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ABSTRACT 

 
 
 Supervising Professor:  Balakrishnan Prabhakaran, Chair 
 
 
 
 
Recent advances in artificial intelligence (AI) based solutions for healthcare problems have led 

to the increased demands for quality accessible patient data and the functional understanding of 

the remarkable outcomes of AI decision support systems. Nonetheless, challenges persist from 

strict regulations that oversee patient privacy, small imbalanced datasets due to high costs of 

measurement and expert annotation, and the black-box nature of AI technology. 

In this dissertation, we address foundational frameworks necessary for achieving quality and 

accessible synthesized healthcare time-series data and build the essential trust and confidence in 

outcomes of AI solutions through interpretable explanations for healthcare time series data. 

In the first challenge, we propose validation approaches for synthesized healthcare time-series 

data and apply this quality synthesized data in training better performing healthcare decision 

support systems. Finally, we present a framework that generates and integrates modular 

interpretable explanations from varying deep learning models with model capacities achieved 

using synthesized data.
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CHAPTER 1 

INTRODUCTION 
 

1.1 Motivation 

Recent advances in the use of artificial intelligence (AI) for solving complex healthcare 

tasks have led to an increased demand for large volumes of data that is needed to implement AI 

based systems.  AI innovations that induce specialized patient care and produce better health 

outcomes need large volumes of training data to produce good performance. Deep learning 

methods for example, are now being applied to model decision support systems that are used by 

healthcare providers to deliver timely and accurate diagnosis. 

One of the most pressing challenge in healthcare is the limited availability of data due to 

patient privacy concerns, irregular data collection patterns, and high costs of data collection and 

annotation. Limited data availability is characterized by restricted data access, small datasets, 

and imbalanced class representation within the datasets. This challenge has provided a need for 

other means of accessing patterns and features in healthcare data. Currently, synthetic data is 

playing a critical role in bridging the gap of data availability and therefore, healthcare 

researchers are devising new techniques for synthetic data generation and validation. Synthetic 

data is artificial data that is generated using computer algorithms with the goal of capturing 

features that are present in real data. With synthetic data, researchers can access large volumes of 

data, balance training sets, employ machine learning and deep networks to train models, and test 

new tools before they are deployed for real-world use. 

As new methods of generating synthetic data are discovered, there is a growing need to 

ensure that synthetic data is sufficient proxy for real data. Therefore, there is a need for 
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developing frameworks that analyze the quality of synthetic data and validates their effectiveness 

in application.  

Additionally, as researchers leverage state-of-the-art (SOTA) AI to develop production 

tools, there is an increasing demand by users to understand the functional mechanism of black-

box AI systems.  For example, a physician diagnosing arrhythmia with the help of a decision 

support tool wants to know the electrocardiogram (ECG) features used by the tool to determine 

the diagnosis. Healthcare providers want to understand how AI systems learn and make outcome 

decisions therefore, interpretable explanations from AI systems are essential. 

 These challenges in healthcare have motivated us to: 

• Develop a validation framework for synthetic healthcare time series data. 

• Explore the effectiveness of healthcare time series data in (i) traditional machine 

learning, (ii) no-residual deep neural networks, and (iii) residual neural networks. 

• Develop and implement a post-hoc interpretable explainability framework for 

convolutional neural networks (CNN) models trained to classify ECG signals.  

1.2 Dissertation Objective 

The focus of this research is in healthcare time series data and addresses the following key 

questions: 

1. Can we develop foundational methods for validating synthetic healthcare time-series 

data? 

a. Implement a framework that accounts for statistical, visual and machine learning 

validation of synthesized healthcare time-series data 
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2. Can synthesized healthcare time-series data serve as effective proxy in training AI-based 

decision support systems? 

a. Comparative analysis of classification performance between synthetic and real 

healthcare time series datasets. 

i. Electrocardiogram Study: Features one dimensional time series with 

highly structured waveforms 

ii. Electroencephalogram Study: Features multi-dimensional time series  

iii. Activity Recognition Multi-sensor Study: Features multi-dimensional  time 

series with structured patterns 

3. Can we develop a framework that produces interpretable explanations of highly 

structured healthcare dataset mapping the explanation to respective classification 

outcomes? 

a. Develop a foundational framework to generate interpretable explanations for 

convolutional neural networks. 

b. Analyze model capacity of deep neural networks using synthetic data.  

1.3 Contribution 

• Framework for validating synthesized data: Develop the Virtual Patient Model (VPM) 

framework for statistical, visual and machine learning validation of synthetic healthcare 

time series data. 
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• Application of validated synthesized data: Perform a comprehensive analytical study to 

demonstrate the effectiveness of using synthetic healthcare time series data when training 

deep neural network for domain classification tasks. 

• Framework for AI Interpretable Explanations with synthesized data: Develop the CNN 

Explainability Framework for ECG Signals (CEFEs), for explaining model capacity and 

producing statistical, visual, and feature interpretable explanations using synthetic time 

series data. 

1.4 Organization of the Dissertation 

Chapter 2: We introduce synthetic based measurements, challenges, and current trends in 

synthetic data generators for healthcare datasets. 

Chapter 3: We develop and describe an explainability framework for generating CNN model 

explanations using feature statistics, feature visualization, and feature detection and mapping 

modules. These CNN interpretable explanations are generated from some models trained with 

real data only and others trained with real data augmented with different volumes of synthetic 

data to better inform on model capacity. 

Chapter 4: We develop and describe an end-to-end modular framework for validating synthetic 

healthcare time series data. This framework accounts for statistical, visual and machine learning 

validation for any time-series data synthesizer. 

Chapter 5: We implement the statistical analysis and visual validation schemes for healthcare 

time series data sets using the synthetic data validation framework in Chapter 4. 
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Chapter 6: We present experimental results from the application of validated synthetic time-

series data in training traditional machine learning algorithms, non-residual and residual deep 

neural networks for healthcare classification tasks.  



 

6 

CHAPTER 2 

SYNTHETIC MEASUREMENTS AND GENERATORS  
 

IN HEALTHCARE 
 
 

Healthcare stakeholders are required to preserve privacy through patient protection laws 

during the use and dissemination of health information. The requirements such as the Health 

Insurance Portability and Accountability Act (HIPAA) impose substantial constraints on research 

innovations that require large volumes of patient data. To overcome the limited accessibility to 

patient data, considerable advancements have been achieved in the areas focused on development 

of synthetic generation systems. These systems simulate or generate healthcare patient data, 

treatment plans, and artifacts of human biological systems. Quality synthetic measurements are 

essential for training, testing, and evaluating deep learning healthcare systems because the 

expectation is they produce utility performance similar to that obtained from real-world data and 

in addition, offer unlimited access to representative large volumes of data.  

Synthetic measurements must preserve the characteristics of real-world data to be effective 

in modeling deep learning tasks. Therefore, a synthetic data generation framework should 

encompass generation methods that accounts for the varying features within healthcare datasets 

and implement concrete validation schemes that evaluate the generated synthetic measurements. 

The goal of validation methods is to provide (i) a conclusive analysis on features present in the 

synthetic measurements when compared to real-world measurements and (ii) a measure of 

effectiveness by assessing behavior and capability of synthetic measurements when applied to real-

world tasks.  In this paper, we contribute a literature survey of synthetic data generation and the 
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commonly acceptable validation schemes used to evaluate synthetic measurements in the context 

of healthcare datasets 

2.1 Introduction 

Healthcare stakeholders are required to preserve privacy through patient protection laws 

during the use and dissemination of health information. The requirements such as the Health 

Insurance Portability and Accountability Act (HIPAA) are substantial constraints on research 

innovations that require large volumes of patient data. To overcome the limited accessibility to 

patient data, considerable advancements have been achieved in the areas focused on development 

of synthetic generation systems that simulate healthcare patient data, treatment plans, and artifacts 

of human biological systems.  

Quality synthetic measurements are essential for training, testing, and evaluating deep 

learning healthcare systems because they offer unlimited access to large volumes of representative 

patient data. Synthetic measurements must preserve the characteristics of real-world data to be 

effective in their application in deep learning tasks. Therefore, a synthetic data generation 

framework should encompass generation methods that accounts for varying features within the 

data and implement concrete validation schemes that evaluate synthetic measurements.  

The validation methods seeks to obtain (i) conclusive analysis on features present in the 

synthetic measurements when compared to real-world measurements and (ii) the measure of 

effectiveness by assessing behavior and capability of synthetic measurements when applied to real-

world tasks.  In this paper we contribute a literature survey of data generators and commonly 
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acceptable validation schemes. We discuss these approaches in the context of synthetic healthcare 

datasets. 

2.2 Synthetic Data Generation in Healthcare 

Patient data plays an important role in healthcare research and innovation. Patients 

continue to seek informed and better health outcomes yet this effort is masked by data privacy 

concerns and legal ramifications. These consequences discourage patient data access by those 

accountable for maintaining patient privacy. The data environment that supports innovation in 

solving medical problems requires access to large volumes of patient data yet healthcare data is 

intrinsically scarce. 

 

Figure 2.1. Synthetic Data Generation Process Flow in Healthcare 
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The challenges of data scarcity, small volumes of data, and high costs of annotation have 

promoted recent success in computational methods for generating cost-effective and realistic 

synthetic datasets. Synthetic generators gives researchers the ability to build synthetic data 

repositories thus unrestricted access to large volumes of data. One factor considered essential for 

the use of synthetic data in real-world tasks is ensuring that synthetic data encapsulates the 

characteristics of real data. Therefore, the widespread use of synthetic data highly depends on 

developing practical processes that qualitatively validate the data. The process of data synthesis in 

healthcare follows a standard flow as shown in Figure 2.1. 

2.2.1 Real-World Data Repositories 

Data synthesis in healthcare begins with a pool of patient-related data that is measured 

from different sources such as radiology, devices that monitor biological systems, electronic 

vitals measurements, and pharmaceutical dispensation records from medical treatment plans. 

Stored data formats range from medical images and bio-physical signals, treatment plans, and 

operational data from electronic health records. Data format is key to determining the appropriate 

synthetic data generator during the synthesis process. 

2.2.2 Patient Data De-identification 

The most important aspect that drives the need for synthetic data is preserving patient 

privacy. To guard patient privacy and protect organizational proprietary data aggregation 

methods, real-world data is first de-identified prior to making available for synthesis and public 

use. The de-identification process involves removing patient information that would link them to 

a particular health record or obscuring data fields that would expose proprietary business 
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methods. Government agencies (Health and Human Services) and healthcare providers (research 

collaborators) have published methods for patient de-identification and address the acceptable 

levels concerning identification risks. 

2.2.3 Synthetic Data Generators 

Synthetic measurements are generated using computer models and with the primary goal 

of capturing relevant statistical and morphological features present in real-world data. Synthetic 

measurements also referred to as synthetic data or artificial data are generated using 

mathematical models that require extensive domain knowledge of the underlying systems being 

modeled, stochastic processes that fit known or unknown distribution to real-world de-identified 

data, and hybrid methods that use machine learning techniques build models that learn the 

distribution of real-world data. These models are then sampled to generate synthetic data 

expected to characterize realistic representation of the real data. 

2.2.4 Synthetic Data Validations 

The utility of synthetic data in real-world healthcare tasks relies on the quality of data 

used to train computational models. Quality synthetic data refers to data that is effective in 

achieving similar outcomes to real data for a particular problem-solving task. Data quality is 

asserted by a set of evaluation procedures including statistical, visual, expert and machine 

learning analysis. Choice of validation tests that are used on synthetic data are both data and task 

specific. Therefore, the characteristics present in the data and the purpose for using this data 

must be clearly understood prior to validation. Synthetic data validation is particularly important 
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in the healthcare setting because utility of such data is applied mainly towards life-critical 

systems. 

2.2.5 Synthetic Data Repositories 

Once synthetic measurements are validated and deemed effective for use in training, 

testing, and evaluating healthcare models, the measurements are stored in synthetic data 

repositories. Synthetic data repositories are available to researchers for use in innovations that 

require large data volumes without the accessibility challenges prevalent in healthcare data. 

2.2.6 Utility of Synthetic Data in Healthcare 

The goal of healthcare innovations is to improve the quality of patient care. Healthcare 

innovations are in form of decision support systems modeled using artificial intelligence (AI) 

methods. During the research and development phase, these systems can be modeled, evaluated, 

and analyzed using quality synthetic measurements. Decision support systems aide healthcare 

providers when analyzing medical measurements and during subsequent diagnosis decision. 

They also enable medical providers to be efficient in their tasks, improve medical care which 

result in better healthcare outcomes for patients. The development of novel methods for synthesis 

and validation of healthcare synthetic measurements, opens more opportunities for researchers 

who leverage synthetic measurements for solving increasingly complex problems. 

2.3 Trends in Healthcare Data Synthesis  

We outline the evolving trends in process driven and data driven methods for 

synthesizing data. The goal of these methods is to generate synthetic data that is visually and 
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statically realistic in addition to being effective when applied for use in real-world healthcare 

tasks. Synthetic data is revolutionizing the way researchers approach AI in healthcare. Efforts are 

in place both in academia and industry settings to develop efficient synthetic data generators for 

all healthcare datasets (EHR, medical imaging, and time-series).  

2.3.1 Process Driven Synthesizers 

Whole Heart Modeling 

Whole heart is a model of the electro-mechanical functions of the heart.  It comprises of a 

torso model of the human body that produces electrocardiograms (ECG) surface potentials and 

provides an understanding of the complexity of interactions within the heart organ.  Since the 

Whole-heart model was developed, several improvements have been proposed to improve the 

simulation of the cardiac function.  

Whole-heart models use the Huygens’ Principle of wave propagation to induce heart 

excitation and produce artifacts that are inherently synthetic measurements in the form of 

calculated surface ECG. Additionally, these models can simulate cardiac arrhythmia by using 

differing knowledge-based heart excitation sequence details (Wei, 1997). Whole-heart models 

require the use of bidomain representation of the cardiac tissue (Trayanova, 2011). 

Monodomain / Bidomain 

Bidomain is a mathematical models described by two coupled partial differential equations 

(PDE) that simulate the electrical properties of heart cell membranes and their kinetics. A classical 

bidomain uses the current flow of both intracellular and extracellular domain potentials to predict 

ECG. Different models have been developed from the classical bidomain including a 3D computer 
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model in (Harumi et al., 1989) which is based on simulation of the sequence of depolarization and 

on multiple action potentials taken in the appropriate time phase. 

2.3.2 Data Driven Synthesizers 

Data driven synthesizers leverage real-world patient data to generate similar synthetic 

patient measurements. In healthcare, biological systems are not completely understood therefore, 

one way of synthesizing healthcare data is by using stochastic methods. Stochastic models have 

been successfully used to model the characteristics of ECG wave forms.  

These generative models use the following methods (i) fit an unknown distribution to real-

world data, (ii) use domain knowledge of an underlying system to select and fit a known 

distribution, and (iii) use algorithms without making any assumptions about the data or the system 

that produced the data and learn the distribution present in the data. In the following sections we 

review and summarize the various peer-reviewed and commercial methods of generating different 

formats of synthetic measurements in healthcare. 

Evolutionary Optimization Synthesizers 

Evolutionary optimization algorithms are population-based searching heuristics that were 

first proposed by (Holland, 1975) and inspired by the abstraction of evolution in the theory of 

natural selection by Charles Darwin. Healthcare time-series synthesizers that are based on 

evolutionary optimization such as the genetic algorithm have been proposed in literature. We will 

review and discuss how evolutionary optimizers have been used to generate synthetic 

measurements in healthcare. 

In the work of (Shamsuddin et al., 2018), the Virtual Patient Model framework implements 

the genetic algorithm to generate one-dimensional (1D) healthcare time-series data from statistical 
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features in real-world patient data. The optimization solver in (Shamsuddin et al., 2018), uses 

attributes of traditional GA such that the time series sequences are the chromosomes, and the 

algorithm operates on a selected initial random population. Here, the initial random population is 

sampled from random sine and cosine wave forms and once the initial population is defined, the 

optimizer is invoked, and the algorithm iterates through tournament selection, 100% crossover, 

and 5% mutation operations and a fitness function evaluation up to a pre-defined maximum 

iteration value. 

The Guided Evolutionary Synthesizer proposed in (Maweu2 et al., 2021) is a multi-

dimensional healthcare time-series generator inspired by the theory of evolution. The synthesizer 

accepts real patient data as input and template for generating the synthetic data but does not account 

for preserving privacy in publicly available healthcare time-series datasets. GES approximates 

correlation between multi-dimensional template sequences and uses this approximation to 

initialize the generation process. The evolution concept is introduced when the algorithm alternates 

between an exploration and a guidance phase that evolves an individual data sample to a fit 

synthetic solution. Variations are induced in the synthetic sample through search space exploration 

constrained by the initializing correlation estimation and concept maps (trend, shape) to achieve 

convergence. 

Statistical Matching Synthesizers 

Statistical matching involves creating models that use statistical information from variables 

in real-world data. When designing these models, features in real-world data are statistically 

analyzed, extracted and in some cases combined to feature engineer (Kramer et al., 2001) inputs 

for the synthesis process.  
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The Synthetic Data Vault (SDV) proposed by (Patki et al., 2016) is a generative statistical 

model for relational databases that computes distributions and covariance of database objects. 

Their method uses model-based synthesis where numerical values and rows in a database table can 

be sampled, and database synthesis which generates an entire database. The SDV synthetic 

measurements are validated for predictive accuracy and subjective qualitative findings. SDV has 

been extended as an open-source synthetic data library that has incorporated Single Table modeling 

of tabular data in two generative models, CTGAN and TVAE as proposed by (Xu et al., 2019). 

Another statistical matching synthesizer uses a linear programming solver proposed in 

(Bogle et al., 2016) and it generates synthetic healthcare data. The solver achieves statistical 

moments, similar variables, and data types of real-world data. The synthesizer is recorded as a 

macro function in the SAS© system and uses a sequence of events to specify the statistical moment 

order and parameters that control the synthesis algorithm. The input events enable the synthesizer 

to change the output size, determine the compute time and the quality of the generated synthetic 

measurements. 

When validating the synthetic measurements, (Bogle et al., 2016) uses statistical analysis 

to compare the mean and standard deviation between the real-world and synthetic measurements. 

Data set variables interactions are also validated by computing covariance matrices and checking 

for similarities/dissimilarities in covariance magnitude. The final step in (Bogle et al., 2016)  

validation process is separately fitting a logistic regression model to real and synthetic training 

data, apply the trained models to real test data and evaluate classification performance, sensitivity, 

and specificity. 
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In the commercial space, MDClone (MDClone Ltd., Beer Sheva - Israel) and Synthea are 

big-data engine for generating patient data that is statistically similar to the real data and 

community patient populations. The MDClone engine is instantiated using real patient data 

obtained through collaboration efforts with hospitals and other patient data stores. The MDClone 

synthesis model estimates a kernel, fits a distribution, and samples synthetic patient data from the 

model. The model offers user options as queries which allow feature and attribute selection, and 

custom mathematical computations that implement desired de-identification of synthetic patient 

data.  

Synthea is another commercially used open-source synthetic patient profile simulator 

proposed in (Walonoski et al., 2018). Synthea relies on publicly available datasets to generate 

synthetic Electronic Health Records (EHR). Implementation of Synthea focuses on simulating 10 

most frequent reason for medical care and 10 chronic diseases with the highest morbidity in 

communities within the state of Massachusetts. The Synthea model simulation produces virtual 

patient disease progressions and treatment plans using two machine states, (i) a control state for 

module flow and (ii) clinical state for attributes i.e., symptoms and medication. The synthetic 

profiles from the Synthea model are evaluated against real-world patient profiles by comparing 

patient populations and the respective levels of statistical properties together with their probability 

distributions. 

Deep Learning Synthesizers 

We review generative models that use deep learning architectures such as convolutional 

neural networks (CNN) and recurrent neural networks (RNN). SenseGen is a generative model 

proposed by (Alzantot et al., 2017) which synthesizes sensory data. The promising results in 
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generative models as shown in SenseGen are a consequence of recent advancement in deep 

learning architectures. The SenseGen synthesizer is designed using Long-Short-Term Memory 

(LSTM) network architecture.  

The LSTM network is a type of RNN that uses feedback connections. LSTM have hidden 

layers which contain hidden cells. Each hidden cell in an LSTM layer comprises of multiple hidden 

units which are composed of a cell, and memory gates that control the internal flow of information. 

SenseGen synthetic sensory measurements are validated using a discriminator model that is trained 

to distinguish between the real and synthetic measurements. The prediction performance of this 

discriminator model are used as the quality check for the synthetic measurements. 

Generative Adversarial Network Synthesizers 

Generative Adversarial Networks (GAN) have demonstrated huge success in generating 

synthetic images. The GAN architecture was first proposed by (Goodfellow et al., 2014) and the 

network consists of two separate competing (adversarial) neural networks that learn from each 

other. The two neural networks in the GAN model are a generator model and a discriminator 

model.  

The generator model creates synthetic data which is evaluated by the discriminator model 

as either real or fake. The evaluation of synthetic data by the discriminator helps the generator 

create better and more realistic samples. As the generator improves, so does the discriminator 

which learns to better distinguish real and fake samples. We review how GAN models have been 

used successfully to synthesize medical images as proposed the works of (Xu et al., 2019), (Choi 

et al., 2017), (Torkzadehmahani et al., 2019), (Beers et al., 2018), (Nie et al., 2017), and (Guibas 

et al., 2017). 
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The CTGAN proposed by (Xu et al., 2019) which is also implemented as part of the SDV 

library, is a conditional GAN that uses the packing framework in (Lin et al., 2020). CTGAN mainly 

handles multi-modal distributions characteristics in tabular datasets. The TVAE model also by (Xu 

et al., 2019) implements two neural networks that ease the characteristic mixed data-types present 

in a single tabular dataset. The CTGAN and TVAE models learn tabular datasets and generate 

synthetic versions that match the structure and statistical properties of the real-world dataset. 

CTGAN and TVAE synthesized datasets are evaluated on the following analysis (i) statistical, (ii) 

likelihood fitness, (iii) machine learning discriminator, (iv) machine learning efficacy, and (v) 

adversarial attack.  

Both CTGAN and TVAE models have been used to synthesize the same longitudinal EHR 

datasets in medGAN proposed by (Choi et al., 2017). EHR datasets are raw or aggregated digital 

versions of manual treatment entries in patient medical charts and contain a wide range of patient 

data types including medical imaging, pharmaceutical, time sequence records (medical history, 

vital signs, demographics), and discrete laboratory measurements.   

In medGAN (Choi et al., 2017) combined a GAN and a Variational AutoEncoder (VAE) 

with mini-batch averaging to synthesize discrete multi-label high dimension EHRs. The medGAN 

synthesis is focused on PAMF, MIMIC II (Intensive Care Unit) and Sutter heart failure EHR 

datasets. Statistical, machine learning efficacy and expert review are the evaluations methods used 

to validate synthesized medGAN samples. 

The goal of DP-CGAN (Differentially Private Synthetic Data and Label Generation) in 

(Torkzadehmahani et al., 2019) is to generate synthetic images and their corresponding label while 

preserving the privacy of the training data. (Torkzadehmahani et al., 2019) proposes use of a 



 

19 

privacy budget with a Renyi differential privacy accountant. The DP-CGAN approach illustrates 

differential privacy as replacing a specific individual with a random individual from the 

population.  

In the context of individual replacement, the model should learn the same thing about the 

data in presence or absence of the replaced individual. (Torkzadehmahani et al., 2019) use gradient 

clipping and privatize model training by injecting random Gaussian noise in the discriminator 

optimization. The privacy budget is monitored and kept below a preset target throughout the 

training. Results from this approach are on the MNIST dataset which is used to train the DP-CGAN 

with 60k real samples and labels and it generates another 60k synthetic samples and labels. 

Synthetic image validation uses classification performances of logistic regression and multi-layer 

perceptron classifiers. 

The focus of the PCGAN (Progressively Growing GAN) training methodology in (Beers 

et al., 2018) is to produce high-resolution synthesized biomedical images. Unlike traditional GAN 

training, (Beers et al., 2018) proposes to grow the generator and discriminator simultaneously by 

up-sampling and adding a convolution layer to each side for each phase of training. This 

progressively growing GAN architecture and training method produces significantly superior 

images as shown in (Beers et al., 2018). In their work, (Beers et al., 2018) present the results of 

eye fundus images for retinopathy and multi-modal glioma MRI. The synthesized images are 

validated for quality using a state-of-the-art vessel segmentation model and report an AUC of 97% 

on the generated data. To further bolster the results, the (Beers et al., 2018) demonstrate and 

confirm using the nearest-neighbors method that PGGAN generate vessel trees that lie outside the 

original training set. 
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3D images present healthcare providers better image resolution and more visualization 

angles of the target scan location. For patients, 3D images reduce duration of exposure to radiology 

imaging by producing fewer and more detailed images. (Nie et al., 2017) proposes a context-aware 

GAN that generates 3D computerized tomography scans from collected MRI images. The use of 

adversarial training strategy and a specialized image gradient difference loss function ensures that 

the model produces realistic images.  

This context-aware GAN works on 3D volumetric patches using fully connected networks. 

During testing, the MRI patches of dimensions 32 × 32 × 32 are used to generate CT patches of 

dimensions 16×16×16. The predicted patches are merged by averaging over the intensities of the 

overlapping regions. An AutoContext model is used and allows leveraging probability map of 

previous classifier iteratively as an added context. This approach improves the receptive field of 

the model beyond the current patch. The synthetic 3D image scans are validated in terms of 

predication accuracy and (Nie et al., 2017) present results from both brain and pelvic images. Their 

results show significant improvement in model performance over traditional methods especially 

when AutoContext models are used. 

(Guibas et al., 2017) proposes the DualGAN, a two-part pipeline with individual focus on 

geometric structure and realistic image generation. The DualGAN task is split into two individual 

GANs which show improved performance in generation of photorealistic vessel tree segmentation 

and corresponding synthesized retinal fundus images. The first stage of the proposed pipeline 

generates vessel tree segmentation masks using DCGAN (Deep Convolutional GAN). 

The DCGAN uses convolution layers entirely without any pooling layers which are known 

for loss of spatial information. In the second stage of the pipeline, a CGAN (Conditional GAN) is 
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used to generate the photorealistic retina fundus images. During the training process, the CGAN 

accepts as input corresponding segmentation masks and retina fundus images. The CGAN then 

performs style transfer which outputs the photorealistic retina fundus image on the vessel tree 

segmentation input. 

The synthesized retina fundus images are validated both qualitatively using side by side 

images of the real and synthesized images, and quantitatively by training a segmentation network 

with the synthesized images and testing the classification accuracy with real images. Additionally, 

(Guibas et al., 2017) computed the variance in the real and synthesized images using the Kullback-

Leibler divergence score. 

2.4 Summary 

This study provides a literature review of synthetic generators and measurements in 

healthcare. The review demonstrates how advances in computer vision methods have influenced 

medical image synthesis and analysis processes. Synthesized images are being used to innovate 

and improve systems that require large volumes of inaccessible real patient data in medical 

specialized areas such as cardiology, endocrinology, pulmonary, neurology, orthopedic, 

dentistry, and dermatology.  

Domain expert knowledge together with data collected from these medical areas continue 

to advance healthcare time-series and medical image synthesis as shown in Table 2.1. Realistic 

synthetic images in 2D and 3D formats are being synthesized from patient x-rays, magnetic 

resonance imaging (MRI), and computerized tomography (CT) scans. 
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The summary in Table 2.1, shows different computational approaches like mathematical 

modeling, heuristic optimization, stochastic process, and deep learning that highlight distinct 

features which uniquely enhance the synthesis process.  

Table 2.1. Summary of Synthetic Data Generators in Healthcare 
Synthesizers References Approach Features 

Process Driven (Wei, 1997) Whole-Heart Modeling Anatomic modeling 

 (Harumi et al., 1989) Monodomain / Bidomain Continuum model 

Data Driven (Shamsuddin et al., 2018) Evolutionary Algorithms 1D Time-series data 

 (Maweu2 et al., 2021)  1D, 2D time-series data 

 (Bogle et al., 2016) Statistical Matching EHR - Model central moments 

 (Walonoski et al., 2018).  EHR - Simulate patient 
population 

 (Alzantot et al., 2017) Deep Learning Sensory data 

 (Torkzadehmahani et al., 2019) Generative Adversarial Networks Differential Privacy 

 (Beers et al., 2018)  High resolution images 

 (Nie et al., 2017)  Gradient loss and AutoContext 
modeling 
 

 (Guibas et al., 2017)  Geometric structure modeling 

 (Xu et al., 2019)  Mult-imodal distributions 

 (Xu et al., 2019) Variational AutoEncoder Mixed-type datasets 

 (Choi et al., 2020)  Discrete variables with mini-
batch averaging 

 
Furthermore, in Table 2.2, we show a representation the healthcare data synthesis 

approaches in terms of the different healthcare imaging, time-series and tabular data types. We 

observe that synthetic generators have successful in generating statistically, expert valid images 

physiological signals, and EHR datasets.  

With images the main focus is to ensure that medical images are photo realistic and 

preserve or enhance image resolutions. Synthesis of physiological signals such as ECG and EEG 

ensures visually valid graphical representations and sensor correlation for high dimensional 

datasets. EHRs are collected during interactions with patients that seek medical care. EHR 
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datasets have unique challenges like mixed-type data types in a single patient record, unknown 

distributions, and missing values and the synthesis approaches in Table 2.2 aid in overcoming 

these challenges. 

 Table 2.2. Summary of Synthesized Healthcare Data-Types 

Data-Type Data Source Real-World Data 
Collection Methods 

Synthetic 
Generators References 

Images Brain  (Alzheimer) MRI Context-Aware GAN (Nie et al., 2017) 

 Brain (Glioma) MRI PCGAN (Beers et al., 2018) 

 Pelvic MRI Context-Aware GAN (Nie et al., 2017) 

 Diabetic Retinopathy Fundus Camera DCGAN (Guibas et al., 2017) 

 Retinopathy of Prematurity Fundus Camera PCGAN (Beers et al., 2018) 

Time-series Heart Electrocardiogram GES (Maweu2 et al., 2021) 

 Brain Electroencephalogram GA 
 
GES 

(Shamsuddin et al., 
2018)  
(Maweu2 et al., 2021) 
 

 Human Activity Accelerometer GA (Shamsuddin et al., 
2018) 

Tabular / EHR Longitudinal Health 
Records 

Manual/Digital 
Collection 

medGAN (Choi et al., 2020) 
(Xu et al., 2019) 
 

 Intensive Care Unit EHRs Manual/Digital 
Collection 

CTGAN (Choi et al., 2020) 
(Xu et al., 2019) 
 

 Heart Failure EHRs Manual/Digital 
Collection 

TVAE (Choi et al., 2020) 
(Xu et al., 2019) 

 
Beyond the synthesis process, this review provides insights into how data access 

challenges in healthcare motivate research in synthetic generators. Synthetic datasets are 

products of computer models not real patients therefore, healthcare data challenges are 

minimized and as such giving researchers unrestricted data access to leverage state-of-the-art 

machine learning algorithms for solving healthcare tasks.  

Finally, this review shows that in most cases only user defined or task specific schemes 

are used during synthetic data validation. In literature, a disproportionate number of proposed 

synthetic data generation methods do not follow a streamlined or generally accepted framework 
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for validating healthcare synthetic outputs. Therefore, in Chapter 4, we present a foundational 

framework for validating synthetic data that employs (i) statistical analysis, (ii) visual validation, 

(iii) expert validation, and (iv) machine learning validation methods.  



 

25 

CHAPTER 3 

CEFES: A CNN EXPLANABLE FRAMEWORK FOR ECG SIGNALS1 
 
 

Healthcare systems built on artificial intelligence technologies have shown tremendous 

success in solving complex domain problems. Most of these AI systems are used as a support tool 

for healthcare providers during the delivery of patient care. The basic understanding of the internal 

mechanisms of these systems has eluded most users and developers. Knowledge about how AI 

systems solve problems is important to healthcare stakeholders who are wholly accountable for 

the decisions made by these systems. Stakeholders seek to gain trust and confidence (Miotto et al., 

2018) when using AI in life-critical circumstances but the challenge is that AI systems remain 

opaque. AI decision support systems seemingly perform remarkably well and in some instances 

outperform human experts solving equivalent problems.  

The performance measures attributed to AI systems are traditionally in terms of model 

accuracy, precision, recall, and non-functional measures such as speed and ease of use. These 

traditional performance metrics are limited in providing meaningful information which can be used 

to clearly and precisely address the “what”, “how” and “why” questions about the inner workings 

of AI systems. Accuracy, precision, recall, area under the curve (AUC) inform about the degree to 

which a model accurately classifies its input. To answer these questions, researchers are 

investigating new and novel methods that consider the importance of interpretable and explainable 

models in the safety-critical healthcare domain.  

                                                 

1 ©2021 AIIM. Portion reused, with permission from B.M. Maweu, S. Dakshit, R. Shamsuddin, and B. Prabhakaran “CEFEs: A 
CNN Explainable Framework for ECG Signals,” in 2021 Artificial Intelligence in Medicine, 115, 102059. 
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Researchers have developed several methods of getting interpretable explanations from AI 

systems. Firstly, one method includes building self-explanatory models, which are models that 

integrate interpretability in their design and provide global or localized model explanations. 

Another method uses post hoc model analysis that evaluates model performance through input 

feature analysis. Input feature analysis explanations are derived from statistical and visual 

computations that assign feature importance scores to model inputs. In this work, we introduce a 

CNN Explainable Framework for ECG Signals (CEFEs) which provides post hoc analysis and 

interpretable explanations for CNN models trained on 1D ECG time-series datasets.  

Using CEFEs we achieve significant transparency and functional understanding of how 

AI-based decision support systems map ECG input signals to an arrhythmia classification. CEFEs 

analysis flow provides interpretable explanations about non-linear transformation and layer-wise 

representations learned by a CNN model. Additionally, we use the CEFEs' interpretable 

explanations to justify model capacity by investigating three model performance conditions, model 

improvement, model degradation, and model no-change situation. In the context of CEFEs, model 

capacity is the ability of a model to correctly classify a range of model input cases. 

The rigid structural characteristics of ECG signals, the small size of healthcare datasets 

(Shaikhina et al., 2017), the importance in the knowledge of how deep neural networks make 

decisions (Miotto et al., 2018), and limited research on knowledge encoded in 1D model inputs, 

motivated our choice of ECG signals for CEFEs implementation. In totality, the CEFEs framework 

achieves interpretable explanations through a functional understanding of the internal mechanism 

of CNN models trained on ECG signals thus addressing the trust gap found in these black-box 

systems.   
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3.1 Related Work 

The terms interpretations and explanations are often used interchangeably in the context of 

computational modeling. We adopt the definition of these two terms from (Montavon et al., 2018) 

whereby interpretation is the idea of mapping from feature space (for example a predicted class) 

into a human comprehendible space and explanations is a set of features in the interpretable space 

that contribute towards class discrimination. To understand research trends in the area of 

explainable AI (XAI), we review research literature focused on interpretable models and on post-

hoc model explanations.  

3.1.1 Interpretable Models Explanations 

Interpretable models integrate design features in the internal mechanism making it possible 

to extract interpretable explanations. Most research on interpretable models is concentrated on 

image data with limited work in other data types including time series. An automated method in 

(Zhang et al., 2018) is used to maps higher level CNN filters to an object-part (CNN semantics) 

rather than to the traditional image data patterns. This mapping technique is achieved by applying 

modification to the components of black-box deep learning models thus revealing model 

interpretable representations.  

In (Strum et al., 2016) a score is assigned to inputs. The Layer wise Relevance Propagation 

(LRP) method analyzes healthcare time series data (EEG) and translates model decisions into heat 

maps that explain the relevance of each data point with respect to that decision.  Unlike CEFEs, 

the decision explanations derived from (Strum et al., 2016) do not provide knowledge on temporal-

spatial features, patterns and morphological properties of time series that are learned by a model.  
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3.1.2 Post-hoc Model Explanations 

These explanations provide functional understanding of a trained model’s internal 

mechanism in relation to the model inputs. CEFEs is a post-hoc model explanations framework. 

An important feature of model explanations discussed in (Ribeiro et al., 2016 and Lundberg et al., 

2017) and shown in CEFEs is the flexibility of use in different deep learning models. Several post-

hoc explanations methods have been proposed, including shapelet extraction (Ye et al., 2010), 

backward propagation (Simonyan, et al., 2014), data perturbation and Local Interpretable Model-

agnostic Explanations (LIME) in (Ribeiro et al., 2016), shapely additive explanations (SHAP) 

(Lundberg et al., 2017), activation maximization (Montavon et al., 2018), Testing with Concept 

Activation Vectors (TCAV) in (Kim et al., 2018) and, visual explanations (Selvaraju et al., 2019). 

Explanations especially for time series data are proposed in CEFEs and in (Ye et al., 2010 

and Karlsson et al., 2018). The use of extracted time series subsequences known as shapelets to 

explain and discover the best representative pattern in time series target classes is proposed in (Ye 

et al., 2010). Time series tweaking is a method proposed in (Karlsson et al., 2018) that unlike 

CEFEs is not applied to deep networks models. In time series tweaking, the minimum number of 

changes needed in order to change an input classification outcome is computed for random forest 

type of classifier. 

(Lundberg et al., 2017) describes a method that determines how input features contribute 

towards model outcomes. Similarly, (Sundararajan et al., 2017) improves on feature scoring 

explanation techniques by identifying two axioms (sensitivity and implementation invariance) that 

need to be satisfied to accurately attribute model inputs to task outcomes.  LIME and SHAP are 

model-agnostic explanation methods.  In (Ribeiro et al., 2016), LIME finds model behavior that is 
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local to the input being considered. This is achieved by perturbing the inputs around the 

neighborhood of a sample and then determining the behavior of the model. Similarly, SHAP 

(Lundberg et al., 2017) also computes local explanations but unlike LIME, it uses Shapely values 

found in game theory to explain how input features contribute to an outcome.  Another feature 

importance based explanation is Concept Activation Vectors (CAV) by (Kim et al., 2018). This 

method quantifies the importance of input concepts in relation to model outcomes using directional 

derivatives. The goal of quantifying input feature importance is to subsequently draw attention to 

specific areas of an input that contain positive weight for a specific class.  

(Montavon et al., 2018) describes activation maximization as a framework that searches 

for input patterns that maximize model response. A technique that employs activation 

maximization is Gradient-weighted Class Activation Mapping (Grad-CAM) proposed in 

(Selvaraju et al., 2019). Grad-Cam is a visualization based explanations method for CNN models 

that uses activation maximization to tags the discriminative parts of each input class. The tagged 

regions are then highlighted and output as heat maps after computing class gradients of the input 

in the last CNN layer.  

Based on the research literature, few interpretation and explanations methods have been 

proposed for healthcare time series. The standard model performance metrics in deep learning 

classification tasks (accuracy, sensitivity, and selectivity) are insufficient in providing healthcare 

domain users with details of what features are learned by the model, which learned features 

contribute to model outcomes and whether the machine learned features can be mapped to the 

actual clinical features used in medical diagnosis. The ability to provide healthcare providers with 

human interpretable details from machine learning models foments trust, confidence and ease in 
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adoption of AI based decision support systems. The CEFEs framework proposed in this work 

describes how interpretable explanations are derived from CNN models trained on ECG time series 

data, and how this explanations can provide insights into model capacity. 

3.2 CEFEs Framework 

The goal of CEFEs is to provide transparency and functional understanding of the internal 

mechanism of CNN models trained on highly structure healthcare time series data by using a layer-

wise method of interpreting relevant features learned by such a model. The proposed end-to-end 

framework (Figure 3.1) together with the detailed inset of the explanations module (Figure 3.2) is 

a post-hoc tri-modular evaluation configuration that produces local interpretations and 

explanations from CNN layers. Local interpretations and explanations of a model explain the 

“why” of the prediction of an input instance.  

CEFEs modules provide users with the functional understanding of the CNN models in 

terms of data descriptive statistics, feature visualization, feature detection, and feature mapping. 

We identified three possible evaluation paradigms for CEFE: (a) model trained on different 

volumes of the same dataset; (b) different models trained on the same dataset; and (c) different 

models trained on different datasets.  

We present CEFEs modular operations and detail of how the framework achieves 

interpretable explanations artifacts. 
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Figure 3.1. CEFEs: CNN Framework for ECG Signals in (Maweu1 et al., 2021) 
 

3.2.1 Input Module 

CEFEs input module guides the flow that evaluates ECG data contained in a repository of 

real-world test data with a trained ECG classification model. Once a test data sample is evaluated 

on the model under consideration, the layer-wise model internals in form of learned feature maps 

are extracted and are subsequent inputs for the Explanation Module.  

3.2.2 Explanations Module 

Descriptive Statistics: These are summary statistical analysis representative of input data or 

machine learned features. This component uses task dependent statistical measures to analyze an 

input instance of ECG signal and the corresponding feature map extracted from a convolution layer 

of a trained CNN model. Statistical analysis is not limited to a specific convolution layer therefore 

a user has the choice of the layer under consideration. In CEFEs empirical study, we use the last 

convolution layer (Convfinal) because it combines both low and high level machine learned features 
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thus balancing spatial and semantics information that contribute to class discriminative component 

artifacts.  

The descriptive statistics components computes data and task dependent statistical 

measures therefore we analyzed input ECG signals and learned features using the Dynamic Time 

Warping (DTW) algorithm. DTW computes alignment similarities between the input ECG signal 

and layer-wise extracted feature sequences. DTW is an effective measure for analyzing and to 

compare both visually and with distance metrics, the learned representation present in the highly 

structured ECG waveforms.  

For better analysis, we organize computed DTW distance measures into intra-model and 

inter-model as shown in Equation 3.1 and Equation 3.2 respectively. The intra-model distance 

(dintra) is the warped Euclidean distance between an instance of real ECG input and feature map 

projections. The value dintra represents how well a model has learned ECG shape features and how 

well the learned features align to real ECG waveforms. Therefore, low dintra values indicate that a 

model has adequately learned ECG shape features.  

When dintra values are computed from more than one model, we consider the value 

difference between models as inter-model distance (dinter). The dinter values is then used as a 

comparative similarity/dissimilarity measure of ECG shape features learned between two separate 

CNN models. High dinter values effectively provide explanations of the differences in prediction 

outcomes between two models. DTW values provide interpretable explanations regarding 

a model’s capacity to learn shape features and subsequently the inherent statistical and mechanical 

features of ECG signals. By approximating dinter and dintra we can better understand possible 

threshold values useful in explain model outcomes. 
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𝑘𝑘=1        (3.1)  

 
Where k represents the samples, mth data point of one instance of input ECG sequence, nth data 

point of other input sequence (Feature Map).  

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  |𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑦𝑦1 −  𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑀𝑀𝑦𝑦2 |                                                                     (3.2) 

Inter-model distance variables My1, My2 represent the two separate models that are under model 

capacity comparative analysis.  

 

Figure 3.2. CEFEs Explainability Module in (Maweu1 et al., 2021) 
 

Feature Visualization: ECG signals are characterized by highly structured waveforms, segments 

and wave interval features. These visually discernable features in there structured form as seen in 

Figure 3.3 are essential diagnosis different cardiac conditions. Therefore, the ECG morphology is 

ideal for understanding the layer-wise feature transformations and the overall quality of features 

learned by black-box models.  

This CEFEs component uses visualization techniques that accept an instance of real ECG 

signal and resultant feature maps as inputs, then produce overlay plots artifacts. Overlay plots are 
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an effective visual schema that CEFEs uses to evaluate the similarities/dissimilarities of ECG 

morphology between an input ECG signal and model learned features. These overlay plots are 

easily interpretable by domain experts because they enable comparative visual validation of 

machine learned features against the ECG features typically used in cardiac diagnosis (Medical 

Tests, 2008 and Read ECG, 2010). 

 

Figure 3.3. ECG Clinical Features in (Maweu1 et al., 2021) 
 

Feature Detection: CEFEs feature detection component accounts for both time and frequency 

domain features and applies feature detection algorithms to input ECG and feature maps 

sequences.  

Time domain feature detection: The distinct ECG features are detected from these sequences, 

analyzed for structural similarities. These features including P-Q-R-S-T waveforms are 

characterized by quantifiable amplitudes, intervals and segments as shown in Figure 3.3. In 

addition to visual explanations of ECG waveforms, feature detection quantifies features present 

relative to the two input sequences. For example, given an ECG feature detection algorithms, one 

can compute the number of P-Q-R-S-T waveforms present in each sequence and then infer the 
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similarity/dissimilarity of the actual features in the input sequence and those detected in the layer-

wise machine learned sequence. To detect R-Peaks in CEFEs experiments the Engzee ECG 

segmentation algorithm (Engelse et al., 1979) was applied. We used the algorithm to detect and 

extract ECG features while keeping track of the count, position and interval of R-Peak detected. 

Our attention was on R-R intervals due to constraints such as CNN layer positional invariant, 

temporal-spatial dependencies in ECG signals and semantics role of the interval length occurrence. 

 

Figure 3.4. ECG Classes: Time domain features 
 
 
Frequency domain feature detection: CEFEs uses Continuous Wavelet Transform (CWT) to 

transform input ECG and feature maps into the time-frequency domain for analysis. The goal is to 

detect frequency bands in the two sequences and CWT has successfully been used to extract such 

features for ECG feature engineering efforts (Addison, 2005) and (Gautam et al., 2012), by 

enhance small differences in continuous inputs. With the extracted CWT features of the two 
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sequences being compared we compute their Mean-Squared-Error (MSE) as shown in Figure 3.5. 

Here we are looking for any localized frequency variation constrained by a time window and any 

observed differences are quantified. CEFEs accounts for high MSE values as an indicator for model 

capacity and poorly machined learned frequency domain features. 

 

Figure 3.5. CEFEs Mean Squared Error (MSE) computation using continuous wavelet transform 
(CWT) features. (Yellow in the normalized frequency heat maps is high magnitude 

3.2.3 Validation Module 

Feature Mapping: The artifacts from the explanations module are used to map features from input 

ECG and machine learned features using the computed comparison measures i.e., DTW (intra and 

inter values), overlay plots, R-Peak count, R-Peak position, R-R interval, and MSE. Mapping these 

features derives interpretable explanations regarding similarities/dissimilarities thus providing 

insights into model capacity and understanding why and how a CNN model arrives at a prediction. 

3.3 Methodology 

To achieve an exhaustive evaluation of a CNN model using CEFEs, we identified three 

possible evaluation paradigms that can be applied:  
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• Paradigm 1: A model trained on different volumes of the same dataset;  

• Paradigm 2: Different models trained on the same dataset;  

• Paradigm 3: Different models trained on different datasets.  

We note that models identified for Paradigm 2 require the use of different datasets which may 

introduce inconsistencies in the training process of a CNN model and by extension to the 

evaluation of the CEFEs model. Models for Paradigm 3 require multiple optimized deep learning 

architectures trained on datasets of different characteristics and biases, raising concerns of possible 

inconsistencies that could influence the evaluation of CEFEs.  

In our experiments, we evaluate CEFEs on a model trained in accordance with Paradigm 1 and 

leave evaluations using Paradigm 2 and 3 for future work. We chose to evaluate CEFEs using one 

model architecture trained on varying quantities of training data. CEFEs explanations were derived 

from a custom one-dimensional convolution neural network (1D-CNN) model trained on ECG 

signals to classify 4 ECG rhythms. 

Following model training, we performed post-hoc evaluation of the model using CEFEs’ 

modular tests.  CEFEs-based explanations derived from our 1D-CNN impart visual, metric, and 

feature-based analysis. CEFEs provides explanations for model improvement, model degradation, 

and no-change model in performance. Additionally, these model explanations provide insights into 

how varying quantity of training data affects model explanations. 

3.3.1 Convolutional Neural Network Architecture 

CNN models have demonstrated high accuracy in solving classification tasks the areas of 

computer vision and natural language processing. For that reason, we implemented a custom 14-
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layer CNN architecture to train and classify four classes of record-based 1D ECG signals and as 

the baseline for CEFEs experiments. The architecture comprised of 11 1D-CNN layers with filters 

of width 18 and varying kernels of sizes 32, 64, 128, or 256 which are grouped with max-pooling, 

activation, and dropout layers. The last layer is a 4 output dense layer with a softmax activation. 

We selected this 14-layer deep CNN model to accommodate the structural nature of ECG signals 

to allow adequate feature learning for good classification accuracy. 

3.3.2 Dataset Notation and Setup 

Dataset: We used the ECG dataset described in Table 5.1 as the real ECG signals and also as seed 

data for generation synthetic ECG signals using the synthesizer proposed in (Shamsuddin et al., 

2018). The four target classed in real ECG signals are the y input seed data (SD) into the 

synthesizer. 

𝑦𝑦 = 𝑋𝑋
𝑆𝑆𝑆𝑆

dim (𝑖𝑖)𝐿𝐿𝑗𝑗
           (3.3) 

 
𝑋𝑋𝑆𝑆𝑆𝑆dim (𝑖𝑖) is the real 1D ECG signal with Lj number of samples which in these experiments is set 

to 1800 data samples representing 5-sec long observations. The synthesizer then outputs v as 

synthetic data (VPD). 

𝑣𝑣 = 𝑋𝑋
𝑉𝑉𝑉𝑉𝑆𝑆

dim (𝑖𝑖)𝐿𝐿𝑗𝑗
                                                                                                         (3.4) 

 
𝑋𝑋𝑉𝑉𝑉𝑉𝑆𝑆dim (𝑖𝑖) is the synthetic 1D ECG signal with Lj number of same number of data samples and 

time duration as y. The dim(i) is the dimensionality of i, where i is a data sample. The generation 

of synthetic data from the real ECG seed signals maintains consistency in quality without 

introducing unrealistic variations between the real and the synthetic signals. 
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 Notation: We the following defined notation for our CNN trained model M<param1, param2> 

which describes proportion of real ECG signals (param1) and synthetic ECG signals (param2). 

To create the experimental training sets, we combined the training dataset such that R(i)  (Real ECG 

signals) and S(i) (Synthetic ECG signals) are positive numbers, and elements of set X= {0,1, 

...,100}selected in multiples of 20% that represent the proportion of real and synthetic data used 

to train model M, respectively. We define c as any positive number > 0 such that R (i + c) and S (i + 

c) are still elements of X. As an example, M<R100, S0> would indicate a CNN model (M) trained 

on a combination of 100% real ECG signals and 0% synthetic ECG signals.  

Training Setup: We trained the custom 14-layer CNN model with different datasets generated by 

augmenting real ECG signals with synthetic ECGS signals. A model was trained and tested only 

on real ECG signals and the rest of the models were trained with varying combinations of real and 

synthetic ECG signals. The synthetic ECG signals were incrementally added to the real ECG 

signals training set and all models were tested on real ECG signals test set (Table 3.1). 

Table 3.1. CNN model dataset setup (train/test) using real/synthetic ECG signals 
 

Real Train 

Data 

Uniform Testing 

Set 
Real Train Data Augmented with Synthetic Data 

ECG Class M<R100,S0> M<R100,S0> M<R100,S20> M<R100,S40> M<R100,S60> M<R100,S80> M<R100,S100> 

NSR 199 83 199+40 199+80 199+119 199+159 199+199 

AFIB 95 40 95+19 95+38 95+57 95+76 95+95 

PVC 94 39 94+19 94+38 94+56 94+75 94+94 

LBB 73 30 73+15 73+29 73+44 73+58 73+73 

TOTAL 461 192 554 645 737 829 922 

3.4 Results and Analysis 

We conducted comprehensive experiments with the goal of gaining interpretable explanations of 

the learning behavior of the 1D-CNN layer trained on ECG signals. We exposed our trained 
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models to CEFEs modular workflow to extract explanation artifacts then analyzed them for 

interpretable explanations. We analyzed our custom 1D-CNN models that were trained on real 

ECG signals to classification of four ECG signal classes. We then did case-based classification 

tests of the signals on these models. Feature maps were then extracted and used as inputs into the 

CEFEs integrated modules, and we then generated interpretable explanations that showed the 

layer-wise learning behavior of a CNN model. Results of from one candidate test case obtained 

from each CEFEs module analysis are summarized and presented. 

3.4.1 CNN Layer-Wise Machine Learning Behavior for ECG Signals  

Descriptive Statistics 

We computed DTW distanced measure dintra and alignment of sequences from the candidate test 

case and feature maps from the first convolution layer (Convfirst) and the last convolution layer 

(Convfinal) as shown in Figure 3.6. We observed dintra values of 293.6 units when comparing to 

Convfirst and 316.44 units for Convfinal.  

Analysis: The measure dintra shows increased dissimilarities with Convfinal and indicates that the 

model has inadequately learned features present in the candidate test case. 

 
Figure 3.6. DTW alignment (amplitude/time) | Euclidean distance | warping (blue: real | orange: 

feature map) 
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Feature Visualization 

We analyzed candidate test case and feature map sequences for the highly structure ECG 

waveform patterns (Figure 3.3) using CEFEs visualization scheme as shown in Figure 3.7 . The 

overlay plots enable visual and interpretable observations of ECG waveform features learned by 

the Convfirst and Convfinal, layers of the model respectively. From these visual observations, a 

domain expert is able to identify learned ECG waveform representations present in the Convfirst 

while Convfinal.  

Observations from Figure 3.7 show the presence of P, R, T waveforms in Convfirst while 

Convfinal shows learned features too highly complex for interpretation. The complexity of learned 

features as seen in Convfinal supports the incremental learning and interaction with high-level 

representations in deeper layers of deep neural networks. 

 

Figure 3.7. Feature visualization (amplitude/time) 
Feature Detection  

We used Engzee ECG segmentation algorithm (Engelse et al., 1979) to detect the number 

of R-Peaks, R-R interval, and the position of R-Peaks within the ECG input signal and respective 

Convfirst and Convfinal feature map sequences. The feature detection algorithm detects 8 R-Peaks 

in the input candidate test case, 6 and 4 R-Peaks in the two convolution layers respectively. When 
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evaluating the R-Peak positions and R-R intervals in Table 3.2, we observe in Convfirst similar 

positional properties as the input ECG more so than in Convfinal.  From these observations we see 

that ECG features (Figure 3.3) are have been learned by the model. The detection of features at 

both low and high level parts of the model shows that the model has learned a comprehensive set 

of ECG features in Figure 3.3. Additionally, we performed experiments to detect and compare 

frequency domain features between the candidate test case and from Convfirst and Convfinal.  

Table 3.2. Feature detection | R-Peaks (count & position) | R-R interval (position) 
Feature Detection 

Module Inputs 
# of R-Peaks R-Peak Position 

 
R-R Interval Position 

 
Candidate Test Case 

 

8 [80,158,393,639,888,1140,1392,165

 

[78,235,246,249,252,252,264

 
Convfirst 6 [376,622,871,1124,1375,1638] [246,249,253,251,263] 
Convfinal 4 [76,157,240,325] [81,83,85] 

The results in Table 3.3 show comparable computed MSE values of 0.046 and 0.049 when 

the candidate test case is compared with features from Convfirst and Convfinal respectively. From 

these computed MSE estimations, we conclude that there is minimal variation in the learned 

frequency features at the two layers of the model. 

Feature Mapping 

A complete evaluation of results from the components of the CEFEs explanation module, 

we see that using the overlay plots we are able to visually map real ECG features to those learned 

by the model. Moreover, quantifiable measures from DTW Figure 3.7, ECG feature detection 

Table 3.2 and CWT Table 3.3 provide a basis for interpretable explanations and understanding of 

the learning behavior of CNN models trained on highly structured 1D signals. The interpretable 

explanations from these experiments play a role in providing insight to the internal mechanism of 

deep learning black-box models. The gained transparency creates gains in building trust and 
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confidence with healthcare providers as they increasingly adopt deep learning based decision 

support systems. 

Table 3.3. Feature mapping | ECG Mean Squared Error of CWT Features (real /feature maps) 
MSE 

Candidate Tests Case and Convfirst 
MSE 

Candidate Tests Case and Convfinal 

.046 .049 

3.4.2 Interpretable Explanations for Model Capacity 

 We demonstrate how CEFEs interpretable explanations provide insights into model 

performance improvement, degradation, and in a no-change situation. With the limited access to 

healthcare data and the small size of available datasets, we use synthetic ECG signals to train 

models using the setup in Table 3.1. Synthetic ECG signals give us access to additional data which 

we incremental addition to the training set thus training several models with varying training data 

volumes.  

These trained models enabled us to evaluate the model performance of different CNN 

models. The trained CNN models were evaluated by identifying real ECG signal test cases that the 

models (a) classified correctly; (b) misclassified and (c) test cases where classification did not 

change even with increased training data. We analyzed the classification performance of the 

models in Table Classification Results for (i) Performance Improvements, (ii) Performance 

Degradations, and (iii) No-Difference Situations. We use the CEFEs framework to evaluate a 

single candidate test case in each category of model performance. 

Selecting the Experimental Candidate Test Cases: 

The primary motivation of our experiments is to demonstrate CEFEs’ ability to understand 

CNN model capacity for classifiers trained with highly structured ECG signals. Our experimental 



 

44 

design investigates three model behaviors that provide insights into a model capacity, (i) model 

improvement, (ii) model degradation, and (iii) model no change situation. We propose the use of 

synthetic data to understand, interpret and explain how CNN models trained with varying volumes 

of real training that are augmented with synthetic data learn. 

We have discussed the problem of small datasets in healthcare therefore, using synthetic 

data in our experiments provides an opportunity to access more training data and training effective 

learning models. To best evaluate model performance outcomes, we identified test cases that were 

(a) correctly classified, (b) misclassified, and (c) test cases whose predictions did not change even 

with improvement in the model’s performance metrics. With our models trained on multiple 

datasets (real and synthetic ECG signals) as describe in Paradigm 1 in section 3.3, we analyzed 

performance of the 1D-CNN model based on whether there were: (i) performance improvements, 

(ii) performance degradations, and (iii) No-Difference Situations. For each model behavior, we 

present candidate test cases to demonstrate how CEFEs can contribute towards 

explaining/interpreting each behavior case. 

Performance Improvements Test Case 

For understanding model performance improvements, we consider a candidate test case 

that shows improved classification outcomes when a model is augmented with additional synthetic 

data. The attributes for the candidate test case for evaluation of model performance are: (a) it is 

misclassified in model M < R100, Si,> and, (b) it is correctly classified by models M< R100, S (i + c)> 

(i.e., augmented with additional synthetic data).  



 

45 

Performance Degradation Test Case 

Model performance degradation considers two candidate test cases that evaluate classification 

outcomes in twofold:  

A. Classification outcomes change from correctly classified when a model is augmented with 

fewer synthetic data to misclassified when model is augmented with more synthetic data, 

i.e., a test case is correctly classified by models M< R100,, Si,> but misclassified by models 

M< R100, S(i + c)>. 

B. Changes in classification outcomes where a test case is correctly classified when model is 

trained only on real ECG data and is misclassified in all models augmented with synthetic 

data, i.e., a test case is correctly classified in models M< R100, S0> but misclassified in all 

models M< R100, S(i + c)>.   

Performance No-Difference Situation Test Case 

No-difference in performance situations are candidate test cases where we did not observe 

any performance change with respect to classification outcomes in all the models evaluated. The 

attributes for the candidate test case for evaluation of model no-difference situations are: (a) it is 

misclassified in model M<R100, S0>, and (b) misclassified in all models M<R100, S(i + c)>.   

Classification Performance from CNN Trained Models  

Both overall model performance and class-wise performance for all CNN models M<R100, 

Si> are reported in Table 3.4 and Table 3.5 respectively. From Table 3.4, we observed that by 

augmenting the real ECG training set with synthetic ECG signals model performance increased 

and model loss decreased. Performance metrics for all the models are from when the models were 

evaluated on 192 real ECG test set samples shown in Table Training Setup.  
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Model sensitivity and specificity are important because they indicate to healthcare 

providers how well the model can classify a true arrhythmia (sensitivity) or rule out the presence 

of arrhythmia (specificity) in cases of healthy patients. While these traditional metrics show model 

performance, they fail to reason the model performance and behavior of model capacity. 

Therefore, CEFEs comprehensive experiments demonstrate how interpretable explanations 

summarize model improvement, degradation, and no change in model performance. 

Table 3.4. CNN models classification performance for datasets incrementally augmented with 
synthetic ECG signals 

Trained Models Test Acc. (%) Test Loss (%) 

M<R100, S0> 78.12 0.5606 
M<R0, S100> 75.52 0.5294 

M<R100, S20> 75.52 0.6984 

M<R100, S40> 79.69 0.5351 

M<R100, S60> 80.21 0.5508 

M<R100, S80> 85.94 0.4140 

M<R100, S100> 91.15 0.3292 

The ECG class-wise view in Table 3.5, details additional classification performance 

metrics; positive predictive value (PPV), negative predictive value (NPV), false-positive rate 

(FPR), false-negative rate (FNR), selectivity, and specificity. These additional metrics are effective 

indicators of possible learning bias present in the models and from them, we can surmise a model’s 

ability to reduce false positives (FP) and false negatives (FN) samples.  

Prevalence | Positive Predictive Value (PPV):  = 𝑇𝑇𝑉𝑉
𝑇𝑇𝑉𝑉+𝐹𝐹𝑉𝑉

     (3.5) 

Negative Predictive Value (NPV):        = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

     (3.6) 

False Positive Rate (FPR):           = 𝐹𝐹𝑉𝑉
𝐹𝐹𝑉𝑉+𝑇𝑇𝑇𝑇

     (3.7) 

False Negative Rate (FNR):       = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑉𝑉

     (3.8) 



 

47 

Table 3.5. Class-wise classification performance for ECG signals 
Model Sensitivity Specificity PPV NPV FNR FPR 

M<R100, S0>       

NSR 71.08 88.99 83.10 80.17 28.12 11.01 

AFIB 92.50 96.05 86.05 97.99 7.50 3.95 

PVC 69.23 84.97 54.00 91.55 30.77 15.03 

LBB 90.00 99.38 96.43 98.17 10.00 0.62 

M<R0, S100>       

NSR 80.72 74.31 70.53 83.51 19.28 25.69 

AFIB 82.50 93.42 76.74 95.30 17.50 6.58 

PVC 43.59 94.77 68.00 86.83 56.41 5.23 

LBB 93.33 99.38 96.55 98.77 6.67 0.62 

M<R100, S20>       

NSR 83.13 78.90 75.00 86.00 16.88 21.10 

AFIB 80.00 88.82 65.31 94.41 20.00 11.18 

PVC 48.72 97.39 82.61 88.17 51.28 2.61 

LBB 83.33 98.15 89.29 96.95 16.67 1.85 

M<R100, S40>       

NSR 84.34 82.57 78.65 87.38 15.66 17.43 

AFIB 97.50 91.45 75.00 99.29 2.50 8.55 

PVC 41.03 96.73 76.19 86.55 58.97 6.67 

LBB 93.33 98.77 93.33 98.77 3.27 1.23 

M<R100, S60>       

NSR 85.54 84.40 80.68 88.46 14.46 15.60 

AFIB 95.00 89.47 70.37 98.55 5.00 10.53 

PVC 53.85 97.39 84.00 89.22 46.15 2.61 

LBB 80.00 99.38 96.00 96.41 20.00 0.62 

M<R100, S80>       

NSR 86.75 86.24 82.76 89.52 13.25 13.76 

AFIB 97.50 98.68 95.12 99.34 2.50 1.32 

PVC 64.10 94.77 75.76 91.19 35.90 5.23 

LBB 96.67 98.77 93.55 99.38 3.33 1.23 

M<R100, S100>       

NSR 98.80 86.24 84.54 98.95 1.20 13.76 

AFIB 100.00 99.34 97.56 100.00 0.00 0.66 

PVC 61.54 99.35 96.00 91.02 38.46 0.65 

LBB 96.67 100.00 100.00 99.39 3.33 0.00 
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Empirical CEFEs Thresholds 

Through an empirical study of CEFEs modular artifacts, we derived threshold values for the 

modular test DTW and MSE. The threshold values were computed by testing the framework with 

real ECG signals as follows: 

1. Obtain CEFEs modular test values from the 192 real data uniform testing set in Table 3.1. 

2. Average the obtained test values from M<R100, S0> over the whole test set to get a threshold 

value for each test. 

Assumptions: 

3. We reasoned that for real test samples correctly classified by model M<R100, S(i + c)>, the 

modular test values would be lower than the threshold value and vice versa for the 

misclassified samples. To better illustrate our reasoning, we explain finding using dintra as 

follows: for M<R100, S(i + c)> models that correctly classified a test sample, the dintra value 

was less than 300 units and greater than 300 units for misclassified test samples.  

The same procedure was followed for dinter, and MSE threshold values. 

• Threshold values from CEFEs descriptive statistics module were placed on both dintra and 

dinter values. Test cases with  

o dintra value > 300 units showed evidence of inadequately learned features present in 

the input ECG signal,  

o dinter values > 50 units showed evidence of differences in classification outcomes 

between models. 

• Threshold values from CEFEs feature detection and mapping module, developed the MSE 

threshold. 
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o MSE > 0.100 was evidence of misclassified test cases and inadequately frequency 

domain learned features.   

CEFEs evaluations hereon use these threshold values to interpret and explain model capacity and 

quality. 

Model Performance Improvements 

CNN models M<R100, S60> and M<R100, S80> were evaluated for understanding model 

performance improvement. The candidate test case was randomly selected from real ECG signals 

that had classified following the model performance improvement criteria. The input real ECG 

signal and its feature maps were from class NSR.  

Descriptive Statistics: We separately computed DTW values from feature maps in Convfinal of 

models M<R100, S60> and M<R100, S80> warped with the candidate test case as shown in Figure 

3.8. The dintra values for model M<R100, S80> were 73.743 units and 76.248 units for model 

M<R100, S60>. The distance between the Convfinal the two models was dinter of 2.505 units. The 

lower order of dintra values represents adequately learned ECG features by both the models and a 

low dinter shows minimal difference in the ECG learned features between the CNN models M<R100, 

S60> and M<R100, S80> although the candidate test case resulted in a different classification by 

each model.  

Feature Visualization: CEFEs generated overlay plots for the candidate test case and feature maps 

from Convfirst and Convfinal of CNN models M<R100, S60> and M<R100, S80>. Figure 3.9 shows 

distinct P, T peaks, and QRS complex ECG features from Convfirst of M<R100, S60> yet the same 

features in Convfinal are highly complex for visual interpretation. We recorded P, T peaks, and QRS 



 

50 

complex ECG features for Convfirst in M<R100, S80> the same as previously recorded for model 

M<R100, S60>. 

 

Figure 3.8. Model Improvement: DTW alignment (amplitude/time) | Euclidean distance | 
warping (blue: real | orange: feature map) 

 
However, the learned features of M<R100, S80>   displayed higher position accuracy of learned R-

Peaks features in relation to R-Peak positions of the candidate input ECG signal. The Convfinal in 

M<R100, S80> displayed highly complex learned feature set of P-R, S-T, QRS segments and U-

Peaks.  

Figure 3.9. Model Improvement: Feature visualization (amplitude/time) 
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Feature Detection and Mapping: In the case of model improvement we see in Table 3.6 that the 

M<R100, S60> learned similar number of R-Peaks and R-R interval position information as the test 

case. M<R100, S80> learned comparable features to the real data with one less detected R-Peak and 

(R-Peak, R-R interval) positions. We observed that M<R100, S80> had R-Peak positions closely 

aligned to the real data than M<R100, S60> and the MSE values in both models were comparable. 

Table 3.6. Model Improvement: Feature detection | R-Peaks (count & position) | R-R interval 
(position) 

Feature Detection Module 

Inputs 
# of R-Peaks R-Peak Position R-R Interval Position 

Candidate Test Case 

 

5 [298,644,964,1275,1575] [346, 320, 311, 300] 

M<R100, S80> 4 [293,641,962,1274] [ 348, 321, 312] 

M<R100, S60> 5 [85,279,628,949,1259] [ 194, 349, 321, 310] 

 

 

Figure 3.10. Case Model Improvement: performance accuracy (%), loss and MSE 
 

Model Performance Degradation 

We approached model performance degradation by using CEFEs modular evaluations separately 

on two sets of CNN models:  
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A. Models M<R100, S40> and M<R100, S60> both trained with datasets augmented with synthetic 

data were used for candidate test case for performance degradation A.  

CEFEs evaluations were applied to trained CNN models M<R100, S40> and M<R100, S60> using 

input ECG signal and feature maps from the NSR target class candidate test case. The test case 

was correctly classified in M<R100, S40> but was misclassified in M<R100, S60>. 

Descriptive Statistics: We computed dinter and dintra values for Convfinal of each CNN model 

evaluated (Figure 3.11). DTW alignments of CEFEs module inputs for models M<R100, S40> and 

M<R100, S60> had dintra values of 946.020 units and 874.27 units, respectively. The higher dintra 

values represent inadequate learned ECG features in both models while the higher dinter value of 

71.75 computed for M<R100, S60> and M<R100, S40> accounts for the variation in classification 

outcomes between these models. We note that the candidate test case was misclassified by M<R100, 

S60> although this model resulted in a lower dintra value. 

 

Figure 3.11. Model Degradation (A): DTW alignment (amplitude/time) | Euclidean distance | 
warping (blue: real | orange: feature map) 

 
Feature Visualization: CEFEs generated overlay plots of Convfirst and Convfinal and from M<R100, 

S40> and M<R100, S60>. In Figure 3.12 we observed R-Peaks in M<R100, S60> but failed to capture 

majority ECG features. Compared the previous observation, M<R100, S40> showed more 
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representative ECG features and this accounts for the correct classification of the candidate test 

case by M<R100, S40>. 

 

Figure 3.12. Model Degradation (A): Feature visualization (amplitude/time) 
Feature Detection and Mapping: Model degradation (A) features in Table 3.7 show that the 

M<R100, S60> learned comparable number of R-Peaks and R-R interval position information as the 

test case. Learned features in M<R100, S40> in terms of R-Peak and (R-Peak, R-R interval) 

positions are less aligned to those present in the test case.  

In model performance degradation of CNN models augmented with high quantities of 

synthetic data, we observed that M<R100, S60> had a lower MSE value although it misclassified 

the candidate test case. M<R100, S40> instead correctly classified the candidate test case with a 

higher MSE value. M<R100, S40> had model accuracy and loss slightly lower than M<R100, S60>.  

In Figure 3.14 the gradient signal in Convfinal for M<R100, S40> shows more intense 

activation and highlights the discriminative signal region used by the CNN model to correctly 
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classify the test case. Likewise, the lower loss in Figure 3.13 indicates the distance from the 

candidate test case in M<R100, S40> was less than in M<R100, S60> and therefore supports the 

correct classification by M<R100, S40>. 

Table 3.7. Model Degradation (A): Feature detection | R-Peaks (count & position) | R-R interval 
(position) 

Feature Detection Module 
Inputs # of R-Peaks R-Peak Position R-R Interval Position 

Candidate Test Case 8 [76, 14,558,805,1058,1303,1544,1780] [238, 244, 247, 253, 245, 241, 

 M<R100, S60> 7 [77, 315, 559, 808, 1059,1304, 1545] [238, 244, 249, 251, 245, 241] 

M<R100, S40> 6 [249, 493, 741, 997, 1238, 1479] [244, 248, 256, 241] 

 

 

Figure 3.13. Case Model Degradation (A): performance accuracy (%), loss and MSE 
 
B. Models M<R100, S0> and M<R100, S100> with one model trained on real ECG data only while 

the other was trained with both real and synthetic data were used for candidate test case for 

performance degradation B. 

Descriptive Statistics: We computed dinter and dintra values for Convfinal of each CNN model 

evaluated (Figure 3.15). DTW alignments of CEFEs module inputs for models M<R100, S0> and 

M<R100, S100> had dintra values of 317.32 units and 167.68 units, respectively. We observed a 
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higher dintra value in M<R100, S0> which is an indicator of inadequately learned ECG features, yet 

this model correctly classified the candidate test case. 

 

Figure 3.14. Case Model Degradation (A): Visualizing Convfinal Activations  
 

The dinter value was recorded at 149.64 units, a high difference that accounts for change in 

classification outcome but not the correct classification by M<R100, S0>. 

 

Figure 3.15. Model Degradation (B): DTW alignment (amplitude/time) | Euclidean distance | 
warping (blue: real | orange: feature map) 
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Feature Visualization: CEFEs generated overlay plots of Convfirst and Convfinal from M<R100, S0> 

and M<R100, S100>. In Figure 3.16 we observed R-Peaks in M<R100, S0> but failed to capture 

majority ECG features while observations of M<R100, S100> showed complex ECG features. The 

Convfinal of both models were not interpretable and therefore the learned ECG features are not 

detailed. 

 

Figure 3.16. Model Degradation (B): Feature visualization (amplitude/time) 
 

Feature Detection and Mapping: We observed model performance degradation in M<R100, S100> 

with was augmented with the same amount of synthetic data as the full real training set in M<R100, 

S0>. M<R100, S100> with higher accuracy, lower dintra, MSE value and training loss misclassified 

the candidate test case. The correct classification by M<R100, S0> may indicate induced bias by 

the synthetic data. 
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Table 3.8. Model Degradation (B): Feature detection | R-Peaks (count & position) | R-R interval 
(position) 

Feature Detection 
Module Inputs # of R-Peaks R-Peak Position R-R Interval Position 

Candidate Test Case 5 [208,581,991,1393,1784] 

 

[373, 410, 402, 391] 

 M<R100, S0> 4 [204,579,989,1390] 

 

[375, 410, 401] 

 M<R100, S100> 8 [83,154,256,471,580,1282,1400,1665] 

 

[71, 102, 215, 110, 702, 118, 

 

 

 

 

 
Figure 3.17. Case Model Degradation (B): performance accuracy (%), loss and MSE 

 
Model No-Difference Performance 

Evaluations in this section consider candidate test cases that did not show changes in 

classification outcomes regardless of model training data configuration. CEFEs modular 

evaluations were applied and results recorded for trained CNN models M<R100, S0> and M<R100, 

Si> using input ECG signal and feature maps from AFIB target class candidate test case. 

Descriptive Statistics: DTW values of models M<R100, S100> and M<R100, S0> were computed 

from feature maps of Convfinal and the alignment with the candidate test case (Figure 3.18). We 

recorded dintra values from Convfinal of 862.34 units and 887.87 units in M<R100, S100> and M<R100, 

S0>, respectively. The high dintra values which is an indicator of inadequately learned ECG 

features, is evidence for candidate test case misclassification by both models. 
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Feature Visualization: Figure 3.19 illustrates CEFEs generated overlay plots for Convfirst and 

Convfinal of M<R100, S0> and M<R100, S100>. In Convfirst of M<R100, S100> we observed learned 

ECG features including P and T peaks while in M<R100, S0> we observed more interpretable P, 

T, and U peaks. ECG learned features from Convfinal of M<R100, S100> and M<R100, S0> were 

highly complex for visual interpretations. 

 

Figure 3.18. Model No-Change: DTW alignment (amplitude/time) | Euclidean distance | warping 
(blue: real | orange: feature map) 

 

 

Figure 3.19. Model No-Change: Feature visualization (amplitude/time) 
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Feature Detection and Mapping 

In the case where there were no differences in classification outcome between a model 

trained with only real data and a model trained with data augmented with synthetic data, we see in 

Table 3.9 that the M<R100, S0> and M<R100, S100> learned similar number of R-Peaks and R-R 

interval position information as the test case. When we visualize the learned features in Figure 

3.19, we observe comparable waveforms in both models and additionally, the MSE values in 

Figure 3.20 were comparable to the test case despite the model classification accuracy and loss in 

M<R100, S100> being considerably higher and lower respectively. 

Table 3.9. Model No-Change: Feature detection | R-Peaks (count & position) | R-R interval 
(position) 

Feature Detection 
Module Inputs # of R-Peaks R-Peak Position R-R Interval Position 

Candidate Test Case 7 [74, 349, 623, 898,1171, 1451, 1733] 

 

[275, 274, 275, 273, 280, 282] 

 M<R100, S0> 7 [72, 348, 621, 896, 1170,1451, 1731] 

 

[276, 273, 275, 274, 281, 280] 

 M<R100, S100> 6 [332, 607, 882, 1154, 1435, 1716] 

 

[275, 275, 272, 281, 281] 

  

 
Figure 3.20. Case Model No-Change: performance accuracy (%), loss and MSE 
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3.5 Summary 

The challenges posed by a lack of concrete understanding of how artificial intelligence 

systems make decisions hinder the mainstream adoption of such systems in the healthcare domain. 

Furthermore, data scarcity due to privacy concerns and small imbalanced datasets in healthcare 

impede current efforts in healthcare systems research. The current state-of-the-art AI technologies 

require a large dataset to learn the representation of real-world data and train effective life-critical 

decision support models. 

This study on CEFEs is at the crossroads of these varying challenges, the need for 

interpretable explanations for AI systems, and the application of synthetic data as a means of 

additional data to facilitate the understanding of the prediction performance behaviors of deep 

learning model. CEFEs framework evaluates the internals of CNN models and produces modular 

interpretable explainable artifacts. CEFEs can be implemented on a single CNN model to 

understanding model capacity or with multiple CNN models for comparative evaluations that 

address model capacity or behavior in the lens of improvement, degradation, and no-change 

situations.  Comparative analysis of features present in real-world data and representations learned 

by a deep learning algorithm provides intuitive, common-place knowledge that addresses the trust 

gap found in healthcare artificial intelligence-based decision systems. 
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CHAPTER 4 

VPM: THE VIRTUAL PATIENT MODEL2  
 
 

4.1 The VPM Framework 

The Virtual Patient Model (VPM) is a framework consisting of six modules namely Seed 

Data Bank, Data Synthesizer, Statistical Analyzer, Machine Learning (ML) Validator, Visual 

Validator, and Virtual Patient Data (VPD). VPM is motivated by small and imbalanced datasets 

that are present as challenges in healthcare implementation of artificial intelligence methods. 

Trends in synthetic data generation methods (section 2.3) show unstructured validation strategies 

that do not cover fully account for quantitative and qualitative analysis necessary for validating 

synthetic data. VPM is a blueprint that boosts an end-to-end strategic approach to both quantitative 

and qualitative validation of synthetic healthcare datasets.  

VPM quantitative analysis of synthetic data is mainly implemented in the Statistical 

Analyzer and ML Validator modules. Statistical tests and learning algorithms are efficiently 

applied to real-world data and synthetic data. Responses from quantitative analysis (descriptive 

statistics, sample tests, machine learning performances) are used in comparative analysis of real 

and synthetic data. 

Qualitative analysis in VPM is in form of comparative visual inspections of real and 

synthetic data, expert analysis when available in the validation process and in performance 

                                                 

2 © 2018 IEEE. Portion reused, with permission from R. Shamsuddin, B.M. Maweu, and B. Prabhakaran “Virtual Patient Model: 
An Approach for Generating Synthetic Healthcare Time Series Data,” in 2018 IEEE International Conference on Healthcare 
Informatics (ICHI) IEEE, 2018, pp 208-218 
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outcomes of the models trained with data augmented with synthetic data. Figure 4.1 is a 

diagrammatic view of VPM modules and validation flow of generated synthetic data. 

 

Figure 4.1. The Virtual Patient Model Framework in (Shamsuddin et al., 2018) 

4.1.1 Seed Data Banks 

Healthcare data banks contain medical measurement obtained from patient using various 

medical devices during physician or hospital visits. These repositories of real patient data adhere 

to strict privacy laws that control the flow of the data while protecting the health information. The 

VPM framework integrates a data bank module as a collection and source point of real patient 

data. The data bank is characterized by various data formats including, medical scans, images, time 

series, and unstructured data. The module output is referred to as seed data and assumes it to bed 

in a format that can be operated on by subsequent VPM modules. Seed data summarizes all 

required characteristics necessary for analysis. 
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4.1.2 Data Synthesizer 

The VPM Data Synthesizer module is accountable for (i) optimizing constraints features 

and application features, (ii) the optimization algorithm, and (iii) output synthetic samples. The 

Data Synthesizer accepts any known model such that when given some optimizing constraints, it 

will output synthetic data that preserves the application features. Some examples of synthetic data 

generators that can utilize the VPM framework are Genetic Algorithm (GA) based time series 

synthesizer proposed in (Shamsuddin et al., 2018) and the Guided Evolutionary Synthesizer (GES) 

described in (Maweu2 et al., 2021).  

4.1.3 Statistical Analyzer 

The Statistical Analyzer is one of a series of VPM synthetic data validation modules that 

apply relevant validation tests to the synthetic outputs of the Data Synthesizer. The goal of the 

Statistical Analyzer is to determine whether the synthetic data realizes the underlying distribution 

and statistical properties of the real data. Statistical tests in this module would incorporate 

functions that evaluate the distribution, test for moments, quantiles, confidence intervals, and tests 

for hypothesis significance. Synthetic data that is successfully validated in this module is 

propagated to the next VPM module. 

4.1.4 Machine Learning Validator 

The ML Validator module uses machine learning algorithms that examine whether the 

synthetic data is Predictive Valid. There is no limitation to the type of machine learning algorithms 

used in this module therefore, synthetic data validations can use traditional machine learning 

(Decision Trees, k-Nearest Neighbor, Linear Regression), non-residual deep learning (plain 
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networks architectures without residual blocks), and residual deep learning (ResNet). A user 

achieves ML validation by implementing a task-specific model training schema that utilizes 

synthetic data in the training process. A training schema of this sort would incorporate a model 

trained on real data only and compare it against models trained on data augmented with synthetic 

data. 

4.1.5 Visual Validator 

The Visual Analyzer provides an additional platform in form of visual plots, overlay plots, 

and graphs which help with an easy and fast understanding of the real and synthetic data. The 

visual analysis gives insights into how well the structural patterns and trends of the real data are 

captured by the synthetic data. Data visualization provides easy real-time answers to information 

questions about the synthetic data without tedious algorithmic analysis. When a domain expert 

uses VPM Visual Analyzer to (i) inspect the data for outliers and similarities/dissimilarities, (ii) 

validate the visible features, and (iii) confirm the quality of data, we consider the synthetic data 

Expert Valid. A data sample that fails predictive validity is still acceptable for use and data storage 

synthetic with expert validation. 

4.1.6 Virtual Patient Data 

Virtual Patient Data (VPD) is a synthetic data repository whose content has been validated 

successfully by three of the four VPM validation modules (Statistical Analyzer, ML Validator, 

Visual Validator, and Expert Validation). VPD repositories are an effective tool that progresses 

research and innovations geared to deliver quality patient care. 
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CHAPTER 5 

VPM STATISTICAL ANALYSIS AND VISUAL VALIDATION IMPLEMENTATION 
 
 

We investigate methods that provide knowledge and improve classification performances 

of healthcare decision support systems. Increasingly, healthcare providers are using automated 

systems that aid in disease diagnosis. These automatic systems are built mainly upon AI backbone 

systems that have shown superhuman performances. While these decision support systems are 

effective at what they do, it is a healthcare data challenge to train them due to data scarcity, patient 

privacy requirements, irregular measurement collection patterns, and costly annotation of patient 

data. These healthcare data challenges motivate this implementation of the VPM synthetic data 

validation blueprint. We make the following VPM implementation assumptions: 

• The seed data for synthetic data generation is the experimental data sets described in Table 

5.1. 

• The constraint optimizer in the VPM Data Synthesis module is the Evolutionary Synthesis 

(GES) proposed in (Maweu2 et al., 2021). 

 Our experiments will demonstrate statistical tests, visual analysis, and non-residual and residual 

machine learning synthetic data validation on one dimensional (1D) and two dimensional (2D) 

publically available healthcare time-series datasets. 

5.1 Related Work 

Several studies have been done on validating synthetic data therefore, we review the 

proposed validation techniques. In the Synthetic Data Vault (SDV) (Patki et al., 2016) the 

generator is validated for predictive accuracy and subjective qualitative findings. SDV validation 
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for qualitative findings contains feedback from SDV users with the purpose of gauging any 

confusion experienced by users while using SDV data. A predictive accuracy validation in SDV 

is similarly accounted for in our study for the VPM framework ML Validation module. SDV 

feature scripts are computed on both real and synthetic data then measure the predictive accuracy 

of each group. T-test statistics are then performed on the accuracy groups returning a test decision 

for their null or alternative hypothesis.  

(Bogle et al., 2016) implement a synthetic data generator using a linear programming solver 

that achieves statistical moments, similar variables, and data types of the real data. This generator 

uses a macro that specifies the moment order and uses parameters that control the algorithm to 

vary the output size, determine the compute time and the quality of the synthetic data. Similar to 

the expected tests in the VPM statistical analysis module, (Bogle et al., 2016) compare the mean 

and standard deviation between the real and synthetic data. They also validate the data set variable 

interactions by computing covariance matrices and checking for similarities/dissimilarities in 

covariance magnitude. Finally, (Bogle et al., 2016) separately fit a logistic regression model to real 

and synthetic training data, apply the trained models to real test data and evaluate classification 

performance, sensitivity, and specificity.  

Recent research shows advancing synthetic data generation that uses deep learning 

algorithm like in (Alzantot et al., 2017) who proposed SenseGen, a sensory data generator that 

used deep learning architecture built on a Long-Short-Term Memory (LSTM) network. SenseGen 

synthetic data was validated using a discriminator model that was trained to distinguish between 

the real and synthetic samples. Unlike SenseGen validation strategy, VPM ML Validation module 

uses predictive performance measures to evaluate the quality of synthetic data. 
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5.2 Synthetic Data Generator 

The experimental synthetic time-series datasets are generated using the GES generator 

described in (Maweu2 et al., 2021). Two types of synthetic data are used where each set is 

synthesized with a fitness function with or without the following regularization terms: 

NoReg: A regularization term is not added to GES fitness function. 

Reg1: Uses a regularization term with the weight set to 1 and that minimizes the variance between 

the synthetic sample and a randomly selected real data that is not the generation template but is 

from the same target class. 

Reg2: Uses a regularization term with the weight set to 1 and that minimizes the mean difference 

between the synthetic sample and a randomly selected real data that is not the generation template 

but is from the same target class. 

5.3 Experimental Datasets 

We consider three publicly available datasets with contrasting purpose and complexity in 

healthcare. The datasets include measurements from electrocardiogram, electroencephalogram, 

and human activity recognition body sensors. 

Table 5.1. Definitions for the experimental datasets 
Dataset Shape Size Samples/ Instance Total Instances Structural Complexity 

EEG 2D (256,64) 16384 300 No 

ECG 1D (3600,1) 3600 654 P, T Waves, QRS Complex 

5.3.1 Electrocardiogram (ECG) 

 ECG recording captures changes in the electrical activity of the heart muscle over time. 

These recordings present as unique morphological patterns of P-QRS-T waveforms. Healthcare 
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providers use ECG as a basis of diagnosing heart conditions where disease manifests as deviations 

from the waveforms of a normal sinus rhythm. The ECG used in subsequent experiments were 

recorded at 360Hz from the MLII lead and a conversion factor of 200 ADU / mV. These are 10 

seconds long signals (record-based ECG) provided by (Plawiak 2017) which were derived from 

the PhysioNet MIT-BIH Arrhythmia dataset (Goldberger et al., 2000).  

The ECG signals were collected from forty-five patients: 19 females and 23 male subjects 

between the ages of 23 to 89 years old. While the full dataset contained 17 different heart rhythms, 

four rhythms were chosen to conduct the experiments: Normal Sinus Rhythm (NSR) the 

benchmark rhythm expected from a healthy patient and three abnormal rhythms, Atrial Fibrillation 

(AFIB), Premature Ventricular Contractions (PVC), and Left Bundle Branch Block (LBB). A total 

of 654 real patient records were used, 283 (NSR), 135 (AFIB), 133 (PVC), and 103 (LBB). 

5.3.2 Electroencephalogram (EEG) 

The electroencephalogram detects and measures active electrical impulses of the brain 

using varying number of electrodes placed on the scalp of a patient. The number of electrodes used 

to collect EEG data determine the overall dimensional complexity of a single dataset. Analysis of 

EEG for changes in brain activity are used to diagnose disorders such as epilepsy, strokes, tumors, 

and alcohol related conditions. The EEG dataset from (Begleiter 1975) was collected for a study 

seeking to identify factors associated with genetic predisposition to alcohol dependency.  

The participants were presented with varying image stimuli and readings were collected at 

256Hz for a duration of one second using 64 electrodes placed on 120 participants with each 

participant completing 120 trials of the study. The dataset was divided into a an alcoholic and 
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control set, the experiments presented in this study performed around participants presented with 

a one image stimulus as EEG Class A and those presented with two identical or distinct image 

stimuli as EEG Class B. 

5.4 Synthetic Data Validation 

The goal of synthetic data validation is to examine whether real data properties are captured 

during synthesis. Validation include testing for statistical properties (mean, variance, inter quartile 

range), correlation to validate that strength between sensors is maintained, and structural elements 

preservation using distance, upper/lower envelope measures. 

5.4.1 Statistical Analysis  

Here, we consider real and synthetic healthcare time-series data as two different (treatment) 

groups and compute respective descriptive statistics and the Wilcoxon Rank-Sum test. We use 

descriptive statistics to compare the statistical features between the groups. We then use a rank-

sum test to check whether these treatment groups are from the same population distribution for a 

given feature statistics. Table 5.2 shows that the synthetic data group has similar statistical features 

as the real-world data.  

The computed p-values for each feature statistic and the results from the rank-sum test at a 

5% significance level did not reject our assumption of equal feature statistics among these groups. 

The statistical analysis results suggest that the synthetic group preserved class-specific 

distributions and that class labels transferred from the seed template to the synthetic sample are 

valid. 
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Table 5.2. Descriptive statistics for real and synthetic datasets 
 Mean Variance Median IQR Min Max 

EEG Classes       

Class A (Real) -0.72 5.48 -0.74 2.42 -11.90 18.80 

Class A (Synthetic NoReg) -0.34 5.01 -0.38 2.29 -9.55 19.44 

Class B (Real) -2.97 8.30 -2.56 3.76 -17.63 11.40 

Class B (Synthetic NoReg) -2.59 7.60 -2.17 3.56 -16.77 11.87 

ECG Classes       

NSR (Real) 964.19 139.35 967 22 943 981 

NSR (Synthetic NoReg) 963.84 155.52 967.08 24.49 942.76 987.33 

AFIB (Real) 972.97 94.73 972 17 959 993 

AFIB (Synthetic NoReg) 972.69 87.37 970.49 14.64 956.67 992.73 

PVC (Real) 993.86 3943.75 975 24 926 1255 

PVC (Synthetic NoReg) 996.08 3731.53 982.55 31.12 926 1238.26 

LBB (Real) 1020.74 1157.56 1004 72 975 1072 

LBB (Synthetic NoReg) 1019.86 1264.85 995.09 68.78 979.62 1089.31 

5.4.2 Statistical Analysis of Highly Structured ECG  

The goal of this section is to test whether synthetic ECG data preserve class boundaries, 

and whether the highly structured element were preserved with statistical significance.  To do so, 

the real data and the synthetic data are treated as two groups for the Wilcoxon Rank-sum 

hypothesis test. The null hypothesis for this test is that both groups have the same intra-class 

variation distribution. If the null hypothesis is accepted (p-value > 0.05), then we accept that 

variations seen in the synthetic data falls within the class boundaries as defined by the real data. 



 

71 

We use DTW alignment as the variation similarity/dissimilarity measure. While DTW is 

not considered a metric, because it does not satisfy triangular inequality (Vidal et al., 1985), it 

provides a measure that signifies the degree of difference between two waveforms. To measure 

the intra-class variation, 50 pairs of signals were randomly sampled from a particular class for each 

test group. The DWT alignment value is calculated for each pair, and then the distribution of 

alignment values for the two groups are compared using the rank-sum test. 

 

Figure 5.1. ECG – NSR overlay plot showing DTW alignment of real and synthetic data 
 

Table 5.3 shows comparison of real intra-class variation with the intra-class variations from two 

synthetic groups: GES synthetic data; (b) data generated (referred to as Resampled in the table) 

using traditional perturbation techniques such as Noise Injection (Moreno-Barea et al., 2018) and 

Moving Average (MA). Moving average is a smoothing technique that computes average of the 

data over a fixed window size.  

We find that none of the p-value is significant at alpha=0.05, and thus, we accept the null 

hypothesis and conclude that the variation within the synthetic datasets maintain class boundaries. 

We also present the minimum and maximum of the real-world data sample group, to further verify 

that the mean DTW value obtained from the synthetic groups lie within the empirical range. 
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Table 5.3. DTW, rank-sum and p-value for real and synthetic data (GES & Resampled)  
ECG Classes 
 

p-value Min-Max DTW Real 
Test Group 

Mean DTW 
Synthetic Test Group 

  NSR: 20.70 - 426.0  
NSR (Real and Synthetic NoReg) 0.3610  117.6168 
NSR Real and Synthetic Reg1) 0.0296  107.4933 

NSR Real and Synthetic Reg2) 0.7174  128.5773 
NSR Real and Synthetic Resampled) 0.4340  157.3552 
  AFIB:  20.83 - 216.0  
AFIB (Real and Synthetic NoReg) 0.6666  71.4329 
AFIB (Real and Synthetic Reg1) 0.2539  72.3785 
AFIB (Real and Synthetic Reg2) 0.4928  72.9783 
AFIB (Real and Synthetic Resampled) 0.5884  73.8502 
  PVC: 24.00 - 287.5  
PVC (Real and Synthetic NoReg) 0.1891  96.2111 
PVC (Real and Synthetic Reg1) 0.1338  92.4071 
PVC (Real and Synthetic Reg2) 0.3574  101.2399 
PVC (Real and Synthetic Resampled) 0.9588  114.806 
  LBB: 28.03 – 250.0  
LBB (Real and Synthetic NoReg) 0.9753  94.4591 
LBB (Real and Synthetic Reg1) 0.8067  92.0541 
LBB (Real and Synthetic Reg2) 0.7854  91.9338 
LBB (Real and Synthetic Resampled) 0.6566  98.2305 

5.4.3 Visual Validation of Highly Structured ECG Signals 

A distinct characteristic of ECG is its highly structured wave morphology. Therefore, to 

evaluate whether the highly structured elements were preserved or distorted by GES, we take 

Dynamic Time Warping (DTW) measure between the real and synthetic time series. DTW is a 

non-linear mapping that maximizes alignment; higher the alignment, lower the DTW measure. 

Figure 5.1 shows the DTW alignment between an NSR sample of real data and the corresponding 

GES generated synthetic data. We observe that the synthetic data preserved the highly structured 

ECG wave. 
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5.4.4 ECG and EEG Visual Analysis 

We generate overlay plots of randomly selected real and GES synthetic data for EEG data 

and ECG signals. Patient ID 23 and 55, from EEG dataset and shown in Figure 5.2, are from target 

Class A and B, respectively. From the visual plots, we observe that changes over increasing time 

in GES generated synthetic data are similar but also, different from patterns in corresponding real 

(seed) data.  

 

Figure 5.2. EEG contour plots for Class A (Patient ID 23) and Class B (Patient ID 55). We show 
variations between real and synthetic data for 64 channels/sensors 2D data. 

We show in Figure 5.3, ECG class AFIB synthetic generated using the regularization terms in 

described in section 5.2. 
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Figure 5.3. Overlay plot of ECG class AFIB showing different variations from regularization 
terms 

5.4.5 Analyzing Sensor Correlation across EEG Instances and Datasets 

An instance of EEG data is represented by 64 channels and therefore it is important to 

maintain channel correlation within an instance of GES generated synthetic data. To demonstrate 

that GES maintains channel correlation, we compute the minimum and maximum MSE values 

between pairs of real EEG data instances over the entire dataset. Next, we compute MSE between 

real and synthetic correlation matrices of EEG data from five randomly selected patient ID (66, 

102, 123, 142, 149), as shown in Table 5.4. Evaluation of correlation from the randomly selected 

EEG patient data shows that their respective MSE values fall within the determined range of 

minimum (3.3365) and maximum (10.4094) MSE values. We therefore conclude that GES data 

generation process successfully preserves correlation between the channels (sensors).  

On the other hand, while MSE values (between the upper triangular correlation matrices of 

the real and synthetic data) close to zero are ideal, we observe different behavior in EEG dataset. 
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EEG captures spontaneous brain activity with individual characteristics and correlation that will 

vary from patient to patient. This additional EEG complexity varies data profiles across patients 

and sensors and can make them indistinguishable from random noise even when the underlying 

biological system may not be random (Pijn et al., 1991). Thus, we expect to see a higher range of 

variation in the MSE values calculated between the upper triangular correlation matrices of two 

real EEG data instances (even if they belong to same class). This analysis shows GES’s tendency 

to assume that any correlation present in real data originates from specific significant underlying 

biological events and not from individual characteristics. 

Table 5.4. EEG min-max real data MSE and its correlation with synthetic data 
EEG MSE (Real & Synthetic Data) 

Patient ID: 66 3.1124 
Patient ID: 102 2.0777 
Patient ID: 123 1.2532 
Patient ID: 142 1.1924 
Patient ID: 149 2.8603 

Min Real Data MSE: 3.3365               Max Real Data MSE: 10.4094 

5.5 Summary 

We implemented the proposed VPM quantitative and qualitative validation strategies for 

synthetic data generated using the generator called the Genetic Evolutionary Synthesizer (GES) in 

(Maweu2 et al., 2021).  The validation of the synthesized data demonstrated time series data of 

varying complexities (including dimensions and dimension lengths) and accounted for statistical, 

structural and preserved correlation among the data channels.  

We successfully demonstrated effectiveness of synthetic data in healthcare tasks through 

improvements in deep neural network performance in diverse and exhaustive experiments.  
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The central hypothesis guiding our experimental designs was that properly synthesized 

(synthetic data that retains distinguishable class-level features) and validated synthetic data can (a) 

augmented to deep learning training sets, or (b) serve as proxy training data for deep learning 

architectures. We showed in our experiments improved the classification accuracy, specificity, and 

sensitivity of state-of-the-art deep networks. The rationale for the hypothesis came from 

preliminary work with traditional machine learning algorithms and non-residual deep networks 

architectures, both of which showed promising results with synthesized data. Experimental results 

provided evidence of the following: 

• Quality of synthetic data in terms of preserving class-distinguishable features; 

• EEG diagnostic model that performed best was trained with lower volume of synthetic data 

training data when compared to other similar EEG models);  

• Ability to obtain better ECG diagnostic models using synthetic data that better handle 

learning biases such as those observed in NSR-PVC trade-off; 

• Showed that using synthetic data can address the challenge of class imbalances found in 

healthcare dataset. This was achieved without under-sampling the already small dataset 

considering that by under-sampling small datasets would result in overfitting training in 

deep networks. 
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CHAPTER 6 

IMPROVED PERFORMANCE OF AI-BASED HEALTHCARE DECISION SUPPORT  
  

SYSTEMS WITH SYNTHETIC DATA3 
 
 

Artificial intelligence continues to revolutionize the delivery of quality patient care. 

Information extracted and analyzed in the purview of healthcare is invaluable for enhanced 

personalized patient care, improved treatment plans for the overall patient health outcomes. Here, 

we propose synthetic healthcare datasets to boost the classification performance of deep neural 

network models and mitigate limited accessibility to data, the imbalanced nature of healthcare 

data. Once validated and analyzed for realism to real-world data, synthesized data presents a 

significant opportunity in overcoming privacy, ethical, and data collection concerns in addition to 

the cost of seeking medical experts for healthcare data annotation. Researchers gain access to 

publicly accessible, labeled, large, and balanced synthetic datasets for application to research 

initiatives. 

We use validated synthetic data to demonstrate improvements in the analytical and 

diagnostic prediction outcomes of real-world data of deep learning models. In a series of 

experiments, we observe model performance improvements in individually unique healthcare 

time-series datasets described in Table 5.1. We generate synthetic ECG, EEG, and accelerometer 

(AReM, APPENDIX A) datasets using the GES generator (Maweu et al., 2021) and use the 

                                                 

3 ©2021 IEEE. Portion reused, with permission, from B. Maweu, R. Shamsuddin, S, Dakshit, and B. Prabhakaran “Generating 
Healthcare Time Series Data for Improving Diagnostic Accuracy of Deep Neural Networks,” in IEEE Transactions on 
Instrumentation and Measurement, doi: 10.1109/TIM.2021.3077049 
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validated synthesized data in multiple experiments to train traditional machine learning algorithms, 

non-residual and residual deep networks.  

Model performance with synthesized data shows improvements specifically in better 

specificity and sensitivity when compared to models trained only on real-world data. We note that 

the reduction of false positives and false negatives values is significant when evaluating healthcare 

classifiers. Therefore, augmenting training sets with synthetic data for deep networks can result in 

better and more balanced classification models.  Experimental results show promising results for 

building decision support systems that use deep network backbones for predictions and diagnosis 

in healthcare. 

6.1 Related Work 

SDV validation using qualitative findings contains feedback from SDV users with the 

purpose of gauging any confusion experienced by users while using SDV data. Predictive 

validation in SDV, (Patki et al., 2016) computes feature scripts on both real and synthetic data then 

measure the predictive accuracy of each group. T-test statistics are then performed on the accuracy 

groups returning a test decision for their null or alternative hypothesis. Statistical analysis in (Bogle 

et al., 2016) compare the mean and standard deviation between the real and synthetic data. They 

also validate the data set variable interactions by computing covariance matrices and checking for 

similarities/dissimilarities in covariance magnitude. Finally, (Bogle et al., 2016) separately fit a 

logistic regression model to real and synthetic training data, apply the trained models to real test 

data and evaluate classification performance, sensitivity, and specificity. 
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6.2 Methodology 

We investigate the effect of synthetic data on the classification performances of (i) 

traditional machine learning algorithms, (ii) non-residual networks, and (iii) residual networks.  

6.2.1 Dataset Description 

The datasets used to train and test the models presented in the following experiments were 

derived using a train-test split of real ECG and EEG datasets (Table 5.1). The test split, which we 

refer to as a uniform testing set, has 31 EEG data samples with 13 Class A samples and 18 Class 

B samples. The ECG uniform testing set has 120 data samples with 30 data samples from each 

ECG class (NSR, AFIB, PVC, and LBB). All synthetic data used validation and performance 

analysis against a classification decision support system. The synthetic data was generated with 

the synthesizer GES (Maweu2 et al., 2021) using the datasets in Table 5.1 as the seed data/template. 

6.2.2 Traditional Machine Learning Algorithms 

We instantiated the VPM framework in (Shamsuddin et al., 2018) and used the weighted 

K-Nearest Neighbor (KNN), Decision Tree (DT), and Ensemble of Bagged Tree (TB) machine 

learning algorithms to classify the ECG experimental dataset. 

6.2.3 Non-Residual Network Architecture 

We evaluated classification performance of ECG dataset on the 16-layer 1D-CNN 

classifier proposed for long ECG sequences in (Yildirim et al., 2018). 
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6.2.4 Residual Network Architecture 

We grouped network layers into a convolution block and an identity block. The ResNet 

convolution block had three alternating one dimensional convolution neural network (1D-CNN) 

layers: a batch normalization layer (BN), an activation layer, and a 1D-CNN residual skip 

connection for dimensionality [17]. The identity block had three alternating layers: a 1D-CNN 

layer, a BN layer, and an activation layer. The filter setting for the alternating convolution and 

identity blocks are: (32 x 2 | 64 x 1), (64 x 2 | 128 x 1) and (128 x 2 | 256 x 1), and kernel size 3.  

The ResNet model had an input layer specified by dataset dimensional length. The next 

layers were two blocks of 1D-CNN, BN, and Activation layers followed by three alternating calls 

to one convolution block and two identity blocks. The dense output layer was specific to the 

number of classes in each dataset. We set our learning rate (LR) scheduler to the dynamic function 

ReduceLROnPlateau. Based on experimental estimations, we found that 200 epochs with early 

stopping (to monitor validation loss), and LR lower bounded at 0.001 with a 0.5 reduction factor, 

allowed optimal tuning during the training process. 

6.2.5 Metrics for Performance Measurement 

To understand classification performance, we used classification confusion matrices to 

observe how well a model predicted respective target classes True positive (TP), false positive 

(FP), true negative (TN) and false negative (FN) values were used to calculate accuracy, 

sensitivity, and specificity (Galen et al., 1975) together with statistical metrics were computed 

from confusion matrices valued outputs e.g., samples in the uniform testing set is never used for 

training.  
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Specificity is the ability of a model to correctly identify true negative test samples, and 

sensitivity the ability for the model to correctly identify true positive test samples. The metrics 

used to evaluate our trained DNN models are shown in Equations 6.1 through 6.3. 

Specificity | True Negative Rate (TNR):    = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑉𝑉

      (6.1) 

Sensitivity | True Positive Rate (TPR):     = 𝑇𝑇𝑉𝑉
𝑇𝑇𝑉𝑉+𝐹𝐹𝑇𝑇

      (6.2) 

Test Accuracy (Test Accuracy):                = 𝑇𝑇𝑉𝑉+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

      (6.3) 

6.2.6 Trained Model Naming Convention 

We adapt a naming convention for describing our trained models. In our experiments 

trained model are named as: Model (dataset, data source, number samples, regularization*optional) 

where (i) Dataset: one of the experimental datasets EEG and ECG, (ii) Data source: set comprised 

of a combination of real, synthetic, and resampled data, (iii) Number of samples: is the number of 

training data samples from each data source used to train a model, and (iv) Regularization: is a 

regularization term (NoReg, Reg1, and Reg2) defined in section 5.2.  

The regularization* term can be omitted if a regularization term is not used during 

synthesis. A sample usage of the naming convention is Model (ECG, Real + Syn,100, Reg1) that  

describes a model trained with a combination of 100 training samples equally from real data and 

synthetic ECG data generated using regularization term 1. 

6.3 Results and Analysis 

6.3.1 ECG Classification using Traditional Machine Learning 

For training the machine learning models, we followed three strategies: 
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1. Model (ECG, Real, 200): Train and test on real data.  

2. Model (ECG, Synthetic, 200, NoReg): Train, test on GES synthetic data.  

3. Model (ECG, Real + Synthetic, 200, NoReg):  

a. Train and test on real combination of real and GES synthetic data  

b. Train on real and GES synthetic data; test on real data 

For each strategy we report the machine learning algorithm with the highest classification 

accuracy. We observed equal classification accuracy of 80% with KNN for both Model (ECG, 

Real, 200) and Model (ECG, Synthetic, 200, NoReg), 82% with Bagged Tree for Model (ECG, 

Real + Synthetic, 200, NoReg), and 84% with Decision Tree for Model (ECG, Real + Synthetic, 

200, NoReg). Decision Tree had higher accuracy when Model (ECG, Real + Synthetic, 200, 

NoReg), was tested with real data. However, the Bagged Tree performed better on the same model 

when tested with a combination of real and synthetic data.  

Comparable classification accuracy between Strategy 1 and Strategy 2 demonstrates that 

validated synthetic data is sufficient for train learning models.  Also, the classification accuracy 

observed in traditional machine learning models improved when trained with real data augmented 

with validated synthetic data. 

6.3.2 ECG Classification using a No-Residual Network 

The non-residual network architecture was maintained when training the following four 

models. The training sets for the models had 200 data samples made up of data samples from 

different data source: 

1. Model (ECG, Real, 200) 

2. Model (ECG, Synthetic, 200, NoReg) 
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3. Model (ECG, Real + Synthetic, 200, NoReg) 

4. Model (ECG, Real + Resampled, 200)  

The trained models were tested on the ECG uniform testing set and the classification performance 

obtained from the models showed the highest accuracy of 91.15%, from Model (ECG, Real + 

Synthetic, 200, NoReg), Model (ECG, Synthetic, 200, NoReg) with 89.58%, Model (ECG, Real, 

200) with 88.54%, and Model (ECG, Real + Resampled, 200, NoReg) with 85.42%. 

 Classification performance from the trained models shows that of the four non-residual 

network classifiers, the one trained with real data augmented with synthetic data outperformed the 

others. We see also observed that using the VPM framework to analyze and validate the synthetic 

data before using it for training resulted in higher model performance and infers better quality than 

perturbed data samples. We infer this from the observed ~5.7% performance difference between 

Model (ECG, Real + Synthetic, 200, NoReg) and Model (ECG, Real + Resampled, 200, NoReg). 

Overall, the results from non-residual network classifiers revealed that when models are 

trained real data and augmented with validated synthetic data can produce higher performance than 

a model trained with real data only or a model augmented with samples generated using traditional 

data perturbation methods. 

6.3.3 ECG and EEG Classification using a Residual Network 

Promising classification performance trends from traditional machine learning and non-

residual networks inspired further investigation of the use of synthetic data in more complex and 

state-of-the-art DNNs. ResNets are well suited for solving vanishing gradient, overfitting, and 
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negative impacts of numerous variables, and are amenable to depth adjustments. These depth 

adjustments helped mitigate the different dimensional complexities of the experimental datasets.  

EEG and ECG ResNet Baseline Models  

In experiments Imbalanced, Full Real Data Training Sets, and Balanced Real Data 

Training Sets, we seek to obtain baseline models for the EEG and ECG datasets. We evaluate 

classification performance for the trained small, imbalanced, balanced, and complex models using 

the dataset's uniform testing set. 

Table 6.1. ResNet classification results for obtaining baseline models 
Trained Models Baseline Train Acc. (%) Test Acc. (%) Spec (%) Sens (%) 

EEG 
Model (EEG, Real, 160)   97.57 90.32 90.60 90.60 
Model (EEG, Real, 260)  97.65 75.00 75.00 75.00 

ECG 
Model (ECG, Real, 100)   95.13 94.13 96.94 90.83 
Model (ECG, Real, 200)   95.29 94.18 96.11 88.33 
Model (ECG, Real, 514)  98.83 95.00 96.67 90.00 

 

Imbalanced, Full Real Data Training Sets 

With this experiment, we get baseline models trained with our small and imbalanced 

datasets. We investigate the classification performance of these baseline models as benchmark 

performance for the remaining experiments. The trained EEG model used 260 possible data 

samples and ECG with 514 data samples. The experimental training sets were imbalanced. The 

imbalanced training set had at least one class in each dataset overrepresented by twice as many 

data samples. The EEG Class A and B were trained on 80 and 180 training data samples, 



 

85 

respectively, whereas ECG classes NSR, AFIB, PVC, and LBB were trained 248, 100, 98, and 68 

data samples, respectively. 

In Table 6.1, we observe poor classification accuracy, specificity, and sensitivity for Model 

(EEG, Real, 260) at 75%; whereas Model (ECG, Real, 514) shows better overall accuracy (95%) 

but has a huge difference of 6.7% between specificity and sensitivity. We attribute these observed 

results for both models to the imbalanced training sets, a common challenge found in healthcare 

datasets 5.3.1 and 5.3.2. The specificity and sensitivity obtained from ECG can be deemed 

sufficient for screening target arrhythmias in the general population but may not be efficient for 

diagnosing at-risk cohorts (Maxim et al., 2014). Therefore, the experiment described in section 

ResNet Model with Best Overall ECG Classification Performance investigates the specificity and 

sensitivity outcomes of the ECG trained models. Classification performance of imbalanced 

training sets guides us to find better EEG and ECG baseline models with balanced classes in the 

next experiment. 

Balanced Real Data Training Sets  

We balanced EEG and ECG training sets by creating subsets of training sets from the 

imbalanced training sets. Since we used only real data, this was only achievable through under-

sampling because Class A from the EEG dataset had the lowest number of samples. We randomly 

selected 80 data samples from class B to create a balanced training set for a total of 160 EEG 

samples. Two ECG training sets were balanced with an equal number of training samples for class 

NSR, AFIB, PVC, and LBB. One ECG training set had 100 data samples, and the other set had 

200 data samples. 
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Even with improved classification accuracy, sensitivity, and specificity when compared to 

the imbalanced Model (EEG, Real, 260), the balanced Model (EEG, Real, 160) had a ~7% 

difference between training and classification accuracy (Table 6.1). The difference in training and 

classification accuracy indicates possible overfitting and loss of generalizability in the model. The 

classification accuracies of the balanced Model (ECG, Real, 100) and Model (ECG, Real, 200) 

were comparable but showed a ~1% drop when compared to the imbalanced Model (ECG, Real, 

514). Disparities in the model specificity and sensitivity remained with a ~2% model sensitivity 

drop in Model (ECG, Real, 200).  Class-wise classification analysis of ECG models showed that 

Model (ECG, Real, 200) misclassified NSR test samples as PVC. This misclassification 

contributed to the drop in model sensitivity compared to Model (ECG, Real, 514), in experiment 

Imbalanced, Full Real Data Training Sets.   

Imbalanced Model (ECG, Real, 514) was trained on twice as many NSR training samples 

as PVC and may have just been predicting the majority class. We also visually compared the 

morphology of NSR and PVC and observed that their respective features were generally very 

similar. In a clinical context, PVC presents a single abnormal beat that occurs and disrupts the 

normal rhythm NSR. We further investigated these observations in section ResNet Model with Best 

Overall ECG Classification Performance. 

Evaluating ResNet Classification Performance 

Evaluating Quality of Validated Synthetic Data 

Despite the biases and disparities observed in the models trained with real data, the baseline 

models were still the best models we obtained from the experiments described in section EEG and 

ECG ResNet Baseline Models. Therefore, we use the baseline models to investigate whether they 
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can distinguish the respective classes in the artificial dataset obtained from GES. Model 

performance evaluations used a synthetic testing dataset synthesized with the uniform testing set 

as the synthesis template. 

We assume that if the classification accuracy of the baseline models is better than random 

chance (> 50%), we consider the synthetic data to be of good quality as that indicates the 

preservation of class-specific features within the GES synthetic dataset. 

Classification accuracy, specificity, and sensitivity in Table 6.2 show a comparison of EEG 

and ECG baseline models tested on uniform testing sets and GES synthetic testing sets. Based on 

our goals to validate and use quality synthetic data, these results show that the synthetic testing set 

achieved better than random accuracy. These comparable classification outcomes show that the 

synthetic generation process captured and preserved class properties present in real data.  

It is a favorable outcome, especially when considering the disparity between specificity 

and sensitivity values in Table 6.2, and the learning biases in the baseline models. Flexibility in a 

synthetic data generator allows researchers to apply constraints that control the variations induced 

during the generation process. 

Table 6.2. Comparative analysis of ResNet baseline models tested on real and synthetic data 
Baseline Models Tested on Real Data (%) Tested on Synthetic Data (%) 

Model (EEG, Real, 160) Acc.:  90.32 
Spec: 90.60 
Sens: 90.60 

Acc.:  87.10 
Spec: 86.75 
Sens: 86.75 

Model (ECG, Real, 100) Acc.:  94.13 
Spec: 96.94 
Sens: 90.83 

Acc.:  87.04 
Spec: 91.27 
Sens: 79.95 
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Evaluating Traditional Synthetic Data Perturbation 

In this experiment, we investigate how GES validated synthetic data measures against 

synthetic data generated using traditional data perturbation techniques. Data perturbation data 

samples were from techniques that similar to GES, operate on data space. Real data was perturbed 

with noise injection and moving average methods. Following synthetic data generation, we trained 

two ResNet models, one with real data augmented with validated synthetic data (Real + Synthetic), 

and another with real data augmented with noise injection and moving average perturbed data 

(Real + Resampled). Both models were tested on a uniform testing set and classification 

performances were compared, as shown in Table 6.3. 

We observe in Table 6.3 that EEG and ECG models augmented with GES synthetic data 

(Real + Synthetic) showed better classification performance than similar models augmented with 

synthetic data perturbation (Real + Resampled). Model (EEG, Real + Synthetic, 160, NoReg) had 

~30% better classification accuracy than Model (EEG, Real + Resampled, 160) when evaluated 

on a uniform testing set. Similarly, the Model (ECG, Real + Synthetic, 200, NoReg) augmented 

with GES synthetic data outperformed Model (ECG, Real + Resampled, 200) in classification 

accuracy, specificity, and sensitivity.  

Thus, the ResNet models trained with validated synthetic data performed better than similar 

models trained with data generated using traditional data perturbation methods. Because GES 

operates on the data space, its synthetic data is ideal for use in deep learning models that do not 

require feature engineering before use. As such, we did not consider over-sampling techniques 

such as Synthetic Minority Over-sampling Technique (SMOTE) proposed in (Chawla et al., 2002) 

because it generates synthetic samples from a feature space. 
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Table 6.3. ResNet classification performance for datasets with GES regularization options and 
with data perturbation 

 Test Acc. (%) Spec (%) Sens (%) 

EEG Trained Models 

 
Model (EEG, Real + Synthetic, 160, NoReg) 93.55 94.44 94.44 
Model (EEG, Real + Resampled, 160) 65.00 65.00 65.00 
ECG Trained Models 

 
Model (ECG, Real + Synthetic, 200, NoReg) 92.50 95.00 85.00 
Model (ECG, Real + Resampled,200) 85.83 90.56 71.67 
    
Model (ECG, Real + Synthetic, 100, NoReg) 95.00 96.67 90.00 
Model (ECG, Real + Synthetic, 100, Reg1) 96.25 97.50 92.50 
Model (ECG, Real + Synthetic, 100, Reg2) 96.25 97.50 92.50 

Effects of Using GES Regularization Feature on ResNet Models 

GES provides several customizable features that give researchers the needed control over 

the data generation process. One such feature is the ability for the researcher to use regularization 

term(s) in the objective function that enables feature transfer between samples. Here we evaluate 

and discuss how the use of the regularization terms NoReg, Reg1, and Reg2 (section 5.2) data 

affect the classification performance of ResNet models.  

ECG and EEG Use Cases for No Regularization Term Data Synthesis 

The default setting for the GES fitness function does not use a regularization term (NoReg 

in section 5.2). Therefore, we compare Model (EEG, Real + Synthetic, 160, NoReg) with Model 

(ECG, Real + Synthetic, 200, NoReg) from the experiment in section Evaluating Traditional 

Synthetic Data Perturbation, where both trained models used synthetic data generated with 

NoReg. The training set had an equal number of real and GES synthetic data training samples. 

Our experimental results in Table 6.3 show that the Model (EEG, Real + Synthetic, 160, 

NoReg) outperformed the baseline Model (EEG, Real, 160) (Table 6.1) in classification accuracy, 
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sensitivity, and specificity metrics. We note that the 93.55% accuracy in Model (EEG, Real + 

Synthetic, 160, NoReg) was lower than the model specificity and sensitivity of 94.44%.  

Specificity and sensitivity values do not necessarily reflect the accuracy values (Zhu et al., 2010) 

because they describe different aspects of a testing set. We observe lower classification accuracy 

and specificity in Model (ECG, Real + Synthetic, 200, NoReg) when compared to baseline Model 

(ECG, Real, 200) (Table 6.1).  

Upon visual inspection of the synthetic data, we concluded that the NoReg setting captured 

the rigid structures too tightly.  The inadequacy of the NoReg option motivates further 

investigations into how variations from regularization terms influence ResNet classification 

performance. 

ECG Use Case of Regularization Terms Reg1 and Reg2 for Synthesis 

We use the flexibility of GES to customize how the objective function injects variations 

into the synthetic samples. We used regularization terms Reg1 and Reg2 (section 5.2) to generate 

ECG synthetic data. We then compared classification performances of the ECG baseline models, 

and models trained with synthetic data generated using NoReg, Reg1, and Reg2 GES options. 

In Table 6.3, the classification results for Model (ECG, Real + Synthetic, 100, NoReg), 

Model (ECG, Real + Synthetic, 100, Reg1) and Model (ECG, Real + Synthetic, 100, Reg2) are 

reported. ECG baseline Model (ECG, Real, 100) reported in Table 6.1 had lower classification 

accuracy than models augmented and trained with GES NoReg, Reg1, and Reg2 synthetic data but 

showed better specificity and sensitivity than the NoReg model. All evaluated models had similar 

specificity and sensitivity. 
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Models Reg1 and Reg2 had the lowest specificity and sensitivity difference (~5%) and the 

best overall classification accuracy of 97.50%.  They also showed equal performance outcomes 

which suggest that the regularization terms were not different in how they influenced variation in 

the synthetic data. GES regularization terms improved the classification performance when 

compared to the baseline model, even though the specificity and sensitivity disparity remained to 

a lower extent.  

Therefore, it affirms that the quality validated GES synthetic data regardless of the 

regularization option achieves comparable performance to real data. Additionally, the varying 

classification outcomes observed in this experiment show the importance of having flexibility in 

the synthetic data generation process. A closer inspection at the specificity and sensitivity of each 

specific ECG class showed a trade-off of accuracy between PVC and NSR classes, and this 

observation motivates our next experiment. The trade-off between these classes is also observed 

in the work of (Hou et al., 2020). 

ResNet Model with Best Overall ECG Classification Performance 

We recall that in the experiment Balanced Real Data Training Sets, we visually compared 

obvious structural patterns in ECG classes NSR and PVC, which are the classes that influenced 

the performance disparities. To investigate the disparities, we trained and analyzed 33 ECG models 

to find a model that resulted in better specificity and sensitivity balance for NSR and PVC. These 

models were trained with varying compositions of real-world and GES synthetic data. These 

models were then ranked, based on the highest classification accuracy, sensitivity, and sensitivity 

for NSR and PVC separately. 
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Table 6.4. The top 5 ECG trained ResNet models sorted to show the best balance in specificity 
and sensitivity for class NSR and PVC 

NSR Sorted Models NSR AFIB PVC LBB 

Test Acc.  
                                                                                                      (%)                                                                                             

Spec  
(%) 

Sens  
(%) 

Spec  
(%) 

Sens  
(%) 

Spec  
(%) 

Sens  
(%) 

Spec  
(%) 

Sens  
(%) 

Model (ECG, Synthetic, 822, [NoReg,Reg1, Reg2])* 97.08 97.78 86.67 97.78 100 96.67 90.00 100 100 

Model (ECG, Synthetic, 411, NoReg) 96.67 96.67 86.67 100 96.67 94.44 90.00 100 100 

Model (ECG, Synthetic, 2056, NoReg)  97.08 93.33 96.67 100 93.33 98.89 86.67 100 100 

Model (ECG, Real + Synthetic, 500, [NoReg, Reg1, Reg2]) 96.25 100 73.33 100 96.67 91.11 100 98.89 100 

Model (ECG, Real + Synthetic, 100, Reg2) 96.25 100 73.33 100 96.67 91.11 100 98.89 100 

PVC Sorted Models NSR AFIB PVC LBB 

Test Acc.  
                                                                                                       (%)                                                                                           

Spec  
(%) 

Sens  
(%) 

Spec  
(%) 

Sens  
(%) 

Spec  
(%) 

Sens  
(%) 

Spec  
(%) 

Sens  
(%) 

Model (ECG, Real,514) 95.00 98.89 70.00 100 90.00 97.78 100 90.00 100 

Model (ECG, Synthetic, 2056, NoReg)  97.08 93.33 96.67 100 93.33 98.89 86.67 100 100 

Model (ECG, Synthetic, 822, [NoReg, Reg1, Reg2])* 97.08 97.78 86.67 97.78 100 96.67 90.00 100 100 

Model (ECG, Synthetic, 1234, NoReg) 95.00 95.56 76.67 97.78 96.67 96.67 86.67 96.67 100 

Model (ECG, Real + Synthetic, 500, [NoReg, Reg1, Reg2]) 96.25 100 73.33 100 96.67 91.11 100.00 98.89 100 

The top 5 models for NSR and PVC are listed in Table 6.4. To obtain the most balanced 

model for ECG classification, the models that are common among the two lists are examined.  

In Table 6.4, we show the model that best balances the disparities in NSR, and PVC classification 

performance was Model (ECG, Synthetic, 822, [NoReg, Reg1, Reg2]).  We trained this model 

entirely on a combination of equal volume (274 samples) of NoReg, Reg1, and Reg2 GES 

synthetic data. The model had overall classification accuracy of 97.08% and specificity, sensitivity 

difference of ~11% for NSR, and ~6.7% for PVC.  
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The average sensitivity and specificity for this model is 94% and 98% respectively, 

confirming that this model lowers the disparity to 4%, and is the best model among all the models 

we trained. Based on experimental results, models trained with real-world ECG data prioritized 

learning class PVC over NSR, whereas GES synthetic data in Model (ECG, Synthetic, 822, 

[NoReg, Reg1, Reg2]) generalized both classes thus better trade-off in performance metrics. 

Another model with similar results is the Model (ECG, Synthetic, 2056, NoReg), which too was 

trained on GES synthetic data. 

Data Complexity and Training Volume 

As mentioned earlier, HTSDs come with varying degrees of complexities and challenges. 

The two HTSDs we chose for this paper are EEG and ECG. Table 5.1 shows that while ECG is 

structurally complex, EEG is complex in terms of dimensionality.  EEG has more units of 

information/samples per patient than the ECG data. Here, we investigate how these two differing 

complexities interact with synthetic training data. To do so, we compared all the concerning ECG 

and EEG datasets models listed in Table 6.1 through Table 6.4 and introduce two new models for 

the EEG dataset in in Table 6.5. 

When the models are trained with real data only, we find that a lower number of training 

samples (in the 100 or 200 range) is enough to prevent overfitting for ECG data (Table 6.1). 

However, for the EEG data, training samples in the range of 93 (Table 6.5), 160, or even 260 

(Table 6.1) are not sufficient for overcome overfitting. When validated GES synthetic data 

augments the training set of these models, we found that the performance of the ECG dataset 

improved to some extent while keeping the data sample size at 100.  
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However, improvement in the disparity of specificity and sensitivity of ECG models 

requires a much larger quantity of training data (in the 822 or 2056 range). For the EEG dataset 

(with dimensional complexity), however, the best model we found was for a data sample size of 

186 (Table 6.5) with combined real and GES synthetic data. We note that even though we get a 

sufficiently good model with a 160 EEG training sample (real and GES synthetic combined), just 

increasing the number of training samples from 160 to 186 increases the classification accuracy 

by over 3%. Thus, we concluded that validated synthetic data, it is an effective option for 

augmenting small dataset for training machine learning models. 

Table 6.5. ResNet performance for EEG models trained with real only and real + synthetic data  
Trained Models Train Acc. (%) Test Acc. (%) Spec (%) Sens (%) 

Model(EEG, Real, 93) 93.68 77.42 75.21 75.21 

Model(EEG, Real + Synthetic, 186) 99.17 96.77 96.15 96.15 

Comparing ResNet ECG Classification Performance with Related Works 

Here, we compared ECG classification performance of published related work that 

reported record-based classification of ECG signals. Literature studies show that ECG 

classification tasks disproportionately employ beat-based classification over record-based 

classification. Record-based models are trained with multiple heartbeat recordings whereas beat-

based models are trained with single heartbeats. For this reason, we compared our work with the 

work in (Hou et al., 2020), which proposed a deep learning method that integrates a Support Vector 

Machine (SVM) classifier with a Long Short-Term Memory (LSTM) based auto encoders (AE) 

for ECG record-based classification for similar ECG target classes in our work. 



 

95 

In Table 6.6, classification outcomes from Model (ECG, Real + Synthetic, 100, Reg2) 

demonstrated higher overall model accuracy of 96.25% for the four ECG target classes compared 

to 83.51% for LSTM-AE (Hou et al., 2020). In tandem with our work, we observed disparities in 

specificity and sensitivity performance in (Hou et al., 2020).  Our model showed a ~4% difference 

in specificity and sensitivity compared to ~39% in LSTM-AE (Hou et al., 2020) 

Table 6.6. ECG record-based comparative classification performance for related work and a GES 
ResNet model  

ECG Class 

(Hou et al., 2020) 

LSTM-AE + SVM 

(Maweu2 et al., 2021) 

Model (ECG, Real + Synthetic, 100, Reg2) 

Spec (%) Sens (%) Spec (%) Sens (%) 

NSR 37.02 98.55 100 73.33 
AFIB 99.58 1.70 100 96.67 
PVC 90.89 71.50 91.11 100 
LBB 99.71 0 98.89 100 

 Acc. (%): 83.51 
Spec (%): 81.80 
Sens (%): 42.94 

Acc. (%): 96.25 
Spec (%): 97.50 
Sens (%): 92.50 

6.4 Summary 

We successfully demonstrated the effectiveness of validated synthetic data through 

observed improvements in classification performances from deep neural networks. The central 

hypothesis that guided the presented experimental designs is if quality synthetic data, i.e., synthetic 

data validated and tested for retained distinguishable class-level features, then this synthetic data 

can be used to train learning models and should improve the performance accuracy, specificity, 

and sensitivity of state-of-the-art deep networks. The rationale for this hypothesis was motivated 

by the promising results from preliminary work with traditional machine learning models (6.3.1) 

and non-residual networks (6.3.2).  



 

96 

 We presented a total of eight experiments using ResNets to classify EEG and ECG datasets, 

as detailed in section Table 5.1. These experiments provided evidence that supports (i) the 

importance of using quality of synthetic data in terms of preserving class-distinguishable features, 

(ii) that the EEG diagnostic model performed better when trained with synthetic data (even with a 

lower volume of training data compared to other similar models), (iii) that it is possible to obtain 

better ECG diagnostic models using validated synthetic data, and (iv) models trained with 

validated quality synthetic data handled the observed NSR-PVC trade-off better.  Additionally, the 

experiments showed that users can better address class imbalances with validated and quality 

synthetic data rather than utilizing under-sampling, which tends to cause overfitting in deep 

network models. Future investigations on synthetic data would be advancing personalized 

healthcare with methods that build a personalized repository of privacy-aware synthetic data. 
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APPENDIX A 

SUPPLEMENTAL WORK FOR CHAPTER 6 
 

ANALYSIS OF HUMAN ACTIVITY DATASET  
 
 

A.1. Activity Recognition Multisensors (AReM) Dataset 

Human activity recognition datasets are sequences of motion collected using wearable 

accelerometers sensor. The AReM dataset from (Palumbo et al., 2016) is a real-life benchmark 

of seven types of human activities from a wireless sensor network. The human activities in the 

dataset are bending (2 types as B1 and B2), cycling (CY), lying (LY), siting (SI), standing (ST), 

and walking (WA). The dataset consists of 87 participants with each having 6 compressed 480 

samples long sequences. Each sequence is a mean of the original data over 250ms. 

Table A.1. AReM Dataset Description 
Dataset Shape Size Samples/ Instance Total Instances Structural Complexity 

AReM 2D (480,6) 2880 87 XYZ Correlation 
 

A.2. AReM Statistical Analysis 
        Here, we consider the real data and synthetic data as two different (treatment) groups 

and compute (i) Descriptive Statistics, and (ii) The Wilcoxon Rank-Sum Test to gain insights of 

similarities and differences present in the groups. We use descriptive statistics to measure and 

compare central tendency and variability, and rank-sum to test whether the treatment groups are 

from the same population distribution for a given statistical feature of the time series data. 

Descriptive Statistics: We observe similar descriptive statistics on central tendency (mean and 

median) for all the dataset. We see similar variability statistics (variance and IQR) for AReM. 
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Variance and IQR values of real data are higher than those of synthetic data which suggests 

variability in AReM treatment groups. To test whether these differences are significant, we run the 

rank sum test next. If the differences are significant then that means the synthetic data generator 

was not able to preserve the statistical distribution of the associated class and that the automatic 

transfer of labels from real-world data to synthetic is not valid. 

Table A.2. AReM descriptive statistics for real and synthetic data 

AReM Sensors p-value Mean Variance Median IQR Min Max 

Sensor 1 (Real)  18.03 252.32 15.00 32.25 0.00 51.25 

Sensor 1(Synthetic) 0.7759 18.19 248.97 15.52 31.70 -3.97 51.25 

Data Aug 0.7957 18.53 264.92 15.42 33.30 0.00 54.54 

        

Sensor 2 (Real)  6.59 66.85 2.49 11.62 0.00 40.33 

Sensor 2(Synthetic) 0.4712 6.81 66.28 3.05 12.13 -2.98 44.77 

Data Aug 0.2113 6.48 61.80 2.71 12.46 0.00 38.80 

We generate overlay plots of randomly selected real and synthetic data for AReM X-Y-Z 

sensor axes. Visual analysis of AReM in Figure A.1 shows patterns from sensors three axes for 

class Bending1 (B1) activity. Synthetic data (blue plot line) shows patterns that are consistent with 

patterns in the real data (red plot line) and additionally, we visually observe that the XYZ 

coordinate correlation is maintained in the synthetic data. 
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Figure A.1. AReM XYZ axes overlay plot for real and synthetic data 

 
A.3. Comparing AReM Single Instance Correlation of Synthetic Data 

In examining whether sensor correlations are preserved during the synthesis process, we 

demonstrate correlation relationship of AReM multi-dimensional variables (e.g. biosensors) for a 

single instance of AReM real world and the corresponding GES synthetic data in correlation 

matrices. Table A.3 shows same class variable correlation (on the diagonal) between AReM real 

and synthetic sensor axis data. We observe similar high correlation between real and corresponding 

synthetic variables for these samples. The MSE mentioned in the caption of Table A.4 denotes the 

mean squared error between the upper triangular correlation matrices of the real and synthetic data 

for the individual. 

A.3.1. Comparing AReM Correlation across Instances and Dataset 

While MSE values (between the upper triangular correlation matrices of the real and 

synthetic data) close to zero are ideal we observe different behavior in the AReM dataset. Table 
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A.4 highlights the minimum and maximum MSE values we obtained from pairs of real-world 

AReM data instances from the entire dataset. 

Table A.3. AReM correlation across dataset 
B1 1.00       

B2 0.883 1.00      

CY 0.965 0.854 1.00     

LY 0.935 0.755 0.938 1.00    

SI 0.980 0.858 0.971 0.954 1.00   

ST 0.955 0.791 0.956 0.972 0.972 1.00  

WA 0.948 0.830 0.945 0.929 0.955 0.943 1.00 

REAL B1 B2 CY LY SI ST WA 

        

B1 1.00       

B2 0.885 1.00      

CY 0.967 0.856 1.00     

LY 0.936 0.757 0.940 1.00    

SI 0.981 0.859 0.972 0.955 1.00   

ST 0.955 0.791 0.957 0.973 0.973 1.00  

WA 0.950 0.832 0.947 0.931 0.956 0.944 1.00 

SYNTHETIC B1 B2 CY LY SI ST WA 

 

These values are minimum and maximum MSE values of 5.8140x10-5 and 1.9914 

respectively. MSE values for randomly selected AReM patients (Table A.4) are closer to the ideal 

because this dataset was preprocessed by (Palumbo et al., 2016) and therefore we expect low MSE 

values.  Since these MSE values for AReM instances fall within the respective MSE range 
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(calculated from pairs of real-world data instance) computed over the dataset, we conclude that the 

synthetic data generator successfully preserved the correlation between the biosensors when 

synthesizing the data.  

Table A.4. AReM min-max real data MSE with synthetic data  
AReM MSE of 

(Real & Synthetic Data) 
Patient 7 0.1513 

Patient 9 0.1661 

Patient 44 0.1535 

Patient 63 0.1585 

Patient 64 0.1631 

Min Real Data MSE:     5.8140x10-5 

Max Real Data MSE:    1.9914 

 

        

 

A.4. Obtaining the AReM Deep Neural Network Baseline Model 

Model (AReM, Real, 70) show good overall test accuracy but shows significant differences 

in specificity and sensitivity values. Model sensitivity in AReM is low at 88.10% compared to 

96.59% test accuracy and 97.75% specificity. The scenario of unbalanced dataset is more evident 

in AReM (with seven target classes) and volume of available train data is as low as 3 instances in 

target classes B1 and B2. Since the limiting reference number for AReM dataset is 3 and we cannot 

go either above or below it with using just real data, we do not implement a balanced AReM model. 

A.5. AReM Synthetic Data Compared to Traditional Perturbation Techniques 

We investigate the quality of AReM generated synthetic data by transforming real-world, 

labeled time series data to help deep learning models predict better. We do so by comparing 
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synthetic data to data obtained through data resampling /perturbation techniques. To obtain the 

augmented dataset, we applied moving average and noise to real training set.  

Table A.5. AReM ResNet classification results for baseline model 
Trained Models Baseline (%) 

Train Acc. 
(%) 

Test Acc. 
(%) 
Spec 

(%) 
Sens 

Model(AReM, Real, 70) AReM 97.74 96.59 97.75 88.10 

 
The comparison medium is the performance of two deep learning models, one trained on 

real and synthetic data (Real + Synthetic), and the other trained on real and resampled/perturbed 

data (Real + Resampled). Both models are tested on the same testing dataset consisting of only 

real-world data. We observe from Table A.6 that models trained on real and synthetic data using 

traditional perturbation techniques perform significantly lower than comparable models trained on 

real and synthetic data. In Table A.6, AReM test accuracy, specificity and sensitivity are lower 

than Model (AReM, Real + Synthetic, 70) which when tested on the unseen test set had 98.32%, 

99.05%, and 95.24% performance. 

Table A.6. AReM ResNet classification performance with data perturbation 

Trained Models (%) 
Test Acc. 

(%) 
Spec 

(%) 
Sens 

Model (AReM, Real + Synthetic, 70) 98.32 99.05 95.24 

Model (AReM, Real + Resampled, 70) 93.30 96.00 73.81 

A.5. Investigating Whether Deep Models Trained on AReM Real-World Data can Properly 

Classify AReM Synthetic Data 

If a model, which trained and learnt features from the real-world data, can also discriminate 

class features in the synthetic data that should provide evidence for success in the synthesis 
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process. However, since there were disparities in specificity and sensitivity, we do not expect very 

high testing accuracy. Instead, if the test accuracy is better than random and above the lowest 

observed test accuracy of ~80% from experiment in Table A.7, we say the synthesis process 

successfully synthesized the data.  

Another goal here is to use the baseline models as the second-best alternative to having a 

medical expert in the team. Since most teams do not have the relevant medical expertise, all 

synthetic data generation are set to strict constraints that control variations in the synthetic data. 

For this reason, we experiment to see if the synthetic data exhibits real-world features and 

preserves distinguishing properties among the target classes. 

With our goal for the experiment in mind, we see in Table A.7 that synthetic data achieved 

better than random test accuracy and higher than the lowest observed test accuracy of ~80%. These 

results show that class properties from real data are captured and maintained by during the 

synthesis process. Additional evidence of this comes from observation of pattern of specificity and 

sensitivity disparities seen in real data similarly present in the synthetic data performance metrics. 

A.6. Effect of Using AReM Synthetic Data to Train Deep Model for Classification Task 

AReM data does not present with dimensional or structural complexities but is a smaller 

dataset. Nonetheless, we see disparities in the specificity and sensitivity metrics in the AReM 

baseline model which is not a desirable outcome in healthcare. Therefore, we experiment with 

synthetic data and train deep models. In Table A.8 we organize class-wise specificity and 

sensitivity metrics of AReM deep models. AReM models demonstrates overall good predictive 

performance in all classes (except LY SI, and ST) and achieve 100% specificity and sensitivity. 
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Table A.7. AReM comparative analysis of ResNet baseline models tested on real and synthetic 
data 

 
Baseline Model 

(%) 
Tested on Real Data 

(%) 
Tested on Synthetic Data 

 

Model(AReM, Real, 

 

Acc.:  96.59 

 

Acc.:  97.07 

 
Spec: 97.75 

 

Spec: 98.22 

 
Sens: 88.10 Sens: 87.03 

 
In the real model, classes LY and SI have specificity of 91.67%, and 93.33% respectively 

and ST has sensitivity of 66.67%. We observe that models trained with synthetic data improved 

the specificity of LY sensitivity or SI while ST remained the same.  

We also observe that by training on only on GES generated synthetic data, the model 

achieves improved specificity in LY, and SI sensitivity while the metrics from the remaining 

classes are unchanged. AReM models Real + Synthetic and Synthetic Only both had test accuracy 

of 98.32% therefore their individual performance across all target classes was equivalent and 

supports the positive influence of synthetic data in training deep model for improved prediction 

performance. 

Table A.8. AReM comparing classification results for real, synthetic and real + synthetic models 

Classes 
Model(AReM, Real, 70) Model(AReM, Synthetic, 70) Model (AReM, Real + Synthetic, 70) 

(%) 
Spec 

(%) 
Sens 

(%) 
Spec 

(%) 
Sens 

(%) 
Spec 

(%) 
Sens 

B1 100 100 100 100 100 100 
B2 100 100 100 100 100 100 
CY 100 100 100 100 100 100 
LY 91.67 100 100 100 100 100 
SI 93.33 50.00 93.33 100 93.33 100 
ST 100 66.67 100 66.67 100 66.67 

WA 100 100 100 100 100 100 
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APPENDIX B 

DISCRIMINATOR MODEL FOR SYNTHETIC DATA VALIDATION 
 
 

We experimented with two binary classifiers (non-residual and residual architectures) and 

trained them to discriminate between ECG synthetic data (Class 0) and real-world data (Class 1). 

We hypothesize that good synthetic samples are indistinguishable from real-world samples with a 

discriminator with better than random accuracy. We trained our binary classifiers with 460 samples 

each from Class 0 and Class 1. 

B.1. CNN Model 

We trained several CNN models with the architecture described in section 3.3.1, and the 

parameters in Table B.1. The best achieved model accuracy was 49.74% accuracy which was 

basically random for classifying the real and synthetic data. The model was tested on 192 samples 

of real and synthetic data each. The classification results with this model are shown in Figure B.1. 

Table B.1. CNN architecture model parameters 
Total params:   3,246,530 
Trainable params:  3,243,530 
Non-trainable params:           0 

 
 

 
Figure B.1. CNN binary classification results for real and synthetic data 
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B.2. ResNet Model 

The poor representation learning observed in the CNN model motivated training a ResNet 

model with the parameters in Table B.2 and the same training data described previously. With this 

model we achieved 99.74% accuracy with 0.0040 Kullback-Leibler Divergence loss. The results 

shows that the two classes were highly separable by this model. 

Table B.2. ResNet architecture model parameters 
Total params:   1,685,346 
Trainable params:  1,681,154 
Non-trainable params:                  4,192 

 

 

Figure B.2. ResNet binary classification results for real and synthetic data 
 

We find that both the binary classifiers with the training parameters shown in Table B.1 

and Table B.2, the model performance was not stable over the k-10 fold cross validation. The 

observed random accuracy in the non-residual network classifier was very different from the 

accuracy of the residual network. To understand our learning problem, we decided to position the 

discriminator model as a Fine Grained Classification Problem rather than Binary Classification 

Problem. Approaching our classification as a fine grained classification problem means we seek 

that the learning network is able to distinguish the real data and synthetic data as classes that share 

similar structure and primarily have subtle differences at a localized level.  
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APPENDIX C 

GENERATIVE ADVERSARIAL NETWORKS 
 
 

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) are generative models 

that uses two deep neural networks (a generator and a discriminator) to learn representations, 

discover patterns and generate new data instances from real-world data. The generator network 

accepts as input random noise or conditioned noise from some distribution and is responsible for 

creating new data samples. Meanwhile, the discriminator network is trained to discriminate 

between the real data and synthetic samples produced by the generator network. 

C.1. DTW Vanilla GAN  

We implemented a DTW Vanilla GAN network Figure C.1 for generating ECG signals. 

The model computed SoftDTW loss in the generator and binary cross entropy in the discriminator 

with the following model training configurations:  

Configurations Settings 
{"GPU_device": "0"      "simulation_directory": ". /sim01", 
"model_type": "ecg_dtw_gan",  "generator_lr": 0.0002, 
"discriminator_lr": 0.0002,   "train_data": ". /NSR.csv", 
"valid_data": ". /valid.csv",   "minibatch_nb_kernels": 5, 
"minibatch_kernel_dims": 16,  "discriminator_final_activation": "sigmoid", 
"generator_lstm_hidden_units": 50,  "generator_final_activation": "tanh", 
"feature_range": [-1, 1],   "batch_size": 24, 
"Epochs": 2000,    "generator_rounds_per_epoch": 1, 
"discrimiantor_rounds_per_epoch": 3, "num_visualize_samples": 10} 
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Figure C.1. DTW GAN model  
 

We observed the following generated samples Figure C.2 which did not capture the structural 

characteristics of ECG signals. 

 

Figure C.2. DTW Vanilla GAN generated samples 

C.2. Self-Attention GAN 

In this experiment, we implemented a Self-Attention GAN Figure C.3 for ECG signals. We 

trained the generator using a discriminator frozen combined model and the discriminator loss was 

set to Wasserstein loss. Additionally, we computed the following metrics at each epoch because 

DTW and Maximum Mean Discrepancy (MMD) were costly to compute: 

• dtw_metric = Fast DTW (Salvador et al., 2004) 

• mmd_metric = Maximum Mean Discrepancy (MMD) Loss (Fortet et al., 1953) 

• kld_metric = tensorflow metric – KLDivergence  
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Figure C.3. GAN Conditioned on Daubechies ECG Approximation 

 

The model was trained with the following training configurations: 

{"GPU_device": "0"       "simulation_directory": “./sim02", 
 "model_type": "ecg_self_attention_gan","generator_lr": 0.0002, 
 "discriminator_lr": 0.0002,   "train_data": "./NSR.csv", 
 "valid_data": "./valid.csv",   "minibatch_nb_kernels": 5, 
 "minibatch_kernel_dims": 16,  "discriminator_final_activation": "sigmoid", 
 "generator_lstm_hidden_units": 50,  "generator_final_activation": null, 
 "feature_range": [0, 1],   "batch_size": 32, 
 "Epochs": 2000,    "generator_rounds_per_epoch": 1, 
 "discrimiantor_rounds_per_epoch": 3, "num_visualize_samples": 10, 
 "start_epoch": 0,    "num_duplicates": 2} 
We observed the following generated samples Figure C.4 which after about 2000 epochs showed 

the model progressively learning the cyclical peaks present in ECG signal but did not fully capture 

the well-defined waveforms. 

 

Figure C.4. Self-Attention GAN generated samples 
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