k=(b−1)L+1 θ̃

2
j,k for b ∈ {1, 2, . . . ,mj}. Then λ∗j and L∗j are

calculated using the following formula,

(λ∗j , L
∗
j) :=


argmin((L−2)∨0)≤λ≤2jL log(2), 1≤L≤2j/2hj(λ, L) if

∑2j

k=1(θ̃2
j,knσ

−2 − 1) > j3/22j/2

((1− j2 log(2)σ2n−1/θ̃2
j,k)+, 1) otherwise.

Efromovich and Valdez-Jasso (2010) proposed an estimator which aggregates two known

wavelet estimators: SureBlock of Cai et al. (2009) and Universal of Efromovich (1999a). The

aggregated wavelet estimator is defined as

f̂A(t) := f̂SB,Ĵ(t) + f̂U,Ĵ(t). (6.5)

Here

f̂SB,s :=
2j0∑
k=1

s̃j0,kφj0,k(t) +
s∑

j=j0

2j∑
k=1

θ̂j,kψj,k(t) (6.6)
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is the lower-frequency part of the SureBlock estimator with θ̂j,k defined in (6.3), and

f̂U,s(t) :=
J−1∑
j=s+1

22s−j∑
k=1

θ̃j,(k)I(|θ̃(j,(k))| > (2j−s ∧ (2 log(n))1/2)σn−1/2)ψj,(k)(t) (6.7)

is the high-frequency part of the Universal estimator. Here, θ̃j,(k) are empirical wavelet

coefficients on the jth scale in descending order and ψj,(k)(t) are corresponding wavelet

functions, and

Ĵ := argminj0≤s<J{2(2s+1 +Ns)σ
2n−1 −

s∑
j=j0

2j∑
k=1

θ̃2
j,k −

∫ 1

0

f̂ 2
U,s(t)dt}, (6.8)

where Ns =
∑J−1

j=s+1

∑22s−j

k=1 I(|θ̃(j,(k))| > (2j−s ∧ (2 log(n))1/2)σn−1/2).

Efromovich and Valdez-Jasso (2010) proved that f̂A(t) is rate minimax over a wide class

of Besov spaces

Bα
p,q(Q) = {f : (

2j0∑
k=1

|sj0,k|p)1/p + (
∑
j≥j0

(2j(α+1/2−1/p)(
2j∑
k=1

|θj,k|p)1/p)q)1/q ≤ Q}

with

1 ≤ p, q ≤ ∞, r ≥ α > (4p−1 − 2)+ + 1/2,
2α2 − 1/6

1 + 2α
>

1

p
, Q <∞.

6.2.2 Series Estimation of the Density of Regression Errors

Let us consider a fixed-design heteroscedastic nonparametric regression model

Yl = f(l/n) + σ(l/n)ξl, l = 1, . . . , n. (6.9)

Here, neither the regression function f(x) nor the scale function σ(x) is assumed to be known,

x ∈ [0, 1]. {ξl, l = 1, . . . , n} are i.i.d. realizations from the zero-mean unit-variance regression

error ξ whose probability density is unknown and is of our interest. Let us assume that the

error ξ does not take values beyond a known finite interval [a, a + b]. Let ε := (ξ − a)/b,

and let pε(u), u ∈ [0, 1] represent its probability density. Therefore, the probability density

74



of ξ is pξ(ν) = b−1pε([ν − a]/b), ν ∈ [a, a + b]. Without any loss of generality, hereafter we

consider the estimation of pε(u), u ∈ [0, 1].

The complication of such problem is that we do not have direct observations of the errors

ξ or ε, which implies an indirect problem setting. In particular, we need to estimate the error

density p(u) based solely on n observations {Yl, l = 1, . . . , n}. Efromovich (2005) proposed

to use the following procedure: the first step is to appropriately calculate the regression

residuals; the second step is to use the residuals as regression errors proxy and plug them

into a Pinsker oracle.

Let us describe how to calculate the proxy residuals. For n = 1, 2, 3, . . ., define bn =

4 + ln ln(n + 20); n2 := n − 2n1; n1 is the smallest integer larger than n/bn; S := Sn is the

smallest integer larger than n1/3. Consider only sufficiently large n such that min(n1, n2) > 4.

The observations {Yl, l = 1, . . . , n} are randomly divided into three mutually exclusive parts;

one part is of size n2 and each of the rest two parts is of size n1. The two nuisance functions

f(x) and σ(x) are first estimated using distinct n1 observations, respectively. Then, pε(u) is

estimated using the part of n2 observations. In particular,

f̂(x) =
S∑
s=0

κ̂sϕs(x), κ̂s = n−1
1

n1∑
l=1

Ylϕs(l/n), (6.10)

and

σ̂(x) = [min(max(σ̃2(x), b−2
n ), b2

n)]1/2, (6.11)

where

σ̃2(x) =
S∑
s=0

β̂sϕs(x), and β̂s = n−1
1

2n1∑
l=n1+1

(Yl − f̂(l/n))ϕs(l/n).

Here {ϕ0 := 1, ϕj =
√

2 cos(πjx), for j = 1, 2, ...} is a cosine orthonormal basis on [0, 1].

Then the residuals that are used as proxy to the standardized regression errors εl are defined

as

ε̂l :=
Yl − f̂(l/n)

bσ̂(l/n)
− a

b
, l = n− n2 + 1, . . . , n. (6.12)
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Let us introduce the Pinsker oracle for the regression error density. Suppose we observe

the realization {ε1, . . . , εn} of the regression error ε. Note that the density pε(u) of ε is

supported on [0, 1]. For k = 1, 2, 3, . . ., define tk := ln−2(2 + k); Lk := k2; q1 := L1

and qk+1 := Lk + qk; Bk := {qk, qk + 1, . . . , qk+1 − 1}; K is a minimal integer such that∑K
k=1 Lk ≥ n1/5bn, and recall that bn = 4 + ln ln(n+ 20). The Pinsker oracle is defined as

p̂ε(z; ε1, . . . , εn) := 1 +
K∑
k=1

µ̄k
∑
j∈Bk

θ̄jϕj(z), z ∈ [0, 1]. (6.13)

Here, θ̄j are estimates of Fourier coefficients θj :=
∫ 1

0
p(z)ϕj(z)dz,

θ̄j := n−1

n∑
l=1

ϕj(εl), (6.14)

and µ̄k are shrinkage coefficients,

µ̄k :=
L−1
k

∑
j∈Bk θ̄

2
j − n−1

L−1
k

∑
j∈Bk θ̄

2
j

I
(
L−1
k

∑
j∈Bk

θ̄2
j > (1 + tk)n

−1
)
. (6.15)

Under mild assumptions, the Pinsker oracle, as a data-driven estimator based on n direct

observations {ε1, . . . , εn}, is minimax for Sobolev and analytic classes (Efromovich 1999a).

Therefore the plugged-in Pinsker oracle, which is a solely data-driven estimator, is

p̂ε(z; ε̂n−n2+1, . . . , ε̂n), (6.16)

where {ε̂n−n2+1, . . . , ε̂n} are defined in (6.12). Note that n2 ≥ [1 − 3(b−1
n + n−1)]n and thus

using either sample size of n2 or n implies the same MISE convergence. Efromovich (2005)

proved that under a mild assumption on the differentiability of the regression function,

scale function and regression error density, the MISE of the plugged-in Pinsker oracle (6.16)

satisfies the orale inequality.

Finally, the probability density estimator of ξ, the original regression error, is obtained

as

p̂ξ(ν) = b−1p̂ε([ν − a]/b; ε̂n−n2+1, . . . , ε̂n), ν ∈ [a, a+ b]. (6.17)
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6.3 Methodology and Models

We are interested in figuring out the dynamics over time in the distribution of the asset

returns. As a result, we propose to estimate a time-varying probability density of asset

returns using a nonparametric procedure. A time-varying density refers to a density function

which take two arguments: the value of return and the time. The proposed procedure will

be described in details shortly.

Stock prices inherently contain a sizable unpredictable component, which would cause

large deviation in the calculation of stock returns. In particular, consider the time series

P̃ (l/n) = P (l/n) + νεl, l = 1, . . . , n, (6.18)

where P̃ (t) is the observed stock price at time t, P (t) is the underlying price, ν is the

volatility (standard deviation) of price P̃ (t), and εl is a random variable with zero mean and

unit variance. Without loss of generality, let us always rescale t to the interval [0, 1].

Our first step is to denoise the stock prices. Due to the inhomogeneity of the stock prices,

it is natural to use a wavelet denoising. Wavelets is a commonly used mathematical tool for

approximation of spatially inhomogeneous curves. Let us consider (6.18) as a homoscedastic

equidistant nonparametric regression model. Then we estimate the underlying prices P (t)

using the procedure described in Section 6.2.1. That is, the estimator P̂ (t) can be calculated

by repeating (6.5) – (6.8) with Yl being replaced by P̃ (l/n) and σ being replaced by ν.

It is proposed to define the stock returns based on denoised prices as following

R̃(t) =
P̂ (t)− P̂ (t− h)

P̂ (t− h)
, (6.19)

where h is a predefined time horizon of interest and R̂(t) is the return between time t − h

and t. The definition (6.19) reduces the volatility in returns that is inherted from the stock

prices. In this paper, we are interested in the daily return so that the time horizon h is equal

to one day.
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In the second step, we estimate the time-varying probability density of asset returns

using a nonparametric series estimator. In particular, consider a time series, defined in a

heteroscedastic nonparametric regression setting,

R̃(l/n) := R(l/n) + σ(l/n)ξl, l = 1, . . . , n, (6.20)

where R(t) is the underlying asset return, σ(t) is the volatility in asset return which depends

on time, and {ξl, l = 1, . . . , n} are i.i.d. realizations from the zero-mean unit-variance re-

gression error ξ. If the support of the probability density of ξ is finite and is known, say

[a, a + b], then a nonparametric estimator of the probability density of ξ can be obtained

by repeating the procedure (6.10) – (6.17) with Yl being replaced by R̃(l/n). However, the

support [a, a+ b] is unknown in practice and therefore needs an estimation. This is done by

using the method proposed in Efromovich (1999a), i.e., estimating [a, a+ b] by

[2ξ̂(1) − ξ̂(2), 2ξ̂(n) − ξ̂(n−1)],

where ξ̂l = R̃(l/n)−R̂(l/n)
σ̂(l/n)

, and {ξ̂(1), ξ̂(2), . . . , ξ̂(n)} is the corresponding ordered statistics. Here,

R̂(l/n) and σ̂(l/n) are the estimators of the regression function and scale funtion in the model

(6.20), and they are calculated using (6.10) and (6.11), respectively.

As a result, it is proposed to construct a nonparametric estimator of the probability

density of ξ, denoted as p̂ξ(x), by repeating the procedure (6.10) – (6.17) with Yl being

replaced by R̃(l/n), a being replaced by 2ξ̂(1)− ξ̂(2), and b being replaced by 2ξ̂(n)− ξ̂(n−1)−

(2ξ̂(1) − ξ̂(2)). Finally, the time-varying probability density estimation of return is given by

p̂R(x, t) =
1

σ̂(t)
p̂ξ

(
x− R̂(t)

σ̂(t)

)
, (6.21)

where the function argument x represents the value of return, the argument t represents the

time.

Calculating value at risk (VaR) is one of the most popular applications of the distribution

of asset return. VaR is the standard approach to quantifying the exprosure of a financial
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asset to the market risk, which is of great importance for risk management. It measures

the loss of an asset over a holding period with a given probability. Typically, the holding

period ranges from a few hours to a few days, while the probability ranges from 0.001 to 0.1

(Kosta and Stepanova 2015; Taylor 2007). Mathematically, V aRt(p) is the p-th quantile of

the distribution of asset returns, defined by

P (R̂(t) ≤ V aRt(p)) = p.

In this work, a time-varying VaR series is estimated by the sample percentiles from the

realizations generated from the proposed time-varying probability density estimators of asset

returns using the acceptance-rejection Monte-Carlo simulation approach.

The acceptance-rejection Monte-Carlo simulation, also known as rejection sampling, is a

technique used to generate realizations from a given distribution. This technique is based on

the fact that an i.i.d. sample of any random variable can be obtained by selecting uniformly

distributed random points on the 2-D plane that is between the random variable’s probability

density curve and the x-axis. In particular, suppose we would like to obtain a sample from

a random variable X with known probability density p(x), x ∈ [0, 1], and suppose p(x) is

bounded and M = sup0≤x≤1 p(x). Now, repeat the following two steps until a pre-defined

sample size is reached:

(i) generating a realization u from uniform[0, 1] and a realization v from uniform[0,M ];

(ii) if v < p(u), accepting u as a realization from p(x), x ∈ [0, 1]; otherwise, reject u and

return to (i).

6.4 Results and Applications

Practical results based on the methodology introduced in Section 6.3 will be presented in

this section. All the data used in application are downloaded from Yahoo Finance.
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Figure 6.1. Example of ‘GOOG’. The figure presents the observed daily prices, denoised
prices, returns calculated based on observed daily prices and returns calculated based on the
denoised prices.

In Figure 6.1, we use the stock ‘GOOG’ as an example. The daily adjusted close prices

of ‘GOOG’ from 2016-05-06 to 2016-07-07 are obtained and denoised using the aggregated

wavelet estimator described in Section 6.2.1, presented in the bottom subfigure, where is the

blue curve represents the observed prices and the red curve represents the wavelet estimation.

We can see that the observed price curve is spatially inhomogeneous, while the wavelet

estimation curve is a good approximation of the observation but much smoother. The top

subfigure presents the daily returns computed using observed stock prices. The middle

subfigure presents the daily returns calculated using the denoised prices, that is using the

formula (6.19). If we pay attention to the y-axis, we see that the volatility in the return is

almost reduced to half after using the proposed calculation method.
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Figure 6.2. Example of ‘GOOG’. The figure presents the observed daily prices, denoised
prices, and the decompositon procedure of the daily returns (detrending, deseasonalizing
and rescaling).
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Figure 6.3. Example of ‘GOOG’. The figure presents the observed daily prices, denoised
prices, returns calculated based on observed daily prices, and the estimation of trend in
daily return.

We now consider the returns under the nonparametric regression model (6.20) and present

the classical decomposition procedure in Figure 6.2. Looking at the decomposition of returns

time series, we notice an interesting phenomenon which can be illustrated by Figure 6.3. The

top subfigure in Figure 6.3 presents the observed daily prices, denoised prices. The middle

subfigure presents the daily returns computed using observed prices. The bottom subfigure

presents the estimator of trend in the returns, which is the same curve as shown in the top-

right of Figure 6.2. With the assistance of the three vertical lines in Figure 6.3, we conclude

that when the trend of return is positive, the stock price tends to increase; and when the

trend of return is negative, the stock price tends to go down. This conclusion is very intuitive

but neither trivial or straightforward, because we can hardly gain critical information about
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Figure 6.4. Example of ‘XOM’. Time-varying probability density function estimation using
historical daily prices from 2012-07-03 to 2016-07-27.

stock price by just glancing the dynamics in returns in the middle subfigure. The suggested

estimator of the trend of return captures the characteristic of the underlying dynamics in

the return and thus makes the relationship between price and return visualizable.

Figure 6.4 presents the estimator of the time-varying probability density function for

stock ’XOM’ based on the historical daily prices from 2012-07-03 to 2016-07-27. The x-axis

corresponds to the value of return, the y-axis corresponds to the time t and z-axis corresponds

to the value of the density. With the assistance of the 3-D figure, we can see the estimator

captures the dynamics in the distribution of return over time.
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Figure 6.5. Example of ‘XOM’. Time-varying VaR from 2012-11-26 to 2016-07-27.

Figure 6.6. Example of ‘GOOG’. Time-varying VaR from 2012-11-26 to 2016-07-27.

Figure 6.5 and Figure 6.6 present two examples of the time-varying 10% VaR estimations.

The time-varying VaR curves for the two examples, ’XOM’ and ’GOOG’, have quite different

pattern. Investment in ’XOM’ turned out to be most risky around the end of the year 2015,

during which the ’XOM’ investors could lose about 1.4% daily with probability 10%. While

investment in ’GOOG’ was becoming more and more risky from the end of 2012 to the end

of 2014, and after that the risk turned out to be more stable. During the whole year 2015
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and the first half year of 2016, the ’GOOG’ investors could lose about 1.95% daily with

probability 10%.
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CHAPTER 7

CONCLUSION

The dissertation presents a novel wavelet approach which solves two biggest challenges in a

voxel-to-voxel-level fMRI study of neuroplasticity: large noise and high dimensionality. Neu-

roplasticity during adulthood is an important discovery in the 20th century, which has many

significant implications for the development of learning and memory methods, and therapies

for acquired brain injuries such as physical trauma and Stroke, and brain diseases such as

Alzheimer’s disease. This work aims to develop statistical methodology for investigation of

the plasticity in the interhemispheric neural connectivity due to a motor task. The voxel-

level neural connectivity is quantified as the cross-correlation between the two neural-activity

related fluctuations originating from the corresponding interhemispheric pair of voxels. All

interhemispheric voxel-level neural connectivity within the ROI is under investigation. This

implies the analysis of large cross-covariance matrices and large cross-correlation matrices.

In particular, given the fMRI data at hand, we deal with 1000 × 1000 inter-hemispheric

cross-covariance matrices and large cross-correlation matrices.

It is proposed to perform a discrete wavelet transform on an observed signal from a voxel.

Thanks to the frequency extraction property of wavelet decomposition, the frequency range

of research interest are captured by the three coarser wavelet scales. However, a feasible

denosing procedure is required to restore the underlying neural-activity related fluctuations,

since the fMRI data at hand is noisy. Estimation of the noise level is critical in any denoising

procedure. The violation of the assumption for the traditional standard deviation estimation

of the noise in the empirical wavelet coefficients prevents us from using it, but on the other

hand, motivates us to develop a novel noise model based on the fact that the two finest

wavelet scales contains physiological fluctuations.

The estimation of the cross-covariance matrices is under a large-p-small-n setting, where

regularization is needed. A thresholding estimator is proposed and it is proved to be rate
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minimax over a class of sparse matrices. The plugged-in estimators are used for the cross-

correlation matrices. An algorithm of the simultaneous analysis of all cross-correlations is

proposed, which deals with the complications induced by the subexponential randomness in

the plugged-in estimators.

The results obtained from the real data presents the dynamic in the number of neural

pathways and localizes the plasticity. The results also indicate that the neuroplasticity

varies widely even among healthy individuals. These observations are important for the

understanding of human brains and for the developments in brain dysfunctionality therapies.
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