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Spatially distributed dynamical systems arise in a variety of science and engineering problems

and are typically described by Partial Integro-Differential (P(I)DEs) equations. Important

examples of such systems include the wave equations, Maxwell equations, Burgers equations,

Schrodinger equations, and the Navier-Stokes equations. An appropriate way to study and

control such systems often involves the spatio-temporal analysis of linearized forms of these

equations around base profiles, which either describe a steady-state solution or a long-time

averaged mean of a simulation- or experiment-based field. In addition, deterministic or

stochastic forcing is commonly used to compensate for the neglected nonlinear terms and

evaluate the input-output features of the linearized dynamics. However, uncertainty in both

the base profile and nature of the inputs challenge the effectiveness of linearized models for

analysis and control design. Motivated by applications in the analysis and control of complex

fluid flows, this thesis demonstrates how modeling sources of stochastic base flow uncertainty

can enable physical discovery and statistical modeling of quantities of interest.

We provide an input-output framework to analyze the effect of base flow perturbations on

the stability and receptivity properties of transitional and turbulent channel flows. Such

base flow variations are modeled as persistent white-in-time stochastic excitations that enter

the linearized dynamics as multiplicative sources of uncertainty that can alter the stability of
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the linearized dynamics and their receptivity to exogenous excitation. We provide verifiable

conditions for mean-square stability and study the frequency response of the flow subject

to additive and multiplicative sources of uncertainty using the solution to the generalized

Lyapunov equation. Our approach does not rely on costly stochastic simulations or adjoint-

based sensitivity analyses. We use our framework to uncover the Reynolds number scaling

of critically destabilizing variance levels of the base flow uncertainty, study the reliability

of numerically estimated mean velocity profiles in turbulent channel flows, and the robust

performance of a typical boundary control strategy for turbulence suppression in the wake

of parametric uncertainties. For small-amplitude base flow perturbations, we adopt a per-

turbation analysis to provide a computationally efficient method for computing the variance

amplification of velocity fluctuations around the uncertain base. Moreover, we study the flow

structures that are extracted from a modal decomposition of the resulting velocity covariance

matrix at energetically dominant locations of wall-parallel wavenumbers. In the final part of

this thesis, we use the developed input-output framework to evaluate the robust performance

transverse lower-wall oscillations as a flow control strategy when oscillations are subject to

imperfections in amplitude and phase. These imperfections, cause the nominally harmonic

flow control strategy to resemble a random oscillatory pattern.
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CHAPTER 1

INTRODUCTION

The linearized Navier-Stokes (NS) equations have been used to capture the early stages

of transition and identify key mechanisms for subcritical transition in wall-bounded shear

flows. The non-normality of the linearized dynamical generator induces interactions of the

exponentially decaying normal modes (Trefethen et al., 1993; Schmid and Henningson, 2001)

even in the absence of transition, and results in the high sensitivity of velocity fluctuations

to different sources of perturbation. This feature has played a critical role in explaining

the large transient growth of velocity fluctuations (Gustavsson, 1991; Butler and Farrell,

1992; Reddy and Henningson, 1993; Henningson and Reddy, 1994; Schmid and Henningson,

1994) and the amplification of deterministic and stochastic disturbances in transitional and

turbulent wall-bounded flows (Trefethen et al., 1993; Farrell and Ioannou, 1993, 1998; Bamieh

and Dahleh, 2001; Jovanovic and Bamieh, 2005; Hwang and Cossu, 2010a,b; McKeon and

Sharma, 2010; Ran et al., 2019). The success of this approach has also paved the way for the

model-based design of active and passive flow control strategies for suppressing turbulence or

reducing skin-friction drag (Kim and Bewley, 2007; Jovanovic, 2008; Moarref and Jovanovic,

2010, 2012; Luhar et al., 2014; Ran et al., 2021). These studies have used additive stochastic

excitation to model the effect of background disturbances and exogenous perturbations,

or model the uncertainty caused by excluding the nonlinear terms in the NS equations.

Despite most studies being focused on stochastic excitations to be white-in-time, efforts

have also been made to shape the spectra of colored-in-time stochastic forcing to match the

second-order statistics of turbulent flows (Zare et al., 2016, 2017; Morra et al., 2019; Towne

et al., 2020; Zare et al., 2017, 2020), which highlights the dynamical significance of such

additive stochastic excitations in augmenting the linearized dynamics (Zare et al., 2017).

An important, but rather less studied aspect of the linearized NS equations, however, arises
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from the uncertainty surrounding the choice of a base flow state and its implications for

stability analysis, turbulence modeling, and the performance of model-based flow control.

Depending on the flow configuration and its characteristic regime, a base flow profile can

either be obtained as the solution to the NS equations in steady state, or as a long-time

averaged mean of a simulation-based flow field or experimental dataset. Due to insufficient

data or imprecise measurements can cause the time-averaged mean to be poorly approxi-

mated, resulting in uncertainties that prevail over the statistical averaging process (small

data issues). For example, experimental constraints may confine reliable measurement col-

lection and subsequent data acquisition procedures to certain parts of the flow domain, and

in numerical simulations, segments of the computational domain may be poorly resolved.

Furthermore, analytical or numerical approximations may have been made outside their

range of validity implying a degree of uncertainty in the expressions for base flow profiles.

Therefore, development of techniques that account for various sources of uncertainty and

evaluate the validity and robustness of linearized models around uncertain base flow profiles

plays an important role in accounting for these uncertainties in flow dynamics.

For examining the sensitivity of the eigenvalues of the Orr–Sommerfeld operator to de-

terministic variations in the base flow, previous studies have used an adjoint-based varia-

tional procedure to identify worst-case perturbations with the most destabilizing effect on

the eigenspectrum (Bottaro et al., 2003). Similar tools were later used in a locally tem-

poral framework for identifying the optimal modification to the base flow for stabilizing a

bluff-body wake (Hwang and Choi, 2006) and extended to global stability analysis (Marquet

et al., 2008; Pralits et al., 2010). While it has been shown that minute perturbations of

the dynamic generator can cause significant displacement of eigenvalues (Reddy et al., 1993;

Schmid et al., 1993; Trefethen and Embree, 2005), it is generally accepted that the distur-

bance behavior of the linearized NS equations would be robust. Furthermore in (Brandt

et al., 2011), an analytical expression was found for the gradient of singular values of the
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resolvent operator with respect to base flow modifications thereby accounting for variations

in the non-modal behavior of wall-bounded shear flows. Besides adjoint-based methods for

analyzing the sensitivity to deterministic modifications, there has also been efforts in quan-

tifying the effect of random spatial base flow variations using stochastic spectral projection

based on generalized polynomial chaos theory (Ko et al., 2011).

Additive sources of uncertainty in the base flow enter the linearized dynamics multiplica-

tively and in a structured manner. The structured singular value provides a robust stability

theory for the uncertain dynamics in the presence of deterministic and set-valued uncer-

tainties (Skogestad and Postlethwaite, 2007). However, implementation deficiencies often

results in unpredictable time-varying parametric variations. While this approach is based

on a worst-case analysis and may not provide a realistic model for experimental/numerical

imperfections, the dynamical equations for the second moments of stochastically perturbed

linear systems can be used determine the effect of perturbations on optimal finite-time energy

growth (Farrell and Ioannou, 2002). Application of similar analysis techniques to stochasti-

cally perturbed Poiseuille flow uncovers the effect of multiplicative uncertainty on optimal

energy growth as well as the robust amplification of streaks (Schmid, 2007). As highlighted in

these studies, persistent multiplicative uncertainty increases the sensitivity of non-normal lin-

ear dynamical systems by influencing their asymptotic and transient mean-square response.

In contrast to its additive counterpart, however, white-in-time multiplicative uncertainty can

compromise the mean-square stability properties of linear systems. Mean-square stability

(MSS) is a strong form of stability that implies stability of the mean and convergence of all

trajectories of the stochastic dynamical system (in the absence of exogenous excitation) to

zero with probability one (Kushner, 1967; Willems, 1973).

In this thesis, we have revisited the problem of analyzing internal stochastic uncertainties

by modeling structured perturbations to the base flow as white-in-time stochastic processes.

The dynamics of velocity fluctuations around the uncertain base state are governed by a
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set of stochastic differential equations (SDEs) and we provide an input-output treatment by

rewriting the SDEs as a feedback interconnection of the linearized dynamics and structured

stochastic uncertainties. This allows us to separate the nominal (known) dynamics from the

sources of uncertainty and facilitates both stability and receptivity analyses of the fluctuation

dynamics in the presence of persistent additive and multiplicative stochastic excitation.

Following recent developments of (Filo and Bamieh, 2018), we provide specialized conditions

for the MSS of the uncertain dynamics. Furthermore, we analyze the energy spectrum of

the linearized NS equations subject to additive and multiplicative sources of excitation. To

this end, we compute the second-order statistics of the velocity field from the solution to a

generalized Lyapunov equation. We demonstrate the utility of our approach by studying the

stability and receptivity of the three-dimensional channel flow around canonical Couette and

Poiseuille profiles as well as a turbulent mean velocity profile resulting from direct numerical

simulations (DNS), all of which are contaminated with persistent stochastic perturbations;

see Fig. 1.1 for an illustration. We also uncover the Reynolds number scaling of the critical

variance of stochastic base flow uncertainty that guarantees MSS and identify length scales

that are most influenced by such perturbations. In the final chapter, we use our input-

output framework to study the effect of random lower-wall oscillations in a channel flow

with Re = 2000. The random oscillations are due to stochastic parametric uncertainties in

the amplitude and phase of nominally harmonic wall oscillations.

The rest of the presentation is organized as follows. In Chapter 2, we describe our model

of stochastic base flow perturbation, introduce the stochastically forced linearized NS equa-

tions around the uncertain base flow, and demonstrate how base flow perturbations enter the

dynamics as multiplicative sources of uncertainty. In Chapter 3, we rewrite the linearized

dynamics as a feedback interconnection between nominal dynamics and sources of stochas-

tic uncertainty. We then use this input-output representation to provide MSS conditions

for our model, characterize its frequency response, and describe the generalized Lyapunov
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(a) (b) (c)

Uncertainty Uncertainty Uncertainty

Figure 1.1. Side view of the three-dimensional canonical flows considered in this study
along with various realizations of stochastic base flow perturbations γu(t) represented by the
shaded area surrounding the base flow profiles. (a) Couette flow; (b) Poiseuille flow; and (c)
turbulent channel flow.

equation that we use to compute the second-order statistics and energy spectrum of veloc-

ity fluctuations. In Chapter 4, we examine the MSS and energy amplification of velocity

fluctuations around Couette and Poiseuille profiles, and study eigenvalue contributions and

flow structures corresponding to principal modes that has the maximum energy contribu-

tions. In Chapter 5, we conduct a similar analysis for the linearized NS equations around the

DNS-based mean velocity profiles of turbulent channel flow at various Reynolds numbers.

We then provide a Reynolds number dependence on the energy amplification of streamwise

constant parallel channel flows in Chapter 6. In Chapter 7, we examine the MSS of channel

flow over random wall oscillations and discuss the influence of parametric uncertainty on the

energy of velocity fluctuations. We provide concluding remarks in Chapter 8. The material
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CHAPTER 2

FLUCTUATIONS DYNAMICS AROUND UNCERTAIN BASE FLOW

The dynamics of incompressible Newtonian fluids is governed by the NS equations,

ũt = − (ũ · ∇) ũ − ∇P̃ +
1

R
∆ũ

0 = ∇ · ũ
(2.1)

where ũ is the velocity vector, P̃ is the pressure, ∇ is the gradient, ∆ = ∇ · ∇ is the

Laplacian, and t is time. Here, the Reynolds number R is defined in terms of appropriate

length and velocity scales, e.g., for a laminar channel flow configuration, R = Ūh/ν, where Ū

is the maximum nominal velocity, h is the channel half-height, and ν denotes the kinematic

viscosity. Linearization of the NS equations around an arbitrary, parallel base flow u =

[U(y) 0 W (y) ]T and pressure P yields the equations that govern the dynamics of velocity,

v, and pressure, p, fluctuations,

vt = − (∇ · u)v − (∇ · v)u − ∇p +
1

R
∆v + f

0 = ∇ · v.
(2.2)

Here, v = [u v w ]T , with u, v, and w representing the fluctuating components in the

streamwise, x, wall-normal, y, and spanwise, z directions, and f denotes a three-dimensional

zero-mean white-in-time additive stochastic forcing.

We assume the base flow u to be contaminated with an additive source of uncertainty,

i.e.,

u(y, t) = ū(y) + γ(y, t). (2.3)

Here, ū = [ Ū(y) 0 W̄ (y) ]T is the nominal base flow in the absence of uncertainty and γ is

a zero-mean white-in-time stochastic process that can enter both streamwise and spanwise

components of ū, i.e., γ = [ γu(y, t) 0 γw(y, t) ]
T . The uncertain base flow u enters the
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linearized Eqs. (2.2) as a coefficient that multiplies the vector of velocity fluctuations v.

While u includes the sources of uncertainty γ, it remains constant in x and z. Elimination

of pressure and application of the Fourier transform in the spatially invariant wall-parallel

directions brings Eqs. (2.2) into the evolution form

φt(y,k, t) = [A(k, t)φ(·,k, t)] (y) + [B(k) f(·,k, t)] (y)

v(y,k, t) = [C(k)φ(·,k, t)] (y)
(2.4)

where the state variable φ = [ v η ]T contains the wall-normal velocity v and vorticity

η = ∂zu − ∂xw, and k = [ kx kz ]
T is the vector of streamwise and spanwise wavenumbers.

These SDEs involve multiplicative sources of stochastic uncertainty γu and γw in addition

to the additive source of stochastic uncertainty f . In (2.4), operators A, B, and C are given

by

A(k, t) :=

 A11 0

A21 A22

 (2.5)

A11(k, t) := ∆−1
( 1

R
∆2 + ikx

(
Ū ′′(y) + γ′′

u(y, t) − (Ū(y) + γu(y, t))∆
)
+

ikz
(
W̄ ′′(y) + γ′′

w(y, t) − (W̄ (y) + γw(y, t))∆
) )

A21(k, t) := −ikz
(
Ū ′(y) + γ′

u(y, t)
)
+ ikx

(
W̄ ′(y) + γ′

w(y, t)
)

A22(k, t) :=
1

R
∆ − ikx

(
Ū(y) + γu(y, t)

)
− ikz

(
W̄ (y) + γw(y, t)

)
B(k) :=

 −ikx∆
−1∂y −k2∆−1 −ikz∆

−1∂y

ikz 0 −ikx

 , (2.6)

C(k) :=


Cu

Cv

Cw

 =
1

k2


ikx∂y −ikz

k2 0

ikz∂y ikx
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where prime denotes differentiation with respect to the wall-normal coordinate, i is the

imaginary unit, k2 = k2
x + k2

z , ∆ = ∂2
y − k2 is the Laplacian, ∆2 = ∂4

y − 2k2∂2
y + k4,

and v(±1, k, t ) = vy(±1, k, t ) = η(±1, k, t ) = 0, which can be derived from the original

no-slip and no-penetration boundary conditions on u, v, and w.

We confine the class of stochastic base flow perturbations to the form γ(y, t) = α γ̄(t)f(y),

in which α is the constant amplitude, γ̄(t) is a zero-mean stochastic parameter of unit

amplitude, and f(y) is a smooth filter function that determines the wall-normal region of

influence and is defined as

f(y) :=
1

π
[ arctan (a(y − y1)) − arctan (a(y − y2)) ]. (2.7)

Here, y1 and y2 determine the wall-normal extent of f(y) and a specifies the roll-off rate. In

Chapters. 4 and 5, we study the influence of stochastic base flow perturbations that follow

the shape of the associated nominal base flows (f(y) = Ū(y)/|Ū(y)|), in addition to the two

shape functions shown in Fig. 2.1. While the shape function in Fig. 2.1(a) does not restrict

the wall-normal extent of the perturbations (besides a roll-off at the wall in accordance with

the boundary conditions), Fig. 2.1(b) represents an extreme case corresponding to base flow

perturbations that may result from active/passive boundary actuation (e.g., blowing and

suction or surface roughness). Beyond application specificities, these extreme cases allow us

to study the dependence of our results on the wall-normal extent of base flow perturbations.

Based on the class of stochastic perturbations γ(y, t) considered in this thesis, the operator-

valued matrix A in evolution model (2.4) can be decomposed into nominal and perturbed

components as

A(k, t) = Ā(k) + α (γ̄u(t)Au(k) + γ̄w(t)Aw(k)) (2.8)

where expressions for Ā, Au, and Aw are given in Appendix A. The nominal base flow profile

ū(y), and shape functions fu(y) and fw(y) enter operators Ā, Au, and Aw as deterministic
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parameters, respectively. Note that while we have assumed the streamwise and spanwise

components of the base flow uncertainty γ(y, t) to be of equal amplitude, all mathemati-

cal developments can be easily extended to scenarios where the streamwise and spanwise

components have different amplitudes.

In this study, we use a pseudospectral scheme with N Chebyshev collocation points in

the wall-normal direction (Weideman and Reddy, 2000) to discretize the operators in the

linearized equations (2.4). In addition, we employ a change of variables to obtain a state-

space representation in which the kinetic energy is determined by the Euclidean norm of the

state vector (Zare et al., 2017, Appendix A). This yields the state-space model

ψ̇(k, t) = A(k, t)ψ(k, t) + B(k) f(k, t)

v(k, t) = C(k)ψ(k, t)

(2.9)

where vectors ψ and v are vectors with complex-valued entries and 2N and 3N components,

respectively, and matrices A, B, and C are discretized versions of the corresponding operators

that incorporate the aforementioned change of coordinates. We next provide an input-output

reformulation of SDE (2.9) to analyze the influence of stochastic sources of uncertainty on

the mean-square asymptotic stability and second-order statistics of velocity fluctuations.
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(a) (b)
y

f(y) f(y)

Figure 2.1. (a) A shape function f(y) determined using Eq. (2.7) with {y1, y2} = {−0.9, 0.9}
and a = 200; and (b) a two-sided shape function f(y) = f1(y)+f2(y) in which f1(y) and f2(y)
are determined using Eq. (2.7) with {y1, y2} = {−1,−0.95} for f1(y), {y1, y2} = {0.95, 1}
for f2(y), and a = 200.
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CHAPTER 3

MEAN-SQUARE STABILITY AND INPUT-OUTPUT ANALYSIS

The evolution of ψ in SDE (2.9) is affected by the presence of both stochastic base flow per-

turbations γ(y, t) and additive forcing f(t). While there is no ambiguity in the treatment of

additive noise in continuous-time systems, multiplicative noise is not generally well-defined

and its treatment calls for the adoption of a suitable stochastic calculus (e.g., Itō (Ito, 1979)

or Stratonovich (Stratonovich, 1966)). In this chapter, we provide an appropriate inter-

pretation for the multiplicative uncertainty, extract these sources using a linear fractional

transformation, and establish an input-output relation between stochastic sources and the

output velocity fluctuations of system (2.9). Building on this representation, we examine

conditions for MSS and analyze the frequency response of the system in the presence of

multiplicative stochastic uncertainty.

3.1 Stochastic feedback interconnection

In input-output form, SDE (2.9) can be rewritten as v

z

 = M

 f

r

 ⇔

 v(k, t)

z(k, t)

 =

∫ t

0

M(k, t − τ)

 f(k, τ)

r(k, τ)

 dτ

r(k, t) = αD(γ̄(t)) z(k, t) (3.1)

which extracts the role of multiplicative uncertainties by rearranging the dynamics as a feed-

back connection between the nominal (known) dynamics (captured by the impulse response

operator M) and the structured uncertainty D(γ̄(t)) := diag{γ̄u(t)I, γ̄w(t)I}. In Eqs. (3.1),

M denotes the finite-dimensional approximation to the impulse response operator M, v is

the output velocity vector (cf. Eqs. (2.9)), and z is computed from the state ψ. Moreover,
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the exogenous stochastic input f , the uncertain feedback signal r, and the sources of uncer-

tainty γ̄u and γ̄w are white processes that are all defined as derivatives of Wiener processes

(or Brownian motion) (Øksendal, 2003), i.e.,

γ̄u(t) :=
dγ̃u(t)

dt
; γ̄w(t) :=

dγ̃w(t)

dt
; f(k, t) :=

df̃(k, t)

dt
; r(k, t) :=

dr̃(k, t)

dt
.

Here, γ̃i are zero-mean Wiener processes with variance σ2
i and f̃ is a zero-mean vector-valued

Wiener process with instantaneous covariance

〈
f̃(k, t) f̃∗(k, t)

〉
= Ω(k) t

in which Ω(k) = Ω∗(k) ⪰ 0 is the spatial covariance matrix. We assume that γ̃i and f̃ are

uncorrelated at all times, adopt the Itō interpretation, and assume that r has temporally

independent increments, i.e., its differentials (dr(k, t1), dr(k, t2)) are independent when t1 ̸=

t2. Given this mathematical interpretation, the differential form of Eqs. (3.1) is given by v

z

 = M

 df̃

dr̃

 ⇔

 v(k, t)

z(k, t)

 =

∫ t

0

M(k, t − τ)

 df̃(k, τ)

dr̃(k, τ)


dr̃(k, t) = αD(dγ̃(t)) z(k, t) (3.2)

and is described by the block diagram in Fig. 3.1. A corresponding state-space model is

given by

M :


dψ(k, t) = Ā(k)ψ(k, t)dt + B0(k) dr̃(k, t) + B(k) df̃(k, t)

z(k, t) = C0(k)ψ(k, t)

v(k, t) = C(k)ψ(k, t)

dr̃(k, t) = αD(dγ̃(t)) z(k, t) (3.3)
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M

α

 dγ̃uI

dγ̃wI



df̃

dr̃

v

z

Figure 3.1. Linear fractional transformation of an LTI system subject to both additive
and multiplicative stochastic disturbances (Eqs. (3.3)). Here, df̃ and the dγ̃i represent dif-
ferentials of Wiener processes that model additive and multiplicative sources of stochastic
uncertainty, respectively.

with

B0(k) :=

[
I I

]
, C0(k) :=

 Au(k)

Aw(k)

 . (3.4)

Here, ψ, z, and v are complex-valued vectors of appropriate dimension, B and C are finite-

dimensional approximations of the input and output operators in (2.9), and Ā, Au and Aw are

finite-dimensional approximations of the nominal dynamics and their perturbations in (2.8).

3.2 Mean-square stability conditions

For the causal LTI system (3.3), MSS certifies that for all differential inputs, [ df̃ dr̃ ]T , with

independent increments and uniformly bounded variances, the output process v

z

 =

 M11 M12

M21 M22


︸ ︷︷ ︸

 df̃

dr̃


M

has a uniformly bounded variance; see, e.g., (Samuels, 1959). Following (Filo and Bamieh,

2020, Theorem 3.2), the necessary and sufficient conditions for MSS can be generalized for

the continuous-time scenario, i.e., the output v in (3.3) has a finite covariance if and only if

the feedback subsystem (M22,Γ) is MSS. Based on this, the exact necessary and sufficient
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conditions for the MSS of (3.3) are: (i) Ā is Hurwitz; and (ii) the spectral radius of the loop

gain operator

L(R) := Γ ◦
(∫ ∞

0

M22(τ)RM∗
22(τ)dτ

)
(3.5)

is strictly less than 1/α2, i.e., ρ(L) < 1/α2. Here, ◦ is the Hadamard product, M22 is the

impulse response of the subsystem M22 : dr̃ → z, which is given by

M22(k, t) = C0(k) e
Ā(k,t)t B0(k)

and ∗ denotes complex-conjugate-transpose. The matrix Γ denotes the mutual correlation of

the sources of uncertainties γ̃i, i.e., Γ :=
〈
γ̃i(t) γ̃

∗
j (t)

〉
. For example, for mutually independent

multiplicative uncertainties in the streamwise and spanwise directions that are spatially

uncorrelated, Γ = diag{σ2
u I, σ

2
w I}, where σ2

u and σ2
w are variances of γ̄u and γ̄w, respectively.

In this study, we consider γ̄u and γ̄w to be mutually independent, but repeated throughout

the spatial domain, i.e., Γ = diag{σ2
u 11

T , σ2
w 11

T}, where 1 represents the vector of 2N

ones. As explained in Chapter 2, the wall-normal support of each multiplicative uncertainty

γ̄i will be captured by its associated shape function fi(y) within operators Ai in Eq. (3.4).

Remark 1. We note that a similar condition for global mean-square asymptotic stability

was proposed in (Buckwar and Kelly, 2014). This condition was based on the stability of

the differential generalized Lyapunov equation and amounts to the eigenvalue stability of

the mean-square stability matrix, which takes a similar form as the loop gain operator L(·).

The differential generalized Lyapunov equation governs the evolution of the state covariance

matrix X. In Chapter 3.3, we use the steady-state solution of this equation to compute the

second-order statistics and energy spectrum of velocity fluctuations in the presence of both

additive and multiplicative stochastic excitation.

The loop gain operator propagates the steady-state covariance of dr̃ denoted by R

through the feedback configuration in Fig. 3.1. Equivalently, we have

L(R) = Γ ◦ (C0X C∗
0)
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where X is the solution to the algebraic Lyapunov equation

ĀX + X Ā∗ = −B0RB∗
0 .

In practice, the spectral radius of L can be numerically computed using the power iteration

algorithm; see, e.g., (Filo and Bamieh, 2020, Section VI.A). Starting from an initial R0 ⪰ 0

an estimate for the spectral radius is updated via a sequence of steps:

ĀXk+1 + Xk+1 Ā
∗ = −B0Rk B

∗
0

Rk+1 :=
1

∥Rk∥F
(Γ ◦ (C0Xk+1C

∗
0))

ρk+1 := ⟨Rk,Rk+1⟩

until the residual (Rk+1 − ρk+1Rk) /∥Rk+1∥F is smaller than a desirable tolerance.

3.3 Frequency response of uncertain dynamics

We build on the input-output representation provided in Chapter 3.2 and characterize the

frequency response of the system subject to both additive and multiplicative sources of

uncertainty. We show that the second-order statistics of the uncertain system and the

energy spectrum of velocity fluctuations can be obtained from the solution of a generalized

Lyapunov equation.

The impulse response M in (3.2) corresponding to the state-space representation (3.3)

takes the form

M(k, t) :=

 C(k)

C0(k)

 e Ā(k,t)t

[
B(k) B0(k)

]

When f , γ̄u, and γ̄w are zero-mean white-in-time processes with covariance matrix Ω, and

variances σ2
u and σ2

w, the steady-state covariance of the state,

X(k) = lim
t→∞

⟨ψ(k, t)ψ∗(k, t)⟩ (3.6)
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can be determined as the solution to the generalized Lyapunov equation

ĀX + X Ā∗ + α2B0 (Γ ◦ (C0X C∗
0))B

∗
0 = −B ΩB∗ (3.7)

which is parameterized over wavenumber pairs k. The generalized Lyapunov equation relates

the statistics of white-in-time forcing f and multiplicative sources of excitation α γ̄u and

α γ̄w with wall-normal support fu(y) and fw(y) to the steady-state covariance X via system

matrices Ā and B and perturbation matrices Au and Aw. It can also be used to compute

the energy spectrum of velocity fluctuations v,

E(k) = trace (Φ(k)) = trace (C(k)X(k)C∗(k)) (3.8)

where Φ is the covariance matrix of v. We can then capture the influence of multiplicative

uncertainty on the energy spectrum using the discounted spectrum

Ec(k) = E(k) − E0(k) (3.9)

where E0 denotes the nominal energy spectrum in the absence of uncertainties γ̄u and γ̄w.

Following (3.4) and the assumption of repeated base flow perturbations, which yield Γ =

diag{σ2
u 11

T , σ2
w 11

T}, Eq. (3.7) can be expanded to reflect contributions from uncertainties

affecting the streamwise and spanwise components of the base flow as

ĀX + X Ā∗ + α2
(
σ2
u (Au X A∗

u) + σ2
w (Aw X A∗

w)
)

= −B ΩB∗ (3.10)

A direct approach to solving (3.10) as a linear system of equations yields

(
I ⊗ Ā + Ā⊗ I + α2

(
σ2
u (Au ⊗ Au) + σ2

w (Aw ⊗ Aw)
))

vec(X) = − vec(B ΩB∗)

(3.11)

where ⊗ is the Kronecker product and vec(·) denotes vectorization. However, in the absence

of sparse matrix structures, solving for X can be challenging even for medium-size problems.

Other existing methods for solving (3.10) explore solutions to surrogate equations and utilize
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iterative methods to improve computational complexity (Benner, 2004; Benner et al., 2008;

Damm, 2008; Benner and Damm, 2011). In what follows, we consider small-amplitude per-

turbations (α ≪ 1) and pursue an alternative approach by utilizing a perturbation analysis

to achieve a computationally efficient way of obtaining the energy spectrum. As shown in

Appendix B, this approach allows us to compute the second-order statistics of the uncertain

model by solving a sequence of standard algebraic Lyapunov equations instead of the gen-

eralized Lyapunov equation (3.10). In addition to the computational benefit, the choice of

small perturbation amplitude is motivated by the desire to account for uncertainties arising

from measurement imperfections, small-data issues in the statistical averaging process, or

the effect of active/passive boundary actuation strategies that influence the base flow. Based

on this, up to a second order in the perturbation amplitude α, the state covariance X in (3.6)

is given by

X(k) = X0(k) + α2X2(k) + O(α4) (3.12)

where X0 and X2 are obtained from a set of decoupled Lyapunov equations; see Appendix B

for details. Note that X0 represents the steady-state covariance of ψ, i.e., the state of the

nominal dynamics in the absence of base flow perturbations, and X2 represents the second-

order correction induced by the random base flow uncertainty. The energy spectrum of

velocity fluctuations v (Eq. (3.8)) follows a similar perturbation series as (3.12):

E(k) = E0(k) + α2E2(k) + O(α4) (3.13)

where E0(k) = trace(X0(k)) is the nominal energy spectrum in the absence of base flow

perturbations, and E2(k) = trace(X2(k)) captures the effect of base flow perturbations at

the level of α2. When α ≪ 1, the correction α2E2(k) provides a good approximation of the

discounted spectrum Ec(k) in Eq. (3.9), and as α grows, higher-order terms may be needed

to approximate E(k).
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CHAPTER 4

EFFECT OF BASE FLOW VARIATIONS ON TRANSITIONAL FLOWS

In this chapter, we examine the dynamics of stochastically forced Couette and Poiseuille

flows in the presence of zero-mean white-in-time stochastic uncertainty γ̄u in the streamwise

direction. The nominal dynamics are obtained by linearizing the NS equations around ū =

[ Ū(y) 0 0 ]T with Ū(y) = y for Couette flow (Fig. 1.1(a)) and Ū(y) = 1 − y2 for Poiseuille

flow (Fig. 1.1(b)). Throughout this chapter, we use N = 101 Chebyshev collocation points

to discretize the operators involved in the linearized equations. Grid convergence is ensured

by doubling the number of collocation points. We first examine the MSS of the flow in the

presence of streamwise base flow perturbations. Our analysis identifies critically destabilizing

perturbation variances over a range of Reynolds numbers. Using these critical variance levels,

we examine the effect of base flow perturbations of various amplitude on the energy spectrum

and dominant flow structures.

4.1 Stability analysis

For both Couette and Poiseuille flows, we use the stability condition presented in Chap-

ter 3.2 to examine the MSS of the horizontal wavenumber pair k = (1, 1), which corresponds

to an oblique flow structure. Both DNS (Reddy et al., 1998) and nonlinear optimal pertur-

bation analysis (Rabin et al., 2012) have demonstrated the fragility of such flow structures

in transition mechanisms, i.e., oblique modes require less energy to induce transition than

streamwise elongated modes. The high sensitivity of such three-dimensional flow structures

to additive streamwise excitations was also demonstrated using frequency response analysis

of the linearized NS equations (Jovanovic and Bamieh, 2005).

Figure 4.1 shows the minimum destabilizing variance σ2
u over a range of Reynolds numbers

for k = (1, 1) when the base flow is perturbed at different wall-normal regions. The shaded
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areas under the curves denote the Reynolds numbers and perturbation variances for which the

flows remain asymptotically mean-square stable. In both flows, higher variances σ2
u could be

tolerated when stochastic perturbations were confined to the wall-normal regions close to the

walls, i.e., when f(y) corresponds to the shape function shown in Fig. 2.1(b). As expected,

both flows become less robust to base flow perturbations as the region of influence grows in

the wall-normal dimension. We also observe that while the stability curves corresponding

to the oblique mode in Couette and Poiseuille flows are similar for near-wall perturbations

(Fig. 2.1(b)), the oblique mode in Poiseuille flow is, generally, more sensitive to channel-wide

base flow perturbations (f(y) = Ū(y) and Fig. 2.1(a)).

While it generally becomes easier to destabilize the flow at higher Reynolds numbers,

critical variance levels demonstrate different Reynolds number scaling when base flow per-

turbations are confined to different wall-normal regions. In both Couette and Poiseuille flows

the critical variance of near-wall base flow perturbations (Fig. 2.1(b)) are found to scale as

R−1. In other words, it is reasonable to expect larger persistent stochastic perturbations

with variances of the same order (R−1) to induce O(R−1) growth rates that can instigate

transition. On the other hand, if perturbations follow the shape of the corresponding base

flows (f(y) = Ū(y)/|Ū(y)|), the critical variance levels decrease at a slower rate (R−0.5).

When the base flow perturbations are allowed to enter through the entire wall-normal ex-

tent of the channel (Fig. 2.1(a)), the critical variance levels are found to scale as O(R−1)

in Couette flow and at an increasing rate in Poiseuille flow (O(R−0.5) for R < 600 and

O(R−1.2) for R > 600). It is noteworthy that the Reynolds number scaling obtained using

our stochastic approach is in agreement with the scaling observed in (Bottaro et al., 2003) for

the magnitude of deterministic (worst-case) base flow perturbations. We note that besides

k = (1, 1), a similar Reynolds number dependence can be observed for the critical variance of

base flow perturbations at other horizontal wavenumber pairs. For Couette flow at R = 500

and Poiseuille flow at R = 2000 subject to base flow perturbations with f(y) = Ū(y)/|Ū(y)|,
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Figure 4.1. Stability curves for fluctuation dynamics with k = (1, 1) in (a) Couette flow;
and (b) Poiseuille flow. The curves demonstrate the Reynolds number dependence of the
maximum tolerable variance for stochastic base flow perturbations entering the dynamics
through f(y) = Ū(y)/|Ū(y)| (+) or the shape functions f(y) depicted in Figs. 2.1(a) (∗)
and 2.1(b) (◦). For a given Reynolds number, the shaded areas under the curves denote the
variances of stochastic base flow uncertainty that do not violate MSS (ρ(L) < 1 with α = 1).
The triangles in the upper right corners demonstrate an R−1 slope.

Fig. 4.2 shows the critical variance levels σ2
u for flow fluctuations with different spanwise and

streamwise wavenumbers. In both flows, streamwise elongated structures (smaller kx) are

more robust toward streamwise base flow perturbations. On the other hand, the sensitivity

to such perturbations is largely invariant to the width of flow structures and only decreases

for longer flow structures when λz ≲ 1. Based on Fig. 4.2, streamwise elongated structures

(streaks) that are thin in the spanwise dimension exhibit the least sensitivity to such base

flow uncertainty. Finally, we note that similar trends can be observed in both flows when

base flow perturbations are allowed to enter a larger extent of the wall-normal domain (when

f(y) follows Fig. 2.1(a)).

4.2 Energy spectrum of velocity fluctuations

We now use the maximum tolerable variance over all horizontal wavenumber pairs to study

the effect of base flow perturbations on the energy spectrum of velocity fluctuations. In
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Figure 4.2. Logarithmically scaled critical variance levels for stochastic multiplicative uncer-
tainty γ̄u with α = 1 and f(y) = Ū(y)/|Ū(y)| over the horizontal wavenumber spectrum in
(a) Couette flow with R = 500; and (b) Poiseuille flow with R = 2000.

both flows, the most sensitive modes that have been considered in Fig. 4.2 correspond to

k = (100, 0.01). In Couette flow with R = 500, the critical variance levels σ2
u for streamwise

base flow perturbations that enter through wall-normal regions corresponding to f(y) =

Ū(y)/|Ū(y)|, Fig. 2.1(a), and Fig. 2.1(b) to destabilize this mode are 0.44, 0.09, and 8.3,

respectively. These values change to 0.03, 0.008, and 2.09 in Poiseuille flow with R = 2000.

In the numerical experiments of this section, we consider slightly lower variance levels than

these critical values to ensure MSS over all length-scales. Moreover, we assume the stochastic

input f to be white-in-time with trivial covariance Ω = I.

In the absence of multiplicative uncertainty (γ̄u = 0), Eq. (3.7) reduces to a standard

algebraic Lyapunov equation. The nominal energy spectra E0 of plane Couette and Poiseuille

flows, which can be computed from the solution of this Lyapunov equation, are shown in

Figs. 4.3(a) and 4.3(b), respectively.In the perturbed case, we use the perturbation analysis

presented in Chapter 3.3 to compute the effect of base flow perturbations on the energy

of velocity fluctuations by solving a sequence of standard algebraic Lyapunov equations

(Eqs. (B.2)) instead of the generalized Lyapunov equation (3.10). Figure 4.4 validates this
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kz kz

Figure 4.3. Energy spectra of (a) plane Couette flow with R = 500 and (b) plane Poiseuille
flow with R = 2000. Color plots show log10(E0(k)).

approach in predicting the discounted energy spectrum Ec (Eq. (3.9)) of plane Couette

flow at kx = 1 due to small amplitude base flow perturbations with f(y) = Ū(y)/|Ū(y)|.

This streamwise wavenumber will be shown to contain the most sensitive region of the

spectrum (Fig. 4.5). It is evident that for small perturbation amplitudes α, even the second-

order correction (at the level of α2) is in excellent agreement with the direct solution whose

computational cost is significantly higher.

Figure 4.5 shows the second-order correction to the energy spectrum (E2(k)) of Couette

and Poiseuille flow induced by base flow perturbations of various shape f(y). Clearly, base

flow perturbations have resulted in the amplification of all spatial scales. As shown in Fig. 4.3,

the amplification of streamwise elongated flow structures (streaks) dominates the energy

spectra of nominal (unperturbed) flows. In contrast, small-amplitude channel-wide base flow

perturbations (when f(y) = Ū(y)/|Ū(y)| or Fig. 2.1(a)) predominantly influence the oblique

modes with kx ≈ 1 and kz ∼ O(1) (marked by (×)), and near-wall perturbations (when f(y)

corresponds to Fig. 2.1(b)) result in the dominant amplification of Tollmien–Schlichting

(TS) waves (marked by (•)). We remark that even though the amplification of TS waves is

overcome by that of oblique modes when channel-wide base flow perturbations are applied,
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kz

Figure 4.4. The discounted energy spectrum Ec in Couette flow with R = 500 and kx = 1
subject to base flow perturbations with f(y) = Ū(y)/|Ū(y)| with σ2

u = 0.43 and α = 0.01.
Direct solution from solving Eq. (3.11)(−); and approximate solutions from perturbation
analysis: Ec = α2E2(k) (∗) and Ec = α2E2(k) + α4E4(k) (◦).

their local signature at kz ≈ 0 prevails in all cases. Figures 4.5(c,d) demonstrate that the

amplification of streaks is quite robust to base flow perturbations that are not confined

in the wall-normal direction (Fig. 2.1(a)). This is because at kx = 0 stochastic base flow

perturbations have no way to influence the solution of Eq. (3.7) as the main diagonal blocks

of Au would be zero and the off-diagonal (coupling) term, which includes the wall-normal

derivative of f(y), is predominantly zero (apart from the immediate vicinity of the walls); see

Appendix A. This is in agreement with the findings of the worst-case adjoint-based analysis

conducted for a zero-pressure-gradient boundary layer in (Brandt et al., 2011), where the lack

of influence on streamwise streaks is evident from the structure of the analytically derived

gradient of resolvent singular values. It follows from the form of perturbation matrices

Au and Aw in Appendix A that streaks would be susceptible to multiplicative sources of

uncertainty that enter the dynamics through other components of the base state or involve

significant wall-normal variations (cf. Figs. 4.5(a,b) and 4.5(e,f)).

Figure 4.6 shows the correction to the energy spectrum (Ec(k)) of Couette and Poiseuille

flows in the presence of higher-amplitude base flow perturbations. The perturbation ampli-
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tude α = 0.5 considered in this figure corresponds to the maximum perturbation amplitude

for which the result of perturbation analysis is in agreement with the direct solution of

Eq. (3.11). In obtaining these plots the limit of the perturbation series (3.13) was obtained

using 4 terms in the perturbation series, i.e., Ec = α2E2 + α4E4, and verified using the

Shanks transformation (Shanks, 1955; Dyke, 1964). This transformation provides the means

to improve the convergence rate of slowly convergent series and to even achieve convergence

when the original series is divergent (Sidi, 2003); see Appendix B for details. Figure 4.6

shows that for high amplitudes base flow perturbations, apart from a uniform increase in the

energy correction over all scales (by approximately O(3)), the amplification trends predomi-

nantly follow the predictions of Fig. 4.5 for small amplitude perturbations. For both Couette

and Poiseuille flows, Fig. 4.7 examines the dependence of the normalized correction to the

total kinetic energy on the amplitude of base flow perturbations that enter the dynamics

through various shape functions f(y) and with uncertainty variances σ2
u that correspond to

the maximum tolerable values identified in Fig. 4.1. These figures show that the correction to

kinetic energy increases as the wall-normal extent of base flow perturbations becomes larger.

We also observe that as the amplitude of base flow perturbations increases the exponential

growth rate approaches that of higher powers of α (cf. Eq. (3.13)).

4.3 Maximally affected flow structures

Following the proper orthogonal decomposition of (Bakewell and Lumley, 1967; Moin and

Moser, 1989), we extract the dominant flow structures that result from the steady-state

stochastic analysis of transitional flow in the presence of base flow uncertainty. These flow

structures can be formed from the energetically dominant eigenvectors of the velocity covari-

ance matrix Φ(k) = C(k)X(k)C∗(k), where X(k) represents the solution of the generalized

Lyapunov equation (3.11). Following the eigenvalue decomposition of Φ, the symmetries in
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Figure 4.5. The second-order correction to the energy spectrum E2(k) due to multiplicative
uncertainty γ̄u in Couette flow with R = 500 (left); and Poiseuille flow with R = 2000 (right).
Shape functions: (a,b) f(y) = Ū(y)/|Ū(y)|; (c,d) Fig. 2.1(a); (e,f) Fig. 2.1(b). Variances σ2

u:
(a) 4.38× 10−3; (b) 6.25× 10−4; (c) 0.004; (d) 6.25× 10−4; (e) 0.005; (f) 0.001. Color plots
show log10(E2(k)). The symbols (×) and (•) mark the wavenumber pairs associated with
oblique waves and TS waves, respectively.
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Figure 4.6. The correction to the energy spectrum Ec(k) due to multiplicative uncertainty γ̄u
with α = 0.5 in Couette flow with R = 500 (left); and Poiseuille flow with R = 2000 (right).
Shape functions: (a,b) f(y) = Ū(y)/|Ū(y)|; (c,d) Fig. 2.1(a); (e,f) Fig. 2.1(b). Variances σ2

u:
(a) 4.38× 10−3; (b) 6.25× 10−4; (c) 0.004; (d) 6.25× 10−4; (e) 0.005; (f) 0.001. Color plots
show log10(Ec(k)).
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Figure 4.7. The relative correction to the turbulent kinetic energy
∫
k
Ec(k) dk/

∫
k
E0(k) dk

in (a) Couette flow with R = 500; and (b) Poiseuille flow R = 2000 subject to base flow vari-
ations with amplitude α. The curves demonstrate the α dependence of the energy correction
due to stochastic base flow perturbations entering the dynamics through f(y) = Ū(y)/|Ū(y)|
(+), Fig. 2.1(a) (∗), and Fig. 2.1(b) (◦). (a) Base flow perturbations are introduced with
variances of σ2

u = 4.38 × 10−3 (+), 0.004 (∗); and 0.005 (◦) into Couette flow, and (b)
σ2
u = 6.25× 10−4 (+), 6.25× 10−4 (∗); and 0.001 (◦) into Poiseuille flow.
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Figure 4.8. Contribution of the first six eigenvalues of the velocity covariance matrix Φ of
channel flow in the absence (∗) and presence (◦) of base flow perturbations with f(y) =
Ū(y)/|Ū(y)| and amplitude α = 1. (a) Couette flow with R = 500 at k = (0.95, 2.29); and
(b) Poiseuille flow with R = 2000 at k = (0.38, 3.02). The variance of base flow uncertainties:
(a) σ2

u = 0.50; (b) σ2
u = 0.21.
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the wall-parallel directions can be used to construct the velocity components of flow struc-

tures as

u(x, y, z) = 4

∫
kx,kz>0

cos ( kzz ) Re
(
ũ ( y,k ) ei(kxx)

)
dk

v(x, y, z) = 4

∫
kx,kz>0

cos ( kzz ) Re
(
ṽ ( y,k ) ei(kxx)

)
dk

w(x, y, z) = −4

∫
kx,kz>0

sin ( kzz ) Im
(
w̃ ( y,k ) ei(kxx)

)
dk.

(4.1)

Here, Re and Im denote real and imaginary parts, and ũ, ṽ and w̃ correspond to the stream-

wise, wall-normal, and spanwise velocity components of an eigenvector of Φ(k).

As shown in the previous section, while streamwise elongated streaks represent the ener-

getically dominant flow structures in the nominal flow, oblique modes become increasingly

relevant as the amplitude and variance of base flow perturbations grow. To demonstrate

the influence of base flow perturbations on the energy and spatial extent of dominant flow

structures, we will focus on base flow perturbations with f(y) = Ū(y)/|Ū(y)| and the maxi-

mally affected oblique modes corresponding to the peaks in Figs. 4.6. Figure 4.8 shows the

contribution of the first six eigenvalues of Φ(k) to the kinetic energy (sum of all eigenvalues)

of Couette flow with R = 500 and Poiseuille flow with R = 2000 at the wavenumber pairs

that correspond to the maximum amplification in Figs. 4.6(a) and 4.6(b); k = (0.95, 2.29) in

Couette flow and k = (0.38, 3.02) in Poiseuille flow. The base flow perturbations are chosen

to be of unit amplitude (α = 1) with critically stable variance level identified in Chapter 4.1.

Based on Fig. 4.8(a), while streamwise base flow perturbations generally increase the energy

of this oblique mode, they also concentrate the energy on the two most significant modes;

the two most energetic modes in the perturbed flow contain 94% of the total energy which

is a significant increase relative to 75% in the nominal flow. In contrast, Fig. 4.8(b) shows

that base flow perturbations of Poiseuille flow increase the gap between the energy of the

first and second most dominant eigenvalues; the perturbations increase the energetic con-

tribution of the principal eigenvalue from 48% to 72% and decrease the contribution of the
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second eigenvalue from 31% to 16%. Nevertheless, the presence of base flow perturbations

increases the energetic contribution of the first two modes by 9% (from 79% to 88%).

We next visualize the streamwise component of the two most significant modes identified

in Fig. 4.8 using Eq. (4.1). Figure 4.9(a) shows various views of the principal oblique struc-

tures corresponding to k = (0.95, 2.29) in nominal (first row) and perturbed (second row)

Couette flow. While this wavenumber pair corresponds to nominally streamwise elongated

mid-channel structures that are inclined to the walls, in the presence of base flow perturba-

tions, it corresponds to near-wall streamwise elongated structures that are less inclined to the

walls and exhibit an anti-symmetric arrangement with respect to the channel centerline. Sim-

ilar to the energetically dominant streaks that are typically observed in such wall-bounded

flows, the resulting oblique modes of the stochastically perturbed flow contain alternating

regions of fast- and slow- moving fluid that are situated between counter-rotating vortical

motion in the cross-stream plane (see third column of Fig. 4.9(a)). Figure 4.9(b) shows the

spatial structure of the streamwise component of the second largest mode in Couette flow in

the absence (first row) and presence (second row) of stochastic base flow perturbations. While

in nominal conditions, the oblique mode corresponds to two rows of mid-channel streamwise

elongated flow structures about the centerline, stochastic base flow perturbations give rise to

near-wall flow structures that are similar to the principal modes (second row of Fig. 4.9(a))

but with a predominantly symmetric arrangement due to a phase shift. A similar analysis

of the flow structures corresponding to the oblique modes (k = (0.38, 3.02)) of Poiseuille

flow is presented in Fig 4.10. Base flow perturbations cause the centerline conglomeration

of the dominant flow structures that are nominally streamwise elongated and inclined to

the wall (Fig. 4.10(a)). On the other hand, apart from a slight wall-normal elevation, such

perturbations do not influence the physical structure of the second most significant mode

(Fig. 4.10(b)).
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Figure 4.9. Streamwise component of dominant flow structures of Couette flow with R = 500
and k = (0.95, 2.29) in the absence (first rows) and presence (second rows) of stochastic base
flow perturbations with f(y) = Ū(y)/|Ū(y)|, α = 1, and σ2

u = 0.50; (a) principal modes;
and (b) second most energetic modes: (left) the spatial structure of the eigenmodes with
high(red) and low(blue) velocity; (middle) the streamwise velocity at z = 0; and (right) the
y−z slice of streamwise velocity (color plots) and vorticity (contour lines) at the streamwise
location indicated by the dashed vertical lines in the middle panel.
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Figure 4.10. Streamwise component of dominant flow structures of Poiseuille flow R = 2000
and k = (0.38, 3.02) in the absence (first rows) and presence (second rows) of stochastic base
flow perturbations with f(y) = Ū(y)/|Ū(y)|, α = 1, and σ2

u = 0.21; (a) principal modes;
and (b) second most energetic modes: (left) the spatial structure of the eigenmodes with
high(red) and low(blue) velocity; (middle) the streamwise velocity at z = 0; and (right) the
y−z slice of streamwise velocity (color plots) and vorticity (contour lines) at the streamwise
location indicated by the dashed vertical lines in the middle panel.
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CHAPTER 5

EFFECT OF BASE FLOW VARIATIONS ON TURBULENT

FLOW DYNAMICS

In this chapter, we examine the dynamics of stochastically forced turbulent channel flow in

the presence of zero-mean white-in-time stochastic base flow perturbations. To this end, we

augment the molecular viscosity in the NS equations (2.1) with the turbulent viscosity νT of

channel flow

ũt = − (ũ · ∇) ũ − ∇P̃ +
1

Rτ

∇ ·
(
(1 + νT )

(
∇ũ + (∇ũ)T

))
0 = ∇ · ũ

(5.1)

and linearize around the long-time averaged turbulent mean flow profile u = [U(y) 0 0 ]T

provided by DNS of channel flow (Del Álamo and Jiménez, 2003; Del Álamo et al., 2004;

Hoyas and Jiménez, 2006; Hoyas and Jimenez, 2008) (Fig. 1.1(c)) to obtain the linearized

NS equations

vt = − (∇ · u)v − (∇ · v)u − ∇p +
1

Rτ

∇ ·
(
(1 + νT )

(
∇v + (∇v)T

))
0 = ∇ · v

(5.2)

which govern the dynamics of velocity, v, and pressure, p, fluctuations. Here, the Reynolds

number Rτ = uτh/ν is defined in terms of the channel’s half-height h and the friction velocity

uτ =
√
τw/ρ, where τw is the wall-shear stress (averaged over horizontal directions and time),

ρ is fluid density, and ν is kinematic viscosity. For turbulent viscosity, we use the Reynolds

and Tiederman (Reynolds and Tiederman, 1967) turbulent viscosity profile

νT (y) =
1

2

((
1 +

( c2
3
Rτ ( 1 − y2 )( 1 + 2y2 )( 1− e−(1−|y|)Rτ/c1 )

)1/2
)

− 1

)
(5.3)

where parameters c1 and c2 are selected to minimize the least squares deviation between the

steady-state solution to (5.2) using the averaged wall-shear stress P̃x = −1 and the mean
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streamwise velocity obtained in experiments or simulations. Application of this least-squares

procedure in finding the best fit to the mean velocity in turbulent channel flow resulting

from DNS (Del Álamo and Jiménez, 2003; Del Álamo et al., 2004; Hoyas and Jiménez, 2006;

Hoyas and Jimenez, 2008) yields {c1 = 46.2, c2 = 0.61} at Rτ = 186, {c1 = 29.4, c2 = 0.45}

at Rτ = 547, {c1 = 27, c2 = 0.43} at Rτ = 934, and {c1 = 25.4, c2 = 0.42} at higher Reynolds

numbers.

We assume the streamwise component of the base flow u to be contaminated with an

additive source of uncertainty γu(y, t) = αγ̄(t)f(y). As a result, the dynamic operator A in

the state-space representation (2.4) takes the form

A(k, t) :=

 A11 0

A21 A22

 (5.4)

A11(k, t) := ∆−1
( 1

Rτ

(
(1 + νT )∆

2 + 2 ν ′
T ∆∂y + ν ′′

T ( ∂
2
y + k2 )

)
+

ikx
(
Ū ′′(y) + γ′′

u(y, t) − (Ū(y) + γu(y, t))∆
) )

A21(k, t)1 := −ikz
(
Ū ′(y) + γ′

u(y, t)
)

A22(k, t) :=
1

Rτ

((1 + νT )∆ + ν ′
T∂y) − ikx

(
Ū(y) + γu(y, t)

)
where Ū(y) corresponds to the streamwise component of the base flow in the absence of un-

certainty. In a similar manner as Eq. (2.8), the operator-valued matrix A can be decomposed

into its nominal and perturbed components, i.e.,

A(k, t) = Ā(k) + α γ̄u(t)Au(k) (5.5)

where expressions for Ā and Au are given in Appendix C.

We next discretize the differential operators in the linearized equations using N = 151

Chebyshev collocation points in the wall-normal direction and study the MSS and frequency

response of the flow fluctuations in the presence of both additive stochastic forcing f and
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stochastic base flow perturbations γu. We will assume that perturbations γu enter the dy-

namics through the same shape functions considered in the prior chapter.

5.1 Stability analysis

For k = (2.5, 7), we analyze the MSS of the linearized NS equations around the DNS-

generated mean velocity profile of turbulent channel flow Ū(y) at Rτ = 186, 547, 934,

2003, and 4179 (Del Álamo and Jiménez, 2003; Del Álamo et al., 2004; Hoyas and Jiménez,

2006; Hoyas and Jimenez, 2008). While we focus on k = (2.5, 7), which is the horizontal

wavenumber pair at which the premultiplied energy spectrum of channel flow at Rτ = 186

peaks, we note that similar stability trends were observed at other wavenumbers. The

stability curves shown in Fig. 5.1(a) demonstrate the Reynolds number dependence of the

critical variance σ2
u of stochastic base flow perturbation γu(y, t). As expected, the fragility

of this mode to base flow perturbations increases as the Reynolds numbers grows apart from

an initial increase observed in the case of full channel perturbations (f(y) corresponding to

Fig. 2.1(a)) from Rτ = 186 to 547. The critical variance is found to approximately scale

as R−1
τ with higher tolerance for stochastic perturbations entering in the near-wall regions,

i.e., when f(y) is given by Fig. 2.1(b). Similar to the findings of Chapter 4.1, the critical

variance of turbulent channel flow at any given Reynolds numberRτ is lowest for length-scales

that are short in the streamwise dimension, but infinitely wide in the spanwise dimension

(Fig. 5.1(b)).

The maximum tolerable variance of stochastic multiplicative uncertainty can provide

guidelines for the number and quality of DNS-generated samples that should be involved

in the statistical averaging process that leads to a stable equilibrium for linearized analysis.

We note that for all Reynolds numbers studied here, and at all wall-normal locations, the

reported variance of the numerically generated turbulent mean velocities is significantly lower

than the critical values identified by our MSS analysis. Nevertheless, one implication of the
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Figure 5.1. (a) Stability curves for fluctuation dynamics with k = (2.5, 7) in turbulent
channel flow subject to stochastic base flow perturbations following f(y) = Ū(y)/|Ū(y)|
(+); or the shape functions f(y) shown in Fig. 2.1(a) (∗); and Fig. 2.1(b) (◦). The shaded
areas under the curves denote the variances of stochastic base flow uncertainty that do not
violate MSS (ρ(L) < 1 with α = 1). The triangle in the upper right corner demonstrates
an R−1

τ slope. (b) Logarithmically scaled critical variance levels of stochastic multiplicative
uncertainty γ̄u with α = 1 and f(y) = Ū(y)/|Ū(y)| over the horizontal wavenumber spectrum
of turbulent channel flow with Rτ = 186.

uncovered Reynolds number dependence observed in Fig. 5.1(a) for statistical averaging is

that the admissible variance in estimating the turbulent mean velocity Ū(y)/|Ū(y)| reduces

(at the rate of R−1
τ ) as the Reynolds number grows.

5.2 Energy spectrum of velocity fluctuations

We now use analyze the effect of base flow perturbations on the energy spectrum of velocity

fluctuations. We guarantee MSS by adjusting the variance of base flow perturbations to

the maximum tolerable variance across all wavenumber pairs. For example, when f(y) =

Ū(y)/|Ū(y)|, this critical variance corresponds to the shortest and widest length scales, and is

identified as 0.13; see Fig. 5.1(b). We note that the overall trend observed in Fig. 5.1(b) along

with the critical variance of the most sensitive mode is invariant to variations in the wall-

normal extent of base flow perturbations. The steady-state covariance of velocity fluctuations
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in Eqs. (5.2) can be computed from solving Eq. (3.7). Following (Moarref and Jovanovic,

2012), we select the covariance of white-in-time forcing to guarantee equivalence between

the two-dimensional energy spectrum of turbulent channel flow and the flow obtained by

linearized NS equations in the absence of base flow perturbations (γu = 0). This is achieved

via the scaling

Ω(k) =
Ē(k)

Ē0(k)
Ω0(k)

where Ē(k) =
∫ 1

−1
E(y,k) dy is the two-dimensional energy spectrum of a turbulent channel

flow obtained using the DNS-based energy spectrum E(y,k) (Del Álamo and Jiménez, 2003;

Del Álamo et al., 2004), and Ē0(k) is the energy spectrum resulting from the linearized NS

equations in the absence of base flow perturbations and subject to a white-in-time forcing f

with covariance

Ω0(k) =

 √
E(y,k) I 0

0
√

E(y,k) I


 √

E(y,k) I 0

0
√
E(y,k) I


∗

.

Figure 5.2(a) shows the premultiplied energy spectrum of turbulent channel flow with

R = 186 in the absence of stochastic base flow perturbations in the linearized dynamics

(γ̄u(t) = 0). The changes to the premultiplied energy spectrum kxkzEc(k) due to stochastic

multiplicative uncertainties with α = 0.05 entering through various wall-normal regions are

shown in Fig. 5.2(b)-(d). Since the amplitude of base flow perturbations is small, the second-

order correction to the perturbation series of energy provides a sufficient approximation of

the change to the energy spectrum, i.e., Ec(k) = α2E2. Figures 5.2(e)-(g) consider the case

of higher-amplitude base flow perturbations (α = 0.9) on the premultiplied energy spectrum

by kxkzEc(k), where Ec(k) is given in Eq. (3.9). In computing Ec(k), the limit was obtained

using an 8th-order perturbation series, i.e., Ec = α2E2 + α4E4 + α6E6 + α8E8, and verified

using the Shanks transformation (Shanks, 1955; Dyke, 1964). As evident from the second

and third rows of Fig. 5.2, the influence of base flow perturbations is concentrated at an

36



energetically relevant region of the energy spectrum with a maximum at streamwise and

spanwise wavenumbers that are slightly higher than those corresponding to the peak of the

nominal premultiplied energy spectrum (Fig. 5.2(a)). Similar to the results presented in

the previous chapter, stochastic base flow perturbation cannot influence streamwise streaks,

which is because of the structure of Au(k) at kx = 0; see Appendix C. Finally, as shown in

Fig. 5.3, the total effect of stochastic base flow uncertainty of various amplitude, which can

be quantified as
∫
k
Ec(k) dk/

∫
k
E0(k) dk, follows a similar trend to what was observed for

laminar flows (cf. Fig. 4.7).

5.3 Maximally affected flow structures

For a turbulent channel flow with Rτ = 186, we follow a similar procedure as Chapter 4.3

in analyzing the flow structures that are influenced by base flow perturbations with f(y) =

Ū(y)/|Ū(y)|, α = 1, and the critically stable variance σ2
u = 0.7. Figure 5.4 shows the

contribution of the first eight eigenvalues of Φ(k) to the kinetic energy at the wavenumber pair

corresponding to the maximum amplification in Fig. 5.2(e), i.e., (kx, kz) = (1.86, 1.94). Base

flow perturbations significantly increase the dominance of the principal eigenvalue (from 22%

of the total energy in the unperturbed state to approximately 36%). Figure 5.5 depicts the

flow structures corresponding to the streamwise component of the most significant eigenmode

in the absence and presence of streamwise base flow perturbations. It is evident that base

flow perturbations shift the core of these energetic flow structures along with the counter-

rotating vortical structures away from the wall.
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Figure 5.2. (a) Premultiplied energy spectrum of turbulent channel flow with R = 186 in
the absence of stochastic base flow perturbations (E0(k)). Correction to the premultiplied
energy spectra Ec(k) of turbulent channel flow R = 186 due to stochastic multiplicative
uncertainty γu with variance σ2

u = 0.13 and perturbation amplitudes α = 0.05 (second row)
and α = 0.9 (third row) that follow perturbations shapes f(y) = Ū(y)/|Ū(y)| (b, e), f(y) in
Fig. 2.1(a) (c, f), and f(y) in Fig. 2.1(b) (d, g).
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Figure 5.3. The total effect of stochastic perturbations of amplitude α on the energy spectrum
of turbulent channel flow with Rτ = 186. The curves demonstrate the α dependence of the
energy correction due to base flow perturbations entering the dynamics through f(y) =
f(y) = Ū(y)/|Ū(y)|(+), or the shape functions f(y) depicted in Figs. 2.1(b) (◦) and 2.1(a)
(∗).
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Figure 5.4. Contribution of the first eight eigenvalues of the velocity covariance matrix
Φ of channel flow in the absence (∗), and presence (◦) of base flow perturbations with
f(y) = f(y) = Ū(y)/|Ū(y)| and amplitude α = 1 in turbulent channel flow with Rτ = 186
at (kx, kz) = (1.86, 1.94).
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Figure 5.5. The streamwise component of the dominant flow structures of turbulent chan-
nel flow with Rτ = 186 and (kx, kz) = (1.86, 1.94) in the absence and (first row) and
presence (second row) of stochastic base flow perturbations of amplitude α = 1, shape
f(y) = Ū(y)/|Ū(y)|, and variance σ2

u = 0.49. The three columns correspond to: (left) the
spatial structure of the eigenmodes with red and blue colors denoting regions of high and low
velocity; (middle) the streamwise velocity at z = 0; and (right) the y− z slice of streamwise
velocity (color plots) and vorticity (contour lines) at the streamwise location indicated by
the dashed vertical lines in the middle panel (x = 0.6).
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CHAPTER 6

REYNOLDS NUMBER DEPENDENCE

In this chapter, we analyze the Reynolds number dependence of the energy spectrum of

streamwise constant velocity fluctuations (kx = 0) around parallel base flow profiles subject

to streamwise perturbations γ̄u. For any finite R, we assume the dynamics of such fluctua-

tions to be MSS. Theorem 1 establishes an explicit Reynolds number scaling for the energy

spectrum E(kz) of streamwise constant fluctuations in channel flow subject to streamwise

base flow uncertainty.

Theorem 1. The variance amplification of streamwise constant velocity fluctuations in chan-

nel flow with nominal velocity Ū(y) subject to base flow perturbations is given by,

E(kz) = f(kz)R + g(kz)R
2 + h(kz)R

3 (6.1)

where functions f , g, and h are independent of R.

A proof for this theorem is provided in Appendix D where it is shown that functions f , g

and h represent traces of the solutions to Lyapunov equations which scale as R, R2, and R3,

respectively. The function f does not depend on Ū(y) and is thus the same for all parallel

channel flows. On the other hand, functions g and h depend on the underlying parallel

base flow due to their dependence on the nominal shear Ū ′(y). In nominal conditions, the

energy spectrum of streamwise constant velocity fluctuations of a parallel channel flow can

be decomposed into two components that scale with R and R3 (Jovanovic and Bamieh, 2005,

Corollary 4). The effect of base flow uncertainty is exclusively captured by the function g,

which introduces a R2 scaling to the energy spectrum of velocity fluctuations; see Appendix D

for details. In a similar manner, Theorem 2 uses a perturbation analysis to elucidate the

Reynolds number dependence of changes to the energy content of streamwise elongated

structures when the amplitude of base flow perturbations is small.

41



Theorem 2. The variance amplification of streamwise constant velocity fluctuations in chan-

nel flow with nominal velocity Ū(y) subject to small-amplitude base flow perturbations is given

by,

E(kz) = E0(kz) + α2E2(kz) + O(α4),

where

E0(kz) = f(kz)R + h(kz)R
3, E2(kz) = g(kz)R

2.

The term E0 denotes the nominal energy, E2 captures the effect of base flow perturbations

at the level of α2, and functions f , g, and h are independent of R.

A proof for this theorem is provided in Appendix E. Note that for α = 1, the functions

f , g and h are the same in both Theorems. It is also evident that unless the amplitude

α of base flow perturbation is significantly large, the energetic contribution of h(z)R3 will

dominate the energy of streamwise constant flow fluctuations especially at high Reynolds

numbers.

Figure 6.1 illustrates the kz dependence of functions f , g, and h for streamwise constant

laminar channel flow subject to both white-in-time exogenous excitation and white-in-time

base flow perturbations with f(y) = Ū(y)/|Ū(y)|. As explained above, and shown in Appen-

dices D and E, the function f is independent of the choice of base flow, and is thus, identical

for both Couette and Poiseuille flows; see Fig. 6.1(a). Figure 6.1(b) shows the dependence

of h on the spanwise wavenumber kz for Couette flow with R = 500 and Poiseuille flow with

R = 2000. For both flows, the function h, which corresponds to the dominant Reynolds

number scaling (O(R3)) at high Reynolds numbers, peaks at around the same spanwise

wavenumbers (kz = 1.59 and 2.09 in Couette and Poiseuille flows, respectively) as their

nominal spectral energy peak (cf. Fig. 4.3). In the presence of streamwise base flow pertur-

bations γ̄u with α = 1 and variance levels corresponding to the critical variances obtained
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from Fig. 4.2 at kx = 0, the energy of streamwise constant fluctuations is complemented with

the additional term g, which scales as R2. Figure 6.1(c) shows the kz dependence of this

function for Couette and Poiseuille flows. The spanwise wavenumbers at which the function

g peaks for these two flows (kz = 1.91 and 3.02, in Couette and Poiseuille flows, respectively)

is in agreement with the energy spectra in Figs. 4.6(a) and 4.6(b) for kx ≈ 0. To further

elucidate the dependence of g on the variance of streamwise base flow perturbations, we

compute this function for various spanwise wavenumbers kz and a range of variances σ2
u for

which MSS is guaranteed; see Fig. 6.2. As shown in Fig. 6.2, for the range of considered

variances, the dependence of g on kz predominantly follows the trends observed in Fig. 6.1(c).

A similar analysis can be conducted on the Reynolds dependence of the energy spectrum

in a streamwise constant turbulent channel flow subject to both white-in-time exogenous ex-

citation and white-in-time stochastic base flow perturbations. Figure 6.3(a) shows the varia-

tions of functions f , g, and h on the spanwise wavenumber kz and perturbation variances σ2
u.

As shown in Figs. 6.3(a) and 6.3(b), the kz-dependence of functions f and h follow similar

trends as was shown in Figs. 6.1(a) and 6.1(b) for transitional flows. Figure 6.3(c) shows

the kz-dependence of g when stochastic base flow perturbations with f(y) = Ū(y)/|Ū(y)|,

α = 1, and the maximum tolerable variance σ2
u = 62.5 corresponding to the streamwise

constant wavenumber pair (kx, kz) = (0, 0.01) are introduced into the turbulent channel flow

with kx = 0. The effect of uncertainty in the base flow of the turbulent channel flow is

captured by the function g with a peak at kz = 50.22 (Fig. 6.3(c)). Moreover, Fig. 6.3(d)

illustrates the dependence of g on the variance of base flow perturbations σ2
u at various span-

wise wavenumbers. In contrast to transitional flows, the function g monotonically increases

as the spanwise wavenumber grows.
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(a) (b) (c)
f h g

kz kz kz

Figure 6.1. The kz-dependence of functions (a) f , (b) h, and (c) g in Eq. (6.1) for Couette flow
with R = 500 (—) and Poiseuille flow with R = 2000 (—) subject to base flow perturbations
of shape f(y) = Ū(y)/|Ū(y)| of variance σ2

u = 1.13× 105 and σ2
u = 3.22× 103, respectively.

The function f , which is responsible for the O(R) energy amplification is the same for both
channel flows.

(a) (b)

σ
2 u

kz kz

Figure 6.2. Logarithmically scaled terms that are responsible for the O(R2) energy amplifi-
cation in Eq. (6.1) (log10(g(kz, σ

2
u))) as a function of spanwise wavenumber kz and base flow

perturbation variance σ2
u. Perturbations to the base flow follow f(y) = Ū(y)/|Ū(y)|. (a)

Couette flow with R = 500; and (b) Poiseuille flow with R = 2000.
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Figure 6.3. The kz-dependence of functions (a) f , (b) h, and (c) g in Eq. (6.1) for turbulent
flow with R = 186 subject to base flow perturbations of shape f(y) = Ū(y)/|Ū(y)| and
variance σ2

u = 62.5. (d) The logarithmically scaled term responsible for the O(R2) energy
amplification in Eq. (6.1) (log10(g(kz, σ

2
u))) as a function of spanwise wavenumber kz and

base flow perturbation variance σ2
u.
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CHAPTER 7

EFFECT OF PARAMETRIC UNCERTAINTIES ON THE PERFORMANCE

OF TRANSVERSE WALL OSCILLATIONS

Carefully designed transverse wall oscillations, as a flow control strategy, have been shown

to reduce the receptivity of wall-bounded flows to exogenous disturbances, suppress energy

of velocity fluctuations, and reduce skin-friction drag by 40%. However, experimental (Choi,

2002; Ricco, 2004), numerical (Jung et al., 1992; Quadrio and Ricco, 2004), and theoretical

studies (Ricco and Quadrio, 2008; Jovanovic, 2008; Moarref and Jovanovic, 2012; Zare et al.,

2012; Zare, 2016) have demonstrated that the efficacy of this flow control strategy depends

on a critical selection of design parameters, e.g., amplitude and frequency (Jovanovic, 2008).

This motivates the development of a complementary framework for analyzing the robust

performance of such vibrational control strategies that are prone to parametric uncertainties

resulting from implementation and modeling imperfections.

In this chapter, we use the theoretical developments in Chapter 3 to evaluate the robust

performance of transverse wall oscillations in suppressing the energy of velocity fluctua-

tions in a channel flow with R = 2000. We consider a Poiseuille flow subject to lower-

wall transverse sinusoidal oscillations of amplitude α and frequency ωt that take the form

2α (1 + γα) sin (ωtt+ γθ);see Fig. 7.1(a). The amplitude of wall oscillations is multiplied by 2

for convenience of algebraic manipulations, and γα(t) and γθ(t) denote independent sources

of white-in-time stochastic uncertainty with mean and variance pairs given by {µα, σ
2
α} and

{µθ, σ
2
θ}, respectively. Note that γα(t) and γθ(t) are not required to have zero mean. These

parametric uncertainties model imperfections in the amplitude and phase of oscillations and

they effectively result in random lower-wall oscillations; see Fig. 7.1(b) for an illustration.

We first compute the base flow in the presence of uncertainty. Then, we use the MSS analysis

of Sec. 3.2 and the input-output analysis of Sec. 3.3 to study the stability features of the

uncertain base flow and the energy of velocity fluctuations, respectively.
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(a) (b)

V

W

U

Figure 7.1. (a) Channel flow subject to transverse wall oscillations with amplitude and phase
imperfections; and (b) Boundary condition on spanwise velocity due to stochastic processes
γα ∼ N (0.0.1) and γθ ∼ N (0, 1) (gray); see Eqs. (7.1). The amplitude and frequency of the
nominal sinusoidal oscillation are given by α = 0.1 and ωt = 1 (red).

7.1 Dynamics of velocity fluctuations in the presence of random wall oscillations

The base flow ū = [U V W ]T in a pressure-driven channel flow over transverse wall oscil-

lations can be obtained by solving the stead-state NS equations subject to

U(±1) = V (±1) = Vy(±1) = W (+1) = 0

W (−1) = 2α ( 1 + γα) sin(ωtt + γθ )

(7.1)

Due to these boundary conditions, the equations that govern the dynamics of the base flow

can be simplified into a pair of decoupled partial differential equations

0 = −P̄x + (1/R)Uyy (7.2a)

Wt = (1/R)Wyy (7.2b)

where P̄x = −2/R denotes the nominal pressure gradient in Poiseuille flow. The steady-state

solution to (7.1) and (7.2) is given by ū := [U(y) 0 W (y, t) ]T , where

U(y) = 1 − y2 (7.3a)

W (y, t) = α
[
(1 + γ+1)W+1(y) e

iωtt + (1 + γ−1)W−1(y) e
−iωtt

]
(7.3b)
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Here, γ±1 := (1 + γα) e
±iγθ − 1 are white-in-time stochastic uncertainties that capture the

combined effects of parametric uncertainties are white-in-time stochastic uncertainties that

capture the combined effects of γα and γθ on the base state, and W±1(y) are solutions of

a system of differential equations; see Appendix F for the mean and variance of γ±1 and

Appendix G for details on how to obtain W±1(y). This renders the evolution model 2.9

time-periodic with operator-valued dynamic matrix

A(k, t) = Ā(k, t) + α
[
γ+1 A+1(k) e

iωtt + γ−1A−1(k) e
−iωtt

]
(7.4)

where

Ā(k, t) = A0(k) + α
[
(1 + µ+1)A+1(k) e

iωtt + (1 + µ−1)A−1(k) e
−iωtt

]
(7.5)

and expressions forA0, A1, andA−1 are provided in Appendix H. Here, we have explicitly

accounted for the dynamic drift caused by the mean values of white-in-time uncertainties

γ±1, i.e., µ±1, by including a constant modification to the coefficients of the otherwise purely

time-periodic deterministic dynamics Ā(k, t).

7.2 MSS conditions and Frequency response analysis

The MSS conditions follow the developments of Sec. 3.2 with Γ = diag{σ2
u 11

T , σ2
w 11

T} and

B0(k) :=

[
I I

]
, C0(k) :=

 A−1(k) e
−iωtt

A+1(k) e
+iωtt

 .

The impulse responseM(k, t) in (3.2) corresponding to the state-space representation (3.3)

will inherit the time-periodicity of the nominal dynamics Ā(k, t) (cf. (7.5)). Due to this time-

periodicity, the response vectors to stationary white input processes are cyclo-stationary (Gard-

ner, 1990), i.e., their statistical properties are periodic in time. For example, the covariance
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of ψ is given by

X(k, t) = ⟨ψ(k, t)ψ∗(k, t)⟩ (7.6)

= X0(k) + X1(k) e
iωtt + X∗

1 (k) e
−iωtt + X2(k) e

2 iωtt + X∗
2 (k) e

−2 iωtt + . . . .

Moreover, the average effect of additive and multiplicative sources of excitation (over one

period of wall oscillations T ) is determined by X0, i.e.,

1

T

∫ T

0

X(k, t) dt = X0(k) (7.7)

and the energy spectrum of velocity fluctuations v is given by

E(k) = trace (X0(k)) . (7.8)

In the lifted space of bi-infinite harmonic expansions, the state of system (3.3) is rep-

resented as a bi-infinite column vector of Fourier coefficients, i.e., col{ψ̂n(k, θ)}n∈Z, with

covariance

X (k) = Toep
{
. . . , X∗

2 , X
∗
1 , X0 , X1, X2, . . .

}
(7.9)

where the box denotes the block on the main diagonal of X . Note that the elements in

the block-Toeplitz matrix X correspond to the components in the Fourier expansion (7.6).

When f̃ and γ̃i are zero-mean white-in-time processes with covariance matrix Ω and variance

σ2
i , the covariance matrix X can be obtained by solving the following generalized Lyapunov

equation

F̄ X + X F̄∗ +
∑
i=±1

σ2
i Fi X F∗

i = −BΩB∗ (7.10a)

F̄ := Ā − E(0) (7.10b)

Fi := Ai (7.10c)
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which is parameterized over wavenumber pairs k. Here, B, Ω, and E are bi-infinite block-

diagonal matrices,

B(k) := diag {B(k) }n∈Z

Ω(k) := diag {Ω(k) }n∈Z

E(θ) := diag { i (θ + nωt) I }n∈Z

where Ā andAi are bi-infinite block-Toeplitz matrices that represent the lifted variants of the

nominal and uncertain components of the dynamics (cf. Eqs. (7.4) and (7.5)), respectively,

i.e.,

Ā := Toep
{
. . . , 0, α (1 + µ+1)A+1, A0 , α (1 + µ−1)A−1, 0, . . .

}
A+1 := Toep

{
. . . , 0, αA+1, 0 , 0, . . .

}
A−1 := Toep

{
. . . , 0, 0 , αA−1, 0, . . .

}
At any pair of horizontal wavenumbers k, a discretization of the linearized NS equa-

tions together with a truncation of the aforementioned bi-infinite dynamic matrices would

require solving a large-scale generalized Lyapunov equation. We follow (Moarref and Jo-

vanovic, 2012) in considering small-amplitude wall oscillations α, which allows us to utilize

a perturbation analysis to solve the generalized Lyapunov equation (7.10) and achieve a

computationally efficient way of computing the energy spectrum. In addition to the com-

putational benefit, this choice of wall oscillation amplitude is motivated by the observation

that large-amplitude oscillations can become prohibitively expensive to generate and result

in a negative net efficiency for our flow control strategy (Ricco and Quadrio, 2008; Moarref

and Jovanovic, 2012). As shown in Appendix I, this approach allows us to compute the

second-order statistics of the uncertain model by solving a sequence of standard algebraic

Lyapunov equations instead of the generalized Lyapunov equation (7.10). Up to a second
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order in α, the zeroth-order harmonic X0 that is required for computing the energy spectrum

(Eq. (7.8)) is given by

X0(k) = X0,0(k) + α2X0,2(k) + O(α4) (7.11)

whereX0,0 andX0,2 are obtained from a set of decoupled Lyapunov equations; see Appendix I

for details. Note that X0,0 represents the steady-state covariance matrix of the stochastically

forced plane channel flow (no control) andX0,2 represents the second-order correction induced

by the random wall oscillations. The energy spectrum of velocity fluctuations follows a similar

perturbation series:

E(k) = E0(k) + α2E2(k) + O(α4) (7.12)

where E0(k) = trace(X0,0(k)) is the energy spectrum in the absence of control, and E2(k) =

trace(X2,0(k)) captures the effect of boundary control at the level of α2.

7.3 MSS and variance amplification in channel ow subject to random lower-wall

oscillations

For a Poiseuille flow with R = 2000, we evaluate the influence of parametric uncertainties

on the MSS of the flow and robust performance of lower-wall oscillations in suppressing

turbulence. Throughout this section, we use N = 101 Chebyshev collocation points to

discretize the operators involved in the linearized equations. Grid convergence is ensured

by doubling the number of collocation points. For (kx, kz) = (0, 2) and various nominal

wall oscillation parameters (α and ωt), we evaluate the MSS of the controlled flow dynamics

in the presence of zero-mean stochastic parametric uncertainties γα and γθ. The choice of

horizontal wavenumber pair is motivated by the fact that in the absence of control, the energy

spectrum of velocity fluctuations in plane Poiseuille flow with R = 2000 can be shown to

peak at kx = 0 and kz ≈ 1.78 (see, e.g., (Jovanovic and Bamieh, 2005)), which corresponds
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Figure 7.2. Stability curves for the dynamics of fluctuations in a channel flow with R = 2000
and k = (0, 2) subject to random lower-wall oscillations of frequency ωt = 8.8 × 10−3 (∗)
and ωt = 5 × 10−4 (—) with nominal oscillation amplitudes (a) α = 0.01; and (b) α = 0.1.
The shaded areas under the curves correspond to variances of γα and γθ that do not violate
MSS.

to the energetically dominant streamwise elongated streaks. While the first MSS condition,

which is concerned with the stability of the nominal flow dynamics (Ā Hurwitz), is satisfied

no matter the uncertainty level, the second condition can be violated as the variances of γα

and γθ grow. Figure 7.2 shows the regions of MSS in the presence of such uncertainties. The

shaded areas under the curves denote the variances for which the flow remains asymptotically

mean-square stable. While the MSS curves are specific to the choice of nominal parameters,

it is evident that stability properties of the channel are more susceptible to parametric

uncertainty entering in the phase of wall oscillations and that nominally larger oscillation

amplitudes α and periods T = 2π/ωt are less robust.

To study the effect of parametric uncertainties on the performance of our flow control

strategy in reducing the energy of velocity fluctuations, we consider the case of wall oscilla-

tions with α = 0.01 and ωt = 8.8× 10−3 that are contaminated with zero-mean parametric

uncertainties γα and γθ of variance 38 and 0.69, respectively. Based on Fig. 7.2, the lin-

earized dynamics dynamics remain mean-square stable for these variance levels. Figure 7.3
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shows the energy spectrum of velocity fluctuations in the absence (Fig. 7.3(a)) and presence

(Fig. 7.3(b)) of lower-wall oscillations when γα = γθ = 0. These figures show that while the

energetically dominant streamwise elongated structures with kz ∼ 2 are most attenuated,

Tollmien–Schlichting (TS) waves (kz ∼ 0) become more energetically pronounced (by almost

O(1)). Figure 7.3(c) shows that when the wall oscillations are contaminated with stochastic

parametric uncertainties γα and γθ with variances σ2
u = 38, 0.69 respectively, the energy of

velocity fluctuations amplifies across horizontal wavenumbers corresponding to streamwise

elongated streaks that were previously suppressed in the absence of parametric uncertainty.

It is also noteworthy that the amplification takes place even at shorter wave lengths causing

more spanwise wavenumbers to reside in the energetically dominant streaks. Figures 7.3(d)

and 7.3(e) illustrates the change in the total energy spectrum of velocity fluctuations when

oscillations are contaminated with parametric uncertainty either in the phase or amplitude

of oscillations. By such means, it can be observed that while uncertainty in phase can cause

further suppression of streamwise elongated streaks due to lower-wall oscialltions of the

channel, it can result in the amplification of TS modes. On the other hand, when only wall

oscillations carry uncertainty only in the phase of oscillations (cf.Fig. 7.3(d)), the stream-

wise elongated streaks sustain greater suppression compared to the suppression caused by

nominal wall oscillations as opposed to an amplification in TS modes. For wall oscillations

containing parametric uncertainty in the amplitude of oscillations (see Fig. 7.3(e))
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Figure 7.3. (a) Energy spectrum (E0(k)) of the uncontrolled Poiseuille flow with R = 2000.
Energy spectrum (E(k)) due to lower-wall oscillations with ωt = 8.8×10−3 up to the level of
α2: (b) in the absence of zero-mean parametric uncertainty; and (c), (d), (e) in the presence
of zero-mean parametric uncertainty with variances (c) σ2

α = 38 and σ2
θ = 0.69 ; (d) γα = 0

and σ2
θ = 0.69 ; (e) σ2

α = 38 and γθ = 0 of Poiseuille flow with R = 2000. The plots are given
in log-log scale.
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CHAPTER 8

CONCLUSION

In this thesis, we have developed an input-output framework for studying the influence of

persistent stochastic base flow perturbations on the stability and energy content of velocity

fluctuations in wall-bounded shear flows. We have provided verifiable conditions for the MSS

of the linearized dynamics subject to stochastic base flow variations and have shown that

the second-order statistics of fluctuations around the uncertain base state can be obtained

as solutions to a generalized Lyapunov equation. We have used this framework to perform

a thorough study of the effects of white-in-time structured stochastic base flow variations

on transitional and turbulent channel flows. For transitional flows, the Reynolds number

dependence of critical uncertainty variances uncovered by our method are in agreement with

previously reported scaling laws for the magnitude of deterministic base flow variations. A

similar power-law dependence with respect to the friction Reynolds number exists for the

critical variance of stochastic perturbations to the DNS-based turbulent mean velocity of

channel flows. We have shown that in both laminar and turbulent flows, shorter (in x) and

wider (in z) wavelengths are least susceptible to base flow variations.

In laminar flow, while channel-wide base flow perturbations predominantly affect the

oblique modes, especially those with kx ≈ O(1) and kz ∼ O(1), near-wall perturbations

result in the dominant amplification of TS waves. Our results show that the amplification

of streamwise elongated structures is relatively robust to base flow perturbations, especially

if such perturbations are confined to the near-wall region of the flow. We have shown that

the latter is due to the structure of dynamical perturbations induced by streamwise base

flow variations at kx = 0 and that streaks would also become susceptible to such sources

of uncertainty if variations were allowed to enter other components of the base state. We

demonstrate that large-amplitude base flow perturbations can influence the distribution of

55



energy among various length scales and lead to the dominance of flow structures that are

significantly different from those that dominate the nominal flow. Notably, perturbations

of the Poiseuille flow result in an increase in the energetic dominance of the principal mode

that is excited by persistent stochastic excitations. In turbulent channel flow, base flow

variations influence both oblique and streamwise elongated structures to a greater extent

than two-dimensional TS modes. They also increase the wall-normal separation of dominant

flow structures as well as their inclination to the wall. Regardless of their wall-normal extent,

however, the effect of base flow perturbations on turbulent flow is significantly less than what

is observed for laminar flows.

In addition to studying the dependence of the energy spectrum on spatial frequencies, we

uncover the Reynolds number dependence of the energy of streamwise elongated fluctuations

in the presence of streamwise base flow variations. We show that the contribution of base

flow perturbations to the amplification of streamwise elongated flow structures scales as R2,

which trails the R3 scaling of energy amplification under nominal conditions. This scaling

trend further explains the robust amplification of such flow structures, especially at high

Reynolds numbers.

Our approach can also be used to study the effect of parametric uncertainties on the

performance of boundary control strategies that reduce skin-friction drag or suppress tur-

bulence by modulating the base state. To demonstrate this aspect, we have considered

Poiseuille flow over transverse lower-wall oscillations with uncertain amplitude and phase.

Our robustness analysis shows that despite a clear dependence of the stability curve on the

nominal amplitude and frequency of oscillations, velocity fluctuations remain mean-square

stable for relatively high levels of uncertainty, and that the detrimental effects of uncertainty

on variance attenuation are negligible. This demonstrates the robust performance of lower-

wall oscillations. Moreover, we have shown that even if such parametric uncertainties are

zero-mean, they would translate into non-zero-mean multiplicative uncertainties in the lin-

earized dynamics that shift the base state and affect counter intuitive changes in the energy
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of velocity fluctuations. The second-order statistics of the velocity field are obtained form the

solution of a large-size harmonic expansion of the generalized Lyapunov equation that cannot

be solved using a direct vectorization procedure. To address this computational challenge,

we have focused on small-amplitude wall oscillations and utilized a perturbation analysis

over oscillation amplitudes to provide an efficient method for obtaining second-order flow

statistics by solving a sequence of standard algebraic Lyapunov equations. Our approach

provides the means for the robustness analysis of other flow control strategies that are prone

to parametric uncertainties.

The utility of the proposed input-output framework in this study goes beyond the the

analysis of streamwise base flow perturbations in laminar and turbulent flows. The frame-

work allows for structured stochastic uncertainty to enter other components of the velocity

field that may originate from exogenous sources that influence the long-time behavior of the

flow, e.g., surface-mounted actuators or roughness elements. Given the influence of base

flow variations on the second-order statistics of the linearized NS equations, it is also antici-

pated that the statistics of this source of multiplicative uncertainty can be shaped to model

turbulence in wall-bounded flows. The development of a systematic framework for model-

ing turbulent flow statistics via stochastic base flow variations is a topic for future research

that would directly uncover essential dynamical perturbations that account for the absence

of nonlinear interactions in linearized models, see, e.g., (Zare et al., 2016, 2020) and (Zare

et al., 2017, Sec. 6.1).
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APPENDIX A

OPERATORS Ā, Au, AND Aw FOR LAMINAR FLOW

Operators Ā, Au, and Aw in Eq (2.8) are given by:

Ā(k) =

 A11 0

A21 A22


A11(k) = ∆−1

( 1

R
∆2 + ikx

(
Ū ′′ − Ū∆

)
+ ikz

(
W̄ ′′ − W̄∆

) )
A21(k) = −ikz Ū

′ + ikx W̄
′,

A22(k) =
1

R
∆ − ikx Ū − ikz W̄

Au(y, t) =

 ∆−1 ikx (f
′′
u − fu∆) 0

−ikz f
′
u −ikx fu



Aw(y, t) =

 ∆−1 ikz (f
′′
w − fw ∆) 0

−ikx f
′
w −ikz fw

 .

58



APPENDIX B

PERTURBATION ANALYSIS FOR SOLVING THE GENERALIZED

LYAPUNOV EQUATION

The solution to (3.10) can be efficiently computed using a perturbation analysis in α. Fol-

lowing the form of the perturbed dynamical matrix A in Eq. (2.8), for sufficiently small α,

the solution X can be expanded using the perturbation series,

X(k) = X0(k) + αX1(k) + α2X2(k) + . . . . (B.1)

Substituting (B.1) into Eq. (3.10) and collecting powers of α yields the sequence of standard

algebraic Lyapunov equations,

α0 : ĀX0 + X0 Ā
∗ = −B ΩB∗

αn : ĀXn + Xn Ā
∗ = − [δ(n− 1) − 1] (σ2

u Au Xn−2A
∗
u + σ2

w Aw Xn−2A
∗
w)

(B.2)

where δ(n) is the discrete delta function. Based on this perturbation expansion, Xn = 0 for

odd values of n. This is because the right-hand-side of the algebraic Lyapunov equation is

0 for odd n. As a result, the structure identified for the steady-state covariance matrix X

follows the perturbation series given in (3.12). For small-size perturbations similar to those

considered in Chapter 4, the limit of the perturbation series (3.13) can be obtained with one

or two perturbation terms to E0. For large perturbations, the Shanks transformation can

be used to to overcome the problem of slow convergence or even divergence of the sequence;

see (Shanks, 1955; Dyke, 1964; Wynn, 1966; Sidi, 2003) for additional details.

59



APPENDIX C

OPERATORS Ā AND Au FOR TURBULENT FLOW

Operators Ā and Au in Eq. (5.5), are given by:

A(k, t) :=

 A11 0

A21 A22


A11(k, t) = ∆−1

( 1

Rτ

(
(1 + νT )∆

2 + 2 ν ′
T ∆∂y + ν ′′

T ( ∂
2
y + k2 )

)
+ ikx

(
Ū ′′ − Ū ∆

) )
A21(k, t) = −ikz Ū

′, A22(k, t) =
1

Rτ

( (1 + νT )∆ + ν ′
T ∂y ) − ikx Ū

Au(y, t) =

 ∆−1 ikx (f
′′
u − fu ∆) 0

−ikz f
′
u −ikx fu

 .
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APPENDIX D

PROOF OF THEOREM 1

For streamwise constant channel flow (kx = 0), the dynamic operators Ā and Au in Eq. (3.10)

are given by,

Ā =

 (1/R)L 0

Cp (1/R)I

 , Au =

 0 0

−ikzγ
′
u(y, t) 0

 (D.1)

where the operators L , Cp and I are parametrized by the spanwise wavenumber kz and the

Reynolds number R. Moreover, assuming a solenoidal white-in-time exogenous excitation f

with covariance Ω = I, we will have BΩB∗ = I. Let the state covariance X take the form

X =

 X1 X2

X∗
2 X3

 . (D.2)

Substituting this matrix together with those in (D.1) into Eq. (3.10) yields the set of coupled

Sylvester equations:

L X1 + X1 L ∗ = −RI

L X2 + X2 I ∗ = −RX1 C ∗
p

IX3 + X3 I ∗ = −R
(
CpX2 + X∗

2 C ∗
p − α2 σ2 k2

z γ
′
uX1 γ

′
u + I

)
.

From these equations it is evident that X1 and X2 scale as R and R2, respectively, and

as a result, X3 will contain terms that scale with all orders O(R), O(R2), and O(R3).

Let X1 = R X̃1 and X3 = R X̃3,1 + R2X̃3,2 + R3X̃3,3. Thus, the variance amplification

E = trace(X) of streamwise constant fluctuations can be decomposed as

E = Rf + R2 g + R3 h

where f := trace(X̃1 + X̃3,1), g := trace(X̃3,2), and h := trace(X̃3,3).
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APPENDIX E

PROOF OF THEOREM 2

For streamwise constant channel flow (kx = 0), substituting the dynamic operators Ā and

Au from Eq. (D.1) together with the perturbation series of the covariance matrix X (3.12)

in its block operator form (cf. Eq. (D.2)) into Eq. (3.10) yields the set of coupled Sylvester

equations:

L X1,0 + X1,0 L ∗ = −RI

L X2,0 + X2,0 I ∗ = −RX1,0 C ∗
p

I X3,0 + X3,0 I ∗ = −R
(
Cp X2,0 + X∗

2,0 C ∗
p + I

)
.

at the level of α0, and

I X3,2 + X3,2 I ∗ = σ2 k2
z Rγ′

uX1,0 γ
′
u.

at the level of α2. Here, we have assumed solenoidal white-in-time exogenous excitation f

with covariance Ω = I, which yields BΩB∗ = I, and Xi,j denote the ith block (cf. (D.2))

of the jth term in the perturbation series (3.12). The nominal variance amplification can

be computed as E0 = trace(X0) = Rf + R3 h with functions f and h following the forms

described in Appendix D, i.e., f := trace(X̃1,0 + X̃3,0,1) and h := trace(X̃3,0,3), where

X1,0 = R X̃1,0 and X3,0 = R X̃3,0,1 + R3 X̃3,0,3. On the other hand, since the exogenous

forcing does not include a contribution at the level of α2, X1,2 = X2,2 = 0, X3,2 = R2 X̃3,2,

and E2 = trace(X2) = R2 g with g := trace(X̃3,2).
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APPENDIX F

MEAN AND VARIANCE OF WHITE-IN-TIME STOCHASTIC

UNCERTAINTIE γ1 AND γ−1

Given mean and variance pairs (µα , σ
2
α) and (µθ , σ

2
θ) for the scalar-valued parametric un-

certainties γα and γθ, we can compute the means and variances of γ+1 and γ−1 in Eq. (7.3)

as

µ±1 = E[ γ±1 ] = E[ 1 + γα ] E[ e
±i γθ ] − 1 = (1 + µα) e

±iµθ +σ2
θ/2 − 1

and

σ2
±1 = Var (1 + γα)

(
Var

(
e±i γθ

)
+ E[ e±i γθ ]2

)
+ Var

(
e±i γθ

)
E[ 1 + γα ]

2

= e±2 iµθ +σ2
θ

(
σ2
αe

σ2
θ + (1 + µα)

2 (eσ2
θ − 1

))
.
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APPENDIX G

FUNCTIONS W+1(y) AND W−1(y) IN A SYSTEM OF DIFFERENTIAL

EQUATIONS IN THE PRESENCE OF RANDOM WALL OSCILLATIONS

Substituting Eq. (7.3b) under nominal conditions (γ±1 = 0) into the the steady-state equa-

tions for spanwise velocity (7.2b) yields the system of ODEs

p′′(y) = Gp(y); p(+1) = 0, p(−1) = b

with p := [W+1 W−1 ]
T , b := [−i i ]T , and

G :=

 iωtR 0

0 −iωtR

 .

The solution, from which W+1 and W−1 can be extracted, only depends on y, ωt, and R:

p(y) =
(
1−N2y−2

) (
N1+y −Ny−3

)−1
b

where N := e
√
G.
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APPENDIX H

OPERATORS A0, A+1, AND A−1 IN THE DYNAMIC MATRIX OF THE

SYSTEM WITH RANDOM WALL OSCILLATIONS

Operators A0, A+1, and A−1 are obtained by substituting W from Eq. (7.3b) into the

expression (2.5) for A:

A0 =

 A0,11 0

−ikz U
′(y) A0,22


A0,11 = ∆−1

( 1

R
∆2 + ikx (U

′′(y) − U(y)∆)
)

A0,22 =
1

R
∆ − ikx U(y)

A−1 =

 ∆−1
(
ikz(W

′′
−1(y) − W−1(y)∆)

)
0

ikx W
′
−1(y) −ikz W−1(y)



A+1 =

 ∆−1
(
ikz(W

′′
+1(y) − W+1(y)∆)

)
0

ikxW
′
+1(y) −ikz W+1(y)

 .
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APPENDIX I

PERTURBATION ANALYSIS FOR SOLVING THE GENERALIZED

LYAPUNOV EQUATION IN THE PRESENCE RANDOM

WALL OSCILLATIONS

Following (Jovanovic and Fardad, 2008), the solution to (7.10) can be efficiently computed

using a perturbation analysis in α. Specifically, the operator F̄ in (7.10) can be decomposed

into a block diagonal operator F̄0 and an operator F̄1 that contains the first upper and lower

block sub-diagonals

F̄ = F̄0 + α F̄1 (I.1)

F̄0 = diag {A0 − inωtI}

F̄1 = Toep
{
. . . , 0, (1 + µ+1)A+1, 0 , (1 + µ−1)A−1, 0, . . .

}
.

Moreover, operators F±1 take the block-Toeplitz form

F+1 = Toep
{
. . . , 0, A+1, 0 , 0, . . .

}
(I.2)

F−1 = Toep
{
. . . , 0, 0 , A−1, 0, . . .

}
.

For sufficiently small α, the solution X of (7.10) can be expanded using the same perturbation

series,

X = X0 + αX1 + α2X2 + . . . . (I.3)

Substituting (I.1)-(I.3) into (7.10) and collecting powers of α yields

α0 : F̄0X0 + X0 F̄∗
0 = −B ΩB∗

αn : F̄0Xn + Xn F̄∗
0 = −

(
F̄1Xn−1 + Xn−1 F̄∗

1

)
+ [δ(n− 1) − 1]

∑
i=±1

σ2
i Fi Xn−2F∗

i
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where δ(n) is the discrete delta function. Given the structures of F̄0, F̄1, and F±1, we can

determine the block structure of the self-adjoint operators Xi in (I.3) as

X0 := Toep
{
. . . , 0, X0,0 , 0, . . .

}
X1 := Toep

{
. . . , 0, X∗

1,1, 0 , X1,1, 0, . . .
}

X2 := Toep
{
. . . , 0, X∗

2,2, 0, X2,0 , 0, X2,2, 0, . . .
}

where the first and second indices of the sub-matrices correspond to the perturbation order

and harmonic number, respectively. The structure identified for the auto-correlation op-

erators in conjunction with (7.7) and (7.9) results in the following perturbation series for

X0:

X0(k) = X0,0(k) + α2X2,0(k) + O(α4). (I.4)

Finally, the operators X0,0 and X2,0 are obtained by solving the following set of Lyapunov

equations

A0X0,0 + X0,0A
∗
0 = −B ΩB∗ (I.5)

(A0 + iωtI)X1,1 + X1,1A
∗
0 = −

(
(1 + µ−1)A−1X0,0 + (1 + µ+1)X0,0A

∗
+1

)
A0X2,0 + X2,0A

∗
0 = − (1 + µ1) (A+1X1,1 + X1,1A

∗
+1)−

(1 + µ−1) (A−1X1,1 + X1,1A
∗
−1) −

∑
i=±1

σ2
i Ai X0,0A

∗
i

whose individual size is equal to the size of each block of the bi-infinite generalized

Lyapunov equation (7.10). This harmonic-based decoupling is used for efficient computation

of the second-order statistics of system (2.9).
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