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This work presents a study on secondary flows, driven and sustained due to topographical

variations in the domain. The effects of these secondary flows on inner-outer interactions

are then analyzed. This type of interaction between the large-scale structures residing in the

logarithmic region and the small-scale structures in the near-wall region have been under

extensive study recently. And efforts are being made to develop a predictive model for the

dynamics of near-wall structures based on the measurements at a certain certain distance

from the wall. Such a model has immense practical implication for large-eddy simulations.

Existing work on amplitude modulation has been focused on smooth-wall flow, however re-

cently roughness-induced changes on amplitude and frequency modulation are being studied

which provides a better understanding of the interaction in real conditions. Here a similar

study is presented using wavelet analysis to examine how spanwise heterogeneity affects the

spectral density and correlation profiles, which provides a basis for the understanding of am-

plitude and frequency modulation. The topography under consideration are two Gaussian

mounds placed 2H apart, where H is the flow depth, which induce a domain-scale secondary

motion in the flow. The counter-rotating vortices are flanked on either side of the topography

such that prominent upwelling and downwelling occurs above the low and high roughness

vi



respectively. Two cases with the maximum height of the topography as h/H = 0.05 and 0.1

are considered, and the results are compared with a homogeneous roughness case (h/H = 0).

A change in the inclination angle of coherent structures is observed within downwelling re-

gion of the flow, however, it does not diminish inner-outer interactions. The extent to which

secondary flows disrupts the distribution of spectral density across constituent wavelengths

throughout the depth of the domain are also quantified. It is observed that the outer peak as-

sociated with the large-scale motions is preserved within the upwelling zone, but vanishes in

the downwelling zone. Single- and two- point correlation profiles for low-, intermediate- and

high-resolution are compared which validates the resolution independence. An important

observation indicates that the selection of reference location while computing the two-point

correlation profiles is quintessential. It is also revealed that the strength of modulation is not

determined by the wavelength at which the spectral energy resides, but by a mere presence

of energy above the separation scale.
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corresponds with Case 1 above (a) crest and (b) trough, Case 2 above (c) crest

and (d) trough and Case 1 above (e) crest and (f) trough. . . . . . . . . . . . . 33

3.8 Color flood contours of spectrograms of ũ/uτ based on Wavelet mode. Panels
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CHAPTER 1

INTRODUCTION

1.1 Introduction1

Near-wall turbulence is an interesting area of study due to its ubiquity in various flow

conditions ranging from urban landscapes, to pipe flows, to vegetative canopies. Turbulent

structures get smaller as the wall is approached (Townsend, 1976), which makes it difficult

to measure flow characteristics as Reynolds number increases. There have been extensive

studies on flow over smooth walls, which have revealed the presence of coherent structures of

different scales, ranging from those associated with the near-wall cycle (Kline et al., 1967; Rao

et al., 1971; Bandyopadhyay and Hussain, 1984) to large-scale motions (LSM) (Meinhart and

Adrian, 1995; Hutchins and Marusic, 2007a) associated with hairpin packets (Adrian et al.,

2000; Adrian, 2007), that reside in different regions of the domain (Kline et al., 1967; Adrian

et al., 2000). Roughness, however, ablates the viscous near-wall region by the formation of

roughness-scale eddies (Grass, 1971; Raupach et al., 1991; Mejia-Alvarez and Christensen,

2010), resulting in the roughness sublayer (Jimenez, 2004; Castro, 2007). Outer portions

of the flow (Townsend, 1976) only experience a momentum deficit, which is induced by the

roughness, known as the roughness function, ∆U+. Above the roughness sublayer, in the

inertial layer, provided H/h & 30, where H is the flow depth and h is the average element

height, Townsend’s hypothesis states that the outer-layer flow exhibits a universality and is

independent on roughness geometry (Townsend, 1976). The role of roughness is to set the

friction velocity, uτ , and roughness function, ∆U+ (Townsend, 1976; Jimenez, 2004). Outer-

layer similarity has been been confirmed by various experiments (Ganapathisubramani et al.,

1Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.

1



2003; Hutchins and Marusic, 2007a; Volino et al., 2007; Wu and Christensen, 2007), however

some have reported roughness effects on the streamwise velocity fluctuations in the outer

layer (Hong et al., 2012).

The presence of elongated low- and high-momentum regions in the outer-portion of the flow

with the length, l1/H ≈ 3, and inclination angle, θ ≈ 17◦ has been well established for

both smooth- and rough-wall flows. These coherent structures meander substantially in the

spanwise direction and coalesce to form very-large-scale motions (VLSMs) (Hutchins and

Marusic, 2007a) with length, l2/H ≈ 21, where H is boundary layer depth. The presence of

VLSMs has been observed in pipes (Ahn et al., 2015; Hellström et al., 2015), channels (Fang

and Porté-Agel, 2015; Jacob and Anderson, 2017), and boundary layers (Wu and Christensen,

2007; Ganapathisubramani et al., 2003; Wu and Christensen, 2010). Visualizations of pre-

multipied energy spectra (Hutchins and Marusic, 2007a; Fang and Porté-Agel, 2015; Jacob

and Anderson, 2017) reveals the presence of VLSMs in the logarithmic region as a secondary

peak in addition to the inner peak. The near-wall regions exhibits a prominent peak termed

as the inner-peak (Hutchins and Marusic, 2007a) which is associated with the near-wall

cycles (Jimnez and Pinelli, 1999) for smooth wall or roughness-scale eddies (Grass, 1971;

Raupach et al., 1991; Mejia-Alvarez and Christensen, 2010) for rough wall.

1.2 A note on Townsend’s and Taylor’s hypothesis

According to Townsend’s similarity hypothesis at high Reynolds number the turbulent flow

outside the near-wall region is independent of the wall roughness. However, recently there

have been some studies which show that a rough surface can substantially affect turbulent

characteristics well outside the near-wall region (Krogstadt and Antonia, 1999; Antonia and

Krogstad, 2001). While some have proved Townsend’s similarity hypothesis to be valid

(Schultz and Flack, 2009), others have observed that the roughness height, h/H, must have

a role in limiting the validity Townsend’s hypothesis (Castro et al., 2006). They claimed
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that for a sufficiently small value of roughness height (h/H) Townsend’s hypothesis seem to

occur but for cases with very rough surface where the height of the roughness is relatively

large the effect of roughness if felt beyond the near-wall region.

Another hypothesis of Townsend’s (attached eddy hypothesis) states that the eddies attached

to the wall grow in proportion to their distance from the wall in a self-similar manner. The

hairpin packet scenario proposed by Adrian et al. (2000) clearly supports Townsend’s at-

tached eddy hypothesis. They also explained that these hairpin packets with positive or

negative velocity fluctuations are the instantaneous visualization of the so-called coherent

structures or eddies that are attached to the wall. Therefore if we consider the validity of

Townsend’s attached eddy hypothesis in a highly rough-wall channel flow such as the present

study we can further claim that these eddies must feel the effect of this highly rough surface

which is heterogeneous in the spanwise direction.

Taylor’s frozen hypothesis states that advection contributed by turbulent circulations them-

selves is small and therefore the advection of a field of turbulence past a fixed point can

be taken to be entirely due to the mean flow. This hypothesis is valid for smooth walls,

however, there have been reports that for a rough-wall flow this seems to hold true for re-

gion well above the roughness sublayer, but violates within the roughness sublayer (Raupach

et al., 1996; Finnigan, 2000; Brunet et al., 1994). Therefore, even though the eddies are

still attached to the wall within the roughness sublayer, the flow is not homogeneous due

to presence individual roughness elements. This dictates that a temporal correlation cannot

be used to determine the attributes of the structures near the wall and hence a two-point

spatial correlation is needed to ensure an accurate estimation.

1.3 A note on Inclination Angle

The presence of coherent structures in the near-wall and log-region for both smooth (Adrian

et al., 2000) and rough wall (Jimenez, 2004) has been confirmed by numerous studies over

3



the past years. These coherent structures/hairpin packets which are attached to the wall are

inclined at an angle relative to the wall. The inclination angle of these coherent structures

for a smooth-wall has been reported to be in a range 12◦ − 15◦ (Adrian et al., 2000) which

increases as we move away from the wall. Although the canonical value of the inclination

angle of these hairpin packets is considered to be relatively consistent for a smooth wall

other studies have shown that this value changes drastically depending on the roughness

characteristics and topographic variations. Krogstad and Antonia (1994) computed two-

point correlation in the same plane for a smooth and rough wall. They reported that the

correlation contour were inclined at an average value of 10◦ for the smooth wall and 38◦ for

a rough wall. Coceal et al. (2007) measured the inclination angle using two point velocity

correlations for a flow over regular array of cubical roughness. They reported that the mean

inclination angle decreases sharply with height from 21.6◦ to 14.4◦. These studies imply that

the inclination angle of coherent structures in a rough-wall flow exhibit a behavior different

from those in a smooth-wall. Also, that the inclination angle in the roughness sublayer

for a rough-wall flow is highly dependent on the topographical arrangement and surface

complexity but is nonetheless always greater than canonical smooth-wall flows.

1.4 Energy cascade and Kolmogorov’s hypothesis

According to Kolmogorov’s hypothesis there exists a scale below which the only parameters

that affect the flow are rate at which small scales receive energy from the larger-scales (TE)

and kinematic viscosity, ν. And since, the dissipation rate, ε, is determined by the energy

transfer rate, TE, these two rates are nearly equal, i.e., ε ≈ TE. Therefore the structure

of any turbulent flow reflects the local balance of production, transport and dissipation of

turbulent kinetic energy. The transfer of energy is best explained by the mechanism of energy

cascading (Richardson 1922). According to Richardson the kinetic energy enters turbulence

(through the production mechanism) at the largest scales of motion. This energy is then
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transferred to smaller and smaller scales, until, it is dissipated by viscous actions at the

smallest (Kolmogorov) scales.

Guala et al. (2011), visualized the low-pass filtered velocity (which corresponds to VLSM)

and local dissipation (ε) time series at z+ = 288. A probabilistic analysis revealed that both

conditional average of dissipation and distribution of rare strong dissipation events are more

probable during large-scale velocity excursions, as compared to negative events. This clearly

shows a modulation effect of large-scale structures on the dissipative scale near the wall.

1.5 Low- and high-momentum pathways2

Recent studies have shown that there is a high degree of spanwise heterogeneity in the

mean flow when the surface roughness exhibits a prominent spanwise heterogeneity (Mejia-

Alvarez and Christensen, 2013; Barros and Christensen, 2014; Anderson et al., 2015). Both

experimental and numerical studies have shown that due to spanwise heterogeneity, a mean

secondary motion is induced in the flow which enhances the mean streamwise vorticity.

The spanwise heterogeneities are in the form of significant mean momentum excesses and

deficits, which were named low- and high-momentum pathways, respectively, by Barros and

Christensen (2014); Mejia-Alvarez and Christensen (2010); Willingham et al. (2013) (HMP,

LMP). Counter-rotating vortices flank these HMPs and LMPs (Mejia-Alvarez and Chris-

tensen, 2013). However, there have been different findings on the rotational sense of these

counter-rotating vortices. Early studies on secondary flows have reported a positive vertical

velocity (upwelling) within the LMP, and a negative vertical velocity (downwelling) within

the HMP (Mejia-Alvarez and Christensen, 2013; Willingham et al., 2013; Vanderwel and

Ganapathisubramani, 2015). However, in a recent study by Yang and Anderson (2017), it

2Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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was shown that the spanwise spacing, sy, normalized by the flow depth (here channel half

height), is a suitable parameter to determine whether the outer-layer turbulence will be dis-

rupted by HMPs and LMPs. They showed that for a small spanwise spacing, sy/H = 0.64,

the flow patterns are similar to the results reported by earlier studies (Vanderwel and Gana-

pathisubramani, 2015; Mejia-Alvarez and Christensen, 2013; Willingham et al., 2013). How-

ever, as the spanwise spacing is increased above a certain value, sy/H & 1, there is reversal in

the rotational sense of these counter-rotating vortices. They concluded that for small value

of spanwise spacing the streamwise roll cells are set by the roughness sublayer and hence

large-scale counter-rotating rolls vanish from the inertial layer. Therefore, the roughness

sublayer secondary flows exists for all rough-wall flows, whereas, the existence of inertial

layer secondary flow greatly depends on spacing, sy/H (Yang and Anderson, 2017).

There have been sustained efforts to study secondary flows in open channel (Bradshaw,

2003; Nezu and Nakagawa, 1993; Wang and Cheng, 2005; Vermaas et al., 2011). Experi-

mental studies on turbulent duct flows have offered considerable insights on the existence

of secondary flows (Brundrett and Baines, 1964; H.C., 1953; Nikuradse, 1933; Hinze, 1967).

With these studies, it was concluded that when the production of turbulent kinetic energy is

much greater than the viscous dissipation in a localized region, an advection of turbulent ki-

netic energy (Hinze, 1967) drives a secondary motion in the flow. The increased production

of turbulent kinetic energy is higher near the duct corners, which redistributes the terms

responsible for enhancing the mean streamwise vorticity.

Anderson et al. (2015) pointed out the resemblance between ducts flow and rough-wall tur-

bulent boundary layer flows. They suggested, that in the roughness sublayer and logarithmic

region of a slowly developing rough-wall turbulent boundary layer (Jimenez, 2004) any ad-

vection must occur due to a secondary flow. In their study, they used the transport equations

for Reynolds-averaged turbulent-kinetic energy and mean streamwise vorticity to determine

that the secondary flows are a product of spatial heterogeneity of Reynolds stress tensor com-

ponents in the spanwise-wall-normal plane. This led to the conclusion that the turbulent
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secondary flows were Prandtl’s secondary flow of the second kind (Bradshaw, 2003; H.C.,

1953; Brundrett and Baines, 1964; Perkins, 1970; Gessner, 1973).

Jelly et al. (2014); Ahn et al. (2015) performed DNS of turbulent channel flow with super-

hydrophobic surface. The surface was modeled as spanwise-alternating regions of no-slip

and free-slip boundary conditions. They observed a significant reduction in the turbulence

production and Reynolds shear-stress components, which decreased the overall skin-friction

coefficient. This decrease in turbulence production was due to the secondary flows induced

at the edge of an alternatively varying surface texture.

1.6 Amplitude and Frequency modulation in wall turbulence: Inner-outer in-

teractions3

The affect of large-scale structures (LSM, VLSM) on the small-scale near-wall motions has

been under extensive study recently. The influence was seen while observing viscous-scaled

near-wall peaks in the spectral density of streamwise velocity, which showed a growth in

magnitude with increasing Reynolds number (Klewicki and Falco, 1990; De Graff and Eaton,

2000; Metzger et al., 2001; Metzger and Klewicki, 2001; Marusic and Kunkel, 2003; Hoyas and

Jimnez, 2006; Hutchins et al., 2009). This was shown to be due to the increased large-scale

energy imparted to the near-wall regions as Reynolds number increases. The near-wall fluc-

tuations are therefore the sum of induced fluctuations from the scales above (Hutchins and

Marusic, 2007a). Hutchins and Marusic (2007b), while observing the pre-multiplied energy

spectra across the full height of the turbulent boundary layer, found two energetic peaks.

The inner peak was associated with the viscous-scaled near-wall cycle of elongated high- and

low-speed streaks, while the outer-peak found in the logarithmic region corresponded to the

3Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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superstructure-type events in the log region (Hutchins and Marusic, 2007b).

Mathis et al. (009a) used Hilbert transformations over the low-pass filtered velocity fluc-

tuations to compute the degree of amplitude modulation with single-point correlation of

large- and small-scale filtered velocity fluctuations. They concluded that large-scale struc-

tures appeared to amplitude modulate the small-scale fluctuations and showed that during

an event of large-scale momentum deficit there are reduced small-scale fluctuations in the

near-wall regions, while in a large-scale momentum excess event the small-scale fluctuations

are enhanced. And this phenomenon is reversed away from the wall because the small-scale

fluctuations tend to align themselves with the large-scale momentum deficit region (Mathis

et al., 009a).

These studies on inner-outer interactions led to the development of a predictive model for

near-wall dynamics (Mathis et al., 2011). In this model, Mathis et al. (2011), used some

essential parameters of turbulent structures, which were determined empirically, to predict

the statistics of small-scale velocity fluctuations near the wall. The parameters used were:

superposition coefficient, α, inclination angle, θ, modulation parameter, β, and a universal

signal, u∗(z, t). This modeling approach has promising implications for large-eddy simula-

tions of wall-bounded flow at high Reynolds number.

Studies on amplitude and frequency modulation prove that the interaction between large-

and small-scale structures is undeniable. However, most of these studies were based on

smooth-wall flow, which gives us an understanding of the flow dynamics in ideal conditions.

Rough-wall turbulence is ubiquitous in all engineering and geophysical flows and hence the

affect of roughness on these interaction needs attention. Anderson et al. (2015) presented

large-eddy simulation results on channel flow over staggered cubes and homogeneous rough-

ness. The results showed correlation profiles of amplitude modulation that were comparable

to those reported by Mathis et al. (009a,b). Also for the case of homogeneous roughness, the

roughness sublayer correlation is stronger than in the logarithmic region of a smooth-wall

8



channel flow. The correlation profiles also showed an acute sensitivity to the spatial location,

which is due to the roughness sublayer secondary flows associated with individual roughness

elements.

In a recent study, Pathikonda and Christensen (2017) performed an experimental study to

see the roughness-induced changes on amplitude and frequency modulation. They concluded

that even though the correlation profiles show similar trends as smooth walls, amplitude and

frequency modulation is more intense in rough-wall flows. This increased correlation was

shown to be due to the roughness-induced secondary motion. In the present work, I perform

a similar study to see the affects of topographic height on secondary flows, inclination angle

of the coherent structures, and amplitude and frequency modulation.
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CHAPTER 2

LARGE EDDY SIMULATION AND CASES

2.1 LES code1

∂ũ

∂t
+

1

2
∇(ũ · ũ)− ũ × ω̃ = −1

ρ
∇p̃−∇ · τ + Π +

1

ρ
f , (2.1)

where τ = ũ ⊗ u − ũ ⊗ ũ is the subgrid-scale tensor, ω̃ = ∇ × ũ is the vorticity, f is a

body force term that imposes drag associated with solid obstacles (Anderson and Meneveau,

2010; Anderson, 2012), ∇p̃ is the pressure correction, and Π = {u2τ/H = 1, 0, 0} is an

imposed pressure-gradient forcing, where H is the channel half-height. This code has been

diversely used in various flow conditions (Albertson and Parlange, 1999; Porte-Agel et al.,

2000; Bou-Zeid et al., 2005; Chester et al., 2007; Calaf et al., 2010, 2011; Anderson et al., 2012;

Graham and Meneveau, 2012; Anderson and Chamecki, 2014; Stevens et al., 2014; Wilczek

et al., 2015). The present LES code is used to model channel flow where roughness Reynolds

number indicates ”fully rough” conditions (Jimenez, 2004), Reτ = uτH/ν ∼ O(106). In

order to maintain a solenoidal velocity field, the divergence of Equation 2.1 is computed.

The incompressibility condition, ∇ · ũ = 0, is then applied, and the resultant pressure

Poisson equation is solved with Neumann boundary conditions at the top and bottom of

the domain, ∂p̃/∂z|z/H=1 and ∂p̃/∂z|z/H=0, respectively. Channel centerline conditions are

imposed with zero stress, ∂ũ/∂z|z/H=1 = ∂ṽ/∂z|z/H=1 and zero penetration, w̃(x, y, z/H =

1, t) = 0. Periodic boundary conditions are imposed on the vertical planes of the domain

owing to spectral discretization in the horizontal direction. Surface boundary conditions are

implemented via the equilibrium logarithmic law and an immersed boundary method (IBM),

1Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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depending on the value of h(x, y). For h(x, y) = 0, the stress is set as:

τwxz(x, y, t) = −
[
κU(x, y, z, t)

log(z/zo)

]2
ũ(x, y, z, t)

U(x, y, z, t)
, (2.2)

and,

τwyz(x, y, t) = −
[
κU(x, y, z, t)

log(z/zo)

]2
ṽ(x, y, z, t)

U(x, y, z, t)
, (2.3)

where, zo/H = 10−3, is a prescribed roughness length, and .̃ denotes test filtering (Germano,

1992) which is used to suppress numerical contamination due to localized implementation

of the equilibrium logarithmic law (Bou-Zeid et al., 2005). For h(x, y) > 0, an IBM method

(Anderson, 2012) is used to define f in Equation 2.1, which has been used successfully in

similar studies (Anderson, 2016; Anderson et al., 2015). The deviatoric component of τ is

evaluated using the eddy-viscosity modeling approach, τ − (1/3)δTr(τ ) = −2νtS̃, where

νt = (Cs∆)2|S̃| is the turbulent viscosity, Cs is the Smagorinsky coefficient (Smagorin-

sky, 1963), ∆ is the filter size, S̃ = (∇ũ+ ∇ũT )/2 is the resolved strain-rate tensor, and

|S̃| = (2S̃ : S̃)1/2 is the magnitude of the resolved strain-rate tensor. CS is evaluated us-

ing the lagrangian-averaged scale-dependent dynamic model of Bou-Zeid et al. (2005). The

simulation has been run for a long period of time, 103T ≤ RT ≤ 104T , where T is one large

eddy turnover time and RT is the total runtime. This is done to ensure that a sufficiently-

large number of structures have advected through the domain during the averaging period

(Anderson, 2016; Hutchins et al., 2009). Table 2.1 summarizes the averaging time for all

the simulations. As one would expect that the averaging time decreases with increasing

resolution, which is a natural outcome of difficulties associated with running the simulation

at higher resolution.

2.2 Present Study

In this work LES has been used to model turbulent channel flow over different rough-walls.

Two cases with varying topographic height are considered, as shown in Figure 2.1(b,c) and
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Figure 2.1: Illustration of the Topographies for (a) Case 1, (b) Case 2 and (c) Case 3. (d)
Profiles of height of the topographies for Case 1,2 and 3 in the spanwise plane

the results are compared with a turbulent channel flow over homogeneous roughness, which

serves as a benchmark for comparison. The drag is modeled via the equilibrium log law

through prescription of an aerodynamic roughness length for homogeneous roughness while

an Immersed Boundary Method (IBM) (Anderson, 2016) is implemented for cases with

varying topographic height. Table 2.1 summarizes the attributes of the surface for different

cases. The cases with spanwise heterogeneity were constructed via inner product of two

matrices - one with prominent spanwise heterogeneity, the other with streamwise hetero-

geneity. The height was varied by rescaling the topography such that the maximum height,

hmax/H = 0.05, 0.1, for Cases 2 and 3 respectively (see Table 2.1). The domain’s spatial
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Case # Lx/H Ly/H Nx Ny Nz h/H TUc/H
Case 1 8π 2π 512 128 128 0 2000
Case 2 8π 2π 512 128 128 0.05 2000
Case 3 8π 2π 512 128 128 0.1 2000
Case 4 8π 2π 384 96 96 0 6500
Case 5 8π 2π 384 96 96 0.05 6500
Case 6 8π 2π 384 96 96 0.1 6500
Case 7 8π 2π 256 64 64 0 10000
Case 8 8π 2π 256 64 64 0.05 10000
Case 9 8π 2π 256 64 64 0.1 10000

Table 2.1: Summary of Large-eddy simulation parameters.

extent, x, y, z : 0 ≤ x/H ≤ 8π, 0 ≤ y/H ≤ 2π, 0 ≤ z/H ≤ 1, where H is the channel

half height. The domain is intentionally made longer in the streamwise direction to ensure

that the VLSMs, seen as an outer peak (Fang and Porté-Agel, 2015; Mathis et al., 2011;

Anderson, 2016) in the pre-multiplied energy spectra, are captured (8π ≈ 24). The friction

Reynolds number, Reτ = uτH/ν ∼ O(106), indicating that: (1) the simulation is run under

”fully rough conditions” (Jimenez, 2004), which would enable comparison with literature

datasets under dynamic similarity; and (2) the inertial conditions satisfied the criteria for

the existence of large-scale motions (Hutchins and Marusic, 2007a). To ensure the resolution

independence, the simulation is carried out at three different resolution: low, intermediate

and high. For the lowest resolution Nx = 256, for intermediate Nx = 384, and for high

Nx = 512, Table 2.1 provides the details for all the cases. So, Cases 1, 4 and 7 are homoge-

neous roughness case (Figure 2.1a), Cases 2, 5 and 8 are spanwise heterogeneous case with

hmax = 0.05 (Figure 2.1b) and Cases 3, 6 and 9 (Figure 2.1c) are spanwise heterogeneous case

with hmax = 0.1, for different resolutions. This allowed me to asses how domain discretization

affects the resultant turbulent statistics and correlation profiles (Anderson, 2016). The next

chapter presents a series of results from instantaneous flow visualization to demonstration of

topographically driven secondary flows to the outer flow statistics for different cases, which

provide a foundation for understanding the correlation profiles obtained using Equations 2.7
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to 2.13. An important observation made in this study is that the choice of reference location,

zRef., while computing the two-point correlation for amplitude and frequency modulation has

a profound impact on the trend on the correlation profiles. I computed two-point correlation

with different reference locations and found that when the reference location coincides with

region where the outer peak is observed, the single- and two-point correlation are similar

for a wide range of vertical extent. This result is essentially important while developing a

prediction model for near-wall dynamics in a sense that location for the measurement of

large-scale statistics will certainly affect the efficacy of the model.

2.3 Wavelet Analysis2

The main advantage of wavelet transform is that it provides joint time-frequency informa-

tion on input time series. The time-series of streamwise velocity fluctuations is obtained

by subtracting the mean velocity from the instantaneous, ũ′(xl, yl, z, t) = ũ(xl, yl, z, t) −

〈ũ(xl, yl, z, t)〉T , where 〈.〉T denotes time-average and .̃.. denotes a grid-filtered LES quan-

tity. A comprehensive description of the LES code is provided in the following chapter and

the nomenclature used here is to provide consistency. In this study, x, y and z denote the

streamwise, spanwise and wall-normal directions: u, v and w represent the corresponding

velocity components. {xl, yl} is a discrete point in the horizontal plane where time-series of

instantaneous velocity is recorded across the domain height (virtual tower, Anderson et al.

(2015)). Figure 2.1 illustrates the positions where the virtual towers are placed. Two spatial

location are chosen for the cases with spanwise heterogeneity which correspond with the crest

(HMP) and trough (LMP). Although the homogeneous roughness case does not have a crest

or a trough, still the same spatial locations is chosen for the sake of comparison. Details of

2Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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the cases are summarized in the subsequent section. One can refer to Table 2.1 for reference.

The large scale component, ũ′L(xl, yl, z, t), of the velocity field can be obtained by low-pass

filtering the velocity fluctuations, ũ′(xl, yl, z, t). Henceforth, I will use T = δTUoH
−1 to de-

note one eddy turnover, where Uo is an ”outer” characteristic velocity, H is the flow depth,

and δT is the (dimensional) time associated with overturning of one domain-scale eddy. The

filtering scale is chosen to be, L = 2T , which corresponds with the (non-dimensional) time

associated with overturning of two domain-scale eddy. This scale is chosen to ensure that

only very long structures are considered as large-scale events, which is reasonable considering

the streamwise extent, Lx ≈ 24H. Previous studies of smooth- and rough-wall flows (Mathis

et al., 2011; Anderson, 2016) have used filtering scale to be, L = 1. Nonetheless, as these

studies suggest, the choice of filtering scale has negligible effect as long as the inner and the

outer peak are separated by at least an order of magnitude. Provided L ≈ 1 the result will

exhibit only minor differences. The later part of this section is devoted to the method used

to quantify how ũ′L(xl, yl, z, t) modulates the amplitude and frequency attributes of small

scale component, ũ′S(xl, yl, z, t) = ũ′(xl, yl, z, t)− ũ′L(xl, yl, z, t).

Here, Morlet wavelet function is used to decompose streamwise velocity fluctuations in time-

frequency space, which is given by the following expression:

ψ(t/ts) = eiωψt/tse−|t/ts|
2/2, (2.4)

where ts is the wavelet timescale normalized by the eddy-turnover time, (T ). Joint time-

frequency analysis is accomplished via convolution of ũ′ with a spectrum of wavelet functions:

ũ′∗(xl, yl, z; ts, t) =

∫ ∞
−∞

ũ′(xl, yl, z, τ)ψ
(τ − t

ts

)
dτ, (2.5)

where ũ′∗(xl, yl, z; ts, t) is decomposed fluctuating velocity in time-frequency space, and t is

the independent translation variable in time. Now, the spectral density is obtained by taking

the squared modulus of the coefficient obtained after the convolution:

E(xl, yl, z; ts, t) = |ũ′∗(xl, yl, z; ts, t)|2, (2.6)
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where E(xl, yl, z; ts, t) is the premultiplied wavelet power spectrum (WPS) at a given time,

t, at a discrete point {xl, yl, z}. The normalized time-scale for the wavelets is transformed

to an equivalent normalized frequency, f . To obtain the energy content associated with the

small-scale energy of the wavelet power spectrum (WPS), I use Parseval’s theorem as shown

in the work of J. Baars et al. (2015):

σS(t) =

[∫ fN

fc

E(f, t)df

]1/2
, (2.7)

where σS(t) is the instantaneous standard deviation, fc corresponds to the separation scale

between large- and scale- velocity fluctuations, and fN corresponds to the Nyquist frequency

which is half of the sampling frequency fS. Herein, I set the cut-off frequency, fc = L−1 =

0.5T−1, which is consistent with the previously mentioned separation scale. The sampling

frequency is chosen to be, fS = 10L−1 = 0.05T−1, to ensure that I have a sufficient range

of small-scale events. Here, E(f, t) is still the premultiplied wavelet power spectrum (WPS)

obtained in Equation 2.6. The spatial subscripts are removed for brevity and the timescale,

ts, is replaced by the frequency scale, f .

Equation 2.7 gives the instantaneous standard deviation, which can be decomposed into a

mean and fluctuating component: σS(ti) =
√
〈u2S〉T + σ′S(t). The aim of this work is to

investigate how large scale (low frequency) velocity fluctuations interact with small scales

(high frequency). This approach is best suited for such studies, as it provides the information

on time-varying small-scale energy in terms of its instantaneous amplitude and frequency.

Therefore, this method provides an accurate estimate of the interaction between large and

small scales. Now, in order to obtain the large-scale variation of the small-scale amplitude,

I low pass-filter the fluctuating component of standard deviation, σ′S(ti), to obtain σ′SL(ti).

Herein, the same separation scale, fc = L−1 = 0.5T−1, is chosen. I construct a time series

for instantaneous frequency (Boashash, 1992; Cohen, 1989) by computing the first spectral
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moment of the instantaneous WPS:

f ∗(ti) =
1

[σ(ti)]2

∫ fN

fc

E(f, ti)flog10fdlog10f, (2.8)

where,

fS(ti) = 10f
∗(ti). (2.9)

I obtain the fluctuating component of the instantaneous frequency by subtracting the mean,

f ′S(ti) = fS(ti)− 〈fS(ti)〉T . The fluctuations are low-pass filtered using the same separation

scale to obtain the large-scale variation of the small-scale frequency fluctuations, f ′SL(ti). To

obtain the correlation coefficient between small and large scales for amplitude and frequency

modulation, I correlate the low-pass filtered fluctuating component of the instantaneous am-

plitude and frequency with the large-scale velocity fluctuations for full depth of the domain:

Ra(z; z) =
〈ũ′L(z, t)σ′SL(z, t)〉T√
〈ũ′2L(z, t)〉T

√
〈σ′2SL(z, t)〉T

, (2.10)

and

Rf (z; z) =
〈ũ′L(z, t)f ′SL(z, t)〉√
〈ũ′2L(z, t)〉T

√
〈f ′2SL(z, t)〉T

. (2.11)

The correlations, Ra(z; z) and Rf (z; z), reveal the degree of amplitude and frequency modu-

lation of the small-scale structures due to large-scale motion, respectively. This is, however,

a single-point correlation and even though large-scale velocity fluctuations near the wall are

merely a superposition of low wave-number flow far away from the wall (Mathis et al., 009a),

a two-point correlation where the large scale is fixed at a reference point zRef. would reveal

this interaction phenomenon much more accurately. Therefore, two-point correlations are

also computed, where the reference height zRef. for the large-scale is fixed:

Ra(z; zRef.) =
〈ũ′L(zRef., τ(z; zRef.))σ

′
SL(z, t)〉T√

〈ũ′2L(zRef., τ(z; zRef.))〉T
√
〈σ′2SL(z, t)〉T

, (2.12)

and

Rf (z; zRef.) =
〈ũ′L(zRef., τ(z; zRef.))f

′
SL(z, t)〉T√

〈ũ′2L(zRef., τ(z; zRef.))〉T
√
〈f ′2SL(z, t)〉T

. (2.13)
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Since the large-scales are fixed at the reference location, zRef., when computing two-point

correlation, an advective correction must be incorporated on the large scale. This is done to

ensure that the large-scale motions (LSMs) which exhibit a positive streamwise inclination

and, thus, negative temporal inclination, are correlated appropriately with the small-scale

events at differing height. Therefore, ũ′L(z, t), used in Equations 2.10 and 2.11 is replaced

by ũ′L(zRef., τ(z; zRef.)), where, zRef., is the reference height, τ(z; zRef.) = t+ λ(z; zRef.) is the

associated time lag and λ(z; zRef.) is the advective correction. Figure 2.1 provides a visual

indication of the reference location, zRef. (the annotation is only for discussion, and precise

value of the reference location is provided in the later section).
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CHAPTER 3

RESULTS AND DISCUSSION

This chapter is composed of five sections which provide the results and analyze and discuss

its interpretations. Henceforth, the two regions, Crest and Trough, will correspond with

the HMP and LMP in the spanwise heterogeneous case. Also, even though Case 1 does

not have a crest or a trough, yet, the same spanwise location is chosen for the virtual

tower and plane view (streamwise–wall-normal plane) to provide a appropriate comparison.

Therefore, for Case 1, those locations will be referred as Section 1 and 2 for identification.

Section 3.1 presents instantaneous and Reynolds-averaged flow visualization, which gives

an idea on how the attributes of the structures and the flow changes due a prominent

spanwise heterogeneity. The results show a qualitative evidence that the inclination angle

of meandering coherent structures visualized in the instantaneous flow are altered above

the crest while they remain similar to the homogeneous case above the trough. Section 4.3

provides the vertical profiles of Reynolds-averaged first (mean) and second (stress) order

statistics computed with the data obtained from the virtual towers, which further highlight

major changes to the flows due to spanwise topographic heterogeneity. A more quantitative

analysis of structures is presented in Section 3.3 with the spatial correlations, which confirm

that, indeed, the structures undergo steeping above the crest and are essentially similar

to homogeneous case above the trough. This would explain why the structures undergo a

shift in the peak of spectral density across a range of wavelengths. Section 3.4 provides

visualizations of premultiplied energy spectra based on Fourier and Wavelet modes at the

crest and the trough for Cases 2 and 3 (spanwise heterogeneity) and Section 1 and 2 for

Case 1 (homogeneous roughness). Finally, Section 3.5 shows profiles of single- and two-

point correlations for modulation of small scale amplitude and frequency due to large scales.

Upon comparing the single- and two-point correlation profiles a unique observation was

made. The choice of reference height, zRef., seems to be very important while computing the
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two-point correlations. Four different reference locations were chosen, zRef./H = 0.25, 0.5,

which revealed that when the reference height coincides with the location of the outer peak,

the single- and two-point correlation profiles overlap to a certain degree.

3.1 Flow Visualization1

The results presented throughout this article are taken from Awasthi and Anderson (2018).

To illustrate the effect of spanwise topographic heterogeneity on the inclination of coherent

structures, streamwise velocity fluctuations in the x− z plane are presented. Figures above

the Crest/Section 1 and Trough/Section 2 are; Case 1 (Figure 3.1 a, 3.2 a), 2 (Figure 3.1

b, 3.2 b) and 3 (Figure 3.1 c, 3.2 c). A more quantitative study on the inclination angle is

presented later. The change in the inclination angle is more prominent near the wall and

as we move further away from the wall, these structures appear to approach the standard

value of θ ≈ 16◦ (Wu and Christensen, 2007, 2010). Similar findings have been reported in

both numerical and experimental studies (Castro et al., 2006; Coceal et al., 2007). Flow over

staggered cube arrangements have been been studied experimentally by Castro et al. (2006)

in a wind tunnel and numerically by Coceal et al. (2007). Both these studies show that

roughness affects the inclination angle of coherent structures. They reported an increased

mean inclination angle in the roughness sublayer, which decreases sharply with height. The

length scale of these coherent structures is reduced above the crest as they get steeper.

(Leonardi et al., 2003) performed DNS study over square bars for different packing density

and concluded that the structures appear shorter in the streamwise direction relative to

the smooth walls, the spanwise extent of these strucutres was however, increased. Since

crest is a ”high roughness” location and thus the HMP is anticipated to be located above

1Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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Figure 3.1: Visualization of streamwise velocity fluctuations ũ′ in x − z plane with {ũ′, w̃′}
vectors for (a) Case 1, (b) Case 2 and (c) Case 3 respectively at a location which corresponds
to the crest.

it (Willingham et al., 2013; Barros and Christensen, 2014; Anderson, 2016). It has also

been shown that the secondary flows are the product of a production-dissipation imbalance

above the crest, where elevated turbulent kinetic enrgy (tke) production above the crest

necessitates a downwelling of low-tke fluid from the outer region (Hinze, 1967). (Hutchins

and Marusic, 2007a).
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Figure 3.2: Visualization of streamwise velocity fluctuations ũ′ in x − z plane with {ũ′, w̃′}
vectors for (a) Case 1, (b) Case 2 and (c) Case 3 respectively at a location which corresponds
to the trough.

And, a vigorous mixing of fluid is anticipated above the crest which results in the steep-

ening of structures. Similar quantity is shown in Figure 3.2 (a-c) but at a spanwise location

corresponding to the domain trough for Cases 2 and 3 (the homogeneous roughness case does

not have a ”crest” and ”trough” but the same transects are presented to promote consistency

with other cases). Above the trough, where the flow exhibits a mild upwelling (Willingham

et al., 2013; Barros and Christensen, 2014), coherent structures meander through the domain
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Figure 3.3: Visualization of time and x-averaged swirl strength λci (〈ω̃x〉x,t/〈ω̃〉x,t) contour
in y − z plane with {〈ṽ〉x,t, 〈w̃〉x,t} vectors superimposed for Cases 1(a), 2(b), and 3(c)

and their structural attributes closely resemble those anticipated in canonical shear-driven

wall turbulence.

Figure 3.3 shows the time- and streamwise-averaged swirl strength, signed by the mean

streamwise vorticity, 〈λx〉x,t(y, z)ι̂ω̃x (Wu and Christensen, 2006), where ι̂ω̃x = 〈ω̃x,t(y, z)/〈ω̃〉x,t(y, z)

is the streamwise component of the vorticity unit vector. This figure reveals the existense of

alternating low- and high-momentum pathways (Mejia-Alvarez and Christensen, 2010) due
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to spanwise topographic heterogeneity. In this study the spanwise spacing, sy/H, of the

Gaussian mounds is set to be greater than 2. Therefore the secondary flows are observed in

both roughness sublayer and inertial layer (Yang and Anderson, 2017), this is discussed in

detail in Chapter 1 Section 1.5. The upwelling and downwelling motions are present within

LMPs and HMPs, respectively, which is consistent with previous finding by Yang and An-

derson (2017), although other studies studies have reported a reversal of flow patterns for

smaller spanwise spacing (Vanderwel and Ganapathisubramani, 2015). Another conclusion

that can be made from Figure 3.3 is that the strength of secondary flow increases with in-

creasing topographic height which is intuitive since higher topography would result in a a

more vigorous mixing. Previous studies have revealed that secondary flows have an impact

on the dynamics of the mean flow (Willingham et al., 2013; Barros and Christensen, 2014),

and in this study it is speculated that these secondary flows also have an impact on the

inclination angle of coherent structures.

3.2 Flow Statistics2

Figure 3.4 shows the Reynolds-averaged (total) streamwise–wall-normal momentum flux

(Reynolds stress) distribution across the channel height at two location (to show the ef-

fect of secondary flow at the crest and trough for Cases 2 and 3). Note that the ”total”

implies the sum of resolved and subgrid-scale stresses, 〈u′
⊗
u′〉T = 〈ũ′

⊗
ũ′〉T + 〈τ 〉T . For

homogeneous roughness case the momentum flux profiles are similar at both locations, which

serves as a basis for comparison with cases perturbed by spanwise topographic heterogene-

ity. For Cases 2 and 3, the Reynolds stress is redistributed due to spanwise heterogeneity,

thereby, increasing it above the crest and reducing it above the trough. This imbalance in the

2Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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Figure 3.4: Reynolds stress profiles for Cases 1, 2 and 3 above the (a) crest and (b) trough,
Reynolds stress profiles normalized by the friction velocity uτ for Cases 1, 2 and 3 above the
(c) crest and (d) trough; black: case 1, dark gray: case 2 & light gray: case 3

Reynolds stress causes the secondary motion in the flow making it Prandtl’s secondary flow

of the second kind (Anderson et al., 2015). The Reynolds stress profiles shown in Figure 3.4

c and d are normalized by the square of local friction velocity, uτ (yl), which is the maximum

value of the square root of total Reynolds stress (resolved 〈ũ′w̃′〉T and subgrid 〈τxz〉T stresses

in the present LES code). Since the Reynolds stress is redistributed in the spanwise direction

for Cases 2 and 3, the value of uτ (yl) would be different above the crest and trough, which

is unity for homogeneous roughness case. From Figure 3.4 c and d we can conclude that, for

Cases 2 and 3 above the crest the larger portion of Reynolds stress is concentrated in the

near-wall regions, whereas, above the trough Reynolds stress is dominant further away from

the wall.

Figure 3.5 shows time-averaged streamwise and wall-normal velocity components above the
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Figure 3.5: Time-averaged streamwise (a,b,c,d) and wall-normal (e,f) velocity profiles for
case 1 (black), case 2 (dark gray) and case 3 (light gray), above the crest (a,c,e) and above
the trough (b,d,f)

Crest/Section 1 and Trough/Section 2. Figure 3.5 a and b are normalized with outer stream-

wise velocity, Uo = 〈ũ〉T (z/H = 1), and Figure 3.5 c, d, e and f are normalized with shear

velocity, uτ (yl). From these figures one can observe that the streamwise velocity profile

above the crest for Cases 2 and 3 differ significantly from the homogeneous roughness case.

Figure 3.5 a reveals that the outer-normalized velocity exhibits a prominent deficit in the

lowest 10% of the domain, while, there is a modest (but significant) momentum excess for

z/H & 0.2, relative to the homogeneous roughness case. This is entirely consistent with
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the underlying physics responsible for sustenance of the secondary flows, wherein near-wall

production of turbulence is strongest and the vertical gradient of 〈ũ〉(yl, z) is most dramatic.

When the vertical profiles of time-averaged streamwise velocity are normalized by the local

friction velocity, uτ (yl), the differences become more pronounced. One important thing to

note from Figure 3.5 is that the velocity profiles at the two sections for homogeneous rough-

ness case exhibit negligible differences (this result is precisely as expected, and is helpful

when drawing comparison to the cases perturbed by spanwise topographic heterogeneity).

The dashed black line in Figure 3.5 c and d shows the log-profile using the most widely ac-

cepted value of Von Karman constant, 0.41. The streamwise velocity profiles above the crest

in Figure 3.5 c, for Cases 2 and 3, also exhibit an absence of the log-region, which in itself is

a unique result. Keeping in mind that a key basis for the existence of log-region stems from

the idea of existence of a buffer region between the inner viscous-scaled and outer boundary

layer-scaled region. The idea here is not to dismiss the already established theories on wall-

bounded flows, the evidences for which are pretty compelling, but to question the limits to

which they seem valid. Although there have been many studies (Wu and Christensen, 2007;

Flack and Schultz, 2010) on rough wall flows which support the outer layer similarity, yet

roughness taken into consideration was not as dramatic as the present study. As discussed in

the work of Castro et al. (2006) that there must be a critical roughness height beyond which

Townsend’s hypothesis (which supports the presence of log-region) does not hold true. One

point that needs to be stressed here is that even though all these studies were based on the

boundary layer flows, and, this study considers a channel flow, yet one can argue that the

flow exhibits a similar behavior for the lowest 10% of the flow (George, 2007). Therefore, the

absence of log-region above the crest can be considered a genuine outcome of a highly rough

wall flow. Another observation that further supports the above statement is that, at the

trough, Figure 3.5 d, velocity profile resemble more with the homogeneous roughness case,

there is however a vertical shift in the velocity profile which can be associated with overall
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drag reduction. Nonetheless, the agreement with the log-profile proves that, in a flow which

exhibits a very dramatic variation in roughness (crest and tough in this case), there can be

regions associated with ”low roughness” were log law holds true, and also regions with ”high

roughness” were log law does not seem to be valid. Figure 3.3 e and f show the time-averaged

vertical velocity, 〈w̃′〉(yl, z)/uτ , above the Crest/Section 1 and Trough/Section 2. Firstly,

note that for the homogeneous roughness case (Case 1), 〈w̃′〉(yl, z)/uτ ≈ 0 throughout the

depth of the flow, and as the averaging time approaches infinity, the simulations would predict

〈w̃′〉(yl, z)/uτ → 0. The wall-normal velocity, 〈w̃′〉(yl, z)/uτ , which clearly reveal the region

of upwelling and downwelling motion in spanwise perturbed case, show, that above the crest

〈w̃′〉(yl, z)/uτ undergoes a change in sign at z/H ≈ 0.1: for z/H . 0.1, 〈w̃′〉(yl, z)/uτ > 0,

while for z/H & 0.1, 〈w̃′〉(yl, z)/uτ < 0. The elevation over which, 〈w̃′〉(yl, z)/uτ < 0 approx-

imately corresponds with the HMP discussed for Figure 3.5 a, for z/H . 0.1. On the other

hand, the zone of downwelling is an outcome of local (roughness sublayer) circulations, which

have been well documented in other studies (Goldstein and Tuan, 1998; Yang and Anderson,

2017; Vanderwel and Ganapathisubramani, 2015). Another point to note here is that all the

velocity profiles exhibit a monotonic behavior with increasing topographic height, which is

a natural outcome of increased topographic effects.

3.3 Inclination Angle3

In the earlier sections it was been highlighted that the topographically driven secondary

flows have a dramatic effect on the flow characteristics relative to canonical shear-driven

flows. Numerous references were made regarding the steepening of coherent large-scale mo-

tions (LSMs) within HMPs (Figure 3.1 and Section 3.1) and its implications on turbulence

3Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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statistics were discussed. In this section a quantitative analysis on the inclination angle of

coherent structures is presented which clarifies many observations made in the previous sec-

tions. As mentioned in the Chapter 1, Section 1.2 that the Taylor’s frozen hypothesis is valid

for smooth wall, but for rough wall flows it seems to hold true in the outer regions of the

flow (Raupach et al., 1996; Finnigan, 2000; Brunet et al., 1994). Therefore, in a highly rough

surface such as in this study, where the effect of topography is felt beyond the roughness

sublayer, using Taylor’s hypothesis does not seem like a reasonable approach. Therefore,

spatial cross correlation of the resolved fluctuating streamwise velocity at spanwise locations

corresponding with Crest/Section 1 and Trough/Section 2 are computed:

ρxx(δx, yl, z; zRef.) =
〈ũ′(x, yl, zRef.)u

′(x+ δx, yl, z)〉xt
σx(z)2

, (3.1)

where δx is the streamwise separation, zRef. is the wall-normal reference elevation, and σx

is the root-mean-square value of the streamwise velocity fluctuation. The computations

of ρxx(δx, y, z; zRef.) is performed during the simulation and a posteriori time averaging is

performed, thereby eliminating the need to adopt Taylor’s frozen hypothesis and prescribe an

advective velocity. Figures 3.6 a, c and e, and 3.6 b, d and f ρxx(δx, yl, z; zRef.) at spanwise

locations, yl, corresponding with the Crest/Section 1 and Trough/Section 2, respectively.

Black circles correspond with the maximum correlation,

δxm(z; zRef.) = arg max︸ ︷︷ ︸
δx

[ρxx(δx, yl, z; zRef.)] (3.2)

at each wall-normal location (Jacob and Anderson, 2017). The reference location is chosen

to be the first grid point above the surface. For Case 1 and the trough for Case 2 and 3

it is at, zRef./H = 0.01, while for Case 2 and 3 above the crest it is, zRef./H = 0.056, 0.12.

The maximum correlation denoted by black circles in the color flood contours are superim-

posed in Figure 3.6 g and h, corresponding with the Crest/Section 1 and Trough/Section 2

respectively. These figures reveal that as the topographic height is increased, the streamwise
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Figure 3.6: Spatial correlation map of fluctuating streamwise velocity, ρxx(δx, y, z; zRef.), in
the streamwise-wall-normal plane (see figure 1(d) for zRef.) above crest and trough respec-
tively. Panels correspond with Case 1 (a,b), Case 2 (c,d) and Case 3 (e,f). Inclination angle
(g) for zRef. based on (a,c,e)

correlation above the crest for Case 2 and 3 is diminished, which is also reported by Yang

and Anderson (2017). This result is consistent with prior findings on elevated mixing above

the high roughness regions, and the corresponding streamwise decorrelation due to vigorous

mixing. Above the trough, however, the correlation is similar to the homogeneous roughness

case. The streamwise extent of the correlation may not be the most ideal approach to coma-

pare the length scale of the strucutres in this case, since the correlation is performed during

simulations and time-averaging window might not have been sufficient. Nonetheless, the
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information regarding the inclination angle can be retrieved by the maximum correlation at

each elevation. There is an increase in the inclination angle above the crest for Cases 2 and 3,

which can be observed in Figure 3.6 g. As the topographic height is increased the inclination

angle increases from its canonical range of 15− 20◦ to nearly 30◦ near the topography. The

inclination angle decreases as we move away from the wall which states that the affect of

topohraphy is reduces with the wall-normal elevation. This change in the angle above the

crest is due to the induced secondary flow which lifts up these coherent structures. The

results for the inclination angle presented above show a similar behavior reported previously

(Krogstad and Antonia (1994); Castro (2007); Coceal et al. (2007)), however the magnitude

of the angle varies due to the topographical dissimilarities.

3.4 Pre-multiplied energy spectra4

Figure 3.7 shows contours of premultiplied energy density of resolved (LES) streamwise

fluctuating velocity, kxEũ′ũ′/u
2
τ , where kx = 2π/λx is wavenumber and λx is wavelength

(Hutchins and Marusic, 2007b). These spectrogram are based on projection on Fourier

modes, the spectrogram based on wavelets will be presented later in this section. Both spec-

trogram give the same information however one is represented as a function of wavelength,

while the other as a function of frequency, and hence the contours are vertically mirrored

version of each other, since f ∝ λ−1. For the homogeneous roughness case (Case 1) we can

see a clear separation between the outer- and inner-peak, where the former corresponds to

VLSMs while the later corresponds with surface shear layer (Hutchins and Marusic, 2007b).

The separation scale of λx/H = 2 is used as a demarcation between the small and large

scales. Previous studies have shown that this separation filter has a negligible effect on the

4Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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correlation profiles as long as the outer and inner peak are separated by atleast an order of

magnitude (Anderson, 2016; Hutchins and Marusic, 2007b). Therefore, any value of separa-

tion scale, λx/H ≈ 1, would only have very minor variation in the correlation profiles. Two

wall-normal locations have been annotated which corresponds which the reference height,

zRef., chosen while computing the two-point correlation for amplitude and frequency modula-

tion. This helps the reader in understanding the importance of reference location, since one

of them strikes precisely at the outer peak, while the other lies beyond the outer peak. This

makes it easier while drawing conclusions from the correlation profiles presented in the later

sections. Note the spectrogram at two location for homogeneous roughness case (Case 1) in

Figure 3.7 are effectively equivalent, and both reveal the presence of spectral plateau over

the range, 2 . λx/H . 101. The only reason they are not precisely equivalent, is because

they were taken from discrete spanwise locations, and averaging due to spanwise homogene-

ity was not taken into account (Jacob and Anderson, 2017). Nonetheless, the agreement is

quite reasonable as it provides a foundation for assessing the role of topographically-driven

secondary flows. Figure 3.7 c, d, and e, f show spectrogram for Case 2 and 3 at spanwise

locations corresponding with the crest and trough. Above the crest the distinct outer peak

has vanished, and the spectral density has been spread across a range a wavelength without

a clear distinction between an outer and inner peak. Although, there is no clear separation

between the outer and inner peak, yet there is still some energy residing at wavelengths ex-

ceeding the separation scale, λx/H = 2. This observation is important while comparing the

correlation profiles in the later section, which demonstrates that a clear outer peak is not the

necessary condition to observe the modulation effects, and only the availability of spectral

energy beyond the separation scale is sufficient. The observation made earlier regarding the

structural similarities between the trough for Case 2 and 3, and the homogeneous roughness

case (Case 1) is further validated while observing the spectrograms above the trough, Figure

3.7 d and f. There seems to be no difference between the homogeneous roughness case (Case
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Figure 3.7: Color flood contours of spectrograms of ũ/uτ based on Fourier mode. Panels
corresponds with Case 1 above (a) crest and (b) trough, Case 2 above (c) crest and (d)
trough and Case 1 above (e) crest and (f) trough.

1) and the trough. However, a close observation reveals an important difference: although

the spectrograms in Figure 3.7 d and f have a clear outer peak, it has shifted to lower

wavelengths (λx/H ≈ 8), as opposed to the value, λx/H ≈ 21, as seen in the homogeneous

roughness case (Case 1).

Although these spectrograms provide all the information required to draw conclusions re-
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Figure 3.8: Color flood contours of spectrograms of ũ/uτ based on Wavelet mode. Panels
corresponds with Case 1 above (a) crest and (b) trough, Case 2 above (c) crest and (d)
trough and Case 1 above (e) crest and (f) trough.

garding the energy content and the wavelengths at which they reside, but, since the cor-

relation profiles discussed in Chapter 1, Section 2.3 are based on wavelet-based processing

of the input time series, the spectrograms of global wavelet power spectrum are also pre-

sented. Figure 3.8 shows wavelet-based spectrograms from virtual towers corresponding with
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Crest/Section 1 and Trough/Section 2. Wavelet-based spectrograms are generated via pro-

cessing steps outlined in Chapter 1, Section 2.3, where the wavelet power spectrum, E(z, f, t)

is time-averaged, yielding the global wavelet power spectrum, G(z, f) = 〈E(z, f, t)〉T . The

quantity, G(z, f) is shown in Figure 3.8 above Case 1 (a,b), Case 2 (c,d) and Case 3 (e,f)

for two spanwise location. Also, as mentioned earlier, note that the spectrogram obtained

via wavelet is just a vertically mirrored version of Fourier-based spectrograms. The wavelet-

based spectrograms show slight undulations in the frequency-height space, which is due to

insufficiently-long averaging, nonetheless salient features of the flows are captured. A sepa-

ration scale, fH/Uo = 1, based on frequency is also annotated in the figures. The selection

of the separation scale for the frequency is based on the relation, λx = Uo/f . One might

argue that the use of outer free stream velocity might not be completely justified, however,

this is still an open ended question which is not addressed in the present study, and the

approach similar to J. Baars et al. (2015) is used.

3.5 Correlation profiles5

The solid lines are single-point correlation while the dashed lines correspond with the two-

point correlation. Recently Mathis et al. (009a) showed that for a smooth-wall flow the

large-scale streamwise velocity fluctuations close to the wall are good substitute for large-

scale signature in the log-region. This implies that the large-scale motions away from the

wall are merely superimposed upon the wall-parallel smaller-scale close to the wall. One im-

portant thing to note here is that the superposition of large-scale on the near-wall region is

not instantaneous, i.e., there is a time lag between the occurrence of a event in the log-region

and it imprint near the wall. This lag depends on the inclination angle of the large structures

5Portions of this chapter have been reproduced with permission from, Awasthi, A. and Anderson, W.,
2018, Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Ampli-
tude and frequency modulation within low- and high-momentum pathways, Phys. Rev. Fluids 3, 044602,
Copyright 2018 by The American Physical Society.
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Figure 3.9: Amplitude modulation correlation profiles with zRef./H = 0.5. Panel correspond
with: (a) Case 1 above the crest, (b) Case 1 above the trough, (c) Case 2 above the crest, (d)
Case 2 above the trough, (e) Case 3 above the crest, and (f) Case 3 above the trough; black:
Resolution Nz = 128, dark gray: Resolution Nz = 96 and light gray: Resolution Nz = 64;
solid line denote single point correlation and dashed line represent two-point correlation

that go well into the log-region but are still attached to the wall. And therefore, a single

point correlation would essentially give the same information regarding the modulation ef-

fects, yet a two-point correlation, where the reference location, zRef., is fixed, would reveal

the interaction of large- and small-scale much more accurately. Since establishing resolution
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Figure 3.10: Frequency modulation correlation profiles with zRef./H = 0.5. Panel correspond
with: (a) Case 1 above the crest, (b) Case 1 above the trough, (c) Case 2 above the crest, (d)
Case 2 above the trough, (e) Case 3 above the crest, and (f) Case 3 above the trough; black:
Resolution Nz = 128, dark gray: Resolution Nz = 96 and light gray: Resolution Nz = 64;
solid line denote single point correlation and dashed line represent two-point correlation

independence is of pivotal importance for amplitude and frequency modulation (Anderson,

2016), the profiles across three resolution mentioned in Table 2.1 are also shown (black, dark

gray and light gray correspond with low, intermediate and high version of the same flow-

topography arrangement). This ensures that the conceptual framework of a predictive model
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Figure 3.11: Amplitude modulation correlation profiles with zRef./H = 0.25. Panel corre-
spond with: (a) Case 1 above the crest, (b) Case 1 above the trough, (c) Case 2 above the
crest, (d) Case 2 above the trough, (e) Case 3 above the crest, and (f) Case 3 above the
trough; black: Resolution Nz = 128, dark gray: Resolution Nz = 96 and light gray: Resolu-
tion Nz = 64; solid line denote single point correlation and dashed line represent two-point
correlation

(Mathis et al., 2011) can be utilized in a more general sense. Since the high resolution case

requires a very long averaging period, this presents numerical challenges. Nonetheless, the

general trend of the profiles is similar to low- and intermediate-resolution cases, also, there is

is a much clearer agreement between the low- and intermediate resolution cases. This result
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Figure 3.12: Frequency modulation correlation profiles with zRef./H = 0.25. Panel corre-
spond with: (a) Case 1 above the crest, (b) Case 1 above the trough, (c) Case 2 above the
crest, (d) Case 2 above the trough, (e) Case 3 above the crest, and (f) Case 3 above the
trough; black: Resolution Nz = 128, dark gray: Resolution Nz = 96 and light gray: Resolu-
tion Nz = 64; solid line denote single point correlation and dashed line represent two-point
correlation

is complaint with the conceptual foundations of LES, wherein Reynolds-averaged turbulence

quantities should be equivalent even as the subgrid- and resolved-scale contributions vary

with varying filter scale. An important thing to observe in all the correlation profiles is that

the single- and two-point correlation a equivalent at the reference location, zRef.. A general
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inspection reveals that there is no significant difference in the correlation profiles across the

Cases 1, 2 and 3, and all the profile irrespective of its spanwise location appear to be very

similar. This is a very surprising result as it was expected that the correlation profiles over

”high roughness” should atleast have an observable difference from the those over the ”low

roughness”, considering that the flow statistics are quite different. As shown by Pathikonda

and Christensen (2017) the correlation profile over ”high roughness” exhibits a higher degree

of amplitude modulation than ”low roughness” for a small vertical extent. However, there is

one point that should be noted: since the abscissa is in log scaling, it is much more reason-

able to use (z − hmax)/H while showing the correlation profiles, otherwise the comparison

between two profiles is not justifiable.

It can be observed from Figure 3.9 that for most part |Ra(z; z)| . |Ra(z; zRef.)|, which is

logical considering that the small scales will be more closely related to the large scale at

same elevation. However, there is narrow range, 0.1 . z/H . 0.2, where |Ra(z; z)| <

|Ra(z; zRef.)|. Considering the Fourier- and wavelet-based spectrograms (Figure 3.7 and 3.8,

respectively), one can observe that, zRef.1/H, lies above the ”outer peak” and the range in

which |Ra(z; z)| < |Ra(z; zRef.)| corresponds with the spectral plateau. Keeping in mind

that in the correlations based on the equations mentioned in Chapter 1, Section 2.3 input

argument σ′SL(z, t) does not change, the difference must be generated by differing large scales

at reference location, u′L(zRef., τ(z; zRef.)); the zone of |Ra(z; z)| < |Ra(z; zRef.)| is thus at-

tributed to the persistent momentum excess above the crest, associated with the HMP. Note,

too, that the correlations exhibit a sign reversal at z/H ≈ 0.1.

Interestingly, for zRef.1/H, amplitude modulation above the trough (Figure 3.9 b and d)

shows much closer agreement between Cases 1, 4 and 7, relative to Cases 3, 6, and 9. It

has been argued and demonstrated in all the preceding stages of this work that – atleast for

the topographies considered – it is within HMPS (above the crest) that the flow physics are

most dramatically perturbed, while LMPs (above the trough) are far less disruptive to the
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structural characteristics expected for canonical shear-driven channel flow turbulence.

From Figure 3.7 and 3.8 it is clear that zRef.1/H does not intersect the outer peak, and for this

reason a second reference location, zRef.1/H, is considered, which coincides with the outer

peak, for homogeneous roughness case and above trough for the spanwise heterogeneous

cases. Subsequently, a much closer agreement between single- and two-point correlation is

observed as can be seen in Figure 3.11. Despite any distinct outer peak there is still a strong

correlation above the crest for Cases 2 and 3. Above the crest, elevated production of turbu-

lence ultimately attenuates large-scale correlation in the flow, and instead spectral density is

concentrated in a lager zone. However, the underlying approach to amplitude modulation,

which is predicated upon Parseval’s theorem, is contingent only upon the variance within

the flow, and not the wavelength at which the spectral energy resides.

There is some disagreement between the high-resolution cases, although the overall trends

agree. Considering the frequency modulation correlation profiles, Figure 3.10, 3.12, Rf (z; z) >

Rf (z; zRef.), with the exception of z = zRef., at which the correlations are by definition equiv-

alent. The single-point correlation continues to rise as the surface is approached, while the

two-point correlations remain constant with depth after reaching their upper limit. More-

over, we again see that when the reference location is selected to intersect the outer peak,

the single- and two-point correlations agree closely over a large vertical regions, relative to

when the reference location does not intersect the outer peak.
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CHAPTER 4

DOMAIN LENGTH TEST

The work presented so far discusses the amplitude and frequency modulating effect of VLSMs

residing the logarithmic region on the small-scale structures near the wall. As mentioned

in Chapter 1, the presence of VLSMs can be observed in the pre-multiplied energy spectra

as a secondary peak in the logarithmic region. Moreover, the existence of these VLSMs

is predicated upon the two conditions which should be satisfied simultaneously: (1) the

streamwise extent of the computational domain must exceed l2 & 21H, where H is the flow

depth, and (2) the roughness Reynolds number,Reτ & 2000, owing to a fully rough condition.

And, although both these conditions were satisfied for cases with spanwise heterogeneity,

yet the outer-peak vanishes within the HMP or the ”high roughness” region. This was

shown in Chapter 3 Section 3.4 via pre-multiplied energy spectra based on both Fourier and

Wavelet modes. There was still some spectral density above the separation scale, L or fc,

but there was no discernible difference between the inner and outer peak. This observation

prompted, that in a sense the existence of a clear outer peak does not determine the inner-

outer interaction. And the absence of a distinct outer peak does not diminish amplitude and

frequency modulation. This brings us to the question, is amplitude and frequency modulation

a manifestation of the effect of VLSMs on small scale structures or is it more fundamental to

turbulent flow, which can explain how the energy is being transferred down the cascade is a

systematic manner? The preferential arrangement of small-scales within a momentum excess

(HMR) or momentum deficit (LMR) across the domain depth is another important aspect

which can be addressed by the generalization of inner-outer interaction. Furthermore, an

explanation for the zero crossing of correlation profiles can also be found. But before we can

ask such questions, this observation should be validated with more convincing results. This

leads to the next section which presents a study of four homogeneous roughness cases with

different domain lengths. Of these four cases only one satisfies the condition of sufficiently
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Case # Lx/H Ly/H Nx Ny Nz h/H TUc/H
Case 1 2π 2π 128 128 128 0 4320
Case 2 4π 2π 256 128 128 0 630
Case 3 6π 2π 384 128 128 0 495
Case 4 8π 2π 512 128 128 0 540

Table 4.1: Summary of Large-eddy simulation parameters for domain test cases.

long streamwise extent required for the existence of VLSMs. The correlation profiles of

amplitude and frequency modulation are compared which will give us an idea on how the

interaction between large and small scales varies with domain length.

4.1 Cases

Table 4.1 summarizes the LES parameters for the four cases. In order to promote consis-

tency the streamwise discretization is kept constant by increasing the resolution, Nx. The

streamwise extent for these cases varies as, Lx = 2π, 4π, 6π, 8π. One should observe that

among the four cases only Case 4, Lx = 8π, satisfies the condition required for the existence

of VLSMs, although, the other condition of, Reτ & 2000 is still satisfied by all the cases.

The separation scale, fc = 0.5, is same as used in the preceding chapter and the correlation

profiles are computed using the equations mentioned in Chapter 1 Section 2.3.

4.2 Results

A series of results are presented in the next section from probability density to time–

streamwise-averaged velocity profiles to pre-multiplied energy spectra based on Wavelet

modes to the correlation profiles for amplitude and frequency modulation. All the cases

discussed here are turbulent channel flow with homogeneous roughness but with different

domain length. As one would expect, the first- and second-order turbulent statistics for all

these cases should be essentially the same. The only difference would be that the outer peak
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Figure 4.1: Time-averaged Reynolds stress profiles for Cases 1, 2, 3 and 4; black: Lx/H = 2π,
red: Lx/H = 4π, green: Lx/H = 6π and blue: Lx/H = 8π.

associated with the VLSMs should only be visible for the case with, Lx/H = 8π. Therefore,

the correlation profiles for amplitude and frequency modulation should be most dramatic

for the case with maximum domain length, and gets weaker as the domain length decreases.

However, as we would see later that this is not true. There is essentially no discernible

difference in the correlation profiles among the four cases, which suggests, that even though

the conditions for the existence of VLSMs is not met, the interaction between the large- and

the small-scales does not get affected. Evidently, this implies that this interaction can be

associated with the transfer of energy irrespective of the wavelength/frequency at which it

resides. As long as there is presence of some energy above the separation scale there will a

correlation between the large- and the small-scales.

4.2.1 Time-averaged profiles and PDFs

4.3 Profiles

Figure 4.1 shows (total) Reynolds stress, the ”total” here, with wall-modeled LES, implies

the sum of the resolved and subgrid-scale stress, 〈u′
⊗
u′〉T = 〈ũ′

⊗
ũ′〉T + 〈τ 〉T . The

different colors denote cases with different domain length: black represents Lx/H = 2π,

red represents Lx/H = 4π, green represents Lx/H = 6π and blue represents Lx/H = 8π.
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Figure 4.1 a and b are normalized by the squared of friction velocity, uτ , while Figure 4.1 are

absolute value of the Reynolds stress. Since the Figure 4.1 a and b are normalized by uτ , the

maximum value of the Reynolds stress reaches one near the wall. The maximum value of the

absolute Reynolds stress reaches to 1.5 and hence the friction velocity is approximately unity

(which is consistent by definition in the present channel flow). As one would expect these

profiles are quite similar, although there are very minor differences, but that is primarily

because the simulation has not been run for a very long and the second order statistics

needs relatively longer time to converge. One point to stress here is, since these studies

are done on a turbulent channel flow and the horizontal boundary conditions are periodic,

therefore the domain length should have a negligible impact on the turbulence statistics.

However, the aim here is to identify the differences in the correlation profiles of amplitude

and frequency modulation. Figure 4.2 a and b shows probability distribution of streamwise

and wall-normal velocity fluctuations for different cases. The color for different cases are kept

consistent in all the figures, i.e., black: Lx/H = 2π, red: Lx/H = 4π, green: Lx/H = 2π and

blue: Lx/H = 2π. These distributions are based on the time-series of velocity fluctuations

obtained at the second discretized location above the wall. The distributions overlap each

other quite precisely which once again confirms that the turbulence statistics are same for

flow with different domain lengths. One can observe from Figure 4.2 a that the probability

distribution of streamwise velocity fluctuations is positively skewed and the mode is negative.

On the other hand the distribution for wall-normal velocity shows zero skewness which makes

complete sense considering that the flow is over a channel with homogeneous roughness and

hence over a relatively long averaging period the wall-normal velocity would be zero.

Figure 4.2 c and d shows time- and streamwise averaged streamwise velocity profiles. Figure

4.2 c is normalized with the outer velocity, Uo and hence the maximum value reaches unity

at the top of the domain. Dashed black line in Figure 4.2 denotes the log law profile with

zo = 10−3. As expected the streamwise velocity profiles for all the cases overlap each other
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Figure 4.2: Probability density functions (a,b) and time-averaged streamwise velocity (c,d)
for Cases 1, 2, 3 and 4; black: Lx/H = 2π, red: Lx/H = 4π, green: Lx/H = 6π and blue:
Lx/H = 8π; dashed black line denotes the log law profile.

and also with the log law profile. Even when the streamwise velocity is normalized with the

friction velocity, uτ , the profiles are still very similar to each other. The results presented

so far in this section provide substantial evidence that the most essential first- and second-

order turbulence statistics have negligible impact due to the change in the the domain length.

In the next subsection the correlation profiles for amplitude and frequency modulation are

presented. Both single- and two-point correlations are computed based on the equations

mentioned in Chapter 1 Section 2.3.

4.3.1 Correlation profiles

Figure 4.3 shows the correlation profile for amplitude and frequency modulation based on

four different reference locations where the two-point correlations are computed. The ref-
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erence location are chosen as, zRef./H = 0.125, 0.20, 0.25, 0.5. The purpose of choosing

four reference locations is to get an idea on how the two-point correlation varies with refer-

ence height and what is the most suitable reference height where the single- and two-point

correlation profiles overlap each other. The different colors in the figure denote different

cases, which is consistent with the previous figures. One can observe that the correlation

profiles for all the cases match quite precisely, which concludes that even if the condition for

the existence of VLSMs is not met, there is still an interaction between the large- and the

small-scales. Now if one focuses on the two-point correlation profiles it can observed that as

the reference location changes the two-point correlation profile changes. For zRef./H = 0.5

the single- and two-point correlation profile differ significantly, but as the reference location

gets closer and closer to the height where an outer peak is supposed to be present, the single-

and two- point profiles start to overlap each other. Another important observation that can

be made from Figure 4.3 is that reference location where the single-and two-point correlation

overlap the most is different for amplitude and frequency modulation. For amplitude mod-

ulation the most suitable reference height is zRef./H = 0.25, while for frequency modulation

the most suitable reference location is zRef./H = 0.125.
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Figure 4.3: Amplitude and Frequency modulation correlation profiles. Panel correspond
with: (a,c,e,g) Ra at zRef. = 0.5, 0.25, 0.2, 0.125, (b,d,f,h) Rf at zRef. = 0.5, 0.25, 0.2, 0.125;
black: Lx/H = 2π, red: Lx/H = 4π, green: Lx/H = 6π and blue: Lx/H = 8π; solid and
dashed lines denote single- and two-point correlation respectively
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In this work I have used LES to study the effect of secondary flows driven and sustained due

to spanwise topographic heterogeneity on amplitude and frequency modulation of small-

scales near the wall. The topography under consideration is composed of two Gaussian

mounds placed 2H apart, where H is the flow depth. All the results were compared against

the benchmark case of homogeneous roughness. Even though the study was performed on a

specific type of topographic arrangement, it can be replicated with any other type of surface

complexity, given that the surface is capable of sustaining domain-scale secondary flows.

Secondary flows and its effect on various turbulence statistics has received significant atten-

tion recently. Although, there have been different findings on the rotational sense of the

vortices within the ”low” and ”high roughness” regions. This issue was addressed recently

in the work of (Yang and Anderson, 2017; Vanderwel and Ganapathisubramani, 2015), it

was shown that the spanwise spacing in an important parameter to determine the existence

and scale of secondary flows. With these studies it was expected that the HMPs and LMPs

should be flanked above the ”high” and ”low roughness” respectively.

In this study it was shown how the secondary flow enhances vertical mixing thereby dimin-

ishing the streamwise correlation within the HMP. The outer peak associated with the very

large scale motions (VLSMs) vanishes within the HMP but is preserved within the LMP,

which can be clearly observed with the pre-multiplied energy spectra. Although the peaks

have been shifted to lower wavelengths within the LMP yet the overall turbulence statistics

closely resemble with the homogeneous roughness case. This is an interesting finding since

the LMPs and HMPs coexists due to same conditions, yet the LMPs appear less influential

to the flow physics. Finally it was shown that even though a prominent secondary flow such
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as in the present study alters the mean flow significantly yet it does not diminish inner-outer

interaction. This study points out certain key observations that may have a significant con-

tributions while developing a predictive model. One such observation is the importance of

reference location while computing the two-point correlations for amplitude and frequency

modulation. Therefore, the reference location should be carefully selected such that it passes

through the region where an outer peak is observed. If such a condition is met, the single-

and two-point correlation would very similar to each other for a wide range of domain height.

The correlation profile for amplitude and frequency modulation were also compared for three

different resolutions and were found to almost identical. The difference were negligible and

may have arisen due to insufficient averaging time for high resolution cases.

To further explore the observation regarding the vanishing of outer peak within the HMPs

for spanwise heterogeneous case I incorporated a study for domain length test. Upon observ-

ing the correlation profiles it was seen that even without a clear outer peak, the inner-outer

interaction is not diminished. Hence, there arises a need to investigate how the correlation

profiles are affected if the streamwise extent condition for the existence of VLSMs is not

met. For this reason four cases with different domain length were studied and single- and

two-point correlation were computed. The results showed that all the correlation profiles

are identical irrespective of the domain length. This concludes that even if the conditions

for the existence of VLSMs are not met there is essentially no effect on the correlation pro-

files. The results obtained in the entire study revolves around the amplitude and frequency

modulating effect of the large scale structures residing in the log region on the small scale

structures near the wall. Although numerous studies have been performed to study this

interaction, yet there are still some areas which need significant attention. The predictive

model that have been developed for obtain the statistics of small-scales near the wall are

only tested on either a smooth-wall or some specific type of topographic arrangements. But

in order to generalize the implementation of a predictive model other parameters that affects

the modulation should also be taken into consideration.
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Anderson, W., P. Passalacqua, F. Porté-Agel, and C. Meneveau (2012). Large-eddy sim-
ulation of atmospheric boundary layer flow over fluvial-like landscapes using a dynamic
roughness model. Boundary-Layer Meteorol. 144, 263–286.

Antonia, R. A. and P.-. Krogstad (2001). Turbulence structure in boundary layers over
different types of surface roughness. Fluid Dynamics Research 28 (2), 139.

Awasthi, A. and W. Anderson (2018, Apr). Numerical study of turbulent channel flow
perturbed by spanwise topographic heterogeneity: Amplitude and frequency modulation
within low- and high-momentum pathways. Phys. Rev. Fluids 3, 044602.

51



Bandyopadhyay, P. and A. Hussain (1984). The coupling between scales in shear flows. Phys.
Fluids 27, 2221–2228.

Barros, J. M. and K. T. Christensen (2014). Observations of turbulent secondary flows in a
rough-wall boundary layer. Journal of Fluid Mechanics 748.

Boashash, B. (1992, 05). Estimating and interpreting the instantaneous frequency of a
signalpart 1: Fundamentals. 80, 520 – 538.

Bou-Zeid, E., C. Meneveau, and M. Parlange (2005). A scale-dependent lagrangian dynamic
model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105.

Bradshaw, P. (2003, 11). Turbulent secondary flows. 19, 53–74.

Brundrett, E. and W. D. Baines (1964). The production and diffusion of vorticity in duct
flow. Journal of Fluid Mechanics 19 (3), 375394.

Brunet, Y., J. J. Finnigan, and M. R. Raupach (1994, Jul). A wind tunnel study of air
flow in waving wheat: Single-point velocity statistics. Boundary-Layer Meteorology 70 (1),
95–132.

Calaf, M., C. Meneveau, and J. Meyers (2010). Large eddy simulation study of fully devel-
oped wind-turbine array boundary layers. Phys. Fluids 22, 015110.

Calaf, M., M. Parlange, and C. Meneveau (2011). Large eddy simulation study of scalar
transport in fully developed wind-turbine array boundary layers. Phys. Fluids 23, 126603–
16.

Castro, I. (2007). Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585,
469–485.

Castro, I. P., H. Cheng, and R. Reynolds (2006, Jan). Turbulence over urban-type roughness:
Deductions from wind-tunnel measurements. Boundary-Layer Meteorology 118 (1), 109–
131.

Chester, S., C. Meneveau, and M. Parlange (2007). Modelling of turbulent flow over fractal
trees with renormalized numerical simulation. J. Comp. Phys. 225, 427–448.

Coceal, O., A. Dobre, T. G. Thomas, and S. Belcher (2007). Structure of turbulent flow over
regular arrays of cubical roughness. J. Fluid Mech. 589, 375–409.

Cohen, L. (1989, Jul). Time-frequency distributions-a review. Proceedings of the IEEE 77 (7),
941–981.

De Graff, D. B. and J. K. Eaton (2000). Reynolds-number scaling of the flat-plate turbulent
boundary layer. Journal of Fluid Mechanics 422, 319346.

52
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