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Semiconductor devices have transformed the world through tremendous technological ad-

vances in all aspects of life imaginable. An important aspect of the research into improving

these devices is computer-aided simulation and modeling of their electrical behavior. The

ability to study theoretically semiconductor devices allows us to predict their behavior as

well as optimize their performance before having to physically fabricate the device, saving

us money and time. To this end, we have developed a novel approach, based on the effective

mass approximation, to study theoretically quantum transport, both ballistic and dissipa-

tive, in realistic semiconductor devices. Our model takes into account quantum confinement

and other non-local quantum effects affecting electronic transport in the current and near-

future generations of transistors. As an example of application, we have studied the electrical

behavior of well-known silicon field-effect transistors (FETs) and the factors affecting their

performance.
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CHAPTER 1

INTRODUCTION

1.1 Scaling of CMOS Technology

The world has benefitted immeasurably from the development and use of better, faster,

smarter, and more compact electronic devices ranging from the everyday-life gadgets, like

the cell phone and laptops, to much more sophisticated tools used in space navigations and

military operations. With all advancements come the challenges to maintain steady progress.

Research into improving the structure and properties of the individual CMOS transistors is

essential for the continued growth of the semiconductor industry. Aggressive scaling of the

Complementary Metal Oxide Semiconductor (CMOS) technology into the nanoscale era is a

stark evidence of the progress made in this field. As part of this trend, new device structures

have been proposed and implemented, e.g., silicon-on-insulator (SOI) field effect transistors

(FET) [2], ultra thin body (UTB) double gate (DG) FETs [3], tunnel FETs [4], graphene

nano ribbon devices [5], to name a few.

1.2 Simulation of Quantum Transport

Theoretical analysis of semiconductor devices has traditionally been done through simu-

lation of electron transport by semiclassical methods based on the Boltzmann Transport

Equation (BTE) [6, 7, 8] or moments of the BTE, like the drift-diffusion model [9] or the

hydrodynamics model [10]. However, the current and emerging generation of transistors

have active regions of length comparable to the wavelength of an electron. At such small

dimensions, the basic assumption of the BTE, that electrons are point-like objects with de-

fined position and momentum, falls short. A full quantum study of electron transport is

needed to simulate and understand the behavior of these devices. Explicit quantum me-

chanical effects like tunneling, quantization and resonance cannot be fully captured using
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semiclassical means. Moreover, the International Technology for Semiconductors (ITRS)

[11] has set strong end-of-roadmap goals for RF and analog/mixed signal devices and cir-

cuit performance, well beyond the current state-of-the-art capabilities. Achieving these very

aggressive targets through semiclassical devices seems to be a daunting task. However, it

has been seen and documented that incorporating explicit quantum mechanical transport

into a device’s operation has led to transformative capabilities [12, 13, 14]. Thus, a possible

industrially-scalable and cost-effective route to achieve the goals outlined by the ITRS would

be to integrate explicit quantum transport into industrial Si CMOS technology. Modeling

the behavior of such devices will also require a full quantum transport treatment.

The three well-known methods to study quantum transport are the Wigner function

method [15, 16, 17], the Non-equilibrium Green’s function method [18, 19, 20] and the self-

consistent solution of the Schrödinger, Pauli master [21, 22] and Poisson equations. In our

research we will be using the latter to model ballistic and dissipative electron transport. The

model we employ uses the single-electron envelope approximation and the conduction bands

are approximated with parabolic ellipsoidal or spherical valleys (six ellipsoidal valleys in the

case of silicon). This model best suits our research interest in the present and near future

generation of technologically significant semiconductor devices with channel lengths between

5 nm to 20 nm. Devices with longer gate or channel lengths can be modeled accurately by less

expensive semiclassical models like the Monte Carlo method [6, 7] or drift-diffusion approach

[9] while devices with smaller than 5 nm channel lengths will require a more complicated

and computationally expensive full band quantum transport treatment [23, 24].

1.3 Outline of Dissertation

The dissertation is organized in a step-by-step fashion, each step representing an improve-

ment over the previous, bringing our theoretical model closer to reality. We start with the

2



simplest case — a purely ballistic description of transport. Our main objective is to solve

a system that can communicate with its environment through its contacts, namely an open

system. This requires discretizing the continuum of energies in the contacts. The optimal

discretization is obtained by sampling the density-of-states using the solution of the system

in equilibrium, namely a closed system. Chapter 2 details our theoretical scheme of obtaining

these solutions of the closed system. We solve the Schrödinger equation with closed boundary

conditions self-consistently with the Poisson equation in the two-dimensional (2-D) plane of

the device to achieve this. The device is assumed wide enough so that a 3-D simulation

is not required. In Chapter 3, our simulation methodology is extended to model an open

system driven far from equilibrium under the influence of a drain-to-source bias. The Quan-

tum Transmitting Boundary method (QTBM) [25, 26] is used to enforce open boundary

conditions to model particle exchange, through current-carrying leads, between the device

and environment. Furthermore, ways to derive various device characteristics of practical

importance are highlighted here. Chapters 4 and 5 present two interesting applications of

our ballistic simulation tool, where we use the same to model the behavior of quantum-well

(QW). In addition, dissipation in the form of scattering of electrons with surface roughness is

introduced in a statistical fashion in Chapter 6. Here the electron transport is still modeled

in the ballistic regime, while dissipation due to surface-roughness (SR) scattering arises as

a result of averaging over statistical ensembles of sample devices. Finally, in Chapter 7, dis-

sipation is introduced explicitly as a perturbation away from the ballistic picture by solving

the Pauli master equation self-consistently with the Schrödinger and Poisson equations to

determine the final state of the device. In this work, we have considered only electron-phonon

and SR scattering only, but the model can potentially be extended to include other scattering

phenomena as well. As an application, the impact of the mentioned scattering mechanisms

is presented for the case of UTB double-gate (DG) FETs. Reinstating the purpose and

significance of the entire work, concluding remarks are summarized in Chapter 8.
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CHAPTER 2

EQUILIBRIUM ANALYSIS OF A SEMICONDUCTOR DEVICE

The equilibrium level condition of the system is obtained by solving the two-dimensional

(2-D) Schrödinger and Poisson equations self consistently [27] for different gate biases and at

different temperatures, with no drain-to-source voltage applied. For very wide devices, we

can assume translational invariance of the device profile along the out-of-plane y direction

and therefore our 2-D approach is a good approximation. We define this closed state of

the system as one in which the system does not exchange particles (and energy, thermody-

namically) with the rest of the ‘universe’ through its contacts. Therefore, in its quantum

description, either the wavefunctions must vanish outside the system or there should be zero

net probability current entering or exiting the system. In order to obtain the correct closed

system solution, it is better to solve the Schrödinger equation with both Dirichlet and Neu-

mann boundary conditions, so that one gets the right density near the contacts and, so, the

correct potential. The Dirichlet and Neumann solutions behave ‘sine-like’ and ‘cosine-like’ at

the device-contact interface, respectively, as Fig. 2.1 shows. Thereby, a combined set of these

0

Dirichlet

Neumann

Figure 2.1: A simplified diagram showing how Dirichlet and Neumann boundary conditions
behave at the device-contact interface.

two forms a complete set of physical solutions and any other solution to the closed system

can be represented as a linear combination of the two. Moreover, another vital application

4



of these two solutions of the closed system will be highlighted in Sec. 3.3 where we use them

to sample the continuous energy spectrum of the open system. In all the cases, zero-value

Dirichlet boundary conditions will be applied at the oxide-semiconductor interface as well as

at the substrate of the device to account for the idealized yet physically consistent situation

of having zero charges beyond the said interfaces.

Next, we describe how to obtain a self-consistent 2-D solution of the Schrödinger equation,

considering both Dirichlet (Sec. 2.1) and Neumann boundary conditions (Sec. 2.3), and

Poisson equations. When solving the Poisson equation, in order to account for electrostatic

control through gates using externally applied bias, Dirichlet boundary conditions are applied

at the gate-dielectric interfaces, while Neumann conditions are imposed elsewhere to ensure

confinement of the electric field to the simulation domain.

We will assign the transport, confinement and out-of-plane directions to the x, z and y

directions, respectively.

2.1 2-D Schrödinger Equation with Dirichlet Boundary Conditions

The finite-difference method is used to solve numerically the time-independent single elec-

tron ‘effective mass’ Luttinger-Kohn (Schrödinger) equation [28] using the parabolic-band

approximation to approximate the anisotropic (‘elliposidal’) electron dispersion close to the

six minima of the conduction band of Si. Only electrons in the first conduction band are

considered. Now, the Luttinger-Kohn equation can be written as:

[Em(−i∇) + V (x, y, z)]ψ(x, y, z) = Eψ(x, y, z) , (2.1)

where, using the effective mass approximation, Em(k) = ~2k2
2m∗ and m∗ is the effective mass of

band m. For the simplest case in which the silicon (Si) channel is oriented along the [100]

direction, the two-dimensional Schrödinger equation takes the form [27, 29]:

− ~2

2

[
1

mv
x

∂2ξv(x, z)

∂x2
+

1

mv
z

∂2ξv(x, z)

∂z2

]
+ V (x, z)ξv(x, z) = Ev

xzξ
v(x, z) , (2.2)
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where the envelope wavefunction is ψ(x, y, z) = eikyyξ(x, z) and mx, my and mz are the

transport mass (on the plane (x, z)-plane of the Si/gate-insulator interface and along the

channel), the out-of-plane mass (along the y-direction perpendicular to the interface), and

the quantization mass (on the plane of the interface, but along the z direction perpendicular

to the transport direction). V is the potential energy on the (x, z) plane, Exz is the energy of

the two-dimensional wavefunction ξ(x, z) and ky represents the wavevector in the y direction.

These quantities take different values for each of the six ellipsoidal valleys close to the X

symmetry-point in the Si Brillouin zone and the superscript v denotes the valley index. All

calculations presented in the following have to be repeated three times, once for each pair of

inequivalent valley-orientations.

We denote by Ev
xz + ~2k2

y/2m
v
y the total energy of an electronic state described by the

wavefunction ψ(x, y, z). In its discretized form, Eq. (2.2) can be recast as:

a1

[
ξv(xi+1, zi)

∆x2
i

+
ξv(xi−1, zi)

∆xi∆xi−1

]
+ a2

[
ξv(xi, zi+1)

∆z2
i

+
ξv(xi, zi−1)

∆zi∆zi−1

]
−
[
a1

∆x2
i

+
a1

∆xi∆xi−1

+
a2

∆z2
i

+
a2

∆zi∆zi−1

+ V (xi, zi)

]
ξv(xi, zi) = Ev

xzξ
v(xi, zi) ,

(2.3)

where a1 = −~2/2mv
x, a2 = −~2/2mv

z and, i represents each of the N discretization points.

We employ a two-dimensional mesh given by the tensor product of two one-dimensional

meshes consisting of Nx and Nz points, so that N = Nx×Nz. The N×N Hamiltonian matrix

(HD) is created using the terms on the left-hand-side of the discretized equation. Assuming

Dirichlet boundary conditions, the wavefunctions vanish at the edges of the simulated region

(the ‘device’). Therefore, Eq. (2.3) takes the form of an eigenvalue problem of rank N :

[
HD + V

]
· ξµ = Eµξµ , (2.4)
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where ξµ and Eµ are the µth eigenfunction and eigenvalue, respectively, and, µ = 1, 2, ..., N .

Incorporating non uniformity of the mesh, the Hamiltonian matrix (HD) is given by:

HD = HD
x + HD

z , (2.5)

where HD
x = 

−2A1,1
1,1 A1,1

1,2 · · · 0 · · · · · · · · · 0

A2,1
2,1

−A2,2
2,2

−A2,2
2,1

A2,3
2,2 0 · · · · · · 0

0
. . . . . . . . . · · · 0

...
. . . . . . . . . · · · ...

0 · · · Ai,i−1
i,i−1

−Ai,i
i,i

−Ai,i
i,i−1

Ai,i+1
i,i 0 · · · 0

0 · · · · · · . . . . . . . . . · · · 0

0 · · · · · · AN,N−1
N,N−1 −2AN,N

N,N



,

and, HD
z =

−2B1,1
1,1 0 · · · B1,1+Nx

1,1 0 · · ·

0 −2B2,2
2,2 0 · · · B2,2+Nx

2,2 0 · · ·

0 · · · . . . · · ·
... · · · . . . · · ·

Bi,i−Nx

i,i−Nx
· · · −Bi,i

i,i

−Bi,i−Nx

0 · · · Bi,i+Nx

i,i · · ·
... · · · . . . · · ·

0 · · · BN,N−Nx

N,N−Nx
BN,N

N,N



.

Ak,l
i,j = a1

∆xi∆xj
and Bk,l

i,j = a2
∆zi∆zj

are the matrix elements in row k and column l. HD actually

gives wavefunctions that vanish just outside the device domain. All elements, except those

on the diagonal, of the rows representing the left and right edges of the device, i.e., rows

having indexes jNx or jNx (j being an integer within range (0, Ny)), are set to zero. This

ensures application of zero-value Dirichlet boundary condition exactly at the left and right
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edge of the device. V is a diagonal matrix containing the potential distribution, as shown

below,

V =



V1

V2

. . .

. . .

VN−1

VN


, (2.6)

where Vi is the potential energy at mesh point i.

The six equivalent conduction band valleys of Si are two-fold degenerate. Therefore, the

eigenvalue problem of Eq. (2.4) is calculated separately for each of the three pairs of valleys.

2.2 Channel Oriented in the [110] Direction

We take a look at the effect that the channel orientation has on the Luttinger-Kohn equation

Eq. (2.1). For channels oriented along the [100] direction, Eq. (2.1) can be solved directly,

using the known effective masses of silicon, separately three times for the pair of 6 equivalent

Si valleys. Here, we specifically take the more complex case of device channel oriented along

the [110] direction, following the general trend of the VLSI technology. The effective mass

tensor will be a full 3×3 matrix, instead of a diagonal matrix. This will result in the presence

of mixed second-order derivatives in the Schrödinger equation, as we see below.

Let (x′, y′, z′) and (x, y, z) be the co-ordinate systems based on the [110] and [100] orien-

tations, respectively. Based on simple geometry, we can write

x′ =
1√
2

(x+ y) y′ =
1√
2

(x− y) z′ = z . (2.7)

Re-writing, x =
1√
2

(x′ + y′) y =
1√
2

(x′ − y′) z = z′ .
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Now,
∂ξ

∂x
=

∂ξ

∂x′
∂x′

∂x
+
∂ξ

∂y′
∂y′

∂x
=

1√
2

(
∂ξ

∂x′
+
∂ξ

∂y′
) . (2.8)

Rotating the co-ordinate system from (x, y, z) to (x′, y′, z′) by incorporating the above rela-

tions in Eq. (2.1) we obtain

− ~2

2

{
1

2

[
1

mv
x

+
1

mv
y

] [
∂2

∂x′2
+

∂2

∂y′2

]
+

1

mv
z

∂2

∂z′2

+

[
1

mx

− 1

my

]
∂2

∂x′∂y′
+ V (x′, y′)

}
ψv(x′, y′, z) = Evψv(x′, y′, z′) . (2.9)

In order to remove the mixed second order derivatives, we express the solution as ψv(x′, y′, z′) =

eiky′(αx
′ + y′)ξv(x′, z′). Note here that we take into account the translational invariance of

the potential in the y′ direction by assuming a free electron solution in that direction. Sub-

stituting the guess solution in Eq. (2.9) we obtain,

− ~2

2
[
1

2
(

1

mv
x

+
1

mv
y

)(−α2k2
y′ξ(x

′, z′) + 2iαky′
∂ξv(x′, z′)

∂x′
+
∂2ξv(x′, z′)

∂x′2
− k2

y′)

+
1

mv
z

∂2ξv(x′, z′)

∂z′2
+ (

1

mv
x

− 1

mv
y

)(−αk2
y′ξ

v(x′, z′) + iky′
∂ξv(x′, z′)

∂x′
)

+ V (x′, z′)ξv(x′, z′)] = Evξv(x′, z′) . (2.10)

Equating the coefficients of the first order derivatives w.r.t. x to 0,

iαky′(
1

mv
x

+
1

mv
y

) + iky′(
1

mv
x

− 1

mv
y

) = 0 , (2.11)

giving α = − mvc
2mvxy

, with 1
mvc

= 1
2
( 1
mvx

+ 1
mvy

) and 1
mvxy

= 1
mvx
− 1

mvy
. Removing the ‘prime’ from the

co-ordinate axes for convenience, the modified Schrödinger equation for the [110] direction

then takes the form

− ~2

2

[
1

mv
c

∂2ξv(x, z)

∂x2
+

1

mv
z

∂2ξv(x, z)

∂z2

]
+ V (x, z)ξv(x, z)

= Evξv(x, z)−
~2k2

y

2

[
1

mv
c

− mv
c

4(mv
xy)2

]
ξv(x, z) , (2.12)
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where the full (envelope) wavefunction ψv(x, y, z) is given as

ψv(x, y, z) = eikyy e
−i

mvc
2mvxy

kyx
ξv(x, z) . (2.13)

We calculate the electron wavefunctions ξµ(x, z) (labeled by the index µ) and the corre-

sponding eigenvalues Eµ
xz by solving this eigenvalue problem. The second factor at the

right-hand-side of Eq. (2.13) is incorporated into calculations at a later stage.

The more complicated form of the Schrödinger equation, Eq. (2.12), must be employed

to treat only four of the six valleys, since the in-plane rotation from the [100] to the [110]

direction does not affect the two ellipsoids with mz = mL. Here mL = 0.91m0 (m0 is the

mass of an electron) is the longitudinal effective mass (we also assume mT = 0.19m0 for the

transverse effective mass). These valleys can be treated using the slightly simpler form given

by Eq. (2.3). These calculations, shown here for Si, can be extended for any other material

with similar orientations of their conduction band minima.

2.3 Schrödinger Equation with Neumann Boundary Condition

The same finite-differences form, given by Eq. (2.3), is used to solve Eq. (2.2) (and/or

Eq. (2.12)) with Neumann boundary conditions at the left and right contacts (Dirichlet

boundary condition for the top and bottom sides of the domain). The Hamiltonian matrix

HN build to solve Eq. (2.4) for this case is very similar to HD. The only difference is the

rows representing the left and right contact surfaces, i.e., rows having indexes jNx or jNx

(j being integer in the range (0, Ny)), will have 2Ai,i+1
i,i and 2Ai,i−1

i,i−1 terms, respectively. This

ensures application of Neumann boundary condition right at the drain and source edges.

HN = HN
x + HN

z , (2.14)
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where HN
z = HD

z and

HN
x =



−A1,1
1,1 2A1,1

1,2 · · · 0 · · · · · · · · · 0

A2,1
2,1

−A2,2
2,2

−A2,2
2,1

A2,3
2,2 0 · · · · · · 0

0
. . . . . . . . . · · · 0

...
. . . . . . . . . · · · ...

0 · · · Ai,i−1
i,i−1

−Ai,i
i,i

−Ai,i
i,i−1

Ai,i+1
i,i 0 · · · 0

0 · · · · · · . . . . . . . . . · · · 0

0 · · · · · · 2AN,N−1
N,N−1 −AN,N

N,N



.

The terms A and B have their usual meaning, defined in Eq. (2.5).

2.3.1 Electrons

The electron wavefunctions obtained from the solution of the closed-system are used to

calculate the electron charge distribution in the device. The information regarding the DoS

along the x and z directions is already contained in these quantized 2-D wavefunctions.

We have only to use the 1-D DoS representing the continuous energy spectrum along the

’homogenous’ out-of-plane y direction given by the expression

Dv
1D(Ey) =

1

π~

√
mv

y

2Ey

. (2.15)

The expression for the electron charge distribution is

n(x, z) =
∑
v

∑
µ

∫ ∞
Eµ,vxz

dEyD
v
1D(Ey)f(Ey, EF)|ξvµ(x, z)|2 , (2.16)

where ξµ and Eµ are the wavefunction and energy of the quantum state µ, respectively.

Using Eq. (2.15), the above expression becomes

n(x, z) =
∑
v

∑
µ

1

π~

√
mv

ykBT

2
F− 1

2

(
EF − Eµ,v

xz

kBT

)
|ξvµ(x, z)|2 , (2.17)

Here F− 1
2

is the Fermi-Dirac integral of order -1/2, defined by Eq. (2.19).
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2.3.2 Holes

The hole charge distribution, p(x, y, z), is calculated semiclassically using the well known

three-dimensional DoS expression,

p(x, y, z) =
1

2
√
π

(
2mhkBT

π~2

) 3
2

F 1
2

(
V (x, z)− (EF + Eg)

kBT

)
, (2.18)

where mh = 0.8m0 is the hole effective mass, the Eg is the band gap energy of silicon, and,

F 1
2

is the Fermi-Dirac integral of order 1/2, defined by Eq. (2.19).

We define the Fermi-Dirac integral of order σ as:

Fσ(η) =

∫ ∞
0

εσdε

1 + exp(ε− η)
. (2.19)

Eq. (2.19) is computed using the Gauss-Legendre quadrature method [30], as shown below

for a function g(y) ∫ b

a

dy
g(y)√
b− y

=
√
b− a

n∑
i=1

wig(yi) , (2.20)

where yi = a+ (b− a)xi, abscissas xi = 1− ζ2
i and wi = 2w

(2n)
i . ζi is the ith positive root of

Legendre polynomial P2n(x) and w
(2n)
i are the Gaussian weights of order 2n. Note that the

inclusion of temperature as an input parameter in the device simulation is achieved through

the temperature dependence of Eqs. (2.17) and (2.18).

2.4 Solution of the Poisson Equation

Here we briefly describe the numerical solution of Poisson equation which constitutes an

important part of most transport simulations. We solve the Poisson equation in the 2-D

plane (x, z) of the device. To incorporate correctly the electrostatic effects caused by the

change in permittivity along the dielectric-semiconductor interface, we solve the generalized

Poisson equation:

∇. [ε(x, z)∇V (x, z)] = e2
[
p(x, z)− n(x, z) +NA(x, z)−ND(x, z)

]
, (2.21)
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where e is the electron charge and εSi(x, z) is the permittivity of the material present at

(x, z). The centered finite-differences method is used to solve this linear system problem :

P ·V = D , (2.22)

where P is an N × N matrix expressing the differential operators on the left hand side

of Eq. (2.22), V and D are N × 1 matrices expressing the potential energy distribution

and the charge terms on the right hand side of Eq. (2.21), respectively, for each of the N

mesh points. Neumann boundary conditions are employed along all the domain boundaries,

excluding the portion of the domain edge representing the oxide-metal gate interface. Here,

the gate potential VGS is applied by setting Dirichlet boundary conditions. Mathematically

this is done by assigning zeros to all the elements of the rows representing the said portion

of the oxide-metal interface, except for the diagonal elements where unity is assigned. The

gate potential in electron volts is added to the corresponding rows of the charge matrix D.

This assignment might lead to singularity issues while solving the linear system Eq. (2.22)

computationally. The solution consists in multiplying the unity diagonal terms on P and the

corresponding gate potential terms on D by a factor that has the same order of magnitude

as the other non-zero terms on P.

2.5 Self-consistent Solution of the Schrödinger and Poisson Equations with

Closed Boundary Conditions: State of the System at Equilibrium

The electrostatic potential in the device is obtained by solving self-consistently the Schrödinger

and Poisson equations, described in Sec. 2.1 and Sec. 2.4, respectively. The Fermi level of the

device is first fixed at a value that results in charge neutrality deep in the substrate of the

device. An initial ‘guess’ for the electrostatic potential is made that satisfies the condition of

charge neutrality at each point in the device, using the three-dimensional density-of-states
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for electrons and holes. Proper selection of the initial state of the system is crucial as it is vi-

tal to attaining a good convergence and the previously mentioned ’guess’ serves the purpose

for our case. The Schrödinger equation is then solved numerically using this initial guess for

the potential and the electron wavefunctions ξµ(x, z) and the corresponding energies, Eµ
xz,

are calculated. The electron charge distribution is then calculated from these wavefunctions

and the hole charge distribution using the classical expression Eq. (2.18). Thereafter, the

Poisson equation is solved numerically, using the electron, hole, and doping charge densi-

ties, to generate a ‘new’ potential. The root-mean-square (‘infinity-norm’) error between the

‘new’ and ‘old’ potentials is then determined. If the error is greater than a predefined mini-

mum value, typically of the order of 10−7 eV, then the procedure is repeated using the ‘new’

potential. Otherwise, the iterative procedure ends and the ‘new’ potential is the equilibrium

electrostatic potential in the device.

This ‘direct’ self-consistent scheme seldom converges in practice. In order to accelerate

the convergence of the iterative procedure, Newton’s method [31] is used. In this method,

the Poisson equation is not solved directly to generate the ‘new’ potential, instead a Jacobian

matrix J is used to achieve convergence.

2.5.1 Conventional Newton’s iteration scheme: Building a semiclassical Jaco-

bian

In order to understand the role of Newton’s method (also known as Newton-Raphson method)

in achieving a faster rate of convergence, we need to first understand on which ideas the

method is based. Basically, the method is a root-finding algorithm that is used iteratively

to find better approximations to the roots of a function or a system of functions that are

continuously differentiable. Let the vector x represent the set of variables (x1, x2, ..., xn) and

the system of n functions (f1, f2, ...fn) is given by the vector F(x). Newton’s method then

14



states that the ith approximation xi to the solution of the equation F(x) = 0 is,

xi = xi−1 − J−1(xi−1)F(xi−1) , (2.23)

where J(xi) is an n × n Jacobian matrix whose elements are the partial derivatives of the

components of F(x) evaluated at xi, as shown

J(xi) =



∂f1(xi)
∂x1

∂f2(xi)
∂x1

· · · · · · ∂fn(xi)
∂x1

∂f1(xi)
∂x2

∂f2(xi)
∂x2

· · · · · · ∂fn(xi)
∂x2

...
...

...
...

...

∂f1(xi)
∂xn

∂f2(xi)
∂xn

· · · · · · ∂fn(xi)
∂xn


. (2.24)

In our self-consistent scheme, instead of directly solving Eq. (2.21) to obtain the new potential

(root), Newton’s method is used to find the first approximation to the root of the Poisson

equation, written as P ·V−D = 0. The Jacobian J becomes a N ×N diagonal matrix, with

the diagonal terms being the first order derivatives w.r.t potential energy of the total charge,

calculated semiclassically. The use of a semiclassical charge distribution is convenient since

it can not only be determined using an analytical expression, but also its non-local nature

is important in achieving fast convergence. The expression of the diagonal terms of J for a

potential energy distribution V is,

Ji,i(V i) = − e
2

εSi

(
Dsc(V

i + ∆V )−Dsc(V
i)

∆V

)
, (2.25)

where i = 1, 2, ..., N represents the N mesh points and V i the potential energy at mesh point

i. The term Dsc(V
i) is the total semiclassical electron and hole charge density at mesh point

i given by

Dsc(V
i) =

1

2
√
π

(
2mhkBT

π~2

) 3
2

F 1
2

(
V (x, z)− (EF + Eg)

kBT

)
+
∑
v

1

2
√
π

(
2mv

dkBT

π~2

) 3
2

F 1
2

(
EF − V (x, z)

kBT

)
, (2.26)
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where mv
d = (mv

xm
v
ym

v
z)

1/3. The ‘new’ potential is obtained from:

Vnew = Vold − J−1(Vold)( P ·Vold −D) . (2.27)

Thus the ‘new’ potential contains an explicit dependence on the ‘old’ potential, instead of just

depending on the charge distribution, which is the case when Eq. (2.21) is directly used to

get the same. This procedure bears resemblance to the ‘under-relaxation’ approach. In this

convergence scheme, again, the exact solution is not used in the subsequent self-consistent

iterations. A combination of the current and previous solutions is employed instead,

Vi = λVi + (1− λ)Vi−1 , (2.28)

where λ is the under-relaxation parameter lying in the interval (0, 1) and i is the iteration

index. For most of our quantum simulations, Newton’s method has been found to be much

more successful in attaining convergence, compared to the relatively simpler under-relaxation

approach. It is important to mention here that inverting the sparse matrix J is an expensive

procedure and results in a dense matrix, which is not efficient to work with. Instead of doing

this, we can see that the term J−1(V)( P ·V−D) on the right hand side of Eq. (2.27), let us

call it L, is actually the solution of the linear system J(V)·L = ( P·V−D). Thus, the vector

L can be determined using any linear system solver and the process is fast, inexpensive and

does not burden the computer memory.

The self-consistent simulation typically achieves the desired degree of convergence in 25-

30 iterations. On a quad core Linux machine with Intel i7 CPU, this process requires about

3 minutes for a 4 nm × 50 nm double gate MOSFET device with 110 × 100 mesh points.
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CHAPTER 3

BALLISTIC SIMULATION OF DEVICE BEHAVIOR UNDER APPLIED

BIAS: NON EQUILIBRIUM ANALYSIS

In the closed boundaries system, the wavefunction is assumed to vanish outside the device,

so there is no current flow through the device, i.e., represents an isolated system. However,

we are interested in the ‘open’ system in which electrons can flow into and out of the device.

This describes the behavior of a device in the presence of an applied drain-source voltage

VDS. The method we follow is the QTBM proposed by Lent and Kirkner [25].

3.1 2-D Schrödinger Equation with Open Boundary Conditions: Quantum

Transmitting Boundary Method

The source and drain contacts are imagined as infinite leads going into the device, as il-

lustrated schematically in Fig. 3.1. A separate coordinate system (ωs, κs) is defined for

Device 
Lead 1 

Lead 2 

ω1 
ω2 

κ1 
κ2 

Γ1 

Γ2 

Figure 3.1: Schematic illustration showing the implementation of the Quantum Transmitting
Boundary Method.

each lead s, as shown in the figure. This is just a matter of convenience as the same

derivations/expressions become applicable for all the leads. The potential is assumed to be

constant along the direction ωs and, along κs, the potential profile is assumed to be same
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as that along the lead-device interface. Another assumption made is that outside the device

as well as outside the lead edges, the wavefunction vanishes. Using these conditions, the

wavefunctions in the leads can be separated into two independent components - traveling

waves along ωs and wavefunctions with a discretized energy spectrum along κs due to the

confinement in that direction. The latter part is determined by solving the one-dimensional

Schrödinger equation along κs,

− ~2

2mv
z

∂2ϕr,vm (κs)

∂κ2
s

+ Vs(κs)ϕ
s,v
m (κs) = Es,v

m ϕs,vm (κs) , (3.1)

where Vs(κs) is the electron potential energy along κs in lead s and mz is the quantization

mass. Eq. (3.1) becomes an eigenvalue problem as a consequence of the zero-value Dirichlet

boundary conditions imposed by the lead edges. ϕsm and Es
m represent the mth eigenstate

and eigen-energy, respectively, in lead s of the one-dimensional (1-D) eigenvalue problem

which can be written as,

H1D ·ϕs,vm = Es,v
m ϕ

s,v
m , (3.2)

where the 1-D Hamiltonian matrix H1D is a Nx ×Nx tridiagonal matrix, built as follows:

H1D =



−2A1 B1 0 · · · · · · · · · 0

B2 −2A2 B2 0 · · · · · · 0

0 · · · · · · · · · · · · · · · 0

0 · · · · · · · · · Bn−1 −2An−1 Bn−1

0 · · · · · · · · · 0 Bn −2An−1


. (3.3)

These eigenstates are normalized along the κs direction and the total wavefunction in lead

s is then given by:

Ψv
β,s(ωs, κs) =

Nv
s∑

m=1

[
as,vm ϕs,vm (κs)e

iks,vm,βωs + bs,vm,βϕ
s,v
m (κs)e

−iks,vm,βωs

]
+

∞∑
m=Nv

s+1

bs,vm,βϕ
s,v
m (κs)e

ks,vm,βωs . (3.4)
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Here, the terms inside the first summation on the right-hand-side represent the N v
s traveling

waves (traveling modes) with energy (along the x and z directions) Ev
β > Es,v

m , going into

and reflecting out of the device, respectively, through lead s. The index β denotes the

different wavefunctions Ψv
β,s and the corresponding energies Ev

β in the conduction band valley

v. The third term on the right-hand-side represents the evanescent modes with energy

Ev
β < Es,v

m . The coefficients as,vm ’s are chosen as inputs for the different waves traveling into

the device, while the coefficients bs,vm,β need to be determined. For all other leads j 6= s, the

injection amplitudes aj,vm = 0. The wavevectors ks,vm,β for the traveling modes are given by:

[2mv
x(Ev

β−Es,v
m )]1/2/~ and, for the evanescent modes, by: [2mv

x(Es,v
m −Ev

β)]1/2/~. The energy

Ev
β will be referred to as the ‘injection energy’. Note that ωs = −x or x depending on the

left or right contact, respectively.

3.1.1 QTBM boundary conditions

The boundary conditions at the interface Γs between the device and lead s involve the con-

tinuity of both the wavefunction at the interface, φvβ,s
∣∣
Γs

= Ψv
β,s(ωs = 0, κs), and, the normal

derivative, ∇φs,vβ .κ̂s
∣∣
Γs

= ∇Ψv
β,s(ωs = 0, κs).κ̂s for all m ≤ N v

s . Here φvβ,s(x, z) represents the

wavefunction inside the device. Using Eq. (3.4) and combining the two boundary conditions

together, we obtain:

∇φs,vβ .κ̂s
∣∣
Γs

=

Nv
s∑

m=1

[
as,vm ϕs,vm (κs)

∂
(
eiks,vm,βωs

)
∂ωs

∣∣
ωs=0

+ bs,vm,βϕ
s,v
m (κs)

∂
(
e−iks,vm,βωs

)
∂ωs

∣∣
ωs=0

]
+

∞∑
m=Nv

s+1

bs,vm,βϕ
s,v
m (κs)

∂
(
ek

s,v
m,β

)
∂ωs

∣∣
ωs=0

. (3.5)
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Using finite-differences to discretize the right hand side of the above equation, we obtain

∂φs,vβ
∂x

∣∣
ωs=0

=

Nv
s∑

m=1

[
as,vm ϕs,vm (κs)

eiks,vm,β(ωs=0)
(
eiks,vm,β∆ωs − 1

)
∆ωs

+ bs,vm,βϕ
s,v
m (κs)

e−iks,vm,β(ωs=0)
(
e−iks,vm,β∆ωs − 1

)
∆ωs

]

+
∞∑

m=Nv
s+1

bs,vm,βϕ
s,v
m (κs)

ek
s,v
m,β(ωs=0)

(
ek

s,v
m,β∆ωs − 1

)
∆ωs

. (3.6)

Now, multiplying both sides of Eq. (3.4) by ϕs,v∗m′ (κs) and integrating over κs in the range

(0, ds), where ds is the vertical height of lead s, we obtain for ωs = 0,

∫ ds

0

dκsϕ
s,v∗
m′ (κs)Ψ

v
β,s(ωs = 0, κs) =

Nv
s∑

m=1

[
as,vm + bs,vm,β

] ∫ ds

0

dκsϕ
s,v∗
m′ (κs)ϕ

s,v
m (κs)

+
∞∑

m=Nv
s+1

bs,vm,β

∫ ds

0

dκsϕ
s,v∗
m′ (κs)ϕ

s,v
m (κs) . (3.7)

The wavefunctions ϕ are eigenstates of a Hermitian operator (H1D) and so are mutually

orthogonal,
∫ ds

0
dκsϕ

s,v∗
m′ (κs)ϕ

s,v
m (κs) = δmm′ . Using this relation and replacing Ψβ with φβ,

observing continuity of the wavefunction at the interface, Eq. (3.7) gives us

bs,vm,β =

∫ ds

0

dκsϕ
s,v∗
m (κs)φ

s,v
β (ωs = 0, κs)− as,v

m . (3.8)
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Note that since evanescent waves are not injected, the above relation will not contain the

as,vm term for m > N v
s . Eq. (3.6) can be re-written as:

∂φs,vβ
∂x

∣∣
ωs=0

=

Nv
s∑

m=1

[
as,vm ϕs,vm (κs)

(
eiks,vm,β∆ωs − 1

∆ωs
− e−iks,vm,β∆ωs − 1

∆ωs

)

+

(∫ ds

0

dκsϕ
s,v∗
m (κs)φ

s,v
β (ωs = 0, κs)

)
ϕs,vm (κs)

e−iks,vm,β∆ωs − 1

∆ωs

]
+

∞∑
m=Nv

s+1

(∫ ds

0

dκsϕ
s,v∗
m (κs)φ

s,v
β (ωs = 0, κs)

)
ϕs,vm (κs)

ek
s,v
m,β∆ωs − 1

∆ωs

=

Nv
s∑

m=1

[
2ias,vm ϕs,vm (κs) sin

(
ks,vm,β∆ωs

)
∆ωs

+

(∫ ds

0

dκsϕ
s,v∗
m (κs)φ

s,v
β (ωs = 0, κs)

)
ϕs,vm (κs)

e−iks,vm,β∆ωs − 1

∆ωs

]
+

∞∑
m=Nv

s+1

(∫ ds

0

dκsϕ
s,v∗
m (κs)φ

s,v
β (ωs = 0, κs)

)
ϕs,vm (κs)

ek
s,v
m,β∆ωs − 1

∆ωs
. (3.9)

In practice the wavefunctions φ are calculated separately for each injected traveling wave

and thus they depend on m as well (a superscript m will be used to denote this dependence

henceforth). In our problem it has been seen that the extent of numerical errors is reduced

with the introduction of more discretization into the system. For this reason, we also use a

discretized version of the wave vectors ks,vm,β. The deduction of the same is given below in

brief. We start by writing the Schrödinger equation for the forward traveling wave eiik
s,v
m,βωs ,

− ~2

2mv
x

∂2
(
eiks,vm,βωr

)
∂x2

= (Ev
β − Es,v

m )eiks,vm,βωs .

Using centered differences method, the second order derivative can be written as:

− ~2

2mv
x

eiks,vm,β∆ωs + e−iks,vm,β∆ωs − 2

∆ω2
s

= Ev
β − Es,v

m

, or, cos
(
ks,vm,β∆ωs

)
− 1 = −mv

x∆ω2
s(E

v
β − Es,v

m )/~2 .

Using basic trigonometric identities, the discretized wave vector can be retrieved as,

ks,vm,β =
2

∆ωs
arcsin

(√
mv

x∆ω2
s(E

v
β − E

s,v
m )/(2~2)

)
. (3.10)
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Similarly for the evanescent waves (m > N v
s ), the wave vector can be written as:

ks,vm,β =
2

∆ωs
arcsinh

(√
mv

x∆ω2
s(E

s,v
m − Ev

β)/(2~2)
)
. (3.11)

The QTBM Hamiltonian used to calculate the wavefunctions φs,vm,β is built using the closed

system Hamiltonian HD, described in Sec. 2.1. The matrix elements that correspond to

the drain and source edge of the device are modified to account for the QTBM boundary

conditions. Let l1, l2, ..., lNL and r1, r2, ..., rNR be mesh indices of the NL (NL ≤ Nx) and

NR (NR ≤ Nx) points in the range (1, Nx × Ny), representing the left and right contacts,

respectively. Two N × N matrices ΣL and ΣR are built which include the reflected and

transmitted (both traveling and evanescent) waves traveling into and out of the device,

respectively, shown below,

ΣL = 

0 · · · · · · · · · · · · · · · · · · · · · 0

0 · · · Al1,l1 − Ll
1,l1 · · · −Ll

1,l2 · · · −Ll
1,lj · · · 0

... · · · · · · . . . · · · · · · · · · · · · 0

... · · · −Ll
2,l1 · · · Al2,l2 − Ll

2,l2 · · · −Ll
2,lj · · · 0

0 · · · · · · · · · · · · . . . · · · · · · 0

0 · · · −Ll
j ,l1 · · · −Ll

2,l2 · · · Alj ,lj − Ll
j ,lj · · · 0

0 · · · · · · · · · · · · · · · · · · . . .



(3.12)
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ΣR = 

0 · · · · · · · · · · · · · · · · · · · · · 0

0 · · · Ar1,r1 + Lr
1,r1 · · · Lr

1,r2 · · · Lr
1,ri · · · 0

... · · · · · · . . . · · · · · · · · · · · · 0

... · · · Lr
2,r1 · · · Ar2,r2 + Lr

2,r2 · · · Lr
2,ri · · · 0

0 · · · · · · · · · · · · . . . · · · · · · 0

0 · · · Lr
i,r1 · · · Lr

2,r2 · · · Ari,ri + Lr
i,ri · · · 0

0 · · · · · · · · · · · · · · · · · · . . .



(3.13)

where the A’s are defined in the same way as for Eq. (2.4) and

Lp,q =
a1

∆x

[
Nv
s∑

m=1

ϕs,v∗m (κs = q)φs,vm,β(ωs = 0, κs = q)∆ωrϕ
s,v
m (κs = p)

× (e−iks,vm,β∆ωs − 1) +
∞∑

m=Nv
s+1

ϕs,v∗m (κs = q)φs,vm,β(ωs = 0, κs = q)∆ωs

× ϕs,vm (κs = p)(ek
s,v
m,β∆ωs − 1)

]
. (3.14)

Here, p and q represent the mesh indices li (or rj), i (or j) being an integer in the range (1, NL)

(or (1, NR), respectively). We also define a N × 1 matrix Bm, expressing the component of

the wave (traveling) injected into the device:

Bm =



0

...

Gl1

0

...

Glj

0

...



, (3.15)
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where Glj = −a1

[
2ias,vm ϕs,vm (κs = lj) sin

(
ks,vm,β∆ωs

)]
/∆x2. The resulting linear system can be

written as: [
HD + ΣL + ΣR + V

]
φs,vm,β = Bm . (3.16)

Here φs,vm,β is a N × 1 vector expressing the value of electron wavefunction φm,β,s at each

of the N mesh points. Eq. (3.16) is solved to obtain φm,β,s separately for the leads s, the

different injection energies Ev
β and the different traveling modes m ( and valley v). These

wavefunctions are then used to calculate the transmission coefficient, local density-of-states

(LDOS) and, most importantly, the current.

3.2 Calculation of Device Characteristics

One of the most important applications of the open boundaries Schrödinger solver is the

determination of current-voltage characteristics of semiconductor devices. The potential

distribution obtained from the self-consistent solving of the open boundaries Schrödinger

with the Poisson equation is usually taken as input for calculating these characteristics.

This solution correctly corresponds to the state of the system far from equilibrium under

an applied bias. Detailed discussion on this topic will be done at a later stage. On the

other hand, for cases when the system is close to equilibrium, e.g., when the drain-source

bias is very low, of the order of 1 meV, a self-consistent equilibrium solution as discussed in

Sec. 2.5 can also provide a good approximation to the device characteristics. Nevertheless,

whatever be the input potential, we show how some of the current transport parameters can

be extracted from knowledge of the wavefunctions of the Schrödinger equation with open

boundaries.

3.2.1 Transmission coefficient

The transmission coefficient, strictly from a device perspective, can be defined as the ratio of

the reflected probability current to the probability current incident across any cross section of
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the device. The probability current is a quantum mechanical quantity describing probability

flux, defined as:

S = − i~
2m∗

(ϕ∇ϕ− ϕ∇ϕ) . (3.17)

Using this definition, the transmission coefficient T rr
′
(Ev

β,ms) for a traveling mode ms from

lead s (‘source’) with injection energy Ev
β, going towards lead s′ (‘drain’) can be written as:

T ss
′
(Ev

β,ms, v) =
∑
ms′

∫∫
A

dzdy ST
ms′ ,β,s′

.x̂∫∫
A

dzdy SI
ms,β,s

.x̂
, (3.18)

where A is cross section of the leads, ST and SI are the transmitted and incident probability

current in the leads, respectively. Note here that for transmitted waves, all possible traveling

modes ms′ are taken into account for an incident wave of mode ms. Assuming identical

width of the leads and the uniformity of the system in the out-of-plane y direction, the

above equation can be re written as:

T ss
′
(Ev

β,ms, v) =
∑
ms′

∫
ds′

dz|bs
′,v
ms′ ,β
|2ϕs′,v∗ms′

ϕs
′,v
ms′∫

ds
dz|as,vms,β|2ϕ

s,v∗
ms ϕ

s,v
ms

×

[
e

iks
′,v
ms′ ,β

x ∂
∂x
e
−iks

′,v
ms′ ,β

x − e−iks
′,v
ms′ ,β

x ∂
∂x
e

iks
′,v
ms′ ,β

x
]

[
eiks,vms,βx ∂

∂x
e−iks,vms,βx − e−iks,vms,βx ∂

∂x
eiks,vms,βx

] .

Making use of orthogonality of the wavefunctions ϕs,vm and discretizing the partial derivatives

using finite-differences (forward), the above equation can be simplified to

T ss
′
(Ev

β,ms, v) =
∑
ms′

|bs
′,v
ms′ ,β
|2

|as,vms,β|2
sin
(
ks
′,v
ms′ ,β

∆x
)

sin
(
ks,vms,β∆x

) . (3.19)

In order to compensate for discretization errors and maintain unitariety, we again utilize

here the discretized version of kr,vm,β given by Eq. (3.10),

T ss
′
(Ev

β,ms, v) =
∑
ms′

|bs
′,v
ms′ ,β
|2

|as,vms,β|2

sin

[
2 arcsin

(√
mv

x∆x2(Ev
β − E

s′,v
ms′ )/(2~2)

)]
sin
[
2 arcsin

(√
mv

x∆x2(Ev
β − E

s,v
ms)/(2~2)

)] .
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Using basic trigonometric identities the above expression reduces to:

T ss
′
(Ev

β,ms, v) =
∑
ms′

|bs
′,v
ms′ ,β
|2

|as,vms,β|2

√√√√Ev
β − E

D,v
ms′

Ev
β − E

S,v
ms

√√√√~2 −mv
x∆x2(Ev

β − E
s′,v
ms′ )

~2 −mv
x∆x2(Ev

β − E
s,v
ms)

. (3.20)

The transmission coefficient TDS of a wave incident on the ‘drain’ and traveling towards the

‘source’ can be similarly calculated.

3.2.2 Local density of states

The local density of states (LDoS) is an important tool that can provide good insight into

how charge carriers behave inside a device driven far from equilibrium. It is basically the

spatial variation of density of states inside the system domain. In our case, the 2-D LDoS

is calculated by assigning the corresponding 2-D electron probability distribution to the 1-D

density of the states (Eq. (2.15)) of the system along the transport direction x. The LDoS

Ds,vloc(E, x, z) for injection from lead r can be calculated for each injection energy, Ev
β, from

the expression:

Ds,vloc(Ev
β, x, z) =

Nr∑
m=1

2

√
2mv

x

~2

1√
Ev
β − E

s,v
m

|φs,vm,β(x, z)|2 . (3.21)

Note that wavefunction φm,β,s has been normalized assuming infinite-volume normalization

along the x direction but using a finite-volume normalization along the z direction. Therefore

|φm,β,s|2 has dimensions of inverse length and the local density of states given in Eq. (3.21)

expresses states per unit energy and area.

3.2.3 Drain current

The total current flowing through the device is obtained by solving the open boundary-

conditions Schrödinger problem for both the left and right sides (drain and source) using
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different Fermi levels for the two cases, separated by the applied bias VDS, and then sub-

tracting the calculated current from both sides. To obtain the expression for the current, we

first start with the well known current equation:

Is =
∑
v

2e

(2π)3

∞∫∫∫
−∞

dkxdkydkz f(kx, ky, kz)

∫∫
A

dxdy Svkx,ky,kz(x, y, z).x̂

 , (3.22)

where Is is the current flowing from lead s and fs is the Fermi Dirac distribution for the

corresponding lead. The term inside the parentheses represents the total probability current

(flux) Stot flowing through any cross section of the device. The integral over kz can be

replaced by a summation over the quantized kz states caused by the confinement along z.

Is =
∑
v

∑
ms

e

2π2

∞∫∫
−∞

dkxdky f(kx, ky,mr)

∫∫
A

dxdy Svkx,ky,ms(x, y).x̂

 .

Switching the variables of integration from wave vector to energy using the relations Ey =

~2k2
y/2m

v
y and Ex = Ev

β − Es,v
ms = ~2k2

x/2m
v
x, the above equation becomes:

Is =
∑
v

∑
ms

e

2π2~2
(mv

ym
v
x)1/2

∫ ∞
0

∫ ∞
Es,vms

dEy

E
1/2
y

dEv
β

(Ev
β − E

s,v
ms)1/2

fs(E
v
β, Ey)

×

∫∫
A

dxdy Svms,Evβ(x, y).x̂

 . (3.23)

Note that we have utilized the fact that fs is an even function of ky and changed the limits

over the corresponding integral to (0,∞). Current continuity requires that Stot be equal to

the total transmitted flux which, in turn, is the product of the total incident probability

current and transmission coefficient. Using Eq. (3.20) and calculating over unit width of

device, the total flux Sss
′

tot(E
v
β,ms, v) for traveling mode ms and injection energy Ev

β going

from lead r to lead r′ can be written as:

Sss
′

tot(E
v
β,ms, v) = 2|as,vms,β|

2

√
mv

x

~2

√
Ev
β − E

r,v
ms

×
√

~2 −mv
x∆x2(Ev

β − E
s,v
ms) T

ss′(Ev
β,ms, v) . (3.24)
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Note that Sss
′

tot(E
v
β,ms, v) does not depend on Ey. Using the above relation in Eq. (3.23), we

obtain:

Is =
∑
v

∑
ms

e

2π2~2
(mv

ym
v
x)1/2

∫ ∞
Er,vms

dEv
β

(Ev
β − E

s,v
ms)1/2

Sss
′

tot(E
v
β,ms, v)

×
∫ ∞

0

dEy

E
1/2
y

fs(E
v
β, Ey) . (3.25)

In our case, instead of using a continuous spectrum for Ev
β, we use the eigen-energies obtained

from the closed system. Replacing the integral over Ev
β by summation, we can write the

equation for current as:

Is =
∑
v

∑
β

∑
ms

e

2π2~2
(mv

ym
v
x)1/2

∆Ev
β

(Ev
β − E

s,v
ms)1/2

× Sss′tot(E
v
β,ms, v)F− 1

2

(
Es

F − Ev
β

)
, (3.26)

where Es
F is the Fermi level associated with lead s. The total drain current ID, as mentioned

before, is calculated as the difference between the currents from the drain and source:

ID =
∑
s

∑
v

∑
β

∑
ms

ηse

2π2~2
(mv

ym
v
x)1/2

∆Ev
β

(Ev
β − E

r,v
ms)1/2

× Sss′tot(E
v
β,ms, v)F− 1

2

(
Es

F − Ev
β

)
, (3.27)

where s and s′ represent source and drain, respectively, ηr=D = −1 for the drain-to-source

term and ηr=S = 1 for the source-to-drain term. The distribution (both magnitude and

direction) of current density Γ at different mesh points inside the system provides important

insight into the physics of electron transport and can be calculated similar to the current,

using the following equation:

Γ(x, z) =
∑
r

∑
v

∑
β

∑
mr

ηre

2π2~2
(mv

ym
v
x)1/2

∆Ev
β

(Ev
β − E

r,v
mr)1/2

× Sr,vβ,m(x, z)F− 1
2

(
Es

F − Ev
β

)
, (3.28)
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where, in accordance with the definition of probability current (Eq. (3.17)), Sr,vm,β(x, z) can

be written as:

Sr,vm,β(x, z) = − i~
2mv

x

(
φr,v∗m,β

∂φr,vm,β
∂x

− φr,vm,β
∂φr,v∗m,β

∂x

)
x̂

− i~
2mv

z

(
φr,v∗m,β

∂φr,vm,β
∂z

− φr,vm,β
∂φr,v∗m,β

∂z

)
ẑ .

3.3 Self-consistent Open System

In the previous section, we discussed how QTBM can be used to determine the current-

voltage characteristics of a system under applied bias. To model correctly the behavior of a

‘driven’ system, we need to determine first the quasi-equilibirum state in which the system is,

under the influence of the external drive. This state can later be fed as input to the QTBM

simulations, described in Sec. 3.1, to obtain the transport characteristics. In this section,

we will describe two schemes to determine this quasi-equilibrium state of the system, driven

far from equilibrium. The two schemes are then analyzed and compared to highlight their

strengths and weaknesses. In each scheme, we solve the Schrödinger equation and Poisson

equation self consistently again, but with open boundary conditions, taking help of QTBM

to correctly model the electrons flowing into and out of the device.

The two methodologies essentially differ only in how each one models the electron reser-

voirs leading into the source and drain terminals of the device, resulting in using either

Dirichlet [26] or Neumann [32] boundary conditions for solving the Poisson equation. The

former condition models the leads more realistically with electric field lines entering or exit-

ing the contacts. The latter scheme, instead, assumes that no electric field is present at the

device-contact boundary. Henceforth, we will refer to the two schemes as having Dirichlet

and Neumann leads, respectively. We will describe, first, the method to solve the open system
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self consistently with Dirichlet leads and then show how the Neumann leads approximation

differs from the first case.

3.3.1 Open system Schrödinger equation with Dirichlet leads

As with any QTBM simulations, the traveling modes are first calculated. A self-consistent

potential (1-D) is first determined at the drain and source contacts that also preserves

charge neutrality at the respective edges [26]. Computationally, this is achieved through two

nested loops. In the inner loop, a Dirichlet ‘guess’ potential is fixed at the center of the

respective contact and the Schrödinger and Poisson equations are solved iteratively, until

convergence, to obtain the self-consistent total charge (and potential) distribution. The

outer iteration then uses this mapping from the center fixed potential to the converged total

charge and runs a root-finding algorithm, typically the bisection method (for guaranteed

but slower convergence rate) or Newton’s method (faster but convergence is conditional),

which ultimately drives the total charge to zero. This potential is used to solve Eq. (3.1) (or

equivalently Eq. (3.2)) to obtain the ϕ’s.

The next step tackles the important problem of discretizing the continuous energy spec-

trum that represents the local density-of-states of the device including the infinite leads along

the transport direction. It is convenient to use the discretization that samples preferentially

states that matter most inside the device, since the charge will be determined mostly by these

states. There are several ways reported in literature, to approach this problem. A conven-

tional method is to use dirac delta normalization [24] for the injected wave functions along

with a corresponding 2-D density-of-states, accounting for infinite length of the leads. Any

discretized energy set will work in this case, provided the range extends sufficiently above the

Fermi level of the device. The approach first proposed by Fischetti [21] and later adopted by

Laux in QDAME [33, 26], uses the device ”normal modes”, which are standing wave solutions

of the system obtained by employing ‘sine-like’ and ‘cosine-like’ boundary conditions along
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the contact-lead interfaces independently. Our approach is similar in essence to the QDAME

method. We solve twice the ”closed-system” Schrödinger equation [27] in the device domain,

once assuming zero-value Dirichlet and once assuming Neumann boundary conditions along

the device-lead interfaces, to double-sample the continuous energy spectrum. The resulting

solutions (eigenfunctions) are ‘sine-like’ and ‘cosine-like’ at the interfaces and therefore the

corresponding eigen-energies form a complete orthogonal basis (injection energies Ev
β) of the

whole Hilbert space and any other solution can be represented by a linear combination of

these two. The sampling technique is robust enough to successfully discretize the continuous

energy spectrum and has provided good convergence and proper device solutions, as will be

shown later in Sec. 5.4. An added benefit of this strategy is that a straight forward finite

volume (‘box’) normalization can be used for the open system wavefunctions [21, 26].

The Schrödinger equation is now solved inside the device domain Ω in the same way as

extensively described in Sec. 3.1 to get the 2-D wavefunctions φs,vm,β. The waves are ‘box’

normalized as follows: ∫
Ω

dxdz

(∑
r

Nv
s∑

m=1

|φs,vm,β(x, z)|2
)

=
1

2
. (3.29)

The use of
∑

m |φm|2 instead of |
∑

m φm|2 signifies that the leads do not inject the traveling

modes coherently [26]. The factor of 1/2 is used because the energy spectrum is sampled twice

by the ‘sine-like’ and ‘cosine-like’ eigenfunctions. The electron density is then calculated by

associating with each wavefunction the corresponding occupancy factor along with a 1-D

density of states (Eq. (2.15)) and summing over all possible traveling modes for all possible

injection states:

n(x, z) =
∑
s

∑
v

∑
β

∑
m

1

π~

√
mv

ykBT

2
F− 1

2

(
Es

F − Ev
β

kBT

)
|φs,vm,β(x, z)|2 , (3.30)

where the symbols hold their usual meanings. Note that the electrons are calculated for

different leads r separately using the corresponding Fermi level Es
F associated with the lead
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and then summed together. The holes are again calculated semiclassically similar to the

closed system analysis using Eq. (2.18).

Once all the charges, electrons, holes and ionized dopants, are known, Poisson equation

Eq. (2.21) is solved inside the 2-D device domain to obtain the ‘new’ potential, to be used

in the subsequent iteration of the self-consistent simulation. The same matrix P, described

in Sec. 2.4, is used here as well. The potential at the lead-drain and lead-source interfaces is

fixed to the 1-D self-consistent potential, determined at the start of this section, by applying

Dirichlet boundary conditions at the respective sections of the Poisson matrix. This step

ensures charge neutrality at the device-lead interfaces. Computationally, all the elements

of the rows representing the device-lead interfaces on P are assigned zeros, except for the

diagonal terms which are assigned unity. The self-consistent 1-D potential energy is added

to the corresponding rows of the matrix D of Eq. (2.22). This fixes the potential energy

exactly at the device-edge interface.

Broyden’s self-consistent scheme

Similar to the procedure followed in Sec. 2.5, the Poisson equation is not solved directly,

instead, a convergence scheme is used that incorporates information about ‘past’ potentials

to determine the ‘new’ potential. We had formerly described the conventional Newton’s

iteration scheme to accelerate the convergence of the closed system. The same method has

also been found to produce good convergence in the open system case as well. However,

acknowledging the increased complexity of the problem at hand, we employ a more sophisti-

cated convergence scheme, the Broyden’s method in conjunction with Newton’s (or secants)

method, to further accelerate the rate of convergence. We start with a semiclassical Ja-

cobian J1, described by Eq. (2.25), in the first iteration and calculate V2 using Newton’s

method. The initial ‘guess’ V1 is usually taken as the self-consistent potential obtained from
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the ‘closed’ system under identical input conditions. At each subsequent iteration i, the

Jacobian J is updated in the following manner:

Ji = Ji−1 +
∆Fi − Ji−1∆Vi

||∆Vi||2
∆VT

i , (3.31)

where Fi = P ·Vi−Di, ∆Fi = Fi−Fi−1 and ∆Vi = Vi−Vi−1. We can directly update the

inverse of the Jacobian by applying the Sherman-Morrison formula to the above equation,

giving us

J−1
i = J−1

i−1 +
∆Vi − J−1

i−1∆Fi

∆VT
i J−1

i−1∆Fi

∆VT
i J−1

i−1 . (3.32)

We then proceed with the Newton’s method to calculate the ‘new’ potential Vi+1 using J−1
i

in Eq. (2.27). It is important to mention here that computationally it is very expensive to

store the full matrix J−1
i at every iteration step. So instead, Eq. (3.32) is solved recursively

at each step. In this manner, only the initial J−1
1 and the vectors Vi, Fi at each iteration

need to be stored. The procedure can be made more efficient by not directly calculating J−1
1

but instead computing (J−1
1 · Fi) at each iteration and then using any linear system solver

to get the new potential through Newton’s method, as mentioned before in Sec. 2.5.1.

Inclusion of Drift Vector

The self-consistent solution of the open system, obtained in the previous section, exhibits

a discontinuity of the electron flux at the lead-device interfaces once the system is driven

far from equilibrium, typically with the application of high VDS in the case of FETs. At

large currents, where there is substantial transmission of electrons, unphysical electron de-

pletion and accumulation will occur in the originating and receiving contacts, respectively.

The issue arises because our boundary conditions assume equilibrium contacts that do not

take into consideration the external current flowing from one contact to another through the

outer closed electrical circuit connected to the device. Conventional techniques to tackle this
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problem include adjusting Fermi levels at leads to maintain charge neutrality [34, 16], or in-

jecting a drifted Fermi distribution [22, 26] to achieve charge neutrality or current continuity

at the leads. The latter method is physically consistent with current flow in metallic leads

or highly doped homogenous systems [34]. Therefore, we will adopt this method, using a

drifted wave vector krD to maintain current continuity at the leads, where charge neutrality

has already been enforced at the lead-device interface by our ‘Dirichlet leads’ approach. ksD

is determined self-consistently at every iteration using the condition of current continuity

between the device and the lead s.

At each self consistent iteration, the total energy Etot(km, E
v
β, k

s
D) of a wave is now defined

as follows:

Ev
tot(m,E

v
β, k

s
D) =

~2(ks,vm,β − ksD)2

2mv
z

+ Es,v
m +

~2(kvy)2

2mv
y

,

= Ev
β +

~2ksD(ksD − 2ks,vm,β)

2mv
z

+
~2(kvy)2

2mv
y

. (3.33)

Let us define Em,β,s,v
D = ~2ksD(ksD − 2ks,vm,β)/(2mv

z). The device current Isdev entering lead s is

defined using Eq. (3.27) and including the drift term, giving us the expression:

Isdev =
∑
s

∑
v

∑
β

∑
ms

ηse

2π2~2
(mv

ym
v
x)1/2

∆Ev
β

(Ev
β − E

s,v
ms)1/2

× Sss′tot(E
v
β,ms, v)F− 1

2

(
EF − Ev

β − E
m,β,s,v
D

)
· (−ω̂s) , (3.34)

The lead current Islead is the product of the drift velocity and total charge, namely ionized

impurities, in the leads and can be written as:

Islead = −e~k
s
D

mD

∫ ds

0

dκsND(κs) , (3.35)

where 1/mD = (
∑

v 1/mv
x)/(

∑
v) and ND is the concentration of ionized dopants in the lead.

A root finding algorithm, typically bisection method, is used to determine the value of kvD for
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which Isdev = Islead at each self-consistent iteration. A positive kD implies additional electron

injection into the device and a negative kD corresponds to exit of excess electrons out of the

device. The determined kD is also incorporated into the calculation of electron charge in the

self-consistent loop, affecting the Fermi-Dirac expression of Eq. (3.30).

Inclusion of completely bound electron states

A system can have electronic states that are completely bound inside the system domain

and are not connected to any of the contacts. It is not possible to determine these states

using QTBM. Such bounded states cannot carry any current but they can still contribute to

the electronic charge distribution inside the device and therefore should not be overlooked

in self-consistent simulations of open systems. Particularly for devices that have quantum

confinements deep inside their channels, the impact of these states can be significant. Our

approach of calculating eigenstates of the closed system at the start of QTBM can be used to

tackle this problem to some extent, as we will see. We first determine the injection energies

that are lower than the lowest subband energy and label these states as completely bounded.

The closed system wavefunctions of these states are used to determine their contribution to

the total charge, by assigning a Fermi-Dirac distribution and 1-D density of states to each

wavefunction and summing over all of them. However, the complication then arises on which

Fermi level, drain or source, to choose for these bounded states. We approximate the Fermi

level EBD
F associated with a bound state ξBD(x, z) by an average of the Fermi levels Es

F of

the different leads, as shown below:

EBD
F = (

∑
r

GsE
s
F)/(

∑
Gs) , (3.36)

where Gs =
∫ ds

0
dκs|ξBD(ωs = 0, κs)|2. Note that we do not take into account completely

bound states at energies higher than the lowest subband. Our assumption is that, at such

high energies, the contribution of these bound states will be negligible compared to the
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current carrying states. The addition of completely bound states in this manner has produced

small yet visible difference in our simulations.

3.3.2 Open boundary system with Neumann leads

In Sec. 3.3.1, we highlighted a couple of methods by which the issue of excess charge accu-

mulation or depletion at the interfaces of open systems is addressed. Here we bring forth

another well-known approach to this problem and compare it with our previously described

approach, highlighting the fundamental differences as well as the merits and de-merits of

each. We call this simulation of open system with Neumann leads. Here the self-consistent

potential obeying charge neutrality at the edges, discussed in Sec. 3.3.1, is not determined.

Instead the 1-D Schrödinger equation is computed at each self-consistent iteration to deter-

mine the traveling and evanescent modes. Since a pre-determined potential is not fixed at

the lead-device interfaces, the 2-D Poisson equation is solved with zero-derivative Neumann

boundary conditions on all sides, except of course at the junction that forms the gate in-

terface. Such a condition not only enforces charge neutrality at the lead interfaces but also

forces the electric field to be zero in the same region. This allows the lead conduction band

to float as the current flow increases and the issue of current discontinuity at the leads is

avoided, rather conveniently. Thus the leads are modeled similar to the ideal ‘wires’ con-

necting the different circuit elements of an electrical circuit. The major criticism of this

approach is that having zero electric field at the lead interfaces is not a physical situation

as a biased device should always have field lines entering or exiting it. On the contrary, the

Neumann leads approach is consistent with QTBM theory which is based on the assumption

that the potential in the leads is constant along the transport direction.

The Dirichlet leads approach, however, takes into account the existence of the electric

field, enforcing only charge neutrality at the lead interfaces. Thus, it is physically consistent
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but it clashes with the basic assumptions of QTBM. In view of all this, the most fundamen-

tally correct way would be to acknowledge the existence of an electric field (and potential

gradient) in the contacts and use something like Airy functions, instead of the simple plane

waves, for the QTBM boundary conditions along with Dirichlet leads. However, this would

complicate the problem significantly and we would be forsaking the usefulness of a (compar-

atively) simpler QTBM model. We can conclude that both Dirichlet and Neumann leads

approaches have their own strengths and weaknesses. The Neumann leads approach has

relatively less computational complexity and a faster convergence rate and therefore we will

favor this approach for preliminary tests. To achieve the final output, the Dirichlet leads

approach will be given priority as it is physically more consistent. We should mention that

the two methods have produced somewhat identical results in most of the systems we have

studied so far.

The following few chapters will now present some applications of our ballistic transport

model. In Chapter 4, we simulate an explicit quantum phenomenon in the form of neg-

ative differential transconductance observed in the transfer characteristics of a novel class

CMOS devices, namely lateral quantum-well MOSFETs. Chapter 5 reports the numerical

prediction of Fano interference phenomenon in double-gate MOSFETs. Observation of this

purely quantum phenomenon in such a realistic CMOS device structure presents a novel and

intriguing case. Finally, in Chapter 6, we theoretically analyze the effect on ballistic electron

transport when discrete edge roughness is introduced along the dielectric-semiconductor in-

terface in ultra-thin body FETs. The dissipative impact of the scattering of electrons with

the surface roughness is obtained through a statistical study over an ensemble of devices

with identical structure but with random roughness patterns.
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CHAPTER 4

THEORETICAL SIMULATION OF NEGATIVE DIFFERENTIAL

TRANSCONDUCTANCE IN LATERAL QUANTUM

WELL NMOS DEVICES 1
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Publishing.
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4.1 Preface

We present a theoretical study of the negative differential transconductance (NDT) recently

observed in lateral-quantum-well Si n-channel field-effect transistors [35]. In these devices,

p+ doping extensions are introduced at the source-channel and drain-channel junctions, thus

creating two potential barriers that define the quantum well across whose quasi-bound states,

resonant/sequential tunneling may occur. Our study, based on our ballistic transport model

discussed in Chapter 3, predicts the presence of a sharp NDT in devices with a nominal

gate length of 10-to-20 nm at low temperatures (∼10 K). At higher temperatures, the NDT

weakens and disappears altogether as a result of increasing thermionic emission over the

p+ potential barriers. In larger devices (with gate length of 30 nm or longer), the NDT

cannot be observed because of the low transmission probability and small energetic spacing

(smaller than kBT ) of the quasi-bound states in the quantum well. We speculate that the

inability of the model to predict the NDT observed in 40 nm gate-length devices may be

due to an insufficiently accurate knowledge of the actual doping profiles. On the other

hand, our study shows that NDT suitable for novel logic applications may be obtained at

room temperature in devices of the current or near-future generation (sub-10 nm node),

provided an optimal design can be found that minimizes thermionic emission (requiring high

p+ potential-barriers) and punch-through (that meets the opposite requirement of potential-

barriers low enough to favor the tunneling current).

The contents of this chapter are taken with permission from “Theoretical simulation

of negative differential transconductance in lateral quantum well nMOS devices” [Journal

of Applied Physics 121, 044501 (2017)] Copyright (2017) AIP Publishing. The authors

are Pratik B. Vyas, Clint Naquin, Hal Edwards, Mark Lee, William G. Vandenberghe,

and Massimo V. Fischetti. I developed the simulation tool, generated and analyzed the

result, and wrote majority of the manuscript. Dr. Clint Naquin and Dr. Hal Edwards

provided details regarding the profile of the devices under study and took part in interactive
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discussions. Dr. Mark Lee was the co-principal investigator of the project along with Dr.

Massimo V. Fischetti. He supervised the experimental side of the project, played a major

role in correlating experimental and simulated data, and took active part in all the project

meetings. Dr. William G. Vandenberghe provided valuable guidance in developing the

simulation tool, recommended test cases, analyzed the results and assisted with writing

the manuscript. Dr. Massimo V. Fischetti supervised the theoretical study of the devices,

provided critical guidance in understanding and developing the physical models, analyzed the

results, and helped with writing and reviewing the manuscript. Portions of the manuscript

have been excluded to maintain the flow of the dissertation.

4.2 Introduction

One little explored route towards achieving the very aggressive high frequency and high

sensitivity goals outlined in the International Technology Roadmap for Semiconductors

(ITRS)[11] for the silicon semiconductor industry is to move beyond conventional semi-

classical device physics. This can be done by integrating explicitly quantum mechanical

transport into industrial Si complementary metal-oxide-semiconductor (CMOS) technology.

This route would enable Si CMOS to emulate the path of III-V devices that incorporate trans-

port through electronic states that are localized and whose energy is discretized by quantum

confinement. Esaki diodes[36, 37] and resonant tunneling diodes (RTDs)[38, 39, 40] undoubt-

edly constitute the best-known examples of devices based on III-V compound semiconductors

that have concretely realized this idea. These instances have yielded new capabilities in very

high speed and very low-noise applications [12, 13, 14], a level of performance that is beyond

the reach of conventional semi-classical devices. However, Si CMOS quantum devices must

be fabricated within the standardized progression of industrial process nodes (now approach-

ing the 7 nm node at the high end of the performance scale, but still commonly relying on the
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processing technology of the 28 or 22 nm nodes) to guarantee economically scalable produc-

tion. This restriction rules out the two primary methods of fabricating quantum structures

in III-V devices, hetero-epitaxial layer growth and electron-beam lithography, therefore ren-

dering more difficult the possibility of entering the quantum-transport regime in Si CMOS

devices. Recently, however, tantalizing hints of quantum transport have been observed in

Si CMOS devices using lateral quantum wells defined by ion implantation[41, 35]. Here, we

present a theoretical study of quantum electron transport in these devices, emphasizing the

limitations of both their practical realization as well as of our understanding of the basic

physical processes involved. At the same time, we also show that this type of quantum

transport may be achieved in practice and indicate possible future promising paths that the

technology may follow.

4.3 Device Description and Experimental Observations

An explicit experimental demonstration of quantum transport in Si n-channel MOS (nMOS)

transistors fabricated using an industrially standard 45 nm-node process technology has been

recently reported [41, 35]. These nMOS devices have a lateral quantum well (QW) built into

the surface channel. This is obtained by reversing the ion-implantation dopant polarity of

the shallow source/drain (S/D) extensions (pSDE) from the standard n-type (for an nMOS

transistor) to p-type, as sketched in Fig. 4.1.

The p-type extensions create an energy barrier for electrons between the n++ S/D and

the surface channel beneath the gate. A two-dimensional electron quantum well (QW) is

formed when the gate voltage VGS is large enough to invert the channel between the p-type

extensions. The depth of the QW can be controlled by the source/gate bias VGS. Explicit

evidence of quantum transport in these QW nMOS devices was shown in the form of a

negative differential transconductance (NDT). This occurs when the drain-source current

(IDS) behaves non-monotonically, so that gm = ∂IDS/∂VGS < 0. This has been observed
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Figure 4.1: Schematic cross-section of the lateral QW nMOSFET [1].

only in QW nMOS devices, but not in standard nMOS devices fabricated on the same chip

as experimental controls, thus showing that indeed the quantized electronic states in the

lateral QW play a fundamental role in controlling the electronic transport. Whereas NDT

is an expected signature of direct or sequential tunneling through discrete QW bound states

[38, 42], several quantitative aspects of the reported NDT indicate that the detailed physical

mechanism causing the NDT is more complicated than a straightforward QW tunneling

phenomenon. Among these apparently anomalous features is the observation of only a small

number of NDT peaks (no more than 3) observed in any given device with a width and VGS-

separation much larger than expected, given the nominal QW lengths. Poorly understood is

also the need to apply a positive body current or voltage bias, that introduces bipolar-like

operational characteristics, in order to observe the NDT [35].

4.4 Theoretical Formulation

The phenomenon that we wish to see and which is the motivation behind this whole project,

is the presence of NDT in the current-voltage characteristics as a consequence of resonant

or sequential tunneling in the channel of the QW nMOS device. The objective of the two-

dimensional confinement created in the channel is to produce bound electronic states in
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Figure 4.2: Magnitude of the net doping profile of the device with a nominal gate length of
40 nm. The white region at the top represents the gate oxide [1].

that region. Electrons injected into the channel at energies equal to these bound states

will undergo resonant tunneling that occurs with a very high transmission coefficient. The

magnitude of the transmission coefficient depends on the relative height of the potential

barriers. The gate bias acts as a control for the energy of the bound states. At certain gate

biases, the energy of these bound states will coincide with the Fermi energy of the electrons

in the source region. Therefore, at the appropriate gate bias, the source-to-drain current,

IDS, should exhibit sharp peaks, as the electrons that contribute most to the current have a

high resonant transmission coefficient. Scaling the device from its nominal size (printed gate

length of about 40 nm) to the smaller dimensions we have considered (30, 20, and 10 nm

gate length) has been done following conventional scaling laws [43, 44] as strictly as possible.

Obvious exceptions had to be made regarding the scaling of the doping concentrations, since

their high values in the 40 nm device cannot be realistically increased with scaling demands.

Moreover, the SiO2-equivalent thickness of the gate insulator (EOT) has been kept fixed at

2 nm. This is not a crucial parameter for the application of interest here. Crucial, instead,

is the scaling of the doping profiles of the p-type substrate, S/D regions, and of the pSDEs:

Preventing short-channel effects (mainly punch-through) in short devices, requires increasing
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the p-type substrate doping. Since the peak pSDE doping is already quite large in the 40 nm

device, the higher scaled substrate doping results in a reduced height of the pSDE potential

barriers in shorter devices. This does result in the desired boost of the tunneling current

across the QW and in a reduced punch-through current. On the other hand, it also results in

the undesired occurrence of a large thermionic current (over the pSDE barriers) that hides

the (resonant) tunneling current. The problem caused by this narrow ‘design window’ will

be discussed in Sec. 4.5.

Our simulation method proceeds in two steps. First, we solve the two-dimensional (2D)

Schrödinger equation under closed boundary condition self consistently with the Poisson

equation, as described in Chapter 2. This gives quantitative information about the energetic

positions of the confined states for various gate-bias conditions and provides the equilibrium

electrostatic potential. As a second step, electron transport via tunneling through the con-

fined states – the effect that gives rise to the NDT – is studied by solving the Schrödinger

equation with open boundary conditions, as detailed in Sec. 3.1. This allows us to cal-

culate the current-voltage characteristics. We perform this calculation step by using the

self-consistent potential obtained from the previous step. Indeed, self-consistent effects be-

tween the Schrödinger equation with open boundary conditions and the Poisson equation

are not expected to alter the potential profile significantly at the low source-to-drain bias,

VDS, of interest (of the order of a few tens of mV). This choice of low VDS, also employed

in the experimental observations[41, 35], ensures that electrons remain in near-equilibrium

conditions, so that the use of the self-consistent solution obtained for the closed system con-

stitutes an excellent approximation also for the open system. Thus, having obtained the

electrostatic potential, we calculate the current by applying a small shift VDS of a few mV

between the Fermi levels in the source and drain.
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Figure 4.3: Calculated IDS − VGS characteristics at 46 K (black triangles) and 10 K (cyan
circles) for the 10 nm device with VDS = 10 mV [1].

4.5 Simulation Results and Discussion

We present now the current-voltage (IDS − VGS) characteristics of the 10 nm, 20 nm, and

40 nm devices in Figs. 4.3, 4.4, and 4.5, respectively. The 10 nm device exhibits NDT at

VGS= 1.18 V at a temperature of 10 K. The NDT is reduced to a small ‘kink’ in the IDS−VGS

characteristics as the temperature is raised to 46 K, as shown in Fig. 4.3, anddisappears al-

together at room temperature. A similar behavior is seen in the 20 nm device: The NDT

seen at VGS= 1.93 V at 10 K (Fig. 4.4), but not at room temperature. A ‘kink’ is seen in the

current voltage characteristics of the 30 nm device at 10 K (not shown), but no defined NDT

is detected. Finally, the 40 nm device does not exhibit any NDT peaks at any temperature

(Fig. 4.5). Note that in all devices as the temperature increases the current IDS increases

exponentially, as a result of thermionic emission over the pSDE potential barriers (discussed

later).

To confirm that the NDT seen at low temperatures is indeed the result of resonant

tunneling through the two-dimensional quantum well created by the pSDEs, we plot in

Fig. 4.6 the average local density-of-states (LDOS) for all devices. The contour plots show

the two dimensional LDOS computed along the length (x direction) of the device, averaged
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Figure 4.4: Calculated IDS − VGS characteristics for the 20 nm device at 10 K. VDS = 1 mV
[1].

Figure 4.5: Calculated IDS−VGS characteristics at 10 K (cyan circle) and 300 K (black trian-
gle) for the 40 nm device with VDS = 10 mV. Negligible current is seen at 10 K. Thermionic
emission is therefore the major cause of the vastly larger current observed at 300 K [1].

over a thin ‘vertical’ region (z direction). The energy scale identifies different injection

energies. The LDOS is shown only for injection from the source (left contact). In Fig. 4.7 we

show the transmission coefficient as a function of injection energy for the traveling modes that

exhibits the best resonant behavior (wherever applicable). Only the LDOS and transmission

coefficient vs. total injection energy plots corresponding to the two Si ellipsoidal energy

valleys having the longitudinal mass in the z direction (’unprimed subbands’) are shown in

Figs. 4.6 and 4.7, since these are the only valleys that exhibit NDT.
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Figure 4.6: Average LDOS in the channel for 10 nm, 20 nm, 30 nm, and 40 nm devices
(from left to right) at 10 K. The cyan colored lines represent the potential-energy profile at
the semiconductor/gate-insulator interface in each device. The energies are measured with
respect to the Fermi energy in the source contact. The bias conditions are VGS = 1.18 V,
1.93 V, 2.2 V, and 2.2 V, respectively (left to right) [1].

The dark ‘streaks’ in the middle of the channel seen in Fig. 4.6 (first and second frames

from the left, respectively) show the presence of the quasi-bound states in the 10 nm and

20 nm devices. The corresponding peaks seen in the transmission coefficient (first and

second frames from the left in Fig. 4.7, respectively) at those energies confirm that resonant

tunneling across the QW is indeed the origin of the NDT. More so, the NDT occurs at a

gate bias for which the energy of the first bound state (10 nm device) or fourth bound state

(20 nm device) crosses the Fermi energy of the electron gas in the source region. The LDOS

for the 30 nm device (third frame from the left in Fig. 4.6) shows closely-spaced bound states

and no quasi-bound states can be seen in the LDOS of the 40 nm device (right-most frame in

Fig. 4.6). The corresponding transmission coefficient (two rightmost frames in Fig. 4.7), show

closely-spaced peaks with very low transmission coefficients (30 nm) or no peaks (40 nm),

explaining the absence of any NDT seen in the current-voltage characteristics. We should

also emphasize that all devices are affected by a significant punch-through current. The

severity of this problem is reduced in the shorter devices, thanks to the reduced height of the

47



10-11 10-6 10-1
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

10-11 10-6 10-1 10-11 10-6 10-1 10-11 10-6 10-1

Transmission coefficient

To
ta

l 
in

je
ct

io
n
 e

n
e
rg

y
 (

e
V

)

Figure 4.7: Transmission coefficient vs. injection energy for a particular traveling mode in
the 10 nm, 20 nm , 30 nm and 40 nm devices, respectively. The traveling mode energies Er

m

are, from left to right, -0.83 eV, -0.49 eV, -0.26 eV and -0.04 eV. These energies are chosen
since they exhibit the best resonant behavior in the respective devices (wherever applicable).
VGS = 1.18 V, 1.93 V, 2.2 V, and 2.2 V, respectively (left to right) [1].

Figure 4.8: Magnitude of the modified net doping profile along the Si/gate-insulator interface
of the 40 nm device compared to the original doping profile. The pSDE’s have been broadened
and their doping concentration has been reduced, to increase the conduction via resonant
tunneling [1].

potential pSDE barriers, a result of device scaling, as we have mentioned above. However,

this comes at the price of a larger thermionic current.

The absence of any NDT peak (or ’kink’) in the 40 nm device at any temperature can be

explained from the behavior seen in the smaller devices. Going from the 10 nm to the 30 nm
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Figure 4.9: Left: Average LDOS in the channel of the 40 nm device with the modified doping
profile (shown in Fig. 4.8), at 10 K. The cyan colored line represents the potential-energy
profile at the semiconductor/gate-insulator interface. Right: Transmission coefficient vs.
total injection energy for the particular traveling mode that exhibits the highest resonant
transmission. The energy Er

m of the traveling mode is -0.16 eV and the gate bias VGS = 2.0
V [1].

device, the transmission coefficient peaks (Fig. 4.7) become sharper and lower in magnitude.

This can be expected, since scaling the device results in the pSDE potential barriers to

become narrower and reduced in height. Narrower barriers cause a broadening of the peaks

in the transmission coefficient, as the electron lifetimes in these bound states becomes shorter

as a result of the higher probability of ‘leaking’ out. The transmission coefficient scales

inversely and exponentially with the height of the barriers. Already in the 30 nm device, the

transmission peaks are very sharp, spanning an extremely small energy-width of the order of

10−7 eV, and have low transmission coefficients of the order 10−12− 10−7. This implies that

pSDE barriers in the 40 nm device are too opaque to allow any significant current through

the channel of the device. Therefore, no NDT is seen theoretically and the current mostly

consists of punch-through current. Moreover, the bound states are energetically grouped
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closely together. This results in a quasi-continuum of states, a situation that is far from

ideal for the generation of NDT at any finite temperature.

The discrepancy between the theoretical predictions and the experimentally observed

device characteristics can only be explained by assuming that the doping profile used in

the simulations is significantly different from the actual doping profile of the fabricated

device. This is a common phenomenon not unlikely to occur in this particular case. As

mentioned before, the doping profile used in our theoretical calculations is generated by

Sentaurus R© TCAD process-simulation tool. The actual doping profile of the fabricated device

is generally somewhat different from the TCAD result because of inaccuracies in the modeling

of implant dopant diffusion, even if the device is made using industrial CMOS processing

standards. Moreover, in this case, the design of the pSDEs is a significant departure from the

conventional CMOS design. These sharp, heavily-doped, and highly localized p-type regions

may easily be broadened by lateral diffusion enhanced by the defects (especially vacancies)

caused by the ion implantation. This is an effect that is notoriously difficult to predict

accurately.

In order to assess the sensitivity of the NDT on details of the doping profile of the pSDE,

we have modified the original simulated doping profile of the 40 nm device by reducing

the peak p-doping by a factor of 3 and by widening laterally the barriers by a factor of

1.8. This is done to roughly simulate the broadening of the pSDEs due to lateral diffusion.

The modified doping profile and the corresponding LDOS distribution for a specific gate

bias and applied VDS are shown in Fig. 4.8 and Fig. 4.9, respectively. Interestingly, the

modified doping profile results in the appearance of bound states, as indicated by the peaks

of the transmission coefficient having decent magnitude, and in the occurrence of resonant

tunneling. This confirms that the device characteristics are very sensitive to small changes of

the profile of the pSDEs. Therefore, we speculate that the devices may behave as intended,

with the occurrence of resonant tunneling along the channel through the quasi-bound states
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in the lateral QW, provided the pSDE doping differs, and not too appreciably, from the

original design specifications and from the Sentaurus R© simulated profile.

More generally, in order to produce NDT, tunneling through the quasi-bound states in the

lateral QW must occur with a probability large enough to overcome the undesired ’leakage

paths’ of thermionic emission over the pSDE barriers and/or punch-through ‘around them’.

Peaks of the transmission coefficient in the range of 10−2 or larger are required to result in

NDT. Clear examples are the first bound state in the 10 nm device and the fourth bound

state in the 20 nm device, both giving rise to peaks in the NDT at 10 K. On the contrary, the

3 lowest-energy bound states (20 nm device) have much lower transmission coefficients and

do not result in any significant tunneling current, even though the energy spacing between

them might be sufficient enough to produce NDT at 10 K. On the contrary, in the 30 nm

device, the transmission coefficient peaks are much weaker, of the order of 10−12 − 10−7,

and no NDT is seen at low temperature, since the current flows in punch-through, or at

high temperatures, because the current now is dominated by thermionic emission over the

barriers.

The important question that we need to answer is: What is the maximum gate length

for which NDT could be observed at room temperature? And what device design may

be required to reach this goal? Performing simulations with different gate lengths, doping

profiles, at different temperatures, or even considering different alternative device structures,

is an almost impossible task as we scale devices down to the 5 or 7 nm gate length. However,

the results we have presented so far allow us to formulate an ‘educated guess’. We have

already noticed that NDT can be observed when kBT ≤ DE− dE, where DE is the spacing

of the quasi-bound state in the lateral QW (that is: the energetic spacing of the peaks in

the transmission coefficient shown in Fig. 4.6) and dE is the full broadening of the confined

states. We have also emphasized the fact that our device-scaling procedure results in a

different width and height of the pSDE barriers at different channel lengths. Specifically,
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Fig. 4.7 shows that DE increases as the devices are scaled, from ≈ 20 meV for the 20 nm to

37 meV for the 10 nm device. Also, in these devices dE ≈ 3 meV (20 nm) and 5 meV (10 nm

device). Therefore, at 300 K, 25 meV = kBT < DE − dE ≈ 32 meV for the 10 nm device.

Thus, it is the thermionic ‘leakage path’ that hides the expected NDT. AssumingDE ∼ 1/L2,

where L is the gate length, DE would be as large as 75 or 150 meV in devices scaled to

7 and 5 nm, respectively. This would be more than sufficient to ensure the occurrence of

NDT at 300 K. However, as we have already remarked, the possibility of having current

flowing via thermionic emission over low pSDE-barriers and via punch-through around high

pSDE-barriers would have to be minimized. The latter requirement likely demands that we

move from a ‘bulk’ MOSFET design to ultra-thin-body (UTB) silicon-on-insulator (SOI)

structures. This is required by scaling to the 5 nm gate-length, regardless of the particular

goal we have in mind. This is already ‘conventional’ Si CMOS VLSI technology and no major

difficulties should be expected. Much more difficult is the constraint posed by the necessity

of reducing the thermionic leakage path. This would require narrow and high pSDE barriers.

This would have the welcome effect of reducing the energetic width of the quasi-bound states,

dE, that scales as dE ∼ exp(−αW ), where W is the width of the pSDE barriers, assumed

to be proportional to L with proper scaling (α is a quantity that depends on the energy

of the quasi-bound-state in the QW and on the electron effective mass in the gap, mx).

Clearly, a barrier-width W of the order of a few nm is hard to envision as achievable by ion

implantation. However, the use of larger, slower-diffusion acceptor impurities, such as In in

place of B, and use of doping techniques not relying on ion implantation and subsequent

rapid-thermal annealing (RTA) steps, such as the low-temperature epitaxy employed for

thin-base Si/SiGe epitaxial bipolar transistors [45], could provide a solution if implemented

in a ‘horizontal’ epitaxy, such as the technology used to regrow S/D regions in uniaxially-

strained-Si p-channel MOSFETs [46].

We should finally observe that our simulations have been performed assuming ballistic

quantum transport. Introducing scattering into the simulation, for example via a Master
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Figure 4.10: Magnitude of the net doping profile of the SOI QW nMOS device with a nominal
gate length of 20 nm. The white region at the top represents the gate oxide.

equation [22] or a NEGF approach [47], would lead to a larger broadening dE of the resonant

states. Moreover, nonparabolic corrections to the electron dispersion, ignored here, would

reduce the energetic separation DE of the transmission resonances. Therefore, our estimates

should be considered moderately optimistic, but only ‘moderately’ so.

4.6 Silicon-on-Insulator QW CMOS

As mentioned above, to observe NDT, we need an optimized device design that has poten-

tial barriers high enough to prevent thermionic emission, but at the same time, transparent

enough to allow sufficient resonant current to pass through. This idea gave us the motivation

to simulate a silicon-on-insulator (SOI) QW nMOS device that attempts to meet the above

requirements. The doping profile of the device is shown in Fig. 4.10.

The device is found to produce extremely sharp resonant transmission peaks having

energy spacing of the order of 1e-7 eV. This is a direct consequence of the high potential

barriers in the channel and the absence of body current. Detecting such sharp resonances and
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Figure 4.11: Calculated IDS − VGS characteristics for the 20 nm SOI nMOS at 46 K.
VDS = 1 mV

accurately modeling the resulting current using our traditional open boundaries Schrödinger

solver is time consuming and computationally very heavy. An adaptive integration method

is used to modify the Schrödinger solver in an effort to make it more efficient in detecting

sharp resonances. The method is as follows: The Schrödinger equation with open boundaries

is solved for two different energy meshes, one being finer than the other, but both over the

same energy range. If the difference between the currents obtained from the two simulations

is larger than a pre-determined error estimate, the finer energy range is sub-divided into

two or more sub-ranges and the former step is repeated for each of these sub-ranges. The

process goes on until the error estimate is satisfied and the final current is obtained as the

recursive sum of the current over all the sub-ranges. Using the method on a 20 nm SOI

QW nMOS device we are able to observe NDT at a higher temperature ( 46 K), although

room temperature simulations have not produced the desired result. The current-voltage

characteristics of the simulated SOI device has been shown in Fig. 4.11.
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5.1 Preface

Quantum simulation of electronic transport in double gate (DG) field-effect transistors

(FETs) and FinFETs is usually deemed to be required as the devices are scaled to the

nanometer length-scale. Here, we present results obtained using our ballistic-transport

model, described in Chapter 3 in these devices. Our quantum simulations show the presence

of quasi bound electronic states in the channel and Fano-interference phenomenon in the

transport behavior of ultra-thin body (UTB) Si DG MOSFETs. Vortices in electron wave-

functions are also reported at energies at which transmission zeros (antiresonance) occur.

The contents of this chapter are taken with permission from “Simulation of Quantum

Current in Double Gate MOSFETs: Vortices in Electron Transport” [2018 International

Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX,

pp. 1-4 (2018)] Copyright (2018) IEEE. The authors are Pratik B. Vyas, Maarten L. Van de

Put, and Massimo V. Fischetti. I developed the simulation tool, generated and analyzed the

result, and wrote the manuscript. Dr.. Maarten L. Van de Put provided valuable guidance

in developing the simulation tool, helped with analyzing the results as well as improve the

manuscript content. Dr. Massimo V. Fischetti provided critical guidance in developing

the physical model, understanding the observed phenomenon, and helped to improving the

manuscript content. Portions of the manuscript have been excluded to maintain the flow of

the dissertation.

5.2 Introduction

Ultra-thin body (UTB) double gate (DG) MOSFETs have a strong potential to overcome

short channel effects [48] and thus have superior scalability in comparison to conventional

MOSFETs. Moreover, these device structures provide a significant improvement in perfor-

mance [49] in terms of low subthreshold slope, high ON current and high switching speed.
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This makes them very attractive for current and near future generations of silicon (Si) semi-

conductor devices. Simulation of these devices is usually done using semi-classical approaches

based on the solution of Boltzmann transport equation (BTE) [50, 8], moments of BTE [51]

or compact models augmented by quantum corrections [52, 53]. However, a full quantum

treatment of these devices is necessary, since at such small dimensions explicit quantum

effects would become observable. To this end, we use our simulation tool, described in

Chapter 3, to model ballistic quantum transport in these devices.

The most striking result that we obtain is the occurrence of the Fano-interference phe-

nomenon [54] in the simulated UTB DG FETs. Bowen et al. [55] have shown that the

Fano resonance-antiresonance line shapes can be accurately represented by poles and zeros,

respectively, of the inverse of the retarded Green’s function representing the system Hamilto-

nian (tight-binding, in their study) connected to infinite reservoirs. They have presented an

efficient numerical method, based on a shift-and-invert non-symmmetric (SINS) Lanczos al-

gorithm, to locate the poles and zeros, mentioned above, in single-barrier GaAs/AlAs/GaAs

heterostructures. Fano interference has also been previously predicted and/or experimentally

reported in the optical absorption spectra of impurities in crystals [56], quantum waveguides

[57], and coupled quantum dot systems [58, 59]. Our observation of this resonance in a

realistic CMOS device structure thus presents a novel and interesting case. Additionally,

the simulated device exhibits only symmetric antiresonance ‘dips’ in electron transmission,

contrary to the characteristic asymmetric Fano resonance-antiresonance line-shape observed

in all the former cases. Moreover, vortices in current density are seen at energies at which

antiresonance occurs. Such vortices have been previously reported in quantum simulations

of semiconductor devices, but only in the presence of deviations from ideality – scattering

with discrete dopant atoms [60] or tapered and bent semiconductor channels [61].
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Figure 5.1: Net doping profile of the 10 nm UTB DG nMOS that we have studied. The
white regions at the top and bottom represent the 1 nm thick gate oxide while the grey
patches are used to highlight the position of the gate terminals.

5.3 Device Description

We simulate the transfer characteristics of a Si (UTB) DG nMOS with channel length of

10 nm (Fig. 5.1). The device (simulation region) is 4 nm thick (τSi) and 50 nm long with

symmetric 1 nm (EOT ≈ 0.3 nm) oxide at each gate. The channel is lightly p-type doped

(≈ 1015 cm−3), while the highly doped n-type source and drain regions are modeled using

a dual Gaussian profile with peaks located at the two oxide-semiconductor interfaces. The

device behavior is observed under the application of equal gate bias (VGS) at the two gates

with a low drain-to-source bias (VDS ≈ 20 mV). The channel orientation is taken along the

[110] direction, following the general trend in VLSI technology.

We solve the Schrödinger and Poisson equations self-consistently in the 2-D plane of the

device to analyze the device behavior under applied bias. We have used Neumann boundary

conditions on the electrostatic potential, as described in Sec. 3.3.2 to avoid charge imbalance

at the edges. Although physically inconsistent, the method is computationally less expensive

and provides results similar to other methods described in Sec. 3.3.1.
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Figure 5.2: IDS-VGS characteristics of a 10 nm UTB DG nMOS at 10 K and 300 K. VGS is
measured with respect to the flat band voltage of the device. VDS =10 mV.
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Figure 5.3: Total charge distribution in a 10 nm UTB DG nMOS at 300 K. (a) The dark red
regions show the creation of two separate inversion channels deep inside saturation, whereas
in (b) volume inversion is seen in the linear region of operation. VGS=0.6 V, VDS =10 mV.

5.4 Simulation Results

Fig. 5.2 shows the simulated IDS-VGS characteristics of a 10 nm DG nMOS at 10 K and 300

K with equal VGS applied at both gates. Characteristic CMOS behavior is observed with

fast switching action represented by a low subthreshold slope (≈ 64 mV/dec at 300 K). For
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device operation deep inside saturation, the charge-distribution plot in Fig. 5.3(a) shows the

occurrence of channel inversion, whereas volume inversion is observed in the linear region

of operation (Fig. 5.3(b)). The current-density distribution, plotted in Fig. 5.5(a) for a VGS

deep inside saturation, illustrates the path followed by the current. Electrons are injected

in a single centered beam at the source (drain), splitting into two when flowing through the

inversion channels, to finally merge at the drain (source).
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Figure 5.4: Transmission coefficient T vs. injection energy (a) for current injection from the
source contact in a 10 nm UTD DG nMOS at 300 K. The different colored lines correspond
to the different injected subbands. The energies are measured with respect to source Fermi
level. The LDoS distribution averaged over a cross-sectional thickness of roughly 1.3 nm in
the top channel (b) and middle of device (c) at 300 K for injection from the source contact.
VGS =1.6 V, VDS =10 mV.

Fig. 7.5 shows the average LDoS distribution along a cross-section of one of the channels

and the center of the device for different injection energies (from the source contact). The

darker regions exhibit the presence of quasi bound states created within the channel region

as a result of the 2-D and field-induced confinement. An interesting feature is the presence

of sharp dips in the transmission coefficient (T ) observed at these bound-state energies, as

shown in Fig. 7.5(a). Conventionally, a sharp peak in transmission is expected at the resonant

energies. On the contrary, the dips in transmission signify occurrence of antiresonances
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Figure 5.5: (a) Current density distribution in a 10 nm UTB DG nMOS at 300 K. (b)
Current density distribution resolved for a single injection energy at 300 K. The energy is
chosen to have the value at which a sharp dip in transmission occurs due to destructive
interference at resonance. VGS =0.6 V, VDS =10 mV. (c) Current density distribution in the
same device at 10 K. VGS =0.6 V, VDS =10 mV. The red arrows highlight the direction of
the vortices. The plots are stretched to match the aspect ratio of the device.

caused by the interaction, or configuration interaction as termed by Fano [54], between quasi-

bound states in the channel and the continuum of injected states from the source and drain.

To understand the phenomenon qualitatively, we take into consideration Fano’s argument

[54] which states that waves transmitted at resonating frequencies undergo a phase shift as

well as a change of magnitude. Indeed, in the DG nMOS, we observe this resonance for

electrons injected into the two degenerate quasi-bound states in the two inversion channels:

The two paths undergo opposite phase-shifts that brings them out-of-phase, resulting in

destructive interference. Hence we see the antiresonance dips of the transmission probability

at the bound-state energies. The fact that antiresonance is seen only in the presence of

channel inversion gives further confirmation of our interpretation. Also, as mentioned before
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in Sec. 5.2, we observe symmetric transmission zeros in our case, contrary to the asymmetric

resonance-antiresonance line shapes reported in other studies [56, 57, 58]. This is because

the DG FET structure in saturation mode of operation is analogous to a system of coupled

oscillators in which both oscillators (inversion channels in our case) are driven by an external

force (VDS in our case), as compared to only one driven oscillator in the latter studies.

Theoretically, one expects to see drops in the total drain current at those values of the

gate bias for which the Fermi level of the device crosses the energy of one of the antiresonance-

producing bound states. However, as Fig. 7.5(a) illustrates, the antiresonance features are

extremely sharp and thermal smearing prevents them from appearing in the current-voltage

(I-V) characteristics of Fig. 5.2 at 300 K, and even at 10 K.
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Figure 5.6: Antiresonance features in the transmission spectra broaden in the presence of an
asymmetric gate bias. The potential difference between the gates is 0.4 V. Temperature =
300 K, VDS =10 mV.

Moreover, circulations are seen in the current density resolved for the individual injection

energies (from the source contact) at which antiresonance occurs, as illustrated in Fig. 5.5(b).

The even number of vortices, formed as a result of destructive interference, leads to negligible

transmission of current at the resonating energies, while momentum conservation forces

almost all the electrons to reflect back to the injecting lead. It is important to mention here
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that the total current density at 300 K does not exhibit vortices, while faint vortices persist

in the total current density at 10 K, as highlighted in Fig. 5.5(c). At higher temperatures,

the wider energy window resulting from a Fermi Dirac distribution masks the contribution

of the resonating states to the total current density.
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Figure 5.7: Current density distribution in the device with asymmetric gate bias at 300 K.
The red arrows highlight the direction of vortices in the current density. Potential difference
between gates is 0.4 V for the latter case.
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Figure 5.8: Comparison of the transfer characteristics of the device with equal (symmetric)
and unequal (asymmetric) gate biases applied at 300 K. Potential difference between gates
is 0.4 V for the latter case.

When asymmetry is introduced by applying an unequal gate bias in this case, the trans-

mission dips broaden and vortices in the current appear even at room temperature, as can

be seen in Figs. (5.6) and (5.7), respectively. At the same time, there is a noticeable de-
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cline in the drain current (Fig. (5.8)) in presence of the unequal gate biases, demonstrating

that asymmetry hinders device performance. We can also conjecture that, under the right

conditions, the Fano phenomenon in these FETs can be observed experimentally.
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6.1 Preface

We present a theoretical study – based on the effective-mass approximation – of scattering

of electrons with microscopic roughness at the oxide-semiconductor interface for ultra-thin

body (UTB) double gate (DG) and silicon-on-insulator (SOI) MOSFETs. Discrete edge

roughness is introduced along the oxide-semiconductor interface by locally adding or remov-

ing 1-2 silicon atomic layers. The random nature of the interface roughness is characterized

by an exponential autocovariance. The dissipative impact of surface roughness scattering

is obtained by averaging over a sample space of devices with identical structure but with

different random interface-roughness patterns. Our results show significant variations in the

ON current among the ‘roughened’ samples along with the introduction and impact of quan-

tum confinement effects caused by interface roughness. Finally, we report the dependence

of these results on the semiconductor/channel thickness.

The contents of this chapter are taken with permission from “Quantum Mechanical Study

of Impact of Surface Roughness on Electron Transport in Ultra-Thin Body Silicon FETs”

[2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Portland, OR,

pp. 1-4 (2018)] Copyright (2018) IEEE. The authors are Pratik B. Vyas, Maarten L. Van de

Put, and Massimo V. Fischetti. I developed the simulation tool, generated and analyzed the
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dissertation.

66



6.2 Introduction

The nature of the interface between the gate insulator and semiconductor may significantly

affect the electronic properties of the semiconductor devices as they are scaled down aggres-

sively to the nanometer regime. The impact may be more pronounced for promising device

structures like the double gate (DG) FET, silicon-on-insulator (SOI) FET, FinFETs and

likewise with ultra-thin bodies (UTB). Scattering of electrons with microscopic roughness

at the oxide-semiconductor interface has been modeled at different levels of approximation

to provide a quantitative picture of this impact. Statistical analysis of the effect of surface

roughness (SR) scattering has been done by modeling geometrically roughened interfaces of

Si FETs using classical drift-diffusion[62] and Monte Carlo methods[63] and of Si nanowires

(NW) using Non-equilibrium Green’s function (NEGF)[64] and tight-binding[65] based ap-

proaches. A first-principles study based on density functional theory (DFT) coupled with

solution of the linearized Boltzmann transport equation to model the impact of atomic-

scale roughness on electron mobilities in strained silicon (Si) inversion layers has also been

reported[66, 67]. Fischetti et al. [68] has proposed a local empirical pseudopotential based

approach to calculate SR scattering rates that aims to achieve the physical accuracy of the

ab-initio models without the added computational cost. Also pervasive in literature are

models [69, 70, 71] that treat fluctuations of the oxide barrier at the oxide-semiconductor

interface as a perturbation potential. The idea was first proposed by Ando [29] for the case

of bulk Si CMOS and later extended to thin bodies [72] and SOI FETs [73, 74].

Here we follow the former ‘ab-initio’ method of modeling surface roughness as random

physical shifts of the oxide-semiconductor boundary along the length of semiconductor chan-

nel. The randomness of the interface-roughness patterns follows an exponential autocorrela-

tion, in agreement with a critical statistical study done by Goodnick et al. [75] for Si-SiO2

interface. Dissipation due to SR scattering is determined by averaging over a statistical

ensemble of devices with identical structure but random interface-roughness patterns. The
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ballistic transport of electrons in these devices is modeled using our simulation tool described

in Chapter 3.

6.3 Device Description and Simulation of Interface Roughness

We analyze the transport characteristics of Si UTB DG and SOI nMOS with channel lengths

of 10 nm in the presence of SR scattering. The devices (simulation region) are 4 nm wide

(W) and 50 nm long with lightly p-type doped (≈ 1015 cm−3) channel and symmetric 2.1

nm (equivalent oxide thickness EOT ≈ 0.7 nm) oxide at the top and bottom interfaces. The

highly doped n-type source and drain regions are modeled using Gaussian profiles with peaks

located at the oxide-semiconductor interfaces, as shown in Fig. 6.1. The device behavior is

observed at room temperature under the application of different gate biases (VGS) (equal

gate biases applied at the two gates for the DG nMOS case) and constant drain-to-source

bias (VDS ≈ 100 mV). The range of VGS is chosen such that it includes sufficient bias points

in all three regions of operation — accumulation, inversion and saturation. The channel

orientation for both device structures is taken along the [110] direction while the oxide-

semiconductor interface is assumed along the [100] plane, following general trends in VLSI

technology.

The exact nature of the Si-SiO2 interface is still an open topic of debate. Traditionally, a

Gaussian autocovariance has been used to characterize the interface. However, Goodnick et

al. [75] has shown that an exponential autocovariance more closely resembles the nature of

the interface and therefore we have used the latter for our simulations. The corresponding

power spectrum 〈|∆Q|2〉 is given by the expression:

〈|∆Q|2〉 =
π∆2Λ2

(1 + q2Λ2/2)
3
2

(6.1)

where ∆ is the root-mean-square (rms) roughness, Λ is the correlation length and q is the

scattered wave vector from the Fourier transform of the interface shifts. For this work,
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Figure 6.1: Doping profile of (a) DG and (b) SOI nMOS with surface roughness. The
white region at the top and bottom represents the gate oxide while the grey patches are
used to highlight position of the gate terminals. Green dashed lines are used to mark the
oxide-semiconductor interface of the ideal devices.

we have taken ∆ = 0.3 nm and Λ = 1.5 nm as reported in [75]. A complex function is

assigned to each interface mesh point, having magnitude equal to the square root of the

power spectrum Eq. (7.22) and a randomly generated complex phase. The autocorrelation

function characterizing the interface roughness is obtained by doing inverse Fourier transform

of the resulting complex function. The interface-roughness pattern is obtained by discretizing

the autocorrelation function into steps, such that each discretized value corresponds to the

addition or removal of 0 − 2 silicon atomic layers. The step size is assumed equal to the

thickness of a Si atomic layer (or equivalently distance between two Si lattice points) oriented

along the [100] plane (≈ 0.27 nm) and the step length is taken equal to the distance between

consecutive lattice points along the [110] direction (≈ 0.19 nm). The doping distributions

of 4 nm wide DG and SOI nMOS with interface roughness are shown in Fig. 6.1. Separate

roughness patterns that are anti-correlated with respect to each other are applied to the

top and bottom oxide-semiconductor interfaces of the DG nMOS. For the SOI nMOS, the

bottom oxide-semiconductor interface is assumed perfectly smooth, reflecting the relatively

uniform formation of the buried oxide layer using the well-known SIMOX process. Finally, we

comment on the use of a 2-D device model: The averaging effect of projecting the complete
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2-D oxide-roughness on a 1-D cross-section will only lead to a weakening of the impact of

SR scattering [75]. Therefore our use of a 2-D device model is a reasonable approximation

for studying the phenomenon of SR scattering.

We solve the open system using the method described in Sec. 3.3.2. Though physically

inconsistent, the method is computationally less expensive and provides results similar to

other methods described in Sec. 3.3.1. A statistical ensemble of 50 ‘roughened’ samples are

simulated using this model for each device structure, to demonstrate the dissipative impact

of SR scattering.

Table 6.1: Statistical Analysis

FET ION V T SSmin W eff W min

structure (A/m) (V) (mV/dec) (nm) (nm)
Ideal Mean SD Ideal Mean SD Ideal Mean SD Ideal Mean SD Ideal Mean SD

4 nm DG 1869 1185 154 1.05 1.06 0.005 64.1 63.7 0.58 4 2.62 0.237 4 3.057 0
4 nm SOI 1836 1424 164 1.0 1.02 0.003 80.4 80 0.87 4 3.17 0.255 4 3.61 0
8 nm DG 4001 3448 202 1.0 1.065 0.006 77.4 77 0.35 8 7.08 0.31 8 7.128 0

6.4 Simulation Results

Simulation results are shown for 4 nm and 8 nm wide DG FETs as well as 4 nm wide SOI

FET. Fig. 6.2(a) compares the transfer characteristics of the three devices with (dashed

lines) and without interface roughness (solid lines), focussing primarily on the ’ON’ state of

the transistor. A notable decrease in the mean ON current ION is observed in the roughened

devices (see also Table 6.1) when compared to their ideal counterparts. The percentage

decrease (≈37%) is highest for the 4 nm DG FET while the impact is relatively weaker in 4

nm SOI (≈22%) and 8 nm DG (≈13.8%) FETs. A reduced impact of SR scattering in the

SOI case can be expected due to presence of roughness at one interface only. An interesting

point to note is that, although the percentage decrease in current is much smaller for the

8 nm DG FET compared to its 4 nm counterpart, the net decrease in current is similar for

both. To investigate this further, we plot the current-density distribution in Fig. 6.3 for the
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Figure 6.2: Transfer characteristics of the simulated devices in (a) linear and (b) semi-log
scale to highlight the impact of SR scattering in above-threshold and subthreshold regions,
respectively. The dashed lines represent ideal device behavior while solid lines along with
error-bars are used to plot statistical mean and standard deviation of the behavior of ’rough-
ened’ samples, respectively.

two devices under identical bias conditions. We can see that, even though the current flows

deep within the body of the 4 nm device, it is still affected by the interface roughness. On the

contrary, this is not observed in the wider device, since only the current near the interface is

affected by the roughness. Thus, for channels wider than 4 nm, decrease in current becomes

independent of channel thickness due to SR scattering becoming a predominantly superficial

effect. Fig. 6.3(a) also shows presence of vortices (highlighted) in the current.

The subthreshold behavior of the device remains unaffected by the presence of interface

roughness, as can be seen in Fig. 6.2(b). The shift in threshold voltage VT and minimum

subthreshold slope (SSmin), also evident in Table 6.1, is minimal in the presence of SR
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scattering for all three simulated structures. Thus, SR scattering impacts electron transport

only in the presence of a substantial current.
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Figure 6.3: Current density distribution in (a) 4 nm and (b) 8 nm DG nMOS at 300 K.
The plots show that SR scattering mostly affects the electron transport close to the oxide-
semiconductor interface. A vortex in the current density is highlighted by a red curved
arrow. VGS =0.95 V, VDS =100 mV.

Next, we define the effective width Weff of a ‘roughened’ sample as the equivalent width

of an ideal sample that will exhibit identical current-voltage (I-V) characteristics as the

former. The quantity is determined by fitting the I-V plot of a roughened sample to that of

an ideal device and assuming linear scaling of the current with the device width. Classically,

the minimum cross-sectional width Wmin bottlenecks the total current flowing through the

device and therefore its value should be close to Weff of the sample. However, Table 6.1 shows

that Weff is substantially smaller than Wmin for the 4 nm devices. The apparent discrepancy

can be explained as the result of quantum confinement effects. Random contractions of

channel width, caused by interface roughness, increase vertical quantum confinement and

consequently the spacing between individual electronic subbands as well. The net effect is a

further reduction of current flow, as now, less subbands conduct. The significant reduction

of this effect for the wider 8 nm device lays further foundation to the argument.
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Finally, we see that the SOI FET, compared to DG FET of similar size, has higher mean

ION in the presence of interface roughness (almost identical ION in ideal case) and is less

affected by SR scattering (mean ION closer to ideal value). Thus, whereas it exhibits a

slightly higher SSmin, the SOI FET appears as a better candidate, compared to DG FET,

for UTB structures when SR scattering is concerned.
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CHAPTER 7

DISSIPATIVE QUANTUM TRANSPORT:

MASTER EQUATION APPROACH

7.1 Introduction

In an open system driven far from equilibrium, scattering between electronic states is a major

factor that drives the system towards steady state. Thus, the introduction of dissipation

into our purely ballistic approach should have a noticeable impact, providing us a more

realistic picture of the device behavior. Here, we follow a less conventional approach [21, 22]

based on the Pauli master equation (PME) to treat scattering. This Markovian class of

Master equations is used to describe the transition between quantum states and, thereby,

the time evolution of an irreversible open system. In similar fashion, the PME can be used to

express the time evolution of the density matrix of a device connected to external reservoirs.

Coupling between the device and reservoirs, which are assumed to be in thermal equilibrium,

is established phenomenologically. Additionally, Ref. 21, following Van Hove [76], shows

that for a device smaller than the phase coherence length, the injected electrons are highly

delocalized and therefore the off-diagonal terms of the density matrix, that are responsible

for the interference between the injected states, can be neglected. This assumption is vital

to enable us to numerically model relatively large realistic open systems efficiently. We

determine the scattering states that diagonalize the density matrix by solving the open

system Schrödinger equation in the two-dimensional (2-D) plane of the device, as described

in Sec. 3.1. We also employ our technique described in detail in Sec. 3.3.1 to model accurately

the continuous density-of-states of the open system. Transition probabilities between the

quantum states, determined using Fermi’s golden rule, are then incorporated into the PME

to obtain the steady-state distribution of electrons away from the purely ballistic picture. It

is important to note that we consider the system to be at steady-state, even in the presence
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of an external force (applied bias) causing exchange of particles with the environment. The

Schrödinger equation and the PME are solved self-consistently with the Poisson equation to

obtain the final state of the system.

It is worth mentioning that the natural basis of open system wavefunctions the PME

makes use of, contrary to plane waves used in the BTE, allows us to include quantum

mechanical processes like tunneling and confinement effects. At the same time, these solu-

tions contain the requisite information regarding the electric-field distribution in the device.

Therefore, the assumption of the BTE, that the external electric field must vary slowly over

the electron mean free path, is no longer required, giving us a more practical picture of

the system without the semiclassical concept of point-like electrons. Thus the PME could

correctly and efficiently describe electronic transport in sub-50 nm devices, considering the

fact that the electron dephasing length can be of the order of 50 nm for Si devices at room

temperature.

In this work, we incorporate the collisions between electrons and ions, excited away from

equilibrium, namely phonons into our transport studies. Up until now we have used the

Born-Oppenheimer approximation assuming that the ions are frozen in their equilibrium

positions and only interact with electrons through the Hartree potential. We also study

the impact of scattering of electrons with roughness present at dielectric-semiconductor.

We start by giving a general description of the PME approach and then provide details on

how we determine the scattering rates for the different scattering mechanisms considered

here, namely electron-phonon and SR scattering, and their impact on the semiconductor-

device behavior. As an application, dissipative transport in ultra-thin body (UTB) FETs is

simulated.

7.1.1 Scattering between electronic states: Solution of Pauli master equation

We solve the PME using the open system wavefunctions φs,vm,β (considering only the non-

evanescent modes) obtained in Sec. 3.1. We start with the Louiville-von Neumann equation
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of motion for the single-electron reduced density matrix ρ of the system [21], having traced

over the phonons:

∂ρ(t)

∂t
=
i

~
[ρ,H] +

(
∂ρ

∂t

)
res

, (7.1)

where the second term on the right accounts for the effect of the reservoirs. H here is

the electron, ion, and electron-ion Hamiltonian. The density matrix ρ on the basis of the

eigenstates of the Hamiltonian H can be written as:

ρmβky,m′β′k′y = |mβky〉
〈
m′β′k′y

∣∣ , (7.2)

A general formulation of dissipative transport should include time evolution of both the

diagonal and off-diagonal terms of the density-matrix. Solving the transport equation for

the full density-matrix is a daunting task. However, in Refs. 21 and 22 it was shown that

the off-diagonal terms of the density matrix can be ignored under certain cases and Eq. (7.1)

can be simplified to the following expression for the PME:

∂ρmβky
∂t

=
∑

mβky 6=m′β′k′y

[
Wmβky,m′β′k′y ρm′β′k′y −Wm′β′k′y,mβky ρmβky

]
+

(
∂ρmβky
∂t

)
res

, (7.3)

where Wmβky,m′β′k′y represents the probability per unit time for an electron to make a transi-

tion from state
∣∣m′β′k′y〉 to state |mβky〉. The symbol ρmβky is used to represent the diagonal

matrix element ρmβky,mβky for simplicity. The expression for Wmβky,m′β′k′y is given by Fermi’s

golden rule:

Wmβky,m′β′k′y =
2π

~
|α|2|

〈
mβky

∣∣H ′∣∣m′β′k′y〉 |2 δ(Emβky − Em′β′k′y) , (7.4)

whereH ′ is defined asHint = αH ′, α being a dimensionless constant representing the strength

of the interaction. The calculation of W accounts for all intravalley and inervalley transitions.

Account is made for all transitions between states injected from different leads s, also termed

back-scattering, which forms a major scattering mechanism for electrons. However, to avoid
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notational complexity, a separate ”lead index” will not be introduced explicitly to reflect

this mechanism.

We will not go in depth into the derivation of the above equation, as Ref. 22 describes

it in detail. However, it is important to mention the assumptions taken in order to obtain

Eq. (7.3) and to understand the conditions of its validity. The off-diagonal terms of the

density matrix are responsible for the quantum interference and consequently localization of

plane waves into wave packets. Devices with active regions much smaller than the dephasing

length of electrons will see the incoming waves as totally delocalized and therefore the off-

diagonal terms are not injected by the contacts. We will assume the limiting case of contacts

injecting wavefunctions of the form given by the QTBM, Eq. (3.4). Moreover, we will restrict

ourselves to the weak scattering limit (α2 � 1), so that the off-diagonal terms of the density

matrix are not generated within the device in the course of reaching steady-state. Under the

premise that the contacts inject plane waves, the reservoir interaction term of Eq. (7.3) can

be solved phenomenologically [22]. The reservoirs attempt to restore charge neutrality by

injecting electrons, with traveling wavevectors kr,vm,β through the corresponding leads r, into

the states that are transmitted and absorbed by these ideal contacts. Mathematically, this

can be expressed as:(
∂ρmβky
∂t

)
res

=
~ks,vm,β
mv

x

|As,vβ |
2
[
fFD(Ev

β + Ey)− ρmβky,mβky
]
, (7.5)

where the term outside the parentheses on the the right hand side describes the group velocity

of the incident electron wave, |As,vβ |2 is the normalization constant used for φs,vm,β and fFD is

the Fermi-Dirac distribution describing the occupation of the states at thermal equilibrium

in the leads. At steady-state, Eq. (7.3) becomes:

∑
mβky 6=m′β′k′y

[
Wmβky,m′β′k′y ρm′β′k′y −Wm′β′k′y,mβky ρmβky

]
= −

~ks,vm,β
mv

x

|Ar,vβ |
2
[
fFD(Ev

β + Ey)− ρmβky
]
. (7.6)
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This is a linear system consisting of M such equations, where M is the total number of

distinct electronic states |mβky〉 (states injected from different leads counted separately) or,

equivalently, the rank of the diagonal density-matrix. Any generic linear system solver can

be used to obtain the diagonal terms of the density-matrix.

Electron-Phonon scattering

We consider intravalley and intervalley scattering processes mediated by acoustic and optical

phonons using Fermi’s golden rule. The transition probability for intravalley scattering from

the initial state
∣∣m′β′k′y〉 to the final state |mβky〉 in presence of acoustic phonons of all

possible wavevectors q and angular frequencies ωq can be defined as:

W ac
mβky,m′β′k′y

=
2π

~
∑
k′y

1

L2
y

~∆2
acq

2

2dcωq

(
〈Nq〉+

1

2
± 1

2

)

×
∫

d3q

(2π)3
|
〈
mβky

∣∣eiq.r
∣∣m′β′k′y〉 |2δ(Eβ,ky − Eβ′,k′y ∓ ~ωq

)
, (7.7)

where ∆ac is the acoustic-phonon deformation potential, dc is the mass density of the crystal,

〈Nq〉 is the Bose-Einstein distribution and the plus and minus signs refer to phonon emission

and absorption, respectively. The factor of 1
L2
y

stems from a finite volume normalization of

the electron plane wave along y, having taken a finite device width of Ly in that direction

and then imposing periodic boundary conditions as Ly → ∞. The q dependence of the

interaction term adds to the complexity of the calculations. To get rid of the q dependence,

we assume the elastic, high-temperature, and equipartition approximations, and approximate

the dispersion of the acoustic phonons in Si as ωq = csq, where cs is the sound velocity.

Equation (7.7) then simplifies to:

W ac
mβky,m′β′k′y

=
∑
k′y

π

L2
y

∆2
ackBT

~dcc2
s

∫
d3q

(2π)3

∫
d3r

∫
d3r′ψs,v∗m,β(r)ψs,vm,β(r′)

× eiq(r−r′)ψs,vm′,β′(r)ψs,v∗m′,β′(r
′) δ
(
Eβ,ky − Eβ′,k′y

)
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Integrating over all q, this expression can be rewritten as:

W ac
mβky,m′β′k′y

=
∑
k′y

π

L2
y

∆2
ackBT

~dcc2
s

∫
d3r

∫
d3r′ψr,v∗m,β(r)ψs,vm,β(r′)eiq(r−r′)ψs,vm′,β′(r)ψs,v∗m′,β′(r

′)

× δ (r − r′) δ
(
Eβ,ky − Eβ′,k′y

)
=
∑
k′y

π

L2
y

∆2
ackBT

~dcc2
s

∫
d3r
∣∣ψs,vm,β(r)

∣∣2 ∣∣ψs,vm′,β′(r)
∣∣2 δ (Eβ,ky − Eβ′,k′y)

=
∑
k′y

π

L2
y

∆2
ackBT

~dcc2
s

∫ Ly

0

dy

∫∫
dx dz

∣∣φs,vm,β(x, z)
∣∣2 ∣∣φs,vm′,β′(x, z)∣∣2 δ (Eβ,ky − Eβ′,k′y)

The integral over the (x,z) plane is required only over the device domain since our set of open

system wavefunctions already contain information regarding the infinite leads, as discussed

in Sec. 3.3.1. Also, assuming periodic boundary conditions along y, the wavevectors ky can

be taken as multiples as 2π/Ly and ∆ky = 2π/Ly. The final expression for the transition

probability in presence of acoustic phonons then becomes:

W ac
mβky,m′β′k′y

=
∆2

ackBT

2~dcc2
s

∫∫
dx dz

∣∣φs,vm,β(x, z)
∣∣2 ∣∣φs,vm′,β′(x, z)∣∣2
×
∑
k′y

∆k′yδ
(
Ev
β − Ev

β′ + Eky − Ek′y
)
, (7.8)

where the summation over k′y amounts to the DoS at Eky = Ev
β − Ev

β′ + Eky .

In similar fashion, the intravalley transition probability for processes assisted by optical

phonons can be expressed as:

W op
mβky,m′β′k′y

=
(DtK)2

2dcωop

(
〈Nop〉+

1

2
± 1

2

)∫∫
dx dz

∣∣φs,vm,β(x, z)
∣∣2 ∣∣φs,vm′,β′(x, z)∣∣2

×
∑
k′y

∆k′yδ
(
Ev
β − Ev

β′ + Eky − Ek′y ± ~ωop

)
, (7.9)

where DtK is the optical phonon deformation potential. Equation (7.9) accounts for both

emission and absorption of an optical phonon of energy ~ωop, where the angular frequency
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ωop is assumed to be constant. A similar expression describes also intervalley scattering

mediated by optical phonons.

The approximations made here are good enough to provide a decent quantitative idea of

the impact of electron-phonon scattering in nanoscale Si devices. A comprehensive treatment

of the full phonon dispersion is beyond the scope of this work.

Surface-roughness scattering

In this chapter, we model SR scattering as a perturbation away from ballistic transport,

contrary to the statistical ab-initio approach followed in Chapter 6. To this end we follow

Ando’s model [29], but we also account for the change of the wavefunction, an effect that

can be significant when dealing with UTB devices and, so, strong quantum confinement.

We start by introducing the surface-roughness as a perturbation of the potential barrier

at the oxide-semiconductor interface within the first Born approximation. Let the oxide-

semiconductor interfaces lie at z = 0 (bottom oxide interface) and z = ts, where ts is the

semiconductor thickness. In this case, the barrier potentials due to the bottom and top gate

oxides can be written as:

V T
ox(x, y, z) =VbΘ(−z)

V B
ox(x, y, z) =VbΘ(z − ts) ,

where Vb is the oxide barrier which can typically be approximated by the band gap of the

oxide. Let ∆B(x, y) and ∆T(x, y) represent variations of the bottom and top oxide interfaces,

respectively, from the perfect interface plane. The perturbing potential for SR scattering can

therefore be written as:

VSR = V B
SR + V T

SR = (V B
ox(x, y, z + ∆B(x, y))− V B

ox(x, y, z))

+ (V T
ox(x, y, z + ∆T(x, y))− V T

ox(x, y, z)) . (7.10)
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We assume that scattering with the top and bottom interface is uncorrelated and therefore

can be treated separately. Assuming Ly → ∞, the matrix element for scattering with the

bottom oxide interface can be expressed as:

〈mβky|V B
SR

∣∣m′β′k′y〉 =
1

Ly

[ ∫
dx

∫
dy

∫
dzφs,v∗m,β(x, z)e−ikyy V B

ox(x, y, z + ∆B(x, z))

× φs,vm′,β′(x, z)e
ik′yy −

∫
dx

∫
dy

∫
dz φs,v∗m,β(x, z)e−ikyy V T

ox(x, y, z)φs,vm′,β′(x, z)e
ik′yy

]
. (7.11)

Transforming coordinates of the first integral from z to z′ = z + ∆B(x, y) and replacing z′

with z, we have:

〈mβky|V B
SR

∣∣m′β′k′y〉 =
1

Ly

[ ∫
dx

∫
dy

∫
dzφs,v∗m,β(x, z −∆B(x, z))e−ikyy V B

ox(x, y, z)

×φs,vm′,β′(x, z−∆B(x, z))eik′yy−
∫

dx

∫
dy

∫
dz φs,v∗m,β(x, z)e−ikyy V B

ox(x, y, z)φs,vm′,β′(x, z)e
ik′yy

]
.

(7.12)

This apparently simple transformation of axes is a significant step. Indeed the scattering-

matrix element is now defined in terms of a shift of the electron wavefunction, rather than

of the potential. Ando’s model neglects changes in the wavefunction due to SR by invoking

”the electric quantum limit” for inversion layers in large semiconductor devices. However, we

do not have the same liberty for the case of modern SOI and UTB devices since any change

in the boundary conditions affects the wavefunction. Moreover, we use the complete (2-D)

device solutions (wavefunctions) in an attempt to improve upon the already existent models

[29, 72, 73, 74] which consider solutions of the Schrödinger equation only along the 1-D

cross-section of the device and plane waves elsewhere. Thus our model should theoretically

provide a more realistic picture, properly taking into account the quantum confinement and

other non-local quantum effects associated with SR scattering [77].
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Expanding Eq. (7.12) to first order in φr,vm,β, we obtain:

〈mβky|V B
SR

∣∣m′β′k′y〉 = −Vb

Ly

∫
dx

∫
dy

∫ 0

−tox
dz∆B(x, z)ei(k′y−ky)y

[
∂φr,v∗m,β(x, z)

∂z
φr,vm′,β′(x, z)

+ φr,v∗m,β(x, z)
∂φm′,β′(x, z)

∂z

]
, (7.13)

where tox is the oxide thickness. The surface-roughness patterns ∆B(x, z) are random in

nature and obey an exponential or Gaussian autocovariance [75]. The Fourier transform

of the roughness pattern ∆B(x, z) can be taken equal to
√
LxLy∆qx,qyeiR(qx,qy), 〈|∆qx,qy |〉2

being the power spectrum of the roughness (discussed in detail in Sec. 7.2) and
√
LxLy

is the normalization constant. eiR(q) (R being a random number generator) is the Fourier

transform of white noise that is introduced to generate the random pattern of the roughness.

The roughness pattern ∆B(x, z) can be written as:

∆B(x, z) =

∫∫
dqx dqy

√
LxLy∆qx,qyeiR(qx,qy) × eiqxxeiqyy (7.14)

Inserting this expression into Eq. (7.13) and performing the integration over y, we obtain:

〈mβky|V B
SR

∣∣m′β′k′y〉 = −2πVb

Ly

∫
dx

∫ 0

−tox
dz

[
∂φs,v∗m,β(x, z)

∂z
φs,vm′,β′(x, z)

+ φs,v∗m,β(x, z)
∂φs,vm′,β′(x, z)

∂z

] ∫∫
dqx dqy

√
LxLy∆qx,qyeiR(qx,qy)eiqxxδ(k′y − ky + qy) , (7.15)

Let us define:

Φ(x, z) =

[
∂φs,v∗m,β(x, z)

∂z
φs,vm′,β′(x, z) + φs,v∗m,β(x, z)×

∂φs,vm′,β′(x, z)

∂z

]
.

The transition probability W SR
mβky,m′β′k′y

, as well as the scattering rates associated with SR

scattering, do not depend on the randomness of the roughness patterns. Therefore, instead

of taking the absolute square of the matrix element Eq. (7.12) to determine the transition

probability, we use the expectation value of the absolute square of the matrix element given
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by Eq. (7.15):

〈∣∣〈mβky|V B
SR

∣∣m′β′k′y〉∣∣2〉 =
4π2V 2

b Lx

Ly

∫
dx

∫
dx′
∫ 0

−tox
dz

∫ 0

−tox
dz′Φ(x, z)Φ(x′, z′)∗

×
∫

dqx

∫
dqx′ e

iqxxe−iq′xx
′
〈

∆qx,ky−k′y∆∗qx′ ,ky−k′y

〉〈
eiR(qx)eiR(q′x)

〉
. (7.16)

Now the power spectrum of white noise
〈
eiR(qx)eiR(q′x)

〉
is Cδ(qx − q′x), where C is a constant.

Using this fact in Eq. (7.16) and taking C = Lx, we obtain:

〈∣∣〈mβky|V B
SR

∣∣m′β′k′y〉∣∣2〉 =
4π2V 2

b

Ly

∫
dqx

〈∣∣∆qx,ky−k′y
∣∣2〉 ∣∣∣∣∫ dx

∫ 0

−tox
dzΦ(x, z)

∣∣∣∣2 . (7.17)

Expressing Φ in terms of φ, the transition probability for SR scattering can be written as:

W SR
mβky,m′β′k′y

=
2π

~
∑
k′y

4π2V 2
b

Ly

∫
dqx

〈∣∣∆qx,ky−k′y
∣∣2〉

×

∣∣∣∣∣
∫

dx

∫ 0

−tox
dz

[
∂φs,v∗m,β(x, z)

∂z
φs,vm′,β′(x, z) + φs,v∗m,β(x, z)

×
∂φs,vm′,β′(x, z)

∂z

]∣∣∣∣∣
2

δ
(
Ev
β − Ev

β′ + Eky − Ek′y
)
. (7.18)

Using the same discretization for the ky’s described in Sec. 7.1.1, Eq. (7.18) becomes:

W SR
mβky,m′β′k′y

=
4π2V 2

b

~

∫
dqx

〈∣∣∣∆B
qx,ky−k′y

∣∣∣2〉
×

∣∣∣∣∣
∫

dx

∫ 0

−tox
dz

[
∂φs,v∗m,β(x, z)

∂z
φs,vm′,β′(x, z) + φs,v∗m,β(x, z)

×
∂φs,vm′,β′(x, z)

∂z

]
eiqxx

∣∣∣∣∣
2∑
k′y

∆k′yδ
(
Ev
β − Ev

β′ + Eky − Ek′y
)

(7.19)

Focussing on the limits for the integral over qx, our sampling frequency (angular), given

by 2π/∆x, is limited by the spacing interval ∆x set by our discrete mesh. From Nyquist the-

orem, the maximum frequency (qx) of the roughness pattern that our sampling method can

capture will be half of the sampling frequency, i.e, π/∆x. The integral over qx in Eq. (7.19)
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can then be performed numerically within the range [−π/∆x, π/∆x]. The transition proba-

bility W SR
mβky,m′β′k′y

from the state
∣∣m′β′k′y〉 to the state |mβky〉 therefore be written as:

W SR
mβky,m′β′k′y

=
4π2V 2

b

~

∫ π/∆x

−π/∆x
dqx

〈∣∣∣∆B
qx,ky−k′y

∣∣∣2〉 ∣∣∣∣∣
∫

dx

∫ 0

−tox
dz

[
∂φs,v∗m,β(x, z)

∂z
φs,vm′,β′(x, z)

+ φs,v∗m,β(x, z)
∂φs,vm′,β′(x, z)

∂z

]
eiqxx

∣∣∣∣∣
2∑
k′y

∆k′yδ
(
Ev
β − Ev

β′ + Eky − Ek′y
)

(7.20)

A similar expression can be derived for scattering with the top interface.

Electron charge density in presence of dissipation

The different scattering mechanisms we have discussed are independent of each other. There-

fore their transition rates can be summed together and incorporated into the PME to deter-

mine their net impact on electron transport. The density-matrix elements n(x, y, z) obtained

after solving Eq. (7.6) can be used to determine the electron-density distribution at steady-

state.

n(x, z) =
1

π

∑
r

∑
v

∑
β

∑
m

∑
ky

∆ky ρmβky
∣∣φs,vm,β(x, z)

∣∣2 (7.21)

Self-consistent scheme

The Schrödinger, PME and Poisson equations are solved self-consistently in the 2-D plane

of the device to study dissipative quantum transport. The Newton’s method, described in

Sec. 2.5, is used to accelerate the convergence. We use Neumann boundary conditions on

the electrostatic potential to maintain charge neutrality at the contact edges. Although

physically inconsistent, this method is computationally less expensive and provides results

similar to the method using Dirichlet boundaries, described in Sec. 3.3.1. Once we have

obtained the self-consistent solutions of the open system and, by using the PME, determined

their corresponding occupations, we can calculate different current transport parameters,

namely, the transmission coefficients for electrons injected at different energies, the local
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density-of-states (LDOS), the current-density distribution and the total drain current [1], as

described in Sec. 3.2.

7.2 Dissipative Transport in UTB FETs
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Figure 7.1: Net doping profile of the simulated UTB DG nMOS. The white regions at the
top and bottom represent the 1.2 nm-thick gate oxide, while the grey patches are used to
highlight the position of the gate contacts.

To demonstrate the capability of our dissipative quantum-transport model, we simulate

the electrical behavior of a 5 nm-thick and 10 nm-long nMOS with lightly p-type doped

(≈ 1015 cm−3) channel as shown in Fig. 7.1. The device dimensions are set in accordance

with the end-of-2027 roadmap goals set by the IRDS [78]. A symmetric 1.2 nm-thick SiO2

gate insulator is assumed for the top and bottom gates. This assumption is consistent

with the reported fabrication procedures [79, 80] where a 1 nm-thick SiO2 interface layer is

grown before high-κ deposition. The exact nature of the roughness present at the Si-SiO2

interface is still an open topic of debate. Traditionally it has been characterized using a

Gaussian autocorrelation function. However, a critical statistical study by Goodnick et al.

[75] shows that an exponential autocovariance resembles the nature of the interface more

closely. Therefore, we have used this model in our calculation (Eq. (7.20)) for SR scattering.

The power spectrum 〈|∆qx,qy |〉2, in this case, is given by the expression:

〈|∆qx,qy |2〉 =
π∆2

rmsΛ
2

(1 + (q2
x + q2

y)Λ2/2)
3
2

, (7.22)
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where ∆rms is the root-mean-square (rms) roughness, Λ is the correlation length and q is the

scattered wave vector, in the (x, y) plane, from the Fourier transform of the roughness. For

this work, we have taken the ∆ = 0.3 nm and Λ = 1.5 nm, following Ref. 75.
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m
)

0

3
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−0.16

−0.10

Potential Distribution (eV)

Figure 7.2: Simulated potential-energy distribution in the 5 nm UTB DG nMOS plotted for
reference. The potential energy is measured with respect to the source fermi level.

7.2.1 Simulation of different scattering phenomena

Intravalley scattering with acoustic and optical phonons is modeled by employing the fol-

lowing values for the isotropic deformation potentials, ∆ac = 9 eV, and DtK = 2.2 × 108

eV/cm, respectively, following Ref. 6. ~ωop = 60 meV is taken for the optical phonons. For

intervalley scattering, we only consider g-type processes with optical phonons, which should

be adequate enough to ascertain the impact of electron-phonon scattering without going into

elaborate details. We choose to use the parameters given by Canali et al. [81] favoring a

weaker g-type scattering, since they have been shown [82] to correspond well with experi-

mental mobility values for bulk and strained Si. Finally, the SR scattering rates given by

Eq. (7.20) are inversely dependent on q and can be neglected for short-wavelengths (large q)

corresponding to state transitions between Si valleys. Therefore, we only consider intravalley

scattering for SR.

86



0.0 0.1 0.2

Total energy (eV)

109

1010

1011

1012

1013

1014
S
ca

tt
er

in
g

ra
te

(s
−

1
)

Acoustic Phonons

Subband 1

Subband 2

Subband 3

0.0 0.1 0.2

Total energy (eV)

Optical Phonons

Subband 1

Subband 2

Subband 3

0.0 0.1 0.2

Total energy (eV)

Surface roughness

(a) (b) (c)

Subband 1

Subband 2

Subband 3

Figure 7.3: Scattering rates as a function of total electron-energy simulated for the different
scattering mechanisms. VGS =0.2 V, VDS = 100 mV.

The transition rates for the different scattering phenomenon within the device domain are

given by the out-scattering terms Wm′β′k′y,mβky of the PME (Eq. (7.3)). The total scattering

rates for scattering with acoustic phonons, optical phonons and SR,
∑

m′β′k′y
Wm′β′k′y,mβky

are shown in Fig. 7.3 as a function of the total electron-energy. The figure(s) shows rates

averaged over all states |mβky〉 with the same subband index m (represented by the differ-

ent colored lines) and injection energy Ev
β but having different ky. These scattering rates

are calculated for the individual delocalized wavefunctions. The figure clearly shows that

the scattering rates for SR are at least an order of magnitude higher than the rates for

scattering with both acoustic and optical phonons, thereby indicating a stronger impact of

SR on device performance, as expected. A more quantitative discussion of the impact of

this process on device performance will be addressed later when dealing with the electrical

behavior of the device in Sec. 7.2.2. Note here that the scattering rates, especially in the

case of phonons, are much smaller than the reported values for bulk Si. The situation has
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Figure 7.4: Diagonal elements of the density-matrix, as a function of total electron-energy,
representing the final occupation of states in presence of (a) electron-phonon scattering, and
(b) SR scattering. The solid and dashed red lines represent the ballistic occupation of states
injected from the source and the drain, respectively.

been explicitly reported for the case of Si inversion layers in micrometer-scale MOSFETs

[83]. The discrepancy arises because we take into account the overlap integral between 2-D

device solutions pertaining to the initial and final states when computing the corresponding

transition rates, thus limiting scattering to ”mutually favorable” states allowed by the device
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environment. From a more physical point of view, the scattering rates calculated in this way

account for the characteristics of the device environment—namely electric field distribution,

carrier concentration, device structure, thereby presenting a more realistic and quantifiable

picture.

Figure 7.4 shows the diagonal elements of the density-matrix in presence of acoustic

phonons, optical phonons and SR, separately, which gives us an idea about the final occu-

pation of electronic states as a function of their energy Emβky . The solid lines represent the

ballistic distribution, while the color dots represent the distribution in the presence of differ-

ent scattering mechanisms for injections from both the source and drain. The considerable

shift in the final occupation of a state injected from source/drain from the ballistic occupa-

tion controlled by the Fermi level of the corresponding electrode (drain/ source) shows that

back-scattering is the dominant mechanism of dissipation in all the cases presented.

7.2.2 Transport Characteristics

In this section we investigate the impact of the different scattering mechanisms on the trans-

port behavior of the FETs we have considered. The density-of-states representing the contin-

uous energy spectrum of the infinitely long leads is assigned a spatial dependence by factoring

in the electron probability-density distribution in the device. This gives us the local density-

of-states (LDOS), which is an important parameter for analyzing the device behavior. At

the same time, we also incorporate the occupation factors determined by the PME in an

attempt to understand how the different scattering mechanisms affect the LDOS. Thus the

quantity plotted in Fig. 7.5 resembles the spectral function commonly used in NEGF calcu-

lations. The expected broadening/smearing in energy of the electronic states in presence of

dissipation can be clearly seen from these plots. Back-scattering of electrons results in the

build up of space charge in the channel of the device. As a result, the potential-energy in

the channel is higher in the presence of scattering than in the ballistic case. This can be
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seen in Fig. 7.5 where the dashed lines represent the potential-energy distribution along the

middle of the device.
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Figure 7.5: LDOS distribution in (a) ballistic case, (b) in presence of phonon (optical and
acoustic) scattering, and (c) in presence of scattering with surface roughness. The LDOS
is averaged over a cross-sectional thickness of roughly 1 nm along the middle of the device.
The red dashed line represents the potential distribution cut across the device mid-section.
The energies are measured with respect to the source Fermi level. VGS =0.2 V, VDS = 100
mV.

Moreover, semi-classical physical observables, the main information provided by Monte

Carlo simulations, like the kinetic energy and drift velocity of electrons, can also be extracted

from our simulations. To study and compare the effect of the different scattering mechanisms,

a spatial dependence is assigned to the expectation value of these observables (quantum

operators), following Ref. 21. The general definition of the expectation value of an operator

O can be written as:

〈O〉 =
1

Z

∑
mβky

ρmβky 〈mβky|O|mβky〉 , (7.23)
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Figure 7.6: (a) Spatial distribution of the electron kinetic energy in presence of SR scattering.
Kinetic-energy distributions for the ballistic and electron-phonon are largely similar to the
above, except in the channel. The latter is highlighted in (c) which shows the kinetic energy
averaged over the cross-sectional thickness along the length of the device for the different
scattering mechanisms.

where Z is the partition function expressed as
∑

mβky
ρmβky 〈mβky|mβky〉. This expression

can be extended to provide an arbitrary yet useful definition of a spatially dependent expec-

tation value of an observable O, O(x, y) [21, 22]:

O(x, y) =
1

Z

∑
mβky

ρmβky 〈mβky|x, z〉 〈x, z|O|mβky〉 . (7.24)

For the kinetic energy per electron EKE, we then have:

EKE(x, z) =
1

Z

∑
mβky

ρmβkyφ
s,v∗
m,β(x, z)

[
1

2me

(−i~∇)2

]
φs,vm,β(x, z)

=
1

Z

∑
mβky

ρmβky [Ev
β + Eky − V (x, z)]

∣∣φs,vm,β(x, z)
∣∣2 . (7.25)
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Here we have utilized the fact that the wavefunctions φs,vm,β are eigensolutions of the 2-D

Schrödinger equation and me represents the effective mass tensor. Figure 7.6 shows the

kinetic energy distribution, calculated as described above, in the presence of SR scattering

and its average over vertical cross sections along the device length compared with the result

obtained when considering ballistic transport or scattering only with phonons. It can be

seen that there is marginal distinction in kinetic energy for the different cases, except in the

inverted channel region. Here, the back-scattering of electrons raises the potential energy,

as shown in Fig. 7.5, and simultaneously lowers the kinetic energy in the channel.
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Figure 7.7: Spatial distribution of the electron drift velocity in the presence of (a) electron-
phonon scattering and (b) SR scattering. (c) Comparative plot of the drift velocity, averaged
over the cross-sectional thickness along the length of the device, in presence of different
scattering mechanisms.
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Semi-classically, the drift velocity vd can be viewed as vd = j/(qen), where j is the

current density and n is the carrier concentration. Extending this to the quantum regime,

j transforms into the probability current given by j = qe~/me Re
(
φs,v∗m,β∇φ

s,v
m,β

)
. Using the

semi-classical expression and following the procedure of Eq. (7.24), we can now define the

spatially-dependent expectation value of the drift velocity as:

vd =
1

Z

~
me

∑
mβky

ρmβkyRe
(
φs,v∗m,β(x, z)∇φs,vm,β(x, z)

)
, (7.26)

where the partition function Z acts as the quantum equivalent of the carrier concentration

n. Calculations have been limited to the (x, z) plane of the device since this is the region of

interest. Figures 7.7(a) and (b) compare the drift velocity distributions when accounting for

scattering with phonons and SR, respectively. We can observe that there is a stark decrease

in the drift velocity in presence of surface roughness as compared to the phonons case and

also the ballistic situation displayed in the comparison plot of Fig. 7.7(c). At the same

time, Fig. 7.7(b) shows that transport is affected mostly near the semiconductor-dielectric

interface, highlighting the interfacial nature of SR scattering [77].

Finally, we study the transfer characteristics of the device in the presence of the different

scattering mechanisms. We can obtain a clear quantitative assessment of the negative impact

of surface roughness in UTB devices from the ’ON’ state behavior highlighted in Fig. 7.8(a).

The subthreshold characteristics, as can be seen from Fig 7.8, remain relatively unaffected.

Interestingly, there is also notable decrease in drain current in the presence of scattering

with phonons even in devices of such small dimensions. However, scattering with surface

roughness dominates among the dissipative processes and is the principal factor limiting

device performance. Comparing our results with statistical ab-initio simulations of SR in

similar device structures [84, 77], we see a much more pronounced impact of SR primarily

because we explicitly take into account the 2-D nature of the interface, contrary to a purely

1-D [77] or a projected 1-D [84] roughness pattern assumed in the cited articles. Moreover,
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Figure 7.8: Transfer characteristics of the simulated 5 nm UTB DG nMOS in (a) linear and
(b) semi-log scale focussing on the above-threshold and subthreshold regions, respectively.

this allows us to include transitions between states having different momenta or ky in the out-

of-plane direction, while the ab-initio cases, mentioned above, implicitly assume conservation

of this out-of-plane momenta, thus limiting the scattering of electrons.
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CHAPTER 8

CONCLUSION

In summary we have developed and demonstrated a novel and efficient approach to simulate

quantum transport, both ballistic and dissipative, in realistic semiconductor devices. The

method allows us to analyze the internal aspects of the device and the factors affecting its

performance. In addition, the significance of our theoretical model is highlighted by the

varied applications described in this work.

In Chapter 4, our ballistic transport simulations show that lateral-quantum-well Si nMOS-

FETs exhibit negative differential transconductance at cryogenic temperatures and for gate

lengths shorter than 20 nm. Extrapolating from our results, devices with a gate length of

10 nm and lower should exhibit a sharp NDT signature even at room temperature, provided

there is sufficient mitigation of the thermionic and punch-through currents. The former

plays a crucial role in suppressing the NDT, the latter is favored over the tunneling current

for high pSDE barriers. We have argued that alternative device designs (UTB SOI devices

and/or epitaxial pSDE barriers) with sub-10 nm gate length are required to observe NDT

at room temperature. Discussing processing and fabrication issues related to these scaled

devices is a problem that transcends the scope of this work. However, the theoretical pre-

diction of NDT in 10 nm devices leaves room for a moderate optimism. We have also shown

the strong dependence of the resonant tunneling current on details of the doping profile of

the pSDE pockets. This suggests that our inability to explain the NDT observed in 40 nm

gate-length QW nMOS devices is likely due to the uncertainty of the actual doping profiles.

This observation also bolsters our optimism.

In Chapter 5, we simulate ballistic electron transport in UTB DG nMOS. The simulated

UTB DG nMOS exhibits Fano interference which results in the formation of vortices in the

electron current at cryogenic temperatures. Thermal smearing prevents the phenomenon
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from manifesting itself in the I-V characteristics of the device at higher temperatures. More-

over, when asymmetry is introduced by applying an unequal gate bias in this case, the

antiresonance features broaden and vortices in the current appear even at room tempera-

ture. We this conjecture that this quantum phenomenon can be observed at the macroscopic

scale under the right experimental conditions.

In Chapter 6, we model the impact of surface roughness (SR) on electronic transport in

UTB FETs. Here we adopt a statistical ab-initio approach to simulating the SR scattering.

Our simulations show that SR scattering considerably affects the above-threshold behavior of

UTB FETs, while subthreshold device parameters remain largely unaffected. We also show

that quantum confinement plays a notable role in augmenting the impact of SR scattering.

Finally, we demonstrate the (in)dependence of SR scattering on channel thickness.

Finally, in Chapter 7, we have demonstrated the capability of our simulation tool to

model dissipative quantum transport in realistic semiconductor devices. As an application

of our method, the impact of electron-phonon and SR scattering has been studied for UTB

FETs. An extension of the Ando’s model has been described to properly include quantum

confinement and non-local effects associated with surface roughness. Our results show that,

even in nanoscale devices, electron transport is predominantly dissipative (non-ballistic).

Particularly, scattering of electrons with surface-roughness is the prime source of dissipation,

drastically reducing the drain current (ballistic) by almost an order of magnitude.

In the future, our PME based model can be readily extended to include other impor-

tant scattering mechanisms, like electron-electron and impurity scattering [85]. Moreover,

the approximations for the phonon dispersion assumed here can be relaxed by treating the

full phonon band dispersion. Finally, extending our effective-mass based model to a full-

band model would enable us to accurately model electron transport in nanostructures like

nanoribbons and nanowires as well as semiconducting materials beyond Si.
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