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The development of beyond-CMOS technologies with alternative basis logic functions ne-

cessitates the introduction of novel design automation techniques. In particular, recently

proposed computing systems based on memristors and bilayer avalanche spin-diodes both

provide asymmetric logic functions as basis logic gates - the implication and inverted-input

AND, respectively.

There has been a considerable amount of work done in the field of logic synthesis using

alternative logic sets, especially stateful memristive implication logic. However, most of the

previous works rely on the mapping of these alternative logic functions on to standard ones

like NAND, NOR, AND, and OR gates respectively.

This work points out the possible overheads of such an approach, and the advantages of

using asymmetric logic functions to directly implement circuits, which calls for suitable

synthesis and optimization techniques, tailored specifically to asymmetric logic functions.

Such techniques are rooted in the enablement of Boolean reduction methods without any

translation to standard logic operators. This is made possible by the proposed set of Boolean

identities and principles, and a modified Karnaugh mapping method that can be directly

applied to systems with asymmetric logic functions as the basic logic sets.
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A comparative study is presented, which highlights the statistical improvements over pre-

viously proposed approaches in terms of the total number of devices used to implement a

standard function. Finally, a basic algorithm for the automated optimization of asymmetric

functions is proposed, providing the groundwork for advanced design automation techniques

for emerging device technologies.
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CHAPTER 1

INTRODUCTION

For many years now, the continued scaling of CMOS devices has been the primary intent

of both the academia and the industry alike. However, more recent works have imposed

limitations on the extent of this scaling, accelerating the race towards finding alternative

technologies. Recent years have witnessed several promising proposals such as the magnetic

tunnel junction logic [1, 2], domain wall logic [1, 3–6], all-carbon spin logic [7], spin-FETs

[8–11] that use magnets and electron spin as state variables instead of charge currents, and

spin based logic [12–18].

As newer devices are being proposed, there is a need to develop better alternative methods

to handle circuit design at the logic level. This entails the introduction of novel logic synthesis

and minimization techniques. One approach of doing this is to optimize the existing methods

for these novel techniques. The advantage here is lower resource allocation to research and

development. The second approach is to rethink the entire process from the ground up.

Surely, this requires a more comprehensive development process, but promises optimality at

each step. The latter approach is the one adopted in this work, which in fact shows a marked

improvement over the former.

The first step of implementing logic efficiently is to characterize a logic set using appro-

priate logic operations such that it can implement any given Boolean function. The logic

operations are usually termed as basic gates for a given device technology. For example,

NAND and NOR gates are considered to be the basic gates for the CMOS technology. In

this work, two separate device technologies are used - bilayer avalanche spin-diode logic

(BASDL) device and the memristor. Each provides a unique basic logic set - an inverted-

input AND (IAND) and OR gate for the BASDL, and stateful implication (IMPLY) and

NAND logic for the memristors. Either of these logic sets can be used to implement any

given Boolean function. In this thesis document, I define an entire set of Boolean identities
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and principles for both the two logic sets, which enables their complete algebraic treatment.

This means that a mapping to any other CMOS-based ’universal gate’ is not required.

After the characteristics of a required circuit are comprehensively defined, and is correctly

mapped to the appropriate logic operations, the resultant Boolean function needs to be min-

imized. Logic minimization is a design automation technique through which the area, speed,

and energy of logic circuits can be optimized by minimizing the quantity and complexity

of the logic gates required to perform a desired logic function. Numerous techniques have

been proposed for the optimization of logic circuits, many of which are based on Maurice

Karnaugh’s 1953 proposal for a map method for the synthesis of logic circuits [19]. While

Karnaugh maps have found their greatest utility for circuits composed of complementary

metal oxide semiconductor (CMOS) transistors, much of Karnaugh’s scientific contributions

related to logic with magnetic cores [20].

As logic circuits that act on magnetic and alternative phenomena have again become

competitors to CMOS, modifications of Karnaugh’s map method are necessary to take full

advantage of emerging technologies. Karnaugh’s map method enables logic synthesis based

on the AND and OR functions, while various logic concepts based on memristors and spin-

tronic devices provide basis logic gates for which there is no efficient technique for transla-

tion to AND and OR gates [12, 21–28]. In particular, the IMPLY and IAND functions are

non-commutative and asymmetric, preventing direct use of conventional Karnaugh maps.

Therefore, I propose modifications to the Karnaugh’s map method that enable the synthe-

sis of complex logic functions directly into minimized stateful memristor logic circuits and

bilayer avalanche spin-diode logic circuits.

Logic synthesis for stateful memristor logic has previously been investigated, but has not

provided a minimization technique that directly applies implication functions. In much pre-

vious work, logic minimization is performed with a basis set of conventional logic functions,

with each basis logic gate mapped to an efficient memristor implementation. For example,

2



[29] minimizes a large function into NAND, OR, and parity gates, which are then realized

with memristors; [30] minimizes a function into OR and inverter gates; [31] uses NOT,

NAND, and OR gates; and [32] uses majority gates. Binary decision diagrams have also

been used [33], as has an interpretation of memristors as threshold logic elements [34]. Most

of the previous work has been performed at a purely algorithmic level, while the synthesis

technique in [31] uses conventional Karnaugh maps that are then translated into memris-

tor logic circuits. As these techniques all minimize circuits with conventional symmetric

logic functions and then implement these circuits with memristors, the circuit that is real-

ized is sub-optimal due to the fact that the minimization function is not applied directly

to the asymmetric basis logic functions performed by the memristors. Though helpful in

significantly reducing circuit complexity, none of this previous work provides a technique for

realizing a fully minimized circuit with asymmetric logic functions.

This work is intended to propose an alternative strategy towards logic implementation

using unconventional logic sets, and hopefully contribute towards developing better electronic

design automation (EDA) techniques for these functions. Chapter 2 describes the background

for the device technologies, conventional Karnaugh mapping method, and asymmetry in logic

functions; while Chapter 3 presents Boolean algebraic laws for both IAND and IMPLY logic

operations. Chapter 4 details the Karnaugh maps optimized for asymmetric logic functions

and examples are provided to enable its practical use. Chapter 5 provides a study of different

logic implementations styles proposed over the years, and compares them with the ones

proposed in this work. Chapter 6 proposes a practical implementation of an algorithm that

automates the optimization process for asymmetric logic functions. Finally, conclusions are

presented in Chapter 7.
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CHAPTER 2

BACKGROUND

The asymmetric basis logic functions provided by stateful memristor logic and bilayer avalanche

spin-diode logic can be performed compactly, but their synthesis into optimal circuits requires

the development of techniques tailored to these functions. In particular, the implication

function can be performed by two non-volatile memristors, while a NAND function can

be performed by three memristors. In bilayer avalanche spin-diode logic, a single device

can perform the IAND and OR functions. The implication and IAND functions are both

non-commutative and asymmetric, and their integration with NAND and OR functions, re-

spectively, enables the development of an algebra and Karnaugh map method that enables

logic minimization for both stateful memristor logic and bilayer avalanche spin-diode logic.

This chapter sheds light on the device technologies, their corresponding basis logic sets,

conventional Karnaugh mapping method and the previously proposed approaches for logic

implementations using asymmetric gates.

2.1 Bilayer Avalanche Spin Diode Logic

In bilayer avalanche spin-diode logic, the current on two control wires modulates the current

through a spin-diode [12]. These two-terminal spintronic devices have negative magnetore-

sistance, enabling an applied magnetic field to modulate the resistance. A constant voltage is

applied across all spin-diodes at all times, thus enabling the two control wire input currents

to create magnetic fields that modulate the spin-diode output current (see Fig. 2.1). The

magnitude and direction of the magnetic fields relative to a threshold field determine the

resistance state of the spin-diode. The spin-diode output currents can be used as the input

control wire current to create directly cascaded logic without any amplification or control

circuitry.
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Figure 2.2. BASDL functioning as an (a) OR gate if the input currents IA and IB are in the
same direction, or as (b) IAND gate if IA and IB have opposite current flows.

In this spintronic logic family, a ′1′ is represented as a large current while a ′0′ is rep-

resented by a small current. Depending upon the relative direction of current through the

control wires, this spin-diode performs either the conventional OR function or the inverted-

input AND (IAND) function (see Fig. 2.2 and Table 2.1). These distinct functions result

from the additive or counteractive magnetic fields created by currents oriented in the same or

opposite directions, respectively. Unlike memristors, spin-diodes are volatile; they return to

their zero-magnetic field state immediately upon the removal of the applied input currents.

2.2 Stateful Memristor Logic

A memristor (or, more generally, a memristive device) is a two-terminal non-volatile device

with a resistance that can be modified through application of a voltage across the two

terminals [35, 36]. In general, the resistance is on a spectrum determined by the history

of applied voltages; in the ideal binary case, applied voltages above a threshold magnitude

6



Figure 2.3. Schematic of memristive implication logic, where voltages applied to the mem-
ristors modulate the resistance state.

switch a memristor between purely resistive and conductive states. The memristors shown

in Fig. 2.3 switch to a ’1’ conductive state when VP − VN > VTH , and a resistive ′0′ state

when VN − VP > VTH , where VN is the voltage at node N , VP is the voltage at node P ,

and VTH is the threshold voltage. In some physical implementations, the resistance state is

a result of the growth and retraction of a metallic filament [37].

As shown in Table 2.1, the implication function OUT = A→ B is performed by applying

VCOND to memristor A and VSET to memristor B, where VCOND < VTH < VSET and VSET −

VCOND < VTH [38]. When memristor A is in the resistive ′0′ state, the VSET voltage across

memristor B is greater than VTH , causing memristor B to switch to the conductive ′1′

state or remain in that state. If memristor A is in the conductive ′1′ state, the voltage across

memristor B is VSET−VCOND; as this is less than VTH , no switching occurs. This implication

function can thus be performed by two memristors in a single step, while a NAND function

can be performed similarly with three memristors (Fig. 2.4) in two steps [25].

Note that while more complex operations have been proposed in a single step with ideal

memristors, these operations have not been demonstrated experimentally or with physically

7



Figure 2.4. Schematic and computational steps for a typical NAND implementation using
stateful memristive implication logic.

Table 2.1. Truth Table for IAND and Implication Logic

Input A Input B IAND Implication

0 0 0 1
0 1 0 1
1 0 1 0
1 1 0 1

realistic device models. This work is therefore restricted to experimentally realizable opera-

tions with only two memristors in a single step.

2.3 Asymmetric Basis Logic Functions

An asymmetric logic operation can be defined as one whose logic value changes when

the operands are interchanged. Equivalently, these operations can be regarded as ’non-

commutative’ in nature. The inverted-AND (IAND) gate and material implication imple-

mented using the bilayer avalanche spin-diode logic and memristors respectively, are two

such asymmetric functions discussed in this paper.

8



As the IAND gate performs the function of an AND gate with one inverted input (Table

2.1), a symbol ( ) is defined for the IAND operation such that

IAND (A,B) = A ∧B = A B (2.1)

The symbol derives inspiration from the conventional logical operator for AND gates (∧),

with the added underbar on the right arm indicating the inversion of the input to the right

of the operator.

The implication function is the inverse of IAND and is defined as

IMP (A,B) = A→ B = A ∨B = A B. (2.2)

For clarity, the input that lies on the left side (right side) of the IAND (implication) operation

is referred to as the non-inverted input, whereas the one of the right (left) is referred to as

the inverted input. For example, A is the non-inverted input and B is the inverted input in

(2.1); in (2.2), B and A are the non-inverted and inverted inputs, respectively.

Both technologies described in this work are limited to a two-input configuration. When

more than two operands are present, only two literals should be operated upon at a time.

Moreover, because the operations are non-commutative, it is important to pay attention to

the order of operations. The order of operations can be summarized as:

• Order of operations for IAND: Two at a time, from left to right.

IAND (A,B,C) = (A B) C (2.3)

• Order of operations for IMPLY: Two at a time, from right to left.

IMP (A,B,C) = (A→ (B → C)) (2.4)

9



Figure 2.5. Karnaugh map for (2.5) and (4.1).

Further, since these operations are sensitive to the order of the operands, it is convenient

to define a pre- and post-operation. For example, a pre-IAND operation of A with B is

equivalent to (A B), whereas a post-IAND of A with B means (B A). A similar analogy

follows for IMPLY operations as well.

2.4 Conventional Karnaugh Maps: A Functional Overview

Karnaugh Maps are tabular representations of Boolean logic functions consisting of 2n

cells, each for one among the possible combinations of n-bit binary data. The cells are

arranged such that logically adjacent terms share physical adjacency. Graphical pairing of

these adjacent terms reduces the function to its essential prime implicants [19, 39]. Whereas

Karnaugh originally described the method only through examples [19], I intend to formally

demonstrate the validity of the proposed method.

A conventional Karnaugh map is shown in Fig. 2.5 for the expression

fsop = (A ∧B ∧ C) ∨ (A ∧B ∧ C) ∨ (A ∧B ∧ C) (2.5)

This expression can be rewritten by duplicating the term (A ∧B ∧ C),

fsop = {(A ∧B ∧ C) ∨ (A ∧B ∧ C)} ∨ {(A ∧B ∧ C) ∨ (A ∧B ∧ C)}. (2.6)

10



This expression can then be simplified according to conventional Boolean algebra techniques,

first with the OR distributive law:

fsop = ((A ∨ A) ∧B ∧ C) ∨ ((B ∨B) ∧ A ∧ C). (2.7)

(A∨A) and (B ∨B) are ′1′ by complement law, enabling the elimination of operands A and

B from the respective product terms:

fsop = (1 ∧B ∧ C) ∨ (1 ∧ A ∧ C) = (B ∧ C) ∨ (A ∧ C). (2.8)

Karnaugh’s method reaches this result in a similar manner, but graphically. This can

be noted in the Karnaugh map pair encircled with green and orange (Fig. 2.5): The logical

adjacency enables the combination of literals with their complements and therefore minimize

redundancies in a function. In chapter 4, this functional overview will help the reader

understand the reason behind the correctness of the proposed modification in the Karnaugh

mapping method.

2.5 Previously Proposed Approaches for Logic Implementation

With the growing and seemingly promising market of emerging device technologies, multiple

schemes for improving their usability have been proposed in recent years. The primary

objective of many of these papers have been to propose an efficient logic synthesis paradigm

for these relatively newfound devices. Memristor is one such device that has received much

attention in particular. From material implication to hybrid memristor-CMOS devices, there

is a variety of proposed implementation techniques. However, it is not clear which one

promises the most optimized computing capabilities.

Although, a detailed discussion over all of these techniques is beyond the scope of this

work, [40] provides an appropriate classification:
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• Material Implication: Logic implemented using stateful implication logic, as described

in this work [25, 26, 29, 38].

• Memristor-only: Logic implementation using memristors only [41–43]

• Programmable Nanowire Interconnects [36, 44–47].

• Network-Based Computations: Parallel computations using a network of memristors

[48–51]

• Hybrid CMOS-Memristor Logic: Families like MeMOS (Memristor-CMOS) [52] uti-

lize the both memristive and CMOS circuits in the same implementation with either

Boolean [53, 54] or threshold logic [55–57].

This thesis document takes into account only synthesis techniques using material implication

and memristor-only implementations, since comparing the others with this work might turn

out to be both unfair and complex at the same time.
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CHAPTER 3

BOOLEAN ALGEBRA FOR ASYMMETRIC LOGIC FUNCTIONS

The inherent inverting nature of asymmetric logic functions like IAND and IMPLY make

it an imperative to redefine the Boolean identities and principles. In this chapter, I have

organized the properties in analogy to the standard Boolean algebra, hopefully making it

more intuitive. A separate section is dedicated to each of the spintronic IAND logic and

the stateful memristive implication logic. Each of the sections is subdivided into some

core algebraic identities and the standard Boolean laws. This is followed by a detailed

explanation about canonical forms for functions implemented using the basic logic set for

each of the device technology. At the end, I present the relationship between IAND and

IMPLY operations and describe a process of translation between them.

3.1 Spintronic Inverted-AND Logic

The bilayer avalanche spin-diode logic device provides for a unique basic logic gate - IAND,

which is an AND gate with an inverted input. In this section, I define the Boolean laws and

principles for functions implemented using a combination of IAND gates and other standard

Boolean functions.

3.1.1 Core Algebraic Identities

Core algebraic identities define the basic properties of a logic operation, and how it funda-

mentally alters a function. The primary identities have been presented in this section.

Interaction with High (1) and Low Logic (0)

Here, I evaluate how the IAND operation alters a Boolean function when operated against

a zero (0) or a one (1).
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Identity 1 (IAND Annulment): A pre-IAND of 0 or a post-IAND of 1 nullifies the given

function.

A 1 = 0 A = 0 (3.1)

Proof. Representing the IAND operation in terms of AND,

A 1 = A ∧ 1 = A ∧ 0 = 0 (3.2)

and, 0 A = 0 ∧ A = 0 (3.3)

which proves the theorem. �

Identity 2 (IAND Inversion): A pre-IAND of 1 complements the given function.

1 A = A (3.4)

Proof. Representing the IAND operation in terms of AND,

1 A = 1 ∧ A = A (3.5)

which proves the theorem. �

Identity 3 (IAND Identity): A post-IAND of 0 is the identity for the IAND operation.

A 0 = A (3.6)

Proof. Representing the IAND operation in terms of AND,

A 0 = A ∧ 0 = A ∧ 1 = A (3.7)

which proves the theorem. �
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Idempotency for IANDs

Idempotency is the property that enables multiple iterations of an operation without chang-

ing the result. However, for asymmetric functions, this property is evaluated for the different

cases of repeating operations even though they might not preserve the same value. I have

classified these properties as per the results obtained.

Identity 4 (IAND Null Idempotency):

A A = 0 (3.8)

Proof. Representing the IAND operation in terms of AND,

A A = A ∧ A = 0 (3.9)

which proves the theorem. �

Identity 5 (IAND Inverse Idempotency - I):

A A = A (3.10)

Proof. Representing the IAND operation in terms of AND,

A A = A ∧ A = A (3.11)

which proves the theorem. �

Identity 6 (IAND Inverse-Idempotency - II):

A A = A (3.12)
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Proof. Representing the IAND operation in terms of AND,

A A = A ∧ A = A (3.13)

which proves the theorem. �

3.1.2 Boolean Algebraic Laws

This section develops the standard laws of Boolean algebra for IAND logic. As a generic

note, some of the laws might deviate from their original definition, however a clear analogy

can be noted for each of them.

Commutative Law

Theorem 1 (IAND Commutation): The very idea that a logic function is ’asymmetric’

implies that it does not follow the conventional commutative law, i.e.

A B 6= B A (3.14)

However, considering two operands A and B, commutation can be achieved by complement-

ing both the literals as shown in (3.15)

A B = B A (3.15)

Proof. Replacing the IAND with AND,

A B = A ∧B = B ∧ A. (3.16)
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Changing the RHS of (3.16) back to IAND notation,

A B = B A, (3.17)

which proves the theorem. �

Associativity Laws

Here, I present associativity laws that define how three or more Boolean functions are grouped

when operated upon by an asymmetric function.

Theorem 2 (Conventional ‘Non-Associativity’):

(A B) C 6= A (B C) (3.18)

It is important to keep in mind the fact that due to the asymmetric inversion of operands,

IANDs do not follow associativity conventionally. This can be proved as follows. Note that

the parentheses are solved two at a time from left to right as suggested earlier.

Proof. Converting the two sides of Theorem 2 to AND notation,

(A B) C = A ∧B ∧ C (3.19)

A (B C) = A (B ∧ C) = A ∧ (B ∨ C) (3.20)

Clearly, (3.19) and (3.20) are not equivalent. �

However, IAND logic does follow two special kinds of associative laws: Inverting and

Non-Inverting. We explore these in detail in the following two theorems.
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Theorem 3 (IAND Non-Inverting Associativity): Non-inverting associativity means that

on changing the order of certain operands, no inversion is required. This happens when any

two inverted operands interchange places.

(A B) C = (A C) B (3.21)

Proof. Converting the expression to AND notation:

(A B) C = A ∧B ∧ C = A ∧ C ∧B. (3.22)

This can be rewritten using IAND notation as follows:

A ∧ C ∧B = (A C) B. (3.23)

The theorem is thus proven. �

Theorem 4 (IAND Inverting Associativity): Inverting associativity demands the inversion

of both the operands that have changed places. This theorem should be applied when a

non-inverted input interchanges its place with an inverted input.

(A B) C = (C A) B (3.24)

Proof. Converting the LHS of (3.24) to AND notation:

(A B) C = A ∧B ∧ C. (3.25)

Rearranging the inputs on the RHS of the above expression,

(A B) C = C ∧ A ∧B, (3.26)
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which can be rewritten using IAND notation as

(A B) C = (C A) B, (3.27)

which is the same as (3.24). �

Discussion: Theorem 3 and Theorem 4 can also be interpreted intuitively as the move-

ment of inverted and non-inverted operands around the IAND operator:

• If the non-inverted operand trades places with an inverted operand within the IAND

expression, both of these operands are complemented to maintain logical equivalence

(inverting associativity).

• If an inverted operand trades places with another inverted operand within the IAND

expression, the operands are not complemented (non-inverting associativity).

The above results also follow from Theorem 1 for two inputs.

Distributive Laws

This section detail the distributive laws for expressions involving a combination of IAND and

OR/AND operations performed between three binary inputs. As the nomenclature would

be quite challenging, these theorems are numbered rather than named. Further, please note

that although some of these theorems might be more useful or relevant than others, all of the

possible combinations for the three Boolean operations have been presented for completeness.

However, these have been categorized into ‘single operation’ and ‘cross-operation’ distributive

laws.

Single-Operation Distributive Laws: These laws relate two Boolean expressions,

both of which are represented using a combination of IAND and AND/OR operations. The-

orems 5-9 belong to this category.
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Theorem 5 (IAND Distributive Law - I):

A (B ∧ C) = (A B) ∨ (A C). (3.28)

Proof. Changing LHS of (3.28) to AND notation and expanding using De Morgan’s Law,

A (B ∧ C) = A ∧B ∧ C = A ∧ (B ∨ C). (3.29)

Using the conventional OR distributive law,

A (B ∧ C) = (A ∧B) ∨ (A ∧ C). (3.30)

Finally, replacing the AND operations with IAND:

A (B ∧ C) = (A B) ∨ (A C), (3.31)

which is the same as (3.28). �

Theorem 6 (IAND Distributive Law - II):

(A B) ∧ C = (A B) C (3.32)

Proof. The proof for this theorem follows directly from the definition of the IAND operation.

Changing the LHS of (3.32) to AND notation and subsequently back to IAND:

(A B) ∧ C = A ∧B ∧ C (3.33)

(A B) ∧ C = (A B) C (3.34)

The above equation being the same as (3.32) �
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Theorem 7 (IAND Distributive Law - III):

(A ∨B) C = (A C) ∨ (B C) (3.35)

Proof. Changing LHS of (3.35) to AND notation and using the conventional OR distributive

law,

(A ∨B) C = (A ∨B) ∧ C = (A ∧ C) ∨ (B ∧ C). (3.36)

Finally, replacing the AND operations with IAND:

A (B ∧ C) = (A C) ∨ (B C), (3.37)

which is the same as (3.35). �

Theorem 8 (IAND Distributive Law - IV):

A (B ∨ C) = (A B) ∧ (A C) (3.38)

Proof. Changing LHS of (3.38) to AND notation and expanding using De Morgan’s Law,

A (B ∨ C) = A ∧ (B ∨ C) = A ∧ (B ∧ C). (3.39)

This can be rewritten in IAND notation as

A ∧ (B ∧ C) = (A ∧B) ∧ (A ∧ C) = (A B) ∧ (A C), (3.40)

which is the same as (3.38). �
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Theorem 9 (IAND Distributive Law - V):

A ∧ (B C) = (A ∧B) C = (A B) C (3.41)

Proof. Similar to Theorem 6 the proof follows directly from the definition of the IAND

operation. Changing the LHS of (3.41) to AND notation,

A ∧ (B C) = A ∧B ∧ C, (3.42)

and, (A ∧B) C = A ∧B ∧ C, (3.43)

Changing (3.42) and (3.43) back to the IAND notation,

A ∧ (B C) = (A ∧B) C = (A B) C. (3.44)

The above equation is the same as (3.41) �

Cross-Operation Distributive Laws: These laws relate a Boolean expression repre-

sented in terms of IAND and AND/OR operations with an expression represented only in

terms of AND/OR operations. Theorems 10-11 are cross-operation distributive laws.

Theorem 10 (IAND Distributive Law - VI):

A ∨ (B C) = (A ∨B) ∧ (A ∨ C) (3.45)

Proof. Changing the LHS of (3.45) to AND notation and using the conventional AND dis-

tribution law,

A ∨ (B C) = A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C). (3.46)

The above equation validates the theorem. �
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Theorem 11 (IAND Distributive Law - VII):

(A B) ∨ C = (A ∨ C) ∧ (B ∨ C) (3.47)

Proof. Changing LHS of (3.47) to AND notation,

(A B) ∨ C = (A ∧B) ∨ C (3.48)

Applying conventional AND Distributive Law,

(A B) ∨ C = (A ∨ C) ∧ (B ∨ C) (3.49)

which is the equivalent to (3.47). �

The interaction between three literals A, B and C using IAND and AND gates yield the

same result irrespective of the placement of the parentheses.

De Morgan’s Law for IAND operation

At this point in the thesis, it is clear that none of the conventional Boolean laws work for

IAND gates without some sort of modification. This is true for the De Morgan’s law as well.

Luckily, when applied to the IAND operation, there is much similarity between the modified

version for IAND logic (proposed here), and the accepted convention. The De Morgan’s Law

can be formally stated as,

Theorem 12: The negation of ordered IAND of two literals, is equal to the OR of the two

literals with the non-inverted term complemented.

For two inputs:

A B = A ∨B (3.50)
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Conversely, A ∨B = A B (3.51)

For three inputs:

(A B) C = A ∨B ∨ C (3.52)

Conversely, A ∨B ∨ C = (A B) C (3.53)

Proof. Converting the LHS of (3.50) to AND notation and applying conventional De

Morgan’s Law,

A B = A ∧B = A ∨B (3.54)

Similarly for (3.52),

(A B) C = A ∧B ∧ C = A ∨B ∨ C (3.55)

Hence the De Morgan’s law for IAND operations is verified. The inverse can also be proved

in a similar fashion. �

Note that it is important to solve the IAND operation in an ordered fashion as mentioned

earlier. Although the law has been stated only for two and three input IAND operations, it

can be extended to any number of inputs. In every such case, only the non-inverted input

will appear as its own complement along with the change of IAND operation to OR.

Principle of Duality

Conventionally a ’dual’ of a Boolean function is obtained by replacing the ANDs (ORs) and

1s(0s) with ORs (ANDs) and 0s(1s) respectively. For example, the dual of (A∨B) is (A∧B),

and (D ∨ 1) is the dual of (D ∧ 0). Boolean duals for expressions involving IANDs can be

found with a slight modification to this rule:

• Replace all ANDs with ORs, and vice versa.

• Replace all 1s with 0s, and vice versa.
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• Change all IANDs to ORs and complement all inverted inputs.

For example, the dual of the Boolean expression (A B) C is (A ∨ B ∨ C). It is worth

noting that to correctly obtain the dual, the first two steps need to be performed before the

third one.

The principle of duality states that if two Boolean expressions are equivalent, then their

duals are also equivalent. This holds true for IAND operations as well. Consider the following

Boolean equation (true as per Theorem 12):

(A B) C = A ∨B ∨ C (3.56)

Transforming the above equation by the rules we mentioned above,

Dual(LHS) = (A ∨B ∨ C) (3.57)

Or, by De Morgan’s Law,

Dual(LHS) = (A ∧B ∧ C) (3.58)

Similarly,

Dual(RHS) = (A ∧B ∧ C) (3.59)

Clearly, (3.58) and (3.59) are equivalent.

Corollary: By careful examination of the above methodology, we discover another way

of transforming any Boolean expression into its duals. Instead of the conventional change of

ORs to ANDs, they can be changed to IANDs with the inverted inputs complemented.
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3.1.3 IAND Operations in Equations

One needs to be careful while considering the equivalence of an IAND operation done across

the sides of an equation. Consider, the expressions in equations (3.60)-(3.62).

A ∧ (A ∨B) = A ∨ (A ∧B) (3.60)

Z (A ∧ (A ∨B)) = Z (A ∨ (A ∧B)) (3.61)

(A ∧ (A ∨B)) Z = Z (A ∨ (A ∧B)) (3.62)

It is known for a fact that, in most cases, performing the same operation with the same

on both sides of an equation will keep its equivalence intact, and thus the above three

equations appear to be the same. However, performing an IAND of the two sides of the

equation with a generic function Z might disrupt its equivalence if the order of operation

is not maintained. This means that one should pay attention to pre-IAND or post-IAND

operations which is analogous to dealing with equations involving matrices. Thus,(3.60) and

(3.61) are equivalent whereas (3.62) is not a correct equation.

3.1.4 Canonical Normal Form for IAND/OR Logic Set

There are primarily, two types of canonical normal forms used in Boolean Algebra, namely

canonical disjunctive normal form (CDNF) and canonical conjunctive normal form (CCNF).

These are described in detail in the following subsections, first for the conventional AND/OR

logic set and then for IAND/OR.

Canonical Disjunctive Normal Form (CDNF)

CDNF, better known as minterm canonical form or canonical sum of products (SOP) is

a Boolean expression obtained by the OR-ing of certain AND-ed combinations of Boolean
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literals. For example,

fsop(A,B,C) = (A ∧B ∧ C) ∨ (A ∧B ∧ C) ∨ (A ∧B ∧ C) (3.63)

CDNF for the IAND/OR logic set, as proposed here, is called sum of IANDs (SOI), and

is the OR-ing of certain Boolean literals IAND-ed in different combinations. (3.64) presents

an example.

fsoi(A,B,C) = ((A B) C) ∨ ((A B) C) ∨ ((A B) C) (3.64)

Canonical conjunctive normal form (CCNF)

CCNF is simply the dual of CDNF and is also known as canonical product of sums (POS).

For example,

fpos(A,B,C) = (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) (3.65)

CCNF for the IAND/OR logic set is called IAND of sums (IOS), and is the IAND of the

sums of Boolean literals in certain combinations. (3.66) is an example.

fios(A,B,C) = ((A ∨B ∨ C) (A ∨B ∨ C)) (A ∨B ∨ C) (3.66)

Translation to Canonical Normal Forms

It should be noted that in a CDNF (CCNF), all the product (sum) terms must contain

every literal in the given set. As an example, the expression in (3.67) is not canonical SOP

representation since the second product term does not contain the literal C.

fios(A,B,C) = (A ∧B ∧ C) ∨ (A ∧B) (3.67)
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Similar to canonical SOP and POS expressions, canonical SOI and IOS expressions can

be developed from non-canonical SOI expressions by inserting the literals missing from each

term, while maintaining logical equivalence. Applying Identity 3, appending an IAND op-

eration of a null-valued (zero) expression (such as A ∧ A) enables the expansion without

modifying the logical value of the expression. Taking the non-canonical expression

fsoi = ((B C) D) ∨ ((A B) C) (3.68)

(A ∧ A) and (D ∧D) can be appended to the two terms, resulting in

fsoi = {((B C) D) (A ∧ A)} ∨ {((A B) C) (D ∧D)} (3.69)

Using Theorem 5,

fsoi = {((B C) D) A} ∨ {((B C) D) A}

∨ {((A B) C) D} ∨ {((A B) C) D} (3.70)

Rearranging the inverted and non-inverted inputs according to Theorem 4:

fsoi = {((A B) C) D} ∨ {((A B) C) D}

∨ {((A B) C) D} ∨ {((A B) C) D} (3.71)

Finally, by conventional OR idempotency, (A ∨ A) = A,

fsoi = {((A B) C) D} ∨ {((A B) C) D} ∨ {((A B) C) D} (3.72)

The above expression is a canonical SOI expression. In general, canonical IOS expressions

can be achieved with the same method as canonical POS: by OR-ing a null expression of
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the missing literals with each of the sum-terms, followed by ordinary Boolean algebraic

simplification.

A tabular summary of results has been presented in the Appendix detailing all identities

and laws mentioned in this chapter.

3.2 Stateful Memristive Implication Logic

Stateful implication logic is one of the fundamental logic functions implemented using mem-

ristors. An IMPLY function is an asymmetric OR of two variables, with one of the variable

inverted. In this section, I define the Boolean laws and principles for functions implemented

using a combination of IMPLY gates and other standard Boolean functions.

3.2.1 Core Algebraic Identities

Core algebraic identities define the basic properties of a logic operation, and how it fun-

damentally alters a function. Similar to section 3.1.1, the primary identities have been

presented here.

Interaction with High (1) and Low Logic (0)

The section analyzes how the IMPLY operation alters a Boolean function when operated

against a zero (0) or a one (1).

Identity 7 (IMPLY Annulment): A post-IMPLY operation of a variable with high logic

results in a high logic value (1).

A→ 1 = 1 (3.73)

Proof. Representing the IMPLY operation in terms of OR,

A→ 1 = A ∨ 1 = 1 (3.74)
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which proves the theorem. �

Identity 8 (IMPLY Identity): A pre-IMPLY of high logic with a Boolean variable returns

the same variable. In other words, pre-IMPLY operation is the identity for implication

operation.

1→ A = A (3.75)

Proof. Representing the IMPLY operation in terms of OR,

(1→ A) = (1 ∨ A) = (0 ∨ A) = A (3.76)

which proves the theorem. �

Identity 9 (IMPLY Inversion): A post-IMPLY operation of a Boolean variable with com-

plements the given variable.

A→ 0 = A (3.77)

Proof. Representing the IMPLY operation in terms of OR,

A→ 0 = A ∨ 0 = A (3.78)

which proves the theorem. �

Idempotency for IMPLY operation

Idempotency is the property that enables multiple iterations of an operation without chang-

ing the result. Similar to IAND logic, this property is evaluated for the different cases of

repeating operations even though they might not preserve the same value. The properties

have been classified as per the results obtained.
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Identity 10 (IMPLY Null Idempotency):

A→ A = 1 (3.79)

Proof. Converting IMPLY operation to OR notation,

A→ A = A ∨ A = 1 (3.80)

Hence the theorem has been verified. �

Identity 11 (IMPLY Inverse Idempotency - I):

A→ A = A (3.81)

Proof. Representing the IMPLY operation in terms of OR,

A→ A = A ∨ A = A (3.82)

which proves the theorem. �

Identity 12 (IMPLY Inverse-Idempotency - II):

A→ A = A (3.83)

Proof. Representing the IMPLY operation in terms of OR,

A→ A = A ∨ A = A (3.84)

which proves the theorem. �
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3.2.2 Boolean Algebraic Laws

This section develops the standard laws of Boolean algebra for stateful implication logic.

It can be noted that even though some of the laws might deviate from their conventional

definitions, a clear analogy is notable for each of them.

Commutative Law

Theorem 13 (IMPLY Commutation): Similar to IANDs, IMPLY being an asymmetric logic

function, does not follow the conventional commutative law, i.e.

A→ B 6= B → A (3.85)

However, considering two operands A and B, commutation can be achieved by complement-

ing both the literals as shown in (3.86)

A→ B = B → A (3.86)

Proof. Changing to IMPLY notation,

A→ B = A ∨ B = B ∨ A. (3.87)

Changing the RHS of (3.87) back to IMPLY notation,

A→ B = B → A, (3.88)

thus proving the theorem. �
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Associativity Laws

Associativity laws define how three or more Boolean functions are grouped when operated

upon by a Boolean function. In this section, associativity is defined for the IMPLY operation.

Theorem 14 (Conventional Non-Associativity):

(A→ B)→ C 6= A→ (B → C) (3.89)

Implication basis logic does not follow associativity in its conventional sense. This can

be proved as follows. Similar to IANDs, implication should be carefully performed in an

ordered fashion.

Proof. Converting the RHS of (3.89) to OR notation and applying De Morgan’s law,

(A→ B)→ C = (A ∨ B) ∨ C = (A ∧B) ∨ C (3.90)

Similarly, changing the LHS to OR notation,

A→ (B → C) = A ∨ B ∨ C (3.91)

Clearly, (3.90) and (3.91) are not equivalent. �

The following two theorems describe the inverting and non-inverting associativity for

implication logic.

Theorem 15 (IMPLY Non-Inverting Associativity): Non-inverting associativity means that

on changing the order of certain operands, no inversion is required. This happens when any

two inverted operands interchange places.

A→ (B → C) = B → (A→ C) (3.92)
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Proof. Converting the expression to AND notation:

A→ (B → C) = A ∨ B ∨ C = B ∨ A ∨ C. (3.93)

This can be rewritten using OR notation as follows:

B ∨ A ∨ C = B → (A→ C). (3.94)

The theorem is thus proven. �

Theorem 16 (IMPLY Inverting Associativity): Inverting associativity demands the inver-

sion of both the operands that have changed places. This theorem should be applied when

a non-inverted input interchanges its place with an inverted input.

A→ (B → C) = B → (C → A) (3.95)

Proof. Converting the LHS of (3.95) to OR notation:

A→ (B → C) = A ∨ B ∨ C. (3.96)

Rearranging the inputs on the RHS of the above equation,

A→ (B → C) = B ∨ C ∨ A (3.97)

which can be rewritten using IMPLY notation as

A→ (B → C) = B → (C → A), (3.98)

which is the same as (3.95). �
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Discussion: As shown in the previous chapter for IANDs, Theorem 15 and Theorem 16

can also be interpreted intuitively as the movement of inverted and non-inverted operands

around the IMPLY operator. See discussion in section 3.1.2.

Distributive Laws

This section details the distributive laws for expressions involving a combination of IMPLY

and OR/AND operations performed between three binary inputs. As the nomenclature

would be quite challenging, these theorems are numbered rather than named. Further,

just as for IAND distributive laws, these are categorized into ‘single-operation’ and ‘cross-

operation’ distributive laws.

Single-Operation Distributive Laws: These laws relate two Boolean expressions,

both of which are represented using a combination of implication and AND/OR operations.

Theorems 17-21 belong to this category.

Theorem 17 (IMPLY Distributive Law - I):

A→ (B ∧ C) = (A→ B) ∧ (A→ C). (3.99)

Proof. Changing LHS of (3.99) to OR notation,

A→ (B ∧ C) = A ∨ (B ∧ C). (3.100)

Using the conventional AND distributive law,

A→ (B ∧ C) = (A ∨B) ∧ (A ∨ C) (3.101)
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Finally, replacing with IMPLY operation:

A→ (B ∧ C) = (A→ B) ∧ (A→ C) (3.102)

which is the same as (3.99). �

Theorem 18 (IMPLY Distributive Law - II):

(A ∨B)→ C = (A→ C) ∧ (B → C) (3.103)

Proof. Changing LHS of (3.103) to OR notation and using De Morgan’s law,

(A ∨B)→ C = A ∨B ∨ C = (A ∧B) ∨ C (3.104)

By conventional AND distributive law,

(A ∨B)→ C = (A ∨ C) ∧ (B ∨ C) (3.105)

Finally, replacing in terms of IMPLY:

(A ∨B)→ C = (A→ C) ∧ (B → C) (3.106)

which is the same as (3.103). �

Theorem 19 (IMPLY Distributive Law - III):

A ∨ (B → C) = A→ (B → C) (3.107)
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Proof. Changing the LHS of (3.107) to OR notation and subsequently back to IMPLY,

A ∨ (B → C) = A ∨B ∨ C = A→ (B → C) (3.108)

The above equation validates the theorem. �

The interaction between three literals A, B and C using IMPLY and OR gates yield the

same result irrespective of the placement of the parentheses as seen in Theorem 20.

Theorem 20 (IMPLY Distributive Law - IV):

A→ (B ∨ C) = (A→ B) ∨ C = A→ (B → C) (3.109)

Proof. Changing the left and central terms of (3.109) to OR notation,

A→ (B ∨ C) = A ∨B ∨ C (3.110)

and, (A→ B) ∨ C = A ∨B ∨ C (3.111)

The RHS of the (3.110) and (3.111) can be rewritten in IMPLY notation as A→ (B → C).

Thus,

A→ (B ∨ C) = (A→ B) ∨ C = A→ (B → C) (3.112)

which is the same as (3.109). �

Theorem 21 (IMPLY Distributive Law - V):

(A ∧B)→ C = A→ (B → C) (3.113)
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Proof. Changing the LHS of (3.113) to OR notation and applying De Morgan’s Law,

(A ∧B)→ C = A ∧B ∨ C = A ∨ B ∨ C, (3.114)

Finally, changing it back to the IMPLY notation,

(A ∧B)→ C = A→ (B → C) (3.115)

The above equation is the same as (3.113) �

Cross-Operation Distributive Laws: These laws relate a Boolean expression repre-

sented in terms of implication and AND/OR operations with an expression represented only

in terms of AND/OR operations. Theorems 22-23 are cross-operation distributive laws.

Theorem 22 (IMPLY Distributive Law - VI):

(A→ B) ∧ C = (A ∧ C) ∨ (B ∧ C) (3.116)

Proof. Changing the LHS of (3.116) to OR notation and subsequently back to IMPLY:

(A→ B) ∧ C = (A ∨ B) ∧ C (3.117)

(A→ B) ∧ C = (A ∧ C) ∨ (B ∧ C) (3.118)

The above equation being the same as (3.116) �

Theorem 23 (IMPLY Distributive Law - VII):

A ∧ (B → C) = (A ∧B) ∨ (A ∧ C) (3.119)
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Proof. Changing LHS of (3.119) to OR notation,

A ∧ (B → C) = A ∧ (B ∨ C) (3.120)

Applying conventional OR Distributive Law,

A ∧ (B → C) = (A ∧B) ∨ (A ∧ C) (3.121)

which is the equivalent to (3.119). �

De Morgan’s Law for IMPLY operation

De Morgan’s Law for implication logic works analogously to its IAND counterpart. This

idea is evaluated and proved in the following theorem.

Theorem 24: The negation of ordered implication of two literals, is equal to the NAND of

the two literals with the non-inverted term complemented. Note that the non-inverted term

for IMPLY logic is not the same as that for IANDs.

For two inputs:

A→ B = A ∧B (3.122)

Conversely, A ∧B = A→ B (3.123)

For three inputs:

A→ (B → C) = A ∧B ∧ C (3.124)

Conversely, A ∧B ∧ C = A→ (B → C) (3.125)

For the purpose of actual realization of a circuit with the IMPLY/NAND logic set, the

De Morgan’s rule can be restated in terms of the fundamental gates only. The inverter can

be easily realized using just a NAND gate with shorted inputs.
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For two inputs:

A→ B = A ∧B = INV (NAND (A,B)) (3.126)

Or, A→ B = A ∧B = NAND (A,B) (3.127)

For three inputs:

A→ (B → C) = A ∧B ∧ C = INV (NAND (A,B,C)) (3.128)

Or, A→ (B → C) = A ∧B ∧ C = NAND (A,B,C) (3.129)

Proof. Converting the LHS of (3.122) to OR notation and applying conventional De Morgan’s

Law,

A→ B = A ∨ B = A ∧B (3.130)

Similarly for (3.124),

A→ (B → C) = A ∨ B ∨ C = A ∧B ∧ C (3.131)

Hence the De Morgan’s law for implication logic is verified. �

Similar to an earlier discussion, IMPLY operations should be performed in an ordered

manner when applying the De Morgan’s Law. Further, it can be extended to any number

of inputs and only the non-inverted input will appear as its own complement along with the

change of IMPLY operation to AND.

Principle of Duality

Now that the algebra for both IAND and IMPLY logic is established, the process of finding

the dual of any Boolean function, consisting of any one, all or a mixture of any of the Boolean

operators can be generalized as follows:

40



• Replace all ANDs with ORs, and vice versa.

• Replace all 1s with 0s, and vice versa.

• Change all IANDs to ORs and complement all inverted inputs.

• Replace all IMPLY with ANDs and complement all the inverted inputs.

For example, the dual of the Boolean expression A→ (B → C) is (A ∨ B ∨ C). It is worth

noting that to correctly obtain the dual, the first two steps need to be performed before the

third and the fourth ones.

To evaluate the principle of duality for implication operations, consider the following

Boolean equation (true as per Theorem 24):

A→ (B → C) = A ∧B ∧ C (3.132)

Transforming the above equation by the rules we mentioned above,

Dual(LHS) = A ∧B ∧ C (3.133)

Or, by De Morgan’s Law,

Dual(LHS) = A ∨B ∨ C (3.134)

Similarly,

Dual(RHS) = A ∨B ∨ C (3.135)

Clearly, (3.134) and (3.135) are equivalent.

Corollary: Observing the principle of duality for IAND and IMPLY logic, we discover an

alternate method for finding the dual of a Boolean function: Instead of replacing the ORs

with ANDs, they can be replaced with IANDs instead, whereas instead of replacing ANDs
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with ORs, they can be replaced by IMPLYs, keeping in mind the appropriate inversion of

inputs. As mentioned earlier for IANDs, implication function should be dealt with care when

applied to equations.

3.2.3 Canonical Normal Form for IMPLY/NAND Logic Set

IMPLY/NAND is a basis logic set that can be used to implement any given Boolean function.

Thus, it is vital to mention the canonical forms for this logic set.

Canonical Disjunctive Normal Form (CDNF)

CDNF for the IMP/NAND logic set, as proposed here, is called canonical NAND of implica-

tion (NOI), and is the NAND of certain Boolean literals IMPLY-ed in different combinations.

(3.136) presents an example.

fnoi(A,B,C) = (A→ (B → C)) ∧ (A→ (B → C)) ∧ (A→ (B → C)) (3.136)

Canonical conjunctive normal form (CCNF)

CCNF for the IMP/NAND logic set is called canonical implication of NANDs (ION), and is

the IMPLY of the NANDs of Boolean literals in certain combinations. (3.137) is an example.

fion(A,B,C) = (A ∧B ∧ C)→ ((A ∧B ∧ C)→ (A ∧B ∧ C)) (3.137)

Translation to Canonical Normal Forms

A given Boolean expression may not be in its canonical form, and thus similar to the method-

ology adopted for IANDs, canonical NOI expressions can be developed from non-canonical

NOI expressions by inserting the literals missing from each term, while maintaining logical

equivalence. Applying Identity 8, appending an IMPLY operation of a unity (1) expression
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(such as A∨A) enables the expansion without modifying the logical value of the expression.

Consider the non-canonical expression in (3.138),

fnoi = (B → (C → D)) ∧ (A→ (B → C)) (3.138)

(A ∨ A) and (D ∨D) can be appended to the two terms, resulting in

fnoi = {(A ∨ A)→ (B → (C → D))} ∧ {(D ∨D)→ (A→ (B → C))} (3.139)

Using Theorem 18,

fnoi = {A→ (B → (C → D))} ∧ {A→ (B → (C → D))}

∧ {D → (A→ (B → C))} ∧ {D → (A→ (B → C))} (3.140)

Rearranging the inverted and non-inverted inputs according to Theorems 15 and 16:

fnoi = {A→ (B → (C → D))} ∧ {A→ (B → (C → D))}

∧ {A→ (B → (C → D))} ∧ {A→ (B → (C → D))} (3.141)

The above expression is a canonical NOI expression. In general, canonical ION expressions

can be achieved with the same method as canonical POS: by AND-ing a unity expression

of the missing literals with each of the sum-terms, followed by ordinary Boolean algebraic

simplification.

3.3 Relationship between IAND and Implication Logic (De Morgan Duality)

Applying the De Morgan’s to the implication operation, as stated in the previous section,

changes the operation to AND/NAND. This leads to an interesting observation as noted in
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(3.122) which is:

A→ B = A ∧B (3.142)

The RHS of the above equation is essentially equivalent to the IAND of A and B,

A→ B = A B (3.143)

Similarly, for three inputs, (3.124) shows that,

A→ (B → C) = A ∧B ∧ C (3.144)

Here, the RHS of the above equation is the IAND of A, B and C,

A→ (B → C) = (A B) C (3.145)

By observation, the converse of (3.142) and (3.145) are also true,

A B = A→ B (3.146)

(A B) C = A→ (B → C) (3.147)

This idea can be extended to establish a general relationship between IAND and implica-

tion logic. Thus, keeping in mind the modified forms of the De Morgan’s laws for asymmetric

logic functions mentioned in sections 3.1.2 and 3.2.2, it can be stated that IAND and impli-

cation logic are ”De Morgan duals”. This is verified below.

By a generic definition, the De Morgan dual fd of a any given function f is defined as,

fd(a1, a2, a3...an) = f(a1, a2, a3...an) (3.148)
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Note that in symmetric functions like AND and OR, the order of the operation does not

matter. However, to account for the asymmetry of IANDs and implication logic, the oper-

ation must be performed keeping its order in mind. Interestingly, the definition for a De

Morgan dual can be established by a mere mirroring of (3.148).

fd(a1, a2, a3...an) = f(an, an−1, an−2...a2, a1) (3.149)

where fd and f are the IAND and Implication functions respectively (or vice versa).

As a simple example, the dual of A B is B → A. This is evident from the modified De

Morgan’s Law stated in the previous sections. It can be further verified by considering the

Boolean equation (3.150), which is true as per Theorem 4.

(A B) C = (B A) C (3.150)

Evaluating the duals of both sides of the above equation,

C → (B → A) = C → (A→ B) (3.151)

Applying Theorem 13 to the LHS of (3.151),

C → (A→ B) = C → (A→ B) (3.152)

Hence, the equality is maintained.

This translation can also be used to convert any SOI to its equivalent NOI (or vice versa)

by using the following standard procedure:

a. Complement all literals in each of the terms.

b. Invert the order of the literals such that the last literal is the first and so on.
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c. Rearrange the parentheses such that the operations are performed orderly.

c. Replace the IAND operators with implication operators, and the OR operators with

NAND operators.

d. Complement the resultant expression, thus going from SOI to NOI.

Example: Conversion of SOI to NOI:

((A B) C) ∨ ((D E) F ) = (C → (B → A)) ∧ (F → (E → D)) (3.153)

The above relation can be proved similar to the Boolean laws in the previous sections, i.e.

by solving it in the OR/AND notations and converting it back to implication/IAND.

All the identities proposed in this chapter can be used to simplify any function repre-

sented using IAND/OR or IMP/NAND logic sets, without converting them into conventional

AND/OR notations. This not only simplifies the process for manual calculations, on an au-

tomated algorithm level, this helps to reduce performance overheads.
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CHAPTER 4

MODIFIED KARNAUGH MAP METHOD FOR ASYMMETRIC LOGIC

FUNCTIONS

The proposed Karnaugh map method enables a graphical technique for the minimization

of memristor and spintronic logic with asymmetric basis functions. Section 2.4 provides an

explanation of conventional Karnaugh maps. In this section, after the adapted Karnaugh

map method is described, I compare both of the methodologies to build a conceptual under-

standing as well as evaluate the similarities and differences. The chapter ends by examples

that provide instruction as to the use of the method.

4.1 Map Method for Asymmetric Functions

The proposed map method for asymmetric logic functions is performed in the following

step-wise manner:

1. Transform the expression that is to be minimized into a canonical expression (i.e.

SOI/IOS or NOI/ION).

2. Mark the canonical SOI/IOS/NOI/ION terms in the corresponding cells of a Karnaugh

map.

3. Group the minterms/maxterms graphically according to standard Karnaugh map pair-

ing techniques[19].

4. Create an expression with the resultant terms, analogous to reading a standard Kar-

naugh map.

5. If any input variable, other than the one that is not inverted in the canonical expression

(leftmost operand in case of IANDs and rightmost operand in case of implication),
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appears as a non-inverted operand of a product (sum) term in the simplified expression

interpreted from a Karnaugh map, it should be complemented to obtain the correct

reduced function. This step is exemplified below.

Example 4.1 (Reduction of canonical SOI)

In a four Bit Boolean function defined with ordered variables {A,B,C,D}, if any one

of the inputs among {B,C,D} appear as the non-inverted input, it must be complemented.

While the first four steps are unsurprising, the evaluation of the example discussed in Section

2.4 (with AND operations replaced by IAND operations) demonstrates the necessity of the

fifth step:

fsoi = ((A B) C) ∨ ((A B) C) ∨ ((A B) C) (4.1)

This expression can be simplified by applying the theorems outlined in Section 3.1. First

using Theorem 6 twice in succession gives (4.2) and (4.3):

fsoi = (((A B) ∨ (A B)) C) ∨ ((A B) C) (4.2)

fsoi = (((A ∨ A) B) C) ∨ ((A B) C). (4.3)

(A ∨ A) is unity due to the OR complement law, and (1 B) = B according to Theorem

2. Thus,

fsoi = ((1 B) C) ∨ ((A B) C) = (B C) ∨ ((A B) C). (4.4)

When comparing (2.8) and (4.4), it can be seen that input B in the first term is inverted

due to the difference in the of AND and IAND functions (i.e. (1 ∧ B) = B as opposed to

(1 B) = B). Thus, although the pairings in the Karnaugh map remain the same as in

Fig. 2.5, the application of step 5 is necessary when reading the Karnaugh map to correctly
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interpret the minimized function. Solving the expression further by applying Theorem 5 and

Theorem 10 in succession:

fsoi = (B ∨ (A B)) C (4.5)

fsoi = ((B ∨ A) ∧ (B ∨B)) C. (4.6)

With the conventional OR complement law, and (B∨B) = 1 using Theorem 6, this becomes:

fsoi = (B C) ∨ (A C). (4.7)

The same result is obtained by applying the proposed methodology to the Karnaugh map in

Fig. 2.5. Note that the literal B is complemented as per step 5 of the proposed methodology

since it is an inverted input and appears as an non-inverted input in the minimized expression.

This method is equally applicable to other asymmetric functions, as shown for canonical NOI

in the next example.

Example 4.2 (Reduction of canonical NOI):

Consider the Boolean expression in (4.8).

fnoi = (A→ (B → C)) ∧ (A→ (B → C)) ∧ (A→ (B → C)) (4.8)

As in the previous example, we solve this first by using the proposed Boolean laws for

implication logic. Using Theorem 17 in succession,

fnoi = (A→ ((B → C) ∧ (B → C))) ∧ (A→ (B → C)) (4.9)

fnoi = (A→ ((B → (C ∧ C)))) ∧ (A→ (B → C)) (4.10)
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Now, (C ∧ C) = 1 as per OR complement law. Thus,

fnoi = (A→ ((B → 0))) ∧ (A→ (B → C)) (4.11)

By Theorem 9, (B → 0) = B. Hence,

fnoi = (A→ B) ∧ (A→ (B → C)) (4.12)

Rearranging the literals as per Theorems 15 and 16,

fnoi = (B → A) ∧ (B → (A→ C)) (4.13)

Applying Theorem 17 once again,

fnoi = B → (A ∧ (A→ C)) (4.14)

By Theorem 23,

fnoi = B → ((A ∧ A) ∨ (A ∧ C)) (4.15)

Again, by OR complement law, (A ∧ A) = 0.

fnoi = B → (A ∧ C) (4.16)

Now finally, applying Theorem 17, and rearranging as per Theorem 16,

fnoi = (B → A) ∧ (B → C) (4.17)
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Figure 4.1. Karnaugh map for (4.8).

Rearranging the literals as per Theorem 16,

fnoi = (A→ B) ∧ (B → C) (4.18)

Equation (4.18) is the minimized form of (4.8). Now, applying steps 1-4 of the modified

Karnaugh method proposed in this section to the expression in (4.8) (Karnaugh map shown

in Fig. 4.1), we obtain,

f ∗noi = (A→ B) ∧ (B → C) (4.19)

where f ∗noi is an intermediate result. Observe that literal B is a inverted input, and appears

as a non-inverted input in the optimized solution above. Thus, as per step 5 of the proposed

method, it must be complemented to get the correct answer.

fnoi = (A→ B) ∧ (B → C) (4.20)

Hence, (4.18) and (4.20) show that the proposed method is valid.

4.2 Minimization Examples

To clearly explain the mapping methodology, I demonstrate the application of Karnaugh

maps to the decomposition of a few sample Boolean expressions involving IAND and im-
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Figure 4.2. Karnaugh map for example 4.3.

plication logic. Although the method outlined in the previous section has been verified

for Karnaugh maps containing up to five variables, for the sake of brevity we limit these

examples to four variables.

Examples (4.3) and (4.4) explain the reduction procedure for a two and three variable

SOIs respectively, whereas example (4.5) details the simplication of a four variable SOI with

don’t care terms. Example (4.6) deals with a function defined as canonical IAND of sums.

Finally, example (4.7) solves for a 3-input NAND of implications (NOI). Possible gate-level

circuit implementations using only the BASDL device (OR and IAND gates) has been laid

out for examples (4.4) through (4.7).

Example 4.3 (Two variable SOI):

fsoi(A,B) = (A B) ∨ (A B) (4.21)

We first simplify the function in terms of SOP and then convert it back to the reduced

SOI. The corresponding Sum of Products is:

fsop(A,B) = (A ∧B) ∨ (A ∧B) (4.22)

Grouping terms,

fsop(A,B) = (A ∨ A) ∧B (4.23)
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Figure 4.3. (a) Karnaugh map and (b) circuit implementation for example 4.4.

By Complement Law,

fsop(A,B) = B (4.24)

which remains the same in SOI,

fsoi(A,B) = B (4.25)

Now from the graphical pairing of the K-map representation of (4.21) (as in Fig. 4.2) we

obtain the following expression:

f ∗soi(A,B) = B

We see that input B is an inverted input and thus must be complemented to obtain the

correct optimized solution:

fsoi(A,B) = B (4.26)

We see that (4.25) and (4.26) are the same which proves the validity of the result.

Example 4.4 (Three variable SOI):

fsoi = ((A B) C)∨ ((A B) C)∨ ((A B) C)∨ ((A B) C)∨ ((A B) C) (4.27)
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The equivalent sum of product is,

fsop = (A ∧B ∧ C) ∨ (A ∧B ∧ C) ∨ (A ∧B ∧ C) ∨ (A ∧B ∧ C) ∨ (A ∧B ∧ C) (4.28)

Grouping the terms and applying the OR Complement Law,

fsop = (A ∧ C ∧ (B ∨B)) ∨ (A ∧ C ∧ (B ∨B)) ∨ (A ∧B ∧ C) (4.29)

fsop = ((A ∨ A) ∧ C) ∨ (A ∧B ∧ C) (4.30)

fsop = C ∨ (A ∧B ∧ C) (4.31)

Using the AND distributive law and OR Complement Law in succession,

fsop = (C ∨ (A ∧B)) ∧ (C ∨ C) (4.32)

fsop = C ∨ (A ∧B) (4.33)

which can be written back as sum of IANDs,

fsoi = C ∨ (A B) (4.34)

Now, we plot the minterms of (4.27) in a K-map as shown in Fig. 4.3(a). Graphical pairing

gives the following reduced SOI:

f ∗soi(A,B,C) = C ∨ (A B) (4.35)

Note that input C is an inverted input in the above expression and thus should be comple-

mented as shown below:

fsoi(A,B,C) = C ∨ (A B) (4.36)
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We see that (4.34) and (4.36) are the same, proving the validity of the result. Fig. 4.3(b)

shows a possible circuit implementation of the optimized solution.

Example 4.5 (Incompletely specified four variable SOI):

In this example we deal with a four variable Boolean function with don’t care terms. The

function is specified below, where the terms with the superscript ‘d1’ and ‘d2’ are don’t cares.

fsoi = (((A B) C) D)d1 ∨ (((A B) C) D) ∨ (((A B) C) D)

∨ (((A B) C) D) ∨ (((A B) C) D)d2 ∨ (((A B) C) D)

∨ (((A B) C) D) ∨ (((A B) C) D) (4.37)

The above SOI expression is plotted in the Karnaugh map in Fig. 4.4. Since there are

two don’t care terms (d1 = 2 and d2 = 6) in the function, there is a total of four possible

representations depending on the binary combinations of [d1, d2]. Even though only one of

these combinations lead to the maximally reduced expression, all of them are shown in order

to test the proposed mapping methodology.

The possible K-Map representations are shown in Fig. 4.4(b − e), which correspond to

reduced forms of the function in (4.37). The resultant SOI expressions (described by (4.38)-

(4.41)) can be deduced by applying the mapping method, and validated by simplifying as

sum of products, similar to the previous examples.

f b
soi = ((A B) C) ∨ ((B C) D) ∨ (B C) (4.38)

f c
soi = ((A B) C) ∨ ((B C) D) ∨ (B C) ∨ ((A B) D) (4.39)

fd
soi = ((A B) C) ∨ ((B C) D) ∨ ((B C) D) ∨ ((A B) C) (4.40)

f e
soi = {fd

soi} ∨ ((A B) D) (4.41)
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Figure 4.5. Karnaugh map for example 4.6.

where f b−e
soi are the reduced SOI expressions for the corresponding parts of Fig. 4.4. It can

be seen that f b
soi gives the maximally minimized function in terms of gates.

Example 4.6 (Four variable IOS):

This example illustrates the mapping of the maxterms of a Boolean function and their

reduction by our proposed method. For analogy, the maxterms of the function in (4.37) with

(d1 = d2 = 1) are considered here. Note that the below IOS must be evaluated in an orderly

fashion (two-at-a-time from left to right) even though the parentheses are not shown here

(to avoid cluttering).

fios = (A ∨B ∨ C ∨D) (A ∨B ∨ C ∨D) (A ∨B ∨ C ∨D)

(A ∨B ∨ C ∨D) (A ∨B ∨ C ∨D) (A ∨B ∨ C ∨D)

(A ∨B ∨ C ∨D) (A ∨B ∨ C ∨D) (4.42)

Fig. 4.5 shows the graphical pairing of maxterms in (4.42) which yields the reduced

function f f
ios given by:

f f
ios = (((B ∨ C) (A ∨ C ∨D)) (A ∨B ∨ C)) (B ∨ C ∨D) (4.43)
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Figure 4.6. Example 4.7: (a) Karnaugh map for (4.44). (b) Memristor circuit for IMPLY-
NAND implementation of (4.45). A, B, and C contain the input values, while R1 and R2

are output memristors.

The above result can be verified by solving (4.42) in the SOP notation, and converting it

back to IOS.

Example 4.7 (Three variable NO I):

This example illustrates the optimization of an NOI expression and its implementation

using the IMPLY-NAND logic set (Fig. 4.6). Consider the function in (4.44), now repre-

sented as an NOI and plotted on a Karnaugh map as shown in Fig. 4.5(a).

fsoi = {(A→ (B → C)) ∨ (A→ (B → C)) ∨ (A→ (B → C))

∨ (A→ (B → C)) ∧ (A→ (B → C))} (4.44)
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Using the proposed mapping method, non-inverted input B is complemented and the sim-

plified function is written as

fnoi = C ∧ (A→ B) (4.45)

Fig. 4.6(b) shows a possible memristor circuit for the IMPLY-NAND implementation. Here,

complementary representation [29] is used and the function can be arrived at by executing

the following computational sequence [29]:

A→ R2;

B→ R2;

R2 → R1;

C→ R2.

The desired value is stored in the output memristor R2.
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CHAPTER 5

COMPARATIVE ANALYSIS OF THE PROPOSED METHODOLOGY

As mentioned earlier, the primary purpose of proposing a new set of Boolean algebra for

asymmetric gates like memristive implication, is to eliminate the mapping of these gates to

conventional logic gates so as to use them directly. This chapter highlights the statistical

advantages over the previous approach.

In this chapter, I compare my proposed method of using the IMPLY-NAND asymmetric

logic set directly to implement Boolean functions, against a previous logic synthesis technique

by Lehtonen et. al [29]. Note that the IAND-OR logic set has not been yet investigated for

suitable logic synthesis techniques, and therefore this is the first work in that direction.

Further, since memristors do not cascade in a conventional manner within the stateful

memristor logic paradigm, device count (i.e. the total number of devices required to imple-

ment a given Boolean function) is not an appropriate comparative parameter. Instead, the

number of required computational steps is used. The calculation of this number depends

on the specific operation and the technique used to implement logic. It should be noted

that the analysis presented in this chapter is neutral towards other factors like the physical

feasibility of the implementation technique, cost and performance overheads etc. The sample

case considered for the comparisons is presented in the next section.

In general, each IMPLY operation requires a single computational step, while a NAND

operation requires two [29]. In Fig. 5.1, the IMPLY operation takes place simply as q′ ←

(p IMP q), where the output is stored in memristor q, while p remains unchanged. Whereas,

the NAND operation is a three-step process:

Step 0: s = 0;

Step 1: p→ s;

Step 2: q → s.

Here, step 0 is essentially a RESET, and the output is stored in the memristor s.
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Figure 5.1. A schematic of (a) an IMPLY logic gate and (b) an IMPLY-based NAND gate

Sample Case: For a comparison between the proposed and previous methodology, a two bit

full adder (FA) is considered here. In Fig. 5.2, the sum and carry-out functions are defined

as follows:

S0 = (A0 ∧B0) ∨ (A0 ∧B0) (5.1)

C1 = A0 ∧B0 (5.2)

S1 = (A1 ∧B1 ∧ C1) ∨ (A1 ∧B1 ∧ C1) ∨ (A1 ∧B1 ∧ C1) ∨ (A1 ∧B1 ∧ C1) (5.3)

Cout = (A1 ∧B1) ∨ (B1 ∧ C1) ∨ (A1 ∧ C1) (5.4)

First, let’s evaluate the previously proposed methodology, followed by the modification sug-

gested by this work.

5.1 Previous Methodology

Lehtonen et. al [26, 29] were one of the first to describe a detailed logic synthesis technique for

memristive implication. They proposed several schemes - All-NAND implementation (using
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Figure 5.2. A schematic for a two bit full adder

IMPLY-based NANDs), complementary representation, NAND-OR, and multi-input repre-

sentation. For the purpose of this document, we only consider the complementary all-NAND

representation, since the others use logical operations beyond the IMPLY-NAND logic set.

Further, comparing the all-NAND implementation without the complementary representa-

tion is expected to yield similar results for both the previous and proposed methods, and

hence is not explicitly mentioned here.

The authors [29] propose an all-NAND realization of P3 using complementary represen-

tation. Complementary representation means that each input and output variable has two

dedicated memristors - one each for its inverted and non-inverted form (see Fig. 5.3 for

an example). The universal nature of NAND gates entails that any given function can be

implemented using a ‘2-depth’ NAND form represented as,

fNAND = NAND(x1, x2, ..., xn) (5.5)

where x1, x2, ..., xn might in-turn indicate a NAND of certain inputs. Thus, the all-NAND

implementations of (5.1)-(5.4) look like:
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Figure 5.3. Schematic for a complementary representation scheme

S0(NAND) = A0 ∧B0 ∧ A0 ∧B0 (5.6)

S1(NAND) = A1 ∧B1 ∧ C1 ∧ A1 ∧B1 ∧ C1 ∧ A1 ∧B1 ∧ C1 ∧ A1 ∧B1 ∧ C1 (5.7)

Cout(NAND) = (A1 ∧B1) ∧ (B1 ∧ C1) ∧ (A1 ∧ C1) (5.8)

To implement S0, S1 and Cout, 12 input memristors (two each for the six inputs), and two

output memristors each for storing the three outputs (r1−6) are required. However, since the

inverted forms for all the inputs are readily available, there is no requirement for an auxiliary

memristor [29]. Therefore, the computational sequences are listed below.

Computational Sequence for S0(NAND): The computation is divided into three sets of

sequences - the first two compute the two NAND terms inside the overall NAND, while the

third sequence performs the NAND of the two terms obtained from the first two sets of

sequences.

A0 ∧B0 : A0 → r2;
B0 → r2;
r2 → r1;
r2 = 0;

A0 ∧B0 : A0 → r2;
B0 → r2;

63



r2 → r1;
r2 = 0;

S0(NAND) : r1 → r2;
r1 → r2;

Finally, the desired result is stored in r1, while r2 contains the inverse of r1. Thus, the total

number of computational steps required for S0 = 9.

Computational Sequence for S1(NAND): The computation is divided into five sets of

sequences - the first four compute the four NAND terms inside the overall NAND, while the

fifth sequence performs the NAND of all the four terms obtained from the first four sets of

sequences.

A1 ∧B1 ∧ C1 : A1 → r4;
B1 → r4;
C1 → r4;
r4 → r3;
r4 = 0;

A1 ∧B1 ∧ C1 : A1 → r4;
B1 → r4;
C1 → r4;
r4 → r3;
r4 = 0;

A1 ∧B1 ∧ C1 : A1 → r4;
B1 → r4;
C1 → r4;
r4 → r3;
r4 = 0;

A1 ∧B1 ∧ C1 : A1 → r4;
B1 → r4;
C1 → r4;
r4 → r3;
r4 = 0;

S1(NAND) : r3 → r4;
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Therefore, the value of S1 is stored in r3, while r4 contains the inverse of r3. Again, the

total number of computational steps required for S1 = 21.

Computational Sequence for Cout(NAND): The computation is divided into four sets of

sequences - the first three compute the three NAND terms inside the overall NAND, while

the fifth sequence performs the NAND of all the three terms obtained from the first three

sets of sequences.

(A1 ∧B1) : A1 → r6;
B1 → r6;
r6 → r5;
r6 = 0;

(B1 ∧ C1) : B1 → r6;
C1 → r6;
r6 → r5;
r6 = 0;

(A1 ∧ C1) : A1 → r6;
C1 → r6;
r6 → r5;
r6 = 0;

Cout(NAND) : r5 → r6;

Thus, the value of Cout is stored in r5, while r6 contains the inverse of r5. Again, the total

number of computational steps required for S1 = 13.

Thus we have the values of the three outputs stored in the output memristors r1, r3 and

r5, and the total number of computational steps required = 9 + 21 + 13 = 43.

5.2 Proposed Methodology

This section details the analysis of the IMPLY-NAND logic sets in terms of the number

of required computational steps to be performed for the realization of a 2-bit full adder. I

propose two improvements over the previous method, both of which result in a significant

reduction in the computational length:
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• Ability to use IMPLY as a basis logic function: As opposed to NANDs, implication

uses a single step for computation, and therefore its increased use contribute towards

step count reduction.

• Ability to use some input memristors to store the result of computations: The previous

method does not allow for a change in the value of the input memristors. However,

this leads to a drastic increase in the computational length, since additional steps are

required to involve output memristors for the purpose of computation and for storing

the result.

The Boolean algebra and optimization techniques proposed in this work are necessary to

enable the above two improvements. This will be clearer as I analyze the full-adder more

closely.

I use NOI representations of (5.1)-(5.4), which can be obtained by complementing these

expressions twice and solving using De Morgan’s law:

S0 = (A0 ∨B0) ∧ (A0 ∨B0) (5.9)

Thus, (5.10) can be written as an NOI,

S0(NOI) = (A0 → B0) ∧ (A0 → B0) (5.10)

Similarly, for (5.3) and (5.4),

S1(NOI) = {(A1 → (B1 → C1)) ∧ (A1 → (B1 → C1))

∧ (A1 → (B1 → C1)) ∧ (A1 → (B1 → C1))} (5.11)

Cout(NOI) = (A1 → B1) ∧ (B1 → C1) ∧ (A1 → C1). (5.12)
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It can be noted that the above implementation makes a better utilization of the basic

IMPLY function. Further, using the IMPLY non-inverting associativity (Theorem 16), I

propose specific modifications to S1 and Cout that enable the use of input memristors to

store computational results.

S1(NOI) = (A1 → (B1 → C1)) ∧ (C1 → (B1 → A1))

∧ (A1 → (B1 → C1)) ∧ (C1 → (B1 → A1)) (5.13)

Cout(NOI) = (A1 → B1) ∧ (C1 → B1) ∧ (A1 → C1) (5.14)

The idea here is to maximize the number of input memristors that can reliably store com-

putational results, such that these memristors are not used again elsewhere within the full

adder.

Computational Sequence for S0(NOI): The computation consists of four sequences - the

first two perform the two IMPLY operations and store the results in B0 and B0 memristors

respectively, while the last couple of sequences compute the NAND.

A0 → B0 : A0 → B0;
A0 → B0 : A0 → B0;
S0(NOI) : B0 → r2;

B0 → r2;

Therefore, the desired result is stored in r2, and the total number of computational steps

required for S0 = 4.

Computational Sequence for S1(NOI): The computation consists of five set of sequences

- the first four perform the three variable IMPLY operations and store the results in r3,

A1, C1 and r4 memristors respectively, while the last set of sequences compute the overall

NAND.
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A1 → (B1 → C1) : C1 → r4;
B1 → r4;
A1 → r4;
r4 → r3;
r4 = 0;

C1 → (B1 → A1) : B1 → A1;
C1 → A1;

A1 → (B1 → C1) : B1 → C1;
A1 → C1;

C1 → (B1 → A1) : B1 → A1;
C1 → A1;
A1 → r4;

S1(NOI) : C1 → r4;
A1 → r4;
r3 → r4;

Therefore, the value of S1 is stored in r4, and again, the total number of computational steps

required for S1 = 15.

Computational Sequence for Cout(NOI): The computation consists of four sets of se-

quences - the first three perform the IMPLY operations and store the results in r5, B1 and

C1 memristors respectively, while the last set of sequences compute the NAND.

A1 → B1 : B1 → r6;
A1 → r6;
r6 → r5;
r6 = 0;

C1 → B1 : C1 → B1;

A1 → C1 : A1 → C1;

Cout(NOI) : C1 → r6;
B1 → r6;
r5 → r6;

Finally, the value of Cout is stored in r6, and the total number of computational steps required

for S1 = 9. Thus we have the values of the three outputs stored in the output memristors
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r2, r4 and r6, and the total number of computational steps required = 4 + 15 + 9 = 28.

Table 5.1 shows the summary of improvements marked by the proposed method.

Table 5.1. Comparative summary for the proposed and previous implementation of a 2-bit
full adder in terms of computational length.

Previous Proposed Percentage

Function Method Method Improvement

S0 9 4 55.56%

S1 21 15 28.5%

Cout 13 9 30.76%

Total 43 28 34.88%
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CHAPTER 6

AUTOMATED OPTIMIZATION ALGORITHM FOR ASYMMETRIC

LOGIC FUNCTIONS

This chapter details a methodology to automate the process of logic synthesis and optimiza-

tion for Boolean functions implemented using ALFs only. The objectives are clearly laid

out, followed by possible implementation approaches and a real-life demonstration using the

C++ programming language.

6.1 Objectives

Chapter 5 demonstrates that using asymmetric logic functions directly has significant advan-

tages. Even though the much required set of algebraic identities and a modified Karnaugh

map method is proposed in this work, a detailed algorithm is required for two primary

purposes:

• Objective #1: Optimization of any Boolean function, simple or complex, represented

using asymmetric logic sets.

• Objective #2: Automated translation between asymmetric and standard Boolean func-

tions.

6.2 Implementation Approaches

There are two possible approaches to achieve the overall optimization of an asymmetric

Boolean function:

• Approach #1 (Accomplish objectives #1 and #2 in combination): This approach first

translates the input function (which is an asymmetric Boolean function like SOI/IOS

or NOI/ION) into a standard Boolean function (like SOP/POS). This step is followed
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Figure 6.1. Graphical explanation of (a) approach #1 and (b) approach #2. Side notes
detail an example.

by the optimization of the translated function using an existing algorithm, and then a

translation back to the original asymmetric form.

• Approach #2 (Accomplish objective #1 directly): This involves developing a new opti-

mization approach for asymmetric logic sets.

Fig. 6.1 explains the two approaches graphically. It is clear that approach #2 has con-

siderable advantages in terms of implementation efficiency, but developing a new algorithm

from the ground up requires strenuous research and development. Moreover, the translation

overhead of approach #1 might not be significant, and thus the extra effort of rebuilding the

algorithm might not be worth it. Possibly, a similar approach might work as well for asym-

metric functions as any other standard Boolean function. However, considering the atypical
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behavior of ALFs, there is a possibility that the results of adopting approach #2 might lead

to a improved optimization scheme. This forms one of the primary future objectives of my

work.

6.2.1 Realization of Approach #1

In this thesis document, I focus on implementing the first approach. Objective #1 can be

achieved various methods proposed over past several years [59–66]. One of these methods is

particularly popular, the Espresso algorithm [66]. The operation of this algorithm consists

of three fundamental steps [66]:

• Expand: A cube is expanded until no further expansion is possible without including a

vertex of the off-set, i.e., the cube is expanded until it is prime. This operation involves

complementing each input, in turn, to test if the new vertex is a member of the off-set

or the on-set of the Boolean expression.

• Irredundant Cover: This procedure attempts to reduce the number of prime cubes to

a minimum so that there are no redundant prime cubes covering the Boolean function.

• Reduce: The expand and irredundant cover procedures will give a locally optimal

solution which may not be the global optimum solution, thus a reduce procedure is

required to transform a prime cover into a new cover by replacing each cube by a

smaller cube contained within it.

The above routine is iterated until there is no improvement in the optimality of the reduction.

This approach has been adopted widely and several improvements have been made over the

years.

Objective #2 is accomplished using a simple algorithm proposed in this work. The aim

of this algorithm is to convert any standard Boolean representation (e.g. SOP, POS) to a

72



Figure 6.2. Overall flow of the proposed algorithm.

function implemented using ALFs only. The simplest approach of doing so is to detect the

non-inverted input in each of the product (or sum) terms, and complement the value of all

the remaining inputs (i.e. to produce the inverted inputs).

6.3 Practical Implementation

As mentioned in the previous section. The proposed algorithm uses the Espresso method

for Boolean optimization. One the most popular open-source implementation of Espresso is

the University of California - Berkeley’s ‘MVSIS’ logic synthesis and verification tool [67].

Alongside Espresso, it includes several other packages for a variety of operations.

Following approach #1, the espresso algorithm fulfills objective #1, while a basic al-

gorithm proposed here completes the back and forth translations between asymmetric and

symmetric functions. The overall flow of the approach is detailed in Fig. 6.2. Algorithm 1

presents a simplistic pseudo-code for the translation of and SOP to an SOI. Suppose, the

espresso algorithm returns the final result through the variable ‘F’. This variable is then read

in directly by the algorithm proposed below.
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Algorithm 1: Receive optimized function from espresso and translate to SOI

while F has data do

testData← get data(F );

end

while testdata do

testData← convert soi(F );

end

while testdata do

finalOutput← soi to literal(testData);

end

returnfinalOutput ;

The optimized product/sum terms are received from the Espresso algorithm as strings of

bits. Selected bits are complemented so as to appropriately depict the inverted inputs of an

asymmetric function. In the specific case of Algorithm 1, all of the individual bits are com-

plemented except for the most significant one, thus obtaining the inverted and non-inverted

inputs of an SOI. The methodology can be applied to both ends of the Espresso optimization

step, which completes the overall flow. In addition to this, the proposed algorithm minimizes

the number of input inverters required by exploiting the self-inverting nature of ALFs. For

example, (A B) is better implemented as (B A).

Fig. 6.3 - 6.5 show the actual user interface and results of the implementation. The input

for the espresso tool is a .pla file (Fig. 6.3) which describes the Boolean function that needs

to be optimized. Fig. 6.4 and 6.5 show the input and output user-end displays respectively.

Therefore, the algorithm has a demonstrated capability of optimizing any asymmetric logic

function.
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Figure 6.3. The .pla file used to describe the input function (which in this case is an SOI)

Figure 6.4. Command terminal showing the read-in of the input .pla file and execution of
the algorithm using the ‘espresso’ command
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CHAPTER 7

CONCLUSIONS

In this thesis, I have highlighted a novel approach to logic synthesis for logic sets formulated

via memristive and spintronic devices. I propose the idea of asymmetric logic functions, with

a particular emphasis on the inverted-AND and stateful memristive implication logic.

A complete Boolean algebra for both spintronic IAND logic and memristive IMPLY logic

is presented. This includes all the primary identities and principles required to perform

Boolean reduction. Further, I detail a simple logic minimization technique that enables the

direct mapping of memristive and spintronic logic functions onto Karnaugh maps. This

method is tailored to both the asymmetric IAND-OR and IMPLY-NAND logic sets. In fact,

any asymmetric logic function of a similar form can be expected to fall into the broader

category of ALFs to which a similar Boolean algebra and minimization techniques can be

applied.

This logic minimization technique provides a foundation for logic synthesis tools based

on memristors and spintronic logic, as well as a template for logic minimization with alter-

native beyond-CMOS computing structures. This Karnaugh map method adapted to non-

commutative logic functions thus constitutes an important step toward the development of

design automation techniques for the next generation of computing.

This work presents a comparative analysis of the proposed and previous logic synthesis

approaches, demonstrating a statistical advantage of considering ALFs as basic logic func-

tions. This is aimed to provide a path parallel to the traditional strategy of mapping all

unconventional logic functions to universal or standard ones. Developing on the proposed

method can potentially reduce implementation overheads to a significant degree.

Finally, I introduce a simplistic algorithm for the automation of logic minimization and

translations between standard and asymmetric logic sets. Currently, the algorithm builds

on the existing Espresso heuristic logic minimizer, with the added sequence of translations.
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However, the computational overheads for these additional sequences are not expected to be

too much. Nevertheless, a successful implementation of approach #2 should be promising.

7.1 Future Work

I am determined to take my work to the next level and achieve the following objectives in

the near future:

• Extend the Karanugh mapping process to better and more recent optimization tech-

niques like Quine-McCluskey, cube-reduction, and binary decision diagram based meth-

ods etc. In this process, I hope to come up with an approach that works best for

asymmetric and other unconventional logic sets.

• Explore the advantages of ALFs in sequential circuits like flip-flops.

• Implement approach #2 for the optimization of ALFs. This will eliminate the need

for the back and forth translation to and from standard Boolean functions.

• Benchmark the existing algorithm and evaluate its performance the algorithm’s per-

formance against conventional CMOS counterparts.

Overall, I hope my work will have a positive impact on academia, and help towards

designing more efficient circuits for emerging devices aimed to replace CMOS.
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APPENDIX

SUMMARY OF BOOLEAN LAWS AND IDENTITIES FOR ASYMMETRIC

LOGIC FUNCTIONS

This appendix presents a tabular summary of all the properties mentioned in this chapter.

Table A.1 and A.3 display the core algebraic and standard Boolean theorems respectively,

for IAND logic. Whereas, Table A.2 and A.4 do the same for the IMPLY operation.

Table A.1. Core algebraic identities for IAND logic

Identity Name Expression

Annulment A 1 = 0 A = 0

Inversion 1 A = A

Identity A 0 = A

Null Idempotency A A = 0

Inverse Idempotency - I A A = A

Inverse-Idempotency - II A A = A

Table A.2. Core algebraic identities for implication logic

Identity Name Expression

Annulment A→ 1 = 1

Inversion A→ 0 = A

Identity 1→ A = A

Null Idempotency A→ A = 1

Inverse-Idempotency - I A→ A = A

Inverse-Idempotency - II A→ A = A
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