Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 8 April 2015; published 14 September 2015)

Abstract

Correlations between the elliptic or triangular flow coefficients v_{m} ($m=2$ or 3) and other flow harmonics $v_{n}(n=2$ to 5$)$ are measured using $\sqrt{s_{N N}}=2.76 \mathrm{TeV} \mathrm{Pb}+\mathrm{Pb}$ collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of $7 \mu \mathrm{~b}^{-1}$. The $v_{m}-v_{n}$ correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v_{3} is found to be anticorrelated with v_{2} and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ϵ_{2} and ϵ_{3}. However, it is observed that v_{4} increases strongly with v_{2}, and v_{5} increases strongly with both v_{2} and v_{3}. The trend and strength of the $v_{m}-v_{n}$ correlations for $n=4$ and 5 are found to disagree with $\epsilon_{m}-\epsilon_{n}$ correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to v_{n} and a nonlinear term that is a function of v_{2}^{2} or of $v_{2} v_{3}$, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v_{4} and v_{5} are found to be consistent with previously measured event-plane correlations.

DOI: 10.1103/PhysRevC. 92.034903
PACS number(s): 25.75.Dw

I. INTRODUCTION

Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) create hot and dense matter that is thought to be composed of strongly coupled quarks and gluons. The distribution of this matter in the transverse plane is both nonuniform in density and asymmetric in shape [1,2]. The matter expands under large pressure gradients, which transfer the inhomogeneous initial condition into azimuthal anisotropy of produced particles in momentum space [3,4]. Hydrodynamic models are used to understand the space-time evolution of the matter by comparing predictions with the measured azimuthal anisotropy [5-7]. The success of these models in describing the anisotropy of particle production in heavy-ion collisions at RHIC and the LHC [8-14] places significant constraints on the transport properties (such as the ratio of shear viscosity to entropy density) and initial conditions of the produced matter [15-20].

The azimuthal anisotropy of the particle production in each event can be characterized by a Fourier expansion of the corresponding probability distribution $P(\phi)$ in azimuthal angle $\phi[3,21]$,

$$
\begin{align*}
P(\phi) & =\frac{1}{2 \pi}\left\{1+\sum_{n=1}^{\infty}\left(\mathbf{v}_{n} e^{-i n \phi}+\left[\mathbf{v}_{n} e^{-i n \phi}\right]^{*}\right)\right\}, \\
\mathbf{v}_{n} & =v_{n} e^{i n \Phi_{n}}, \tag{1}
\end{align*}
$$

[^0]where v_{n} and Φ_{n} are the magnitude and phase (also known as the event plane or EP), respectively, of the n th-order harmonic flow, and $P(\phi)$ is real by construction. The presence of harmonic flow has been related to various moments of shape configurations of the initially produced fireball. These moments are described by the eccentricity vector $\boldsymbol{\epsilon}_{n}$ calculated from the transverse positions (r, ϕ) of the participating nucleons relative to their center of mass $[4,16]$,
\[

$$
\begin{equation*}
\boldsymbol{\epsilon}_{n}=\epsilon_{n} e^{i n \Psi_{n}}=-\frac{\left\langle r^{n} e^{i n \phi}\right\rangle}{\left\langle r^{n}\right\rangle}, \tag{2}
\end{equation*}
$$

\]

where $\langle\cdots\rangle$ denotes an average over the transverse position of all participating nucleons and ϵ_{n} and Ψ_{n} (also known as the participant plane or PP) represent the magnitude and orientation of the eccentricity vector, respectively. The eccentricity vectors characterize the spatial anisotropy of the initially produced fireball, which drives the flow harmonics in the final state.

According to hydrodynamic model calculations, elliptic flow \mathbf{v}_{2} and triangular flow \mathbf{v}_{3} are the dominant harmonics, and they are driven mainly by the ellipticity vector ϵ_{2} and triangularity vector $\boldsymbol{\epsilon}_{3}$ of the initially produced fireball [22,23]:

$$
\begin{equation*}
v_{2} e^{i 2 \Phi_{2}} \propto \epsilon_{2} e^{i 2 \Psi_{2}}, \quad v_{3} e^{i 3 \Phi_{3}} \propto \epsilon_{3} e^{i 3 \Psi_{3}} . \tag{3}
\end{equation*}
$$

This proportionality is often quantified by a ratio

$$
\begin{equation*}
k_{n}=v_{n} / \epsilon_{n}, \quad n=2 \text { or } 3, \tag{4}
\end{equation*}
$$

where the linear response coefficients k_{n} are found to be independent of the magnitude of ϵ_{n} but change with centrality [22,24].

The origin of higher-order $(n>3)$ harmonics is more complicated; they arise from both ϵ_{n} and nonlinear mixing of lower-order harmonics [20,23,25]. For example, an analytical calculation shows that the v_{4} signal comprises a term proportional to ϵ_{4} (linear response term) and a leading nonlinear term
that is proportional to $\epsilon_{2}^{2}[23,26]$,

$$
\begin{align*}
v_{4} e^{i 4 \Phi_{4}} & =a_{0} \epsilon_{4} e^{i 4 \Psi_{4}}+a_{1}\left(\epsilon_{2} e^{i 2 \Psi_{2}}\right)^{2}+\cdots \\
& =c_{0} e^{i 4 \Psi_{4}}+c_{1}\left(v_{2} e^{i 2 \Phi_{2}}\right)^{2}+\cdots \tag{5}
\end{align*}
$$

where the second line of the equation follows from Eq. (3), $c_{0}=a_{0} \epsilon_{4}$ denotes the linear component of v_{4}, and coefficients a_{0}, a_{1}, and c_{1} are weak functions of centrality. The nonlinear contribution from v_{2} is responsible for the strong centrality dependence of the correlation between Φ_{2} and Φ_{4} observed by the ATLAS Collaboration [14] in $\mathrm{Pb}+\mathrm{Pb}$ collisions. In a similar manner, the v_{5} signal comprises a linear component proportional to ϵ_{5} and a leading nonlinear term involving v_{2} and $v_{3}[23,26]$:

$$
\begin{align*}
v_{5} e^{i 5 \Phi_{5}} & =a_{0} \epsilon_{5} e^{i 5 \Psi_{5}}+a_{1} \epsilon_{2} e^{i 2 \Psi_{2}} \epsilon_{3} e^{i 3 \Psi_{3}}+\cdots \\
& =c_{0} e^{i 5 \Psi_{5}}+c_{1} v_{2} v_{3} e^{i\left(2 \Phi_{2}+3 \Phi_{3}\right)}+\cdots \tag{6}
\end{align*}
$$

This decomposition of the v_{5} signal explains the measured EP correlation involving Φ_{2}, Φ_{3}, and Φ_{5} [14].

Owing to fluctuations of nucleon positions in the initial state, ϵ_{n} and v_{n} vary from event to event, which can be described by probability distributions $p\left(\epsilon_{n}\right)$ and $p\left(v_{n}\right)$. Recent measurements by the ATLAS Collaboration [13] show that the distributions $p\left(v_{n}\right)$ are very broad: Even for events in a very narrow centrality interval, v_{2} and v_{3} can fluctuate from zero to several times their mean values. If events with different v_{2} or v_{3} values could be selected cleanly, one would be able to control directly the relative sizes of the linear and nonlinear contributions to v_{4} and v_{5} in Eqs. (5) and (6) and hence provide an independent method of separating these two contributions. Such an event-shape selection method has been proposed in Refs. [27,28], where events in a narrow centrality interval are further classified according to the observed ellipticity or triangularity in a forward rapidity region. These quantities are estimated from the "flow vector" q_{m} ($m=2$ and 3), as described in Sec. IV A. This classification gives events with similar multiplicity but with very different ellipticity or triangularity. By measuring the v_{n} and v_{m} in a different rapidity window for each q_{m} event class, the differential correlation between v_{m} and v_{n} can be obtained in an unbiased way for each centrality interval, which allows the separation of the linear and nonlinear components in v_{4} and v_{5}. The extracted linear component of v_{4} and v_{5} can then be used to understand the collective response of the medium to the initial eccentricity of the same order, using an approach similar to Eq. (4).

In addition to separating the linear and nonlinear effects, the correlation between v_{m} and v_{n} is also sensitive to any differential correlation between ϵ_{m} and ϵ_{n} in the initial state. One example is the strong anticorrelation between ϵ_{2} and ϵ_{3} predicted by the Monte Carlo (MC) Glauber model [28,29]. A recent transport-model calculation shows that this correlation survives the collective expansion and appears as a similar anticorrelation between v_{2} and v_{3} [28].

In this paper, the correlations between two flow harmonics of different order are studied using the event-shape selection method. The ellipticity or triangularity of the events is selected based on the q_{2} or q_{3} signal in the forward pseudorapidity
range of $3.3<|\eta|<4.8 .{ }^{1}$ The values of v_{n} for $n=2$ to 5 are then measured at midrapidity $|\eta|<2.5$ using a two-particle correlation method, and the correlations between two flow harmonics are obtained. The procedure for obtaining v_{n} in this analysis is identical to that used in a previous ATLAS publication [11], which is also based on the same data set. The main difference is that, in this analysis, the events are classified both by their centrality and by the observed q_{2} or q_{3} at forward pseudorapidity. Most systematic uncertainties are common to the two analyses.

II. ATLAS DETECTOR AND TRIGGER

The ATLAS detector [30] provides nearly full solidangle coverage of the collision point with tracking detectors, calorimeters, and muon chambers. All of these are well suited for measurements of azimuthal anisotropies over a large pseudorapidity range. This analysis primarily uses two subsystems: the inner detector (ID) and the forward calorimeter (FCal). The ID is contained within the 2-T field of a superconducting solenoid magnet and measures the trajectories of charged particles in the pseudorapidity range $|\eta|<2.5$ and over the full azimuth. A charged particle passing through the ID traverses typically three modules of the silicon pixel detector (Pixel), four double-sided silicon strip modules of the semiconductor tracker (SCT), and a transition radiation tracker for $|\eta|<2$. The FCal consists of three sampling layers, longitudinal in shower depth, and covers $3.2<|\eta|<4.9$. The energies in the FCal are reconstructed and grouped into towers with segmentation in pseudorapidity and azimuthal angle of $\Delta \eta \times \Delta \phi \approx 0.2 \times 0.2$. In heavy-ion collisions, the FCal is used mainly to measure the event centrality and EPs [11,31]. In this analysis it is also used to classify the events in terms of q_{2} or q_{3} in the forward rapidity region.

The minimum-bias trigger used for this analysis requires signals in two zero-degree calorimeters (ZDCs) or either of the two minimum-bias trigger scintillator (MBTS) counters. The ZDCs are positioned at $\pm 140 \mathrm{~m}$ from the collision point, detecting neutrons and photons with $|\eta|>8.3$, and the MBTS covers $2.1<|\eta|<3.9$ on each side of the nominal interaction point. The ZDC trigger thresholds on each side are set below the peak corresponding to a single neutron. A timing requirement based on signals from each side of the MBTS is imposed to remove beam backgrounds.

III. EVENT AND TRACK SELECTION

This analysis is based on approximately $7 \mu \mathrm{~b}^{-1}$ of $\mathrm{Pb}+\mathrm{Pb}$ data collected in 2010 at the LHC with a nucleon-nucleon center-of-mass energy $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$. The off-line event

[^1]TABLE I. The list of centrality intervals and associated values of the average number of participating nucleons $N_{\text {part }}$ used in this analysis. The systematic uncertainties are taken from Ref. [32].

Centrality (\%)	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$
$N_{\text {part }}$	382 ± 2	330 ± 3	282 ± 4	240 ± 4	203 ± 4	170 ± 4
Centrality (\%)	$35-40$	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$
$N_{\text {part }}$	117 ± 4	95 ± 4	76 ± 4	60 ± 3	46 ± 3	35 ± 3

selection requires a reconstructed vertex and a time difference $|\Delta t|<3 \mathrm{~ns}$ between signals in the MBTS trigger counters on either side of the interaction point to suppress noncollision backgrounds. A coincidence between the ZDCs at forward and backward pseudorapidity is required to reject a variety of background processes, while maintaining high efficiency for inelastic processes. Events satisfying these conditions are further required to have a reconstructed primary vertex with $\left|z_{\mathrm{vtx}}\right|<150 \mathrm{~mm}$ from the nominal center of the ATLAS detector. About 48×10^{6} events pass the requirements.

The $\mathrm{Pb}+\mathrm{Pb}$ event centrality [32] is characterized using the total transverse energy (ΣE_{T}) deposited in the FCal over the pseudorapidity range $3.2<|\eta|<4.9$ at the electromagnetic energy scale [33]. From an analysis of this distribution after all trigger and event-selection requirements, the fraction of the inelastic cross section sampled is estimated to be $98 \pm 2 \%$. The uncertainty associated with the centrality definition is evaluated by varying the effect of trigger and event selection inefficiencies as well as background rejection requirements in the most peripheral FCal ΣE_{T} interval [32]. The FCal ΣE_{T} distribution is divided into a set of 5% percentile bins. A centrality interval refers to a percentile range, starting at 0% relative to the most central collisions. Thus, the $0 \%-5 \%$ centrality interval corresponds to the most central 5\% of the events. An MC Glauber analysis [32,34] is used to estimate the average number of participating nucleons, $N_{\text {part }}$, for each centrality interval. These are summarized in Table I. Following the convention of heavy-ion analyses, the centrality dependence of the results in this paper is presented as a function of $N_{\text {part }}$.

The harmonic flow coefficients v_{n} are measured using tracks in the ID that are required to have transverse momentum $p_{\mathrm{T}}>0.5 \mathrm{GeV}$ and $|\eta|<2.5$. At least nine hits in the silicon detectors are required for each track, with no missing Pixel hits and not more than one missing SCT hit, taking into account the effects of known dead modules. In addition, the point of closest approach of the track is required to be within 1 mm of the primary vertex in both the transverse and the longitudinal directions [31]. The efficiency $\epsilon\left(p_{\mathrm{T}}, \eta\right)$ of the track reconstruction and track selection requirements is evaluated using simulated $\mathrm{Pb}+\mathrm{Pb}$ events produced with the HIJING event generator (version 1.38b) [35]. The generated particles in each event are rotated in azimuthal angle according to the procedure described in Ref. [36] to give harmonic flow consistent with previous ATLAS measurements [11,31]. The response of the detector is simulated using GEANT4 $[37,38]$ and the resulting events are reconstructed with the same algorithms that are applied to the data. The absolute efficiency increases with p_{T} by 7% between 0.5 and 0.8 GeV and varies only weakly for $p_{\mathrm{T}}>0.8 \mathrm{GeV}$. However, the efficiency varies more strongly
with η and event multiplicity [31]. For $p_{\mathrm{T}}>0.8 \mathrm{GeV}$, it ranges from 72% at $\eta \approx 0$ to 57% for $|\eta|>2$ in peripheral collisions, while it ranges from 72% at $\eta \approx 0$ to about 42% for $|\eta|>2$ in central collisions.

IV. DATA ANALYSIS

A. Event-shape selection

The ellipticity or triangularity in each event is characterized by the so-called "flow vector" calculated from the transverse energy $\left(E_{\mathrm{T}}\right)$ deposited in the $\mathrm{FCal}[14,39]$,

$$
\begin{equation*}
\boldsymbol{q}_{m}=q_{m} e^{i m \Psi_{m}^{\mathrm{obs}}}=\frac{\Sigma w_{j} e^{-i m \phi_{j}}}{\Sigma w_{j}}-\left\langle\boldsymbol{q}_{m}\right\rangle_{\mathrm{evts}}, \quad m=2 \text { or } 3 \tag{7}
\end{equation*}
$$

where the weight w_{j} is the E_{T} of the j th tower at azimuthal angle ϕ_{j} in the FCal. Subtraction of the event-averaged centroid $\left\langle\boldsymbol{q}_{m}\right\rangle_{\mathrm{evts}}$ in Eq. (7) removes biases due to detector effects [40]. The angles Ψ_{m}^{obs} are the observed EPs, which fluctuate around the true EPs Φ_{m} owing to the finite number of particles in an event. A standard technique [41] is used to remove the small residual nonuniformities in the distribution of Ψ_{m}^{obs}. These procedures are identical to those used in several previous flow analyses $[11,13,14,40]$. To reduce the detector nonuniformities at the edge of the FCal, only the FCal towers whose centroids fall within the interval $3.3<|\eta|<4.8$ are used.

The \boldsymbol{q}_{m} defined above is insensitive to the energy scale in the calorimeter. In the limit of infinite multiplicity, it approaches the E_{T}-weighted single-particle flow:

$$
\begin{equation*}
\boldsymbol{q}_{m} \rightarrow \int E_{\mathrm{T}} \boldsymbol{v}_{m}\left(E_{\mathrm{T}}\right) d E_{\mathrm{T}} / \int E_{\mathrm{T}} d E_{\mathrm{T}} \tag{8}
\end{equation*}
$$

Hence, the q_{m} distribution is expected to follow closely the v_{m} distribution, except that it is smeared owing to the finite number of particles. Figure 1 shows the distributions of q_{2} and q_{3} in the $0 \%-1 \%$ most central collisions. These events are first divided into ten q_{m} intervals with equal number of events. Because the intervals at the highest and lowest q_{m} values cover much broader ranges, they are further divided into 5 and 2 smaller intervals, respectively, resulting in a total of $15 q_{m}$ intervals containing certain fractions of events. Starting at the low end of the q_{m} distribution, there are 2 intervals containing a fraction 0.05 (labeled $0.95-1$ and $0.9-0.95$), 8 intervals containing 0.1 , 3 containing $0.025,1$ containing 0.015 , and 1 containing 0.01 (this last interval spans the highest values of q_{m}). These 15 intervals are defined separately for each 1% centrality interval and are then grouped together to form wider centrality intervals used in this analysis (see Table I). For example, the first q_{m} interval for the $0 \%-5 \%$ centrality interval is the sum of the

FIG. 1. (Color online) The distributions of the magnitude of the flow vector, q_{2} (left) and q_{3} (right), calculated in the FCal via Eq. (7) in the 1% most central collisions. The vertical lines indicate the boundaries of the $15 q_{m}$ ranges, each containing a fraction of events as indicated.
first q_{m} interval in the five centrality intervals, $0 \%-1 \%, 1 \%-$ $2 \%, \ldots, 4 \%-5 \%$. The default analysis uses 15 nonoverlapping q_{m} intervals defined in Fig. 1. For better statistical precision, sometimes they are regrouped into wider q_{m} intervals.

B. Two-particle correlations

The two-particle correlation analysis closely follows a previous ATLAS publication [11], where it is described in detail, so the analysis is only briefly summarized here. For a given event class, the two-particle correlation is measured as a function of relative azimuthal angle $\Delta \phi=\phi_{\mathrm{a}}-\phi_{\mathrm{b}}$ and relative pseudorapidity $\Delta \eta=\eta_{\mathrm{a}}-\eta_{\mathrm{b}}$. The labels a and b denote the two particles in the pair, which may be selected from different p_{T} intervals. The two-particle correlation function is constructed as the ratio of distributions for same-event pairs [or foreground pairs $S(\Delta \phi, \Delta \eta)$] and mixed-event pairs [or background pairs $B(\Delta \phi, \Delta \eta)$]:

$$
\begin{equation*}
C(\Delta \phi, \Delta \eta)=\frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)} \tag{9}
\end{equation*}
$$

The mixed-event pair distribution is constructed from track pairs from two separate events with similar centrality and z_{vtx}, such that it properly accounts for detector inefficiencies and nonuniformity, but contains no physical correlations. Charged particles measured by the ID with a pair acceptance extending up to $|\Delta \eta|=5$ are used for constructing the correlation function.

This analysis focuses mainly on the shape of the correlation function in $\Delta \phi$. A set of one-dimensional (1D) $\Delta \phi$ correlation functions is built from the ratio of the foreground distributions to the background distributions, both projected onto $\Delta \phi$:

$$
\begin{equation*}
C(\Delta \phi)=\frac{\int S(\Delta \phi, \Delta \eta) d \Delta \eta}{\int B(\Delta \phi, \Delta \eta) d \Delta \eta} \tag{10}
\end{equation*}
$$

The normalization is fixed by scaling the number of the mixedevent pairs to be the same as the number of same-event pairs for $2<|\Delta \eta|<5$, which is then applied to all $\Delta \eta$ slices.

Figure 2 shows the 1D correlation functions for $2<|\Delta \eta|<$ 5 calculated in the low- p_{T} region $\left(0.5<p_{\mathrm{T}}^{\mathrm{a}, \mathrm{b}}<2 \mathrm{GeV}\right)$ in the

FIG. 2. (Color online) The correlation functions $C(\Delta \phi)$ for pairs with $|\Delta \eta|>2$ and $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ in $0 \%-5 \%$ centrality. The correlation functions for events with the largest 10% and smallest $10 \% q_{m}$ values are also shown for $m=2$ (left) and $m=3$ (right). The statistical uncertainties are smaller than the symbols.
$0 \%-5 \%$ most central collisions. The correlation functions are also shown for events selected with the largest and smallest q_{2} values (left panel) or q_{3} values (right panel). The magnitude of the modulation correlates strongly with the q_{m} value, reflecting the fact that the global ellipticity or triangularity can be selected by q_{2} or q_{3} in the forward rapidity interval. The correlation function for events with smallest q_{2} or largest q_{3} values shows a double-peak structure on the away side $(\Delta \phi \sim \pi)$. This structure reflects the dominant contribution of the triangular flow under these q_{m} selections. Similar double-peak structures are also observed in ultracentral $\mathrm{Pb}+\mathrm{Pb}$ collisions without event-shape selection [11,42].

The 1 D correlation function in $\Delta \phi$ is then expressed as a Fourier series:

$$
\begin{equation*}
C(\Delta \phi)=\frac{\int C(\Delta \phi) d \Delta \phi}{2 \pi}\left[1+2 \sum_{n} v_{n, n} \cos (n \Delta \phi)\right] \tag{11}
\end{equation*}
$$

The Fourier coefficients are calculated directly from the correlation function as $v_{n, n}=\langle\cos (n \Delta \phi)\rangle$. The single-particle azimuthal anisotropy coefficients v_{n} are obtained via the factorization relation commonly used for collective flow in heavy-ion collisions [11,12,43,44]:

$$
\begin{equation*}
v_{n, n}\left(p_{\mathrm{T}}^{\mathrm{a}}, p_{\mathrm{T}}^{\mathrm{b}}\right)=v_{n}\left(p_{\mathrm{T}}^{\mathrm{a}}\right) v_{n}\left(p_{\mathrm{T}}^{\mathrm{b}}\right) \tag{12}
\end{equation*}
$$

From Eq. (12), v_{n} is calculated as

$$
\begin{equation*}
v_{n}\left(p_{\mathrm{T}}\right)=v_{n, n}\left(p_{\mathrm{T}}, p_{\mathrm{T}}^{\mathrm{b}}\right) / \sqrt{v_{n, n}\left(p_{\mathrm{T}}^{\mathrm{b}}, p_{\mathrm{T}}^{\mathrm{b}}\right)} \tag{13}
\end{equation*}
$$

where $p_{\mathrm{T}}^{\mathrm{a}}$ is simply denoted by p_{T} from now on, and the default transverse momentum range for $p_{\mathrm{T}}^{\mathrm{b}}$ is chosen to be $0.5<p_{\mathrm{T}}^{\mathrm{b}}<$ 2 GeV , where the hydrodynamic viscous corrections are not too large. The v_{n} values obtained using this method measure, in effect, the root-mean-square (r.m.s.) values of the event-by-event v_{n} [43]. A detailed test of the factorization behavior was carried out $[11,12]$ by comparing the $v_{n}\left(p_{\mathrm{T}}\right)$ obtained for different $p_{\mathrm{T}}^{\mathrm{b}}$ ranges, and factorization was found to hold to within 10% for $p_{\mathrm{T}}^{\mathrm{b}}<4 \mathrm{GeV}$ for the centrality ranges studied in this paper.

C. Systematic uncertainties

Other than the classification of events according to q_{m} ($m=$ 2 or 3), the analysis procedure is nearly identical to the previous ATLAS measurement [11] based on the same data set. Most systematic uncertainties are the same, and they are summarized here.

The correlation function relies on the pair acceptance function to reproduce and cancel the detector acceptance effects in the foreground distribution. A natural way of quantifying the influence of detector effects on $v_{n, n}$ and v_{n} is to express the single-particle and pair acceptance functions as Fourier series [as in Eq. (11)] and measure the coefficients $v_{n}^{\text {det }}$ and $v_{n, n}^{\mathrm{det}}$. The resulting coefficients for pair acceptance, $v_{n, n}^{n}$, are the product of two single-particle acceptances, $v_{n}^{\text {det, a }}$ and $v_{n}^{\text {det, } \mathrm{b}}$. In general, the pair acceptance function in $\Delta \phi$ is quite flat: The maximum variation from its average is observed to be less than 0.001 , and the corresponding $\left|v_{n, n}^{\text {det }}\right|$ values are found to be less than 1.5×10^{-4}. These $v_{n, n}^{\text {det }}$ effects are expected to cancel to a large extent in the correlation function, and only a small fraction contributes to the uncertainties in the pair acceptance function. Three possible residual effects for $v_{n, n}^{\mathrm{det}}$ are studied in Ref. [11]: (1) the time dependence of the pair acceptance, (2) the effect of imperfect centrality matching, and (3) the effect of imperfect z_{vtx} matching. In each case, the residual $v_{n, n}^{\mathrm{det}}$ values are evaluated by a Fourier expansion of the ratio of the pair acceptances before and after the variation. The systematic uncertainty of the pair acceptance is the sum in quadrature of these three estimates, which is $\delta v_{n, n}<5 \times 10^{-6}$ for $2<|\Delta \eta|<5$. This absolute uncertainty is propagated to the uncertainty in v_{n}, and it is the dominant uncertainty when v_{n} is small, e.g., for v_{5} in central collisions. This uncertainty is found to be uncorrelated with the q_{m} selection, and hence it is assumed not to cancel between different q_{m} intervals.

A further type of systematic uncertainty includes the sensitivity of the analysis to track selection requirements and track reconstruction efficiency, variation of v_{n} between different running periods, and trigger and event selection. The effect of the track reconstruction efficiency was evaluated in Ref. [13]; the other effects were evaluated in Ref. [11]. Most systematic uncertainties cancel in the correlation function when dividing the foreground distribution by the background distribution. The estimated residual effects are summarized in Table II. Most of these uncertainties are expected to be correlated between different q_{m} intervals.

Finally, owing to the anisotropy of particle emission, the detector occupancy is expected to be larger in the direction of the EP, where the particle density is larger. Any occupancy effects depending on azimuthal angle may lead to a small angle-dependent efficiency variation, which may slightly reduce the measured v_{n} coefficients. The magnitude of such an occupancy-dependent variation in tracking efficiency is evaluated using the HIJING simulation with flow imposed on

TABLE II. Relative systematic uncertainties on the measured v_{n} owing to track selection requirements, track reconstruction efficiency, variation between different running periods, trigger selection, consistency between true and reconstructed v_{n} in HIJING simulation, and the quadrature sum of individual terms. Most of these uncertainties are correlated between different ranges of q_{m} ($m=2$ or 3).

	v_{2}	v_{3}	v_{4}	v_{5}	q_{m} dependent
Track selection (\%)	0.3	0.3	1.0	2.0	Yes
Track reconstruction efficiency (\%)	$0.1-1.0$	$0.2-1.5$	$0.2-2.0$	$0.3-2.5$	Yes
Running periods (\%)	$0.3-1.0$	$0.7-2.1$	$1.2-3.1$	2.3	No
Trigger (\%)	$0.5-1.0$	$0.5-1.0$	$0.5-1$	1.0	Yes
MC closure and occupancy effects (\%)	1.0	1.5	2.0	3.5	Yes
Sum of above (\%)	$1.2-2.0$	$1.8-3.2$	$2.6-4.4$	$4.7-5.4$	

the generated particles [13]. The reconstructed v_{n} values are compared to the generated v_{n} signal. The differences are taken as an estimate of the systematic uncertainties. These differences are found to be a few percent or less and are included in Table II. Because this effect is proportional to the flow signal, it is expected to partially cancel between different q_{m} ranges.

V. RESULTS

A. Fourier coefficients $\boldsymbol{v}_{\boldsymbol{n}}$ and their correlations with $\boldsymbol{q}_{\boldsymbol{m}}$

Figure 3 shows the $v_{n}\left(p_{\mathrm{T}}\right)$ for $n=2$ to 5 extracted via Eq. (13) for events in the $20 \%-30 \%$ centrality interval. The results show nontrivial correlations with both the q_{2} (left column) or q_{3} (right column) selections. In the case of the q_{2} selection, the v_{2} values are largest for events selected with the largest q_{2} and smallest for events selected with the smallest q_{2}, with a total change of more than a factor of two. A similar dependence on q_{2} is also seen for $v_{4}\left(p_{\mathrm{T}}\right)$ and $v_{5}\left(p_{\mathrm{T}}\right)$ (two bottom panels). In contrast, the extracted $v_{3}\left(p_{\mathrm{T}}\right)$ values are anticorrelated with q_{2}; the overall change in $v_{3}\left(p_{\mathrm{T}}\right)$ is also significantly smaller ($<20 \%$ across the q_{2} range). In the case of the q_{3} selection, a strong positive correlation is observed for v_{3} and v_{5}, and a weak anticorrelation is observed for v_{2} and v_{4}. All these correlations are observed to be nearly independent of p_{T}, suggesting that the response of v_{n} to the change in the event shape is largely independent of p_{T}. As a consistency check, the inclusive results without q_{m} selection are compared with previously published results from Ref. [11]: The differences are less than 0.6% for v_{2} and increase to $2 \%-3 \%$ for higher harmonics, which are well within the systematic uncertainties quoted in Table II.

Figure 4 shows the correlation between v_{n} and q_{m} for $m=2$ (left column) and $m=3$ (right column) in several centrality intervals in a low p_{T} range $\left(0.5<p_{\mathrm{T}}<2 \mathrm{GeV}\right)$. Because the $v_{n}-q_{m}$ correlation depends only weakly on p_{T}, this plot captures the essential features of the correlation between v_{n} and q_{m} shown in Fig. 3. Owing to the finite number of particles in an event, the measured q_{m} values fluctuate relative to the true values, diluting the correlations with v_{n}. The influence of smearing on the q_{2} is much smaller than that for the q_{3} simply because the v_{2} signal is much bigger than the v_{3} signal. However, because both the $v_{m}-q_{m}$ and the $v_{n}-q_{m}$ correlations are measured, the results are presented directly as $v_{m}-v_{n}$ correlations for various q_{m} selections. The level of detail contained in the $v_{m}-v_{n}$ correlation is controlled by the dynamic range of v_{m} when varying the q_{m} selection. This dynamic range depends strongly on event centrality. For example, in the $10 \%-15 \%$ centrality interval, v_{2} is varied by a factor of 3.1 by selecting on q_{2} and v_{3} is varied by a factor of 2.4 by selecting on q_{3}. In the $40 \%-45 \%$ centrality interval, however, owing to stronger statistical smearing of q_{m}, the v_{2} and v_{3} are only varied by a factor of 2.7 and 1.7 , respectively. Hence, the event-shape selection is precise in central and midcentral collisions and is expected to be less precise in peripheral collisions.

In general, correlations $v_{m}-q_{m}$ and $v_{n}-q_{m}$ can be measured in different p_{T} ranges, and the derived $v_{m}-v_{n}$ correlation can be categorized into three types: (1) the correlation between v_{m} in two different p_{T} ranges, $v_{m}\left\{p_{\mathrm{T}}^{\mathrm{a}}\right\}-v_{m}\left\{p_{\mathrm{T}}^{\mathrm{b}}\right\}$, (2) the correlation between v_{m} and another flow harmonic of different order v_{n} in the same p_{T} range, $v_{m}\left\{p_{\mathrm{T}}\right\}-v_{n}\left\{p_{\mathrm{T}}\right\}$, and (3) the correlation between
v_{m} and v_{n} in different p_{T} ranges, $v_{m}\left\{p_{\mathrm{T}}^{\mathrm{a}}\right\}-v_{n}\left\{p_{\mathrm{T}}^{\mathrm{b}}\right\}$. However, the $v_{m}\left\{p_{\mathrm{T}}^{\mathrm{a}}\right\}-v_{n}\left\{p_{\mathrm{T}}^{\mathrm{b}}\right\}$ correlation can be obtained by combining two correlations, $v_{m}\left\{p_{\mathrm{T}}^{\mathrm{a}}\right\}-v_{m}\left\{p_{\mathrm{T}}^{\mathrm{b}}\right\}$ and $v_{m}\left\{p_{\mathrm{T}}^{\mathrm{b}}\right\}-v_{n}\left\{p_{\mathrm{T}}^{\mathrm{b}}\right\}$, so it does not carry independent information. This paper, therefore, focuses on the first two types of correlation.

The results for $v_{m}-v_{n}$ correlations are organized as follows. Section VB presents correlations of v_{2} or v_{3} between two different p_{T} ranges. The $v_{2}-v_{3}$ correlations are discussed in Sec. V C. This is followed by $v_{2}-v_{4}$ and $v_{3}-v_{4}$ correlations in Sec. V D and $v_{2}-v_{5}$ and $v_{3}-v_{5}$ correlations in Sec. V E, where a detailed analysis is performed to separate the linear and nonlinear components of v_{4} and v_{5}. The eccentricity scaling behavior of the extracted linear component of v_{n} is presented in Sec. V F.

B. Correlation of $\boldsymbol{v}_{\mathbf{2}}$ or $\boldsymbol{v}_{\mathbf{3}}$ between two different $\boldsymbol{p}_{\mathrm{T}}$ ranges

Figure 5 shows the correlation of v_{m} for $m=2$ (left panel) or $m=3$ (right panel) between two p_{T} ranges for various centrality intervals. The x axis represents v_{m} values in the $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ range, while the y axis represents v_{m} values from a higher range of $3<p_{\mathrm{T}}<4 \mathrm{GeV}$. Each data point corresponds to a 5% centrality interval within the overall centrality range of $0 \%-70 \%$. Going from central collisions (left end of the data points) to the peripheral collisions (right end of the data points), v_{m} first increases and then decreases along both axes, reflecting the characteristic centrality dependence of v_{m}, well known from previous flow analyses $[10,11]$. The rate of decrease is larger at higher p_{T}, resulting in a "boomeranglike" structure in the correlation. The stronger centrality dependence of v_{m} at higher p_{T} is consistent with larger viscous-damping effects expected from hydrodynamic calculations [45].

In the next step, events in each centrality interval are further divided into q_{m} intervals, as described in Sec. IV A. With this further subdivision, each data point in Fig. 5 turns into a group of data points, which may follow a different correlation pattern. These data points are shown in Fig. 6 (markers) overlaid with the overall centrality dependence prior to the event-shape selection from Fig. 5 (the "boomerang"). For clarity, the results are shown only for seven selected centrality intervals. Unlike the centrality dependence, the v_{m} correlation within a given centrality interval approximately follows a straight line passing very close to the origin. The small nonzero intercepts can be attributed to a residual centrality dependence of the $v_{m}-v_{m}$ correlation within the finite centrality intervals used. This approximately linear correlation suggests that, once the event centrality or the overall event multiplicity is fixed, the viscous-damping effects on v_{m} change very little with the variation of the event shape via q_{m} selection. The influence of viscosity on flow harmonics is mainly controlled by the event centrality (or the overall system size).

C. $v_{2}-v_{3}$ correlation

Figure 7(a) shows the centrality dependence of the correlation between v_{2} and v_{3} measured in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$. The boomeranglike structure in this case reflects mostly the fact that v_{3} has a much weaker centrality dependence than v_{2} [11]. Figure 7(b) overlays the centrality dependence of the $v_{2}-v_{3}$ correlation (thick solid line) with those obtained for

FIG. 3. (Color online) The harmonic flow coefficients $v_{n}\left(p_{\mathrm{T}}\right)$ in the $20 \%-30 \%$ centrality interval for events selected on either q_{2} (left column) or q_{3} (right column) for $n=2$ (top row), $n=3$ (second row), $n=4$ (third row), and $n=5$ (bottom row). They are calculated for reference p_{T} of $0.5<p_{\mathrm{T}}^{\mathrm{b}}<2 \mathrm{GeV}$ [Eq. (13)]. The top part of each panel shows the $v_{n}\left(p_{\mathrm{T}}\right)$ for events in the $0-0.1,0.1-0.2,0.7-0.8$, and $0.9-1$ fractional ranges of q_{m} (open symbols), as well as for inclusive events without q_{m} selection (solid symbols). The bottom part of each panel shows the ratios of the $v_{n}\left(p_{\mathrm{T}}\right)$ for q_{m}-selected events to those obtained for all events. Only statistical uncertainties are shown.

FIG. 4. (Color online) The correlations between v_{n} and q_{2} (left column) and q_{3} (right column) in four centrality intervals with $n=2$ (top row), $n=3$ (second row), $n=4$ (third row), and $n=5$ (bottom row), where v_{n} is calculated in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$. Only statistical uncertainties are shown. The lines connecting data points are for guidance only.

FIG. 5. (Color online) The correlation of the v_{m} between $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ (x axis) and $3<p_{\mathrm{T}}<4 \mathrm{GeV}$ (y axis) for $m=2$ (left) and $m=3$ (right). The v_{m} values are calculated for fourteen 5% centrality intervals in the centrality range $0 \%-70 \%$ without event-shape selection. The data points are connected to show the boomerang trend from central to peripheral collisions, as indicated. The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively. These uncertainties are often smaller than the symbol size.
different q_{2} event classes (markers). The correlation within a fixed centrality interval follows a path very different from the centrality dependence: The v_{2} and v_{3} are always anticorrelated with each other within a given centrality, whereas they are positively correlated as a function of centrality. Because the v_{2} and v_{3} are driven by the initial eccentricities, $v_{2} \propto \epsilon_{2}$ and $v_{3} \propto \epsilon_{3}$, one may expect similar anticorrelation between ϵ_{2} and ϵ_{3}. Indeed, a calculation based on a multiphase transport model [46] shows that such anticorrelations exist in the initial geometry and they are transferred into similar anticorrelations between v_{2} and v_{3} by the collective expansion [28].

To illustrate this anticorrelation more clearly, the $v_{2}-v_{3}$ correlation data are replotted in Fig. 8, separately for each centrality. The data are compared with the $\epsilon_{2}-\epsilon_{3}$ correlations calculated via Eq. (2) from the MC Glauber model [34] and the MC-KLN model [47]. The MC-KLN model is based on the MC Glauber model, but takes into account gluon saturation effects in the initial geometry. One hundred million events were generated for each model and grouped into centrality intervals according to the impact parameter. The r.m.s. ϵ_{n} value for each centrality interval is rescaled by a factor s_{n} to match the inclusive v_{n} value, which effectively is also the r.m.s. value of

FIG. 6. (Color online) The correlation of v_{m} between the $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ (x axis) and $3<p_{\mathrm{T}}<4 \mathrm{GeV}$ range (y axis) for $m=2$ (left) and $m=3$ (right) in various centrality intervals. The data points are calculated in various q_{m} intervals defined in Fig. 1 for each centrality, and they increase monotonically with increasing q_{m} value. These data are overlaid with the centrality dependence without q_{m} selection from Fig. 5 . The thin solid straight lines represent a linear fit of the data in each centrality interval, and error bars represent the statistical uncertainties.

FIG. 7. (Color online) The correlation of v_{2} (x axis) with v_{3} (y axis) both measured in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$. The left panel shows the v_{2} and v_{3} values for fourteen 5% centrality intervals over the centrality range $0 \%-70 \%$ without event-shape selection. The data points are connected to show the boomerang trend from central to peripheral collisions, as indicated. The right panel shows the v_{2} and v_{3} values in the $15 q_{2}$ intervals in seven centrality ranges (markers) with larger v_{2} value corresponding to larger q_{2} value; they are overlaid with the centrality dependence from the left panel. The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
v_{n} [see Eq. (13)]:

$$
\begin{equation*}
s_{n}=\frac{v_{n}}{\sqrt{\left\langle\epsilon_{n}^{2}\right\rangle}} \tag{14}
\end{equation*}
$$

The parameter s_{n} changes with centrality but is assumed to be a constant within a given centrality interval. These constants are then used to rescale the $\epsilon_{2}-\epsilon_{3}$ correlation to be compared with the $v_{2}-v_{3}$ correlation in each centrality interval, as shown in Fig. 8. In most centrality intervals the rescaled $\epsilon_{2}-\epsilon_{3}$ correlation shows very good agreement with the $v_{2}-v_{3}$ correlation seen in the data. However, significant deviations are observed in more central collisions ($0 \%-20 \%$ centrality range). Therefore, the $v_{2}-v_{3}$ correlation data presented in this analysis can provide valuable constraints for further tuning of the initial-geometry models. The $v_{2}-v_{3}$ correlations in Fig. 8 are parametrized by a linear function,

$$
\begin{equation*}
v_{3}=k v_{2}+v_{3}^{0} \tag{15}
\end{equation*}
$$

where the intercept v_{3}^{0} provides an estimate of the asymptotic v_{3} value for events that have zero v_{2} for each centrality. The fit parameters are summarized as a function of centrality ($N_{\text {part }}$) in the last two panels of Fig. 8.

D. $v_{2}-v_{4}$ and $v_{3}-v_{4}$ correlations

Figure 9(a) shows the correlation between v_{2} and v_{4} in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ prior to the event-shape selection. The boomeranglike structure is less pronounced than that for the $v_{2}-v_{3}$ correlation shown in Fig. 7(a). Figure 9(b) shows the $v_{2}-v_{4}$ correlation for different q_{2} event classes (markers) overlaid with the centrality dependence taken from Fig. 9(a) (thick solid line). The correlation within a given centrality interval is broadly similar to the trend of the correlation without event-shape selection, but without any boomerang
effect. Instead, the shape of the correlation exhibits a nonlinear rise for large v_{2} values.

To understand further the role of the linear and nonlinear contributions to v_{4}, the $v_{2}-v_{4}$ correlation data in Fig. 9 are shown again in Fig. 10, separately for each centrality. The data are compared with the $\epsilon_{2}-\epsilon_{4}$ correlation rescaled according to Eq. (14). The rescaled $\epsilon_{2}-\epsilon_{4}$ correlations fail to describe the data, suggesting that the linear component alone associated with ϵ_{4} in Eq. (5) is not sufficient to explain the measured $v_{2}-v_{4}$ correlation.

To separate the linear and nonlinear components in the $v_{2}-v_{4}$ correlation, the data are fitted to the following functional form:

$$
\begin{equation*}
v_{4}=\sqrt{c_{0}^{2}+\left(c_{1} v_{2}^{2}\right)^{2}} \tag{16}
\end{equation*}
$$

This function is derived from Eq. (5), by ignoring the higher-order nonlinear terms (those in ". . ") and a possible cross term that is proportional to $\left\langle\cos 4\left(\Psi_{2}-\Psi_{4}\right)\right\rangle$. The fits, which are shown in Fig. 10, describe the data well for all centrality intervals. The excellent description of the data by the fits suggests that either the contributions from higher-order nonlinear terms and $\left\langle\cos 4\left(\Psi_{2}-\Psi_{4}\right)\right\rangle$ are small or the crossterm is, in effect, included in the nonlinear component of the fits. The centrality ($N_{\text {part }}$) dependence of the fit parameters is shown in the last two panels of Fig. 10.

The c_{0} term from the fits can be used to decompose v_{4}, without q_{2} selection, into linear and nonlinear terms for each centrality interval as

$$
\begin{equation*}
v_{4}^{\mathrm{L}}=c_{0}, \quad v_{4}^{\mathrm{NL}}=\sqrt{v_{4}^{2}-c_{0}^{2}} \tag{17}
\end{equation*}
$$

The results as a function of centrality are shown in Fig. 11 (open circles and squares). The linear term associated with ϵ_{4} depends only weakly on centrality and becomes the dominant part of v_{4} for $N_{\text {part }}>150$, or $0 \%-30 \%$ centrality

FIG. 8. (Color online) The correlation of v_{2} (x axis) with v_{3} (y axis) in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ for $15 q_{2}$ selections in thirteen 5% centrality intervals. The data are compared with the rescaled $\epsilon_{2}-\epsilon_{3}$ correlation from MC Glauber and MC-KLN models in the same centrality interval. The data are also parametrized with a linear function [Eq. (15)], taking into account both the statistical and the systematic uncertainties. The $N_{\text {part }}$ dependence of the fit parameters is shown in the last two panels. The error bars and shaded bands represent the statistical and systematic uncertainties, respectively.

FIG. 9. (Color online) The correlation of v_{2} (x axis) with v_{4} (y axis) both measured in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$. The left panel shows the v_{2} and v_{4} values for thirteen 5% centrality intervals over the centrality range $0 \%-65 \%$ without event-shape selection. The data points are connected to show the boomerang trend from central to peripheral collisions, as indicated. The right panel shows the v_{2} and v_{4} values in different q_{2} intervals in seven centrality ranges (markers) with larger v_{2} value corresponding to larger q_{2} value; they are overlaid with the centrality dependence from the left panel. The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.
range. The nonlinear term increases as the collisions become more peripheral and becomes the dominant part of v_{4} for $N_{\text {part }}<120$.

Because the contributions of higher-order nonlinear terms are small, as suggested by the fits discussed above, the linear and nonlinear contributions can also be estimated directly from the previously published EP correlator $\left\langle\cos 4\left(\Phi_{2}-\Phi_{4}\right)\right\rangle$ from ATLAS [14]:
$v_{4}^{\mathrm{NL}, \mathrm{EP}}=v_{4}\left\langle\cos 4\left(\Phi_{2}-\Phi_{4}\right)\right\rangle, \quad v_{4}^{\mathrm{L}, \mathrm{EP}}=\sqrt{v_{4}^{2}-\left(v_{4}^{\mathrm{NL}, \mathrm{EP}}\right)^{2}}$.

Results for this decomposition are shown in Fig. 11 (the hashed bands labeled EP), and they agree with the result obtained from the present analysis.

Figure 12(a) shows the correlation between v_{3} and v_{4} in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ prior to the event-shape selection. The data fall nearly on a single curve, reflecting the similar centrality dependence trends for v_{3} and v_{4} [11]. Figure 12(b) shows the $v_{3}-v_{4}$ correlation for different q_{3} event classes (colored symbols) overlaid with the centrality dependence taken from Fig. 12(a) (thick solid line). A slight anticorrelation between v_{3} and v_{4} is observed, which is consistent with the fact that v_{4} has a large nonlinear contribution from v_{2} (Fig. 11), which, in turn, is anticorrelated with v_{3} (Fig. 7).

E. $v_{2}-v_{5}$ and $v_{3}-v_{5}$ correlations

The analysis of $v_{2}-v_{5}$ and $v_{3}-v_{5}$ correlations proceeds in the same manner as for the $v_{2}-v_{4}$ and $v_{3}-v_{4}$ correlations. A separation of the linear and nonlinear components of v_{5} is made.

Figure 13 shows the $v_{2}-v_{5}$ correlation in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ with q_{2} selection, separately for each centrality interval.

The data are compared with the $\epsilon_{2}-\epsilon_{5}$ correlations rescaled according to Eq. (14). The rescaled $\epsilon_{2}-\epsilon_{5}$ correlations fail to describe the data in all centrality intervals, suggesting that the nonlinear contribution in Eq. (6) is important. To separate the linear and nonlinear component in the $v_{2}-v_{5}$ correlation, the data are fitted with the function

$$
\begin{equation*}
v_{5}=\sqrt{c_{0}^{2}+\left(c_{1} v_{2} v_{3}\right)^{2}} \tag{19}
\end{equation*}
$$

where the higher-order nonlinear terms in Eq. (6) and a possible cross-term associated with $\left\langle\cos \left(2 \Psi_{2}+3 \Psi_{3}-5 \Psi_{5}\right)\right\rangle$ are dropped. For each centrality interval, Eq. (15) is used to fix the v_{3} value for each v_{2} value. The fits are shown in Fig. 13 and describe the data well for all centrality intervals. The centrality ($N_{\text {part }}$) dependence of the fit parameters is shown in the last two panels of Fig. 13. The c_{0} represents an estimate of the linear component of v_{5}, and the nonlinear term is driven by c_{1}, which has a value of $\sim 1.5-2$.

Figure 14 shows the $v_{3}-v_{5}$ correlations with q_{3} selection in various centrality intervals. If Eq. (19) is a valid decomposition of v_{5}, then it should also describe these correlations. Figure 14 shows that this indeed is the case. The parameters extracted from a fit to Eq. (19), as shown in the last two panels of Fig. 14, are consistent with those obtained from $v_{2}-v_{5}$ correlations.

From the fit results in Figs. 13 and 14, the inclusive v_{5} values prior to event-shape selection are decomposed into linear and nonlinear terms for each centrality interval as

$$
\begin{equation*}
v_{5}^{\mathrm{L}}=c_{0}, \quad v_{5}^{\mathrm{NL}}=\sqrt{v_{5}^{2}-c_{0}^{2}} \tag{20}
\end{equation*}
$$

The results as a function of centrality are shown in the two panels of Fig. 15, corresponding to Figs. 13 and 14, respectively. Results for the two decompositions show consistent centrality dependence: The linear term associated with ϵ_{5} dominates

FIG. 10. (Color online) The correlation of v_{2} (x axis) with v_{4} (y axis) in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ for $15 q_{2}$ selections in thirteen 5% centrality intervals. The data are compared with the rescaled $\epsilon_{2}-\epsilon_{4}$ correlation from MC Glauber and MC-KLN models in the same centrality interval. The data are also parametrized with Eq. (16), taking into account both statistical and systematic uncertainties. The $N_{\text {part }}$ dependence of the fit parameters is shown in the last two panels. The error bars and shaded bands represent the statistical and systematic uncertainties, respectively.

FIG. 11. (Color online) The centrality ($N_{\text {part }}$) dependence of the v_{4} in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ and the associated linear and nonlinear components extracted from the fits in Fig. 10 and Eq. (17). They are compared with the linear and nonlinear component estimated from the previously published EP correlations [14] via Eq. (18). The error bars represent the statistical uncertainties, while the shaded bands or hashed bands represent the systematic uncertainties.
the v_{5} signal only in the most central collisions ($N_{\text {part }}>300$ or $0 \%-10 \%$ centrality). The nonlinear term increases as the collisions become more peripheral and becomes the dominant part of v_{5} for $N_{\text {part }} \lesssim 280$.

Similar to the case of $v_{2}-v_{4}$ correlation, the linear and nonlinear contribution to v_{5} can also be estimated directly from the previously published EP correlator $\left\langle\cos \left(2 \Phi_{2}+3 \Phi_{3}-5 \Phi_{5}\right)\right\rangle$
from ATLAS [14]:

$$
\begin{align*}
v_{5}^{\mathrm{NL}, \mathrm{EP}} & =v_{5}\left\langle\cos \left(2 \Phi_{2}+3 \Phi_{3}-5 \Phi_{5}\right)\right\rangle \\
v_{5}^{\mathrm{L}, \mathrm{EP}} & =\sqrt{v_{5}^{2}-\left(v_{5}^{\mathrm{NL}, \mathrm{EP}}\right)^{2}} \tag{21}
\end{align*}
$$

Results for this decomposition are shown as solid curves in Fig. 15, and they agree well with the result obtained in the present analysis.

F. Eccentricity-scaled $\boldsymbol{v}_{\boldsymbol{n}}$

One quantity often used to characterize the collective response of the medium to the initial geometry is the response coefficient k_{n} defined in Eq. (4). Because the v_{n} obtained from the two-particle correlation method effectively measure the r.m.s. values of the event-by-event v_{n} [43], a more appropriate quantity to characterize the collective response is the ratio of v_{n} to the r.m.s. eccentricity [22,24]: $v_{n} / \sqrt{\left\langle\epsilon_{n}^{2}\right\rangle}$. This quantity can be directly calculated for v_{2} and v_{3} because they are mostly driven by ϵ_{2} and ϵ_{3}. However, for higher-order flow harmonics, it is more appropriate to use the extracted linear component v_{n}^{L} to make the ratios as it is more directly related to the ϵ_{n}. The v_{n}^{L} is taken as the c_{0} term obtained from the two-component fits in Fig. 10 for $n=4$ and Fig. 13 for $n=5$. Figure 16 shows the centrality dependence of $v_{n} / \sqrt{\left\langle\epsilon_{n}^{2}\right\rangle}$ for $n=2$ and 3 and $v_{n}^{\mathrm{L}} / \sqrt{\left\langle\epsilon_{n}^{2}\right\rangle}$ for $n=4$ and 5 (denoted by "linear" in figure legend), with ϵ_{n} calculated in the MC Glauber model (left panel) and MC-KLN model (right panel). The higher-order flow harmonics show increasingly strong centrality dependence, which is consistent with the stronger viscous-damping effects, as expected from hydrodynamic model calculations [16,48,49]. For comparison, the ratios are also shown for the full v_{4} and v_{5} values without the linear and nonlinear decomposition, i.e., $v_{4} / \sqrt{\left\langle\epsilon_{4}^{2}\right\rangle}$ (open diamonds) and

FIG. 12. (Color online) The correlation of v_{3} (x axis) with v_{4} (y axis), both measured in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$. The left panel shows the v_{3} and v_{4} values in thirteen 5% centrality intervals over the centrality range $0 \%-65 \%$ without event-shape selection. The data points are connected to show the boomerang trend from central to peripheral collisions, as indicated. The right panel shows the v_{3} and v_{4} values for $14 q_{3}$ selections (the two highest q_{3} intervals in Fig. 1 are combined) in several centrality ranges (markers) with larger v_{3} value corresponding to larger q_{3} value; they are overlaid with the centrality dependence from the left panel. The error bars and shaded boxes represent the statistical and systematic uncertainties, respectively.

FIG. 13. (Color online) The correlation of v_{2} (x axis) with v_{5} (y axis) in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ for $14 q_{2}$ selections (the two highest q_{2} intervals in Fig. 1 are combined) in nine 5% centrality intervals. The data are compared with the rescaled $\epsilon_{2}-\epsilon_{5}$ correlation from MC Glauber and MC-KLN models in the same centrality interval. The data are also parametrized with Eq. (19), taking into account both statistical and systematic uncertainties. The $N_{\text {part }}$ dependence of the fit parameters is shown in the last two panels. The error bars and shaded bands represent the statistical and systematic uncertainties, respectively.
$v_{5} / \sqrt{\left\langle\epsilon_{5}^{2}\right\rangle}$ (open crosses); they show much weaker centrality dependence owing to the dominance of nonlinear contributions to more peripheral collisions.

VI. CONCLUSION

Correlations between v_{m} coefficients for $m=2$ or 3 in different p_{T} ranges, and the correlation between v_{m} and other

FIG. 14. (Color online) The correlation of $v_{3}\left(x\right.$ axis) with v_{5} (y axis) in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ for $14 q_{3}$ selections (the two highest q_{3} intervals in Fig. 1 are combined) in nine 5% centrality intervals. The data are compared with the rescaled $\epsilon_{3}-\epsilon_{5}$ correlation from MC Glauber and MC-KLN models in the same centrality interval. The data are also parametrized with Eq. (19), taking into account both statistical and systematic uncertainties. The $N_{\text {part }}$ dependence of the fit parameters is shown in the last two panels. The error bars and shaded bands represent the statistical and systematic uncertainties, respectively.
flow harmonics v_{n} for $n=2$ to 5 in the same $p_{\text {T }}$ range, are presented using $7 \mu \mathrm{~b}^{-1}$ of $\mathrm{Pb}+\mathrm{Pb}$ collision data at $\sqrt{s_{N N}}=$ 2.76 TeV collected in 2010 by the ATLAS experiment at the LHC. The $v_{m}-v_{n}$ correlations are measured for events within a given narrow centrality interval using an event-shape selection method. Beside the centrality selection, this method makes a
further classification of events according to their raw elliptic flow signal q_{2} or raw triangular flow signal q_{3} in the forward rapidity range $3.3<|\eta|<4.8$. For each q_{m} bin, the v_{m} and v_{n} coefficients are calculated at midrapidity $|\eta|<2.5$ using a twoparticle correlation method, and hence the differential $v_{m}-v_{n}$ correlation within each centrality interval can be obtained.

FIG. 15. (Color online) The centrality ($N_{\text {part }}$) dependence of the v_{5} in $0.5<p_{\mathrm{T}}<2 \mathrm{GeV}$ and the associated linear and nonlinear components extracted from the fits in Figs. 13 and 14 and Eq. (20). They are compared with the linear and the nonlinear components estimated from the previous published EP correlation [14] via Eq. (21). The error bars represent the statistical uncertainties, while the shaded bands or hashed bands represent the systematic uncertainties.

The correlation of v_{m} between two different p_{T} ranges shows a complex centrality dependence, but within a narrow centrality interval the correlation varies linearly with the event shape as determined by q_{2} or q_{3}. This linearity indicates that the viscous effects are controlled by the system size, not by its
overall shape. An anticorrelation is observed between v_{2} and v_{3} within a given centrality interval and agrees qualitatively with similar anticorrelation between corresponding eccentricities ϵ_{2} and ϵ_{3}, indicating that these correlations are associated with initial-geometry effects.

FIG. 16. (Color online) The eccentricity-scaled v_{n} or the estimated linear component v_{n}^{L} obtained from two-component fits, $v_{2} / \sqrt{\left\langle\epsilon_{2}^{2}\right\rangle}$ (circles), $v_{3} / \sqrt{\left\langle\epsilon_{3}^{2}\right\rangle}$ (boxes), $v_{4}^{\mathrm{L}} / \sqrt{\left\langle\epsilon_{4}^{2}\right\rangle}$ (solid diamonds), $v_{5}^{\mathrm{L}} / \sqrt{\left\langle\epsilon_{5}^{2}\right\rangle}$ (solid crosses), $v_{4} / \sqrt{\left\langle\epsilon_{4}^{2}\right\rangle}$ (open diamonds), and $v_{5} / \sqrt{\left\langle\epsilon_{5}^{2}\right\rangle}$ (open crosses). The eccentricities are calculated from the MC Glauber model (left) and the MC-KLN model (right). The error bars represent the statistical uncertainties, while the shaded bands or hashed bands represent the systematic uncertainties.

The v_{4} is found to increase strongly with v_{2}, and v_{5} is found to increase strongly with both v_{2} and v_{3} within a given centrality interval. The trends and the strengths of $v_{2}-v_{4}$, $v_{2}-v_{5}$, and $v_{3}-v_{5}$ correlations disagree with corresponding $\epsilon_{m}-\epsilon_{n}$ correlations predicted by MC Glauber and MC-KLN initial-geometry models. Instead, these correlations are found to be consistent with a combination of a linear contribution to v_{4} from ϵ_{4} and to v_{5} from ϵ_{5}, together with a nonlinear term that is a function of v_{2}^{2} or of $v_{2} v_{3}$, as predicted by hydrodynamic models $[23,26]$. The functional form of these nonlinear contributions is eclipsed in the overall centrality dependence, but has been directly exposed in the event-shape-selected measurements reported here. A simple two-component fit is used to separate these two contributions in v_{4} and v_{5}. The extracted linear and nonlinear contributions are found to be consistent with those obtained from previously measured EP correlations.

To quantify the response of the medium to the initial geometry, the extracted linear components of v_{4} and $v_{5}, v_{4}^{\mathrm{L}}$ and v_{5}^{L}, are scaled by the r.m.s. eccentricity of corresponding order. The scaled quantities, $v_{4}^{\mathrm{L}} / \sqrt{\left\langle\epsilon_{4}^{2}\right\rangle}$ and $v_{5}^{\mathrm{L}} / \sqrt{\left\langle\epsilon_{5}^{2}\right\rangle}$, show stronger centrality dependence than the similarly scaled quantities for elliptic flow and triangular flow, consistent with the stronger viscous-damping effects expected for higher-order harmonics.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We
acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; EPLANET, ERC, and NSRF, European Union; IN2P3CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society, and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide.
[1] M. Gyulassy, D. H. Rischke, and B. Zhang, Nucl. Phys. A 613, 397 (1997).
[2] B. Alver et al. (PHOBOS Collaboration), Phys. Rev. Lett. 98, 242302 (2007).
[3] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[4] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010).
[5] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013).
[6] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).
[7] M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014).
[8] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 107, 252301 (2011).
[9] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 88, 014904 (2013).
[10] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 107, 032301 (2011).
[11] ATLAS Collaboration, Phys. Rev. C 86, 014907 (2012).
[12] CMS Collaboration, Phys. Rev. C 89, 044906 (2014).
[13] ATLAS Collaboration, J. High Energy Phys. 11 (2013) 183.
[14] ATLAS Collaboration, Phys. Rev. C 90, 024905 (2014).
[15] M. Luzum and J.-Y. Ollitrault, Nucl. Phys. A 904-905, 377c (2013).
[16] D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011).
[17] C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett. 110, 012302 (2013).
[18] H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, Phys. Rev. C 87, 054901 (2013).
[19] Z. Qiu and U. Heinz, Phys. Lett. B 717, 261 (2012).
[20] D. Teaney and L. Yan, Phys. Rev. C 90, 024902 (2014).
[21] S. A. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).
[22] Z. Qiu and U. Heinz, Phys. Rev. C 84, 024911 (2011).
[23] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 85, 024908 (2012).
[24] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, arXiv:0809.2949 [nucl-ex].
[25] D. Teaney and L. Yan, Phys. Rev. C 86, 044908 (2012).
[26] D. Teaney and L. Yan, Nucl. Phys. A 904, 365c (2013).
[27] J. Schukraft, A. Timmins, and S. A. Voloshin, Phys. Lett. B 719, 394 (2013).
[28] P. Huo, J. Jia, and S. Mohapatra, Phys. Rev. C 90, 024910 (2014).
[29] R. A. Lacey et al., arXiv:1311.1728 [nucl-ex].
[30] ATLAS Collaboration, J. Instrum. 3, S08003 (2008).
[31] ATLAS Collaboration, Phys. Lett. B 707, 330 (2012).
[32] ATLAS Collaboration, Phys. Lett. B 710, 363 (2012).
[33] ATLAS Collaboration, Eur. Phys. J. C 73, 2304 (2013).
[34] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).
[35] M. Gyulassy and X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994).
[36] M. Masera, G. Ortona, M. G. Poghosyan, and F. Prino, Phys. Rev. C 79, 064909 (2009).
[37] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250 (2003).
[38] ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010).
[39] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[40] S. Afanasiev et al. (PHENIX Collaboration), Phys. Rev. C 80, 024909 (2009).
[41] J. Barrette et al. (E877 Collaboration), Phys. Rev. C 56, 3254 (1997).
[42] CMS Collaboration, J. High Energy Phys. 02 (2014) 088.
[43] K. Adcox et al. (PHENIX Collaboration), Phys. Rev. Lett. 89, 212301 (2002).
[44] K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B 708, 249 (2012).
[45] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008).
[46] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal, Phys. Rev. C 72, 064901 (2005).
[47] A. Adil, H.-J. Drescher, A. Dumitru, A. Hayashigaki, and Y. Nara, Phys. Rev. C 74, 044905 (2006).
[48] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 82, 034913 (2010).
[49] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 85, 024901 (2012).
G. Aad, ${ }^{85}$ B. Abbott, ${ }^{113}$ J. Abdallah, ${ }^{151}$ O. Abdinov, ${ }^{11}$ R. Aben, ${ }^{107}$ M. Abolins, ${ }^{90}$ O. S. AbouZeid, ${ }^{158}$ H. Abramowicz, ${ }^{153}$ H. Abreu, ${ }^{152}$ R. Abreu, ${ }^{30}$ Y. Abulaiti, ${ }^{146 a, 146 b}$ B. S. Acharya, ${ }^{164 a, 164 b, a}$ L. Adamczyk, ${ }^{38 a}$ D. L. Adams, ${ }^{25}$ J. Adelman, ${ }^{108}$ S. Adomeit, ${ }^{100}$ T. Adye, ${ }^{131}$ A. A. Affolder, ${ }^{74}$ T. Agatonovic-Jovin, ${ }^{13}$ J. A. Aguilar-Saavedra, ${ }^{126 a, 1266}$ S. P. Ahlen, ${ }^{22}$ F. Ahmadov, ${ }^{65, b}$ G. Aielli, ${ }^{133 a, 133 \mathrm{~b}}$ H. Akerstedt, ${ }^{146 a, 146 \mathrm{~b}}$ T. P. A. Åkesson, ${ }^{81}$ G. Akimoto, ${ }^{155}$ A. V. Akimov, ${ }^{96}$ G. L. Alberghi, ${ }^{20 a}, 20 \mathrm{~b}$ J. Albert, ${ }^{169}$ S. Albrand, ${ }^{55}$ M. J. Alconada Verzini, ${ }^{71}$ M. Aleksa, ${ }^{30}$ I. N. Aleksandrov, ${ }^{65}$ C. Alexa, ${ }^{26 a}$ G. Alexander, ${ }^{153}$ T. Alexopoulos, ${ }^{10}$ M. Alhroob, ${ }^{113}$ G. Alimonti, ${ }^{91 \mathrm{a}}$ L. Alio, ${ }^{85}$ J. Alison, ${ }^{31}$ S. P. Alkire, ${ }^{35}$ B. M. M. Allbrooke, ${ }^{18}$ P. P. Allport, ${ }^{74}$ A. Aloisio, ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$ A. Alonso, ${ }^{36}$ F. Alonso, ${ }^{71}$ C. Alpigiani, ${ }^{76}$ A. Altheimer, ${ }^{35}$ B. Alvarez Gonzalez, ${ }^{30}$ D. Álvarez Piqueras, ${ }^{167}$ M. G. Alviggi, ${ }^{104 a, 104 b}$ B. T. Amadio, ${ }^{15}$ K. Amako, ${ }^{66}$ Y. Amaral Coutinho, ${ }^{24 a}$ C. Amelung, ${ }^{23}$ D. Amidei,,89 S. P. Amor Dos Santos, ${ }^{126 a, 126 c}$ A. Amorim, ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$ S. Amoroso, ${ }^{48}$ N. Amram, ${ }^{153}$ G. Amundsen, ${ }^{23}$ C. Anastopoulos, ${ }^{139}$ L. S. Ancu, ${ }^{49}$ N. Andari, ${ }^{30}$ T. Andeen, ${ }^{35}$ C. F. Anders, ${ }^{58 b}$ G. Anders, ${ }^{30}$ J. K. Anders, ${ }^{74}$ K. J. Anderson, ${ }^{31}$ A. Andreazza, ${ }^{91 \mathrm{aa}, 91 \mathrm{~b}}$ V. Andrei, ${ }^{58 \mathrm{a}}$ S. Angelidakis, ${ }^{9}$ I. Angelozzi, ${ }^{107}$ P. Anger, ${ }^{44}$ A. Angerami, ${ }^{35}$ F. Anghinolf, ${ }^{30}$
A. V. Anisenkov, ${ }^{109, \mathrm{c}}$ N. Anjos, ${ }^{12}$ A. Annovi, ${ }^{124 a, 124 \mathrm{~b}}$ M. Antonelli, ${ }^{47}$ A. Antonov, ${ }^{98}$ J. Antos, ${ }^{144 \mathrm{~b}}$ F. Anulli, ${ }^{132 \mathrm{a}}$ M. Aoki, ${ }^{66}$ L. Aperio Bella, ${ }^{18}$ G. Arabidze, ${ }^{90}$ Y. Arai, ${ }^{66}$ J. P. Araque, ${ }^{126 a}$ A. T. H. Arce, ${ }^{45}$ F. A. Arduh, ${ }^{71}$ J-F. Arguin, ${ }^{95}$ S. Argyropoulos, ${ }^{42}$ M. Arik, ${ }^{19 \mathrm{a}}$ A. J. Armbruster, ${ }^{30}$ O. Arnaez, ${ }^{30}$ V. Arnal, ${ }^{82}$ H. Arnold, ${ }^{48}$ M. Arratia, ${ }^{28}$ O. Arslan, ${ }^{21}$ A. Artamonov, ${ }^{97}$ G. Artoni, ${ }^{23}$ S. Asai, ${ }^{155}$ N. Asbah, ${ }^{42}$ A. Ashkenazi, ${ }^{153}$ B. Åsman, ${ }^{146 a, 146 b}$ L. Asquith,,${ }^{149}$ K. Assamagan, ${ }^{25}$ R. Astalos, ${ }^{144 \mathrm{a}}$ M. Atkinson, ${ }^{165}$ N. B. Atlay, ${ }^{141}$ B. Auerbach, ${ }^{6}$ K. Augsten, ${ }^{128}$ M. Aurousseau, ${ }^{145 b}$ G. Avolio, ${ }^{30}$ B. Axen, ${ }^{15}$ M. K. Ayoub, ${ }^{117}$ G. Azuelos, ${ }^{95, d}$ M. A. Baak, ${ }^{30}$ A. E. Baas, ${ }^{58 \mathrm{a}}$ C. Bacci, ${ }^{134 a, 134 \mathrm{~b}}$ H. Bachacou, ${ }^{136}$ K. Bachas, ${ }^{154}$ M. Backes, ${ }^{30}$ M. Backhaus, ${ }^{30}$ E. Badescu, ${ }^{26 a}$ P. Bagiacchi, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ P. Bagnaia, ${ }^{132 \mathrm{a},{ }^{132 \mathrm{~b}}}$ Y. Bai, ${ }^{33 \mathrm{a}}$ T. Bain, ${ }^{35}$ J. T. Baines, ${ }^{131}$ O. K. Baker, ${ }^{176}$ P. Balek, ${ }^{129}$ T. Balestri, ${ }^{148}$ F. Balli, ${ }^{84}$ E. Banas, ${ }^{39}$ Sw. Banerjee, ${ }^{173}$ A. A. E. Bannoura, ${ }^{175}$ H. S. Bansil, ${ }^{18}$ L. Barak, ${ }^{30}$ S. P. Baranov, ${ }^{96}$ E. L. Barberio, ${ }^{88}$ D. Barberis, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ M. Barbero, ${ }^{85}$ T. Barillari, ${ }^{101}$ M. Barisonzi, ${ }^{164 \mathrm{a}, 164 \mathrm{~b}}$ T. Barklow, ${ }^{143}$ N. Barlow, ${ }^{28}$ S. L. Barnes,${ }^{84}$ B. M. Barnett, ${ }^{131}$ R. M. Barnett, ${ }^{15}$ Z. Barnovska, ${ }^{5}$ A. Baroncelli, ${ }^{134 \mathrm{a}}$ G. Barone,,49 A. J. Barr, ${ }^{120}$ F. Barreiro,,${ }^{82}$ J. Barreiro Guimarães da Costa, ${ }^{57}$ R. Bartoldus, ${ }^{143}$ A. E. Barton, ${ }^{72}$ P. Bartos, ${ }^{144 a}$ A. Bassalat, ${ }^{117}$ A. Basye, ${ }^{165}$ R. L. Bates, ${ }^{53}$

M. D. Beattie, ${ }^{72}$ T. Beau, ${ }^{80}$ P. H. Beauchemin, ${ }^{161}$ R. Beccherle, ${ }^{124 a, 124 b}$ P. Bechtle, ${ }^{21}$ H. P. Beck, ${ }^{17, f}$ K. Becker, ${ }^{120}$ M. Becker, ${ }^{83}$ S. Becker, ${ }^{100}$ M. Beckingham, ${ }^{170}$ C. Becot, ${ }^{117}$ A. J. Beddall, ${ }^{19 \mathrm{c}}$ A. Beddall, ${ }^{19 \mathrm{c}}$ V. A. Bednyakov, ${ }^{65}$ C. P. Bee, ${ }^{148}$ L. J. Beemster, ${ }^{107}$ T. A. Beermann, ${ }^{175}$ M. Begel, ${ }^{25}$ J. K. Behr, ${ }^{120}$ C. Belanger-Champagne, ${ }^{87}$ W. H. Bell,,${ }^{49}$ G. Bella, ${ }^{153}$ L. Bellagamba, ${ }^{20 \mathrm{a}}$ A. Bellerive, ${ }^{29}$ M. Bellomo, ${ }^{86}$ K. Belotskiy, ${ }^{98}$ O. Beltramello, ${ }^{30}$ O. Benary, ${ }^{153}$ D. Benchekroun, ${ }^{135 \mathrm{a}}$ M. Bender, ${ }^{100}$ K. Bendtz, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ N. Benekos, ${ }^{10}$ Y. Benhammou, ${ }^{153}$ E. Benhar Noccioli, ${ }^{49}$ J. A. Benitez Garcia, ${ }^{159 b}$
D. P. Benjamin, ${ }^{45}$ J. R. Bensinger, ${ }^{23}$ S. Bentvelsen, ${ }^{107}$ L. Beresford, ${ }^{120}$ M. Beretta, ${ }^{47}$ D. Berge, ${ }^{107}$ E. Bergeaas Kuutmann, ${ }^{166}$
N. Berger, ${ }^{5}$ F. Berghaus, ${ }^{169}$ J. Beringer, ${ }^{15}$ C. Bernard, ${ }^{22}$ N. R. Bernard, ${ }^{86}$ C. Bernius, ${ }^{110}$ F. U. Bernlochner, ${ }^{21}$ T. Berry, ${ }^{77}$ P. Berta, ${ }^{129}$ C. Bertella, ${ }^{83}$ G. Bertoli, ${ }^{146 a, 146 \mathrm{~b}}$ F. Bertolucci, ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$ C. Bertsche, ${ }^{113}$ D. Bertsche, ${ }^{113}$ M. I. Besana, ${ }^{91 \mathrm{a}}$
G. J. Besjes, ${ }^{106}$ O. Bessidskaia Bylund, ${ }^{146 a, 146 b}$ M. Bessner, ${ }^{42}$ N. Besson, ${ }^{136}$ C. Betancourt, ${ }^{48}$ S. Bethke, ${ }^{101}$ A. J. Bevan, ${ }^{76}$ W. Bhimji, ${ }^{46}$ R. M. Bianchi, ${ }^{125}$ L. Bianchini, ${ }^{23}$ M. Bianco, ${ }^{30}$ O. Biebel, ${ }^{100}$ S. P. Bieniek, ${ }^{78}$ M. Biglietti, ${ }^{134 a}$ J. Bilbao De Mendizabal,,${ }^{49}$ H. Bilokon, ${ }^{47}$ M. Bindi, ${ }^{54}$ S. Binet, ${ }^{117}$ A. Bingul, ${ }^{19 \mathrm{c}}$ C. Bini, ${ }^{132 a, 132 \mathrm{~b}}$ C. W. Black, ${ }^{150}$ J. E. Black, ${ }^{143}$ K. M. Black, ${ }^{22}$ D. Blackburn, ${ }^{138}$ R. E. Blair, ${ }^{6}$ J.-B. Blanchard, ${ }^{136}$ J. E. Blanco, ${ }^{77}$ T. Blazek, ${ }^{144 a}$ I. Bloch, ${ }^{42}$ C. Blocker, ${ }^{23}$ W. Blum, ${ }^{83,{ }^{*}}$ U. Blumenschein, ${ }^{54}$ G. J. Bobbink, ${ }^{107}$ V. S. Bobrovnikov, ${ }^{109, c}$ S. S. Bocchetta, ${ }^{81}$ A. Bocci, ${ }^{45}$ C. Bock, ${ }^{100}$ M. Boehler, ${ }^{48}$ J. A. Bogaerts, ${ }^{30}$ A. G. Bogdanchikov, ${ }^{109}$ C. Bohm, ${ }^{146 a}$ V. Boisvert, ${ }^{77}$ T. Bold, ${ }^{38 a}$ V. Boldea, ${ }^{26 a}$ A. S. Boldyrev, ${ }^{99}$ M. Bomben, ${ }^{80}$ M. Bona, ${ }^{76}$ M. Boonekamp, ${ }^{136}$ A. Borisov, ${ }^{130}$ G. Borissov, ${ }^{72}$ S. Borroni, ${ }^{42}$ J. Bortfeldt, ${ }^{100}$ V. Bortolotto, ${ }^{60 a, 60 b, 60 \mathrm{c}}$ K. Bos, ${ }^{107}$ D. Boscherini, ${ }^{20 a}$ M. Bosman, ${ }^{12}$ J. Boudreau, ${ }^{125}$ J. Bouffard, ${ }^{2}$ E. V. Bouhova-Thacker, ${ }^{72}$ D. Boumediene, ${ }^{34}$ C. Bourdarios, ${ }^{117}$ N. Bousson, ${ }^{114}$ A. Boveia, ${ }^{30}$ J. Boyd, ${ }^{30}$ I. R. Boyko, ${ }^{65}$ I. Bozic, ${ }^{13}$ J. Bracinik, ${ }^{18}$ A. Brandt, ${ }^{8}$ G. Brandt, ${ }^{54}$
O. Brandt, ${ }^{58 \mathrm{a}}$ U. Bratzler, ${ }^{156}$ B. Brau, ${ }^{86}$ J. E. Brau, ${ }^{116}$ H. M. Braun, ${ }^{175, *}$ S. F. Brazzale, ${ }^{164 a}, 164 \mathrm{c}$ K. Brendlinger, ${ }^{122}$ A. J. Brennan, ${ }^{88}$ L. Brenner, ${ }^{107}$ R. Brenner, ${ }^{166}$ S. Bressler, ${ }^{172}$ K. Bristow, ${ }^{145 \mathrm{c}}$ T. M. Bristow, ${ }^{46}$ D. Britton, ${ }^{53}$ D. Britzger, ${ }^{42}$ F. M. Brochu, ${ }^{28}$ I. Brock,,${ }^{21}$ R. Brock, ${ }^{90}$ J. Bronner, ${ }^{101}$ G. Brooijmans, ${ }^{35}$ T. Brooks, ${ }^{77}$ W. K. Brooks, ${ }^{32 b}$ J. Brosamer, ${ }^{15}$ E. Brost, ${ }^{116}$ J. Brown, ${ }^{55}$ P. A. Bruckman de Renstrom, ${ }^{39}$ D. Bruncko, ${ }^{144 \mathrm{~b}}$ R. Bruneliere, ${ }^{48}$ A. Bruni, ${ }^{20 \mathrm{a}}$ G. Bruni, ${ }^{20 a}$ M. Bruschi, ${ }^{20 a}$ L. Bryngemark, ${ }^{81}$ T. Buanes, ${ }^{14}$ Q. Buat, ${ }^{142}$ P. Buchholz, ${ }^{141}$ A. G. Buckley, ${ }^{53}$ S. I. Buda, ${ }^{26 \mathrm{a}}$ I. A. Budagov, ${ }^{65}$ F. Buehrer, ${ }^{48}$ L. Bugge, ${ }^{119}$ M. K. Bugge, ${ }^{119}$ O. Bulekov, ${ }^{98}$ D. Bullock, ${ }^{8}$ H. Burckhart, ${ }^{30}$ S. Burdin, ${ }^{74}$ B. Burghgrave, ${ }^{108}$ S. Burke, ${ }^{131}$ I. Burmeister, ${ }^{43}$ E. Busato,,${ }^{34}$ D. Büscher, ${ }^{48}$ V. Büscher, ${ }^{83}$ P. Bussey, ${ }^{53}$ C. P. Buszello, ${ }^{166}$ J. M. Butler, ${ }^{22}$ A. I. Butt, ${ }^{3}$ C. M. Buttar, ${ }^{53}$ J. M. Butterworth, ${ }^{78}$ P. Butti, ${ }^{107}$ W. Buttinger, ${ }^{25}$ A. Buzatu, ${ }^{53}$ R. Buzykaev, ${ }^{109, c}$ S. Cabrera Urbán, ${ }^{167}$
D. Caforio, ${ }^{128}$ V. M. Cairo, ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$ O. Cakir, ${ }^{4 \mathrm{a}}$ P. Calafiura, ${ }^{15}$ A. Calandri, ${ }^{136}$ G. Calderini, ${ }^{80}$ P. Calfayan, ${ }^{100}$ L. P. Caloba, ${ }^{24 \mathrm{a}}$ D. Calvet, ${ }^{34}$ S. Calvet, ${ }^{34}$ R. Camacho Toro, ${ }^{31}$ S. Camarda, ${ }^{42}$ P. Camarri, ${ }^{133 a, 133 b}$ D. Cameron, ${ }^{119}$ L. M. Caminada, ${ }^{15}$ R. Caminal Armadans,,12 S. Campana, ${ }^{30}$ M. Campanelli, ${ }^{78}$ A. Campoverde, ${ }^{148}$ V. Canale, ${ }^{104 a, 104 \mathrm{~b}}$ A. Canepa, ${ }^{159 \mathrm{a}}$ M. Cano Bret, ${ }^{76}$ J. Cantero, ${ }^{82}$ R. Cantrill, ${ }^{126 a}$ T. Cao, ${ }^{40}$ M. D. M. Capeans Garrido, ${ }^{30}$ I. Caprini, ${ }^{26 a}$ M. Caprini, ${ }^{26 a}$ M. Capua, ${ }^{37 a, 37 b}$ R. Caputo, ${ }^{83}$ R. Cardarelli,,$^{133 \mathrm{a}}$ T. Carli, ${ }^{30}$ G. Carlino, ${ }^{104 \mathrm{a}}$ L. Carminati, ${ }^{91 a, 91 \mathrm{~b}}$ S. Caron, ${ }^{106}$ E. Carquin, ${ }^{32 \mathrm{a}}$ G. D. Carrillo-Montoya, ${ }^{8}$ J. R. Carter, ${ }^{28}$ J. Carvalho, ${ }^{126 a, 126 \mathrm{c}}$ D. Casadei, ${ }^{78}$ M. P. Casado, ${ }^{12}$ M. Casolino, ${ }^{12}$ E. Castaneda-Miranda, ${ }^{145 b}$ A. Castelli, ${ }^{107}$ V. Castillo Gimenez, ${ }^{167}$ N. F. Castro, ${ }^{126 a, g}$ P. Catastini, ${ }^{57}$ A. Catinaccio, ${ }^{30}$ J. R. Catmore, ${ }^{119}$ A. Cattai, ${ }^{30}$ J. Caudron, ${ }^{83}$ V. Cavaliere, ${ }^{165}$ D. Cavalli, ${ }^{91 a}$ M. Cavalli-Sforza, ${ }^{12}$ V. Cavasinni, ${ }^{124 a, 124 b}$ F. Ceradini, ${ }^{134 a,}{ }^{134 b}$ B. C. Cerio, ${ }^{45}$ K. Cerny, ${ }^{129}$ A. S. Cerqueira, ${ }^{24 \mathrm{~b}}$ A. Cerri,,${ }^{149}$ L. Cerrito, ${ }^{76}$ F. Cerutti, ${ }^{15}$ M. Cerv, ${ }^{30}$ A. Cervelli, ${ }^{17}$ S. A. Cetin, ${ }^{19 b}$ A. Chafaq, ${ }^{135 a}{ }^{18}$ D. Chakraborty, ${ }^{108}$ I. Chalupkova, ${ }^{129}$ P. Chang, ${ }^{165}$ B. Chapleau, ${ }^{87}$ J. D. Chapman, ${ }^{28}$ D. G. Charlton, ${ }^{18}$ C. C. Chau, ${ }^{158}$ C. A. Chavez Barajas, ${ }^{149}$ S. Cheatham, ${ }^{152}$ A. Chegwidden, ${ }^{90}$ S. Chekanov, ${ }^{6}$ S. V. Chekulaev, ${ }^{159 a}$ G. A. Chelkov, ${ }^{65, h}$ M. A. Chelstowska, ${ }^{89}$ C. Chen, ${ }^{64}$ H. Chen, ${ }^{25}$ K. Chen, ${ }^{148}$ L. Chen,,${ }^{33 \mathrm{~d}, \mathrm{i}}$ S. Chen, ${ }^{33 \mathrm{c}}$ X. Chen, ${ }^{33 \mathrm{f}}$ Y. Chen, ${ }^{67}$ H. C. Cheng, ${ }^{89}$ Y. Cheng, ${ }^{31}$ A. Cheplakov, ${ }^{65}$ E. Cheremushkina, ${ }^{130}$ R. Cherkaoui El Moursli, ${ }^{135 e}$ V. Chernyatin, ${ }^{25, *}$ E. Cheu, ${ }^{7}$ L. Chevalier, ${ }^{136}$ V. Chiarella, ${ }^{47}$ J. T. Childers, ${ }^{6}$ G. Chiodini, ${ }^{73 \mathrm{a}}$ A. S. Chisholm, ${ }^{18}$ R. T. Chislett, ${ }^{78}$ A. Chitan, ${ }^{26 a}$ M. V. Chizhov, ${ }^{65}$ K. Choi, ${ }^{61}$ S. Chouridou, ${ }^{9}$ B. K. B. Chow, ${ }^{100}$ V. Christodoulou, ${ }^{78}$ D. Chromek-Burckhart, ${ }^{30}$ M. L. Chu, ${ }^{151}$ J. Chudoba, ${ }^{127}$ A. J. Chuinard, ${ }^{87}$ J. J. Chwastowski, ${ }^{39}$ L. Chytka, ${ }^{15}$ G. Ciapetti, ${ }^{132 a, 132 b}$ A. K. Ciftci, ${ }^{4 a}$ D. Cinca,,${ }^{53}$ V. Cindro, ${ }^{75}$ I. A. Cioara, ${ }^{21}$ A. Ciocio, ${ }^{15}$ Z. H. Citron, ${ }^{172}$ M. Ciubancan, ${ }^{26 a}$ A. Clark, ${ }^{49}$ B. L. Clark, ${ }^{57}$ P. J. Clark, ${ }^{46}$ R. N. Clarke, ${ }^{15}$ W. Cleland, ${ }^{125}$ C. Clement, ${ }^{146 a, 146 \mathrm{~b}}$ Y. Coadou, ${ }^{85}$ M. Cobal, ${ }^{164 a, 164 \mathrm{c}}$ A. Coccaro, ${ }^{138}$ J. Cochran, ${ }^{64}$ L. Coffey, ${ }^{23}$ J. G. Cogan, ${ }^{143}$ B. Cole, ${ }^{35}$ S. Cole, ${ }^{108}$ A. P. Colijn, ${ }^{107}$ J. Collot, ${ }^{55}$ T. Colombo, ${ }^{58 \mathrm{c}}$ G. Compostella, ${ }^{101}$ P. Conde Muiño, ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$ E. Coniavitis, ${ }^{48}$ S. H. Connell, ${ }^{145 \mathrm{~b}}$ I. A. Connelly, ${ }^{77}$ S. M. Consonni, ${ }^{91 \mathrm{a}, 91 \mathrm{~b}}$ V. Consorti, ${ }^{48}$ S. Constantinescu, ${ }^{26 \mathrm{a}}$ C. Conta, ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$ G. Conti, ${ }^{30}$ F. Conventi, ${ }^{104 \mathrm{a}, \mathrm{j}}$ M. Cooke, ${ }^{15}$ B. D. Cooper, ${ }^{78}$ A. M. Cooper-Sarkar, ${ }^{120}$ T. Cornelissen, ${ }^{175}$ M. Corradi, ${ }^{20 a}$ F. Corriveau, ${ }^{87, k}$ A. Corso-Radu, ${ }^{163}$ A. Cortes-Gonzalez, ${ }^{12}$ G. Cortiana, ${ }^{101}$ G. Costa, ${ }^{91 a}$ M. J. Costa, ${ }^{167}$ D. Costanzo, ${ }^{139}$ D. Côté, ${ }^{8}$ G. Cottin, ${ }^{28}$ G. Cowan, ${ }^{77}$
B. E. Cox ${ }^{84}$ K. Cranmer, ${ }^{110}$ G. Cree, ${ }^{29}$ S. Crépé-Renaudin, ${ }^{55}$ F. Crescioli, ${ }^{80}$ W. A. Cribbs, ${ }^{146 a, 146 \mathrm{~b}}$ M. Crispin Ortuzar, ${ }^{120}$ M. Cristinziani, ${ }^{21}$ V. Croft, ${ }^{106}$ G. Crosetti, ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$ T. Cuhadar Donszelmann, ${ }^{139}$ J. Cummings, ${ }^{176}$ M. Curatolo, ${ }^{47}$ C. Cuthbert, ${ }^{150}$ H. Czirr,,${ }^{141}$ P. Czodrowski, ${ }^{3}$ S. D'Auria,,${ }^{53}$ M. D'Onofrio, ${ }^{74}$ M. J. Da Cunha Sargedas De Sousa, ${ }^{126 a, 126 b}$ C. Da Via, ${ }^{84}$ W. Dabrowski, ${ }^{38 a}$ A. Dafinca, ${ }^{120}$ T. Dai, ${ }^{89}$ O. Dale, ${ }^{14}$ F. Dallaire, ${ }^{95}$ C. Dallapiccola,,${ }^{86}$ M. Dam, ${ }^{36}$ J. R. Dandoy, ${ }^{31}$ N. P. Dang, ${ }^{48}$ A. C. Daniells, ${ }^{18}$ M. Danninger, ${ }^{168}$ M. Dano Hoffmann, ${ }^{136}$ V. Dao, ${ }^{48}$ G. Darbo, ${ }^{50 \mathrm{a}}$ S. Darmora, ${ }^{8}$ J. Dassoulas, ${ }^{3}$ A. Dattagupta, ${ }^{61}$ W. Davey, ${ }^{21}$ C. David, ${ }^{169}$ T. Davidek, ${ }^{129}$ E. Davies, ${ }^{120,1}$ M. Davies, ${ }^{153}$ P. Davison, ${ }^{78}$ Y. Davygora, ${ }^{58 a}$ E. Dawe, ${ }^{88}$ I. Dawson, ${ }^{139}$ R. K. Daya-Ishmukhametova, ${ }^{86}$ K. De, ${ }^{8}$ R. de Asmundis, ${ }^{104 a}$ S. De Castro, ${ }^{20 a, 20 b}$ S. De Cecco, ${ }^{80}$ N. De Groot, ${ }^{106}$ P. de Jong, ${ }^{107}$ H. De la Torre, ${ }^{82}$ F. De Lorenzi, ${ }^{64}$ L. De Nooij, ${ }^{107}$ D. De Pedis, ${ }^{132 \mathrm{a}}$ A. De Salvo, ${ }^{132 \mathrm{a}}$ U. De Sanctis, ${ }^{149}$ A. De Santo, ${ }^{149}$ J. B. De Vivie De Regie, ${ }^{117}$ W. J. Dearnaley, ${ }^{72}$ R. Debbe, ${ }^{25}$ C. Debenedetti, ${ }^{137}$ D. V. Dedovich, ${ }^{65}$ I. Deigaard, ${ }^{107}$ J. Del Peso, ${ }^{82}$ T. Del Prete, ${ }^{124 a, 124 b}$ D. Delgove, ${ }^{117}$ F. Deliot, ${ }^{136}$ C. M. Delitzsch, ${ }^{49}$ M. Deliyergiyev, ${ }^{75}$ A. Dell'Acqua, ${ }^{30}$ L. Dell'Asta, ${ }^{22}$ M. Dell'Orso, ${ }^{124 a, 124 b}$ M. Della Pietra, ${ }^{104 a, j}$ D. della Volpe, ${ }^{49}$ M. Delmastro, ${ }^{5}$ P. A. Delsart, ${ }^{55}$ C. Deluca, ${ }^{107}$ D. A. DeMarco, ${ }^{158}$ S. Demers, ${ }^{176}$ M. Demichev, ${ }^{65}$ A. Demilly, ${ }^{80}$ S. P. Denisov, ${ }^{130}$ D. Derendarz, ${ }^{39}$ J. E. Derkaoui, ${ }^{135 d}$ F. Derue, ${ }^{80}$ P. Dervan, ${ }^{74}$ K. Desch,,${ }^{21}$ C. Deterre, ${ }^{42}$ P. O. Deviveiros, ${ }^{30}$ A. Dewhurst, ${ }^{131}$ S. Dhaliwal, ${ }^{107}$ A. Di Ciaccio, ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$ L. Di Ciaccio, ${ }^{5}$ A. Di Domenico, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ C. Di Donato, ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$ A. Di Girolamo, ${ }^{30}$ B. Di Girolamo, ${ }^{30}$ A. Di Mattia, ${ }^{152}$ B. Di Micco, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$ R. Di Nardo, ${ }^{47}$ A. Di Simone, ${ }^{48}$ R. Di Sipio, ${ }^{158}$ D. Di Valentino, ${ }^{29}$ C. Diaconu, ${ }^{85}$ M. Diamond, ${ }^{158}$ F. A. Dias, ${ }^{46}$ M. A. Diaz, ${ }^{32 a}$ E. B. Diehl,,${ }^{89}$ J. Dietrich, ${ }^{16}$ S. Diglio, ${ }^{85}$ A. Dimitrievska, ${ }^{13}$ J. Dingfelder, ${ }^{21}$ P. Dita, ${ }^{26 a}$ S. Dita, ${ }^{26 a}$ F. Dittus, ${ }^{30}$ F. Djama, ${ }^{85}$ T. Djobava, ${ }^{51 b}$ J. I. Djuvsland, ${ }^{58 \mathrm{a}}$ M. A. B. do Vale, ${ }^{24 \mathrm{c}}$ D. Dobos, ${ }^{30}$ M. Dobre, ${ }^{26 \mathrm{a}}$ C. Doglioni, ${ }^{49}$ T. Dohmae, ${ }^{155}$ J. Dolejsi, ${ }^{129}$ Z. Dolezal, ${ }^{129}$ B. A. Dolgoshein, ${ }^{98,{ }^{*}}$ M. Donadelli, ${ }^{24 \mathrm{~d}}$ S. Donati, ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$ P. Dondero, ${ }^{121 \mathrm{a}, 12 \mathrm{l}}{ }^{1 \mathrm{~b}}$ J. Donini, ${ }^{34}$ J. Dopke, ${ }^{131}{ }^{13}$ A. Doria, ${ }^{104 a}$ M. T. Dova, ${ }^{71}$ A. T. Doyle, ${ }^{53}$ E. Drechsler, ${ }^{54}$ M. Dris, ${ }^{10}$ E. Dubreuil,,${ }^{34}$ E. Duchovni, ${ }^{172}$ G. Duckeck, ${ }^{100}$ O. A. Ducu, ${ }^{26 a, 85}$ D. Duda, ${ }^{175}$ A. Dudarev, ${ }^{30}$ L. Duflot, ${ }^{117}$ L. Duguid, ${ }^{77}$ M. Dührssen, ${ }^{30}$ M. Dunford, ${ }^{58 \mathrm{a}}$ H. Duran Yildiz, ${ }^{4 \mathrm{a}}$ M. Düren, ${ }^{52}$ A. Durglishvili, ${ }^{51 \mathrm{~b}}$ D. Duschinger, ${ }^{44}$ M. Dyndal, ${ }^{38 \mathrm{a}}$ C. Eckardt, ${ }^{42}$ K. M. Ecker, ${ }^{101}$ R. C. Edgar, ${ }^{89}$ W. Edson, ${ }^{2}$ N. C. Edwards, ${ }^{46}$ W. Ehrenfeld, ${ }^{21}$ T. Eifert, ${ }^{30}$ G. Eigen, ${ }^{14}$ K. Einsweiler, ${ }^{15}$ T. Ekelof, ${ }^{166}$ M. El Kacimi, ${ }^{135 \mathrm{c}}$ M. Ellert, ${ }^{166}$ S. Elles, ${ }^{5}$ F. Ellinghaus ${ }^{83}$ A. A. Elliot, ${ }^{169}$ N. Ellis, ${ }^{30}$ J. Elmsheuser, ${ }^{100}$ M. Elsing, ${ }^{30}$ D. Emeliyanov, ${ }^{131}$ Y. Enari, ${ }^{155}$ O. C. Endner, ${ }^{83}$ M. Endo, ${ }^{118}$ R. Engelmann, ${ }^{148}$ J. Erdmann, ${ }^{43}$ A. Ereditato, ${ }^{17}$ G. Ernis, ${ }^{175}$ J. Ernst, ${ }^{2}$ M. Ernst, ${ }^{25}$ S. Errede, ${ }^{165}$ E. Ertel, ${ }^{83}$ M. Escalier, ${ }^{117}$ H. Esch, ${ }^{43}$ C. Escobar, ${ }^{125}$ B. Esposito, ${ }^{47}$ A. I. Etienvre, ${ }^{136}$ E. Etzion,,${ }^{153}$ H. Evans, ${ }^{61}$ A. Ezhilov, ${ }^{123}$ L. Fabbri, ${ }^{20 a, 20 b}$ G. Facini, ${ }^{31}$ R. M. Fakhrutdinov, ${ }^{130}$ S. Falciano, ${ }^{132 \mathrm{a}}$ R. J. Falla, ${ }^{78}$ J. Faltova, ${ }^{129}$ Y. Fang, ${ }^{33 \mathrm{a}}$ M. Fanti,,${ }^{91 \mathrm{a}, 91 \mathrm{~b}}$ A. Farbin, ${ }^{8}$ A. Farilla, ${ }^{134 \mathrm{a}}$ T. Farooque, ${ }^{12}$ S. Farrell, ${ }^{15}$ S. M. Farrington, ${ }^{170}$ P. Farthouat, ${ }^{30}$ F. Fassi, ${ }^{135 e}$ P. Fassnacht, ${ }^{30}$ D. Fassouliotis, ${ }^{9}$ M. Faucci Giannelli, ${ }^{77}$ A. Favareto, ${ }^{50 a, 50 \mathrm{~b}}$ L. Fayard, ${ }^{117}$ P. Federic, ${ }^{144 \mathrm{a}}$ O. L. Fedin, ${ }^{123, \mathrm{~m}}$ W. Fedorko, ${ }^{168}$
S. Feigl, ${ }^{30}$ L. Feligioni, ${ }^{85}$ C. Feng, ${ }^{33 \mathrm{~d}}$ E. J. Feng, ${ }^{6}$ H. Feng, ${ }^{89}$ A. B. Fenyuk, ${ }^{130}$ P. Fernandez Martinez, ${ }^{167}$ S. Fernandez Perez, ${ }^{30}$ S. Ferrag, ${ }^{53}$ J. Ferrando, ${ }^{53}$ A. Ferrari, ${ }^{166}$ P. Ferrari, ${ }^{107}$ R. Ferrari, ${ }^{121 a}$ D. E. Ferreira de Lima, ${ }^{53}$ A. Ferrer, ${ }^{167}$ D. Ferrere, ${ }^{49}$
C. Ferretti, ${ }^{89}$ A. Ferretto Parodi, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ M. Fiascaris, ${ }^{31}$ F. Fiedler, ${ }^{83}$ A. Filipčič, ${ }^{75}$ M. Filipuzzi, ${ }^{42}$ F. Filthaut, ${ }^{106}$
M. Fincke-Keeler, ${ }^{169}$ K. D. Finelli, ${ }^{150}$ M. C. N. Fiolhais, ${ }^{126 a,}{ }^{126 c}$ L. Fiorini, ${ }^{167}$ A. Firan, ${ }^{40}$ A. Fischer, ${ }^{2}$ C. Fischer, ${ }^{12}$
J. Fischer, ${ }^{175}$ W. C. Fisher, ${ }^{90}$ E. A. Fitzgerald, ${ }^{23}$ M. Flechl, ${ }^{48}$ I. Fleck, ${ }^{141}$ P. Fleischmann, ${ }^{89}$ S. Fleischmann, ${ }^{175}$ G. T. Fletcher, ${ }^{139}$ G. Fletcher, ${ }^{76}$ T. Flick, ${ }^{175}$ A. Floderus, ${ }^{81}$ L. R. Flores Castillo, ${ }^{60 a}$ M. J. Flowerdew, ${ }^{101}$ A. Formica, ${ }^{136}$ A. Forti, ${ }^{84}$ D. Fournier, ${ }^{117}$ H. Fox, ${ }^{72}$ S. Fracchia, ${ }^{12}$ P. Francavilla, ${ }^{80}$ M. Franchini, ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$ D. Francis, ${ }^{30}$ L. Franconi, ${ }^{119}$ M. Franklin, ${ }^{57}$ M. Fraternali, ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$ D. Freeborn, ${ }^{78}$ S. T. French, ${ }^{28}$ F. Friedrich, ${ }^{44}$ D. Froidevaux, ${ }^{30}$ J. A. Frost, ${ }^{120}$ C. Fukunaga, ${ }^{156}$ E. Fullana Torregrosa, ${ }^{83}$ B. G. Fulsom, ${ }^{143}$ J. Fuster, ${ }^{167}$ C. Gabaldon, ${ }^{55}$ O. Gabizon, ${ }^{175}$ A. Gabrielli, ${ }^{20 a, 20 b}$ A. Gabrielli, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ S. Gadatsch, ${ }^{107}$ S. Gadomski, ${ }^{49}$ G. Gagliardi, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ P. Gagnon, ${ }^{61} \mathrm{C}$. Galea, ${ }^{106}$ B. Galhardo, ${ }^{126 a, 126 c}$ E. J. Gallas, ${ }^{120}$ B. J. Gallop, ${ }^{131}$ P. Gallus, ${ }^{128}$ G. Galster, ${ }^{36}$ K. K. Gan, ${ }^{111}$ J. Gao, ${ }^{33 \mathrm{~b}, 85}$ Y. Gao, ${ }^{46}$ Y. S. Gao, ${ }^{143, e}$ F. M. Garay Walls, ${ }^{46}$ F. Garberson, ${ }^{176}$ C. García, ${ }^{167}$ J. E. García Navarro, ${ }^{167}$ M. Garcia-Sciveres, ${ }^{15}$ R. W. Gardner, ${ }^{31}$ N. Garelli, ${ }^{143}$ V. Garonne, ${ }^{119}$ C. Gatti, ${ }^{47}$ A. Gaudiello, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ G. Gaudio, ${ }^{121 \mathrm{a}}$ B. Gaur, ${ }^{141}$ L. Gauthier, ${ }^{95}$ P. Gauzzi, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ I. L. Gavrilenko, ${ }^{96}$ C. Gay, ${ }^{168}$ G. Gaycken, ${ }^{21}$ E. N. Gazis, ${ }^{10}$ P. Ge, ${ }^{33 \mathrm{~d}}$ Z. Gecse, ${ }^{168}$ C. N. P. Gee, ${ }^{131}$ D. A. A. Geerts, ${ }^{107}$ Ch. Geich-Gimbel, ${ }^{21}$ M. P. Geisler, ${ }^{58 a}$ C. Gemme, ${ }^{50 \mathrm{a}}$ M. H. Genest, ${ }^{55}$ S. Gentile, ${ }^{132 a, 132 b}$ M. George, ${ }^{54}$ S. George, ${ }^{77}$ D. Gerbaudo, ${ }^{163}$ A. Gershon, ${ }^{153}$ H. Ghazlane, ${ }^{135 b}$ B. Giacobbe, ${ }^{20 a}$ S. Giagu, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ V. Giangiobbe, ${ }^{12}$ P. Giannetti, ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$ B. Gibbard, ${ }^{25}$ S. M. Gibson, ${ }^{77}$ M. Gilchriese, ${ }^{15}$ T. P. S. Gillam, ${ }^{28}$ D. Gillberg, ${ }^{30}$ G. Gilles, ${ }^{34}$ D. M. Gingrich, ${ }^{3, \mathrm{~d}}$ N. Giokaris, ${ }^{9}$ M. P. Giordani, ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$ F. M. Giorgi, ${ }^{20 \mathrm{a}}$ F. M. Giorgi, ${ }^{16}$ P. F. Giraud, ${ }^{136}$ P. Giromini, ${ }^{47}$ D. Giugni, ${ }^{91 \text { a }}$ C. Giuliani, ${ }^{48}$ M. Giulini, ${ }^{58 b}$ B. K. Gjelsten, ${ }^{119}$ S. Gkaitatzis, ${ }^{154}$ I. Gkialas, ${ }^{154}$ E. L. Gkougkousis, ${ }^{117}$ L. K. Gladilin, ${ }^{99}$ C. Glasman,,${ }^{82}$ J. Glatzer, ${ }^{30}$ P. C. F. Glaysher, ${ }^{46}$ A. Glazov, ${ }^{42}$ M. Goblirsch-Kolb, ${ }^{101}$ J. R. Goddard, ${ }^{76}$ J. Godlewski, ${ }^{39}$ S. Goldfarb, ${ }^{89}$ T. Golling, ${ }^{49}$ D. Golubkov, ${ }^{130}$ A. Gomes, ${ }^{126 a, 126 b, 126 \mathrm{~d}}$ R. Gonçalo, ${ }^{126 a}$ J. Goncalves Pinto Firmino Da Costa, ${ }^{136}$ L. Gonella, ${ }^{21}$ S. González de la Hoz, ${ }^{167}$ G. Gonzalez Parra, ${ }^{12}$ S. Gonzalez-Sevilla, ${ }^{49}$ L. Goossens, ${ }^{30}$ P. A. Gorbounov, ${ }^{97}$ H. A. Gordon, ${ }^{25}$ I. Gorelov, ${ }^{105}$ B. Gorini, ${ }^{30}$ E. Gorini, ${ }^{73 a, 73 b}$ A. Gorišek, ${ }^{75}$ E. Gornicki, ${ }^{39}$ A. T. Goshaw, ${ }^{45}$ C. Gössling, ${ }^{43}$ M. I. Gostkin, ${ }^{65}$ D. Goujdami, ${ }^{135 c}$ A. G. Goussiou, ${ }^{138}$ N. Govender, ${ }^{145 b}$ H. M. X. Grabas, ${ }^{137}$ L. Graber, ${ }^{54}$ I. Grabowska-Bold, ${ }^{38 a}$ P. Grafström, ${ }^{20 a, 20 b}$ K-J. Grahn, ${ }^{42}$ J. Gramling, ${ }^{49}$ E. Gramstad, ${ }^{119}$ S. Grancagnolo, ${ }^{16}$ V. Grassi, ${ }^{148}$ V. Gratchev, ${ }^{123}$ H. M. Gray, ${ }^{30}$ E. Graziani, ${ }^{134 \mathrm{a}}$ Z. D. Greenwood, ${ }^{79, n}$ K. Gregersen, ${ }^{78}$ I. M. Gregor, ${ }^{42}$ P. Grenier, ${ }^{143}$ J. Griffiths, ${ }^{8}$ A. A. Grillo, ${ }^{137}$ K. Grimm, ${ }^{72}$ S. Grinstein, ${ }^{12, o}$ Ph. Gris, ${ }^{34}$ J.-F. Grivaz,,${ }^{117}$ J. P. Grohs, ${ }^{44}$ A. Grohsjean, ${ }^{42}$ E. Gross, ${ }^{172}$ J. Grosse-Knetter, ${ }^{54}$ G. C. Grossi, ${ }^{79}$ Z. J. Grout, ${ }^{149}$ L. Guan, ${ }^{33 \mathrm{~b}}$ J. Guenther, ${ }^{128}$ F. Guescini, ${ }^{49}$ D. Guest,,176 O. Gueta, ${ }^{153}$ E. Guido, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ T. Guillemin, ${ }^{117}$ S. Guindon, ${ }^{2}$ U. Gul, ${ }^{53}$ C. Gumpert, ${ }^{44}$ J. Guo, ${ }^{33 \mathrm{e}}$ S. Gupta, ${ }^{120}$ P. Gutierrez, ${ }^{113}$ N. G. Gutierrez Ortiz, ${ }^{53}$ C. Gutschow, ${ }^{44}$ C. Guyot, ${ }^{136}$ C. Gwenlan, ${ }^{120}$ C. B. Gwilliam, ${ }^{74}$ A. Haas, ${ }^{110}$ C. Haber, ${ }^{15}$ H. K. Hadavand, ${ }^{8}$ N. Haddad, ${ }^{135 e}$ P. Haefner, ${ }^{21}$ S. Hageböck, ${ }^{21}$ Z. Hajduk, ${ }^{39}$ H. Hakobyan, ${ }^{177}$ M. Haleem, ${ }^{42}$ J. Haley, ${ }^{114}$ D. Hall, ${ }^{120}$ G. Halladjian, ${ }^{90}$ G. D. Hallewell, ${ }^{85}$ K. Hamacher, ${ }^{175}$ P. Hamal, ${ }^{115}$ K. Hamano, ${ }^{169}$ M. Hamer, ${ }^{54}$ A. Hamilton, ${ }^{145 a}$ G. N. Hamity, ${ }^{145 \mathrm{c}}$ P. G. Hamnett, ${ }^{42}$ L. Han, ${ }^{33 \mathrm{~b}}$ K. Hanagaki, ${ }^{118}$ K. Hanawa, ${ }^{155}$ M. Hance, ${ }^{15}$ P. Hanke, ${ }^{58 \mathrm{a}}$ R. Hanna, ${ }^{136}$ J. B. Hansen, ${ }^{36}$ J. D. Hansen, ${ }^{36}$ M. C. Hansen, ${ }^{21}$ P. H. Hansen, ${ }^{36}$ K. Hara, ${ }^{160}$ A. S. Hard, ${ }^{173}$ T. Harenberg, ${ }^{175}$ F. Hariri, ${ }^{117}$ S. Harkusha, ${ }^{92}$ R. D. Harrington, ${ }^{46}$ P. F. Harrison, ${ }^{170}$ F. Hartjes, ${ }^{107}$ M. Hasegawa, ${ }^{67}$ S. Hasegawa, ${ }^{103}$ Y. Hasegawa, ${ }^{140}$ A. Hasib, ${ }^{113}$ S. Hassani, ${ }^{136}$ S. Haug, ${ }^{17}$ R. Hauser, ${ }^{90}$ L. Hauswald, ${ }^{44}$ M. Havranek,,${ }^{127}$ C. M. Hawkes, ${ }^{18}$ R. J. Hawkings, ${ }^{30}$ A. D. Hawkins, ${ }^{81}$ T. Hayashi, ${ }^{160}$ D. Hayden, ${ }^{90}$ C. P. Hays, ${ }^{120}$ J. M. Hays, ${ }^{76}$ H. S. Hayward, ${ }^{74}$ S. J. Haywood, ${ }^{131}$ S. J. Head, ${ }^{18}$
T. Heck, ${ }^{83}$ V. Hedberg, ${ }^{81}$ L. Heelan, ${ }^{8}$ S. Heim, ${ }^{122}$ T. Heim, ${ }^{175}$ B. Heinemann, ${ }^{15}$ L. Heinrich, ${ }^{110}$ J. Hejbal, ${ }^{127}$ L. Helary, ${ }^{22}$ S. Hellman, ${ }^{146 a, 146 \mathrm{~b}}$ D. Hellmich, ${ }^{21}$ C. Helsens, ${ }^{30}$ J. Henderson, ${ }^{120}$ R. C. W. Henderson, ${ }^{72}$ Y. Heng, ${ }^{173}$ C. Hengler, ${ }^{42}$ A. Henrichs, ${ }^{176}$ A. M. Henriques Correia, ${ }^{30}$ S. Henrot-Versille, ${ }^{117}$ G. H. Herbert, ${ }^{16}$ Y. Hernández Jiménez, ${ }^{167}$ R. Herrberg-Schubert, ${ }^{16}$ G. Herten, ${ }^{48}$ R. Hertenberger, ${ }^{100}$ L. Hervas, ${ }^{30}$ G. G. Hesketh, ${ }^{78}$ N. P. Hessey, ${ }^{107}$ J. W. Hetherly, ${ }^{40}$ R. Hickling, ${ }^{76}$ E. Higón-Rodriguez, ${ }^{167}$ E. Hill, ${ }^{169}$ J. C. Hill, ${ }^{28}$ K. H. Hiller, ${ }^{42}$ S. J. Hillier, ${ }^{18}$ I. Hinchliffe,,${ }^{15}$ E. Hines, ${ }^{122}$ R. R. Hinman, ${ }^{15}$ M. Hirose, ${ }^{157}$ D. Hirschbuehl, ${ }^{175}$ J. Hobbs, ${ }^{148}$ N. Hod, ${ }^{107}$ M. C. Hodgkinson, ${ }^{139}$ P. Hodgson, ${ }^{139}$ A. Hoecker, ${ }^{30}$ M. R. Hoeferkamp, ${ }^{105}$ F. Hoenig, ${ }^{100}$ M. Hohlfeld, ${ }^{83}$ D. Hohn, ${ }^{21}$ T. R. Holmes, ${ }^{15}$ T. M. Hong, ${ }^{122}$ L. Hooft van Huysduynen, ${ }^{110}$ W. H. Hopkins, ${ }^{116}$ Y. Horii, ${ }^{103}$ A. J. Horton, ${ }^{142}$ J-Y. Hostachy, ${ }^{55}$ S. Hou, ${ }^{151}$ A. Hoummada, ${ }^{135 a}$ J. Howard, ${ }^{120}$ J. Howarth, ${ }^{42}$ M. Hrabovsky, ${ }^{115}$ I. Hristova, ${ }^{16}$ J. Hrivnac, ${ }^{117}$ T. Hryn'ova, ${ }^{5}$ A. Hrynevich, ${ }^{93}$ C. Hsu, ${ }^{145 \mathrm{c}}$ P. J. Hsu, ${ }^{151, p}$ S.-C. Hsu, ${ }^{138}$ D. Hu, ${ }^{35}$ Q. Hu, ${ }^{33 b}$ X. Hu, ${ }^{89}$ Y. Huang, ${ }^{42}$ Z. Hubacek, ${ }^{30}$ F. Hubaut, ${ }^{85}$ F. Huegging, ${ }^{21}$ T. B. Huffman, ${ }^{120}$ E. W. Hughes, ${ }^{35}$ G. Hughes, ${ }^{72}$ M. Huhtinen, ${ }^{30}$ T. A. Hülsing, ${ }^{83}$ N. Huseynov, ${ }^{65, b}$ J. Huston, ${ }^{90}$ J. Huth, ${ }^{57}$ G. Iacobucci, ${ }^{49}$ G. Iakovidis, ${ }^{25}$ I. Ibragimov, ${ }^{141}$ L. Iconomidou-Fayard, ${ }^{117} \mathrm{E}$. Ideal, ${ }^{176} \mathrm{Z}$. Idrissi, ${ }^{135 \mathrm{e}} \mathrm{P}$. Iengo, ${ }^{30}$ O. Igonkina, ${ }^{107} \mathrm{~T}$. Iizawa, ${ }^{171}$ Y. Ikegami, ${ }^{66} \mathrm{~K}$. Ikematsu, ${ }^{141}$ M. Ikeno, ${ }^{66}$ Y. Ilchenko, ${ }^{31, q}$ D. Iliadis, ${ }^{154}$ N. Ilic, ${ }^{143}$ Y. Inamaru, ${ }^{67}$ T. Ince, ${ }^{101}$ P. Ioannou, ${ }^{9}$ M. Iodice, ${ }^{134 \mathrm{a}}$ K. Iordanidou, ${ }^{35}$ V. Ippolito, ${ }^{57} \mathrm{~A}$. Irles Quiles, ${ }^{167} \mathrm{C}$. Isaksson, ${ }^{166} \mathrm{M}$. Ishino, ${ }^{68} \mathrm{M}$. Ishitsuka, ${ }^{157} \mathrm{R}$. Ishmukhametov, ${ }^{111} \mathrm{C}$. Issever, ${ }^{120} \mathrm{~S}$. Istin, ${ }^{19 \mathrm{a}}$ J. M. Iturbe Ponce, ${ }^{84}$ R. Iuppa, ${ }^{133 a, 133 \mathrm{~b}}$ J. Ivarsson, ${ }^{81} \mathrm{~W}$. Iwanski, ${ }^{39}$ H. Iwasaki, ${ }^{66}$ J. M. Izen, ${ }^{41}$ V. Izzo, ${ }^{104 \mathrm{a}}$ S. Jabbar, ${ }^{3}$ B. Jackson, ${ }^{122}$ M. Jackson, ${ }^{74}$ P. Jackson, ${ }^{1}$ M. R. Jaekel, ${ }^{30}$ V. Jain, ${ }^{2}$ K. Jakobs, ${ }^{48}$ S. Jakobsen, ${ }^{30}$ T. Jakoubek, ${ }^{127}$ J. Jakubek, ${ }^{128}$ D. O. Jamin,,151 D. K. Jana, ${ }^{79}$ E. Jansen, ${ }^{78}$ R. W. Jansky, ${ }^{62}$ J. Janssen, ${ }^{21}$ M. Janus, ${ }^{170}$ G. Jarlskog, ${ }^{81}$ N. Javadov, ${ }^{65, b}$ T. Javůrek, ${ }^{48}$ L. Jeanty, ${ }^{15}$ J. Jejelava, ${ }^{51 a, r}$ G.-Y. Jeng, ${ }^{150}$ D. Jennens, ${ }^{88}$ P. Jenni, ${ }^{48, s}$ J. Jentzsch, ${ }^{43}$ C. Jeske, ${ }^{170}$ S. Jézéquel, ${ }^{5}$ H. Ji, ${ }^{173}$ J. Jia, ${ }^{148}$ Y. Jiang, ${ }^{33 b}$ S. Jiggins, ${ }^{78}$ J. Jimenez Pena, ${ }^{167}$ S. Jin, ${ }^{33 a}$ A. Jinaru, ${ }^{26 a}$ O. Jinnouchi, ${ }^{157}$ M. D. Joergensen, ${ }^{36}$ P. Johansson, ${ }^{139}$ K. A. Johns, ${ }^{7}$ K. Jon-And, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ G. Jones, ${ }^{170}$ R. W. L. Jones, ${ }^{72}$ T. J. Jones, ${ }^{74}$ J. Jongmanns, ${ }^{58 \mathrm{a}}$ P. M. Jorge, ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$ K. D. Joshi, ${ }^{84}$ J. Jovicevic, ${ }^{159 a}$ X. Ju, ${ }^{173}$ C. A. Jung, ${ }^{43}$ P. Jussel, ${ }^{62}$ A. Juste Rozas, ${ }^{12, o}$ M. Kaci, ${ }^{167}$ A. Kaczmarska, ${ }^{39}$ M. Kado, ${ }^{117}$ H. Kagan, ${ }^{111}$ M. Kagan, ${ }^{143}$ S. J. Kahn, ${ }^{85}$ E. Kajomovitz, ${ }^{45}$ C. W. Kalderon, ${ }^{120}$ S. Kama, ${ }^{40}$ A. Kamenshchikov, ${ }^{130}$ N. Kanaya, ${ }^{155}$
M. Kaneda, ${ }^{30}$ S. Kaneti, ${ }^{28}$ V. A. Kantserov, ${ }^{98}$ J. Kanzaki, ${ }^{66}$ B. Kaplan, ${ }^{110}$ A. Kapliy, ${ }^{31}$ D. Kar, ${ }^{53}$ K. Karakostas, ${ }^{10}$ A. Karamaoun, ${ }^{3}$ N. Karastathis, ${ }^{10,107}$ M. J. Kareem, ${ }^{54}$ M. Karnevskiy, ${ }^{83}$ S. N. Karpov, ${ }^{65}$ Z. M. Karpova, ${ }^{65}$ K. Karthik, ${ }^{110}$ V. Kartvelishvili, ${ }^{72}$ A. N. Karyukhin, ${ }^{130}$ L. Kashif, ${ }^{173}$ R. D. Kass, ${ }^{111}$ A. Kastanas, ${ }^{14}$ Y. Kataoka, ${ }^{155}$ A. Katre, ${ }^{49}$ J. Katzy, ${ }^{42}$
K. Kawagoe, ${ }^{70}$ T. Kawamoto, ${ }^{155}$ G. Kawamura, ${ }^{54}$ S. Kazama, ${ }^{155}$ V. F. Kazanin, ${ }^{109, c}$ M. Y. Kazarinov, ${ }^{65}$ R. Keeler, ${ }^{169}$ R. Kehoe, ${ }^{40}$ J. S. Keller, ${ }^{42}$ J. J. Kempster, ${ }^{77}$ H. Keoshkerian, ${ }^{84}$ O. Kepka, ${ }^{127}$ B. P. Kerševan, ${ }^{75}$ S. Kersten, ${ }^{175}$ R. A. Keyes, ${ }^{87}$ F. Khalil-zada, ${ }^{11}$ H. Khandanyan, ${ }^{146 a, 146 \mathrm{~b}}$ A. Khanov, ${ }^{114}$ A. G. Kharlamov, ${ }^{109, \mathrm{c}}$ T. J. Khoo, ${ }^{28}$ V. Khovanskiy, ${ }^{97}$ E. Khramov, ${ }^{65}$ J. Khubua, ${ }^{51 b, t}$ H. Y. Kim, ${ }^{8}$ H. Kim, ${ }^{146 a, 146 b}$ S. H. Kim, ${ }^{160}$ Y. Kim, ${ }^{31}$ N. Kimura, ${ }^{154}$ O. M. Kind, ${ }^{16}$ B. T. King, ${ }^{74}$ M. King, ${ }^{167}$
R. S. B. King, ${ }^{120}$ S. B. King, ${ }^{168}$ J. Kirk, ${ }^{131}$ A. E. Kiryunin, ${ }^{101}$ T. Kishimoto, ${ }^{67}$ D. Kisielewska, ${ }^{38 a}$ F. Kiss, ${ }^{48}$ K. Kiuchi, ${ }^{160}$ O. Kivernyk, ${ }^{136}$ E. Kladiva, ${ }^{144 \mathrm{~b}}$ M. H. Klein, ${ }^{35}$ M. Klein, ${ }^{74}$ U. Klein, ${ }^{74}$ K. Kleinknecht, ${ }^{83}$ P. Klimek, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ A. Klimentov, ${ }^{25}$ R. Klingenberg, ${ }^{43}$ J. A. Klinger, ${ }^{84}$ T. Klioutchnikova, ${ }^{30}$ E.-E. Kluge, ${ }^{58 a}$ P. Kluit, ${ }^{107}$ S. Kluth, ${ }^{101}$ E. Kneringer, ${ }^{62}$ E. B. F. G. Knoops,,${ }^{85}$ A. Knue, ${ }^{53}$ A. Kobayashi, ${ }^{155}$ D. Kobayashi, ${ }^{157}$ T. Kobayashi, ${ }^{155}$ M. Kobel, ${ }^{44}$ M. Kocian, ${ }^{143}$ P. Kodys, ${ }^{129}$ T. Koffas,,29 E. Koffeman, ${ }^{107}$ L. A. Kogan, ${ }^{120}$ S. Kohlmann, ${ }^{175}$ Z. Kohout, ${ }^{128}$ T. Kohriki, ${ }^{66}$ T. Koi, ${ }^{143}$ H. Kolanoski, ${ }^{16}$ I. Koletsou, ${ }^{5}$ A. A. Komar, ${ }^{96, *}$ Y. Komori, ${ }^{155}$ T. Kondo, ${ }^{66}$ N. Kondrashova, ${ }^{42}$ K. Köneke, ${ }^{48}$ A. C. König, ${ }^{106}$ S. König, ${ }^{83}$ T. Kono, ${ }^{66, u}$ R. Konoplich, ${ }^{110, v}$ N. Konstantinidis, ${ }^{78}$ R. Kopeliansky, ${ }^{152}$ S. Koperny, ${ }^{38 a}$ L. Köpke, ${ }^{83}$ A. K. Kopp, ${ }^{48}$ K. Korcyl, ${ }^{39}$ K. Kordas, ${ }^{154}$ A. Korn, ${ }^{78}$ A. A. Korol, ${ }^{109, c}$ I. Korolkov, ${ }^{12}$ E. V. Korolkova, ${ }^{139}$ O. Kortner, ${ }^{101}$ S. Kortner, ${ }^{101}$ T. Kosek, ${ }^{129}$ V. V. Kostyukhin, ${ }^{21}$ V. M. Kotov, ${ }^{65}$ A. Kotwal, ${ }^{45}$ A. Kourkoumeli-Charalampidi, ${ }^{154}$ C. Kourkoumelis, ${ }^{9}$ V. Kouskoura, ${ }^{25}$ A. Koutsman, ${ }^{159 a}$ R. Kowalewski, ${ }^{169}$ T. Z. Kowalski, ${ }^{38 a}$ W. Kozanecki, ${ }^{136}$ A. S. Kozhin, ${ }^{130}$ V. A. Kramarenko, ${ }^{99}$ G. Kramberger, ${ }^{75}$ D. Krasnopevtsev, ${ }^{98}$ M. W. Krasny, ${ }^{80}$ A. Krasznahorkay, ${ }^{30}$ J. K. Kraus, ${ }^{21}$ A. Kravchenko, ${ }^{25}$ S. Kreiss, ${ }^{110}$ M. Kretz, ${ }^{58 \mathrm{c}}$ J. Kretzschmar, ${ }^{74}$ K. Kreutzfeldt, ${ }^{52}$ P. Krieger, ${ }^{158}$ K. Krizka, ${ }^{31}$ K. Kroeninger, ${ }^{43}$ H. Kroha, ${ }^{101}$ J. Kroll, ${ }^{122}$ J. Kroseberg, ${ }^{21}$ J. Krstic, ${ }^{13}$ U. Kruchonak, ${ }^{65}$ H. Krüger, ${ }^{21}$ N. Krumnack, ${ }^{64}$ Z. V. Krumshteyn, ${ }^{65}$ A. Kruse, ${ }^{173}$ M. C. Kruse, ${ }^{45}$ M. Kruskal, ${ }^{22}$ T. Kubota, ${ }^{88}$ H. Kucuk, ${ }^{78}$ S. Kuday, ${ }^{4 b}$ S. Kuehn, ${ }^{48}$ A. Kugel, ${ }^{58 \mathrm{c}}$ F. Kuger, ${ }^{174}$ A. Kuhl, ${ }^{137}$ T. Kuhl, ${ }^{42}$ V. Kukhtin, ${ }^{65}$ Y. Kulchitsky, ${ }^{92}$ S. Kuleshov, ${ }^{32 \mathrm{~b}}$ M. Kuna, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ T. Kunigo, ${ }^{68}$ A. Kupco, ${ }^{127}$ H. Kurashige, ${ }^{67}$ Y. A. Kurochkin, ${ }^{92}$ R. Kurumida, ${ }^{67}$ V. Kus, ${ }^{127}$ E. S. Kuwertz, ${ }^{169}$ M. Kuze, ${ }^{157}$ J. Kvita, ${ }^{115}$ T. Kwan, ${ }^{169}$ D. Kyriazopoulos, ${ }^{139}$ A. La Rosa, ${ }^{49}$ J. L. La Rosa Navarro, ${ }^{24 d}$ L. La Rotonda, ${ }^{37 a, 37 b}$ C. Lacasta, ${ }^{167}$ F. Lacava, ${ }^{132 a, ~ 132 b}$ J. Lacey, ${ }^{29}$ H. Lacker, ${ }^{16}$ D. Lacour, ${ }^{80}$ V. R. Lacuesta, ${ }^{167}$ E. Ladygin, ${ }^{65}$ R. Lafaye, ${ }^{5}$ B. Laforge, ${ }^{80}$ T. Lagouri, ${ }^{176}$ S. Lai, ${ }^{48}$ L. Lambourne, ${ }^{78}$ S. Lammers, ${ }^{61}$ C. L. Lampen, ${ }^{7}$ W. Lampl, ${ }^{7}$ E. Lançon, ${ }^{136}$ U. Landgraf, ${ }^{48}$ M. P. J. Landon, ${ }^{76}$ V. S. Lang, ${ }^{58 a}$ J. C. Lange, ${ }^{12}$ A. J. Lankford, ${ }^{163}$ F. Lanni, ${ }^{25}$ K. Lantzsch, ${ }^{30}$ S. Laplace, ${ }^{80}$ C. Lapoire, ${ }^{30}$ J. F. Laporte, ${ }^{136}$ T. Lari, ${ }^{91 a}$ F. Lasagni Manghi, ${ }^{20 a, 20 b}$ M. Lassnig, ${ }^{30}$ P. Laurelli, ${ }^{47}$ W. Lavrijsen, ${ }^{15}$ A. T. Law, ${ }^{137}$ P. Laycock, ${ }^{74}$ O. Le Dortz, ${ }^{80}$ E. Le Guirriec, ${ }^{85}$ E. Le Menedeu, ${ }^{12}$ M. LeBlanc, ${ }^{169}$ T. LeCompte, ${ }^{6}$ F. Ledroit-Guillon, ${ }^{55}$ C. A. Lee, ${ }^{145 b}$ S. C. Lee, ${ }^{151}$ L. Lee, ${ }^{1}$ G. Lefebvre, ${ }^{80}$ M. Lefebvre,,${ }^{169}$ F. Legger, ${ }^{100}$ C. Leggett, ${ }^{15}$ A. Lehan, ${ }^{74}$ G. Lehmann Miotto, ${ }^{30}$ X. Lei, ${ }^{7}$ W. A. Leight, ${ }^{29}$ A. Leisos, ${ }^{154}$ A. G. Leister, ${ }^{176}$ M. A. L. Leite, ${ }^{24 d}$ R. Leitner, ${ }^{129}$ D. Lellouch, ${ }^{172}$ B. Lemmer, ${ }^{54}$ K. J. C. Leney, ${ }^{78}$ T. Lenz, ${ }^{21}$ B. Lenzi, ${ }^{30}$ R. Leone, ${ }^{7}$ S. Leone, ${ }^{124 a, 124 b}$ C. Leonidopoulos, ${ }^{46}$ S. Leontsinis, ${ }^{10}$ C. Leroy, ${ }^{95}$ C. G. Lester, ${ }^{28}$ M. Levchenko, ${ }^{123}$ J. Levêque, ${ }^{5}$ D. Levin, ${ }^{89}$ L. J. Levinson, ${ }^{172}$ M. Levy, ${ }^{18}$ A. Lewis, ${ }^{120}$ A. M. Leyko, ${ }^{21}$ M. Leyton, ${ }^{41}$ B. Li, ${ }^{33 \mathrm{~b},{ }^{w}}$ H. Li, ${ }^{148}$ H. L. Li, ${ }^{31} \mathrm{~L} . \mathrm{Li},{ }^{45} \mathrm{~L} . \mathrm{Li},{ }^{33 \mathrm{e}}$ S. Li, ${ }^{45} \mathrm{Y} . \mathrm{Li},{ }^{33 \mathrm{c}, \mathrm{x}}$ Z. Liang, ${ }^{137}$ H. Liao, ${ }^{34}$ B. Liberti, ${ }^{133 a}$ A. Liblong, ${ }^{158}$ P. Lichard, ${ }^{30}$ K. Lie, ${ }^{165}$ J. Liebal, ${ }^{21}$ W. Liebig, ${ }^{14}$ C. Limbach, ${ }^{21}$ A. Limosani, ${ }^{150}$ S. C. Lin, ${ }^{151, y}$ T. H. Lin, ${ }^{83}$ F. Linde, ${ }^{107}$ B. E. Lindquist, ${ }^{148}$ J. T. Linnemann, ${ }^{90}$ E. Lipeles, ${ }^{122}$ A. Lipniacka, ${ }^{14}$ M. Lisovyi, ${ }^{58 b}$ T. M. Liss, ${ }^{165}$ D. Lissauer, ${ }^{25}$ A. Lister, ${ }^{168}$ A. M. Litke, ${ }^{137}$ B. Liu, ${ }^{151, z}$ D. Liu, ${ }^{151}$ J. Liu, ${ }^{85}$ J. B. Liu, ${ }^{33 b}$ K. Liu, ${ }^{85}$ L. Liu, ${ }^{165}$ M. Liu, ${ }^{45}$ M. Liu, ${ }^{33 b}$ Y. Liu, ${ }^{33 b}$ M. Livan, ${ }^{121 a, 121 b}$ A. Lleres, ${ }^{55}$ J. Llorente Merino, ${ }^{82}$ S. L. Lloyd, ${ }^{76}$ F. Lo Sterzo, ${ }^{151}$
E. Lobodzinska, ${ }^{42}$ P. Loch, ${ }^{7}$ W. S. Lockman, ${ }^{137}$ F. K. Loebinger, ${ }^{84}$ A. E. Loevschall-Jensen, ${ }^{36}$ A. Loginov, ${ }^{176}$ T. Lohse, ${ }^{16}$ K. Lohwasser, ${ }^{42}$ M. Lokajicek, ${ }^{127}$ B. A. Long, ${ }^{22}$ J. D. Long, ${ }^{89}$ R. E. Long, ${ }^{72}$ K. A. Looper, ${ }^{111}$ L. Lopes, ${ }^{126 a}$ D. Lopez Mateos, ${ }^{57}$ B. Lopez Paredes, ${ }^{139}$ I. Lopez Paz, ${ }^{12}$ J. Lorenz, ${ }^{100}$ N. Lorenzo Martinez, ${ }^{61}$ M. Losada, ${ }^{162}$ P. Loscutoff, ${ }^{15}$ P. J. Lösel, ${ }^{100}$ X. Lou, ${ }^{33 \mathrm{a}}$ A. Lounis, ${ }^{117}$ J. Love, ${ }^{6}$ P. A. Love, ${ }^{72}$ N. Lu, ${ }^{89}$ H. J. Lubatti, ${ }^{138}$ C. Luci, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ A. Lucotte, ${ }^{55}$ F. Luehring, ${ }^{61}$ W. Lukas, ${ }^{62}$ L. Luminari, ${ }^{132 \mathrm{a}}$ O. Lundberg, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ B. Lund-Jensen, ${ }^{147}$ D. Lynn, ${ }^{25}$ R. Lysak, ${ }^{127}$ E. Lytken, ${ }^{81} \mathrm{H}$. Ma, ${ }^{25}$ L. L. Ma, ${ }^{33 \mathrm{~d}}$ G. Maccarrone, ${ }^{47}$ A. Macchiolo, ${ }^{101}$ C. M. Macdonald, ${ }^{139}$ J. Machado Miguens, ${ }^{122,126 \mathrm{~b}}$ D. Macina, ${ }^{30}$ D. Madaffari, ${ }^{85}$ R. Madar, ${ }^{34}$ H. J. Maddocks, ${ }^{72}$ W. F. Mader, ${ }^{44}$ A. Madsen, ${ }^{166}$ S. Maeland, ${ }^{14}$ T. Maeno, ${ }^{25}$ A. Maevskiy, ${ }^{99}$ E. Magradze, ${ }^{54}$ K. Mahboubi, ${ }^{48}$ J. Mahlstedt, ${ }^{107}$ C. Maiani, ${ }^{136}$ C. Maidantchik, ${ }^{24 \mathrm{a}}$ A. A. Maier, ${ }^{101}$ T. Maier, ${ }^{100}$ A. Maio, ${ }^{126 a, 126 b, 126 d}$ S. Majewski, ${ }^{116}$ Y. Makida, ${ }^{66}$ N. Makovec, ${ }^{117}$ B. Malaescu, ${ }^{80}$ Pa. Malecki, ${ }^{39}$ V. P. Maleev, ${ }^{123}$ F. Malek, ${ }^{55}$ U. Mallik, ${ }^{63}$ D. Malon, ${ }^{6}$ C. Malone, ${ }^{143}$ S. Maltezos, ${ }^{10}$ V. M. Malyshev, ${ }^{109}$ S. Malyukov, ${ }^{30}$ J. Mamuzic, ${ }^{42}$ G. Mancini, ${ }^{47}$ B. Mandelli, ${ }^{30}$ L. Mandelli, ${ }^{91 \mathrm{a}}$ I. Mandić, ${ }^{75}$ R. Mandrysch, ${ }^{63}$ J. Maneira, ${ }^{126 a, 126 \mathrm{~b}}$ A. Manfredini, ${ }^{101}$
L. Manhaes de Andrade Filho, ${ }^{24 \mathrm{~b}}$ J. Manjarres Ramos, ${ }^{159 \mathrm{~b}}$ A. Mann, ${ }^{100}$ P. M. Manning, ${ }^{137}$ A. Manousakis-Katsikakis, ${ }^{9}$ B. Mansoulie, ${ }^{136}$ R. Mantifel, ${ }^{87}$ M. Mantoani, ${ }^{54}$ L. Mapelli, ${ }^{30}$ L. March,,${ }^{145 c}$ G. Marchiori, ${ }^{80}$ M. Marcisovsky, ${ }^{127}$ C. P. Marino, ${ }^{169}$ M. Marjanovic, ${ }^{13}$ F. Marroquim, ${ }^{24 \mathrm{a}}$ S. P. Marsden, ${ }^{84}$ Z. Marshall, ${ }^{15}$ L. F. Marti, ${ }^{17}$ S. Marti-Garcia, ${ }^{167}$ B. Martin,,90 T. A. Martin, ${ }^{170}$ V. J. Martin, ${ }^{46}$ B. Martin dit Latour, ${ }^{14}$ M. Martinez, ${ }^{12, o}$ S. Martin-Haugh,,${ }^{131}$ V. S. Martoiu, ${ }^{26 a}$ A. C. Martyniuk, ${ }^{78}$ M. Marx, ${ }^{138}$ F. Marzano, ${ }^{132 a}$ A. Marzin, ${ }^{30}$ L. Masetti, ${ }^{83}$ T. Mashimo, ${ }^{155}$ R. Mashinistov, ${ }^{96}$ J. Masik, ${ }^{84}$ A. L. Maslennikov, ${ }^{109, c}$ I. Massa, ${ }^{20 a, 20 b}$ L. Massa, ${ }^{20 a, 20 b}$ N. Massol, ${ }^{5}$ P. Mastrandrea, ${ }^{148}$ A. Mastroberardino, ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$ T. Masubuchi, ${ }^{155}$ P. Mättig, ${ }^{175}$ J. Mattmann, ${ }^{83}$ J. Maurer, ${ }^{26 a}$ S. J. Maxfield, ${ }^{74}$ D. A. Maximov, ${ }^{109, c}$ R. Mazini, ${ }^{151}$ S. M. Mazza, ${ }^{91 \mathrm{a}, 91 \mathrm{~b}}$ L. Mazzaferro, ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$ G. Mc Goldrick, ${ }^{158}$ S. P. Mc Kee, ${ }^{89}$ A. McCarn, ${ }^{89}$ R. L. McCarthy, ${ }^{148}$ T. G. McCarthy, ${ }^{29}$ N. A. McCubbin, ${ }^{131}$ K. W. McFarlane, ${ }^{56, *}$ J. A. Mcfayden, ${ }^{78}$ G. Mchedlidze, ${ }^{54}$ S. J. McMahon, ${ }^{131}$ R. A. McPherson, ${ }^{169, k}$ M. Medinnis, ${ }^{42}$ S. Meehan, ${ }^{145 a}$ S. Mehlhase, ${ }^{100}$ A. Mehta, ${ }^{74}$ K. Meier, ${ }^{58 \mathrm{a}}$ C. Meineck, ${ }^{100}$ B. Meirose, ${ }^{41}$
B. R. Mellado Garcia, ${ }^{145 \mathrm{c}}$ F. Meloni, ${ }^{17}$ A. Mengarelli, ${ }^{20 a}$, ${ }^{20 \mathrm{~b}}$ S. Menke, ${ }^{101}$ E. Meoni, ${ }^{161}$ K. M. Mercurio, ${ }^{57}$ S. Mergelmeyer, ${ }^{21}$ P. Mermod, ${ }^{49}$ L. Merola, ${ }^{104 a, 104 b}$ C. Meroni, ${ }^{91 \mathrm{a}}$ F. S. Merritt, ${ }^{31}$ A. Messina, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ J. Metcalfe, ${ }^{25}$ A. S. Mete, ${ }^{163}$ C. Meyer, ${ }^{83}$ C. Meyer, ${ }^{122}$ J-P. Meyer, ${ }^{136}$ J. Meyer, ${ }^{107}$ R. P. Middleton, ${ }^{131}$ S. Miglioranzi, ${ }^{164 a, 164 \mathrm{c}}$ L. Mijović, ${ }^{21}$ G. Mikenberg, ${ }^{172}$ M. Mikestikova, ${ }^{127}$ M. Mikuž, ${ }^{75}$ M. Milesi,,${ }^{88}$ A. Milic,,${ }^{30}$ D. W. Miller, ${ }^{31}$ C. Mills, ${ }^{46}$ A. Milov, ${ }^{172}$ D. A. Milstead, ${ }^{146 a, 146 b}$ A. A. Minaenko, ${ }^{130}$ Y. Minami, ${ }^{155}$ I. A. Minashvili, ${ }^{65}$ A. I. Mincer, ${ }^{110}$ B. Mindur, ${ }^{38 a}$ M. Mineev, ${ }^{65}$ Y. Ming, ${ }^{173}$ L. M. Mir, ${ }^{12}$ T. Mitani, ${ }^{171}$ J. Mitrevski, ${ }^{100}$ V. A. Mitsou, ${ }^{167}$ A. Miucci, ${ }^{49}$ P. S. Miyagawa, ${ }^{139}$ J. U. Mjörnmark, ${ }^{81}$ T. Moa, ${ }^{146 a, 146 b}$ K. Mochizuki, ${ }^{85}$ S. Mohapatra, ${ }^{35}$ W. Mohr, ${ }^{48}$ S. Molander, ${ }^{146 a, 146 \mathrm{~b}}$ R. Moles-Valls, ${ }^{167}$ K. Mönig, ${ }^{42}$ C. Monini, ${ }^{55}$ J. Monk, ${ }^{36}$ E. Monnier, ${ }^{85}$ J. Montejo Berlingen, ${ }^{12}$ F. Monticelli, ${ }^{71}$ S. Monzani, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ R. W. Moore, ${ }^{3}$ N. Morange, ${ }^{117}$ D. Moreno, ${ }^{162}$ M. Moreno Llácer, ${ }^{54}$ P. Morettini, ${ }^{50 \mathrm{a}}$ M. Morgenstern, ${ }^{44}$ M. Morii, ${ }^{57}$ M. Morinaga, ${ }^{155}$ V. Morisbak, ${ }^{119}$ S. Moritz, ${ }^{83}$ A. K. Morley, ${ }^{147}$ G. Mornacchi, ${ }^{30}$ J. D. Morris, ${ }^{76}$ S. S. Mortensen, ${ }^{36}$ A. Morton, ${ }^{53}$ L. Morvaj, ${ }^{103}$ M. Mosidze,,${ }^{51 b}$ J. Moss, ${ }^{111}$ K. Motohashi, ${ }^{157}$ R. Mount, ${ }^{143}$ E. Mountricha, ${ }^{25}$ S. V. Mouraviev, ${ }^{96, *}$ E. J. W. Moyse, ${ }^{86}$ S. Muanza, ${ }^{85}$ R. D. Mudd, ${ }^{18}$ F. Mueller, ${ }^{101}$ J. Mueller, ${ }^{125}$ K. Mueller, ${ }^{21}$ R. S. P. Mueller, ${ }^{100}$ T. Mueller, ${ }^{28}$ D. Muenstermann, ${ }^{49}$ P. Mullen, ${ }^{53}$ Y. Munwes, ${ }^{153}$ J. A. Murillo Quijada, ${ }^{18}$ W. J. Murray, ${ }^{170,131}$ H. Musheghyan, ${ }^{54}$ E. Musto, ${ }^{152}$ A. G. Myagkov, ${ }^{130, \text { aa }}$ M. Myska, ${ }^{128}$ O. Nackenhorst, ${ }^{54}$ J. Nadal, ${ }^{54}$ K. Nagai, ${ }^{120}$ R. Nagai, ${ }^{157}$ Y. Nagai, ${ }^{55}$ K. Nagano, ${ }^{66}$ A. Nagarkar, ${ }^{111}$ Y. Nagasaka, ${ }^{59}$ K. Nagata, ${ }^{160}$ M. Nagel,,${ }^{101}$ E. Nagy, ${ }^{85}$ A. M. Nairz, ${ }^{30}$ Y. Nakahama, ${ }^{30}$ K. Nakamura, ${ }^{66}$ T. Nakamura, ${ }^{155}$ I. Nakano, ${ }^{112}$ H. Namasivayam, ${ }^{41}$ R. F. Naranjo Garcia, ${ }^{42}$ R. Narayan, ${ }^{31}$ T. Naumann, ${ }^{42}$ G. Navarro, ${ }^{162}$ R. Nayyar, ${ }^{7}$ H. A. Neal, ${ }^{89}$ P. Yu. Nechaeva, ${ }^{96}$ T. J. Neep, ${ }^{84}$ P. D. Nef,,${ }^{143}$ A. Negri, ${ }^{121 a, 121 b}$ M. Negrini, ${ }^{20 \mathrm{a}}$ S. Nektarijevic, ${ }^{106}$ C. Nellist, ${ }^{117}$ A. Nelson, ${ }^{163}$ S. Nemecek, ${ }^{127}$ P. Nemethy, ${ }^{110}$ A. A. Nepomuceno, ${ }^{24 \mathrm{a}}$ M. Nessi, ${ }^{30, \text { ab }}$ M. S. Neubauer, ${ }^{165}$ M. Neumann, ${ }^{175}$ R. M. Neves, ${ }^{110}$ P. Nevski, ${ }^{25}$ P. R. Newman, ${ }^{18}$ D. H. Nguyen, ${ }^{6}$ R. B. Nickerson, ${ }^{120}$ R. Nicolaidou, ${ }^{136}$ B. Nicquevert, ${ }^{30}$ J. Nielsen, ${ }^{137}$ N. Nikiforou, ${ }^{35}$ A. Nikiforov, ${ }^{16}$ V. Nikolaenko, ${ }^{130, \text { aa }}$ I. Nikolic-Audit,,${ }^{80}$ K. Nikolopoulos, ${ }^{18}$ J. K. Nilsen, ${ }^{119}$ P. Nilsson, ${ }^{25}$ Y. Ninomiya, ${ }^{155}$ A. Nisati, ${ }^{132 \mathrm{a}}$ R. Nisius, ${ }^{101}$ T. Nobe, ${ }^{157}$ M. Nomachi, ${ }^{118}$ I. Nomidis, ${ }^{29}$ T. Nooney, ${ }^{76}$ S. Norberg, ${ }^{113}$ M. Nordberg, ${ }^{30}$ O. Novgorodova, ${ }^{44}$ S. Nowak,,101 M. Nozaki, ${ }^{66}$ L. Nozka, ${ }^{115}$ K. Ntekas, ${ }^{10}$ G. Nunes Hanninger, ${ }^{88}$ T. Nunnemann, ${ }^{100}$ E. Nurse, ${ }^{78}$ F. Nuti, ${ }^{88}$ B. J. O'Brien, ${ }^{46}$ F. O'grady, ${ }^{7}$ D. C. O'Neil, ${ }^{142}$ V. O'Shea, ${ }^{53}$ F. G. Oakham, ${ }^{29, d}$ H. Oberlack, ${ }^{101}$ T. Obermann, ${ }^{21}$ J. Ocariz, ${ }^{80}$ A. Ochi, ${ }^{67}$ I. Ochoa, ${ }^{78}$ J. P. Ochoa-Ricoux, ${ }^{32 \mathrm{a}}$ S. Oda, ${ }^{70}$ S. Odaka, ${ }^{66}$ H. Ogren, ${ }^{61}$ A. Oh, ${ }^{84}$ S. H. Oh, ${ }^{45}$ C. C. Ohm, ${ }^{15}$ H. Ohman, ${ }^{166}$ H. Oide, ${ }^{30} \mathrm{~W}$. Okamura, ${ }^{118} \mathrm{H}$. Okawa, ${ }^{160}$ Y. Okumura, ${ }^{31}$ T. Okuyama, ${ }^{155}$ A. Olariu, ${ }^{26 a}$ S. A. Olivares Pino, ${ }^{46}$ D. Oliveira Damazio, ${ }^{25}$ E. Oliver Garcia, ${ }^{167}$ A. Olszewski, ${ }^{39}$ J. Olszowska, ${ }^{39}$ A. Onofre, ${ }^{126 a, 126 e}$ P. U. E. Onyisi, ${ }^{31, q}$ C. J. Oram, ${ }^{159 \mathrm{a}}$ M. J. Oreglia, ${ }^{31}$ Y. Oren, ${ }^{153}$ D. Orestano, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$ N. Orlando, ${ }^{154}$ C. Oropeza Barrera, ${ }^{53}$ R. S. Orr, ${ }^{158}$ B. Osculati, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ R. Ospanov, ${ }^{84}$ G. Otero y Garzon, ${ }^{27}$ H. Otono, ${ }^{70}$ M. Ouchrif, ${ }^{135 \mathrm{~d}}$ E. A. Ouellette, ${ }^{169}$ F. Ould-Saada, ${ }^{119}$ A. Ouraou, ${ }^{136}$ K. P. Oussoren, ${ }^{107}$ Q. Ouyang, ${ }^{33 a}$ A. Ovcharova, ${ }^{15}$ M. Owen, ${ }^{53}$ R. E. Owen, ${ }^{18}$ V. E. Ozcan, ${ }^{19 \mathrm{a}}$ N. Ozturk, ${ }^{8}$ K. Pachal, ${ }^{142}$ A. Pacheco Pages, ${ }^{12}$ C. Padilla Aranda, ${ }^{12}$ M. Pagáčová, ${ }^{48}$ S. Pagan Griso, ${ }^{15}$ E. Paganis, ${ }^{139}$ C. Pahl, ${ }^{101}$ F. Paige, ${ }^{25}$ P. Pais, ${ }^{86}$ K. Pajchel, ${ }^{119}$ G. Palacino, ${ }^{159 b}$ S. Palestini, ${ }^{30}$ M. Palka, ${ }^{38 b}$ D. Pallin, ${ }^{34}$ A. Palma, ${ }^{126 a, 126 b}$ Y. B. Pan, ${ }^{173}$ E. Panagiotopoulou, ${ }^{10}$ C. E. Pandini, ${ }^{80}$ J. G. Panduro Vazquez, ${ }^{77}$ P. Pani, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ S. Panitkin, ${ }^{25}$ D. Pantea, ${ }^{26 \mathrm{a}}$ L. Paolozzi, ${ }^{49}$ Th. D. Papadopoulou, ${ }^{10}$ K. Papageorgiou, ${ }^{154}$ A. Paramonov, ${ }^{6}$ D. Paredes Hernandez, ${ }^{154}$ M. A. Parker, ${ }^{28}$ K. A. Parker, ${ }^{139}$ F. Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ J. A. Parsons, ${ }^{35}$ U. Parzefall, ${ }^{48}$ E. Pasqualucci, ${ }^{132 \mathrm{a}}$ S. Passaggio, ${ }^{50 \mathrm{a}}$ F. Pastore, ${ }^{134 \mathrm{a}, 134 \mathrm{~b},{ }^{*} \text { Fr. Pastore, },{ }^{77}{ }^{13} \text {. }}$ G. Pásztor, ${ }^{29}$ S. Pataraia, ${ }^{175}$ N. D. Patel,,${ }^{150}$ J. R. Pater, ${ }^{84}$ T. Pauly, ${ }^{30}$ J. Pearce, ${ }^{169}$ B. Pearson, ${ }^{113}$ L. E. Pedersen, ${ }^{36}$ M. Pedersen, ${ }^{119}$ S. Pedraza Lopez, ${ }^{167}$ R. Pedro, ${ }^{126 \mathrm{a}, 126 \mathrm{~b}}$ S. V. Peleganchuk, ${ }^{109}$ D. Pelikan, ${ }^{166}$ H. Peng, ${ }^{33 \mathrm{~b}}$ B. Penning, ${ }^{31}$ J. Penwell, ${ }^{61}$ D. V. Perepelitsa, ${ }^{25}$ E. Perez Codina, ${ }^{159 \mathrm{a}}$ M. T. Pérez García-Estañ, ${ }^{167}$ L. Perini, ${ }^{91 \mathrm{a} a, 91 \mathrm{~b}}$ H. Pernegger, ${ }^{30}$ S. Perrella, ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$ R. Peschke, ${ }^{42}$ V. D. Peshekhonov, ${ }^{65}$ K. Peters, ${ }^{30}$ R. F. Y. Peters, ${ }^{84}$ B. A. Petersen, ${ }^{30}$ T. C. Petersen, ${ }^{36}$ E. Petit, ${ }^{42}$ A. Petridis, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ C. Petridou, ${ }^{154}$ E. Petrolo, ${ }^{132 \mathrm{a}}$ F. Petrucci, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$ N. E. Pettersson, ${ }^{157}$ R. Pezoa, ${ }^{32 \mathrm{~b}}$ P. W. Phillips, ${ }^{131}$ G. Piacquadio, ${ }^{143}$ E. Pianori, ${ }^{170}$ A. Picazio, ${ }^{49}$ E. Piccaro, ${ }^{76}$ M. Piccinini, ${ }^{20 a, 20 b}$ M. A. Pickering, ${ }^{120}$
 A. Pingel, ${ }^{36}$ B. Pinto, ${ }^{126 a}$ S. Pires, ${ }^{80}$ M. Pitt, ${ }^{172}$ C. Pizio, ${ }^{91 a, 91 b}$ L. Plazak, ${ }^{144 a}$ M.-A. Pleier, ${ }^{25}$ V. Pleskot, ${ }^{129}$ E. Plotnikova, ${ }^{65}$ P. Plucinski, ${ }^{146 a, 146 \mathrm{~b}}$ D. Pluth, ${ }^{64}$ R. Poettgen, ${ }^{83}$ L. Poggioli, ${ }^{117}$ D. Pohl, ${ }^{21}$ G. Polesello, ${ }^{121 \mathrm{a}}$ A. Policicchio, ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$ R. Polifka, ${ }^{158}$ A. Polini, ${ }^{20 a}$ C. S. Pollard, ${ }^{53}$ V. Polychronakos, ${ }^{25}$ K. Pommès, ${ }^{30}$ L. Pontecorvo, ${ }^{132 \mathrm{a}}$ B. G. Pope, ${ }^{90}$ G. A. Popeneciu, ${ }^{26 \mathrm{~b}}$ D. S. Popovic, ${ }^{13}$ A. Poppleton, ${ }^{30}$ S. Pospisil, ${ }^{128}$ K. Potamianos, ${ }^{15}$ I. N. Potrap, ${ }^{65}$ C. J. Potter, ${ }^{149}$ C. T. Potter, ${ }^{116}$ G. Poulard, ${ }^{30}$ J. Poveda, ${ }^{30}$ V. Pozdnyakov, ${ }^{65}$ P. Pralavorio, ${ }^{85}$ A. Pranko, ${ }^{15}$ S. Prasad, ${ }^{30}$ S. Prell, ${ }^{64}$ D. Price, ${ }^{84}$ L. E. Price, ${ }^{6}$ M. Primavera, ${ }^{73 a}$ S. Prince, ${ }^{87}$ M. Proissl, ${ }^{46}$ K. Prokofiev, ${ }^{60 \mathrm{c}}$ F. Prokoshin, ${ }^{32 b}$ E. Protopapadaki, ${ }^{136}$ S. Protopopescu, ${ }^{25}$ J. Proudfoot, ${ }^{6}$ M. Przybycien, ${ }^{38 \mathrm{a}}$ E. Ptacek, ${ }^{116}$ D. Puddu, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$ E. Pueschel, ${ }^{86}$ D. Puldon, ${ }^{148}$ M. Purohit, ${ }^{25, \text { ad }}$ P. Puzo, ${ }^{117}$ J. Qian, ${ }^{89}$ G. Qin, ${ }^{53}$ Y. Qin, ${ }^{84}$ A. Quadt, ${ }^{54}$ D. R. Quarrie, ${ }^{15}$ W. B. Quayle, ${ }^{164 a, 164 b}$ M. Queitsch-Maitland, ${ }^{84}$ D. Quilty, ${ }^{53}$ S. Raddum, ${ }^{119}$ V. Radeka, ${ }^{25}$ V. Radescu, ${ }^{42}$ S. K. Radhakrishnan, ${ }^{148}$ P. Radloff, ${ }^{116}$ P. Rados, ${ }^{88}$ F. Ragusa, ${ }^{9 \mathrm{a}, 91 \mathrm{~b}}$ G. Rahal, ${ }^{18}$ S. Rajagopalan, ${ }^{25}$ M. Rammensee, ${ }^{30}$ C. Rangel-Smith, ${ }^{166}$ F. Rauscher, ${ }^{100}$ S. Rave, ${ }^{83}$ T. Ravenscroft, ${ }^{53}$ M. Raymond, ${ }^{30}$ A. L. Read, ${ }^{119}$ N. P. Readioff, ${ }^{74}$ D. M. Rebuzzi, ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$ A. Redelbach, ${ }^{174}$ G. Redlinger, ${ }^{25}$ R. Reece, ${ }^{137}$ K. Reeves, ${ }^{41}$ L. Rehnisch, ${ }^{16}$ H. Reisin, ${ }^{27}$ M. Relich, ${ }^{163}$ C. Rembser, ${ }^{30}$ H. Ren, ${ }^{33 a}$ A. Renaud, ${ }^{117}$ M. Rescigno, ${ }^{132 a}$ S. Resconi, ${ }^{91 a}$ O. L. Rezanova, ${ }^{109, c}$ P. Reznicek, ${ }^{129}$ R. Rezvani, ${ }^{95}$ R. Richter, ${ }^{101}$ S. Richter, ${ }^{78}$ E. Richter-Was, ${ }^{38 b}$ O. Ricken, ${ }^{21}$ M. Ridel,,${ }^{80}$ P. Rieck, ${ }^{16}$ C. J. Riegel, ${ }^{175}$ J. Rieger, ${ }^{54}$ M. Rijssenbeek, ${ }^{148}$ A. Rimoldi, ${ }^{121 \mathrm{a}, 121 \mathrm{~b}}$ L. Rinaldi, ${ }^{20 \mathrm{a}}$ B. Ristić, ${ }^{49}$ E. Ritsch, ${ }^{62}$ I. Riu, ${ }^{12}$ F. Rizatdinova, ${ }^{114}$ E. Rizvi, ${ }^{76}$ S. H. Robertson, ${ }^{87, k}$ A. Robichaud-Veronneau, ${ }^{87}$ D. Robinson, ${ }^{28}$ J. E. M. Robinson, ${ }^{84}$ A. Robson, ${ }^{53}$ C. Roda, ${ }^{124 a, 124 b}$ S. Roe, ${ }^{30}$ O. Røhne, ${ }^{119}$ S. Rolli, ${ }^{161}$ A. Romaniouk, ${ }^{98}$ M. Romano, ${ }^{20 a, 20 b}$ S. M. Romano Saez, ${ }^{34}$ E. Romero Adam, ${ }^{167}$ N. Rompotis, ${ }^{138}$ M. Ronzani, ${ }^{48}$ L. Roos, ${ }^{80}$ E. Ros, ${ }^{167}$ S. Rosati, ${ }^{132 \mathrm{a}}$ K. Rosbach, ${ }^{48}$ P. Rose, ${ }^{137}$ P. L. Rosendahl, ${ }^{14}$ O. Rosenthal, ${ }^{141}$
V. Rossetti, ${ }^{146 a, 146 \mathrm{~b}}$ E. Rossi, ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$ L. P. Rossi, ${ }^{50 \mathrm{a}}$ R. Rosten, ${ }^{138}$ M. Rotaru, ${ }^{26 a}$ I. Roth,,${ }^{172}$ J. Rothberg, ${ }^{138}$ D. Rousseau, ${ }^{117}$ C. R. Royon,,136 A. Rozanov, ${ }^{85}$ Y. Rozen, ${ }^{152}$ X. Ruan, ${ }^{145 c}$ F. Rubbo, ${ }^{143}$ I. Rubinskiy, ${ }^{42}$ V. I. Rud, ${ }^{99}$ C. Rudolph, ${ }^{44}$ M. S. Rudolph, ${ }^{158}$ F. Rühr, ${ }^{48}$ A. Ruiz-Martinez, ${ }^{30}$ Z. Rurikova, ${ }^{48}$ N. A. Rusakovich, ${ }^{65}$ A. Ruschke, ${ }^{100}$ H. L. Russell, ${ }^{138}$
J. P. Rutherfoord, ${ }^{7}$ N. Ruthmann, ${ }^{48}$ Y. F. Ryabov, ${ }^{123}$ M. Rybar, ${ }^{129}$ G. Rybkin, ${ }^{177}$ N. C. Ryder, ${ }^{120}$ A. F. Saavedra, ${ }^{150}$ G. Sabato, ${ }^{107}$ S. Sacerdoti, ${ }^{27}$ A. Saddique, ${ }^{3}$ H. F-W. Sadrozinski, ${ }^{137}$ R. Sadykov, ${ }^{65}$ F. Safai Tehrani, ${ }^{132 a}$ M. Saimpert, ${ }^{136}$ H. Sakamoto, ${ }^{155}$ Y. Sakurai, ${ }^{171}$ G. Salamanna, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}}$ A. Salamon, ${ }^{133 a}$ M. Saleem, ${ }^{113}$ D. Salek, ${ }^{107}$ P. H. Sales De Bruin, ${ }^{138}$ D. Salihagic, ${ }^{101}$ A. Salnikov, ${ }^{143}$ J. Salt, ${ }^{167}$ D. Salvatore, ${ }^{37 a, 37 b}$ F. Salvatore, ${ }^{149}$ A. Salvucci, ${ }^{106}$ A. Salzburger, ${ }^{30}$
D. Sampsonidis, ${ }^{154}$ A. Sanchez, ${ }^{104 a, 104 b}$ J. Sánchez, ${ }^{167}$ V. Sanchez Martinez, ${ }^{167}$ H. Sandaker, ${ }^{14}$ R. L. Sandbach, ${ }^{76}$ H. G. Sander, ${ }^{83}$ M. P. Sanders, ${ }^{100}$ M. Sandhoff, ${ }^{175}$ C. Sandoval, ${ }^{162}$ R. Sandstroem, ${ }^{101}$ D. P. C. Sankey, ${ }^{131}$ M. Sannino, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ A. Sansoni, ${ }^{47}$ C. Santoni, ${ }^{34}$ R. Santonico, ${ }^{133 a, 133 b}$ H. Santos, ${ }^{126 a}$ I. Santoyo Castillo, ${ }^{149}$ K. Sapp, ${ }^{125}$ A. Sapronov, ${ }^{65}$ J. G. Saraiva, ${ }^{126 a,}{ }^{126 d}$ B. Sarrazin, ${ }^{21}$ O. Sasaki, ${ }^{66}$ Y. Sasaki, ${ }^{155}$ K. Sato, ${ }^{160}$ G. Sauvage,,${ }^{5}{ }^{*}$ E. Sauvan, ${ }^{5}$ G. Savage, ${ }^{77}$ P. Savard, ${ }^{158, d}$ C. Sawyer, ${ }^{120}$ L. Sawyer, ${ }^{79, n}$ J. Saxon, ${ }^{31}$ C. Sbarra, ${ }^{20 a}$ A. Sbrizzi, ${ }^{20 a, 20 b}$ T. Scanlon, ${ }^{78}$ D. A. Scannicchio, ${ }^{163}$ M. Scarcella, ${ }^{150}$ V. Scarfone, ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$ J. Schaarschmidt, ${ }^{172}$ P. Schacht, ${ }^{101}$ D. Schaefer, ${ }^{30}$ R. Schaefer, ${ }^{42}$ J. Schaeffer, ${ }^{83}$ S. Schaepe, ${ }^{21}$ S. Schaetzel, ${ }^{58 \mathrm{~b}}$ U. Schäfer, ${ }^{83}$ A. C. Schaffer, ${ }^{117}$ D. Schaile, ${ }^{100}$ R. D. Schamberger, ${ }^{148}$ V. Scharf, ${ }^{58 a}$ V. A. Schegelsky, ${ }^{123}$ D. Scheirich, ${ }^{129}$ M. Schernau, ${ }^{163}$ C. Schiavi, ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$ C. Schillo, ${ }^{48}$ M. Schioppa, ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$ S. Schlenker, ${ }^{30}$ E. Schmidt, ${ }^{48}$ K. Schmieden, ${ }^{30}$ C. Schmitt, ${ }^{83}$ S. Schmitt,,${ }^{58 \mathrm{~b}}$ S. Schmitt, ${ }^{42}$ B. Schneider, ${ }^{159 \mathrm{a}}$ Y. J. Schnellbach, ${ }^{74}$ U. Schnoor, ${ }^{44}$ L. Schoeffel, ${ }^{136}$ A. Schoening, ${ }^{58 \mathrm{~b}}$ B. D. Schoenrock, ${ }^{90}$ E. Schopf, ${ }^{21}$ A. L. S. Schorlemmer, ${ }^{54}$ M. Schott,,${ }^{83}$ D. Schouten, ${ }^{159 a}$ J. Schovancova, ${ }^{8}$ S. Schramm, ${ }^{158}$ M. Schreyer, ${ }^{174}$ C. Schroeder, ${ }^{83}$ N. Schuh,,${ }^{83}$ M. J. Schultens, ${ }^{21}$ H.-C. Schultz-Coulon, ${ }^{58 a}$ H. Schulz, ${ }^{16}$ M. Schumacher, ${ }^{48}$ B. A. Schumm,,137 Ph. Schune, ${ }^{136}$ C. Schwanenberger, ${ }^{84}$ A. Schwartzman, ${ }^{143}$ T. A. Schwarz, ${ }^{89}$ Ph. Schwegler, ${ }^{101}$ Ph. Schwemling, ${ }^{136}$ R. Schwienhorst, ${ }^{90}$ J. Schwindling, ${ }^{136}$ T. Schwindt, ${ }^{21}$ M. Schwoerer, ${ }^{5}$ F. G. Sciacca, ${ }^{17}$ E. Scifo, ${ }^{117}$ G. Sciolla, ${ }^{23}$ F. Scuri, ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$ F. Scutti, ${ }^{21}$ J. Searcy, ${ }^{89}$ G. Sedov, ${ }^{42}$ E. Sedykh, ${ }^{123}$ P. Seema, ${ }^{21}$ S. C. Seidel, ${ }^{105}$ A. Seiden, ${ }^{137}$ F. Seifert, ${ }^{128}$ J. M. Seixas, ${ }^{24 a}$ G. Sekhniaidze, ${ }^{104 a}$ K. Sekhon, ${ }^{89}$ S. J. Sekula, ${ }^{40}$ K. E. Selbach, ${ }^{46}$ D. M. Seliverstov, ${ }^{123, *}$ N. Semprini-Cesari, ${ }^{20 a, 20 b}$ C. Serfon, ${ }^{30}$ L. Serin, ${ }^{117}$ L. Serkin, ${ }^{164 a, 164 b}$ T. Serre, ${ }^{85}$ M. Sessa, ${ }^{134 a, 134 b}$ R. Seuster, ${ }^{159 a}$ H. Severini, ${ }^{113}$ T. Sfiligoj, ${ }^{75}$ F. Sforza, ${ }^{101}$ A. Sfyrla, ${ }^{30}$ E. Shabalina, ${ }^{54}$ M. Shamim, ${ }^{116}$ L. Y. Shan, ${ }^{33 a}$ R. Shang, ${ }^{165}$ J. T. Shank, ${ }^{22}$ M. Shapiro, ${ }^{15}$ P. B. Shatalov,,${ }^{97}$ K. Shaw, ${ }^{164 a, 164 b}$ S. M. Shaw, ${ }^{84}$ A. Shcherbakova, ${ }^{146 a, 146 b}$ C. Y. Shehu, ${ }^{149}$ P. Sherwood, ${ }^{78}$ L. Shi, ${ }^{151, \text { ae }}$ S. Shimizu, ${ }^{67}$ C. O. Shimmin,,${ }^{163}$ M. Shimojima, ${ }^{102}$ M. Shiyakova, ${ }^{55}$ A. Shmeleva, ${ }^{96}$ D. Shoaleh Saadi, ${ }^{95}$ M. J. Shochet, ${ }^{31}$ S. Shojaii, ${ }^{91 a, 91 b}$ S. Shrestha, ${ }^{111}$ E. Shulga, ${ }^{98}$ M. A. Shupe, ${ }^{7}$ S. Shushkevich, ${ }^{42}$ P. Sicho,,${ }^{127}$ O. Sidiropoulou, ${ }^{174}$ D. Sidorov, ${ }^{114}$ A. Sidoti, ${ }^{20 a, 20 b}$ F. Siegert, ${ }^{44}$ Dj. Sijacki, ${ }^{13}$ J. Silva, ${ }^{126 a, 126 d}$ Y. Silver, ${ }^{153}$ S. B. Silverstein, ${ }^{146 a}$ V. Simak, ${ }^{128}$ O. Simard, ${ }^{5}$ Lj. Simic, ${ }^{13}$ S. Simion, ${ }^{117}$ E. Simioni, ${ }^{83}$ B. Simmons, ${ }^{78}$ D. Simon, ${ }^{34}$ R. Simoniello, ${ }^{91 a, 91 b}$ P. Sinervo, ${ }^{158}$ N. B. Sinev, ${ }^{116}$ G. Siragusa, ${ }^{174}$ A. N. Sisakyan, ${ }^{65,{ }^{*}}$ S. Yu. Sivoklokov, ${ }^{99}$ J. Sjölin, ${ }^{146 a, 146 \mathrm{~b}}$ T. B. Sjursen, ${ }^{14}$ M. B. Skinner, ${ }^{72}$ H. P. Skottowe, ${ }^{57}$ P. Skubic,,${ }^{113}$ M. Slater, ${ }^{18}$ T. Slavicek,,${ }^{128}$ M. Slawinska, ${ }^{107}$ K. Sliwa, ${ }^{161}$ V. Smakhtin, ${ }^{172}$ B. H. Smart, ${ }^{46}$ L. Smestad, ${ }^{14}$ S. Yu. Smirnov, ${ }^{98}$ Y. Smirnov, ${ }^{98}$ L. N. Smirnova, ${ }^{99}$, af O. Smirnova, ${ }^{81}$ M. N. K. Smith, ${ }^{35}$ M. Smizanska, ${ }^{72}$ K. Smolek, ${ }^{128}$ A. A. Snesarev, ${ }^{96}$ G. Snidero, ${ }^{76}$ S. Snyder, ${ }^{25}$ R. Sobie, ${ }^{169, k}$ F. Socher, ${ }^{44}$ A. Soffer, ${ }^{153}$ D. A. Soh, ${ }^{151, \text { ae }}$ C. A. Solans, ${ }^{30}$ M. Solar, ${ }^{128}$ J. Solc,,128 E. Yu. Soldatov, ${ }^{98}$ U. Soldevila, ${ }^{167}$ A. A. Solodkov, ${ }^{130}$ A. Soloshenko, ${ }^{65}$ O. V. Solovyanov, ${ }^{130}$ V. Solovyev, ${ }^{123}$ P. Sommer, ${ }^{48}$ H. Y. Song, ${ }^{33 b}$ N. Soni, ${ }^{1}$ A. Sood, ${ }^{15}$ A. Sopczak, ${ }^{128}$ B. Sopko, ${ }^{128}$ V. Sopko, ${ }^{128}$ V. Sorin, ${ }^{12}$ D. Sosa, ${ }^{58 b}$ M. Sosebee, ${ }^{8}$ C. L. Sotiropoulou, ${ }^{124 a, 124 b}$ R. Soualah, ${ }^{164 a, 164 \mathrm{c}}$ P. Soueid, ${ }^{57}$ A. M. Soukharev, ${ }^{109, \mathrm{c}}$ D. South, ${ }^{42}$ S. Spagnolo, ${ }^{73 a, 73 b}$ M. Spalla, ${ }^{124 a, 124 b}$ F. Spanò, ${ }^{77}$ W. R. Spearman, ${ }^{57}$ F. Spettel, ${ }^{101}$ R. Spighi, ${ }^{20 a}$ G. Spigo, ${ }^{30}$ L. A. Spiller, ${ }^{88}$ M. Spousta, ${ }^{129}$ T. Spreitzer, ${ }^{158}$ R. D. St. Denis, ${ }^{53,{ }^{*}}$ S. Staerz, ${ }^{44}$ J. Stahlman, ${ }^{122}$ R. Stamen, ${ }^{58 a}$ S. Stamm, ${ }^{16}$ E. Stanecka, ${ }^{39}$ C. Stanescu, ${ }^{134 \mathrm{a}}$ M. Stanescu-Bellu, ${ }^{42}$ M. M. Stanitzki, ${ }^{42}$ S. Stapnes, ${ }^{119}$ E. A. Starchenko, ${ }^{130}$ J. Stark, ${ }^{55}$ P. Staroba, ${ }^{127}$ P. Starovoitov, ${ }^{42}$ R. Staszewski, ${ }^{39}$ P. Stavina, ${ }^{144 a,{ }^{*}}$ P. Steinberg, ${ }^{25}$ B. Stelzer, ${ }^{142}$ H. J. Stelzer, ${ }^{30}$ O. Stelzer-Chilton, ${ }^{159 a}$ H. Stenzel,,${ }^{52}$ S. Stern, ${ }^{101}$ G. A. Stewart, ${ }^{53}$ J. A. Stillings, ${ }^{21}$ M. C. Stockton, ${ }^{87}$ M. Stoebe, ${ }^{87}$ G. Stoicea, ${ }^{26 a}$ P. Stolte, ${ }^{54}$ S. Stonjek, ${ }^{101}$ A. R. Stradling, ${ }^{8}$ A. Straessner, ${ }^{44}$ M. E. Stramaglia, ${ }^{17}$ J. Strandberg, ${ }^{147}$ S. Strandberg, ${ }^{146 a, 146 b}$ A. Strandlie, ${ }^{119}$ E. Strauss, ${ }^{143}$ M. Strauss, ${ }^{113}$ P. Strizenec,,${ }^{144 b}$ R. Ströhmer, ${ }^{174}$ D. M. Strom, ${ }^{116}$ R. Stroynowski, ${ }^{40}$ A. Strubig, ${ }^{106}$ S. A. Stucci, ${ }^{17}$ B. Stugu, ${ }^{14}$ N. A. Styles, ${ }^{42}$ D. Su, ${ }^{143}$ J. Su, ${ }^{125}$ R. Subramaniam, ${ }^{79}$ A. Succurro, ${ }^{12}$ Y. Sugaya, ${ }^{118}$ C. Suhr, ${ }^{108}$ M. Suk, ${ }^{128}$ V. V. Sulin, ${ }^{96}$ S. Sultansoy, ${ }^{4 \mathrm{c}}$ T. Sumida, ${ }^{68}$ S. Sun, ${ }^{57}$ X. Sun, ${ }^{33 a}$ J. E. Sundermann, ${ }^{48}$ K. Suruliz, ${ }^{149}$ G. Susinno, ${ }^{37 a, 37 b}$ M. R. Sutton, ${ }^{149}$ S. Suzuki, ${ }^{66}$ Y. Suzuki, ${ }^{66}$ M. Svatos, ${ }^{127}$ S. Swedish, ${ }^{168}$ M. Swiatlowski, ${ }^{143}$ I. Sykora, ${ }^{144 a}$ T. Sykora, ${ }^{129}$ D. Ta, ${ }^{90}$ C. Taccini, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}} \mathrm{~K}$. Tackmann,,${ }^{42}$ J. Taenzer, ${ }^{158}$ A. Taffard, ${ }^{163}$ R. Tafirout, ${ }^{159 \mathrm{a}}$ N. Taiblum, ${ }^{153}$ H. Takai, ${ }^{25}$ R. Takashima, ${ }^{69}$ H. Takeda, ${ }^{67}$ T. Takeshita, ${ }^{140}$ Y. Takubo, ${ }^{66}$ M. Talby, ${ }^{85}$ A. A. Talyshev, ${ }^{109, c}$ J. Y. C. Tam, ${ }^{174}$ K. G. Tan, ${ }^{88}$ J. Tanaka, ${ }^{155}$ R. Tanaka, ${ }^{117}$ S. Tanaka, ${ }^{66}$ B. B. Tannenwald,,${ }^{111}$ N. Tannoury, ${ }^{21}$ S. Tapprogge, ${ }^{83}$ S. Tarem, ${ }^{152}$ F. Tarrade, ${ }^{29}$ G. F. Tartarelli, ${ }^{91 a}$
 G. N. Taylor, ${ }^{88}$ W. Taylor, ${ }^{159 \mathrm{~b}}$ F. A. Teischinger, ${ }^{30}$ M. Teixeira Dias Castanheira, ${ }^{76}$ P. Teixeira-Dias, ${ }^{77} \mathrm{~K}$. K. Temming, ${ }^{48}$ H. Ten Kate, ${ }^{30}$ P. K. Teng, ${ }^{151}$ J. J. Teoh,,${ }^{118}$ F. Tepel, ${ }^{175}$ S. Terada, ${ }^{66}$ K. Terashi, ${ }^{155}$ J. Terron, ${ }^{82}$ S. Terzo, ${ }^{101}$ M. Testa, ${ }^{47}$ R. J. Teuscher, ${ }^{158, k}$ J. Therhaag, ${ }^{21}$ T. Theveneaux-Pelzer, ${ }^{34}$ J. P. Thomas, ${ }^{18}$ J. Thomas-Wilsker, ${ }^{77}$ E. N. Thompson, ${ }^{35}$ P. D. Thompson,,18 R. J. Thompson,,84 A. S. Thompson, ${ }^{53}$ L. A. Thomsen, ${ }^{36}$ E. Thomson, ${ }^{122}$ M. Thomson, ${ }^{28}$ R. P. Thun, ${ }^{89},{ }^{*}$ M. J. Tibbetts, ${ }^{15}$ R. E. Ticse Torres, ${ }^{85}$ V. O. Tikhomirov, ${ }^{96, \text { ag }}$ Yu. A. Tikhonov, ${ }^{109, c}$ S. Timoshenko, ${ }^{98}$ E. Tiouchichine, ${ }^{85}$ P. Tipton, ${ }^{176}$ S. Tisserant, ${ }^{85}$ T. Todorov,,${ }^{5, *}$ S. Todorova-Nova, ${ }^{129}$ J. Tojo, ${ }^{70}$ S. Tokár, ${ }^{144 \mathrm{a}}$ K. Tokushuku, ${ }^{66}$ K. Tollefson, ${ }^{90}$
 J. Toth, ${ }^{85, \text { ai }}$ F. Touchard,,${ }^{85}$ D. R. Tovey, ${ }^{139}$ T. Trefzger, ${ }^{174}$ L. Tremblet, ${ }^{30}$ A. Tricoli, ${ }^{30}$ I. M. Trigger, ${ }^{159 a}$ S. Trincaz-Duvoid, ${ }^{80}$
M. F. Tripiana, ${ }^{12} \mathrm{~W}$. Trischuk, ${ }^{158} \mathrm{~B}$. Trocmé, ${ }^{55} \mathrm{C}$. Troncon, ${ }^{91 \mathrm{a}}$ M. Trottier-McDonald, ${ }^{15} \mathrm{M}$. Trovatelli, ${ }^{134 \mathrm{a}, 134 \mathrm{~b}} \mathrm{P}$. True, ${ }^{90}$ L. Truong, ${ }^{164 \mathrm{a}, 164 \mathrm{c}}$ M. Trzebinski, ${ }^{39}$ A. Trzupek, ${ }^{39}$ C. Tsarouchas, ${ }^{30}$ J. C-L. Tseng, ${ }^{120}$ P. V. Tsiareshka, ${ }^{92}$ D. Tsionou, ${ }^{154}$ G. Tsipolitis, ${ }^{10}$ N. Tsirintanis, ${ }^{9}$ S. Tsiskaridze, ${ }^{12}$ V. Tsiskaridze, ${ }^{48}$ E. G. Tskhadadze,,${ }^{51 a}$ I. I. Tsukerman, ${ }^{97}$ V. Tsulaia,,${ }^{15}$ S. Tsuno, ${ }^{66}$ D. Tsybychev, ${ }^{148}$ A. Tudorache, ${ }^{26 a}$ V. Tudorache, ${ }^{26 a}$ A. N. Tuna, ${ }^{122}$ S. A. Tupputi, ${ }^{20 a}{ }^{206}$, S. Turchikhin, ${ }^{99, \text { af }}$ D. Turecek, ${ }^{128}$ R. Turra, ${ }^{91 \mathrm{a}, 91 \mathrm{~b}}$ A. J. Turvey, ${ }^{40}$ P. M. Tuts, ${ }^{35}$ A. Tykhonov, ${ }^{49}$ M. Tylmad, ${ }^{146 \mathrm{a}, 146 \mathrm{~b}}$ M. Tyndel, ${ }^{131}$ I. Ueda, ${ }^{155}$ R. Ueno, ${ }^{29}$ M. Ughetto, ${ }^{146 a, 146 \mathrm{~b}}$ M. Ugland, ${ }^{14}$ M. Uhlenbrock, ${ }^{21}$ F. Ukegawa, ${ }^{160}$ G. Unal, ${ }^{30}$ A. Undrus, ${ }^{25}$ G. Unel, ${ }^{163}$ F. C. Ungaro, ${ }^{48}$ Y. Unno, ${ }^{66}$ C. Unverdorben, ${ }^{100}$ J. Urban, ${ }^{144 b}$ P. Urquijo, ${ }^{88}$ P. Urrejola, ${ }^{83}$ G. Usai, ${ }^{8}$ A. Usanova, ${ }^{62}$ L. Vacavant, ${ }^{85}$ V. Vacek, ${ }^{128}$ B. Vachon, ${ }^{87}$ C. Valderanis, ${ }^{83}$ N. Valencic, ${ }^{107}$ S. Valentinetti, ${ }^{20 a,}{ }^{20 b}$ A. Valero, ${ }^{167}$ L. Valery, ${ }^{12}$ S. Valkar, ${ }^{129}$ E. Valladolid Gallego, ${ }^{167}$ S. Vallecorsa, ${ }^{49}$ J. A. Valls Ferrer, ${ }^{167}$ W. Van Den Wollenberg, ${ }^{107}$ P. C. Van Der Deijl, ${ }^{107}$ R. van der Geer, ${ }^{107}$ H. van der Graaf, ${ }^{107}$ R. Van Der Leeuw, ${ }^{107}$ N. van Eldik, ${ }^{152}$ P. van Gemmeren, ${ }^{6}$ J. Van Nieuwkoop, ${ }^{142}$ I. van Vulpen, ${ }^{107}$ M. C. van Woerden, ${ }^{30}$ M. Vanadia, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}} \mathrm{~W}$. Vandelli, ${ }^{30}$ R. Vanguri, ${ }^{122}$ A. Vaniachine, ${ }^{6}$ F. Vannucci, ${ }^{80}$ G. Vardanyan, ${ }^{177}$ R. Vari, ${ }^{132 \mathrm{a}}$ E. W. Varnes, ${ }^{7}$ T. Varol, ${ }^{40}$ D. Varouchas, ${ }^{80}$ A. Vartapetian, ${ }^{8}$ K. E. Varvell, ${ }^{150}$ F. Vazeille, ${ }^{34}$ T. Vazquez Schroeder, ${ }^{87}$ J. Veatch, ${ }^{7}$ F. Veloso, ${ }^{126 a, 126 c}$ T. Velz, ${ }^{21}$ S. Veneziano, ${ }^{132 \mathrm{a}}$ A. Ventura, ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$ D. Ventura, ${ }^{86}$ M. Venturi,,${ }^{169}$ N. Venturi, ${ }^{158}$ A. Venturini, ${ }^{23}$ V. Vercesi, ${ }^{121 a}$ M. Verducci, ${ }^{132 \mathrm{a}, 132 \mathrm{~b}}$ W. Verkerke, ${ }^{107}$ J. C. Vermeulen, ${ }^{107}$ A. Vest, ${ }^{44}$ M. C. Vetterli, ${ }^{142, \text { d }}$ O. Viazlo, ${ }^{81}$ I. Vichou, ${ }^{165}$ T. Vickey, ${ }^{139}$ O. E. Vickey Boeriu, ${ }^{139}$ G. H. A. Viehhauser, ${ }^{120}$ S. Viel, ${ }^{15}$ R. Vigne, ${ }^{30}$ M. Villa, ${ }^{20 a}, 20 \mathrm{~b}$ M. Villaplana Perez, ${ }^{91 \mathrm{a}, 91 \mathrm{~b}}$ E. Vilucchi, ${ }^{47}$ M. G. Vincter, ${ }^{29}$ V. B. Vinogradov, ${ }^{65}$ I. Vivarelli, ${ }^{149}$ F. Vives Vaque, ${ }^{3}$ S. Vlachos, ${ }^{10}$ D. Vladoiu, ${ }^{100}$ M. Vlasak, ${ }^{128}$ M. Vogel,,${ }^{32 \mathrm{a}}$ P. Vokac, ${ }^{128}$ G. Volpi, ${ }^{124 a, 124 b}$ M. Volpi, ${ }^{88}$ H. von der Schmitt, ${ }^{101}$ H. von Radziewski, ${ }^{48}$ E. von Toerne, ${ }^{21}$ V. Vorobel, ${ }^{129}$ K. Vorobev, ${ }^{98}$ M. Vos, ${ }^{167}$ R. Voss, ${ }^{30}$ J. H. Vossebeld, ${ }^{74}$ N. Vranjes, ${ }^{13}$ M. Vranjes Milosavljevic, ${ }^{13}$ V. Vrba, ${ }^{127}$ M. Vreeswijk, ${ }^{107}$ R. Vuillermet, ${ }^{30}$ I. Vukotic, ${ }^{31}$ Z. Vykydal, ${ }^{128}$ P. Wagner, ${ }^{21}$ W. Wagner, ${ }^{175}$ H. Wahlberg, ${ }^{71}$ S. Wahrmund, ${ }^{44}$ J. Wakabayashi, ${ }^{103}$ J. Walder, ${ }^{72}$ R. Walker, ${ }^{100}$ W. Walkowiak, ${ }^{141}$ C. Wang, ${ }^{33 \mathrm{c}}$ F. Wang, ${ }^{173}$ H. Wang, ${ }^{15}$ H. Wang, ${ }^{40}$ J. Wang, ${ }^{42}$ J. Wang, ${ }^{33 a}$ K. Wang, ${ }^{87}$ R. Wang, ${ }^{6}$ S. M. Wang, ${ }^{151}$ T. Wang, ${ }^{21}$ X. Wang, ${ }^{176}$ C. Wanotayaroj, ${ }^{116}$ A. Warburton, ${ }^{87}$ C. P. Ward, ${ }^{28}$ D. R. Wardrope, ${ }^{78}$ M. Warsinsky, ${ }^{48}$ A. Washbrook, ${ }^{46}$ C. Wasicki, ${ }^{42}$ P. M. Watkins, ${ }^{18}$ A. T. Watson, ${ }^{18}$ I. J. Watson, ${ }^{150}$ M. F. Watson, ${ }^{18}$ G. Watts, ${ }^{138}$ S. Watts, ${ }^{84}$ B. M. Waugh, ${ }^{78}$ S. Webb, ${ }^{84}$ M. S. Weber, ${ }^{17}$ S. W. Weber, ${ }^{174}$ J. S. Webster, ${ }^{31}$ A. R. Weidberg, ${ }^{120}$ B. Weinert, ${ }^{61}$ J. Weingarten, ${ }^{54}$ C. Weiser, ${ }^{48}$ H. Weits, ${ }^{107}$ P. S. Wells, ${ }^{30}$ T. Wenaus, ${ }^{25}$ T. Wengler, ${ }^{30}$ S. Wenig, ${ }^{30}$ N. Wermes, ${ }^{21}$ M. Werner, ${ }^{48}$ P. Werner, ${ }^{30}$ M. Wessels, ${ }^{58 a}$ J. Wetter, ${ }^{161}$ K. Whalen, ${ }^{29}$ A. M. Wharton, ${ }^{72}$ A. White, ${ }^{8}$ M. J. White, ${ }^{1}$ R. White, ${ }^{32 \mathrm{~b}}$ S. White, ${ }^{124 \mathrm{a}, 124 \mathrm{~b}}$ D. Whiteson, ${ }^{163}$ F. J. Wickens, ${ }^{131}$ W. Wiedenmann, ${ }^{173}$ M. Wielers, ${ }^{131}$ P. Wienemann, ${ }^{21}$ C. Wiglesworth, ${ }^{36}$ L. A. M. Wiik-Fuchs, ${ }^{21}$ A. Wildauer, ${ }^{101}$ H. G. Wilkens, ${ }^{30}$ H. H. Williams, ${ }^{122}$ S. Williams, ${ }^{107}$ C. Willis, ${ }^{90}$ S. Willocq, ${ }^{86}$ A. Wilson, ${ }^{89}$ J. A. Wilson, ${ }^{18}$ I. Wingerter-Seez, ${ }^{5}$ F. Winklmeier, ${ }^{116}$ B. T. Winter, ${ }^{21}$ M. Wittgen, ${ }^{143}$ J. Wittkowski, ${ }^{100}$ S. J. Wollstadt, ${ }^{83}$ M. W. Wolter, ${ }^{39}$ H. Wolters, ${ }^{126 a,}{ }^{126 c}$ B. K. Wosiek, ${ }^{39}$ J. Wotschack, ${ }^{30}$ M. J. Woudstra, ${ }^{84}$ K. W. Wozniak, ${ }^{39}$ M. Wu, ${ }^{55}$ M. Wu, ${ }^{31}$ S. L. Wu, ${ }^{173}$ X. Wu, ${ }^{49}$ Y. Wu, ${ }^{89}$ T. R. Wyatt, ${ }^{84}$ B. M. Wynne, ${ }^{46}$ S. Xella, ${ }^{36}$ D. Xu, ${ }^{33 \mathrm{a}}$ L. Xu, ${ }^{33 \mathrm{~b}, \text { aj }}$ B. Yabsley, ${ }^{150}$ S. Yacoob, ${ }^{145 \mathrm{~b}, \text { ak }}$ R. Yakabe, ${ }^{67}$ M. Yamada, ${ }^{66}$ Y. Yamaguchi, ${ }^{118}$ A. Yamamoto, ${ }^{66}$ S. Yamamoto, ${ }^{155}$ T. Yamanaka, ${ }^{155}$ K. Yamauchi, ${ }^{103}$ Y. Yamazaki, ${ }^{67}$ Z. Yan, ${ }^{22}$ H. Yang, ${ }^{33 e}$ H. Yang, ${ }^{173}$ Y. Yang, ${ }^{151}$ L. Yao, ${ }^{33 a}$ W-M. Yao, ${ }^{15}$ Y. Yasu, ${ }^{66}$ E. Yatsenko, ${ }^{5}$ K. H. Yau Wong, ${ }^{21}$ J. Ye, ${ }^{40}$ S. Ye, ${ }^{25}$ I. Yeletskikh, ${ }^{65}$ A. L. Yen, ${ }^{57}$ E. Yildirim, ${ }^{42}$ K. Yorita, ${ }^{171}$ R. Yoshida, ${ }^{6}$ K. Yoshihara, ${ }^{122}$ C. Young, ${ }^{143}$ C. J. S. Young, ${ }^{30}$ S. Youssef, ${ }^{22}$ D. R. Yu, ${ }^{15}$ J. Yu, ${ }^{8}$ J. M. Yu, ${ }^{89}$ J. Yu, ${ }^{114}$ L. Yuan, ${ }^{67}$ A. Yurkewicz, ${ }^{108}$ I. Yusuff, ${ }^{28, \text { al }}$ B. Zabinski, ${ }^{39}$ R. Zaidan, ${ }^{63}$
 A. Zemla, ${ }^{38 a}$ K. Zengel, ${ }^{23}$ O. Zenin, ${ }^{130}$ T. Ženiš, ${ }^{144 \mathrm{a}}$ D. Zerwas, ${ }^{117}$ D. Zhang, ${ }^{89}$ F. Zhang, ${ }^{173}$ J. Zhang, ${ }^{6}$ L. Zhang, ${ }^{48}$ R. Zhang, ${ }^{33 b}$ X. Zhang, ${ }^{33 \mathrm{~d}}$ Z. Zhang, ${ }^{117}$ X. Zhao, ${ }^{40}$ Y. Zhao, ${ }^{33 \mathrm{~d}, 117}$ Z. Zhao, ${ }^{33 \mathrm{~b}}$ A. Zhemchugov, ${ }^{65}$ J. Zhong, ${ }^{100}$ B. Zhou, ${ }^{89}$ C. Zhou, ${ }^{45}$ L. Zhou, ${ }^{35}$ L. Zhou, ${ }^{40}$ N. Zhou, ${ }^{163}$ C. G. Zhu, ${ }^{33 \mathrm{~d}}$ H. Zhu, ${ }^{33 \mathrm{a}}$ J. Zhu, ${ }^{89}$ Y. Zhu, ${ }^{33 \mathrm{~b}}$ X. Zhuang, ${ }^{33 \mathrm{a}}$ K. Zhukov, ${ }^{96}$ A. Zibell, ${ }^{174}$ D. Zieminska, ${ }^{61}$ N. I. Zimine, ${ }^{65}$ C. Zimmermann, ${ }^{83}$ S. Zimmermann, ${ }^{48}$ Z. Zinonos, ${ }^{54}$ M. Zinser, ${ }^{83}$ M. Ziolkowski, ${ }^{141}$ L. Živković, ${ }^{13}$ G. Zobernig, ${ }^{173}$ A. Zoccoli, ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$ M. zur Nedden, ${ }^{16}$ G. Zurzolo, ${ }^{104 \mathrm{a}, 104 \mathrm{~b}}$ and L. Zwalinski ${ }^{30}$

(ATLAS Collaboration)

${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany, New York, USA
${ }^{3}$ Department of Physics, University of Alberta, Edmonton, Alberta, Canada
${ }^{4 a}$ Department of Physics, Ankara University, Ankara, Turkey
${ }^{4 \mathrm{~b}}$ Istanbul Aydin University, Istanbul, Turkey
${ }^{4 \mathrm{c}}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
${ }^{7}$ Department of Physics, University of Arizona, Tucson, Arizona, USA
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Fisica d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain

${ }^{13}$ Institute of Physics, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
${ }^{19}$ Department of Physics, Bogazici University, Istanbul, Turkey
${ }^{19 \mathrm{~b}}$ Department of Physics, Dogus University, Istanbul, Turkey
${ }^{19}$ Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
${ }^{20 a}$ INFN Sezione di Bologna, Bologna, Italy
${ }^{20 \mathrm{~b}}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{21}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{22}$ Department of Physics, Boston University, Boston, Massachusetts, USA
${ }^{23}$ Department of Physics, Brandeis University, Waltham, Massachusetts, USA
${ }^{24 a}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
${ }^{24 \mathrm{~b}}$ Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
${ }^{24 \mathrm{c}}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
${ }^{24 d}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{25}$ Physics Department, Brookhaven National Laboratory, Upton, New York, USA
${ }^{26 \mathrm{a}}$ National Institute of Physics and Nuclear Engineering, Bucharest, Romania
${ }^{26 \mathrm{~b}}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
${ }^{26 c}$ University Politehnica Bucharest, Bucharest, Romania
${ }^{26 \mathrm{~d}}$ West University in Timisoara, Timisoara, Romania
${ }^{27}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{28}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{29}$ Department of Physics, Carleton University, Ottawa, Ontario, Canada
${ }^{30}$ CERN, Geneva, Switzerland
${ }^{31}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
${ }^{32 a}$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
${ }^{32 \mathrm{~b}}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
${ }^{333}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
${ }^{33 \mathrm{~b}}$ Department of Modern Physics, University of Science and Technology of China, Anhui, China
${ }^{33 \mathrm{c}}$ Department of Physics, Nanjing University, Jiangsu, China
${ }^{33 \mathrm{~d}}$ School of Physics, Shandong University, Shandong, China
${ }^{33 e}$ Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
${ }^{33 f}$ Physics Department, Tsinghua University, Beijing 100084, China
${ }^{34}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{35}$ Nevis Laboratory, Columbia University, Irvington, New York, USA
${ }^{36}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
${ }^{37 \mathrm{a}}$ INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
${ }^{37 \mathrm{~b}}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
${ }^{38 \mathrm{a}}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
${ }^{38 b}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{39}$ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{40}$ Physics Department, Southern Methodist University, Dallas, Texas, USA
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson, Texas, USA
${ }^{42}$ DESY, Hamburg and Zeuthen, Germany
${ }^{43}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{44}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{45}$ Department of Physics, Duke University, Durham, North Carolina, USA
${ }^{46}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{49}$ Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{50 \mathrm{a}}$ INFN Sezione di Genova, Italy
${ }^{50 \mathrm{~b}}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
${ }^{51 a}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
${ }^{51 \mathrm{~b}}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

[^2][^3]${ }^{145 b}$ Department of Physics, University of Johannesburg, Johannesburg, South Africa
${ }^{145 c}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
${ }^{146 a}$ Department of Physics, Stockholm University, Sweden
${ }^{146 b}$ The Oskar Klein Centre, Stockholm, Sweden
${ }^{147}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{148}$ Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
${ }^{149}$ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
${ }^{150}$ School of Physics, University of Sydney, Sydney, Australia
${ }^{151}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{152}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{153}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{154}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{155}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{156}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{157}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{158}$ Department of Physics, University of Toronto, Toronto, Ontario, Canada
${ }^{159 \mathrm{a}}$ TRIUMF, Vancouver, British Columbia, Canada
${ }^{159 b}$ Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
${ }^{160}$ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
${ }^{161}$ Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
${ }^{162}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
${ }^{163}$ Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
${ }^{164 a}$ INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
${ }^{164 b}$ ICTP, Trieste, Italy
${ }^{164 \mathrm{c}}$ Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
${ }^{165}$ Department of Physics, University of Illinois, Urbana, Illinois, USA
${ }^{166}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{167}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
${ }^{168}$ Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
${ }^{169}$ Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
${ }^{170}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{171}$ Waseda University, Tokyo, Japan
${ }^{172}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
${ }^{173}$ Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
${ }^{174}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{175}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{176}$ Department of Physics, Yale University, New Haven, Connecticut, USA
${ }^{177}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{178}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

${ }^{\text {a }}$ Also at Department of Physics, King's College London, London, United Kingdom.
${ }^{\mathrm{b}}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
${ }^{\text {c }}$ Also at Novosibirsk State University, Novosibirsk, Russia.
${ }^{\text {d Also at TRIUMF, Vancouver, British Columbia, Canada. }}$
${ }^{e}$ Also at Department of Physics, California State University, Fresno, California, USA.
${ }^{\mathrm{f}}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
${ }^{\mathrm{g}}$ Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.
${ }^{\text {h }}$ Also at Tomsk State University, Tomsk, Russia.
${ }^{i}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
${ }^{j}$ Also at Università di Napoli Parthenope, Napoli, Italy.
${ }^{\text {k }}$ Also at Institute of Particle Physics (IPP), Canada.
${ }^{1}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
${ }^{m}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
${ }^{n}$ Also at Louisiana Tech University, Ruston, Louisiana, USA.
${ }^{\circ}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
${ }^{p}$ Also at Department of Physics, National Tsing Hua University, Taiwan.
${ }^{q}$ Also at Department of Physics, The University of Texas at Austin, Austin, Texas, USA.
${ }^{r}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
${ }^{\text {s }}$ Also at CERN, Geneva, Switzerland.
${ }^{t}$ Also at Georgian Technical University (GTU),Tbilisi, Georgia.
${ }^{\text {u }}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
${ }^{v}$ Also at Manhattan College, New York, New York, USA.
${ }^{w}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{\mathrm{x}}$ Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
${ }^{y}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
${ }^{\mathrm{z}}$ Also at School of Physics, Shandong University, Shandong, China.
${ }^{a a}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
${ }^{a b}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland.
${ }^{\text {ac }}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy.
${ }^{\text {ad }}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina, USA.
${ }^{\text {ae }}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
${ }^{\text {af }}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
${ }^{\text {ag }}$ Also at National Research Nuclear University MEPhI, Moscow, Russia.
${ }^{\text {ah }}$ Also at Department of Physics, Stanford University, Stanford, California, USA.
${ }^{\text {ai }}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
${ }^{\text {aj }}$ Also at Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA.
${ }^{\text {ak }}$ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
${ }^{\text {al }}$ Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.
*Deceased.

School of Natural Sciences and Mathematics

Measurement of the Correlation Between Flow Harmonics of Different Order in Lead-Lead Collisions at $\sqrt{\bar{s}_{-}}\{N N\}=2.76 \mathrm{Te} \mathrm{V}$ with the ATLAS Detector

CC BY 3.0 (Attribution) License
©2015 CERN, for the ATLAS Collaboration

Citation:

Aad, G., B. Abbott, J. Abdallah, O. Abdinov, et al. 2015. "Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{\mathrm{s}} _\{\mathrm{NN}\}=2.76 \mathrm{TeV}$ with the ATLAS detector." Physical Review C - Nuclear Physics 92(3), doi:10.1103/PhysRevC.92.034903.

This document is being made freely available by the Eugene McDermott Library of The University of Texas at Dallas with permission from the copyright owner. All rights are reserved under United States copyright law unless specified otherwise.

[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

[^1]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$.

[^2]: ${ }^{52}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
 ${ }^{53}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
 ${ }^{54}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
 ${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
 ${ }^{56}$ Department of Physics, Hampton University, Hampton, Virginia, USA
 ${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
 ${ }^{58 a}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{58 \mathrm{~b}}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{58 c}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
 ${ }^{59}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
 ${ }^{60 \mathrm{a}}$ Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
 ${ }^{60 \mathrm{~b}}$ Department of Physics, The University of Hong Kong, Hong Kong, China
 ${ }^{60 \mathrm{c}}$ Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
 ${ }^{61}$ Department of Physics, Indiana University, Bloomington, Indiana, USA
 ${ }^{62}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
 ${ }^{63}$ University of Iowa, Iowa City, Iowa, USA
 ${ }^{64}$ Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
 ${ }^{65}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
 ${ }^{66}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
 ${ }^{67}$ Graduate School of Science, Kobe University, Kobe, Japan
 ${ }^{68}$ Faculty of Science, Kyoto University, Kyoto, Japan
 ${ }^{69}$ Kyoto University of Education, Kyoto, Japan
 ${ }^{70}$ Department of Physics, Kyushu University, Fukuoka, Japan
 ${ }^{71}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
 ${ }^{72}$ Physics Department, Lancaster University, Lancaster, United Kingdom
 ${ }^{73 \mathrm{a}}$ INFN Sezione di Lecce, Italy
 ${ }^{73 \mathrm{~b}}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
 ${ }^{74}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
 ${ }^{75}$ Department of Physics, Jožeef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
 ${ }^{76}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
 ${ }^{77}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
 ${ }^{78}$ Department of Physics and Astronomy, University College London, London, United Kingdom
 ${ }^{79}$ Louisiana Tech University, Ruston, Louisiana, USA
 ${ }^{80}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
 ${ }^{81}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
 ${ }^{82}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
 ${ }^{83}$ Institut für Physik, Universität Mainz, Mainz, Germany
 ${ }^{84}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
 ${ }^{85}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
 ${ }^{86}$ Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
 ${ }^{87}$ Department of Physics, McGill University, Montreal, Quebec, Canada
 ${ }^{88}$ School of Physics, University of Melbourne, Victoria, Australia
 ${ }^{89}$ Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
 ${ }^{90}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
 ${ }^{911}$ INFN Sezione di Milano, Italy
 ${ }^{91 \mathrm{~b}}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
 ${ }^{92}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
 ${ }^{93}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
 ${ }^{94}$ Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
 ${ }^{95}$ Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
 ${ }^{96}$ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
 ${ }^{97}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
 ${ }^{98}$ National Research Nuclear University MEPhI, Moscow, Russia
 ${ }^{99}$ D. V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
 ${ }^{100}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
 ${ }^{101}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
 ${ }^{102}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
 ${ }^{103}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
 ${ }^{104 a}$ INFN Sezione di Napoli, Italy

[^3]: ${ }^{104 b}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
 ${ }^{105}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
 ${ }^{106}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
 ${ }^{107}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
 ${ }^{108}$ Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
 ${ }^{109}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
 ${ }^{110}$ Department of Physics, New York University, New York, New York, USA
 ${ }^{111}$ Ohio State University, Columbus, Ohio, USA
 ${ }^{112}$ Faculty of Science, Okayama University, Okayama, Japan
 ${ }^{113}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
 ${ }^{114}$ Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
 ${ }^{115}$ Palacký University, RCPTM, Olomouc, Czech Republic
 ${ }^{116}$ Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
 ${ }^{117}$ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
 ${ }^{118}$ Graduate School of Science, Osaka University, Osaka, Japan
 ${ }^{119}$ Department of Physics, University of Oslo, Oslo, Norway
 ${ }^{120}$ Department of Physics, Oxford University, Oxford, United Kingdom
 ${ }^{121 a}$ INFN Sezione di Pavia, Italy
 ${ }^{121 b}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
 ${ }^{122}$ Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
 ${ }^{123}$ Petersburg Nuclear Physics Institute, Gatchina, Russia ${ }^{124 a}$ INFN Sezione di Pisa, Italy
 ${ }^{124 \mathrm{~b}}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
 ${ }^{125}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
 ${ }^{126 a}$ Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
 ${ }^{126 b}$ Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
 ${ }^{126 c}$ Department of Physics, University of Coimbra, Coimbra, Portugal
 ${ }^{126 \mathrm{~d}}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
 ${ }^{126 e}$ Departamento de Fisica, Universidade do Minho, Braga, Portugal
 ${ }^{126 f}$ Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
 ${ }^{126 g}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
 ${ }^{127}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
 ${ }^{128}$ Czech Technical University in Prague, Praha, Czech Republic
 ${ }^{129}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
 ${ }^{130}$ State Research Center Institute for High Energy Physics, Protvino, Russia
 ${ }^{131}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom ${ }^{132 \mathrm{a}}$ INFN Sezione di Roma, Italy
 ${ }^{132 b}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
 ${ }^{133 a}$ INFN Sezione di Roma Tor Vergata, Italy
 ${ }^{133 \mathrm{~b}}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy ${ }^{134 \mathrm{a}}$ INFN Sezione di Roma Tre, Italy
 ${ }^{134 \mathrm{~b}}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
 ${ }^{135 a}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco
 ${ }^{135 b}$ Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco
 ${ }^{135 c}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
 ${ }^{135 \mathrm{~d}}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
 ${ }^{135 \mathrm{e}}$ Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
 ${ }^{136}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
 ${ }^{137}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
 ${ }^{138}$ Department of Physics, University of Washington, Seattle, Washington, USA
 ${ }^{139}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
 ${ }^{140}$ Department of Physics, Shinshu University, Nagano, Japan
 ${ }^{141}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
 ${ }^{142}$ Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
 ${ }^{143}$ SLAC National Accelerator Laboratory, Stanford, California, USA
 ${ }^{144 a}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava, Slovak Republic
 ${ }^{144 \mathrm{~b}}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
 ${ }^{145 a}$ Department of Physics, University of Cape Town, Cape Town, South Africa

