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Real world complex networks vary greatly topologically from each other as well as from 

generated synthetic random networks. For example, social and biological networks typically 

have a community structure, while random networks do not. In order to investigate the 

robustness of the controllability of real networks to attacks on its edges, five different attacks 

based on the degree of the nodes were levied at common real-world networks systematically by 

removing either 2% or 5% of the edges, in steps, until 90% were removed. It was then 

investigated how well these real networks retain their controllability, especially in comparison to 

Erdos-Renyi and Barabasi-Albert synthetic networks. In particular, the question of how effective 

attacks focusing on destroying edges with a high source node in-degree and a high target node 

out-degree, performed in comparison to attacks focused on edges with high betweenness 

centrality, was reviewed. It was discovered, that in contrast to results with synthetic networks, 

for many real networks the betweenness attack performed worse than the in-out attack after a 

certain number of edges were removed. By observing how high density and community structure 

affect the ability to retain control over the network after these two attacks, an explanation for this 
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may be assembled. In addition, the difference between the potency of these two attacks, while 

network controls were fixed to nodes or allowed to move to more optimal input nodes, was 

studied. 
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CHAPTER 1 

INTRODUCTION 

The goal of this research is to study the effects that deliberate and random edge removal 

has on the controllability of real, complex networks. By applying different strategic percolation 

methods, based on edge properties, to various real-world complex networks, the effectiveness of 

each attack may be evaluated. In prior research work, Thomas et al. [1], showed that for several 

of the most popular synthetic networks, an attack or percolation directed at the edges with 

highest betweenness, caused the controllability of the network to deteriorate most quickly out of 

any attack attempted. An important question that was asked in this paper, was whether the 

effectiveness of the betweenness still held for real networks. In particular, the question of 

whether this attack’s effectiveness would remain strongest even while operating upon networks 

with a community structure, was of interest.  

It was discovered that the performance of many of the attacks differed greatly when 

applied to real networks rather than synthetic. This, in part, was expected. However, less 

expected and more interesting, was the large number of networks analyzed that were highly 

resistant to the high betweenness edge attack. In total 44% of the real networks that were 

analyzed were shown to be more resistant to the betweenness attack than to the in-out attack after 

90% of edges were removed from the network, when the effectiveness of the attack was 

quantified by the parameter Ψ, a parameter invented for this quantification and defined within 

the paper. 

The layout of the paper is as follows. Firstly, in chapter two basic graph theory and an 

introduction to complex networks is presented in order to give the reader and understanding of 
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the basics behind the methods used in the paper, especially as it pertains to the controllability of 

the networks and the attacks used upon them. Next, in chapter three control theory is discussed, 

explaining how structural controllability offers the tools to enable categorizing controllable and 

uncontrollable networks. Additionally, an explanation of robustness of network control is 

discussed as well as the measures used to quantify it. In chapter four, the methods and the results 

of the current study are presented and lastly in chapter five conclusions on the results are offered.  
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CHAPTER 2 

GRAPH THEORY AND COMPLEX NETWORKS 

In graph theory, a graph, also called a network, is a structure made up of vertices, often 

called nodes,1 which are connected to one another by edges. Notationally, graphs are written as: 

𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 are sets of vertices and edges, respectively. The symbols 𝑁 for the 

number of nodes and 𝐿 for the number of edges, is also used. A graph may be either undirected 

or directed2. If it is undirected there is no distinction between the connections linking any two 

nodes. If it is directed, then the edge between any two nodes has an orientation, either toward or 

away from the node. This is similar to a positive or negative vector. Following the analogy of the 

vector, the edges of a graph can be weighted with a value that describes a sort of “magnitude”, 

which can be positive or negative. Unlike vectors, however, this magnitude does not necessarily 

affect the direction of the edge. 

Graph theory is useful for linking together things of like nature, which have a rule 

between them that describes their interactions. Constructing and analyzing networks of these 

entities can help to explain these interactions. The graphs can describe many different things 

from how airports connect and road ways to social networks and neural nets. Complex networks 

or graphs with non-trivial topological features, prove to be very interesting to study, because the 

interactions they describe would be difficult to understand without the analytical methods 

afforded by graph theory. 

                                                 

1 Throughout this paper the terms, graphs and networks, as well as, nodes and vertices, are used interchangeably. 

2 If it is directed, the graph is often referred to as a digraph. This terminology is used in this paper. 
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Figure 1: Undirected Karate-Club Network. 

 

 

In addition, it is possible to create synthetic networks. Erdos-Renyi, Barabasi-Albert and 

the random partition graphs are examples of synthetic networks used in this paper and are 

described further in section 4.1. 

2.1 Adjacency Matrix and Node Properties 

Any graph can be represented by a useful abstraction known as the adjacency matrix. The 

adjacency matrix is a n by n matrix that we can call 𝑨. Each element in 𝑨 is defined as such for 

undirected networks: 𝑨𝑖𝑗 = 1, 3 if there is an edge between i and j and 𝑨𝑖𝑗 = 0 if there is no edge 

between 𝑖 and 𝑗. For directed networks there is a value only if there is an edge from 𝑖 to 𝑗, given 

𝐴𝑖𝑗 ≠ 0. Thus, the adjacency matrix is a simple and convenient way of describing the networks 

                                                 

3 If the network is weighted, instead of the value 1, the weight of the connected between the two nodes is 
substituted. 
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“wiring diagram”. Additionally, one can see that the adjacency matrix of an undirected network 

is always symmetric, but that of an undirected network is usually not. Throughout this paper, we 

deal only with directed networks.  

A node in a digraph is said to have degree 𝑘 = 𝑘𝑡𝑜𝑡𝑎𝑙 = 𝑛, where 𝑛 is the number of 

edges that are either pointing towards or away from it and also represents the number of 

“neighbors” or adjacent nodes it has.4 The node also has a in and out degree, where the out-

degree (𝑘𝑜𝑢𝑡) is the number of edges that point away from the node (the number of edges of 

which the node is a source) and the in-degree (𝑘𝑖𝑛) is the number of edges that point toward the 

node (the number of edges to which the node is a target). In a digraph, it is therefore possible for 

each edge to have a source and a target node. The degree distribution of a network holds the 

total, in or out degree information for each node in the network. 

2.2 Communities 

When nodes in a network can be separated into distinct groups, it can be said the network 

has a community structure and the grouped nodes are communities. In figure 1, an example of a 

community is circled in a light blue circle. It is common for real networks to have at least some 

form of community structure, especially social or biological networks [2], [3]. This is distinct 

from most random networks who usually do not [4]. Therefore, the effect that this structure has 

on the ability of a given real graph to resist certain attacks, was an interest.  

                                                 

4 In this paper 𝑘 will be used to denote degree. Average degree 〈𝑘〉 is also used as an important parameter. 
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Communities can be classified as being either strong or weak. This is done using two 

degree based parameters inherent to nodes inside a community. One describes the number of 

neighbors the node has internal to the community ( 𝑘𝑖𝑛𝑡) and one describing the number of 

neighbors external from the community (𝑘𝑒𝑥𝑡 ). These can also be represented as 

percentages: 𝑝𝑖𝑛𝑡,𝑖 =
𝑘𝑖𝑛𝑡,𝑖

𝑁𝑖
 , where 𝑁𝑖 is the number of nodes in the 𝑖𝑡ℎ community and 𝑝𝑒𝑥𝑡 =

𝑘𝑒𝑥𝑡

𝑁
.  Graphs with strong communities are defined as having, on average, 𝑘𝑖𝑛𝑡 > 𝑘𝑒𝑥𝑡 and graphs 

with weak communities as having, on average, 𝑘𝑖𝑛𝑡 < 𝑘𝑒𝑥𝑡 [5].  

2.2.1 Betweenness Centrality 

The edges between communities can often be characterized by a property called high 

betweenness centrality [6]. Centrality measures are important in network analysis because they 

are used to gauge the relative importance of an edge in the overall network structure. The 

betweenness centrality of an edge can be defined as the fraction of shortest paths between any 

two nodes in a network that run through that edge. Thus, high betweenness edges are often 

thought of as “bridges” between nodes in a network, which lends to the idea that these edges may 

be important for network control [7]. The high betweenness edge characteristic becomes 

increasingly apparent if the network has a well-defined community structure. The reason for this 

is, that, as the network is separated into its communities, usually only a few edges are left 

between the communities as per the definition of communities. Therefore, these edges bridge the 

nodes between the communities and will naturally have high betweenness.  
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2.3 Other Network Properties Related to Control 

Certain other network properties that are important to understanding control of complex 

networks, are now discussed. Below are some important definitions that relate to control that will 

be useful later. 

Definition 1: A path in a network is any sequence of vertices such that every consecutive pair of 

vertices in the sequence is connected by an edge in the network. For directed networks, the path 

must follow the correct direction [6]. 

 

Definition 2: A cycle in a directed network is a closed loop of edges with the arrows on each of 

the edges pointing in the same way around the loop [6]. 

 

Definition 3: A graph G contains a dilation iff there is a subset of vertices, say 𝑆, with 

neighboring vertices, say 𝑇(𝑆) such that |𝑇(𝑆)| < |𝑆|, where |𝑇(𝑆)| and  |𝑆| denote the 

cardinality of 𝑇(𝑆) and 𝑆, respectively [8]. 

 

Definition 4: A node in a digraph is inaccessible if there are no edges directed toward it.  

Inaccessible node cannot be reached by a control; therefore, a control must be attached directly 

to it [9].  

 

Definition 5: A subgraph of a graph 𝐺(𝑉, 𝐸) is a graph 𝐺(𝑉1, 𝐸1) where 𝑉1 is a subset of 𝑉 

and 𝐸1 is a subset of 𝐸 and a spanning subgraph is a subgraph with the exact same vertex set 

as the original graph [6]. 
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CHAPTER 3 

COMPLEX NETWORK CONTROLLABILITY 

Complex networks of entities and systems are all around us. One can find examples of 

this in the internet, with webpage interconnectedness forming a network, or in social groups, 

where friendships or acquaintanceships form a network. Modeling the interconnectedness of 

these different entities or systems can shed important light on them. Some examples of networks, 

such as those representing cell metabolic systems or supply chains, may describe systems that it 

is desirable to control.  For this reason, the question must be asked: how does one control 

complex networks? And more specifically, what are the minimum number of controls necessary 

to control them?  

As was discussed earlier, networks consist of edges and nodes, where the edges describe 

a relationship between nodes. In networks modeled for control purposes, the state of the nodes is 

what is desired to be controlled and the edges describe the effect nodes have upon their 

neighbors. Modeling large networks with complex dynamics seems like a near impossible task. 

However, this task is made easier by estimating the dynamics as linear. A simplification of this 

magnitude is permissible since the goal here is only to define whether or not the network is 

controllable. Additionally, it presents a foundation to move to more complicated analysis.   

3.1 Modeling Complex Networks with Linear Dynamics 

By estimating our network as an LTI system, linear control theory can be applied. If this 

is the case, then the dynamics of the system can be described using the following well known 

equation [10]. 
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𝒙̇ =  𝑨𝒙 + 𝑩𝒖 Equation 1 

We can use this equation to detail the dynamics of a complex system by defining 𝒙(𝑡) ∈

ℝ𝑛  as the vector describing the state of each node in the network. 𝑨 ∈ ℝ𝑛 × 𝑛 is the adjacency 

matrix discussed earlier containing the node interaction information, 𝒖(𝑡) ∈ ℝ𝑚 is a vector 

describing input signals to the system and 𝑩 ∈ ℝ𝑛 × 𝑚 matrix containing the controls needed to 

fully control the system. In the context of control a positive weight signifies a excitation and a 

negative weight signifies inhibition [9].  

 If we combine the nodes and the controls, we can create a different, control-augmented 

graph 𝐺(𝑨, 𝑩), the combined graph of both matrices 𝑨 and 𝑩, that encompasses all the 

information of the fully controllable system. Where the nodes are equal to 𝑛𝑡𝑜𝑡𝑎𝑙  =  𝑛𝐴 ∪ 𝑛𝐵 and 

the edges are equal to 𝐸𝑡𝑜𝑡𝑎𝑙  =  𝐸𝐴  ∪  𝐸𝐵.  

 Using the LTI definition of the system described by the state space equation, it is possible 

to define whether or not the network is fully controllable by a defined set of directly controlled 

nodes, using Kalman’s controllability rank criterion [10], which states the system is controllable 

iff: 

𝑅𝑎𝑛𝑘([𝑩, 𝑨𝑩, 𝑨2𝑩, … , 𝑨𝑛−1𝑩]) = 𝑛 Equation 2 

Although this is a convenient and elegant way to uncover the controllability of the 

network, in real-life scenarios it is difficult or impossible to use. This is for two primary reasons, 

firstly, the network may have edge weights that are indeterminable, difficult to know, or these 

weights may be constantly changing. Secondly, it is computationally challenging for large 

networks to compute. To circumvent these problems, the concept of structural controllability 

may be applied.  
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3.1.1 Structural Controllability 

The outline for structural controllability as it applies to complex networks was defined in 

the 1971 work by Lin [11]. It lays out a route to circumnavigate the issue of defining the 

reachability of a network algebraically, and allows for controllability to be established for even 

highly complex networks. Lin’s structural controllability theorem gives the necessary and 

sufficient conditions for structural controllability. 

Two graphs can have equivalent structure if for every fixed zero in 𝐺1(𝑨, 𝑩), there is a 

fixed zero in 𝐺2(𝑨, 𝑩) and vice versa, even if the non-zero values in both graphs are only known 

approximately. Structural controllability comes from the idea that if there is a controllable 

system where all parameters are known, it can be assumed that a second system, that has 

parameters that are approximately equal to those of the first system, is also controllable. 

Therefore, to implement the idea on a system with matrices 𝑨, 𝑩, 𝒙, 𝒖, define a second 

adjacency matrix 𝑨𝜶 to be a structurally similar matrix to 𝑨. Meaning, for every zero value in 𝑨 

there is a zero value in 𝑨𝜶, and for every non-zero value in 𝑨, there is a value 𝛼 in 𝑨𝜶. If 𝑨 is a 

controllable system under the Kalman rank condition, then 𝑨𝜶 can be shown to be controllable 

for almost all 𝛼 [11]. This solves the issue of needing to know the weights of the edges of the 

digraph exactly to define whether it is controllable or not. In addition, by proving that certain 

subgraphs are always structurally controllable, it can be shown that through the union of a set of 

these subgraphs, which span all the nodes in the network (a second spanning subgraph), the 

network can be controlled by a combination of the input vertices, which also happens to be the 

minimal set of controlled nodes. Therefore, the problem then becomes finding these set of 
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subgraphs and the minimum set of controls that fully control this union of subgraphs. This 

problem is solved through maximum matching. 

3.1.2 Maximum Matching 

As described above, when attempting to discover whether a complex network is fully 

controllable or not, it is necessary to find the set of directly controlled nodes that fully control the 

network. Because linking one control to each node would be trivial, the problem becomes 

finding the minimum set of controls. These are found through the process called maximum 

matching. Maximum matching finds the largest set of nodes that can be uniquely paired amongst 

themselves using edges in the network. A commonly used algorithm for this is the Hopcroft-

Karp algorithm for bipartite graphs [12]. This algorithm is frequently used because its worst-case 

scenario run time is low, only 𝑂(𝐿√𝑁). Although it is designed for bipartite graphs, it can be 

used on directed graphs by converting them into bipartite graphs.  

3.1.3 Hopcroft-Karp Algorithm 

The Hopcroft-Karp algorithm finds the maximal cardinality5 matching of an unweighted 

bipartite graph.  This is accomplished by extending augmenting paths, between the matched and 

unmatched nodes, which are called free nodes, because they are not in the matching. An 

augmenting path starts at a free node and ends at a free node. 

The steps of the Hopcroft-Karp algorithm are as follows: 

1. Initialize 𝑀, the matching, as the zero set 

                                                 

5 The cardinality of a set is a measure of the number of elements in the set. 
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2. Use breadth first search to build an alternating level graph, rooted at unmatched 

vertices in set 1 of the bipartite graph 

3. Use depth first search to augment the current matching 𝑀 with the maximal set of 

vertex disjoint shortest-length paths 

4. Repeat the above steps until there are no more augmenting paths. 

 

For a directed graph, the output of the maximum matching is a set of edges. 

3.2 Graph Control Structure: The Spanning Cacti 

Once the matching is defined, it can be used to design the control structure of the graph. 

The minimum number of inputs necessary to render the graph controllable, is related to the 

maximum matching of the digraph. The minimum inputs theorem states that the number of 

directly controlled nodes needed to fully control a network is one, if there is a perfect matching 

for the graph, or it is equal to the number of unmatched nodes with respect to any maximum 

matching, if the matching is not perfect. The nodes to be directly controlled are therefore the 

unmatched nodes [9]. Thus, the maximum matching defines a set of paths and the cycles that 

form the basis of the spanning cacti for the network. Path and cycles with controls attached to 

them are the pre-defined structurally controllable subgraphs spoke of earlier, and the 

combination of them make up the spanning subgraph called a cacti. Therefore, using the 

following definitions from Liu et al. [9], we can define the controllability of a complex network. 

Definition 6: A stem is a path originating from an input vertex (directly controlled node). The 

initial vertex of a stem is called the root of the stem. 

 

Definition 7: A bud is an elementary cycle with an additional edge that ends, but does not 

begin, in a vertex of the cycle. This additional edge is called the distinguished edge. 

 

Definition 8: A cactus is a subgraph defined recursively as follows. A stem is a cactus. Given 

a stem 𝑆0 and buds 𝐵1, 𝐵2, … , 𝐵𝑙, then 𝑆0 ∪ 𝐵1 ∪ 𝐵2 ∪ … ∪ 𝐵𝑙 is a cactus if for every 𝑖 in (1 ≤
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𝑖 ≤ 𝑙) the initial vertex of the distinguished edge of 𝐵𝑖 is not the top of 𝑆0 and is the only 

vertex belonging at the same time to 𝐵𝑖 and 𝑆0 ∪ 𝐵1 ∪ 𝐵2 ∪ … ∪ 𝐵𝑖−1. A set of vertex-disjoint 

cacti is called a cactus. 

 

Using the above definitions, Lin was able to define the controllability theorem below.  

Theorem 1: 

The following three statements are equivalent: 

1. A linear control system 𝐺(𝑨, 𝑩) is structurally controllable. 

2.  

a. The digraph 𝐺(𝑨, 𝑩) contains no inaccessible nodes. 

b. The digraph 𝐺(𝑨, 𝑩) contains no dilations 

3. 𝐺(𝑨, 𝑩) is spanned by a cacti [9]. 

 

 

This theorem allows the controllability problem to be reduced to finding the cacti and 

therefore the minimal set of directly controlled nodes. Therefore, as described above, the 

problem is to perform a maximum matching on a graph, find the set of unmatched nodes, and 

assign controls to those nodes.  

Theorem 2: 

The minimum number of inputs or the minimum number of controls 

(𝑁𝐶) needed to fully control the network 𝐺(𝑨) is equal to the 

number of unmatched nodes with respect to any maximum 

matching. These unmatched nodes, become the input vertices [9]. 

 

If the maximum matching cardinality of a digraph is denoted by |𝑀|, then the number of 

nodes attached directly to controls equals 𝑁 − |𝑀|, where 𝑁 is the number of nodes in 𝐺(𝑨). S 

was mention, if |𝑀| = 𝑁, the matching is said to be perfect and any node can be chosen as a 

driver node [9].  
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3.2.1 Relation of 𝑵𝑫 to 〈𝒌〉 

As was shown by Liu et al. [9], the average degree of the network effects the minimum 

amount of controls needed to control the network. As can be seen in the equations below, for 

both BA and ER graphs, the percent controls (𝑛𝐶 =
𝑁𝐶

𝑁
), depends on the average degree ( 〈𝑘〉 ) of 

the network, while for scale-free networks, the in and out degree (𝛾𝑖𝑛 = 𝛾𝑜𝑢𝑡 = 𝛾) is also a 

parameter [9]. 

 

𝑛𝐷,𝐸𝑅~𝑒−〈𝑘〉/2 Equation 3 

𝑛𝐷,𝐵𝐴~ [−
1

2
( 1 −

1

𝛾 − 1 
) 〈𝑘〉] 

Equation 4 

 

 

Many of the real networks in this paper showed very high average degrees and following 

this general trend they are controlled by either one or a few controls. This resulted in interesting 

attack profiles.  

3.3 Robustness of Control 

The foundation for this work is two papers that study the effect of edge attacks on 

complex networks [13], [1]. The papers look into how node and edge based attacks effected the 

controllability of a variety of synthetic networks by evaluating them according to two different 

metrics of robustness. Although node based attacks are relevant, this paper, like Thomas et al. 

[1], focused on edge based attacks due to the possibility of more intriguing results. 
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3.3.1 Control Robustness Metrics 

There are two ways used to describe the robustness of a networks controllability referred 

to by Thomas et al. [1]. These are the control-based robustness measure and the reachability-

based robustness measure. The first is a measure that counts the number of new controls that 

must be added to a network to retain full controllability after a node or edge attack has occurred 

[14], [15]. The second measure was defined by Parehk et al. [13] and measures the number of 

nodes still controllable after an attack. This measure can be separated into two categories: for 

free controls and fixed controls. In the fixed controls case, the network has a defined set of 

controls on a defined set of nodes which do not change after an attack. In the free controls case, 

however, there is a defined set number of controls, but they are free to move to different input 

nodes, if it increases their reachability. 
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Figure 2: Attack results for BA and ER networks. The figure above shows how synthetic ER 

(a) and BA (b) networks with 〈𝑘〉 = 6 respond to various attacks with three different control 

configurations, control count, free controls and fixed controls. The ordinate is the fraction of 

controls per total nodes (𝑛𝐶/𝑁) for the controls case and the fraction of reachable nodes for the 

fixed (𝑛𝑟/𝑁) and free (𝑛𝑓/𝑁) case, where 𝑁 is the number of nodes, 𝑛𝑐,𝑟,𝑓 is the number of 

controls or reachable nodes, 𝑙 is the number of edges removed and 𝐿 is the total number of edges. 

The abscissa is the fraction of edges removed. As can be seen, the betweenness attack is the most 

effective attack for both networks. 

 

 

 

(a) 

 

 

 

 

 

 

(b) 
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3.3.2 Control and Reachability based Robustness of Synthetic Networks 

Control and Reachability based robustness measures were applied to Barabasi-Albert 

(BA) and Erdos-Renyi (ER) synthetic networks by Thomas et al. with interesting results. These 

measures were used to identify the effectiveness of various attacks on these two types of 

networks. Thomas et al. found that the in-out attack was the most potent of all degree attacks and 

made the case that the in-out degree measure, defined in section 4.1.1, was a proxy for the edge 

betweenness centrality measure. Indeed, as can be seen in figure 2, when the results of 

calculating both network’s robustness measures, after removing 5% of the edges during each 

attack until 90% of the edges were removed, are plotted against the number of edges removed, 

the betweenness based edge attack degrades the network in a similar way to the in-out attack and 

was found to be more potent in almost all cases. This result showed that the in-out attack and the 

betweenness attack have strong similarities in the way they connect the network. However, it 

was not certain whether this inherent likeness would still produce similar control robustness 

results for all networks, especially those with a community structure. 

To find the reachability of the set of controls for both the fixed and free case after each 

attack, requires a maximum matching procedure to be performed on a weighted bipartite graph 

formed from graph 𝐺(𝑨, 𝑩), by the following methods found in [1] for the fixed controls case: 

1. Remove nodes that cannot be reached by any control 

For all 𝑖, 𝑗 =  1, … , 𝑁 and 𝑘 =  1, . . , 𝑚: 

2. Split the remaining nodes into a pair of positive and negative nodes: 𝑥𝑖 → 𝑥𝑖
+, 𝑥𝑖

−. 

3. Add unit-weight edges (𝑥𝑖
+, 𝑥𝑗

−) if (𝑥𝑖 , 𝑥𝑗)  ∈ 𝐸 

4. Add unit-weight edges (𝑢𝑘
+, 𝑥𝑗

−) if (𝑢𝑘 , 𝑥𝑗)  ∈ 𝐸 

5. Add zero-weight edges for  (𝑥𝑖
+, 𝑥𝑖

−) and (𝑢𝑘 , 𝑥𝑗) (self-loops) 

6. Add zero-weight edges (𝑥𝑖
+, 𝑢𝑘

−) 

7. Add a weight 𝑊 ≥ |𝐸| to all edges 
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This procedure is modified slightly for the free case by creating a new graph 𝐺2(𝑨, 𝑩) 

where each of the fixed number of original controls is linked to every node in the network by an 

edge. Because only one edge per control can be matched and all options for paths and cycles are 

available, the optimal configuration is produced. 
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CHAPTER 4 

METHODS AND RESULTS 

4.1 Methods 

The methods used in this paper to investigate the networks robustness to controllability 

degradation are similar to those used in the paper mentioned in the previous section [1]. These 

are, to attack the network with different degree based attacks and analyze the networks 

robustness to these attacks using the three different robustness measures discussed in Chapter 3. 

The procedure is as follows: using one of the degree based attacks described in the next sub-

section, a percentage of the edges of the network are selected for removal. For large networks 

5% of the edges were removed each iteration and for smaller networks 2% were removed. This 

procedure was performed for each attack described in section 4.1.1, on 45 real world networks of 

varying “types”, for example: social, neural or biological. In addition to attacking real networks, 

attacks were also performed on synthetic networks with communities. This was to analyze the 

effect communities had on the potency of the attacks, especially the edge betweenness attack. 

Synthetic Graphs Used: 

Erdos-Renyi (ER): A model for graphs that are synthetic random graphs with binomial 

degree distributions. 

Barabasi-Albert (BA): A model for synthetic random graphs that generates a scale-free 

graph, which as a degree distribution that follows the power law. 

Random Partition (RP): This graph is a random graph with defined communities. It is 

essentially an ER graph with community structure. 
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4.1.1 Definitions of Attacks 

As mention, during an attack on the network, either 2% or 5% of the edges are removed 

each attack iteration. The edges are selected for removal based on the criteria listed below.  

• In-out degree attack: The in-degree of the source node and the out degree of the 

target node are summed together and the edges with the highest values are 

removed first. 

• Out-in degree attack: The out degree of the source node and the in degree of the 

target node are summed together and the edges with the highest values are 

removed first. 

• Total degree attack: The total degree of the source and target node of the edge 

are summed together and the edges with the highest values are removed first. 

• Random attack: Random edges are chosen for removal – this is also called edge 

failure. 

• Betweenness attack: The edges with the highest edge betweenness centrality are 

removed first.  

 

Degree based attacks were chosen to use because they are a local property of a node. 

Therefore, the attacker does not need to know the entire layout of the network in order to use 

these attacks effectively. The betweenness attack, however, is not locally based and therefore not 

as simple to use. 

4.1.2 Categories of Networks 

In order to examine how different categories of real networks responded to attacks, 

various network types were used in the analysis. A full list of the networks, grouped by network 

type, can be found in table 1 of this paper. It was noted, as can be reviewed in appendix A, which 

includes a full list of the network robustness results, that there is seemingly only a correlation 

between network type and degradation of controllability, insofar as the network structure is 

similar. Indeed, at times networks from different categories, could have more similarity with 

each other in their robustness to the attacks, than with their peers in the same category. 
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4.1.3 Software 

Most of the work done in the paper was performed using the Zero-Effort Network (ZEN) 

library maintained by Derek Ruths, in concert with the netcontrolz complex network control 

library maintained by Justin Ruths. Additionally, the networkx library was used for certain 

functions, such as calculating edge betweenness centrality and generating the random partition 

network. All work was done in the Python programming language. 

Zen documentation: http://zen.networkdynamics.org/ 

Netcontrolz documentation: http://justinruths.com/netcontrolz/ 

Networkx documentation: https://networkx.github.io/documentation/stable/# 

4.2 Results 

Perhaps the most interesting difference between the results of the attacks performed on 

real networks and those performed on synthetic Barabasi-Albert and Erdos-Renyi networks, is 

that in many of the real network attack responses, the betweenness attack was less effective than 

that of the in-out attack. As the structure of real networks can be vastly different from those of 

synthetic, this was a prominent question from the outset of the analysis. Also interesting, as can 

be seen in appendix A, where a list of the individual network attack results is found, was that 

with a significant number of networks, attacks such as out-in, random, and total were not 

significantly effective at reducing control at all. In addition, it was also noticed, that unlike 

synthetic networks, when network controls were changed from the fixed controls case to the free 

controls case, the betweenness attack’s relative potency decreased more on average than that of 

the other attacks. Table 1 lists the networks that were analyzed, categorized by type, along with 

http://zen.networkdynamics.org/
http://justinruths.com/netcontrolz/
https://networkx.github.io/documentation/stable/
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some of their basic parameters. 𝑁 is the number of nodes in the network, 𝐿 is the number of 

edges, 〈𝑘〉 is the average degree, 𝜌𝐺  is the density of the graph, 𝑁𝐶 is the minimum number of 

controls for complete controllability, and 𝑛𝐶  is the percentage. As can be seen there are many 

highly dense networks with low numbers of controls. 

 

Table 1: Properties of real networks used.  
𝑇𝑦𝑝𝑒 𝑁𝑎𝑚𝑒 𝑁 𝐿 〈𝑘〉 𝜌𝐺  𝑁𝐶  𝑛𝐶  

Neural celegans 297 2345 7.9 0.027 49 0.16 

macaque71 71 746 10.5 0.15 1 0.01 

mac 62 3844 62.0 1.016 1 0.02 

mac95 94 2390 25.4 0.273 9 0.10 

cocomac 193 12051 62.4 0.325 4 0.02 

        

Transcription yeast 688 1079 1.6 0.002 565 0.82 

ecoli 418 519 1.2 0.003 314 0.75 

        

Intra-Organizational manuf-frequency-reverse 77 2228 28.9 0.381 1 0.01 

manuf-famliarity-reverse 77 2326 30.2 0.397 1 0.01 

cons-frequency-reverse 46 879 19.1 0.425 2 0.04 

cons-quality-reverse 46 858 18.7 0.414 1 0.02 

physician-friend-reverse 228 506 2.2 0.01 52 0.23 

        

Online 

Communication 

email-Eu-core 1005 25571 25.4 0.025 139 0.14 

dnc-emails 1891 5598 3.0 0.002 1500 0.79 

polblogs-reverse 1224 19025 15.5 0.013 436 0.36 

 one_mode_messgage 1899 20296 10.7 0.005 614 0.32 

 one_mode_char  1899 20296 10.7 0.005 614 0.32 

        

Social Influence physician-advice-reverse 215 480 2.2 0.01 78 0.36 

physician-discuss-reverse 231 565 2.4 0.011 58 0.25 

teacher-student 60 94 1.6 0.027 35 0.58 

        

Social prison 134 4489 33.5 0.252 94 0.70 

physician-friend-reverse 228 506 2.2 0.01 52 0.23 

freeman1 34 695 20.4 0.619 1 0.03 

freeman2 34 830 24.4 0.74 1 0.03 

freeman3 32 460 14.4 0.464 1 0.03 

social1inter_st 67 182 2.7 0.041 9 0.13 

 social3inter_st 32 96 3.0 0.096 6 0.19 

        

Protein Structure ps1 95 213 2.2 0.024 18 0.19 

ps2 53 123 2.3 0.045 13 0.25 

ps3 97 212 2.2 0.023 20 0.21 

        

Trophic foodweb-baydry 128 2137 16.7 0.131 29 0.23 

foodweb-baywet 128 2106 16.5 0.13 30 0.23 

maayan-foodweb 183 2494 13.6 0.075 99 0.54 

        

Animal Dominance bison 26 314 12.1 0.483 1 0.04 
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cattle 28 217 7.8 0.287 3 0.11 

sheep_dominance 28 250 8.9 0.331 1 0.04 

hens_dominance 32 496 15.5 0.5 1 0.03 

macaque_dominance 62 1187 19.1 0.314 3 0.05 

        

Metabolic figeys 2239 6452 2.9 0.001 1906 0.85 

 protien_stelzl 1706 6207 3.6 0.002 765 0.45 

        

Electrical s208 122 189 1.5 0.013 29 0.24 

 s420 252 399 1.6 0.006 59 0.23 

 s838 512 819 1.6 0.003 119 0.23 

        

Infrastructure opsahl-openflights 2939 30501 10.4 0.004 872 0.30 

 openflights1 3425 37596 11.0 0.003 1149 0.34 

 

4.2.1 Betweenness Centrality versus In-Out degree based attack 

As was mentioned before, one result from the work of Thomas et al. was that the high 

edge betweenness centrality attack was more effective on ER and BA networks than the in-out 

degree attack. It was surmised that this is true due to the fact that the in-out attack is a proxy for 

the betweenness attack. This hypothesis was supported by the fact that the betweenness attack 

degraded controllability similarly to the in-out attack as well as outperformed it in most cases. It 

was of particular interest, therefore, to investigate whether this result held for real networks and 

was found not to be the case in general. To aid in reporting this finding, a relative effectiveness   

( Ψ1,2), is defined as follows: 

 

Ψα1−𝛼2
=

(∑ (
𝑛𝛼1

𝑁 −
𝑛𝛼2

𝑁  )   𝑁
𝑖=0 )

𝑁
 

 

Equation 5 
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Figure 3: Change in 𝚿 as attack progresses. The figure above shows the value of Ψ at 

different edge removal steps during the attack process. From left to right, top to bottom the 

percentage of edges removed for the figures is 20%, 40%, 60% and 80%. The value of Ψ for 

both the fixed (blue) and free (green) cases are displayed for each graph. As the figure relates, as 

more edges are removed, in general, the betweenness attack becomes less effective in 

comparison to in-out attack. 

 

Where 𝛼1and 𝛼2 are two different attacks and 𝑁 is the number of attacks on the network. 

The relative effectiveness is therefore a measure of which attack is reducing controllability more 

at each edge removal step. If the value of Ψ is less than zero, 𝛼2 is less effective at reducing 

control over all, and if Ψ is greater than zero, 𝛼1 is less effective at reducing control over all. 
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Figure 4: 𝚿 𝒗𝒔 𝝆𝑮 and effect of density on betweenness attack in ER networks. The above 

figure (a), is a plot of Ψ vs the graph density of each of the real graphs in both fixed (blue) and 

free (maroon) controls case for 90% edges removed. In the free case, graphs with a single 

controlled node where removed to prevent skewing of results. As can be seen, the least-squares 

fit trend line for both fixed (red) and free (light blue) increases for both sets at a rate of 0.15 Ψ/𝜌 

for free and 0.11 Ψ/𝜌 for the fixed case. Figure (b) shows the betweenness attack plot of nine 

ER graphs with approximately 250 nodes each and densities varying from 0.05 to 0.57 plotted 

along with the in-out attack profile averaged over the nine graphs. This shows that as density 

increases, the betweenness attack curve converges to the in-out attack curve. 

 

Throughout this paper, 𝛼1 is the betweenness attack and 𝛼2 is the in-out attack. As can be seen in 

figure 3, the betweenness attack is less effective than in-out attack for many of the real networks 

analyze after a certain amount of edges are removed.6 In addition, the number of networks where 

betweenness is less effective grows as more and more edges are removed from the network. 

Also, when controls are made free rather than fixed, almost all networks retain controllability 

better while undergoing a betweenness attack at 90% edges removed. This was not the expected 

result following the work of Thomas et al. Therefore, it was of interest to examine why the 

                                                 

6 This effect can also be seen, by viewing the individual network attack profiles in appendix A. 

 (a) 

 

 

 (b) 
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difference was so apparent in many of the networks. Further examination of network properties 

led to the conclusion that for at least some networks, network density and the existence of 

community structure may play a critical part.  

Effect of Network Density: 

Many of the real networks that displayed a reduced sensitivity to the high betweenness 

edge attack had notably higher density and a lower number of controls necessary for complete 

controllability (see table 1). It was surmised that this density which necessarily provides a more 

highly connected network, was behind the lessened effectiveness of the betweenness attack in 

relation to the in-out attack. As can be seen in figure 4 (a) there is a general trend which is 

characterized by a least-squares fit line, that shows that the high betweenness attack is becoming 

less effective as density increases for both free and fixed controls, and that this relationship 

increases when the controls are free. Indeed, this idea is supported by increasing the density of a 

synthetic ER graph and observing the change in the profiles of the betweeness attack and in-out 

attack curves. As can be seen in figure 4 (b), the betweenness attack curve tends to converge 

toward the in-out attack curve and at higher densities even becomes equal in its ability to degrade 

controllability of the network to the in-out attack. However, there is a large amount of variation 

in the results displayed in figure 4 (a) and, as can be seen in figure 4 (b), although increasing the 

density for ER graphs does decrease the effectiveness of the betweenness attack after a certain 

number of edges are removed from the network, it doesn’t make the attack less effective than in-

out overall. Therefore, there is another network characteristic that plays a part. 
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Effect of Communities: 

The second network property that most likely plays a large part in reducing the 

effectiveness of the betweenness attack is the network’s community structure. This is thought to 

be because the introduction of communities into the graph gives rise to a large amount of high 

betweenness edges that are not critical for control of the network (see figure 6 (a)). The effect 

that community structure has on a random network with a binomial degree distribution is shown 

in figure 5. In figure 5 (a), three different random partition graphs with varying numbers of 

communities are plotted along with a RP graph with a single community (essentially an ER 

graph) to use as a baseline. Each graph has 200 nodes and a different value of 𝑝𝑒𝑥𝑡 or the percent 

of edges between communities. Each undergoes a betweenness and in-out attack and the Ψ value 

is calculated and plotted against 𝑝𝑒𝑥𝑡. As can be seen splitting the 200 node RP graph into a 

graph with two 100 node communities, has an immediate effect on the potency of betweenness 

attack. As can be seen the curve of the plot takes a peaked form, where, as the percent of edges 

between the communities is increased, the effectiveness of the betweenness attack is decreased, 

until a critical point is reach and the trend is reversed. This results in a “window” where the 

value of 𝑝𝑒𝑥𝑡 is such that the ability of the betweenness attack to degrade network controllability 

is less than that of the in-out attack. As communities are added, this effect becomes more 

pronounced. Similarly, in figure 5 (b), the same effect can be seen, however, here three graphs 

with different 𝑝𝑖𝑛𝑡 values are plotted together. In this case, it can be seen that varying the 𝑝𝑖𝑛𝑡 

value broadens the “window” of lowered betweeness effectiveness. 
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Figure 5: 𝚿 𝒗𝒔 𝒑𝒆𝒙𝒕 for different numbers of communities and different community 

densities.  The figure, where C represent a vector where the entries are the number of nodes in 

the communities and the length is the number of communities, shows the results of 3 sets of RP 

graphs with constant 𝑝𝑖𝑛𝑡 , as the percent of edges between the communities (𝑝𝑒𝑥𝑡) is varied. As 

one can see, an interval where the betweenness attack is rendered less effective than in-out attack 

exists. In figure (a) it can be seen that there is no such change in effectiveness for a graph with a 

single community, but if even two communities are defined in the graph, the interval appears. 

Additionally, as is seen in figure (b), more dense graphs have broader intervals then less dense 

graphs. For each figure (a) and (b), both fixed (left) and free (right) controls cases are plotted. As 

can be seen, there is little difference between them. 

 

Additionally, although a reduction in the betweenness attack effectiveness can be 

produced by adding communities to low-density RP graphs, it does not cause betweenness attack 

to become less effective than in-out to any appreciable degree. For this reason, among other 

 

 

 (a) 

 

 

 (b) 
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possible factors, it was concluded that both density and community structure play an important 

role in the effectiveness of certain edge attacks.  

 

  

Figure 6: Diagram of cycles controlled by a single control and a plot of standard deviation 

of betweenness centrality vs graph density. The simplified graph in the figure (a) relates how a 

single control ( 𝑢1) can control two communities via cycles while rendering the high 

betweenness centrality edges between them unimportant to control. Additionally, as the density 

of an ER graph of 400 nodes is increased (b), the normalized standard deviation of the 

betweenness centrality of the edges decreases and converges to zero. 

 

The reasoning behind how communities lesson the strength of the betweenness attack can 

be visualized using figure 6 (a). As was mentioned high density requires higher average degree, 

which leads to lower numbers of controls necessary to control the network. Networks with very 

high density usually have a perfect matching and therefore have only a single control which 

attaches to cycles that form the control cacti. These cycles can be formed inside the communities 

and render the edges between the communities with high betweenness essentially useless for 

control purposes. Therefore, the removal of these high betweenness edges does not affect the 

controllability the way it normally would in community-less networks. 

High density is thought to reduce the effectiveness of betweenness for a different reason. 

In graphs with high density, nodes are highly connected to one another and therefore on average 

𝑢1 

 

High Betweenness Edges 

Cycle Cycle 

(a) (b) 
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it takes only a few “steps” along any path to reach one node from another in the network. 

Therefore, inside the communities, the edges have similar betweenness and importance in node 

connectivity, which reduces the effectiveness of the betweenness attack. The “leveling out” of 

the average betweenness centrality value with high density graphs can be seen in figure 6 (b), 

where the density of an ER graph and the standard deviation of the normalized edge betweenness 

centrality are plotted together. This leads to an exponential convergence of the standard deviation 

to zero as density is increased.  

The fact that the betweenness attack is rendered less effective for certain network is an 

interesting result, because it shows that for some networks, only local node knowledge is 

necessary for the most effective attack. 

4.2.2 Free vs Fixed Controls 

There was also seen to be a significant difference between the reduction in the 

effectiveness of the betweenness attack, in comparison to the in-out attack, when the controls 

were switch from free to fixed. For example, if controls are made fixed, roughly half or 44% of 

the networks analyzed were less sensitive to the betweenness attack than to in-out attack after 

90% of the edges were removed. However, after controls were made free, this number rose to 

86%.  

When the network controls are allowed to be free rather than fixed, the effectiveness of 

every attack drops. However, the results from BA and ER analysis show that the percent 

reduction is essentially equal for all the attacks. However, for real networks, the betweenness 

attack is affected significantly more than the others as can be seen by figure 3. 
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 For high density graphs, the explanation for this is simple, these graphs have very high 

degree and therefore a low number of controls which allows for the potential that these controls 

are isolated quickly by an attack. However, a low number of controls, even a single control, does 

not always mean controllability will be destroyed quickly, as is seen by the following two 

examples. 

Case 1 (macaque71): 

For the real network macaque71, 𝑁𝐶 = 𝑁 − |𝑀| = 1. The cacti consists of a single stem 

and 19 buds. An examination of the plot of how the controllability degrades in appendix A, 

shows how the controllability of the network is completely destroyed within a few edge removal 

iterations. This is because the high betweenness attack quickly isolates the node the control is 

attached to from the rest of the network. However, when controls are free, this single control is 

allowed to move to different nodes and is therefore able to retain control of the nodes in the 

network fairly well.  

Case 2 (manuf-familiarity-reverse): 

For the real network manuf-familiarity-reverse, 𝑁 = |𝑀| = 77, therefore, a perfect 

matching is found and 𝑁𝐶 = 1. However, in this situation, the single control links itself to each 

bud in the cacti via a distinguished edge, therefore there are 12 nodes driven by the one control. 

Despite having only a single control, the controllability of the network degrades in the fixed 

controls case in a manner similar to that of the free controls case. This is due to the fact that, after 

an attack, the new maximum matching of the network readily finds new cycles to control many 

of the nodes, and because the control is not permanently attached to a single node as is the case 

with a stem, it can re-attach itself to the new-found cycle and thereby retain control over much of 
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network very effectively. This gives the impression that the control “moves” as it constantly re-

attaches distinguished edges to new cycles each attack iteration. Therefore, there is little 

difference between the degradation of control for fixed or free controls. 

The apparent “movement” of a single control’s distinguished edges to different cycles 

after an attack can shed light on a possible explanation for why low density networks with free 

controls have reduced sensitivity to the high betweenness centrality edge attack. Despite not 

having the assistance of high density to reduce the betweenness attack’s effectiveness, allowing 

the controls of low density networks to freely move, gives these controls a chance to find new 

stems and cycles inside the community structure of the real networks. Therefore, as the 

betweenness attack progresses, focusing on edges between the communities, the cacti control 

structure is not affected as much by the attack and therefore the degradation of the networks 

controllability is slower. 
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CHAPTER 5 

CONCLUSION 

In conclusion, it was found for many real networks, the controllability of the network was 

effective very differently by certain attacks than for synthetic networks. This was most apparent 

in how the betweenness edge attack became less effective, after a certain number of edges were 

removed, than the in-out attack for many networks, showing that only local properties of the 

node are necessary for the most potent attack to be applied. This behavior was noted to have a 

possible relationship with both the density and the community structure of the network. In 

addition, for a substantial number of networks, attacks other than betweenness and in-out where 

mostly ineffective or had low effectiveness at reducing control, especially for those graphs with 

high density. Lastly, it was noted that the effectiveness of the betweenness attack suffered 

substantially more than other attacks when controls were set to be free rather than fixed. This 

behavior was most clearly showcased by networks with high density, who in many cases lost all 

controllability after only a few iterations of the betweenness edge attack, highlighting their 

vulnerability to these attacks. 
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APPENDIX A 

 

NETWORK ATTACK RESULT FIGURES 

 

 

 

 

Neural Graphs (top to bottom): celegans, cocomac, mac95, macaque71. 
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Transcription Graphs (top to bottom): ecoli, yeast.  

 

 

Infrastructure Graphs (top to bottom): openflights1, opsahl-openflights. 
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Intra-Organizational Graphs (top to bottom): cons-frequency-reverse, cons-quality-reverse, 

manuf-famliarity-reverse, manuf-frequency-reverse, physician-friend-reverse. 
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Online Communication Graphs (top to bottom): dnc-emails, email-Eu-core, polblogs-

reverse, one_mode_char, one_mode_message. 
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Social Influence Graphs (top to bottom): physician-advice-reverse, physician-discuss-

reverse, teacher-student. 
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Social Graphs (top to bottom): freeman1, freeman2, freeman3, physician-friend-reverse, 

prison, social1inter_st, social3inter_st. 
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Protein Structure Graphs (top to bottom): ps1, ps2, ps3. 
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Trophic Graphs (top to bottom): foodweb-baydry, foodweb-baywet, maayan-foodweb.  
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Animal Dominance Graphs (top to bottom): bison, cattle, macaque_dominance, 

sheep_dominance, hen_dominance. 
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Metabolic Graphs (top to bottom): figeys, protein_stelzl. 

 

 

 

Electrical Graphs (top to bottom): s208, s420, s838. 
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APPENDIX B 

 

NETWORK DATA INFORMATION 

 

Infrastructure networks: This includes a graph of US airports where nodes are the airports and 

edges are flights and the openflights network, a graph of two non-US based airports. Data and 

more information is found at:  http://toreopsahl.com/datasets. 

 

C. Elegans: This is a graph of the Caenorhabitic elegans worm’s neural network. Neurons are 

the nodes and edges represent a synapse or gap junction between the neurons [8]. Data Source: 

http://toreopsahl.com/datasets. 

 

E-coli: This network contains information describing the transcription regulation for E. coli 

encoding 577 interactions between 116 transcription factors and 419 operons [8]. Data Source: 

http://www.weizmann.ac.il/mcb/UriAlon/. 

 

Yeast: This network describes the interaction in the yeast transcription network [8]. Data Source: 

http://www.weizmann.ac.il/mcb/UriAlon/. 

 

Macaque-Neural networks: This is a collection of three networks describing the structural 

cortical connectivity in Macaque monkeys [8]. The data sources are: CoCoMac: 

http://cocomac.g-node.org/, Mac-95: https://sites.google.com/site/bctnet/datasets, Macaque-71: 

http://www.biological-networks.org/. 

 

Email-Eu: The network is made from email data from a large European research institution [8]. 

Data Source: http://snap.stanford.edu/data/ 

 

DNC Emails: This network was made from email data from the Democratic National 

Committee. More information and data can be found here: http://konect.uni-

koblenz.de/networks/. 

 

Physician networks: These three networks describe relationships and interactions between 

physicians in four towns in Illinois [8]. Data Source: http://moreno.ss.uci.edu/data.html. 

 

Political Blog: This network is created from political blog data on US politics in 2015 [8]. Data 

Source: http://www-personal.umich.edu/~mejn/netdata/ 

 

Electronic Circuits networks: These graphs describe electric circuits. Data Source: 

http://www.boseinst.ernet.in/soumen/Network_Controllability_Datasets.html 

 

Trophic networks: These networks describe the animal food webs of the Florida ecosystem dry 

area and wet area, as well as in Little Rock Lake, Wisconsin. More information and data can be 

found here: http://konect.uni-koblenz.de/networks/. 

http://toreopsahl.com/datasets
http://toreopsahl.com/datasets
http://www.weizmann.ac.il/mcb/UriAlon/
http://www.weizmann.ac.il/mcb/UriAlon/
http://cocomac.g-node.org/
https://sites.google.com/site/bctnet/datasets
http://www.biological-networks.org/
http://snap.stanford.edu/data/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
http://moreno.ss.uci.edu/data.html
http://www-personal.umich.edu/~mejn/netdata/
http://www.boseinst.ernet.in/soumen/Network_Controllability_Datasets.html
http://konect.uni-koblenz.de/networks/
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Animal Dominance networks: These networks describe the dominance behavior of various 

animals. A node from the source to a target represents the dominance of the source over the 

target. More information and data can be found here: http://konect.uni-koblenz.de/networks/. 

 

Teacher-Student: This networks described the relationship between teachers and students of the 

founding members of the International Network for Social Network Analysis. Data Source: 

http://moreno.ss.uci.edu/data.html. 

 

Metabolic networks: These networks represent interacting pairs of human proteins. More 

information and data can be found here: http://konect.uni-koblenz.de/networks/. 

 

Intra-organizational networks: These are four networks that describe relationships between 

employees of a consulting company and a research company [8]. Data Source: 

http://toreopsahl.com/datasets. 

 

Protein Structure networks: Data Source: 

http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks 

 

Social Interaction networks (social1inter, social3inter): The are social networks that capture 

positive sentiment. Data Source: http://www.weizmann.ac.il/mcb/UriAlon/download/collection-

complex-networks 

 

Freeman networks: These networks are made from data describing relationships between 

researchers. Data and more information is found at:  http://toreopsahl.com/datasets. 

 

UC Irvine Messaging (one_mode_message, one_mode_char): These two networks are created 

from messaging data between UC Irvine students on a online platform similar to Facebook [8]. 

Data Source: http://toreopsahl.com/datasets. 

 

 

 

 

 

 

  

http://konect.uni-koblenz.de/networks/
http://moreno.ss.uci.edu/data.html
http://konect.uni-koblenz.de/networks/
http://toreopsahl.com/datasets
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://toreopsahl.com/datasets
http://toreopsahl.com/datasets
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