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Motivation 

Quest for Performance & Power efficient hardware platforms to meet processing needs

Trends in Hardware 

• Moore’s Law led to increase in Transistor density, Frequency and Power.

• By Breakdown of Dennard’s scaling, it is no more feasible to increase frequency due to 
power constraints

What Next ?
SoC – FPGA Platforms

Performance improved by offloading a 
CPU from computationally intensive 
parts to an FPGA.

Acquisition of Altera by Intel is also mainly motivated by this.
Intel has recently announced that it is targeting the production of around 30% of the servers 
with FPGAs in data-centers by 2020



Objective 

1.  Hardware Acceleration using OpenCL

• Accelerate Computationally Intensive Applications on SoC-FPGA
• Study  effects on acceleration with different attributes.
• Perform DSE using HLS.

2. Automated & Faster Design Space Exploration (DSE) method

• DSE is exploiting the different micro-architectures based on parameters of interest.
• DSE is multi objective optimization Problem.
• The search space is extremely large and Time constrained.
• Genetic Algorithm based meta heuristic to automate DSE is implemented.

Design Space Exploration



Configurable SoC -FPGA

• higher bandwidth for communication between Processor & FPGA
• Performance & Power efficiency 

SoC-FPGA devices integrate both processor and FPGA architectures into a single chip.

SoC-
FPGA

Off-chip Integration

On-chip Integration



High Level Synthesis (HLS)

ASIC/FPGA  Design Flow

1.Allocating
2.Scheduling
3.Binding

Main Steps
What is HLS?
• Automatic conversion of  behavioral, untimed 

descriptions into hardware  that implements the  
behavior.

Why HLS?
• Raises abstraction level of Languages for design.
• Less Coding , less verification, less bugs
• Design Productivity 
• Meet Time to Market
• Design Space Exploration



OpenCL – Open Computing Language

OpenCL (Open Computing Language) is a standard framework which allows 
parallel programming of heterogeneous systems. 

• Programming the devices on the heterogeneous platform
• Application Programming Interface (API) to control the communication 

between the compute devices.

OpenCL Platform Model
Hardware abstraction Layers
• Host
• OpenCL Device
• Compute Units
• Processing Elements 

GPU ,CPU,DSP,FPGA

CPU
Kernel Program

OpenCL Execution Units
1. Host Program 

Manages Workload division and  Communication among the Compute Units.

2.   Kernel program

Execute the computational part of the OpenCL application.

Host Program



OpenCL Execution Model

Workload Division : Work-groups & Work-items 

The entire work space to be executed is decomposed into Work-groups and Work-items

1. Work-item : Each independent element of execution in the entire workload is called a work-item.

2. Work-Group:  A set of work-items are grouped to into a Work-Group

• Each Work-group is assigned to a Compute units .

• Work-items in a work group are executed by the same Compute unit.



OpenCL Memory Hierarchy

Memory 
Type

Scope  Accessibility

Global 
Memory

Host
Compute Units

Processing Elements

All work groups 
All workitems

Local 
Memory

Compute Units
Processing Elements

All Work-items in a workgroup
Not shared to other workgroups

Private
Memory 

Processing Elements
Exclusive to Work-item

Not shared to other work-item

Capacity decreases
Latency decreases

Memory hierarchy is structured to support data sharing ,Communication and 
synchronization of the work items.



Hardware Acceleration on FPGA 
using OpenCL 



System Description

1. System Hardware

• Terasic DE1-SoC Board

Altera Cyclone V FPGA

2. Software Tools

• Intel FPGA SDK for OpenCL 

• Altera Quartus II

• Intel® SoC-FPGA Embedded 

Development Suite (SoC EDS)

cyclone V

Cyclone V

Kernel Host



3. System Memory Model

• Private memory:
Registers & Block RAM on FPGA, Lowest latency at cost of area utilization.

• Global Memory : 
Off-Chip DDR , High Capacity and High latency , Host to Kernel Interface

• Local Memory: 
On-Chip memory ,Higher Bandwidth & lower latency than Global Memory.

Communication 
Host & Kernel

Read buffers 
Write Buffers



4.Programming the System

Kernel and Host Programs

Computationally intensive processing is off-loaded from ARM 
processor to FPGA



Timing  Metrics for Acceleration 

ARM

ARM
+ FPGA

Part of the code that 
can be accelerated 

Th Time spent for part of the main code running on Host 

Tf Time spent on the Unaccelerated Function

Tc

Time spent for 
communication between  Host and Accelerator 

Taf Time spent on the accelerated Function

AS System Acceleration =  Ts/ Tas

1.  Reduce Taf : Increase Number of Parallel  Operations

• Data level Parallelism :   Duplicating Processing Units and launch in parallel

• Instruction level Parallelism: Pipelining Instructions and loop Iterations
• Task Level Parallelism : Independent tasks run parallel on Individual Kernels

2.  Reduce Tc : Reduce Communication Time

• Caching frequently used data to Local memory from Global Memory .

• Coalesce Memory access patterns when possible.
• Using Channels and pipes to communicate between kernels instead of Global memory

Optimization of the Design for Acceleration 



Kernel Architectures: Single Task Kernel & ND Range Kernel

1. Single Task Kernel

• The entire kernel is executed as single thread on single Compute unit 

• Loop Pipelining : Loop iterations are Pipelined
• Data dependencies are handled using logic cells and registers on FPGA
• Used when there is dependency between work-items , No parallelism possible.
• Ex. Decimation, FIR etc.

Exec Time = ((Num_Iterations * ii)  + Loop_latency )* Time_period
ii = Initiation Interval 

for ( i=1; i<n; i++)
C[ i ]=C[ i-1 ] + b[ i ];

Dependencies are handled 
through Data-feedbacks

C [ 0 ]

Initiation Interval 
ii =1



2. ND Range Kernel

• Throughput achieved by Data level Parallelism 
Work-items are executed in Parallel, by replicating Hardware units on the Kernel
(ie multiple Compute Units (CUs) , Single Instruction Multiple Data units (SIMDs))

• Increases Memory Bandwidth and Logic Utilization

• Used when there are few or no data, memory dependencies between the Work-items.
• Ex. AES , Matrix multiplication etc

• SIMDs work on different Work-items of same Work-Groups
• Replicates Data Paths only . Control path is shared 
• Memory accesses can be Coalesced.
• Cannot be used when Work-items have different Control Paths

• CUs work on different Work-Groups
• Replicates Data Paths and Control path.
• Memory accesses patterns are scattered.

CUs vs SIMDs



Optimization Attributes & Pragmas

1. num_compute_units(N)
2. num_simd_work(N)
3. #pragma unroll < N >
4. max work group size(N)
5. reqd work group size(x; y; z)

OpenCL Benchmarks

BENCHMARK
Kernel 
Type 

Pipeline 
Initiation Interval 

Logic 
(%)

Sobel Single Task 2 20

FIR Single Task 1 20

ADPCM Single Task 40 20

Decimation Single Task 1 81

Interpolation Single Task 1 28

AES
NDRange

CU=2,SIMD=2
Not Pipelined 84

• 6 OpenCL applications
• Kernel Type chosen based on application
• Experimented on both Unaccelerated System( ARM ) and Accelerated System 

(ARM+FPGA) to compare performance 



Results: Acceleration 

Plots of Acceleration vs data size 
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Results: Communication Overhead

• Communication Overhead:
Most of the time on the accelerated system is spent for data Communication between the host and Kernel

• Initially, the acceleration tends to increase with data size due to growing computation complexity.

• The acceleration ceases beyond a point because of no immediate data is available for processing due to 
communication overhead and limited Communication Data buffer size between Host and Kernel.



Observations: Acceleration effects due to attributes
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2. Plots of Execution Time vs Loop Unroll Factor 
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Observations: Acceleration effects due to attributes

Compute
Units

SIMD
Units

Acceleration

256
Inputs

512
Inputs

1024
Inputs

1 1 2.5 4.6 6.6

1 2 2.7 5.4 6.6

1 4 2.4 5.4 6.9

2 1 4 4.6 6.9

2 2 2.6 5.2 6.9

1. Acceleration of AES by varying the number of CU and SIMD attributes across different data sizes
Number of Workgroups = 2 , Number of Workitems = (Num_inputs)/2

trade off between Data processing 
efficiency and Bandwidth requirement

Increased Decreased

Each Attributes has various trade-off affects on the 
performance ,memory access ,Bandwidth requirement ,Logic utilization etc. 



Design Space Exploration

Exhaustive Search vs Fast Heuristic 



DSE by Exhaustive Search methodology
• Exhaustive search DSE involves analyzing of all possible search combinations.

• Pareto Optimal Solutions is the set of dominant solutions, for which no parameter can 
be improved without sacrificing at least one other Parameter.

• Area and Execution time parameters are used.

1. Add Tunable
attributes 

2. Generate 
possible Solutions

3. Compile
Solutions

4. Design 
Space

5. Pareto Optimal
Solutions

The main disadvantage is that the design space is typically large and grows exponentially 
with the number of exploration options.
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DSE by Genetic Algorithm 

1. Parent Attributes selection 

2. Random Crossover 

& Mutation (M)

3. Cost Function based Survival

4. Convergence Criteria (N)

5. Termination Criteria (P)

6. Repeat for various cost factors (a,b)

7. Find the Pareto dominant trade off curve

Repeat for several Cost factors 
(a,b)

cost =  a ∗
𝑎𝑟𝑒𝑎

𝑎𝑟𝑒𝑎𝑚𝑎𝑥
+ b ∗

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒𝑚𝑎𝑥



Efficiency Metrics    

Metrics to measure the quality of solutions in Genetic Algorithm based Heuristic :

1. Pareto Dominance (Dom) :
The fraction of total number of solutions in the Pareto set being evaluated ,also present 
in the reference Pareto set . 

2. Average Distance from Reference Set (ADRS): 
ADRS measures the average distance between the Heuristic approximated front and the 
Pareto Optimal Front.

3. Speed up:
Determines speed up in the compilation time to find the Pareto dominant Front 
compared to the Exhaustive search.
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Comparison of Results : Exhaustive Search vs Genetic Algorithm   

System Exploration Trade-off Curves
Pareto optimal Front of Exhaustive DSE vs Pareto Dominant Front of Genetic Algorithm
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Results : Genetic Algorithm Efficiency Metrics 

Results Summary :

Average Dominance = 0.7 Average ADRS = 0.2 Average speedup = 6

• Genetic algorithm heuristic can determine about 70% of the optimal dominant solutions
• Solutions can be within a 20% range in design space around the optimal solutions



Future Work

• Experimenting with wider range of benchmarks.

• Upgrade benchmarks to multiple FPGA Platforms.

• Other fast Heuristic methods like Simulation Annealing or Machine Learning algorithms can be 
used for exploration of design space.

Conclusions

• We developed set of OpenCL benchmarks to study the trend in acceleration  as a result of 
various attributes.

• A fast and heuristic method to explore the design space is implemented. Its performance is 
analyzed & compared with the reference solution set.

• Based on the experiments, an average dominance of 0.7, average ADRS of 0.2  at average 
speed up of 6 times compared to the exhaustive DSE search is observed.



Thank You !



Questions ?


