
Efficient Hardware Acceleration
on SoC- FPGA using OpenCL

Susmitha Gogineni
30th August ‘17

Advisor : Dr. Benjamin Carrion Schafer

Presentation Overview

1.Objective & Motivation

2.Configurable SoC -FPGA

3.High Level Synthesis (HLS) & OpenCL

4.Hardware Acceleration on FPGA

5.Design Space Exploration (DSE)

6.Conclusions & Future work

Motivation

Quest for Performance & Power efficient hardware platforms to meet processing needs

Trends in Hardware

• Moore’s Law led to increase in Transistor density, Frequency and Power.

• By Breakdown of Dennard’s scaling, it is no more feasible to increase frequency due to
power constraints

What Next ?
SoC – FPGA Platforms

Performance improved by offloading a
CPU from computationally intensive
parts to an FPGA.

Acquisition of Altera by Intel is also mainly motivated by this.
Intel has recently announced that it is targeting the production of around 30% of the servers
with FPGAs in data-centers by 2020

Objective

1. Hardware Acceleration using OpenCL

• Accelerate Computationally Intensive Applications on SoC-FPGA
• Study effects on acceleration with different attributes.
• Perform DSE using HLS.

2. Automated & Faster Design Space Exploration (DSE) method

• DSE is exploiting the different micro-architectures based on parameters of interest.
• DSE is multi objective optimization Problem.
• The search space is extremely large and Time constrained.
• Genetic Algorithm based meta heuristic to automate DSE is implemented.

Design Space Exploration

Configurable SoC -FPGA

• higher bandwidth for communication between Processor & FPGA
• Performance & Power efficiency

SoC-FPGA devices integrate both processor and FPGA architectures into a single chip.

SoC-
FPGA

Off-chip Integration

On-chip Integration

High Level Synthesis (HLS)

ASIC/FPGA Design Flow

1.Allocating
2.Scheduling
3.Binding

Main Steps
What is HLS?
• Automatic conversion of behavioral, untimed

descriptions into hardware that implements the
behavior.

Why HLS?
• Raises abstraction level of Languages for design.
• Less Coding , less verification, less bugs
• Design Productivity
• Meet Time to Market
• Design Space Exploration

OpenCL – Open Computing Language

OpenCL (Open Computing Language) is a standard framework which allows
parallel programming of heterogeneous systems.

• Programming the devices on the heterogeneous platform
• Application Programming Interface (API) to control the communication

between the compute devices.

OpenCL Platform Model
Hardware abstraction Layers
• Host
• OpenCL Device
• Compute Units
• Processing Elements

GPU ,CPU,DSP,FPGA

CPU
Kernel Program

OpenCL Execution Units
1. Host Program

Manages Workload division and Communication among the Compute Units.

2. Kernel program

Execute the computational part of the OpenCL application.

Host Program

OpenCL Execution Model

Workload Division : Work-groups & Work-items

The entire work space to be executed is decomposed into Work-groups and Work-items

1. Work-item : Each independent element of execution in the entire workload is called a work-item.

2. Work-Group: A set of work-items are grouped to into a Work-Group

• Each Work-group is assigned to a Compute units .

• Work-items in a work group are executed by the same Compute unit.

OpenCL Memory Hierarchy

Memory
Type

Scope Accessibility

Global
Memory

Host
Compute Units

Processing Elements

All work groups
All workitems

Local
Memory

Compute Units
Processing Elements

All Work-items in a workgroup
Not shared to other workgroups

Private
Memory

Processing Elements
Exclusive to Work-item

Not shared to other work-item

Capacity decreases
Latency decreases

Memory hierarchy is structured to support data sharing ,Communication and
synchronization of the work items.

Hardware Acceleration on FPGA
using OpenCL

System Description

1. System Hardware

• Terasic DE1-SoC Board

Altera Cyclone V FPGA

2. Software Tools

• Intel FPGA SDK for OpenCL

• Altera Quartus II

• Intel® SoC-FPGA Embedded

Development Suite (SoC EDS)

cyclone V

Cyclone V

Kernel Host

3. System Memory Model

• Private memory:
Registers & Block RAM on FPGA, Lowest latency at cost of area utilization.

• Global Memory :
Off-Chip DDR , High Capacity and High latency , Host to Kernel Interface

• Local Memory:
On-Chip memory ,Higher Bandwidth & lower latency than Global Memory.

Communication
Host & Kernel

Read buffers
Write Buffers

4.Programming the System

Kernel and Host Programs

Computationally intensive processing is off-loaded from ARM
processor to FPGA

Timing Metrics for Acceleration

ARM

ARM
+ FPGA

Part of the code that
can be accelerated

Th Time spent for part of the main code running on Host

Tf Time spent on the Unaccelerated Function

Tc

Time spent for
communication between Host and Accelerator

Taf Time spent on the accelerated Function

AS System Acceleration = Ts/ Tas

1. Reduce Taf : Increase Number of Parallel Operations

• Data level Parallelism : Duplicating Processing Units and launch in parallel

• Instruction level Parallelism: Pipelining Instructions and loop Iterations
• Task Level Parallelism : Independent tasks run parallel on Individual Kernels

2. Reduce Tc : Reduce Communication Time

• Caching frequently used data to Local memory from Global Memory .

• Coalesce Memory access patterns when possible.
• Using Channels and pipes to communicate between kernels instead of Global memory

Optimization of the Design for Acceleration

Kernel Architectures: Single Task Kernel & ND Range Kernel

1. Single Task Kernel

• The entire kernel is executed as single thread on single Compute unit

• Loop Pipelining : Loop iterations are Pipelined
• Data dependencies are handled using logic cells and registers on FPGA
• Used when there is dependency between work-items , No parallelism possible.
• Ex. Decimation, FIR etc.

Exec Time = ((Num_Iterations * ii) + Loop_latency)* Time_period
ii = Initiation Interval

for (i=1; i<n; i++)
C[i]=C[i-1] + b[i];

Dependencies are handled
through Data-feedbacks

C [0]

Initiation Interval
ii =1

2. ND Range Kernel

• Throughput achieved by Data level Parallelism
Work-items are executed in Parallel, by replicating Hardware units on the Kernel
(ie multiple Compute Units (CUs) , Single Instruction Multiple Data units (SIMDs))

• Increases Memory Bandwidth and Logic Utilization

• Used when there are few or no data, memory dependencies between the Work-items.
• Ex. AES , Matrix multiplication etc

• SIMDs work on different Work-items of same Work-Groups
• Replicates Data Paths only . Control path is shared
• Memory accesses can be Coalesced.
• Cannot be used when Work-items have different Control Paths

• CUs work on different Work-Groups
• Replicates Data Paths and Control path.
• Memory accesses patterns are scattered.

CUs vs SIMDs

Optimization Attributes & Pragmas

1. num_compute_units(N)
2. num_simd_work(N)
3. #pragma unroll < N >
4. max work group size(N)
5. reqd work group size(x; y; z)

OpenCL Benchmarks

BENCHMARK
Kernel
Type

Pipeline
Initiation Interval

Logic
(%)

Sobel Single Task 2 20

FIR Single Task 1 20

ADPCM Single Task 40 20

Decimation Single Task 1 81

Interpolation Single Task 1 28

AES
NDRange

CU=2,SIMD=2
Not Pipelined 84

• 6 OpenCL applications
• Kernel Type chosen based on application
• Experimented on both Unaccelerated System(ARM) and Accelerated System

(ARM+FPGA) to compare performance

Results: Acceleration

Plots of Acceleration vs data size

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000

A
cc

el
er

at
io

n

Data Size

FIR

6.8

6.9

7

7.1

7.2

7.3

7.4

0 1000000 2000000 3000000 4000000

A
cc

el
er

at
io

n
Image size (Num of Bytes)

Sobel

7.35

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000 25000

A
cc

el
er

at
io

n

Data Size

Decimation

2.8

0

0.5

1

1.5

2

2.5

3

0 10000 20000 30000 40000

A
cc

el
er

at
io

n

Data Size

ADPCM

2.8

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000 25000

A
cc

el
er

at
io

n

Data Size

Interpolation

2.8

0

1

2

3

4

5

6

7

8

0 500 1000 1500

A
cc

el
er

at
io

n

Data Size

0.95

7

AES

Acceleration tends to
saturate at high data sizes

Results: Communication Overhead

• Communication Overhead:
Most of the time on the accelerated system is spent for data Communication between the host and Kernel

• Initially, the acceleration tends to increase with data size due to growing computation complexity.

• The acceleration ceases beyond a point because of no immediate data is available for processing due to
communication overhead and limited Communication Data buffer size between Host and Kernel.

Observations: Acceleration effects due to attributes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

Ex
ec

 T
im

e
(m

s)

Loop unroll Factor

SOBEL

2. Plots of Execution Time vs Loop Unroll Factor

200

220

240

260

280

300

320

0 2 4 6 8 10

Ex
ec

 T
im

e
(m

s)

Loop Unroll Factor

ADPCM

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10
In

it
ia

ti
o

n
 In

te
rv

el
 (

II
)

Loop Unroll Factor

In ADPCM, Execution Time Increased with Loop Unrolling as a result of increase in Initiation Interval (II)
Which is caused due unrolling iterations with dependencies or memory stalls.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

In
it

ia
ti

o
n

 In
te

rv
al

(I
I)

Loop Unroll Factor

decreases

increases

Observations: Acceleration effects due to attributes

Compute
Units

SIMD
Units

Acceleration

256
Inputs

512
Inputs

1024
Inputs

1 1 2.5 4.6 6.6

1 2 2.7 5.4 6.6

1 4 2.4 5.4 6.9

2 1 4 4.6 6.9

2 2 2.6 5.2 6.9

1. Acceleration of AES by varying the number of CU and SIMD attributes across different data sizes
Number of Workgroups = 2 , Number of Workitems = (Num_inputs)/2

trade off between Data processing
efficiency and Bandwidth requirement

Increased Decreased

Each Attributes has various trade-off affects on the
performance ,memory access ,Bandwidth requirement ,Logic utilization etc.

Design Space Exploration

Exhaustive Search vs Fast Heuristic

DSE by Exhaustive Search methodology
• Exhaustive search DSE involves analyzing of all possible search combinations.

• Pareto Optimal Solutions is the set of dominant solutions, for which no parameter can
be improved without sacrificing at least one other Parameter.

• Area and Execution time parameters are used.

1. Add Tunable
attributes

2. Generate
possible Solutions

3. Compile
Solutions

4. Design
Space

5. Pareto Optimal
Solutions

The main disadvantage is that the design space is typically large and grows exponentially
with the number of exploration options.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

 T
im

e
(m

s)

Logic Utilization (%)

Exhaustive DSE for Sobel

Exaustive sln

Optimum_Sln

Example of Design Space and Pareto Optimal Solution

DSE by Genetic Algorithm

1. Parent Attributes selection

2. Random Crossover

& Mutation (M)

3. Cost Function based Survival

4. Convergence Criteria (N)

5. Termination Criteria (P)

6. Repeat for various cost factors (a,b)

7. Find the Pareto dominant trade off curve

Repeat for several Cost factors
(a,b)

cost = a ∗
𝑎𝑟𝑒𝑎

𝑎𝑟𝑒𝑎𝑚𝑎𝑥
+ b ∗

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒𝑚𝑎𝑥

Efficiency Metrics

Metrics to measure the quality of solutions in Genetic Algorithm based Heuristic :

1. Pareto Dominance (Dom) :
The fraction of total number of solutions in the Pareto set being evaluated ,also present
in the reference Pareto set .

2. Average Distance from Reference Set (ADRS):
ADRS measures the average distance between the Heuristic approximated front and the
Pareto Optimal Front.

3. Speed up:
Determines speed up in the compilation time to find the Pareto dominant Front
compared to the Exhaustive search.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Pareto optimum

GA_1_5_10

Dominance = 2/4 = 0.5

ADRS = 0.64

Comparison of Results : Exhaustive Search vs Genetic Algorithm

System Exploration Trade-off Curves
Pareto optimal Front of Exhaustive DSE vs Pareto Dominant Front of Genetic Algorithm

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

N
O

R
M

A
LI

ZE
D

 A
R

EA

NORMALIZED TIME

FIR

Pareto_Optimal
GA_1_5_10

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

N
O

R
M

A
LI

ZE
D

 A
R

EA

NORMALIZED TIME

SOBEL

Pareto_Optimal
GA_1_5_10

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

N
O

R
M

A
LI

ZE
D

 A
R

EA

NORMALIZED TIME

INTERPOLATION

Pareto optimum

GA_1_5_10

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

N
O

R
M

A
LI

ZE
D

 A
R

EA

NORMALIZED EXECUTION TIME

ADPCM

Pareto Optimal
GA_1_5_10

Results : Genetic Algorithm Efficiency Metrics

Results Summary :

Average Dominance = 0.7 Average ADRS = 0.2 Average speedup = 6

• Genetic algorithm heuristic can determine about 70% of the optimal dominant solutions
• Solutions can be within a 20% range in design space around the optimal solutions

Future Work

• Experimenting with wider range of benchmarks.

• Upgrade benchmarks to multiple FPGA Platforms.

• Other fast Heuristic methods like Simulation Annealing or Machine Learning algorithms can be
used for exploration of design space.

Conclusions

• We developed set of OpenCL benchmarks to study the trend in acceleration as a result of
various attributes.

• A fast and heuristic method to explore the design space is implemented. Its performance is
analyzed & compared with the reference solution set.

• Based on the experiments, an average dominance of 0.7, average ADRS of 0.2 at average
speed up of 6 times compared to the exhaustive DSE search is observed.

Thank You !

Questions ?

