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Fundamental limitations of hot-carrier solar cells
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(Received 17 June 2012; revised manuscript received 29 September 2012; published 22 October 2012)

Sunlight-generated hot-carrier transport in strongly absorbing direct band-gap GaAs—among the most optimal
of semiconductors for high-efficiency solar cells—is simulated with an accurate full-band structure self-consistent
Monte Carlo method, including short- and long-range Coulomb interaction, impact ionization, and optical and
acoustic phonon scattering. We consider an ultrapure 100-nm-thick intrinsic GaAs absorber layer designed with
quasiballistic carrier transport that achieves complete photon absorption down to the band edge by application
of careful light trapping and that has a generous hot-carrier retention time of 10 ps prior to the onset of carrier
relaxation. We find that hot-carrier solar cells can be severely limited in performance due to the substantially
reduced current density caused by insufficient extraction of the widely distributed hot electrons (holes) through
the requisite energy selective contacts.

DOI: 10.1103/PhysRevB.86.165206 PACS number(s): 88.40.hj

I. INTRODUCTION

When a photon with energy h̄ω � Eg is first absorbed by
a semiconductor (with energy band gap Eg), the immediate
aftermath is the photogeneration of an electron-hole pair. The
term hot carrier refers to the fact that prior to any scattering
with lattice phonons, a photoexcited electron (hole) with
energy h̄ω > Eg has energy in excess of the band gap and thus
is considered to be “hot”. After multiple scattering events with
phonons, the hot electron (hole) gives up its excess energy as
heat by relaxing to the fundamental conduction (valence) band
edge. This process represents waste in the context of a solar
cell. For example, considering a single p–n junction Si solar
cell (Eg = 1.12 eV) with a detailed balance-limiting power
conversion efficiency of 33.4% under the standard ASTM
G173-03 global air mass 1.5 (AM1.5G) solar spectrum1 at
298 K, relaxation losses are substantial at 47.4% (with the
remaining 19.2% from the lack of absorption of sub-band-gap
photons). Therefore, in the spirit of finding ways to reduce
this substantial relaxation loss component, the concept of a
hot-carrier solar cell (HCSC) emerges.

HCSCs are a class of solar photovoltaic energy conversion
device proposed in 1982 by Ross and Nozik2 that aim to
collect and do work from photogenerated hot carriers3 prior
to relaxation to the band edges. To avoid relaxation, carrier
interaction (scattering) with phonons should be suppressed.
There has been some discussion that a phonon bottleneck
effect could help to temporarily suppress carrier relaxation by
potentially reheating the hot-electron gas.4 Recently, however,
from simulation of hot carriers in GaAs quantum wells under
concentrated sunlight, it appears that hot phonons may not add
any meaningful benefit,5 while the use of confined structures
(e.g., quantum dot arrays and superlattices) faces the opposite
requirement of achieving strong confinement—required to
minimize the density of final electron and phonon states
available (phonon bottleneck) for unwanted dissipative
collisions—while allowing efficient generation and collection
of the carriers. Moreover, so far none of the attempts to
fabricate HCSC, including those designs with nanostructures
and hot phonons, has yielded notable performance despite the
promise of efficiency exceeding6 conventional solar cells that
operate with relaxed charge carriers.

II. ENERGY SELECTIVE CONTACTS

In order to collect the hot carriers, it becomes necessary
to use energy selective contacts (ESC) to allow for isentropic
extraction of the hot carriers prior to relaxation. Suggested
ESC architectures include quantum dot or atomic impurity
structures7 that for analytical purposes may be approximated
by the common double-barrier resonant tunnel diode (RTD).
Energy selectivity in this sense is defined by

�E < kBT , (1)

where �E is the width of the resonant tunneling level, kB

is Boltzmann’s constant, and T is the lattice temperature. A
schematic outlining the basic elements of a HCSC is shown in
Fig. 1.

III. HOT-CARRIER DISTRIBUTION

Due to the polychromatic nature of sunlight, the photogen-
erated hot electrons in a HCSC semiconductor will be widely
distributed in the conduction bands as shown in Fig. 2.

The widely dispersed hot electrons would have to be
redistributed into a well-ordered state such that (1) they
would all occupy a discrete energy level corresponding to the
hot-electron ESC and (2) have a tight momentum distribution
directing them into the ESC—this alone would be important
because quasiballistic transport would become necessary to
deliver the hot electrons expeditiously to the discrete resonant
tunneling level of the ESC prior to the onset of relaxation.

IV. RESONANT TUNNELING LEVEL

An ESC in the form of a RTD, meanwhile, is sensitive to
the precise tunneling energy level. There is a sharp Lorentzian
distribution8 that underscores that an off-resonant condition
leads to a dramatic decrease in peak tunneling current density.

By examining the tunneling transmission probability, T (E),
we can see this Lorentzian form

T (E) ≈ �2
n/4

�2
n/4 + (E − En)2

, (2)
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FIG. 1. (Color online) Schematic of a HCSC. Quasiballistic
charge carrier transport must dominate and override charge carrier
relaxation for proper HCSC operation. Hot electrons (holes) are
extracted through the narrow ESC with width given by �E. Carriers
that are not resonant with their respective ESC tunneling levels cannot
be collected because they are repelled by the barriers represented by
the shaded regions.

where �n is the full width at half maximum (FWHM) of the
discrete resonant energy level, En (and noting that En is the
resonant tunneling level of our hot-electron ESC). In the case
of a double-barrier RTD, �n is given by

�n =
√

2h̄2EnT
2

1

m∗b2R1
, (3)

where T1 is the transmission coefficient of a single symmetric
barrier, R1 is the reflection coefficient of a single symmetric

−
−

−
−

−
−
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FIG. 2. (Color online) AM1.5G spectrum-generated hot-electron
(hole) distribution shown in the upper (lower) shaded regions
juxtaposed on a two-dimensional representation of the GaAs band
structure, including a hot-electron ESC centered at 1.94 eV (horizon-
tal line). The ESC has minimal, discrete interaction with the totality of
conduction bands over which photogenerated hot electrons exist. Hot
electrons above and below the ESC would have to be redistributed to
it in order to be collected.

barrier, m∗ is the electron effective mass, b is the width of the
quantum well, and h̄ is reduced Planck’s constant. Therefore,
any minor perturbation off of En (such as that caused by
unavoidable interface roughness scattering) leads to a steep
reduction in the peak tunneling current density on account of
the reduced tunneling transmission probability.

V. HOT-CARRIER ENTROPY AND MOMENTUM

We know that ideal gases have entropy described by S =
kB log �, where � is the density of micro-states corresponding
to the macro-state for which S is defined. The entropy of
electrons (treated as an ideal gas to first order) in the conduction
bands of a semiconductor may be expressed through the
Sackur-Tetrode relationship (including Fermion spin) as

S = kBNe

(
5

2
+ ln

Nc

ne

)
, (4)

where Ne is the number of electrons, ne is their concentration,
and Nc = 2(2πm∗kBT /h2)3/2 is the effective density of
conduction band states.9 Density of states will become an
important topic later in this Article.

Furthermore, we know that just like the collision and
scattering of gas molecules in a container, electrons in
the conduction bands of a semiconductor also collide and
scatter (e.g., with phonons or with each other)—consequently
disorder (randomness) results. We will consider entropy, then,
to be a measure of this disorder.10 We know that it is improbable
that hot electrons photogenerated as a result of absorption
of polychromatic sunlight in a HCSC operating out in the
field would be able to scatter (a disorderly process) into a
well-behaved state such that they have a singular, discrete
energy level required to ensure resonant tunneling at the
discrete ESC.

In addition to the consideration of carrier energy, we can
also take into consideration carrier momentum. Here, we may
employ the integral path formalism of Boltzmann’s transport
equation developed by Chambers11 and Budd,12 which gives
us a distribution function for scattered hot electrons

f (p) =
∫

dp′f (p′)K(p′,p);

K(p′,p) =
∫ ∞

0
dsW (p′,p − eFs)

× exp

[
−

∫ s

0
ds ′τ−1(p − eFs ′)

]
, (5)

where K(p′,p) is the scattering (collision) kernel, τ−1(p) =∫
dp′W (p,p′), p is the momentum, W (p,p′) is the transition

rate between p and p′ as a result of collisions, e is the electronic
charge, s is time, and F is the (uniform) electric field. We see
that the hot electrons are described, again, as a distribution
and thus cannot all be found with a singular fixed and uniform
momentum.

In purely ideal electron-electron scattering, momentum
is conserved but this does not imply that the direction of
travel of the scattered electrons remains the same precollision
versus postcollision. Conventional p–n junction solar cells
are immune to randomization of carrier momentum because
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the relaxed carriers diffuse (and drift) toward their respective
electrodes. If the thickness of the absorber layer is designed to
be less than the minority-carrier diffusion length, carriers may
be effectively collected. In other words, in conventional solar
cells operating under the drift-diffusion approximation, the
Einstein relation given by D = μ(kBT /e) is valid; this relation,
however, is not valid for HCSC, where the temperature of the
electrons is much greater than the lattice temperature.

As we cannot rely on diffusive charge carrier transport in
HCSC, the hot electrons must undergo quasiballistic transport
directly to the resonant tunneling level of the ESC as mentioned
earlier. Therefore, revisiting Fig. 2 which, thematically, may
be considered generic across semiconductors used for solar
cells (e.g., Si, InP, GaAs) and once again thinking in terms of
the distribution physics of electrons, we find all of these clues
lead us to the fact that hot electrons cannot be redistributed
to a singular energy level with a fixed and unified momentum
vector. Importantly, at first order, the aforementioned semicon-
ductors have, qualitatively speaking, quite similar electronic
density of states (DoS), and therefore, we can only expect hot
electrons to behave in a similar fashion. Even if we assume that
the photogenerated hot electrons have become redistributed
through impact ionization and Auger recombination together
with electron-electron (and no electron-phonon) scattering
to an equilibrium distribution at high temperature,13 then
Boltzmann’s H theorem tells us that as the system approaches
this hot equilibrium the entropy must increase.10 Therefore,
if entropy (disorder) increases, it would be counterintuitive to
imagine that hot electrons would end up in an ordered state
with a discrete energy and fixed momentum as this implies
a reduction in entropy and an apparent violation of the H

theorem.

VI. COMPUTATIONAL MODELING, INCLUDING MONTE
CARLO SIMULATION

First used in 1966 by Kurosawa for modeling hot-carrier
transport,14 we also employ a Monte Carlo simulation program
but in this case similar to a self-consistent ensemble Monte
Carlo simulation plus Poisson solver developed by Fischetti
and Laux at IBM,15 with full (and accurate) band structure
capability. To be clear, full-band Monte Carlo simulations
were developed, in their own right, initially by Shichijo and
Hess.16 Below, we outline the basic aspects of our Monte Carlo
simulation. We have neglected carrier-impurity scattering
by operating under the assumption that our HCSC will be
nominally undoped and of high crystal quality (e.g., grown
under the conditions of an ultrahigh vacuum epitaxial growth
technique such as molecular beam epitaxy).

A. Band structure

For our simulations we use the empirical nonlocal
pseudopotential method following that of Chelikowsky and
Cohen17 to obtain an accurate and full band structure (con-
duction and valence bands) for GaAs, including spin-orbit
splitting to optimally model the valence bands. We use the 0-K
GaAs band structure (represented in standard two-dimensional
format in Fig. 2) in our analysis and Monte Carlo carrier
relaxation simulations rather than incorporate correction for

temperature (as a reminder, Eg,GaAs = 1.42 at 300 K). We
expect the physics of hot-carrier scattering and distribution to
be the same regardless of whether the 0- or 300-K GaAs band
structure is used.

We now write down, using an expansion over Bloch waves,
the Schrödinger-type equation in order to get the electron wave
functions

ψ(r) = 1

(N�c)1/2

∑
k

eik·r ∑
G

uG(k)eiG·r, (6)

where �c is the volume of the cell, r is location, k are the
wave vectors, G are the reciprocal-lattice wave vectors, and
uG(k) are the Bloch functions. We can then solve the following
eigenvalue problem required to calculate the (GaAs) electronic
bands from ∑

G′<Gmax

HGG′(k)uG′(k) = E(k)uG(k), (7)

where we consider the cutoff, Gmax, noting that we only
account for Bloch waves according to

h̄2

2m
(k + G)2 � Ecutoff . (8)

Our Hamiltonian can be expressed as

HGG′(k) = h̄2

2m
(k + G)2 + Vlocal(G − G′)

+ 8π

�c

∑
l=0,2

∑
s=1,2

As
l (2l + 1)Pl(cos θKK′)

× Ss(G − G′)F s
l (K,K′) + H

spin orbit
GG′ (K,K′), (9)

where the local form factors are given by

Vlocal = Vs cos(G · t) + iVA sin(G · t), (10)

and VS and VA are the symmetric and antisymmetric form
factors, respectively, whereas t is the vector a/8 × (1,1,1).
Meanwhile, As

l is the energy dependent l-well depth for
ion s, Pl are the Legendre polynomials, Ss is the atomic
structure factor for ion s, F s

l are the nonlocal well functions,
and K = k + G, while K′ = k + G′. The final term in
Eq. (9) is the spin-orbit Hamiltonian, H

spin orbit
GG′ (K,K′) =

(K × K′) · σ {−iλS cos[(G − G′) · t] + λA sin[(G − G′) · t]},
where λS = 1/2(λ1 + λ2), λA = 1/2(λ1 − λ2),
λ1 = μB1(K)B1(K′), λ2 = (μ2/μ1)B2(K)B2(K′),
Bn(K) = β

∫ ∞
0 jl(Kr)R(r)r2dr , and σ are the Pauli

spin states, μ is an empirical parameter, while μ1(2) are
the outermost p-type orbital spin-orbit energies, β is a
normalization constant, jl are the spherical Bessel functions,
and R is the radial component of the core wave function.17

For our simulations, we use empirical pseudopotential
form factors from Fischetti,18 which, in turn, represent
minor modification from the original form factors given by
Chelikowsky and Cohen.17

B. Interpolation

In our program, the band structure (the five lowest-lying
conduction bands plus four highest-lying valence bands) and
the hot-carrier scattering events are calculated in the first
octant of the Brillouin zone (taking advantage of the inherent
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symmetry of zinc-blende GaAs). We discretize the octant into
a total of 5775 cubes (20 points along the � to X line) each of
which has sides of dimension given by Dk = 0.05 × (2π/a)
where a is the lattice constant of GaAs (∼5.653 Å).15 An
electron (hole) in band n with wave vector k is mapped into
the first octant. We store the sign transformations required
to map a k-point into this first octant because they will be
used to allow us to then convert the group velocity back to
the original point outside the first octant (i.e., taking into
consideration the entire Brillouin zone). A direct interpolation
process is used in order to integrate the equations of motion
for carrier free flight. We briefly interrupt, here, to write down
the aforementioned equations of motion for carrier free flight
given by

dr
dt

= 1

h̄
∇kE(k), (11)

dk
dt

= e

h̄
∇rϕ(r) = −eF(r)

h̄
, (12)

where ϕ(r) is the electrostatic potential. Then, we come back
and express carrier energy as

En(k) =
8∑

β=1

wβEβn(k), (13)

and carrier group velocity15 as

vi,n(k) = ae

2πh̄

8∑
β=1

wβvi,βn(k), (14)

where we take into consideration that the index β spans the
eight vertices of a cube and wβ are the weights. Then, the
weights15 are given by

wβ =
[

1 − kx − kx,β

�

] [
1 − ky − ky,β

�

] [
1 − kz − kz,β

�

]
,

(15)

where � = 0.05 × (2π/a). Finally, around each vertex we
perform the linear interpolation for the carrier energy and
velocity from the following,

Eβn(k) = Eβn +
∑

i=x,y,z

(ki − kiβ)∂iEβn

+ 1

2

∑
i,j=x,y,z

(ki − kiβ)(kj − kjβ)∂2
ijEβn, (16)

vi,βn(k) = ∂iEβn +
∑

j=x,y,z

(kj − kjβ)∂2
ijEβn. (17)

Next, for actual carrier scattering and in order to select the
postcollision final state of the carrier, we need to use an inverse
interpolation scheme as listed below. For this process, we note
here that the first octant of the Brillouin zone is discretized as
a course mesh of 108 cubes with a dimension Dq = 4Dk =
0.2 × (2π/a) and then for each of these a fine mesh of 512
cubes with a dimension dq = Dq/8 = 0.025 × (2π/a).

C. Hot-carrier transport

With the Monte Carlo simulation and self-consistent Pois-
son solver,19 we can examine how the hot electrons (holes)
move in the bands; to do this we need to simultaneously

solve the Boltzmann transport and Poisson equations. First,
the Boltzmann transport equation is given by

∂f (k,r,t)
∂t

= −dk
dt

· ∇kf (k,r,t) − dr
dt

· ∇rf (k,r,t)

+
(

∂f (k,r,t)
∂t

)
coll

, (18)

where f (k,r,t) is the carrier distribution function at reciprocal
space point k and real space point r, while the collision term
is given by(

∂f (k,r,t)
∂t

)
coll

=
∑

k′

∫
dk′

(2π )3
W (k,k′)f (k′) [1 − f (k)]

−
∑

k′

∫
dk′

(2π )3
W (k′,k)f (k)[1 − f (k′)],

(19)

where W (k′,k) is the scattering rate for the transition given by
k → k′. Second, the Poisson equation is given by

∇ · [ε(r)∇ϕ(r,t)] = −ρ(r,t), (20)

where ε(r) is the static dielectric permittivity as a function of
position and ρ(r,t) is the free carrier charge density given by

ρ(r,t) = 2e
∑

(valence)

∫
dk

(2π )3
f (k,r,t)

− 2e
∑

(conduction)

∫
dk

(2π )3
f (k,r,t). (21)

The Boltzmann transport and Poisson equations are coupled
by the previous expressions for carrier free flight given by
Eqs. (11) and (12).

D. DoS and photon absorption rate

In order to calculate the electronic DoS—crucial to the
calculation of photon absorption as well as hot-carrier scat-
tering processes—we use an algorithm originally developed
in 1966 by Gilat and Raubenheimer (GR). This algorithm,
involving discretization of the bands into tiny cubes, allows
for the DoS to be determined for a given energy and location
of a wave vector k by approximating the equivalent energy
surfaces within the cubes by a set of parallel planes.20 We will
later use the notation S(GR) for the DoS calculated via the GR
algorithm and g(E) for the DoS at energy E.

Once we have calculated an accurate electronic DoS
using the Gilat and Raubenheimer algorithm, we can then
proceed to calculate the photon absorption rate. For this,
we actually must consider the joint electronic DoS. This is
shown in the following expression,21 from Fermi’s golden rule
approximation (with the dipole approximation), for the photon
absorption rate given by

Iabs(h̄ω) = πe2

m2ε∞ω

∑
v,c

∫
dk

(2π )3
|a · 〈kc |p̂| kv〉|2

× δ
(
Ec

k − Ev
k − h̄ω

)
, (22)

where 〈kc| and |kv〉 are the conduction and valence band Bloch
states respectively, a is the polarization vector (whose effect
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FIG. 3. (Color online) Calculated joint electronic DoS of GaAs.
The cutoff at ∼4.43 eV (λ = 280 nm) corresponds to the ceiling of
the AM1.5G reference solar spectrum.

is averaged to a value of 1/3 for incoherent sunlight), p is
the electron momentum, ω is the photon frequency, ε∞ is the
high-frequency permittivity, and the final term accounts for
the joint electronic DoS. We show a plot of the calculated joint
DoS in Fig. 3.

E. Short- and long-range Coulomb scattering

From Fermi’s golden rule approximation (with the first
Born approximation for a dilute electron gas), we can eval-
uate the short-range carrier-carrier scattering rate between a
primary carrier and partner carrier22 from

1

τee(k,r,n)
= 2π

h̄

∑
k′,p

∫
dp

(2π )3
f (p,r,m)

×
∫

dk′

(2π )3
|Mee(k′n′,kn; p′m′,pm)|2

× δ[En(k) + Em(p) − En′ (k′) − Em′ (p′)], (23)

where k(k′) represent the quasimomentum of the initial (final)
state primary carrier (in band n) and p(p′) represent the
quasimomentum of the initial (final) state partner carrier
(in band m) with which a scattering collision occurred.
The Coulomb matrix element, considering singlet and triplet
states,22 is given by

|Mee|2 = 1
4 |Md + Mx |2 + 3

4 |Md − Mx |2
= |Md |2 + |Mx |2 − 1

2 |M∗
d Mx + MdM

∗
x |, (24)

where the final exchange term is for the purpose of cross-
section depression, when k − p � β, and Md is the matrix
element for the direct process

Md = e2

εs

�(k′n′,kn)�(p′m′,pm)

|k − k′ + G|2 + β2(qd,ωd )
, (25)

where � are the overlap factors between the Bloch states given
by

�(k′n′,kn) = 1

�c

∫
cell

druk′n′(r)∗ukn(r)eiG·r, (26)

and β(q,ω) is the dynamic screening parameter given by
β(q,ω) ≈ q[ε(q,ω)/εs − 1]1/2, with εs the static dielectric
permittivity (∼12.9 for GaAs). The dynamic screening pa-
rameter, β(q,ω), is evaluated at qd = |k − k′ + G| and at
qx = |k − p′ + G|. Meanwhile, Mx is the matrix element for
the exchange process

Mx = e2

εs

�(k′n′,pm)�(p′m′,kn)

|k − p′ + G|2 + β2(qx,ωx)
. (27)

From momentum conservation, we have p′ = k + p − k′.
Now, within a Thomas-Fermi screening radius, a nearby

partner carrier is selected22 during the Monte Carlo simulation;
this can be thought of as a statistical sampling of the carrier
distribution, which is normalized to the carrier density as
expressed by

n(r) = 2
∑
m

∫
dp

(2π )3
f (p,r,m). (28)

We then need to consider a fictitious self-scattering process
in terms of a self-scattering rate expressed by

1

τ self
ee (k,r,n)

= πe3n(r)

2h̄ε2
s a

3
h(y±,s)

∑
G,γ

S(GR)

{
1

[|k − kγ + G|2 + β(qd,ωd )2]2
+ 1

[|p − kγ + G|2 + β(qx,ωx)2]2

− η
1

|k − kγ + G|2 + β(qd,ωd )2

1

|p − kγ + G|2 + β(qx,ωx)2

}
, (29)

where S(GR) is the previously described electronic DoS
calculated from the Gilat and Raubenheimer algorithm20

and h(y±,s) is the phase-shift correction from Meyer and
Bartoli.23 The final term on the right-hand side of Eq. (29)
is not included when electron-hole (distinguishable) collisions
occur. The collision rate must be divided by two to prevent
double counting as explained by Mošková and Moško.24 The
reasoning behind this self-scattering process protocol is so that
we may either accept or reject a carrier-carrier collision with a

probability given by the overlap factor during the Monte Carlo
simulation.

Long-range Coulomb interaction (electron-plasmon) is
already accounted for in our Monte Carlo simulation rou-
tine; carriers are already coupled at long range, and the
self-consistent nature of our Monte Carlo-Poisson solver
step handles, at least in a semiclassical way, long-range
carrier-carrier and carrier-plasmon scattering. The Poisson-
solving step, therefore, is set to a frequency equal to or greater
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TABLE I. Acoustic and optical deformation potentials for GaAs.

Conduction Conduction Conduction Conduction
band band band band Valence Valence

acoustic acoustic optical optical band band
intraband 1 interband and intrahigh bands intraband 1 interband and intrahigh bands acoustic optical

(eV) (eV) (108 eV/cm) (108 eV/cm) (eV) (108 eV/cm)

5.0 3.5 2.1 1.5 6.3 11.3

than the electron gas plasma frequency denoted by

ωplasma =
√

ne2

mcεs

, (30)

where n is carrier density and mc is the conductivity mass.

F. Electron-phonon scattering

Besides a scenario in which it is has been proposed
that hot phonons (operating in the context of a phonon
bottleneck effect) may help reheat the hot-electron gas, it is
typically understood that electron-phonon scattering would
not be fruitful for a HCSC due to the rampant onset of
carrier relaxation. However, in order to simulate the effect
of electron-phonon scattering (typically the polar longitudinal
optical or LO phonons in GaAs at lower energies near the �

valley and acoustic phonons at higher energies) on hot-carrier
distribution, we include electron-phonon scattering22 as part of
our simulation. From Fermi’s golden rule approximation (with
the harmonic, adiabatic, and weak-coupling approximations),
an expression for electron-phonon scattering rate is given by

1

τep(k)
= 2π

h̄

∑
q

|Mep(k′,k)|2δ[E(k) − E(k′) ∓ h̄ωqη],

(31)

where the upper (lower) signs correspond to phonon emission
(absorption). The polar phonon scattering Fröhlich matrix
element18 is

|Mep(k′,k)|2 = e2h̄ωLO

4q2

(
1

ε∞
− 1

εs

)
|�(k′,k)|2

× (nphonon + 1/2 ± 1/2), (32)

and nphonon is the phonon occupation number. The nonpolar
scattering matrix element18 (where ρ is the density of the
semiconductor) is given by

|Mep(k′,k)|2 = h̄

2ρωqη

�2
η|�(k′,k)|2(nphonon + 1/2 ± 1/2).

(33)

We use the following approximations15 for the electron-
phonon matrix element given by

�η(k′,k) = q�ac
(34)

�η(k′,k) = (DtK)op,

and the following approximations15 for acoustic phonon
dispersion given by

h̄ωqη = h̄ωη,max [1 − cos (qa/4)]1/2 ; (q < 2π/a)
(35)

h̄ωqη = h̄ωη,max; (q � 2π/a) ,

where ωη,max = 4cη/a and cη is the velocity of sound with
polarization η.

The acoustic and optical deformation potentials are shown
in Table I.18,25

In our simulation, the electron-phonon scattering—taking
into consideration the all-important electronic DoS again—is
calculated from

1

τep(k,n)
= 2π

h̄ea3

∑
βn

∣∣Mep(k′,k)
∣∣2

S(GR),βn, (36)

where we sum over cubes considering Eβn, min < En(k) ±
h̄ωqβn � Eβn, max.

G. Impact ionization

As mentioned earlier, Würfel pointed out that impact
ionization should be taken into consideration for hot-carrier
redistribution in HCSC,13 something that was not considered
in the earlier analysis by Ross and Nozik.2 Therefore, we
include Monte Carlo simulation of impact ionization. We
use the random-k approximation (i.e., ignoring momentum
conservation and instead considering the importance of the
joint DoS) as explained in 1967 by Kane,26 which is valid
for both electrons and holes in GaAs, and write down an
expression for the scattering rate

1

τii(E)
= 2π

h̄

�c

8
〈M2〉

∫ E−Eg

0
dEc

∫ E−Eg−Ec

0
dEvgc(Ec)

× gv(Ev)gc(E − Eg − Ec − Ev), (37)

where we assume that the Coulomb matrix element is constant
or equivalent to its average value over all of the k-points
in the entire Brillouin zone as expressed by the following
relationship,

〈M2〉 ≈ e4a4

(2π )4ε2
s

κ2, (38)

where κ is a number of order of 1. We then fit the impact
ionization rate to a power-law sum

1

τii(E)
=

2∑
r=1

Ar (E − Er )br , (39)

with fitting parameters provided in Table II.25,27
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TABLE II. Impact ionization fitting parameters for GaAs.

A1 E1 A2 E2

(s−1 eV−b) (eV) b1 (s−1 eV−b) (eV) b2

Electrons 1.95 × 108 1.51 3.0 2.64 × 1011 1.80 6.5
Holes 3.41 × 1010 1.51 3.0 2.80 × 1012 1.90 4.5

VII. SIMULATION RESULTS AND DISCUSSION

It is our intent to consider a “best case” scenario. However,
given the uncertainty regarding the exact implementation of
HCSC, we consider two different cases. In both cases the
solar cell is taken to be based on bulk GaAs, albeit only
100 nm thick and thus technically within the realm defined
as “nanotechnology,” under AM1.5G solar illumination at
1000 × solar concentration. In Case 1 we consider the
minimum possible density of thermal electrons outside the
collection energy window of a selective contact (e.g., resonant
tunneling diode or superlattice) by assuming that carriers
optically generated and relaxing at energies outside the energy
window will “somehow” be removed efficiently at the same
rate (assumed to be a “generous” 10 ps) at which point
hot-carriers will be removed by the ESC before relaxation.
The opposite more realistic scenario in which thermalized
carriers will be removed only via thermal recombination with
a lifetime of 10 ns will be considered in Case 2 in order to
assess the effect of Coulomb interparticle collisions in relaxing
the photogenerated carriers at a realistically higher carrier
density.

A. Case 1

For a GaAs (1.48 eV band gap at 0 K) HCSC with 100 nm
thickness (for consideration of quasiballistic transport and hot-
carrier extraction), substantial 1000 × solar concentration, and
artificially long (and, as stated before, overly generous) hot-
carrier retention time (time before relaxation sets in) of 10 ps,
we find after running our Monte Carlo simulation that carrier-
carrier (Coulomb) scattering is not significant at the 1.85 ×
1014 cm−3 carrier density, nhc, involved here as determined6

from

nhc = ϕhcτhcC

dabsorb
, (40)

where ϕhc is the AM1.5G photogenerated hot-carrier flux
(1.85 × 1017 cm−2 s−1, assuming one absorbed photon gener-
ates one electron-hole pair), τhc is the hot-carrier retention time
(10 ps), dabsorb is the HCSC absorber layer thickness (100 nm),
and C is the solar concentration ratio (1000). Similarly, upon
running our Monte Carlo simulation, we find that impact
ionization is ineffective. As mentioned earlier, we assume
scattering due to ionized impurities to be negligible due to the
intrinsic (undoped) nature of the hot-carrier absorber. Thus,
the only relevant scattering mechanism is due to optical and
acoustic phonons. Typically, interparticle Coulomb scattering
and impact ionization scattering are not dominant processes
below ∼1018 cm−3 carrier density. Therefore, even if carrier
retention time was increased to 100 ps and solar concentration

increased to 10 000 × , then the carrier density would only
increase to 1016cm−3.

The aforementioned carrier retention time may be thought
of as the effective carrier lifetime in the special case of the
HCSC as the traditional concept of a minority-carrier lifetime
(i.e., minority charge carriers operating under a fully relaxed
diffusive transport regime) does not apply here. Historically, it
has often been quoted in the literature that the minority electron
lifetime for GaAs is of the order of 1–10 ns.28,29 For high-
quality epitaxially grown GaAs (minimal bulk defects) with
wide band-gap lattice-matched AlxGa1−xAs or Ga0.52In0.48P
passivation layers (for minimal surface recombination), it is
assumed that radiative recombination drives the minority-
carrier lifetime. However, by the time 1–10 ns has passed,
the charge carriers have long since fully relaxed to their
respective fundamental band edges due to the inevitable
interaction with lattice phonons (as shown later in Fig. 7),
and absent of nonradiative recombination, they are then prone
to band-to-band (i.e., radiative) recombination. For successful
operation of a HCSC, the charge carriers would clearly
have to be extracted through their respective ESC before
both relaxation and radiative recombination occur; otherwise,
the endeavor to achieve a higher voltage through selective
extraction of the hot, higher energy carriers would be a
failure.

Recycled photons (due to light trapping) can radiatively
recombine resulting in approximate band-gap energy lumines-
cence, which upon reabsorption leads to approximate band-gap
energy electron-hole pairs. However, these carriers are not hot
and thus are not useful for a HCSC (i.e., the near-band-edge
carriers will have energy less than the ESC). Moreover, these
approximate band-gap energy carriers cannot be effectively
extracted out as useful photocurrent as they will be impeded by
the barrier layers that comprise the selective contact structures
shown in Fig. 1.

As a cross check, we also consider the role of Auger
recombination and compare it to radiative recombination in the
GaAs HCSC absorber. The Auger recombination coefficient
(A)30 for GaAs is 7 × 10−30 cm6 s−1 and the radiative
recombination coefficient (B)29 is 7 × 10−10 cm3 s−1. It is
also known that Auger recombination can become an issue
at high carrier concentration (or doping concentration, but we
have already assumed that our HCSC absorber is undoped), so
instead of the ∼1014 cm−3 carrier density discussed earlier,
we will now examine the more severe case in which the
photogenerated carrier density is equal to 1.85 × 1017 cm−3

(corresponding to a 10 ns “lifetime” and 1000 × solar
concentration). The Auger recombination rate is given by An2,
and the radiative recombination rate is given by Bn, where
n is the carrier concentration. Even for this severe case and
certainly for that of the 1014 cm−3 carrier density, radiative
recombination dominates Auger recombination, and so we find
that Auger recombination (the reciprocal process of impact
ionization) is an ineffective mechanism in so far as supporting
HCSC operation in GaAs.

With all of this in mind, the hot-carrier distribution
upon photogeneration is now illustrated as a histogram
in Fig. 4. Most notably, the distribution is wide, as
to be expected, on account of the polychromatic solar
spectrum.
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−−

FIG. 4. (Color online) Histogram of hot electron (hole) energy
distribution upon photogeneration in GaAs. The wide distribution
is a natural artifact of the polychromatic AM1.5G solar spectrum
and the available joint electronic DoS (in GaAs). The challenge of
extracting all of the widely distributed hot electrons (holes) through
narrow ESC windows is daunting.

1. Current density

From the photogenerated charge carrier distribution shown
in Fig. 4, we observe a peak hot-electron distribution at
1.94 eV, suggesting this is where hot electrons are (at least
locally) concentrated immediately upon photogeneration. We
then calculate the photogenerated current density for a HCSC
(1 cm2 active area and 100 nm thick with a resonant tunneling
ESC for electrons on the topside and separately for holes on the
rear side) in which the hot-electron ESC is centered at 1.94 eV
and the width of the contact (in units of electron volts) has
been artificially relaxed to be ∼kBT in violation of Eq. (1).
With the ESC centered at 1.94 eV (639 nm), we make the
current density calculation by integrating (via the trapezoidal
rule) the AM1.5G spectral photon flux shown in Fig. 5 over

FIG. 5. (Color online) AM1.5G spectral photon flux.

Eg

E

FIG. 6. (Color online) Photogenerated current density for a
HCSC, where all hot electrons can only be collected by an ESC
centered at 1.94 eV with �E ≈ 0.024 eV versus a standard Si solar
cell that is able to collect relaxed electrons. This current density (one
sun) is calculated from the AM1.5G spectrum.

the photon wavelengths (energy) of relevance, approximately
635–643 nm, which corresponds to �E ≈ 0.024 eV, and
then we multiply this by the electronic charge (1.602 ×
10−19 C) so that we can determine the photogenerated
current density available at our hot-electron ESC as shown in
Fig. 6.

From this, we can then quantify the actual current that could
be collected by our resonant tunneling diode ESC as a function
of �E. As may be seen from Fig. 6, the photogenerated current
density produced by a HCSC with �E centered at 1.94 eV and
relaxed to be as large as ∼kBT , and thus already in violation of
Eq. (1), is not only trivial at ∼0.6 mA cm−2 (one-sun current
density), but it is also almost two orders of magnitude less than
that from a standard Si solar cell. We show a Si solar cell here
as a generic example of a common solar cell technology. For
context, the maximum AM1.5G 1 × current density for a 1.48
eV band gap (Eg,GaAs at 0 K) solar cell is 29.7 mA cm−2.

2. Carrier relaxation

Subsequent carrier relaxation is shown in Fig. 7. During
the relaxation process, some of the higher-energy hot electrons
linger in the X and L satellite valleys of GaAs. However, at no
instance do all hot electrons redistribute into a narrow energy
window required for successful hot extraction. Furthermore,
the onset of relaxation in essence undermines the core concept
of the HCSC, where the goal is to extract carriers prior to any
interaction with lattice phonons.

B. Case 2

Previously, we assumed that all photogenerated carriers
are removed within a “retention time” of 10 ps for a
steady-state density (under solar optical generation and carrier
recombination or removal) of about 1.85 × 1014 cm−3. We
found that relaxation of the hot photogenerated carriers occurs
on a time scale of ∼1 ps. So, the density of carriers in the
“active” region (i.e., collection energy window) is expected to
correspond to the density of hot carriers we would have if the
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FIG. 7. (Color online) Histogram of hot electron (hole) energy
distribution upon relaxation in GaAs. Relaxation results from the
rapid onset of carrier-phonon interaction. An example ESC for
electrons centered at 1.94 eV is shown where the width of the
vertical line approximately corresponds to an energy selectivity of
�E = kBT300K ≈ 0.026 eV.

total density were a factor of 10 smaller. This resulted in an
available current density of ∼0.6 mA cm−2.

Now, we consider the more realistic scenario in which
carriers within the collection energy window are collected
in this short time, but the remaining carriers survive for a
much longer thermal recombination lifetime of 10 ns. This
constitutes a more realistic scenario in which interparticle
collisions at this higher density may alter the dynamics of
the relaxation process.

Let us consider again a 100-nm-thick GaAs absorber. As in
the simulation discussed previously, we assume an incoming
flux of 1.85 × 1017 photons cm−2 s−1 and now a carrier
recombination lifetime of 10 ns. We have also made the
“optimal” choice of a collection energy window centered at
1.94 eV.

Before presenting the details of the simulation and the
results, let us discuss our expectations. Roughly speaking, at
steady state there will be a carrier density of about 1.85 ×
1017 cm−3, which will have already had ample time to
thermalize to energies of the order kBT . Meanwhile, there
will be 1.85 × 1014 “hot” electrons cm−3 generated by the
absorbed sunlight. So, if our estimate of the “retention time”
(10 ps) is correct, 99.9% of the carriers will be thermal, while
only 0.1% of the total will be due to the “hot” optically
generated carriers. While one may expect that the large density
(99.9% of the total density) of thermal electrons may help
to repopulate the electron energy distribution at energies of
1.94 eV via interparticle Coulomb collisions, this is extremely
unlikely, and actually a much more negative result may be
expected for the following reasons.

First, for interactions involving particles with significantly
different energies, statistical arguments based on the joint DoS
of the recoil particles (equipartition) strongly suggest that the
hot carriers will be removed from the high-energy region by

losing a large fraction of their energy. So, the high-density
thermal carriers will not be able to simply “nudge” the
hot-carrier distribution and repopulate the collection energy
window but instead will predominantly absorb a large fraction
of the hot-electron energy and speed up the hot-electron
relaxation process, entirely removing hot carriers from the
“useful” energy region. Another way to see this is to note
that at steady state, the average electron energy will be
almost thermal. Interparticle collisions—as seen from detailed
balance considerations—will drive the distribution toward
equilibrium, thus washing out the hot distribution of optically
generated carriers at a rate even faster than carrier-phonon
interactions. Better results would be obtained only at a much
higher optical generation rate, possibly at unrealistically high
concentrations of sunlight of the order of 105 to 106 (compared
to the maximum possible concentration of ∼4.6 × 104),9

resulting in a steady-state density of hot electrons comparable
to the density of the thermalized carriers.

Second, in a simple parabolic-band approximation, the
unscreened scattering rate for Coulomb particle-particle col-
lisions may be calculated analytically in the center-of-mass
frame and can be shown to scale with the inverse of the relative
(crystal) momentum �q, so the probability of exchanging
energy between a thermal particle of energy E ∼ kBT and a
hot particle of energy E � kBT decreases with increasing E as
(kBT /E)1/2. (This may be understood physically by adopting
a reference frame in which one particle is at rest so that the
scattering between particles of significantly different energies
will appear as scattering of a high-energy particle with a static
Coulomb potential. In this case, the high-energy “incident”
particle will see a “weaker” scattering potential compared
to its kinetic energy and—similar to what is well known in
the case of impurity scattering—the rate will decrease with
the inverse square root of the initial energy, the “relative
energy” in our case.) So, even at small densities, collisions
between thermal and hot-carriers cannot contribute efficiently
to a “repopulation” of the hot-electron distribution around the
collection energy window. Admittedly, dielectric screening
reverses this trend: At large densities (>1019 cm−3 or so), the
denominator of the interparticle Coulomb matrix element is
dominated by the screening parameter and dynamic screening
(which, in any event, is accounted for in our simulations)
actually favors processes involving a large momentum and
energy transfer (as we have studied in the past). But the
densities of interest here are much smaller than this unless,
as we said earlier, we consider the unrealistic concentration of
sunlight. This is in direct contrast with interactions between
the hot electrons themselves: In this case, interactions are more
frequent, and equipartition suggests an effective repopulation
of the collection energy window.

It follows that it will be “predominantly” those 1.85 ×
1014 electrons cm−3 (ignoring holes, which however have been
included in our simulations), which will be able to repopulate
the energy window, while the much more numerous thermal
electrons will either have little or no effect (at low densities) or
may even speed up the relaxation process (at higher densities).

In this new simulation, we assume as an initial condition
that 1.85 × 1017 carriers cm−3 have been optically generated
and allowed to relax. This enables us to study the details of
the relaxation dynamics. Simultaneously, carriers “hitting” the
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FIG. 8. (Color online) Distribution of electrons from transient
to steady state. Steady state is reached at ∼15 ps. The conduction-
band minimum has been set equal to zero here. The ESC centered at
1.94 eV is now referenced to the bottom of the conduction band, so
at ∼0.52 eV and has been widened to 2kBT .

“bottom” interface with energy in the collection window were
removed and tagged as “collected current” with carriers also
being continuously generated optically at a rate of 1.85 ×
1020 pairs cm−2 s−1 (i.e., 1.85 × 1025 pairs cm−3 s−1

integrated over the 100 nm thickness of our HCSC absorber),
thus mimicking steady-state conditions under concentration
of 1000 × sunlight. Thermal recombination can be ignored
because this is indeed a process too slow in our picosecond time
scale to play any role besides setting the value of the density at
steady state. As anticipated, the electron distribution at energy
>kBT is relaxed much more effectively than in the low-density
case we had assumed before, and our estimate of the current
density drops from 0.6 mA cm−2 to ∼2 × 10−3 mA cm−2,
mainly caused by the extremely short time (∼175 fs) at
which hot carriers are removed from the collection energy
window. Although in violation of Eq. (1), we have increased
the width of the ESC window from kBT (Case 1) to 2kBT

(Case 2) in order to model an even more conservative scenario;
in this context the time evolution of the electron distribution is
shown in Fig. 8. The rapid “washing out” of the hot-carrier
component is now caused not only by inelastic electron-
phonon collisions but also by the efficient relaxation of the
hot carriers due to interparticle collisions with the thermal
component. Meanwhile, the decay of the collected current is
illustrated in Fig. 9, where a large “transient” current density
is seen initially because of the large density of carriers we have
assumed and the fact that the initial carrier energy distribution
is due uniquely to the solar-optical generation. Already within
∼2 to 3 ps, the density of electrons at the collection energy
drops with a “relaxation” time constant of about 175 fs (due
to scattering within the satellite valleys). Following this, the
exponential decay “relaxation” time constant is about 650 fs
(due to intervalley scattering). At ∼15 ps, steady state is
reached, and the current density saturates at a value of a few
microamperes per centimeter squared.
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FIG. 9. (Color online) Decay of the available current density
(AM1.5G one-sun equivalent) in the energy window centered at
1.94 eV with width 2kBT . The data are calculated from Monte Carlo
simulations. Note a plateau at ∼2 to 3 ps due to carriers decaying
quickly to satellite valleys before transferring slowly to the � valley.
Thus, two exponential time constants are shown: a decay constant of
∼175 fs associated with relaxation in the satellite valleys and a decay
constant of ∼650 fs associated with relaxation due to intervalley
scattering. The fluctuation in the data is associated with the frequency
at which simulated particles are generated optically.

C. Multiple junctions

Referring to Fig. 5, we can see that the AM1.5G spectrum is
photon dense between 1.42 eV (873 nm) and 1.94 eV (639 nm).
Thus, even if the ESC is placed at ∼1.94 eV and even if those
higher energy electrons that have relaxed down to 1.94 eV
can be extracted, roughly 50% of the electrons would be
lost because the spectral photon flux is evenly split between
1.42–1.94 eV and 1.94–4.43 eV (AM1.5G ceiling). In other
words, there does not appear to be any viable mechanism to
redistribute the lower energy electrons (ranging from 1.42 to
1.94 eV) to a fixed ESC level at 1.94 eV. However, we can take
inherent advantage of this spectral photon flux distribution as
discussed next and thus avoid the pitfalls of the HCSC.

The natural way to overcome the inherent limitations of
the HCSC concept is to employ vertically stacked multiple
junctions31,32 with subcell band-gap energy increasing from
bottom to top, and with the subcells connected in series with
tunnel diodes,33 as shown in Fig. 10, so that their output voltage
is additive.

By considering the absorption coefficient and base layer
thickness (and more precisely also the quantum efficiency and
any reflective loss), each subcell can be designed to achieve
matched photogenerated current density. For example, under
the AM1.5G spectrum, a 1.42-eV GaAs solar cell can have
photogenerated current density up to ∼32 mA cm−2. If a
lattice matched 1.94-eV AlGaInP p–n junction subcell is
added on top of the GaAs cell, then each subcell can produce
∼16 mA cm−2. Ultimately, this 1.94/1.42 eV double junction
solar cell can generate more power from the higher-energy
photons that would normally experience significant relaxation
loss in a 1.42-eV GaAs solar cell alone. We stress here that the
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FIG. 10. (Color online) Series-connected, two-terminal, current-
matched monolithic double-junction solar cell with 1.94-eV top and
1.42-eV bottom subcells. A high-efficiency double-junction solar cell
can take the place of a HCSC by minimizing total relaxation loss in
a practical architecture.

double junction cell achieves the goal of lower total relaxation
loss but does so in a realizable architecture that may be tuned to
match the incident solar spectrum (the binning of photon flux)
in which standard solar cell physics applies (including detailed
balance), carriers are expected to relax in their respective
p–n junction subcells, conventional minority-carrier lifetimes
apply, and drift-diffusion explains the charge carrier transport
behavior.

D. Power conversion efficiency

The detailed balance-limiting34,35 theoretical power conver-
sion efficiency (AM1.5G spectrum; Pin = 0.1 W cm−2; 298 K)
for the aforementioned 1.94/1.42 eV double-junction solar
cell is 40.4% (Vmax ≈ 2.58 V and Jmax ≈ 15.64 mA cm−2).
In comparison, the power conversion efficiency for a HCSC
producing 1.94 V and 0.6 mA cm−2 (see Fig. 6) is only 1.16%.
As a benchmark, a 1.42-eV GaAs single-junction solar cell
has a detailed balance-limiting power conversion efficiency
of 33.2% under the aforementioned conditions. While the
voltage of a HCSC can be set arbitrarily (within reason) by the
placement of the ESC, the severely reduced current density
imposed by the failure to extract a sufficient amount of the
widely distributed photogenerated charge carriers appears to
be the limiting bottleneck in terms of HCSC performance and
power conversion efficiency. This is in direct contrast to the
design of conventional solar cells in which it is relatively
easy to achieve nearly peak current density but much more
challenging to converge on the peak (detailed balance-limiting)
voltage. We note here that the HCSC current density, although
already trivial, is likely too large. We find from our Monte
Carlo simulation that upon photogeneration, there is a 50%
probability that the momentum of the hot electrons will
be directed away from the electron ESC. In other words,
the hot electrons that need to travel quasiballistically (say,
in the positive x direction) to the ESC for extraction will
actually have a velocity vector component (opposite, negative

Eg

x

FIG. 11. (Color online) Schematic representation (in k-space) of
momentum randomization (considering only the arbitrarily chosen x

direction here) of a photogenerated hot electron. If the hot electron
does not have momentum (velocity vector, v+x) directing it to the ESC
for extraction at the macroscopic metal electrodes, then the chances
of it being collected diminishes.

x direction) that would prevent them from heading in the
correct direction as shown schematically in Fig. 11.

In conventional solar cells, momentum randomization is
not an issue because the relaxed charge carriers have time to
diffuse to the contact electrodes, and thus the precise nature
of their velocity vectors is not critical. However, in the HCSC,
time is critical, and thus tremendous demands are placed on
both hot-carrier transport and selective extraction.

VIII. CONCLUSION

We have investigated in detail the feasibility of operation of
HCSC. Within the context of a realistic full band structure and
actual broadband AM1.5G solar spectrum, we have modeled
the wide distribution of photogenerated charge carriers and
then the subsequent carrier-phonon scattering (relaxation)
processes in GaAs—a zinc-blende semiconductor that has
similar electronic DoS with other common semiconductors
used for solar cells (and thus this condition coupled with the
polychromatic nature of the solar spectrum naturally leads
to widely dispersed photogenerated hot carriers in the bands
independent of choice of common solar cell semiconductors).
We find both quantitatively and qualitatively that it is unre-
alistic to expect to take the widely distributed ensemble of
photogenerated hot electrons and rapidly redistribute them
to a singular (or even near singular) energy level, while
simultaneously ensuring that they have the proper momentum
vector that would allow them to directly transport in a
quasiballistic fashion precisely to the selective energy level
of the resonant tunneling ESC. The chance of this happening
consistently in field-deployed mass production solar cells,
GaAs or otherwise, would be improbable.

Furthermore, if we could somehow forgo the disorder
induced by scattering and thus direct the hot electrons with a
relatively narrow-angle cone of transport, we see, nonetheless,
that the slightest perturbation off of resonance at the ESC
severely degrades the peak tunneling current and, moreover,
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any minor deviation from Eq. (1) in terms of �E relaxation
breaks the goal of isentropic hot-electron cooling and thus
breaks down the original concept of the HCSC to begin with.

Notably, HCSC physics is different than conventional
relaxed carrier solar cell physics. As a result, it appears that
we may need to “recalibrate” our mentality of what constitutes
carrier lifetime. The time span that photogenerated carriers
are hot (i.e., their “retention” time before relaxation) replaces
conventional minority-carrier lifetime. Also, selective contact
structures for isentropic extraction are required, and we must
be aware that the photogenerated hot carriers remain widely
distributed as they momentarily equilibrate at a temperature
greater than that of the lattice. Additionally, in order to avoid
interaction with phonons, we may have to rely on quasiballistic
transport rather than conventional diffusive charge carrier
transport, and thus the issue of carrier momentum should not
be forgotten.

Finally, considering what has been discussed so far, is
there then a viable pathway forward for the realization of
a HCSC with power conversion efficiency exceeding an
optimized single-junction solar cell? Although there appear
to be some challenges, we leave open the possibility of

eventual realization of a HCSC that has greater efficiency
than the best single-junction solar cells. In the context of
conceptually modeling an optically induced impact ionization
solar cell, Werner, Kolodinski, and Queisser pointed out that
an inverse band structure36 design approach may be important,
and perhaps this too would apply toward the design of a
successful (i.e., high efficiency) HCSC. Meanwhile, the race
for continued enhancement in solar cell efficiency is well
underway in an already known and field-tested approach that
bypasses the design constraints and challenges with HCSC.
This approach involves the use of monolithic, series-connected
multiple junctions, whereby photogenerated carriers are col-
lected in subcells that have band-gap energy closer to the
absorbed photon energy for a reduction in total relaxation
loss, while providing a way to realize increased voltage,
improved areal power density, and increased power conversion
efficiency.
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(1995).
23J. R. Meyer and F. J. Bartoli, Phys. Rev. B 23, 5413 (1981).
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