
FLEXIBLE PARTIAL RECONFIGURATION BASED DESIGN ARCHITECTURE FOR

DATAFLOW COMPUTATION

by

Mihir Shah

APPROVED BY SUPERVISORY COMMITTEE:

Benjamin Carrion Schaefer, Chair

Dinesh K. Bhatia

William P. Swartz, Jr.

Copyright c© 2018

Mihir Shah

All rights reserved

To my Parents–Yogini and Rajesh

& my loving Sister–Aishu

FLEXIBLE PARTIAL RECONFIGURATION BASED DESIGN ARCHITECTURE FOR

DATAFLOW COMPUTATION

by

MIHIR SHAH, B.Tech

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

May 2018

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Dr. Benjamin Carrion Schaefer for his unparalleled

support, motivation and never-ending belief in me. It’s been over a year since I first started

working with professor Benjamin Carrion Schaefer as an independent research student. I am

truly thankful to him for always providing me correct direction. I am highly inspired by his

research aptitude and wonderful personality.

I would like to thank Dr. Dinesh Bhatia and Dr. William Swartz, Jr. for being on my

committee and spending their quality time to review my work.

I am thankful to Jianqi Chen for his work with respect to benchmark and always helping me

debug critical issues. Jianqi is a very kind hearted and generous person.

I would like to thank members of the DARClab: Farah, Siyuan, Pandy, Mahesh, Zhiqi and

Zi Wang for always being by my side whenever I needed them. I would also like to thank

Sushmitha Gogineni, Abhishek Krishnamurthy and Rohit Somwanshi for helping me realize

how engaging and enlightening is the research track. I am thankful to my friends Sagar Patil,

Aishwariya Bari and roomates Sagar Kansara, Siddharth Shah, Utsav Dholakia and Sagar

Mehta for their moral support and encouragement. I am grateful to Vidhi Vora for always

staying besides me through dark phases and providing me warmth.

I am also humbled and blessed by the Hardware Donations made to DARClab, which

facilitated faster development. I am very thankful to Amanda, Josefine and Tamra from The

Office of Graduate Studies for their patience and untiring efforts in evaluating my Thesis

documents. I am grateful to the Department of Electrical and Computer Engineering at The

University of Texas at Dallas for their support and research facilities that provided me ease

throughout the journey.

January 2018

v

FLEXIBLE PARTIAL RECONFIGURATION BASED DESIGN ARCHITECTURE FOR

DATAFLOW COMPUTATION

Mihir Shah, MSEE
The University of Texas at Dallas, 2018

Supervising Professor: Benjamin Carrion Schaefer, Chair

In this thesis research we proposed a generic semi-automatic partial reconfiguration based

design methodology which takes inputs in the form of behavioral description files using

C/C++/SystemC for a dataflow process and outputs partial binaries to deploy on the SoC

FPGA. This methodology is coupled with a novel static design architectural framework

utilizing internal block ram memory to store intermediate results. In order to prove the

efficacy of the proposed methodology and architecture in terms of area and timing, we

have implemented JPEG Encoder from S2CBench v.2.0 spatially and then with partial

reconfiguration design methodologies. The proposed design method abbreviated as PRBRAM

where internal FPGA on-chip memory is used to store intermediate results when time

multiplexing kernels and PRDDR is a partial reconfiguration based design method utilizing

external off-chip DDR memory. The reconfiguration time is a critical parameter determining

the performance of DPR designs. Reconfiguration time depends on the area of Reconfigurable

Partition (RP) and the generated partial bitstream. Thus, we study and prove experimentally

considering equal area of RP for both PRBRAM & PRDDR, that the proposed former method

is runtime and latency efficient compared to the latter. We also examine and study the effects

of variations on reconfigurable partition area on running time, considering different number

of reconfigurations required for the application on the proposed architecture PRBRAM .

vi

We prove that the implementation with the proposed Architecture PRBRAM is area efficient

compared to spatial implementation with LUT area savings upto 21.20 % and FF area

savings up to 30.41 % for 1598.896 KB as partial bitstream size. These %’s are including

the additional resources utilized by proposed static architecture. We also have seen an

improvement in average hardware running of 0.529363s against PRDDR.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xi

LIST OF TABLES . xiv

LIST OF NOMENCLATURE . xv

CHAPTER 1 INTRODUCTION . 1

1.1 Thesis Motivation . 1

1.2 Thesis Contribution . 3

1.3 Thesis Organization . 3

CHAPTER 2 HIGH-LEVEL SYNTHESIS (HLS) 5

2.1 Introduction . 5

2.2 High-Level Synthesis Design Steps . 5

2.3 RTL Generation . 9

2.4 Commercial HLS Tool . 11

2.4.1 NEC’s CyberWorkBench HLS Tool 11

2.5 Summary . 12

CHAPTER 3 PROGRAMMABLE SOC FPGA AND PARTIAL RECONFIGURATION
DESIGN FLOW . 13

3.1 Introduction . 13

3.2 SoC FPGAs . 14

3.2.1 Altera SoC FPGAs . 15

3.2.2 Xilinx ZYNQ Architecture . 16

3.3 Partial Reconfiguration Design Process . 19

3.3.1 Basic Ideology of Partial Reconfiguration 19

3.3.2 Configuring Bitstreams in PR Design 21

3.3.3 Benefits of Partial Reconfiguration 24

3.4 Summary . 25

viii

CHAPTER 4 DATAFLOW COMPUTATION . 26

4.1 Introduction . 26

4.2 S2CBench v.2.0: JPEG Encoder . 27

4.2.1 Discrete Cosine Transform (DCT) . 28

4.2.2 Quantization . 29

4.2.3 RunLength Encoding . 29

4.2.4 Entropy Coding . 31

4.3 Summary . 33

CHAPTER 5 DEDICATED JPEG HARDWARE ACCELERATOR GENERATION
AND VALIDATION . 34

5.1 Validation Design Flow . 34

5.1.1 High-Level Synthesis using NEC’s CyberWorkBench 34

5.1.2 Logical Synthesis and Simulation using Xilinx Vivado Suite 36

5.1.3 Creating and Packaging Custom IP using Vivado IP Packager 36

5.1.4 Creating a System Level Design and Validating the IP using Xilinx SDK 37

5.2 Validating JPEG Encoder Processing Elements 38

5.2.1 Discrete Cosine Transform IP Block 38

5.2.2 Quantization IP Block . 43

5.2.3 Run-Length Encoding IP Block . 48

5.2.4 Huffman Encoding IP Block . 51

5.3 Summary . 55

CHAPTER 6 DESIGN METHODOLOGIES FOR DATAFLOW COMPUTATION . 56

6.1 Overview of the Proposed Design Methodology 56

6.1.1 Stage 1: SystemC/BDL Algorithm Description to RTL Generation . . 57

6.1.2 Stage 2: Validation and Creation of Custom IPs 58

6.1.3 Stage 3: TCL Automated Floorplan for PR Designs 58

6.1.4 Stage 4: Deploying the Binaries on Zynq-7000 60

6.2 Spatial Design Implementation : JPEG Encoder 62

6.2.1 System Implementation and Setup 62

ix

6.2.2 Experimental Results . 64

6.3 Implementation using DDR3 Memory [PRDDR]: JPEG Encoder 66

6.3.1 System Implementation and Setup 66

6.3.2 Experimental Results . 69

6.4 Proposed Architecture PRBRAM Implementation: JPEG Encoder 74

6.4.1 System Implementation and Setup 74

6.4.2 Experimental Results . 75

6.5 Results and Analysis of Design Implementations : Comparative Study 81

6.5.1 Area vs Runtime Comparison . 81

6.5.2 Runtime and Latency Comparison 81

6.6 Summary . 83

CHAPTER 7 CONCLUSION AND FUTURE WORK 84

7.1 Conclusion . 84

7.2 Future work . 84

REFERENCES . 85

BIOGRAPHICAL SKETCH . 88

CURRICULUM VITAE

x

LIST OF FIGURES

2.1 High Level Synthesis Design Steps . 7

2.2 Scheduling and Binding Example . 9

2.3 Typical Architecture . 10

2.4 CWB HLS Design Flow . 12

3.1 Traditional Island-Style FPGA (Left) and Modern FPGA (Right) 13

3.2 SoC FPGA Trend . 14

3.3 Altera SoC FPGA Architecture for Cyclone & Arria V 16

3.4 Zynq-7000 AP SoC . 17

3.5 Row and Column Relationship between CLB and Slice in Xilinx 7-series FPGA 18

3.6 (a) Chanel Architecture of Read (b) Chanel Architecture of Write 20

3.7 (a) Partial Reconfiguration Basic Ideology (b) PR Design Flow in Vivado Software 21

3.8 Difference between (a) Full Bitstream Configuration (b) Partial Bitstream Recon-
figuration . 22

3.9 Configuration Methods for PR Design (a) ICAP (b) PCAP (c) JTAG 23

4.1 Detailed Block diagram of Diagram JPEG Encoder 27

4.2 JPEG Encoder as Dataflow Computation Process 27

4.3 Zig-Zag Scan . 30

4.4 Example of DPCM . 31

4.5 Example of RLC . 31

4.6 Basic Structure of JPEG Header File Format 32

5.1 SystemC to Custom IP Package Design Validation Flow 35

5.2 (a)-(e)Post Logical Synthesis Functional Simulation Results for DCT RTL . . . 42

5.3 Xilinx SDK Terminal displaying DCT Input and Output values 42

5.4 System Design and Validation of DCT IP using Vivado IP Integrator 42

5.5 (a)-(e)Post Logical Synthesis Functional Simulation Results for Quantization RTL 47

5.6 Xilinx SDK Terminal displaying Quantization Input and Output values 47

5.7 System Design and Validation of Quantization IP using Vivado IP Integrator . . 47

5.8 (a)-(c)Post Logical Synthesis Functional Simulation Results for RLE RTL 50

xi

5.9 Xilinx SDK Terminal displaying RLE Input and Output values 50

5.10 System Design and Validation of RLE IP using Vivado IP Integrator 50

5.11 (a)-(e)Post Logical Synthesis Functional Simulation Results for Huffman Encoding
RTL . 54

5.12 Xilinx SDK Terminal displaying Huffman Input and Output values 54

5.13 System Design and Validation of Huffman IP using Vivado IP Integrator 54

6.1 Proposed Design Methodology . 57

6.2 Spatial System Design view in Vivado IP Integrator 63

6.3 (a)-(b)Floorplan View of Spatial Implementation of JPEG Encoder on Zynq
XC7Z020 . 64

6.4 SSIM values and graphs of (a) lena (b) peppers (c) goldhill 65

6.5 PRDDR design methodology Block Diagram for dataflow computation 67

6.6 PRDDR system view in Vivado IP Integrator . 69

6.7 Design Checkpoints after performing Place & Route (a) Staticddr.dcp (b) DCTddr.dcp
for RPBitsize = 1306.272 KB case . 70

6.8 Design Checkpoints after performing Place & Route (a) Quantizationddr.dcp (b)
RLEddr.dcp (c) Huffmanddr.dcp for RPBitsize = 1306.272 KB case 70

6.9 PRDDR results for lena.bmp testcase with RPBitsize = 3416.088 KBytes 73

6.10 PRDDR results for lena.bmp testcase with RPBitsize = 1306.272 KBytes 73

6.11 Proposed System Model . 74

6.12 Design Checkpoints after performing Place & Route (a) Staticbram.dcp (b) DCTbram.dcp
for RPBitsize = 1306.272 KB case . 76

6.13 Design Checkpoints after performing Place & Route (a) Quantizationbram.dcp (b)
RLEbram.dcp (c) Huffmanbram.dcp for RPBitsize = 1306.272 KB case 76

6.14 Design Checkpoints after performing Place & Route (a) Staticbram.dcp (b) DCTbram.dcp
for RPBitsize = 786.664 KB case . 77

6.15 Design Checkpoints after performing Place & Route (a) Quantizationbram.dcp (b)
RLEbram.dcp (c) Huffmanbram.dcp for RPBitsize = 786.664 KB case 77

6.16 PRBRAM results for lena.bmp testcase with RPBitsize = 1598.896 KBytes 78

6.17 Graph Plots of FPGA Running Time vs Reconfigurable Partition Bitstream sizes
of lena test image for varying number of partial reconfigurations (a) 8 (b) 32 (c)
128 (d) 512 [Case 1:RPBitsize = 1598.896 KB, Case 2: RPBitsize = 1306.272 KB,
Case 3: RPBitsize = 786.664 KB] . 80

xii

6.18 Experimental vs Predicted Results for RPBitsize = 1598.896 KB for varying cases
of number of reconfigurations (1) 32 (2) 64 (3) 128 (4) 256 (5) 512 81

6.19 Area vs Runtime Plots . 82

6.20 Runtime and Latency Plots with RPBitsize = 3416.088 KB for PRDDR and 1598.896
KB for PRBRAM . 82

6.21 Runtime and Latency Plots with RPBitsize = 1306.272 KB for both PRDDR and
PRBRAM . 82

xiii

LIST OF TABLES

6.1 Register Description in Custom IPs . 60

6.2 Post-Placement Utilization Report . 63

6.3 JPEG Encoder Results with Spatial Design Implementation 65

6.4 Post Placement Utilization Report: PRDDR Design Methodology 68

6.5 JPEG Encoder Results for lena.bmp with PRDDR Design Implementation 71

6.6 JPEG Encoder Results for goldhill.bmp with PRDDR Design Implementation . . 71

6.7 JPEG Encoder Results for peppers.bmp with PRDDR Design Implementation . . 71

6.8 Post Placement Utilization Report: PRBRAM Design Methodology 75

6.9 JPEG Encoder Results for lena.bmp with PRDDR Design Implementation 79

6.10 JPEG Encoder Results for goldhill.bmp and peppers.bmp with PRBRAM Design
Implementation . 79

6.11 RTBRAM values for varying RPBRAM . 79

xiv

LIST OF NOMENCLATURE

Adynamic Area utilization by the RP on PL

Astatic Area utilization by the static logic on PL

Atotal combined area utilization by Astatic + Adynamic

AMBA Advanced Micro-controller Bus Architecture

AXI Advanced eXtensible Interface

BDL Behavioral Descriptive language

CWB CyberWorkBench

DCP Design Checkpoint

DCT Discrete Cosine Transform

DFG Directed Flow Graph

DPCM Differential Pulse Code Modulation

DPR Dynamic Partial Reconfiguration

HLS High Level Synthesis

ICAP Internal Access Control Port

IP Intellectual Property

JPEG Joint Photographics Expert Group

JTAG Joint Test Action Group

MSE Mean Square Error

xv

Nbin Number of partial bitstreams corresponding to total number of RMs

PCAP Processor Access Control Port

PE Processing Element or Node in DFG

PL Programmable Logic

PR Partial Reconfiguration

PRBRAM PR based design method using internal BRAM memory

PRDDR PR based design method using external off-chip DDR memory

PS Processing System

PSNR Peak Signal-to-Noise Ratio

RLC RunLength on AC Components

RM Reconfigurable Modules

RP Reconfigurable Partition

RPBitsize Partial Bitstream size in bytes corresponding to RP

RT Reconfiguration Time

RTBRAM RT for PRBRAM methodology

S2CBench Synthesizable SystemC Benchmarks

SoC FPGAs System-on-Chip Field Programmable Gate Arrays

SSIM Structural Similarity Index

Staticblank.bit Full Bitstream for the PL side - static logic + RP with buffered ports

Tbin Time it requires to load partial bitstream of RM into RP

xvi

CHAPTER 1

INTRODUCTION

1.1 Thesis Motivation

When it comes to speeding up computationally intensive workloads, it’s not only Graphic

Processing Units (GPUs) but also FPGAs (Field Programmable Gate Arrays) that are

gaining a lot of attention. Microsoft has been using Altera FPGAs in its servers to run neural

networks for Bing Search Engine, Cortana speech recognition and Natural Language(NL)

translation [1]. Baidu is also working on FPGAs for its data centers and Amazon Work

Spaces (AWS) already offers Elastic Cloud Compute (EC2) F1 instances with Xilinx Virtex

UltraScale+ FPGAs [2]. If one has an accelerated workload of a dataflow computation model

which is common in multimedia, image processing and signal processing based applications

then they have to pay a heavy price to buy more computing space and resources on these data

servers, to run their large application. Such dataflow processes usually have their computing

elements operate serially in a cascaded fashion and hence except for the current computing

element, the remaining ones are in-active especially when the data to be processed and the

time it takes to process is relatively large.

Reconfigurable architectures which integrate a hard processor core along with a reconfig-

urable fabric on a single device, allows faster computation by means of hardware accelerators

implemented on the reconfigurable fabric [3]. A dataflow program can be represented as a

DFG (Directed Flow Graph) where each node represents an execution kernel/accelerator/actor

and each directed edge can be represented as a FIFO (First-In First-Out) queue or buffer [4].

There has been some work that attempted to model DRP (Dynamic Partial Reconfiguration)

in a dataflow paradigm [5]. However, the work does not propose a strong foundation for

generic dataflow paradigm in terms of architectural issues and neither supports the work

with experimental validation. There has been a study recently on implementing partial

1

reconfiguration for data compression application [6]. This work validates the effects of partial

reconfiguration on area, reconfiguration time and power consumption but does not discuss

the issues associated with storing intermediate results when swapping different kernels which

affects the running time performance. DPR is used extensively in SDR (Software Defined

Radio) applications and there has been related work done in [7] but however the architecture

proposed utilizes external off-chip memory.

The fundamental ideology behind the proposed design architecture is that in a dataflow

computation process, each Processing Elements abbreviated as PE0, PE1, PE2, PEk ,

where k is the number of stages in a dataflow computation, require processed inputs from the

previous stage except for terminal Processing Elements - PE0 and PEk. Thus, in a large

dataflow computation process where the signal chaining is intensive for example in the case of

SDR applications, several resources on the FPGA fabric area are utilised when the design is

implemented spatially leaving not much room for any other compute intensive tasks to be run

in parallel. In situations like these, additional FPGA ICs or a larger FPGA with additional

resources are added to the PCB Board to balance any additional compute intensive tasks,

thereby increasing the raw PCB hardware sizes and routing latency or propagation delay

between FPGA ICs.

Partial Reconfiguration has been proposed long ago in order to solve the problem associated

with reduced utilization and sharing of FPGA resources and Xilinx, Inc provides extensive

support in terms of hardware and software to implement Partial Reconfiguration based

designs [8]. With this solution, we can shrink on the FPGA area utilization without a

doubt, but however the hardware running time and latencies are affected due to the time it

requires to configure the bitstream partially through internal or external interfaces. Also, in a

dataflow computation process where the computation is to be done for large amount of data,

storing intermediate stage results in an off-chip memory adds additional latency to fetch and

write back data. Thus, we propose a partial reconfiguration based design architecture and

methodology for dataflow computation process using an internal FPGA BRAM memory.

2

1.2 Thesis Contribution

The following are the contributions to the Thesis:

•We have proposed a semi-automatic design methodology for a dataflow computation process

with partial reconfigurability from SystemC behavior description to partial binaries for

Reconfigurable Modules (RMs). This methodology follows a static design architecture to talk

to the reconfigurable modules, which is also proposed and is novel.

• We have explored with the help of JPEG Encoder from S2CBench v.2.0 the design

implementations and results obtained implementing the design spatially and with the proposed

design methodology & architecture.

•We also explore the efficiencies achieved in runtime by changing the reconfigurable partition

area in the proposed design architecture.

1.3 Thesis Organization

The organization of the remainder of this thesis is presented in this section. Chapter 2

explains High Level Synthesis design steps and RTL generation followed by discussion on

Commercial HLS Tool - CyberWorkBench from NEC Corporation. Chapter 3 discusses

SoC FPGA Trends, ZYNQ Architecture overview, PS-PL features in Zynq-7000 AP SoC

device XC7Z020 & AXI interconnects as the first half of the chapter. The remainder chapter

discusses Partial Reconfiguration (PR) ideology, benefits and methods to configure partial

bitstreams for Reconfigurable Modules (RMs). Chapter 4 gives a high level explanation about

dataflow computation process and then discusses about S2CBench v.2.0 JPEG Encoder in

detail.

Chapter 5 describes the custom IP generation and validation design flow from SystemC to

Xilinx SDK to ensure each computing element in a dataflow computation process is validated

thoroughly for timing and functional requirements before integrating into more complex

3

design flows. Thus, a generic method is proposed for any dataflow computation process and

is explained in great detail with a running example of lena.bmp test case image block running

JPEG Encoder. Finally in Chapter 6, we explore the design implementations using spatial

and partial reconfiguration based methods with JPEG Encoder and discuss the proposed

design methodology for any dataflow computation process. Comparative results and analysis

are done to prove the proposed architecture is efficient and flexible compared to the remaining

implementations. Chapter 7 concludes with summary and possible future work originating

from this thesis.

4

CHAPTER 2

HIGH-LEVEL SYNTHESIS (HLS)

2.1 Introduction

The VLSI design complexities have increased in recent decades which have caused design

methodologies to raise the level of abstraction to facilitate faster time-to-market delivery.

There has been an accelerated growth of automation tools for synthesis and verification

process that has allowed designers to explore design space solutions efficiently. In the software

domain, the assembly language was introduced in 1950s, before which machine code or binary

sequences were used to program a computer [9]. In later years, high-level languages and

their respective compilation techniques were developed to improve software productivity.

These high-level languages hide details about the architecture, following rules of semantics,

provide flexibility & portability as they are platform independent. Design Methodologies have

evolved similarly in hardware domain as well [10, 11]. Simulation at the gate-level appeared

in early 1970s and cycle based simulation became available by 1979 followed by which in

1980s techniques such as place and route, formal verification, schematic capture and static

timing were introduced [9]. Hardware descriptive languages (HDLs) such as Verilog and

VHDL have been widely adopted in simulation tools and are used as inputs to logic synthesis

tools. During the 1990s, the first generation of HLS tools was available commercially [12, 13].

2.2 High-Level Synthesis Design Steps

Raising the level of abstraction for a hardware design is essential in order to evaluate

architectural decisions such as resource utilization, power management, memory hierarchies,

compiler & software support etc. HLS also provides re-usability of high-level specifications

based on design constraints for any FPGA or ASIC technology. Thus, if an RTL is generated

5

for a specific target then it is easier to generate the same for another, just by altering library

& constraints files.

Figure 2.1 shows the High-Level Synthesis Design Flow. Typically, a designer begins the

specification of an application that has to be implemented such as a custom processor or any

hardware unit with a high-level description using for instance Behavior Descriptive Language

(BDL) C/C++/SystemC that captures desired functional behavior. This first step thus

involves writing a functional specification which can also be called as ‘an un-timed behavior

description’ in which a function collects all its input data, performs all computations and

provides all its output data minimizing the execution time. The I/O operations can occur

concurrently or sequentially depending upon the requirements.

Several optimizations such as false data-dependency elimination, constant folding and loop

transformations are being done when the compilation occurs. The formal model generated

after compilation involves control and data dependencies in the form of a dataflow graph

(DFG) in which all the inter-dependencies in the behavior description is captured. Data

dependencies can be easily represented with a DFG in which every node represents an

operation and the arcs between the nodes signifies the input, output and temporary variables

[14].

The following are the three main steps involved in High-Level Synthesis: Allocation,

Binding and Scheduling.

Allocation

Allocation defines the type and the number of hardware resources, for instance: functional

units, storage or connectivity components needed to satisfy the design constraints. Depending

on the HLS tool, some components may be added during scheduling and binding tasks. For

example, the connectivity components (such as buses or point-to-point connections among

components) can be added before or after binding and scheduling tasks. The components are

6

Figure 2.1: High Level Synthesis Design Steps

selected from the RTL component library which also contains component characteristics such

as area, delay and power. By default the HLS tool will try to maximize the parallelism as

much as possible in the scheduling stage and hence allocating large number functional units

is always an advantage unless there is a design restriction.

Algorithm 1 Example Code to Explain Scheduling & Binding [15]

1: int foo (char x, char a, char b, char c) {
2: char y;
3: y=x*a+b+c;
4: return y;
5: }

Scheduling

All operations required in the specification model or the dependency graph must be scheduled

into cycles in order to find the latency and overall compute time required for the entire

process. Scheduling determines for each operation the exact clock step at which it will be

7

executed such that no precedence constraint is violated. For each operation such as a =

b op c, variables ‘b’and ‘c’ must be read from their sources and brought to the input of a

functional unit op to perform execution and the result ‘a’ must be brought to its destination.

Consider an example of y=x*a+b+c as shown in Algorithm 1 where each input variable

is of datatype char which can be scheduled as shown in Figure 2.2 [15].

Depending on the functional component to which the operation is mapped, the operation

can be scheduled within one clock cycle or scheduled over multiple cycles referencing the

library files. Operations can also be chained where the output of an operation directly feeds

as an input to another operation. Operations can be scheduled to execute in parallel provided

that there are no data dependencies between them and there are sufficient resources available

at the same time [9].

Many scheduling algorithms have been proposed in HLS [16]. There are two most basic

scheduling algorithms, As Soon As Possible (ASAP) and As Late As Possible (ALAP). ASAP

algorithm as the name suggests schedules operations in earliest possible time-step, as long as

an operation is scheduled if and only if all its predecessors are scheduled in earlier control

steps. In As-Late-As-Possible (ALAP) scheduling initially maximum number of time-steps

that are allowed is determined, which is usually a constraint set by the tool or the user, after

which the algorithm schedules each operation, one at a time into the latest possible time-step.

Binding

Every operation in the specification model must be bound to one of the functional units

available which is capable of executing the operation. If there is a variable that carries values

across cycles then it must be bound to a storage unit. Moreover, several variables with

non-overlapping or mutually exclusive lifetimes can be bound to the same storage units [9].

Consider again the example of y=x*a+b+c as shown in Algorithm 1 where each variable

is of datatype char. Figure 2.2 [15] shows the binding phases -initial and final. Clock cycle

8

Figure 2.2: Scheduling and Binding Example

1 reads variables ‘a, x, b’ then does the multiplication and first addition. Clock cycle 2

reads the ‘intermediate result(depicted by grey box in the figure), c’ and does the second

addition followed by generating output. In the initial binding phase, HLS implements the

multiplier operation using a combinational multiplier denoted as ‘Mul’ and implements both

add operations using a combinational adder subtractor denoted as ‘AddSub’. In the target

binding phase, HLS implements DSP48 resource (considering target FPGA is from Xilinx,

Inc) instead of ‘Mul’& ‘AddSub’ in Clock Cycle 1 for better improved performance. Also

since every input variable is of datatype char, the input data ports of 8-bit width would be

generated by the HLS tool. Since, the function return is integer datatype the output port

would be a 32-bit width.

2.3 RTL Generation

After allocation, scheduling and binding, the next step in HLS process is to generate the

RTL. The goal of the RTL architecture generation step is to apply all the design decisions

made in previous stages and generate an RTL model of the synthesized design. The RTL

9

Figure 2.3: Typical Architecture

architecture consists of a controller and a data path usually as shown in Figure 2.3 [9]. A

data path consists of a set of storage elements such as registers, register files & memories, a

set of functional units such as ALUs, multipliers, shifters and other custom functions and

interconnect elements such as tristate drivers, multiplexers and buses. The controller is a

finite state machine that controls the flow of data in the data path by setting the values of

control signals such as the select inputs of functional units, registers, and multiplexers. The

inputs to the controller may come from primary inputs (control inputs) or from the data

path components example comparators (status signals).

All these register-transfer components can be allocated in different quantities and types

and connected arbitrarily through buses. Each component can take one or more clock cycles

to execute, can be pipelined and can have input or output registers. In addition to this, the

entire data path and controller can be pipelined in several stages. Data inputs and outputs

are connected to the data path and similarly control inputs and outputs are connected to the

controller.

10

2.4 Commercial HLS Tool

There are several commercially availble HLS Tools like Xilinx Vivado HLS, Cadence’s

Stratus, Mentor’s Catapult, NEC’s CyberWorkBench which take input in the form of

C/C++/SystemC.

2.4.1 NEC’s CyberWorkBench HLS Tool

For the purpose of our research study, we use NEC’s CyberWorBench HLS Tool. NEC have

been developing C-based behavioral synthesis called ‘Cyber’ since the late 80’s and C-based

verification tools such as formal verification and simulation around ‘Cyber’ during the last

20 years which have been integrated into an IDE known as CyberWorkBench (CWB). It

is C-based High Level Synthesis and Verification “All-in-C” Tool and supports any ASIC

Technology & Altera/Xilinx FPGAs.

Figure 2.4 shows the HLS Flow using CWB. Hardware is described at behavioral level

using BDL languages and analysed using bdlpars to generated internal format files to be

used as input for behavioral synthesis. Before executing the behavioral synthesis, resources

needs to be allocated so that the scheduling stage can time the operations depending upon

the dependency graph as explained in previous sections. Thus, constraint files are generated

containing the functional units type & count appropriately for behavioral synthesis using

non-use mode when behavioral description is analyzed in Cyber Behavioral synthesis system.

There is also an option to set the scheduling mode - either manual or automatic. By default,

the synthesis mode is set to manual scheduling mode where the execution timing for

each operation can be explicitly specified by setting the clock cycle boundary “$” in the

functional description. This mode is suitable when the timing are generally pre-determined.

In our research study, we have used automatic scheduling mode to allow CWB to optimize

latency. In automatic scheduling mode, circuits are initially synthesized to minimize the

number of execution cycles within the scope of the specified constraints such as clock cycles,

11

Figure 2.4: CWB HLS Design Flow

the limitations of functional units etc. Later, the circuits are configured to minimize the area

requirement by sharing of registers, functional units and other resources. Using the functional

and memory constraints file along with internal format file generated after bdlparse, the

behavioral synthesis is executed using bdltran where scheduling and binding steps takes

place. This step generates an internal structural file which is used to generate the RTL

Architecture as shown in Figure 2.3 using veriloggen.

2.5 Summary

HLS tools transform an untimed high-level behavior specification into a fully timed implemen-

tation [17, 18]. One of the main advantage of HLS vs. traditional RTL design methods is that

HLS allows the generation of different micro-architectures with unique area vs. performance

trade-offs without having to modify the original behavioral description.

12

CHAPTER 3

PROGRAMMABLE SOC FPGA AND PARTIAL RECONFIGURATION

DESIGN FLOW

3.1 Introduction

In this chapter, we will examine the potential benefits of having a Processor System along with

Programmable Fabric in a single silicon chip. We will also discuss Partial Reconfiguration

based design methodology which helps to time multiplex several kernels within a compact

space.

Figure 3.1: Traditional Island-Style FPGA (Left) and Modern FPGA (Right)

Figure 3.1(Left) shows a traditional island-style FPGA architecture which is also termed

as mesh based FPGA architecture. It is called island-style architecture because in this

architecture, Configurable Logic Blocks (CLBs) are arranged on a 2D-grid resemble islands in

a sea of routing interconnect. The Input/Output (I/O) blocks on the periphery of FPGA chip

are also connected to the programmable routing network. The routing network comprises of

pre-fabricated wiring segments and programmable switches that are organized in horizontal

and vertical routing channels [19].

13

Contemporary FPGA architectures incorporate the basic elements as discussed in island-

style fpga along with additional computational and data storage blocks that increase the

computational density and efficiency of the device. These additional elements include:

Embedded memories for distributed data storage, Phase-locked loops (PLLs) for driving

the FPGA fabric at different clock rates, High-speed serial transceivers, Off-chip memory

controllers, Multiply-accumulate blocks etc as shown in Figure 3.1(Right).

3.2 SoC FPGAs

Figure 3.2: SoC FPGA Trend

System-on-Chip (SoC) FPGA devices integrate both processor and FPGA architectures into

a single IC which provides lower power, smaller board size, better integration and higher

bandwidth communication between the processor and FPGA [20]. SoC FPGAs helps integrate

the best of both the worlds in processor domain for high-management of tasks and FPGAs

for real time speedy data processing. Thus, if there are certain tasks in a computer program

which are data-intensive, then they can be spin-off by the processor to the FPGA fabric to

achieve maximum parallelism and faster throughput rate.

At present, there are three vendors of SoC FPGAs available in the market namely Altera

SoC, Xilinx Zynq 7000 and Microsemi SmartFusion2. The processors in these devices are

14

fully dedicated, “hardened” processor subsystems unlike softcores implemented on FPGA

fabric. If both the CPU and FPGA use separate external memories it may also be possible

to consolidate both into one memory device to reduce cost as shown in Figure 3.2. As the

signals between the processor and the FPGA now reside on the same silicon, communication

between the two consumes substantially less power compared to using separate ICs. The

integration of thousands of internal connections between the processor and the FPGA leads

to substantially higher bandwidth and lower latency compared to a two-chip solution [20].

For the purpose of our study, we have selected Xilinx Zynq-7000 All Programmable (AP)

SoC FPGA device part : XC7Z020, which is available with Zedboard from Digilent, Inc.

Hence, for the purpose of description about the Zynq-7000 AP SoC in general, we would be

referring to this part alone. It is All Programmable - meaning that not only can one add

systems intelligence through software, but additional data processing and decisions can be

executed in real time with programmable hardware [21]. All this intelligence can be added

with reduced design cost and tremendous flexibility to change the design or upgrade on-site.

3.2.1 Altera SoC FPGAs

Although Altera has launched Startix & Arria 10 SoC FPGA devices, Cyclone & Arria

V, based on 28-nm technology, still remain popular in the academia due to their lower

cost and rich features. Figure 3.3 shows the Hard Processing Side (HPS) System and its

interconnections to the FPGA fabric. The Processor Architecture features a dual core ARM

Cortex-A9 MPCore with 32 KB instruction & data L1 cache and 512 KB L2 shared cache,

where it has one AMBA AXI master port connected to Level3 (L3) interconnect and another

connected to SDRAM Controller as seen in the figure.

Altera SoC FPGAs provide performance which cannot be matched with respect to a

multi-chip solution of FPGA and processor because the former achieves superior performance

and low latency with high-throughput compared to latter[22]. There are three HPS-FPGA

15

Figure 3.3: Altera SoC FPGA Architecture for Cyclone & Arria V

Bridges which support AXI AMBA bus protocol and allows peripherals on the opposite sides

to be accessed on the respective sides:

• FPGA to HPS AXI Bridge: This is a high-performance bus supporting 32,64 and 128-bit

data widths allowing FPGA fabric to be the master to slaves on HPS. This interface allows

FPGA to have full visibility into the HPS address space.

• HPS to FPGA AXI Bridge: This is a high performance 32,64 and 128-bit data widths that

allow HPS to be master to FPGA fabric slaves

• Lightweight (LW) HPS to FPGA Bridge: This is a low performance 32-bit width AXI

bridge where HPS is the master.

3.2.2 Xilinx ZYNQ Architecture

Figure 3.4 [23] illustrates the functional blocks of the Zynq-7000 AP SoC. The PL and PS

are on separate power domains, enabling power down on the PL-side if required for power

management. The Zynq-7000 AP SoC is composed of the following major functional blocks:

16

Figure 3.4: Zynq-7000 AP SoC

(a) Processing System (PS) - Application processor unit (APU), Memory interfaces, I/O

peripherals & Interconnect and (b) Programmable Logic (PL).

Processing System

The APU consists of Dual ARM Cortex-A9 MPCore CPU with version 7 ARM ISA [23].

There is 32KB instruction and 32KB data L1 cache with parity per MPCore. There is also

a shared L2 cache with parity of size 512 KB. The APU system feature highlight includes

Snoop Control Unit to maintain L1 and L2 coherency, Accelerator Coherency Port (ACP)

from PL to PS, 256 KB of On-Chip SRAM (OCM) to store user application, DMA and

interrupt controller.

Zedboard has 512 MB (128M X 32) DDR3 and 256 Mb QSPI Flash external memory.

Thus, the PS - side of the Zynq-7000 consists of memory controller interfaces for DDR3 and

Quad SPI. The DDR3 controller supports 16b or 32b wide access, uses upto 73 dedicated PS

pins and obeys AXI ordering rules. The DDR3 Controller Core does transaction scheduling

17

Figure 3.5: Row and Column Relationship between CLB and Slice in Xilinx 7-series FPGA

to optimize the data bandwidth and latency along with advance re-ordering engines to

maximize memory access efficiency. Since the device density on Zedboard for the Flash

Chip is > 128 Mb, the QSPI Controller supports linear mode. The maximum Quad-SPI

clock at master mode is 100 MHz. The QSPI Controller supports 32-bit AXI linear address

mapping interface for read operations. The I/O Peripherals are industry standard interfaces

for external data communication which include GPIOs, Gigabit Ethernet Controllers, USB

Controllers, SD/SDIO Controllers, SPI, UART, CAN & I2C Controllers.

Programmable Logic

The PL of XC7Z020 is based on Artix-7 FPGA logic [23]. The PL resources primarily include

13,300 Logic Slices, 53,200 LUTs, 1,088 LUTRAMs, 106,400 Flip-flops, 140 Block RAM and

220 DSP48E1.

A CLB element contains a pair of slices and each slice is composed of four 6-input Look

Up Tables (LUTs) and eight storage elements [24]. The slices are defined as SLICE(0)- Slice

at the bottom of the CLB and in left column whereas SLICE(1) - Slice at the top of the

CLB and in the right column. Figure 3.5 shows the relationship between CLBs and Slices in

terms of Rows & Columns. Each Slice, has an independent carry chain, is organised as a

18

column and do not have direct connection with each other.The LUTs have memory capability

within them and between 25-50% of all the slices can use their LUTs as distributed 64-bit

RAM or shift data with 32-bit registers. Slices that support these additional functions are

called SLICEM; others are called SLICEL. SLICEM represent a superset of elements and

connections found in all slices.

AXI Interconnect

Xilinx adopted the Advanced eXtensible Interface (AXI) protocol for Intellectual Property

(IP) cores for Zynq-7000 AP SoC devices with AMBA 4.0 [23]. AXI is part of the ARM

AMBA, a family of micro-controller buses first introduced in 1996. There are three types of

AXI4 interfaces viz; AXI4: for memory-mapped interfaces allowing high throughput bursts of

upto 256 data transfer cycles with a single address phase, AXI4-Lite: for light-weight, single

transaction memory mapped interface and AXI4-Stream: allows unlimited data burst size

without need for address phase because of which they are not considered memory-mapped

interface. Besides providing the right protocol for the application, the AXI4 also helps

in improving productivity by making a single protocol for IP across developers as well as

improves availability of more third party IPs output Vivado IP Catalog for design ease.

Figure 3.6 shows five AXI bus channels : Read Address Channel, Write Address Channel,

Read Data Channel, Write Data Channel, Write Response Channel. Each transmission

channel are single direction. Every transaction has unique address and control information

which is used to describe the property of the data being transmitted.

3.3 Partial Reconfiguration Design Process

3.3.1 Basic Ideology of Partial Reconfiguration

FPGA technology provides the flexibility of on-site re-programming without going through

re-fabrication, unlike ASIC technology, if the design is altered. Partial Reconfiguration

19

(a)

(b)

Figure 3.6: (a) Chanel Architecture of Read (b) Chanel Architecture of Write

(PR) takes this flexibility one step further, allowing the modification of an operating FPGA

design by loading a partial configuration file, usually a partial BIT file. After a full BIT file

configures the FPGA, partial BIT files can be downloaded to modify reconfigurable regions

in the FPGA without compromising the integrity of the applications running on those parts

of the device that are not being reconfigured i.e the static region. As shown in Figure 3.7a,

the function implemented in Reconfig Block A is modified by downloading one of several

partial BIT files A1.bit, A2.bit, A3.bit or A4.bit. The logic in the FPGA design is divided

into two different types, reconfigurable logic and static logic. The gray area of the FPGA

block represents static logic and the block portion labeled Reconfig Block “A” represents

reconfigurable logic. The static logic remains functioning and is unaffected by the loading of

a partial BIT file. The reconfigurable logic is replaced by the contents of the partial BIT file.

Figure 3.7b shows the Vivado Software design flow for PR Implementation [25].

20

(a)

(b)

Figure 3.7: (a) Partial Reconfiguration Basic Ideology (b) PR Design Flow in Vivado Software

3.3.2 Configuring Bitstreams in PR Design

Full vs Partial Bitstream Configuration

Figure 3.8 shows the difference in contents of the partial and full bitstreams. A full bitstream

consists of a header, configuration data and checksum. This is to verify the integrity of the

bitstream and configure the complete FPGA fabric with the logic design. At the end of the

configuration process, the FPGA asserts the ‘DONE’ signal and enters the user mode from

the configuration mode where design starts functioning unless if the bitstream was corrupted.

This ensures incorrect designs never start functioning on the FPGA [23, 25].

Partial bitstreams, on the other side, contain only configuration data and checksum.

Contrast to full configuration method where FPGA is already in user mode with an operating

21

(a)

(b)

Figure 3.8: Difference between (a) Full Bitstream Configuration (b) Partial Bitstream
Reconfiguration

design when the reconfiguration process takes place, asserting the DONE signal is not essential

in here. The reconfiguration process lasts till the partial bitstream is entirely sent to the

configuration port. Checksum failures indicate corrupt bitstreams and in case of partial

bitstreams, they are a bigger concern because if the checksum failure is caused due to erroneous

configuration data, the incorrect design is isolated within the reconfigurable partition. This

can be corrected at the cost of loading another partial bitstream for the respective partition.

However, if the the failure is caused due to erroneous frame address of the reconfigurable

partition, then the static logic may be corrupted as a result of the reconfiguration [3]. To

avoid such mishaps it is advisable that their integrity is checked before directing them to

configuration ports [25].

Methods for Configuring Partial Bitstream

Configuration ports are responsible for configuring the FPGA fabric after verifying the

integrity of the bitstreams. Generally, a processor or a state machine is used for fetching

the partial bitstreams from non-volatile memory viz sd-card, qspi memory etc and directing

22

Figure 3.9: Configuration Methods for PR Design (a) ICAP (b) PCAP (c) JTAG

it to configuration ports for reconfiguration [25]. Thus, having a Processing System

(PS) on SoC FPGA can provide an advantage of transferring partial bitstream to

configure the Reconfigurable Partition (RP), without the need to add an extra

off-chip processor on hardware. Different configuration ports can be used for performing

partial reconfiguration of an FPGA.

The following are the three most commonly utilized methods:

• Internal Configuration Access Port (ICAP): This port enables partial reconfiguration

within the FPGA, thus allowing self configuring FPGA designs. Self configuring FPGA

designs with Xilinx Spartan III families have been presented in [26]. Designs for improving

the fault tolerance of the ICAP has been presented in [27].

• Processor Configuration Port (PCAP): This configuration interface is used by the

runtime reconfigurable architectures which integrate a hard processor core. The processor

configures the reconfigurable fabric using this port [25, 23].

The ICAP and PCAP are internal configuration methods to load the partial bitstream.

• JTAG Port: This is an interface for quick testing of partial reconfiguration using external

port method. Processors can be used for fetching the bitstreams from the memory and

directing it towards the JTAG port. Different tools are available for this purpose [25]. The

Figure 3.9 shows the usage of the three mentioned configuration ports.

23

3.3.3 Benefits of Partial Reconfiguration

PR based design implementations open new horizons of flexible usage in wide variety of

applications. The benefits of using partial reconfiguration based designs are as follows:

• Reduced Resource and Power Consumption: With partial reconfiguration, it is

possible to time multiplex several hardware modules. This reduces the total resource require-

ment for implementing any hardware design which directly translates into power and cost

savings. For systems using multiple FPGAs, partial reconfiguration provides the possibility of

integrating the design into a lower FPGA IC count. For such systems, power savings can be

obtained not only from the reduced count of FPGAs but also from the reduction in off-chip

communication [28].

• Performance Improvements and Flexibility: With partial reconfiguration, the com-

putation capacity of the system can be adapted at run time. For instance in systems where

different hardware kernels are used sequentially one after the other the additional resources

can be used for speeding up the operation of the kernel or for creating more number of kernels

to perform the operation in parallel [8, 3].

• Improved Fault Tolerance and Dependability: Fault tolerance is a highly important

criterion for safety critical systems especially in aerospace & defense industries. System

failures on account of hardware faults could be fatal in such systems. With partial recon-

figuration, fault tolerance and dependability of the systems can be improved by means of

techniques like module diversification, configuration scrubbing [29, 30]

• Self Adapting Hardware Designs: With partial reconfiguration hardware architectures

can adapt themselves to changing operating and environmental conditions if required based

on artificial intelligence and learning [31].

24

3.4 Summary

In this chapter, we discussed FPGA trends and more elaborately looked at Zynq SoC FPGA,

which we would be using for our experimental studies. Also, in this chapter we have discussed

partial reconfiguration ideology and benefits in brief.

25

CHAPTER 4

DATAFLOW COMPUTATION

4.1 Introduction

Dataflow Computing (DC) is a specific model of computation in which the target application

is described as an appropriate data-flow graph (DFG) where nodes represent portions of

computation or tasks and links represent the flow of intermediate results from input to output

[32]. Data is streamed from memory onto the chip where operations are performed and

data is forwarded from one functional unit to another as results are needed, without ever

being written to the off-chip memory until the processing chain is terminated [33]. The

dataflow models are intuitive and easy to understand especially in areas of digital signal

processing [34]. Dataflow or Stream Computing have two types of parallelism; task and

data parallelism. Task parallelism can be exploited by implementing each kernel or compute

element as an independent processing unit and scheduling computation in a pipelined fashion.

Data parallelism can be exploited at the kernel level because stream elements are independent.

FPGAs have several desirable properties for dataflow or stream processing applications.

High-frequency trading is a good example, where high-rate data streams need to be processed

in real time and microsecond latencies determine success or failure. I/O capabilities of

FPGAs, allow for flexible integration, e.g. in the case of high-frequency trading, the FPGAs

are inserted directly into the network, enabling most efficient processing of network traffic

[35]. Furthermore, the reprogrammability of FPGAs makes it possible to quickly adapt to

market changes.

Figure 4.1 shows the detailed steps required to perform encoding for JPEG. These steps

can be divided to form each processing elements in the dataflow graph. Figure 4.2 shows

JPEG Encoder as a dataflow process, which we will be analyzing for our research study,

where nodes - DCT, Quantz, RLE and Huffman are tasks or computation elements and the

interconnect between them represents the stream of data.

26

Figure 4.1: Detailed Block diagram of Diagram JPEG Encoder

Figure 4.2: JPEG Encoder as Dataflow Computation Process

4.2 S2CBench v.2.0: JPEG Encoder

S2CBENCH stands for Synthesizable SystemC Benchmark suite. It is a open source SystemC

benchmarks created to help designers evaluate the QoR of state of the art HLS Tools.

S2CBench v.2.0 provides 18 programs written in synthesizable SystemC language. Each

27

benchmark is designed for specific domains such as multimedia, digital signal processing,

security, image processing etc. JPEG Encoder was added to the second revision of the

benchmark suite which we will be using in our research study as a dataflow computation

process.

JPEG (Joint Photographic Experts Group) Encoder used for our comparative study is a

lossy version of Encoder algorithm for images. A lossy Encoder scheme is a way to inexactly

represent the data in the image, such that less memory is required yet the data appears to

be very similar to the original data. This is why JPEG images will look almost the same

as the original images from which they are derived most of the time, unless the quality is

reduced significantly, in which case there will be visible differences. The JPEG algorithm

takes advantage of the fact that humans cannot see colors at high frequencies. These high

frequencies are the data points in the image that are eliminated during the Encoder.

4.2.1 Discrete Cosine Transform (DCT)

For an 8-bit image, in the original block each element falls in the range [0,255]. Data range

that is centred around zero is produced after subtracting The mid-point of the range (the value

128) from each element in the original block, so that the modified range is shifted from[0,255]

to [-128,127]. Images are separated into parts of different frequencies by the DCT. After dct

transformation, the ’DC coefficient’ is the element in the upper most left corresponding to

(0,0) and the rest coefficients are called ’AC coefficients’. The ’DC coefficient’ represent the

average of the pixel values in the block whereas ’AC coefficients ’ represent a measure of pixel

variation. So, basically the Discrete Cosine Transform converts spatial domain to frequency

domain and the DCT outputs are related to how much the pixel values changed as a function

of their position in the block. A lot of variations in pixel values indicates an image with lot of

fine detail whereas if there are small variations in pixel values then there is more uniformity

& less fine details. DCT does not provide any Encoder however it rearranges the data into a

28

form that allows another coding technique to compress the data more effectively. Equation

4.1 shows the DCT equation used in programming the DCT module using SystemC.

DCT (i, j) =
1

4
C(i)C(j)

7∑
x=0

7∑
y=0

pixel(x, y) cos
(2x+ 1)iπ

16
cos

(2y + 1)jπ

16

where, C(k) =


1√
2
, if k = 0

1, otherwise

(4.1)

4.2.2 Quantization

We obtain the Quantization by dividing transformed image DCT matrix by the quantization

matrix used . Values of the resultant matrix are then rounded off. Quantization aims at

reducing most of the less important high frequency DCT coefficients to zero, the more zeros

the better the image will compress. Lower frequencies are used to reconstruct the image

because human eye is more sensitive to them and higher frequencies are discarded. If there

are many high frequencies, then respective coefficients end up zeroed which leads to higher

Encoder rates. One can use a uniform (each element has a constant value)or non-uniform

(lower right have higher values to eliminate higher frequencies whereas upper left have lower

values to account for lower frequencies) Quantization Matrix or Table. Equation 4.2 was

implemented using SystemC where-in a Uniform Quantization Matrix was selected to have a

constant value of each element to be 8.

DCTQ(i, j) = Round

[
DCT (i, j)

Q(i, j)

]
(4.2)

4.2.3 RunLength Encoding

The RLE module implemented in SystemC comprises of Zig-Zag Scanning, Differential Pulse

Code Modulation for DC Components and Run Length on AC Components. These are

discussed briefly in this subsection.

29

Figure 4.3: Zig-Zag Scan

Zig-Zag Scan

After zeroing out all the high frequency image data, in order to further compress the data

of 8 X 8 block, grouping of low frequency coefficients in top of vector and high frequency

coefficients at the bottom is done using Zig-Zag Scan. Thus, the 8 X 8 Matrix maps to a 1 X

64 vector. Figure 4.3 shows the Zig-Zag Scanning Method implemented.

DPCM on DC Components

The DC component value in every 8 X 8 block is large and varies across blocks but the

difference between the DC component values between neighboring blocks is less. Meaning,

the dc component values are often very close between current block and previous block in

general. This fact is exploited here using the technique known as Differential Pulse Code

Modulation(DPCM) where encoding the difference between current and the previous 8 X

30

Figure 4.4: Example of DPCM

Figure 4.5: Example of RLC

8 block results in eventually requiring fewer bits to represent a smaller number. Figure 4.4

shows an example to illustrate the method of DPCM.

RunLength on AC Components

The 1 X 64 vector has lot of zeros in them after quantization and zig-zag scanning especially

more towards the end of the vector which represents all the higher frequencies. This step

encodes a series of zeros as a (skip, value) pair, where skip is the number of zeros and value is

the next non-zero component. There is an end of the block sentinel value of (0,0) to indicate

termination of block. Figure 4.5 shows an illustration of (skip, value) pairs encoded series.

4.2.4 Entropy Coding

The SystemC implementation has separate functions for Entropy coding of DC and AC

Components.

31

DC Components

The DC Components are differentially coded as (SIZE,VALUE) where VALUE corresponds to

the differential dc co-efficient component obtained from DPCM. The SIZE is obtained from a

predefined Table consisting mappings of binary sizes of dc coefficients and their values, which

we will abbreviate as size and value table. The SIZE value read from this Table is referenced

to Huffman Table for DC Component to obtain the Huffman Code for the SIZE.

Figure 4.6: Basic Structure of JPEG Header File Format

AC Components

The AC Components are coded as (S1,S2 pairs), where S1 represents (RunLength/SIZE)

and S2 represents VALUE. The RunLength is the length of consecutive zero values, SIZE

is the number of bits needed to code the next nonzero AC component value and VALUE

32

is the actual AC component. Referring to Huffman Table for AC Runs/Size Pairs and

size and value table, Huffman binary code is generated for each AC component.

The final huffman encoded bitstream of all the 8 X 8 blocks is entered as data into the

JPEG Header file format along with Quantization table, AC and DC Huffman Tables to

recreate the image with reduced file size. Figure 4.6 shows a basic structure of JPEG Header

file format where the Compressed data Section is where the encoded Huffman binary data is

entered.

4.3 Summary

In this chapter, we discussed about dataflow computation and its usage with resspect to

FPGAs in general along with terminologies. We also explained fundamental blocks of JPEG

Encoder, which will be implemented in forthcoming chapters.

33

CHAPTER 5

DEDICATED JPEG HARDWARE ACCELERATOR GENERATION AND

VALIDATION

This chapter describes the results of SystemC to RTL generation and post-synthesis functional

simulation of each processing element of JPEG Encoder. Also, a method to wrap each of the

processing element as IP and verify its functionality with ARM Cortex A-9 is discussed. For

the purpose of this study, we have used Zedboard, which is a low-cost development board for

the Xilinx Zynq-7000 all programmable SoC (AP SoC) from Digilent, Inc. For brevity, we

will take an example of 8 x 8 block of lena.bmp grayscale image with each pixel being 8-bit

in size.

5.1 Validation Design Flow

Figure 5.1 shows the validation design flow steps which we will be discussing in this section.

5.1.1 High-Level Synthesis using NEC’s CyberWorkBench

A shell script was written to automate the process of generation of RTL for each of the

processing elements. In Section 2.4 we have discussed in detail the HLS process in CWB Tool.

The SystemC code was first imported into NEC’s CyberWorkBench tool and was parsed

to compile for any errors in syntax. We need to set the target Basic Library (BLIB) and

Standard Functional Library (FLIB) for Zynq devices during project creation as parameters.

Clock period was always set to 50 MHz that is 20 ns. Automatic Scheduling was selected to

enable CWB to automatically time the C description at the scheduling phase. A Functional

Unit Constraints file needs to be generated which would provide the number and type of

FUs allocated for performing HLS. CWB provides FUs of different bit width sizes such as

Large (<=8 bits), middle (<=4 bits) and small (>4 bits). HLS tool will try to maximize

34

Figure 5.1: SystemC to Custom IP Package Design Validation Flow

parallelism by referring to the generated .FCNT constraints file and hence it is always a good

practice to provide as many FUs as possible for each category unless there is a restriction.

Finally, the design was synthesized and Verilog RTL was generated. A report file – Quality

of Results (QoR) was generated automatically which contained all the synthesis information

such as Latency Index, FPGA resources used, Target FPGA device, Critical Path etc. Below

is a shell script example for performing HLS on dct.cpp file:

• scpars -EE -info_base_name scpars "./dct.cpp"

• bdltran -EE -c2000 -s -Zresource_fcnt=GENERATE -Zresource_mcnt=GENERATE

-Zresource_mcnt=GENERATE -Zdup_reset=YES -tcio -EE

-lb /eda/cwb/cyber_561/LINUX/packages/zynq-1.BLIB

-lfl /eda/cwb/cyber_561/LINUX/packages/zynq-1.FLIB dct.IFF

• veriloggen -EE dct_E.IFF

35

5.1.2 Logical Synthesis and Simulation using Xilinx Vivado Suite

The Structural RTL code generated by CWB for each processing element was logically

synthesized using Xilinx Vivado Design Suite. The Vivado Integrated Design Environment

(IDE) synthesis is timing-driven and optimized for memory usage and performance. This tool

performs logical optimization of gate-level design and maps the netlist to Xilinx primitives.

Post Synthesis Utilization Report shows the resources such as memory, DSP Slice, LUTs, IO,

clocking etc. used by the design.

To verify the functional correctness of the design of each processing element of JPEG Encoder,

testbench were written in Verilog to perform Post Synthesis Functional Simulation using

Vivado. The waveform results were observed with the true values and correct behavior of

control signals. The .dcp file, which is the design checkpoint was generated for each processing

element. These checkpoints are used to manage design progress and analysis in a Non-Project

Flow Methodology.

5.1.3 Creating and Packaging Custom IP using Vivado IP Packager

The Vivado IP packager tool provides design reusability feature based upon IP-XACT

standard [36]. The Vivado IP catalog contains Xilinx IP, third party IP or custom-developed

IP thus giving a unified IP repository that provides framework for IP-centric design flow.

Xilinx has adopted to the standard of Advanced eXtensible Interface (AXI) protocol for

its IP cores and hence using the same in Custom IP would give the flexibility to connect

with another IP in the Vivado IP Catalog [36]. AXI is part of the ARM AMBA, a family

of micro-controller buses and Vivado supports AMBA 4.0 which is released in 2010. The

Custom IPs can be edited and re-packaged anytime using the IP packager.

The JPEG Encoder Processing Element Custom IPs were created using the ‘Create and

Package IP’ wizard available in the Vivado Integrated Design Environment (IDE) using

the RTL source files and AXI4-Lite Interface - which is a light-weight single transaction

36

memory-mapped interface. The interface allows data-widths up to 32-bits and 512 number

of registers. We first add the interface requirements and then use the Edit IP option in the

‘Create and Package IP’ wizard to open the top-level files generated to add an instance of the

required RTL source file. The input and output signals of each Processing element instance

needs to be port mapped and wired with the internal slave registers respectively. The clock

signal also needs to be port mapped with system clock ‘S_AXI_ACLK’.

5.1.4 Creating a System Level Design and Validating the IP using Xilinx SDK

To Validate that the Custom IP packaged works as expected, block design was created with

ZYNQ7 Processing System using the Vivado IP Integrator. Running Connection Automation

generates AXI Interconnect Block to connect Slave Processing Element Custom IP with Master

AXI port of ARM Processor and Processor System Reset Block connects asynchronous reset

signals with AXI Interconnect Block and peripheral Custom IP. Design Rule Check (DRC)

was performed on each block design to find out missing interconnects, clock frequency not set,

IP catalog not updated etc. After the block design was completed and DRC check was cleared,

output products were generated using the global synthesis option. These include source files

and appropriate constraints for all the IP, which is made available in the source pane [37]. A

top-level HDL file for the IP Integrator sub-system was generated by creating HDL Wrapper.

This top-level file was then ready for elaboration, synthesis and implementation.

After running the implementation stage, the generated hardware was exported to SDK

i.e. the necessary XML files needed for SDK to understand the IPs used in the design and

the memory mapping from the processor’s perspective. SDK creates necessary drivers and

board support package for the target hardware. An application project was created for each

PE individually to validate the functional correctness of the design and memory mappings.

Also, the results were compared with the post synthesis functional simulation results.

37

5.2 Validating JPEG Encoder Processing Elements

In June 2017, S2CBench (Synthesizable SystemC Benchmark Suite) v.2.0 introduced JPEG

Encoder Algorithm as one of the benchmarks for hardware acceleration. The Encoder

Algorithm comprises of processing elements: Discrete Cosine Transform, Quantization, Run-

Length Encoding and Huffman Encoding. The input data stream requires to be computed

by each processing element in a serial cascaded fashion and the output stream generated can

be stored back. We would be using this particular benchmark for our study.

In the existing benchmark, all the processing elements of JPEG Encoder are called

serially in the top module of the SystemC file to perform computation on the input stream.

In order to implement Partial Reconfiguration as one of the design methodologies, it was

important to perform high level synthesis on each of the processing element individually and

verify its functionality. Moreover, it was required to add few additional control signals to

initiate and terminate the computing of each processing element in order to have a close loop

control. Thus, after performing high level synthesis using NEC’s CyberWorkBench[1] tool,

the generated RTL code was logically synthesized using Xilinx Vivado and tested.

In the following remaining sub-sections of this chapter,Custom IP of JPEG Encoder

Processing Element is created using the method described previous section and is validated

with an example of one 8 X 8 block out of a 512 X 512 grayscale lena image.

5.2.1 Discrete Cosine Transform IP Block

The Discrete Cosine Transform (DCT) Block IP receives the raw image data as input and

produces 64 12-bit signed integer output values along with toggling a valid signal high. The

valid signal high indicates that the computation is completed and the results are ready

to sample. The reset signal is active low and a transition from low to high initiates the

computation. The DCT_Co-efficient Matrix used is as follows:

38



1.00000 0.98079 0.92388 0.83147 0.70711 0.55557 0.38268 0.19509

1.00000 0.83147 0.38268 −0.19509 −0.70711 −0.98079 −0.92388 −0.55557

1.00000 0.55557 −0.38268 −0.98079 −0.70711 0.19509 0.92388 0.83147

1.00000 0.19509 −0.92388 −0.55557 0.70711 0.83147 −0.38268 −0.98079

1.00000 −0.19509 −0.92388 0.55557 0.70711 −0.83147 −0.38268 0.98079

1.00000 −0.55557 −0.38268 0.98079 −0.70711 −0.19509 0.92388 −0.83147

1.00000 −0.83147 0.38268 0.19509 −0.70711 0.98079 −0.92388 0.55557

1.00000 −0.98079 0.92388 −0.83147 0.70711 −0.55557 0.38268 −0.19509



Raw_Image_Matrix=



0x9a 0x9a 0x9a 0x9a 0x9a 0x9d 0x9e 0x9c

0x9e 0x9e 0x9e 0x9e 0x9e 0x99 0x9b 0x9d

0x9b 0x9b 0x9b 0x9b 0x9b 0x98 0x9b 0x98

0xa0 0xa0 0xa0 0xa0 0xa0 0x97 0x9a 0x99

0x9e 0x9e 0x9e 0x9e 0x9e 0x9d 0x9f 0x9d

0xa7 0xa7 0xa7 0xa7 0xa7 0x9f 0x9f 0x9e

0xa0 0xa0 0xa0 0xa0 0xa0 0xa1 0xa4 0xa4

0xa6 0xa6 0xa6 0xa6 0xa6 0xa5 0xa6 0xa2



Figure 5.2a - 5.2e shows post logical synthesis functional simulation waveform results which are

analogous to the sdk terminal results obtained in Figure 5.3, confirming that the memory mapping of

the interface signals and functional equivalent of the Custom IP Block is accurate. DCT Standalone

system-level design can be seen in Figure 5.4.

39

(a) Raw Image Matrix values [0 to 26] for inputs to DCT PE along with clock and reset signals

(b) Raw Image Matrix values [27 to 55] for inputs to DCT PE

40

(c) Raw Image Matrix values [56 to 63] for inputs to DCT PE resulting in DCT Output Matrix
output values [0 to 20]

(d) DCT Output Matrix output values [21 to 47]

41

(e) DCT Output Matrix output values [48 to 63] along with valid signal toggling

Figure 5.2: (a)-(e)Post Logical Synthesis Functional Simulation Results for DCT RTL

Figure 5.3: Xilinx SDK Terminal displaying DCT Input and Output values

Figure 5.4: System Design and Validation of DCT IP using Vivado IP Integrator

42

DCT_Output_Matrix=



0x0f7 0x006 0xffd 0xffe 0x001 0x001 0xffb 0x003

0xfe5 0xfff 0x001 0xfff 0x001 0x000 0x000 0x000

0x007 0xff8 0x003 0x002 0xffd 0x001 0x002 0xffe

0x004 0xfff 0x000 0x000 0x000 0xfff 0x001 0xfff

0xfff 0xfff 0x000 0x002 0xffe 0x001 0x000 0x000

0xffa 0xffd 0x001 0x000 0xfff 0x000 0x000 0x000

0x003 0x004 0xffc 0x001 0xfff 0x000 0xfff 0x000

0xff6 0xff7 0x004 0x002 0xffd 0x001 0x001 0xffe



5.2.2 Quantization IP Block

The Quantization IP Block receives the dct output data as input and produces 64 12-bit signed

integer output values along with toggling a valid signal high. The valid signal high indicates that

the computation is completed and the results are ready to sample. The reset signal is active low and

a transition from low to high initiates the computation. Quantization is an important stage in which

data Encoder happens significantly because all the image data of high frequency to which humans

are insensitive are zeroed out with the help of Quantization_Matrix. The DCT_Output_Matrix is

divided by Quantization_Matrix and the result is rounded off to the nearest signed integer. In

our case, we have used a Uniform Quantization_Matrix as follows:

43



0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x8

0x8 0x8 0x8 0x8 0x8 0x8 0x8 0x20



Figure 5.5a - 5.5e shows post logical synthesis functional simulation waveform results which are

analogous to the sdk terminal results obtained in Figure 5.6, confirming that the memory mapping

of the interface signals and functional equivalent of the Custom IP Block is accurate. Quantization

Standalone system-level design can be seen in Figure 5.7.

Quantization_Output_Matrix=



0x1e 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0xffd 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0x0 0xfff 0x0 0x0 0x0 0x0 0x0 0x0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0xfff 0xfff 0x0 0x0 0x0 0x0 0x0 0x0


44

(a) DCT Output Matrix values[0 to 26] as inputs to Quantization PE along with clock & reset
signals

(b) DCT Output Matrix values[27 to 55] as inputs to Quantization PE

45

(c) DCT Output Matrix values[56 to 63] as inputs to Quantization PE resulting in Quantiza-
tion Output Matrix output values [0 to 20]

(d) Quantization Output Matrix output values [21 to 48]

46

(e) Quantization Output Matrix output values [49 to 63] along with valid signal toggling

Figure 5.5: (a)-(e)Post Logical Synthesis Functional Simulation Results for Quantization
RTL

Figure 5.6: Xilinx SDK Terminal displaying Quantization Input and Output values

Figure 5.7: System Design and Validation of Quantization IP using Vivado IP Integrator

47

5.2.3 Run-Length Encoding IP Block

The RLE IP Block receives the quantization output data as input and produces 12-bit signed integer

output of maximum vector length 128. The output vector has variable length depending upon

Quantization_Matrix_Output. The valid signal high indicates that the computation is completed

and the results are ready to sample. The reset signal is active low and a transition from low to high

initiates the computation. The RLE output stream always terminates with two zeros indicating end

of block. For the running case, the RLE_Length is 13 and RLE_Output_Vector is as follows

[
0x4, 0x0, 0xffd, 0x5, 0xfff, 0xf, 0x0, 0x4, 0xfff, 0xd, 0xfff, 0x0, 0x0

]

The dc component of the RLE Vector, which is the first element is the difference in the quantization

value between the current block and the previous block. This is done to avaoid saturation of the

image. Figure 5.8a - 5.8c shows post logical synthesis functional simulation waveform results which

are analogous to the sdk terminal results obtained in Figure 5.9, confirming that the memory

mapping of the interface signals and functional equivalent of the Custom IP Block is accurate. RLE

Standalone system-level design can be seen in Figure 5.10.

48

(a) Quantization Output Matrix output values [0 to 26] as inputs to RLE PE along with clock &
reset signals

(b) Quantization Output Matrix output values [27 to 55] as inputs to RLE PE

49

(c) Quantization Output Matrix output values [56 to 63] as inputs to RLE PE resulting in
RLE Output Vector of length 13 along with valid signal toggling

Figure 5.8: (a)-(c)Post Logical Synthesis Functional Simulation Results for RLE RTL

Figure 5.9: Xilinx SDK Terminal displaying RLE Input and Output values

Figure 5.10: System Design and Validation of RLE IP using Vivado IP Integrator

50

5.2.4 Huffman Encoding IP Block

The RLE_Output_Vector and RLE_Length are inputs to the Huffman Encoding IP Block. The

SystemC file has the main function which calls jpeg_DCcode and jpeg_ACcode functions which

create the Huffman encoded binary data depending upon the inputs and Lookup tables of code-

lengths, code and power-tables. In order to maximize the throughput of output data, instead of

declaring 512 boolean output ports, we have created 8 64-bit output ports in the top-level module.

However, since the AXI4 has a limitation on the bit width of 32-bits, we have split the MSB

and LSB for each output port of top module and hence there are 16 memory maps for output ports

between ARM Cortex Master AXI4-lite and Slave AXI4-lite Huffman Encoding IP Block. In the

software application, huffman_binary() is a function written to create the Huffman binary data

from 16 output values obtained. The IP also outputs the bit-length of the output data For the

running case, the Huffman_bitlength is 52 and Huffman_Output_Vector is as follows

[
0xfdfe5e44, 0x52ff6, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

]

Huffman_Encoded_BitStream=

0010001001111010011111111011111101101111111101001010

The last 4-digits in Huffman_Encoded_BitStream should always be 1010, which indicates

termination of the block. Figure 5.11a - 5.11e shows post logical synthesis functional simulation

waveform results which are analogous to the sdk terminal results obtained in Figure 5.12, confirming

that the memory mapping of the interface signals and functional equivalent of the Custom IP Block

is accurate.Huffman Encoding Standalone system-level design can be seen in Figure 5.13.

51

(a) RLE Output Vector with length 13 as input to the Huffman PE along with clock & reset signals

(b) The Huffman PE block has 128 inputs considering the maximum length of RLE Output Vector
and treating the remaining values outside the vector length as zero

52

(c) Since the maximum length is 13 in the running example case, inputs [55 to 84] are zero

(d) Since the maximum length is 13 in the running example case, inputs [85 to 114] are zero

53

(e) Huffman Encoded data is obtained along with valid signal toggline

Figure 5.11: (a)-(e)Post Logical Synthesis Functional Simulation Results for Huffman Encod-
ing RTL

Figure 5.12: Xilinx SDK Terminal displaying Huffman Input and Output values

Figure 5.13: System Design and Validation of Huffman IP using Vivado IP Integrator

54

5.3 Summary

In this chapter, we have explained using a running example of 8 X 8 block, the S2CBench v.2.0 -

JPEG Encoder Hardware Accelerators. The Validation Design Flow was also discussed which helps

to identify early bugs in terms of functional and timing issues before integrating these accelerators

into much more complex system designs.

55

CHAPTER 6

DESIGN METHODOLOGIES FOR DATAFLOW COMPUTATION

In this Chapter, we propose partial reconfiguration based design methodology for dataflow com-

putation which consists of a novel static architecture using on-chip internal BRAM memory for

storing intermediate data results when time multiplexing several kernels of dataflow abbreviated as

PRBRAM . We also claim that the proposed architecture is area efficient compared to implementing

the design spatially on FPGA as fewer resources are required. Also, this implementation is runtime

and latency efficient compared to implementing partial reconfiguration design for data flow com-

putation using external off-chip DDR memory to store intermediate data results abbreviated as

PRDDR.

Thus we would be exploring the spatial and partial reconfiguration based design methodologies

- PRBRAM & PRDDR for dataflow computation processes and discuss the results obtained when

implementing on FPGAs. The dataflow computation process in our study as previously discussed is

JPEG Encoder and we would be using the custom IPs that were validated using the design flow

discussed in previous chapter for all the design explorations discussed in this chapter. We would be

analyzing our study with the help of three testcase grayscale images of 512 X 512 pixels: lena.bmp,

peppers.bmp and goldhill.bmp. We will also explain how the proposed architecture can be scaled

for any dataflow computation process in general.

6.1 Overview of the Proposed Design Methodology

Figure 6.1 shows the overall design flow using proposed architecture and as it can be observed there

are 4 main Stages: SystemC/BDL Description of the algorithm to RTL Generation, Validation

and Creation of Custom IPs, TCL based automated floorplanning using Xilinx Vivado and finally

deploying the binaries on Zynq 7000 AP SoC Device Part: XC7Z020.

56

Figure 6.1: Proposed Design Methodology

6.1.1 Stage 1: SystemC/BDL Algorithm Description to RTL Generation

Using any commercial HLS Tool a behavioral description of a dataflow computation process in

C/C++/SystemC can be converted to RTL files. When using a partial reconfiguration based design

methodology, it is important to take into account the uniformity in the number and data-widths of

inputs & outputs across all the processing elements. This is because when reading checkpoints of

reconfigurable modules into the static design’s reconfigurable partition pblock, the netlist processing

would throw floating I/O error. Also, each of the dataflow processing elements are required to have

control interface signals such as done, reset and start in order to have close feedback loop on the

57

ARM Processor Side (PS), when context switching the reconfigurable modules. Thus, given any

dataflow compute system ensuring these keypoints is critical to the performance of the proposed

system.

6.1.2 Stage 2: Validation and Creation of Custom IPs

Validation and Creation of custom IPs using the design flow described in Figure 5.1 in Section 5.1

helps to write the software code for the IP and ensure correct functional behavior beforehand

integrating into complex design flow. Also, post synthesis implementation on target specific board

can ensure any setup and hold time violations which would require a revision from the HLS Side

or a reduction in the overall frequency of the programmable logic system. For the purpose of our

studies in this research, we have used NEC’s CyberWorkBench HLS Tool and Xilinx Vivado.

6.1.3 Stage 3: TCL Automated Floorplan for PR Designs

After ensuring the functional correctness of individual processing element blocks, the synthesized

design checkpoints along with the proposed design architecture’s static logic design checkpoint (as

seen in the bottom half of the Figure 6.1) are used to generate the partial and full bitstreams using

the Non-Project TCL Flow in Vivado. The approach used in partial reconfiguration based design

flow is also known as bottom up synthesis where-in the RMs are synthesized separately and when

running synthesis on the overall design, these are treated as black boxes and is not optimized for

any further logical reduction in FPGA resources. Since, there could be any number of stages in

a dataflow process thus increasing the count of RMs, hence automated TCL script is written as

shown in Algorithm 2 to handle the back-end FPGA design flow of placement optimization, routing

and generation of binaries. The Algorithm 2 requires user inputs of pblock region or RP dimensions

which are stored as fplan.xdc file along with design checkpoint files for all the RMs abbreviated as

‘PEk.dcp’ and static logic design checkpoint abbreviated as ‘StaticBRAM .dcp’. The very first RM

needs to be loaded into RP (lines 1 to 5). The RP is originally a black box whose area needs to be

assigned using fplan.xdc (line 3). Now that the pblock is defined we can actually run a loop for all

the remaining RMs. After place and route is done for each RMs with the static logic using the loop

58

Algorithm 2 TCL Automated Floorplan for Proposed Design Methodology: Pseudo Code

Input: Staticbram.dcp, PE0.dcp, PE1.dcp, PE2.dcp,PEk.dcp
Output: Staticbram.bit, Staticblank.bit, PE0.bin, PE1.bin, PE2.bin,PEk.bin

Begin:
1: open checkpoint Staticbram.dcp
2: read checkpoint -cell blackbox PE1.dcp
3: set properties & select pblock region -fplan.xdc
4: opt design; place design; route design;
5: write checkpoint PE0.dcp

Loop Process
6: for i = 1 to k + 1 do
7: update design to black box
8: lock design & write checkpoint Staticbram.dcp
9: read checkpoint -cell blackbox PEi.dcp

10: opt design; place design; route design;
11: write checkpoint PEi.dcp
12: end for
13: open checkpoint Staticbram.dcp
14: update design -buffer ports -cell black box
15: opt design; place design; route design;
16: write checkpoint Staticblank.dcp
17: pr verify -initial PE0.dcp -additional { PE1.dcp ... PEk.dcp Staticblank.dcp }
18: write bitsream Staticblank.bit

Loop Process
19: for j = 0 to k + 1 do
20: open checkpoint PEj.dcp
21: write bitsream PEj.bit & write cfgmem -format -BIN PEj.bin
22: end for

End:

(line 6), the partial binaries are are generated as .bin files (line 19) and a blanking configuration

also called as staticblank.bit which is a full bitstream to be loaded upon device bootup is generated

(line 18). This configuration has LUTs tied to constants in order to ensure the outputs of the RP

are not floating. Before generating binaries, it is important to verify that the static implementation,

including interfaces with RP is consistent across all the configurations or RMs and hence (line 17)

verification for all the generated DCPs post implementation stage needs to be done.

59

Table 6.1: Register Description in Custom IPs

ARM-FPGA Control Bus IP
Abbreviated IP Adress Map Description

reg0 Base Address + 1 FPGA BRAM Controller Read DONE
reg1 Base Address + 2 FPGA BRAM Controller Write DONE
reg2 Base Address + 3 BRAM MUX Select: 0-ARM, 1-FPGA
reg3 Base Address + 4 FPGA BRAM Controller Read START
reg4 Base Address + 5 FPGA BRAM Controller Write START
reg5 Base Address + 6 Reconfigurable Partition Compute DONE
reg6 Base Address + 7 Reconfigurable Partition Compute START

ARM Side BRAM Controller IP
reg7 Base Address + 0 Write Enable
reg8 Base Address + 1 Address
reg9 Base Address + 2 Data In
reg10 Base Address + 3 Data Out

6.1.4 Stage 4: Deploying the Binaries on Zynq-7000

After generating the partial binaries for each reconfigurable module, a BOOT.bin is created

using Xilinx SDK which contains the first stage image for Programmable Logic (PL) side as well

as the user application C/C++ software to talk to the hardware on PL Side and is stored in SD

card along with all the .bin files. The Zynq-7000 FPGA follows a redefined boot up process upon

powering the device. After power-on reset, the Boot ROM determines the external memory interface

or boot mode (SD flash memory) and the encryption status (non-secure). The Boot ROM uses the

DevC’s DMA to load the First Stage Boot Loader (FSBL) into on-chip RAM (OCM).The Boot

ROM shuts down and releases CPU control to the FSBL which in turn configures the PL with the

full Staticblank.bit via the Processor Configuration Access Port (PCAP). The device is now fully

configured and operational for the standalone user software application. The partial bitstreams are

loaded into DDR memory from SD card to maximize throughput during configuration. At this

point, the application can use the partial bitstreams at any time to modify the pre-defined PL

regions while the rest of the FPGA remains fully active and uninterrupted.

Table 6.1 shows the register mappings for ARM-FPGA Control Bus and ARM Side BRAM

Controller IPs with respect to the Base Address for each of them. There is also a seperated

60

Algorithm 3 User Application Software Flow for Proposed Architecture: Pseudo Code

Input: Raw Data-in[0],in[1],in[2],..in[j], RM0.bin, RM1.bin,...RMk.bin, BOOT.bin
Output: Final Output-out[0],out[1],out[2].... out[j]

Begin:
1: Load RM0, RM1,...RMk & in[0],in[1],in[2],..in[j] from SD card to DDR3
2: for m = 0 to j do
3: reg2=0; reg7=1; reg8=m; reg9=in[m]; {ARM BRAM Write with Raw Inputs}
4: end for
5: for i = 0 to k + 1 do
6: Configure RP with RMi through PCAP from DDR3
7: reg2=1; reg3=1;
8: while (!(reg0==1)) do
9: {Wait till BRAM Memory is being Read by FPGA BRAM Controller}

10: end while
11: reg6=1;
12: while (!(reg5==1)) do
13: {Wait till the Computation is completed by the RMi}
14: end while
15: reg4=1;
16: while (!(reg1==1)) do
17: {Wait till BRAM Memory is being Written by FPGA BRAM Controller}
18: end while
19: reg4=0; reg6=0; reg3=0;
20: end for
21: for m = 0 to j do
22: reg2=0; reg7 =0; reg8=m; out[m]=reg10; {ARM BRAM Read for Processed Outputs}
23: end for

End:

column with abbreviated names for each register mappings in order to make the Algorithm 3 more

understandable. This pseudo-code explains the entire flow of the user application that is suggested

to work with proposed architecture as discussed. In Algorithm 3, line 2 represents a loop to load

the BRAM with raw data from DDR3 memory using ARM Processor, line 5 represents an outer

loop whose count depends upon the number of RMs in a dataflow process and line 21 represents a

loop to read BRAM results into DDR3 memory using ARM Processor. The outer main loop (in

line 5) consists of internal three while loops (lines 8, 12, 16) which waits for the respective flags to

61

be toggled high before proceeding to next statement. Before these loops run, it is important to load

the RP with RM (line 6).

6.2 Spatial Design Implementation : JPEG Encoder

In order to prove the area utilization efficacy of the proposed design architecture, the dataflow

computation process was implemented spatially first on FPGA and its post placement utilization

area on FPGA as well as hardware running time was experimentally obtained. When using JPEG

Encoder as dataflow computation process, it is important to measure the quality of the compressed

image results and thus Structural Similarity Index (SSIM Index) was used as an image quality

metric to validate the filtered image.

6.2.1 System Implementation and Setup

Using the Vivado IP Integrator, we connected the custom IPs of JPEG Encoder using AXI4

interconnect to the Processing System (PS) side of the Zynq FPGA. Thus, with this design approach

all the processing elements are spatially allocated on the FPGA fabric increasing the overall area

utilization. However, since all the processing elements are available without the need to reconfigure,

there should be an improvement in runtime performance because the time required to transfer and

load the partial bitstream is eliminated. There is also an AXI Timer IP from Xilinx which helps to

calculate the number of clock cycles utilized and hence estimate the computation time, which was

also added to system to measure time performances. The clock frequency for the FPGA Fabric

was selected to be 50 MHz. We also utilized SD Card and DDR memory as additional hardware

resources connected to the external interfaces on the Processing Side (PS) of the Zynq FPGA for

storing data. Figure 6.2 shows the overall system using Vivado IP Integrator.

The system design is validated for any missing interconnects and output products are generated

using global approach as well as top level wrapper is created. The Post-Placement utilization report

as shown in Table 6.2 was obtained after synthesizing and implementing the design in Vivado. This

utilization report was used to compare with the utilization reports of partial reconfiguration designs.

62

Figure 6.2: Spatial System Design view in Vivado IP Integrator

Table 6.2: Post-Placement Utilization Report

Sr.No SiteType Used Available Utilization
1 Slice LUTs 14997 53200 28.19
2 Slice Registers 24759 106400 23.27
3 F7 Muxes 2276 26600 8.56
4 F8 Muxes 1024 13300 7.70
5 Block RAM Tile 2 140 1.43
6 RAMB18 4 280 1.43

63

(a)

(b)

Figure 6.3: (a)-(b)Floorplan View of Spatial Implementation of JPEG Encoder on Zynq
XC7Z020

Figure 6.3 shows the floorplan view of spatial design implementation post place and route stage

(Implementation Stage in Vivado).

6.2.2 Experimental Results

In order to test that all the corner cases are covered by the custom IPs generated through SystemC,

we have tested the spatial design implementation with three grayscale images of 512 X 512 pixels:

lena.bmp, peppers.bmp and goldhill.bmp. Table 6.3 shows the spatial design implementation results

of compression ratios achieved, SSIM Values, FPGA Runtime and Huffman Bitlength for each of

the testcase images. A uniform Quantization matrix was used in each case as discussed in previous

chapter section 5.2.2. The FPGA runtime varies linearly with Huffman bitlength as expected which

is observed in the table.

64

Table 6.3: JPEG Encoder Results with Spatial Design Implementation

Sr.No Filename Original Compressed Encoder FPGA Exe SSIM Huffman
Size Size Ratio Time Value bitlength

1 Lena.bmp 258 KB 36 KB 7.17:1 1.815 sec 0.9383 283268
2 Peppers.bmp 258 KB 46 KB 5.60:1 1.842 sec 0.9208 357491
3 Goldhill.bmp 258 KB 54 KB 4.78:1 1.877 sec 0.9446 427483

(a) (b)

(c)

Figure 6.4: SSIM values and graphs of (a) lena (b) peppers (c) goldhill

Figure 6.4 shows SSIM maps and values for the three test case images considered for study. The

SSIM metric combines local image structure, luminance, and contrast into a single local quality

score. In this metric, structures are patterns of pixel intensities, especially among neighboring

65

pixels, after normalizing for luminance and contrast. Because the human visual system is good at

perceiving structure, the SSIM quality metric agrees more closely with the subjective quality score.

Because structural similarity is computed locally, ‘ssim’ can generate a map of quality over the

image.

The SSIM metric value closer to 1 shows highest metric of image quality between the original

image and distorted (compressed) image. The difference with respect to other techniques such as

MSE or PSNR is that these approaches estimate absolute errors whereas SSIM is a perception-based

model that considers image degradation as perceived change in structural information, while also

incorporating both luminance masking and contrast masking terms. Luminance masking is a

phenomenon whereby image distortions (in this context) tend to be less visible in bright regions,

while contrast masking is a phenomenon whereby distortions become less visible where there is

significant activity or ”texture” in the image.

6.3 Implementation using DDR3 Memory [PRDDR]: JPEG Encoder

In order to prove that the proposed design architecture is runtime and latency efficient compared to

traditional approach of using DDR memory for storing large intermediate data results in a partial

reconfiguration based design methodology for dataflow computation process, we implemented the

JPEG Encoder, as dataflow computation process, on FPGA using this traditional approach, which

we would like to abbreviate as PRDDR Design Methodology.

6.3.1 System Implementation and Setup

The ZedBoard, which is used as a hardware platform for our research study, includes two Micron

DDR3 128 Megabit x 16 memory components creating a 32-bit interface, totaling 512 MB. The

DDR3 is connected to the hard memory controller in the Processor Subsystem (PS). The DDR

memory controller is configured for 32-bit wide accesses to a 512 MB address space. The DDR3

uses 1.5V SSTL-compatible inputs and termination is utilized on the ZedBoard. The Zynq-7000

AP SoC and DDR3 ICs have been placed close together keeping traces short and matched. In the

66

Figure 6.5: PRDDR design methodology Block Diagram for dataflow computation

user application software, this DDR3 memory is referenced using pointers to the address mappings

provided in the systems.hdf file generated when the hardware is exported from Xilinx Vivado to

SDK.

Figure 6.5 shows the PRDDR design methodology block diagram and the hardware resources

required to implement. The Programmable Logic Block - Zynq FPGA Fabric shows the DPR AXI IP

which is Dynamic Partial Reconfiguration custom IP developed containing only the input-output

instance of the Reconfigurable Partition (RP) with AXI4-Lite interconnect written in verilog and

packaged using IP Packager in Vivado. The input-output instance depends upon the maximum

number and data-widths amongst processing elements of dataflow computation process as studied

in previous section of this chapter. This basically synthesizes as a black box since there is no actual

logic. This black box is the cell which we would be referring henceforth as pblock Reconfiguration

Partition or pblock RP, which would be reconfigured partially at runtime and would be used

in TCL based automated floorplanning to allocate area on fabric and generate partial binary files

of each processing elements. We have also used AXI Timer IP provided in the Xilinx IP catalog,

67

Table 6.4: Post Placement Utilization Report: PRDDR Design Methodology

Sr.No SiteType Astatic Adynamic Available Utilization (Atotal)
1 LUT 4119 6692 53200 20.32 %
2 LUTRAM 68 72 17400 0.80 %
3 FF 6018 9432 106400 14.52 %
4 Block RAM Tile - 3 140 2.14 %

which would be used for measuring time performances. AXI-PCAP (Processor Access Control

Port) Bridge is used to configure partial and full bitstreams, from the ARM Cortex Side during

device bootup stage and runtime, to program the FPGA fabric. The user application loads the

partial bitstreams into DDR memory upon start-up. This was done to maximize the configuration

throughput over the PCAP interface and hence speed up the configuration time and take advantage

of caching. The full, partial bitstreams along with user application to run on ARM Processor are

stored in a non-volatile SD card memory. The BOOT.bin contains the user software application

and first stage Programmanble Logic (PL) side full bitstream.

Figure 6.6 shows the PRDDR design methodology systems-view in Xilinx Vivado IP Integrator

for JPEG Encoder dataflow process. Since, in the JPEG Encoder the maximum number of input

& outputs are contained in the RLE Processing element block and maximum datawidths of input

& output is contained in the Huffman Encoding Processing element block, we have designed a

specific IP: REV2_JPEG_IP_DESIGN_0 to account for the pblock RP as seen in the figure. The system

was synthesized using Vivado Synthesis Tool and Staticddr.dcp was obtained. All the Processing

Elements of JPEG Encoder were synthesized seperately and their .dcp files were generated. The

processing elements of JPEG Encoder would be referred as Reconfigurable Modules (RM) in the

partial reconfiguration based design methodology. The Staticddr.dcp contains a blackbox instance

to load Reconfigurable Modules and perform place & route the design to generate partial and full

bitstreams using the TCL Automated Floorplan as discussed in Algorithm 2.

Atotal =
∑
{Astatic + Adynamic{max(RM0, RM1, RM2,RMk)}} (6.1)

Table 6.4 shows the utilization area report and contains fpga resources utilized by static and

dynamic portion in seperate columns. The total fpga area utilization was calculated using the

68

Figure 6.6: PRDDR system view in Vivado IP Integrator

equation 6.1 and is shown in % form in the last column in Table 6.4. The value of k is 4 in the

case of JPEG Encoder and Reconfigurable Modules (RM) are DCT, Quantization, Run-Length

Encoding and Huffman Encoding. Thus, the maximum count of each fpga resource required by

RMs is accounted in the table.

6.3.2 Experimental Results

Figures 6.7 and 6.8 show the floorplan view post placement and routing before generating partial

and full bitstreams. After generating the .bin files for each reconfigurable modules of JPEG Encoder

and the Staticblank.bit, the SD Card BOOT.bin image was created using Xilinx SDK. The clock on

FPGA Programmable Logic fabric was selected to be 50 MHz. The user application software had a

controlled loop to partially reconfigure each reconfigurable module after the previous results were

stored in DDR memory. The testcase images were same as previously used in the spatial design

experimentation viz; lena.bmp, peppers.bmp and goldhill.bmp. Since these are 512 X 512 pixel

grayscale images and the reconfigurable modules process on each 8 X 8 pixels every iteration time,

there are 4096 blocks of 8 X 8 pixels in the entire image. Experiments were performed by varying

the number of times partial reconfiguration occurs over these 4096 blocks thereby generating varying

69

(a) (b)

Figure 6.7: Design Checkpoints after performing Place & Route (a) Staticddr.dcp (b)
DCTddr.dcp for RPBitsize = 1306.272 KB case

(a) (b) (c)

Figure 6.8: Design Checkpoints after performing Place & Route (a) Quantizationddr.dcp (b)
RLEddr.dcp (c) Huffmanddr.dcp for RPBitsize = 1306.272 KB case

70

numbers in runtime and latency. Also, additional experiments were performed by varying the area

of pblock and observing how the runtime is affected as shown in Tables 6.5 , 6.6 and 6.7.

Table 6.5: JPEG Encoder Results for lena.bmp with PRDDR Design Implementation

RPBitsize = 3416.088 KB RPBitsize = 1306.272 KB
Sr.No Npr Tlatency Truntime Tlatency Truntime Samples

(s) (s) (s) (s)
1 4 5.157 5.157 3.75413 3.75413 4096
2 8 3.418 6.836 2.19865 4.39731 2048
3 16 2.549 10.194 1.42036 5.68142 1024
4 32 2.114 16.911 1.03122 8.24978 512
5 64 1.897 30.344 0.83664 13.38619 256
6 128 1.788 57.211 0.73934 23.65878 128
7 256 1.733 110.937 0.69071 44.2053 64

Table 6.6: JPEG Encoder Results for goldhill.bmp with PRDDR Design Implementation

RPBitsize = 3416.088 KB RPBitsize = 1306.272 KB
Sr.No Npr Tlatency Truntime Tlatency Truntime Samples

(s) (s) (s) (s)
1 4 5.221 5.221 3.82025 3.82025 4096
2 8 3.45 6.9 2.23123 4.46246 2048
3 16 2.56475 10.259 1.43666 5.74662 1024
4 32 2.12188 16.975 1.03937 8.31492 512
5 64 1.90056 30.409 0.84071 13.4514 256
6 128 1.78984 57.275 0.74137 23.72387 128
7 256 1.73448 111.007 0.69173 44.27053 64

Table 6.7: JPEG Encoder Results for peppers.bmp with PRDDR Design Implementation

RPBitsize = 3416.088 KB RPBitsize = 1306.272 KB
Sr.No Npr Tlatency Truntime Tlatency Truntime Samples

(s) (s) (s) (s)
1 4 5.185 5.185 3.78413 3.78413 4096
2 8 3.4325 6.865 2.21312 4.42623 2048
3 16 2.55575 10.223 1.42758 5.71033 1024
4 32 2.1175 16.94 1.03484 8.27872 512
5 64 1.89831 30.373 0.83845 13.41515 256
6 128 1.78875 57.24 0.74024 23.68778 128
7 256 1.73397 110.974 0.69116 44.23426 64

71

It can be observed looking at Figures 6.9 and 6.10 that runtime and latency have inverse relation-

ship, latency and throughput have linear relationship, when number of times partial reconfiguration

occurs is varied in each case. Thus, if a certain application demands greater throughput, then

latency is higher but the overall running time is less due to fewer times the reconfiguration modules

are configured to the reconfigurable partition for computation. On the other hand if latency required

for an application is to be the least, then every iteration time units there are some samples available

at the output but however the running time takes a hit because now smaller portions of data blocks

are being processed and hence more number of dynamic partial reconfiguration is required. Hence,

there is a trade-off curve depending upon the requirements. However, fewer fpga resources are

required to implement PRDDR design methodology compared to spatial design implementation as

can be observed by comparing Tables 6.4 and 6.2.

We also noted that the size of the partial bitstream of the reconfiguration modules is a critical

parameter which affects the running time performance. It is intuitive to think about it that larger

the size of binary, greater is the time required to load the partial bitstream through PCAP port to

Configuration Memory on PL-Side. The size of partial bitstream corresponding to reconfigurable

modules depends upon the area of pblock. Hence, we carried out experiments to observe the

variation in latencies and running time by altering the pblock area.

72

Figure 6.9: PRDDR results for lena.bmp testcase with RPBitsize = 3416.088 KBytes

Figure 6.10: PRDDR results for lena.bmp testcase with RPBitsize = 1306.272 KBytes

73

6.4 Proposed Architecture PRBRAM Implementation: JPEG Encoder

Finally in this section, we will be implementing the running dataflow computation process - JPEG

Encoder, using the Proposed Design Architecture abbreviated as PRBRAM which is described in

detail in Section 6.1 and discuss the experimental results obtained. As mentioned in Section 6.3.2,

the area of pblock impacts the partial bitstream size, which in turn affects the overall runnning time

and this analysis will be covered in this section with the help of three different pblock areas. We also

propose in this section a mathematical prediction model which helps to estimate the running time

given any dataflow computation process parameters without the need to compute experimentally.

6.4.1 System Implementation and Setup

Figure 6.11: Proposed System Model

Figure 6.11 shows the overall proposed PRBRAM design architecture which is discussed in great

detail in section 6.1. As we have discussed earlier that, we have used Zedboard for performing all

74

Table 6.8: Post Placement Utilization Report: PRBRAM Design Methodology

Sr.No SiteType Astatic Adynamic Available Utilization (Atotal)
1 LUT 5681 6692 53200 23.25 %
2 LUTRAM 68 72 17400 0.80 %
3 FF 12967 9432 106400 21.05 %
4 Block RAM Tile 128 3 140 93.57 %

the experiments, the board has Zynq -7000 AP SoC FPGA from Xilinx with device part number :

XC7Z020. This device contains 140 blocks of Block RAM memory where each block comprises of

36Kb in size and the total sums upto 4.9 Mb. We are utilizing 91.42 % of Block RAM memory for

the purpose of storing intermediate data results which would be the inputs to the next reconfigurable

module. The total memory requirements for implementing JPEG Encoder is 1048.576 KBytes,

which is more than the available Block RAM. Thus, we divided the image dataset of 4096 8 X 8

pixel blocks into two sets and reload the BRAM memory after the computation is done for the

first half of image. Thus, we are restricted to the minimum number of partial reconfigurations in

this case to 8. The XC7Z020 device part on Zedboard has the maximum Block RAM available

considering Artix-7 based Zynq 7000 AP SoC Chip. In Kintex-7 based Zynq 7000, there are huge

amounts of Block RAM available ranging from 265 -755 Blocks of 36 Kb each.

6.4.2 Experimental Results

Figures 6.12 and 6.13 shows the post place & route design checkpoints for RPBitsize = 1306.272

KB & Figures 6.14 and 6.15 shows the same for RPBitsize = 786.664 KB. Table 6.8 shows the

utilization report for RPBitsize = 1306.272 KB case. The .bin partial files for reconfiguration modules

and staticblank.bit full bitstream are generated using TCL Automated Floorplan as discussed in

Algorithm 2. BOOT.bin was created to start automatic device configuration for both PS & PL

after device power-up. The working of the proposed architecture is explained in great detail in

Section 6.1.4. The ARM Processor requires to write the test image data twice as described earlier

in this section due to limitations of BRAM memory available in XC7Z020 however the overall user

software architecture remains intact as explained in Algorithm 3 .

75

(a) (b)

Figure 6.12: Design Checkpoints after performing Place & Route (a) Staticbram.dcp (b)
DCTbram.dcp for RPBitsize = 1306.272 KB case

(a) (b) (c)

Figure 6.13: Design Checkpoints after performing Place & Route (a) Quantizationbram.dcp
(b) RLEbram.dcp (c) Huffmanbram.dcp for RPBitsize = 1306.272 KB case

76

(a) (b)

Figure 6.14: Design Checkpoints after performing Place & Route (a) Staticbram.dcp (b)
DCTbram.dcp for RPBitsize = 786.664 KB case

(a) (b) (c)

Figure 6.15: Design Checkpoints after performing Place & Route (a) Quantizationbram.dcp
(b) RLEbram.dcp (c) Huffmanbram.dcp for RPBitsize = 786.664 KB case

77

Figure 6.16: PRBRAM results for lena.bmp testcase with RPBitsize = 1598.896 KBytes

Experimental results of testcase lena image are tabulated in Table 6.9 for three different pblock

sizes and graph is plotted in Figure 6.16 for RPBitsize = 1598.896 KBytes to understand the

relationship between latency and runtime as well as latency and throughput for varying number

of partial reconfigurations. A similar observation can be made looking at the graph as in the

case of PRDDR implementation, that the runtime and latency are inversely related & latency and

throughput are linearly related. Table 6.10 shows additional experimental results with RPBitsize =

1598.896 KBytes for testimages goldhill and peppers.

It can be observed from Table 6.9 that reducing to the most optimized size of pblock improves

the runtime performance. Figure 6.17 shows the improvement in running time when the size of

partial bitstream, RPBitsize is 786.664 KB. It can also be observed that the running time improves

significantly in the case when number of reconfigurations is high for instance in Figure 6.17d, which

is 512. Table 6.11 shows the reconfiguration time required for each RMs in each of the three cases

of different partial bitsize. FPGA hardware running time can be estimated using equation 6.2.

78

Table 6.9: JPEG Encoder Results for lena.bmp with PRDDR Design Implementation

RPBitsize = 1598.896 KB RPBitsize = 1306.272 KB RPBitsize = 786.664 KB
Npr Tlatency Truntime Tlatency Truntime Tlatency Truntime Samples

(s) (s) (s) (s) (s) (s)
8 2.285 4.57 1.93353 3.86706 1.65142 3.30284 2048
16 1.5375 6.15 1.28779 5.15115 1.0191 4.07638 1024
32 1.16313 9.305 0.96495 7.71959 0.7029 5.62322 512
64 0.97444 15.591 0.80353 12.85653 0.5448 8.71677 256
128 0.88022 28.167 0.72282 23.13036 0.46575 14.9039 128
256 0.83309 53.318 0.68247 43.67791 0.42622 27.27837 64
512 0.80952 103.619 0.64936 83.11808 0.40646 52.02699 32

Table 6.10: JPEG Encoder Results for goldhill.bmp and peppers.bmp with PRBRAM Design
Implementation

RPBitsize = 1598.896 KB
goldhill.bmp peppers.bmp

Sr.No Npr Tlatency Tfpgaexetime Tlatency Tfpgaexetime Toverhead Samples
(sec) (sec) (sec) (sec) (sec)

1 8 2.3155 4.631 2.305 4.610 1.639 2048
2 16 1.551 6.204 1.545 6.183 1.657 1024
3 32 1.168 9.347 1.165 9.325 1.658 512
4 64 0.977 15.634 0.975 15.613 1.658 256
5 128 0.881 28.210 0.880 28.190 1.657 128
6 256 0.834 53.361 0.833 53.340 1.657 64
7 512 0.809 103.662 0.809 103.640 1.657 32

Table 6.11: RTBRAM values for varying RPBRAM

Sr. No RPBitsize Reconfiguration Time (RTBRAM)
1 1598.896 KB 0.1975 s
2 1306.272 KB 0.1605 s
3 786.664 KB 0.0966 s

79

(a) (b)

(c) (d)

Figure 6.17: Graph Plots of FPGA Running Time vs Reconfigurable Partition Bitstream
sizes of lena test image for varying number of partial reconfigurations (a) 8 (b) 32 (c) 128 (d)
512 [Case 1:RPBitsize = 1598.896 KB, Case 2: RPBitsize = 1306.272 KB, Case 3: RPBitsize =
786.664 KB]

Truntime = {Tjpeg−computing + Toverhead + Tbin ∗Nbin} (6.2)

Referring to Table 6.9 and Equation 6.2, we can obtain the values of Tjpeg−computing, which is

the actual computing time it takes for for processing all the inputs of each reconfigurable module;

Tbin is the time it takes to partially configure the bitstream from DDR memory through PCAP

port to configure programmable logic in reconfigurable partition; Toverhead is the time it takes to

load the partial binaries and raw image data from sd card to DDR memory.

The values Tbin = 0.1975 s, Tjpeg−computing = 2.994 s and Toverhead = 1.675 s are obtained

experimentally. Using equation 6.2, we predicted the values of runtime as seen in Figure 6.18.

80

Figure 6.18: Experimental vs Predicted Results for RPBitsize = 1598.896 KB for varying
cases of number of reconfigurations (1) 32 (2) 64 (3) 128 (4) 256 (5) 512

6.5 Results and Analysis of Design Implementations : Comparative Study

6.5.1 Area vs Runtime Comparison

Figure 6.19 is obtained from data as seen in Tables 6.2, 6.4 and 6.8. It can be observed that PRBRAM

design method requires slightly more area compared to PRDDR due addition of ARM-FPGA Control

Bus, ARM-Side BRAM Control, MUX and Block RAM Memory modules but however with respect

to spatial design implementation, the utilization is significantly low, which is as expected.

6.5.2 Runtime and Latency Comparison

In order to prove improvement in runtime and latency with PRBRAM compared to PRDDR approach,

we ran an experiment with equal RPBitsize = 1306.272 KB for both implementations. Thus, this

ensures that the time it takes to configure the partial bitstream is constant in both cases unlike

results shown in Figure 6.20. The average improvement in runtime is 0.529363 s over varying

range of reconfigurations. There is also improvement in latency especially when the number of

reconfigurations is less. It can be observed that the runtime and latencies vary linearly in Figure

6.21 compared to 6.20, which is because the Nbin * Tbin in Equation 6.2 is constant in former case.

81

(a) (b)

Figure 6.19: Area vs Runtime Plots

Figure 6.20: Runtime and Latency Plots with RPBitsize = 3416.088 KB for PRDDR and
1598.896 KB for PRBRAM

(a) (b)

Figure 6.21: Runtime and Latency Plots with RPBitsize = 1306.272 KB for both PRDDR and
PRBRAM

82

6.6 Summary

In this chapter, we discussed in great detail about the proposed design methodology along with

design implementation results with spatial & partial reconfiguration based architectures. We also

examined the improvements achieved in runtime and latency with the proposed architecture.

83

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis we have proposed and implemented the novel design methodology using partial

reconfiguration as described in Section 6.1 with the help of JPEG Encoder, a S2CBenchmark in

v.2.0. We have also described TCL based automated floorplaning and user software application

psuedo code as explained in Algorithms 2 & 3 respectively. We have also verified with three testcase

images-lena,peppers and goldhill for all the spatial and partial reconfiguration based implementations

discussed in Chapter 6.

We have seen that the implementation with the proposed Architecture PRBRAM is area efficient

compared to spatial implementation with LUT area savings upto 21.20 % and FF area savings upto

30.41 % for 1598.896 KB as partial bitstream size. These %’s are including the additional resources

utilized by proposed static architecture. We also have seen an improvement in average hardware

running of 0.529363s against PRDDR.

7.2 Future work

• Developing sophisticated Partial Reconfiguration Controllers to minimize the time required for

reconfiguring.

• Exploring enhanced parallelism in hardware accelerators utilizing saved area due to PR Imple-

mentation against spatial implementation of those hardware accelerators.

• In extremely data-intensive applications, exploring performance impact on proposed architecture

when BRAM along with distributed RAM is utilized to cope with limitations of on-chip memory in

FPGA fabric.

84

REFERENCES

[1] B. Darrow, “Why microsoft is putting these chips at the center of its cloud,”
http://fortune.com/2016/10/17/microsoft-fpga-chips-azure/, Tech. Rep., Oct. 2017.

[2] J. Morris, “Intel pushes fpgas into the data center,” http://www.zdnet.com/article/intel-pushes-
fpgas-into-the-data-center/, Tech. Rep., Oct. 2017.

[3] N. G. Nayak, “Accelerated computation using runtime partial reconfiguration,” Master’s thesis,
University of Stuttgart, 2013.

[4] S. Casale-Brunet, E. Bezati, and M. Mattavelli, “Design space exploration of dataflow-based
smith-waterman fpga implementations,” in 2017 IEEE International Workshop on Signal
Processing Systems (SiPS), Oct 2017, pp. 1–6.

[5] J. Piat and J. Crenne, “Modeling dynamic partial reconfiguration in the dataflow paradigm,”
in Signal Processing Systems (SiPS), 2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

[6] E. S. C. de Comer, V. A. M. Coronel, Y. L. K. B. Macayana, L. M. F. Mañalac, A. C. C.
Torreno, L. P. Alarcón, M. T. G. D. Leon, C. V. J. Densing, M. D. Rosales, and R. J. M.
Maestro, “A study on partial reconfiguration with compression via modularizing secondary
processes of a general purpose processor,” in TENCON 2017 - 2017 IEEE Region 10 Conference,
Nov 2017, pp. 443–448.

[7] A. Kamaleldin, S. Hosny, K. Mohamed, M. Gamal, A. Hussien, E. Elnader, A. Shalash, A. M.
Obeid, Y. Ismail, and H. Mostafa, “A reconfigurable hardware platform implementation for
software defined radio using dynamic partial reconfiguration on xilinx zynq fpga,” in 2017
IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug 2017,
pp. 1540–1543.

[8] C. Kao, “Benefits of partial reconfiguration,” Xcell journal, vol. 55, pp. 65–67, 2005.

[9] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to high-level synthesis,”
IEEE Design & Test of Computers, vol. 26, no. 4, pp. 8–17, 2009.

[10] D. MacMillen, R. Camposano, D. Hill, and T. W. Williams, “An industrial view of electronic
design automation,” IEEE transactions on computer-aided design of integrated circuits and
systems, vol. 19, no. 12, pp. 1428–1448, 2000.

[11] A. Hemani, “Charting the eda roadmap,” IEEE Circuits and Devices Magazine, vol. 20, no. 6,
pp. 5–10, 2004.

[12] D. W. Knapp, Behavioral synthesis: digital system design using the synopsys behavioral compiler.
Prentice Hall PTR, 1996.

[13] J. P. Elliott, Understanding behavioral synthesis: a practical guide to high-level design. Springer
Science & Business Media, 2012.

85

[14] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, “High level synthesis, introduction to chip and

system design, chapter 1,” 1992.

[15] Vivado Design Suite User Guide High Level Synthesis - UG902, v2017.3 ed., Xilinx, Oct. 2017.

[16] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling problem in

high level synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 10, no. 4, pp. 464–475, 1991.

[17] P. Coussy and A. Morawiec, High-level synthesis: from algorithm to digital circuit. Springer

Science & Business Media, 2008.

[18] D. C. Ku and G. De Mitcheli, “Relative scheduling under timing constraints: Algorithms

for high-level synthesis of digital circuits,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 11, no. 6, pp. 696–718, 1992.

[19] U. Farooq, Z. Marrakchi, and H. Mehrez, “Fpga architectures: An overview,” Tree-based

Heterogeneous FPGA Architectures, pp. 7–48, 2012.

[20] Altera, “Architceture brief- what is an soc fpga?” Tech. Rep., 2014.

[21] “Zynq-7000 generation ahead backgrounder,” Xilinx, Tech. Rep., 2014.

[22] Altera, “Soc fpga product overview advance information brief,” Tech. Rep., Feb. 2012.

[23] Zynq-7000 All Programmable SoC Technical Reference Manual - UG585, Xilinx, Dec. 2017.

[24] 7 Series FPGAs Configurable Logic Block User Guide - UG474, Xilinx, Sep. 2016.

[25] Vivado Design Suite User Guide Partial Reconfiguration - UG909, Xilinx, Apr. 2017.

[26] K. Paulsson, M. Hubner, G. Auer, M. Dreschmann, L. Chen, and J. Becker, “Implementation

of a virtual internal configuration access port (jcap) for enabling partial self-reconfiguration

on xilinx spartan iii fpgas,” in Field Programmable Logic and Applications, 2007. FPL 2007.

International Conference on. IEEE, 2007, pp. 351–356.

[27] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, “A novel high-performance fault-tolerant

icap controller,” in Adaptive Hardware and Systems (AHS), 2012 NASA/ESA Conference on.

IEEE, 2012, pp. 259–263.

[28] D. Koch, Partial Reconfiguration on FPGAs: Architectures, Tools and Applications. Springer

Science & Business Media, 2012, vol. 153.

[29] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “Fpga partial reconfiguration via configuration

scrubbing,” in Field Programmable Logic and Applications, 2009. FPL 2009. International

Conference on. IEEE, 2009, pp. 99–104.

86

[30] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E. Imhof, H.-J. Wunderlich,
and J. Henkel, “Module diversification: Fault tolerance and aging mitigation for runtime
reconfigurable architectures,” in Test Conference (ITC), 2013 IEEE International. IEEE,
2013, pp. 1–10.

[31] H. M. Hussain, K. Benkrid, and H. Seker, “An adaptive implementation of a dynamically
reconfigurable k-nearest neighbour classifier on fpga,” in Adaptive Hardware and Systems
(AHS), 2012 NASA/ESA Conference on. IEEE, 2012, pp. 205–212.

[32] R. Cattaneo, X. Niu, C. Pilato, T. Becker, W. Luk, and M. D. Santambrogio, “A framework
for effective exploitation of partial reconfiguration in dataflow computing,” in Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC), 2013 8th International Workshop
on. IEEE, 2013, pp. 1–8.

[33] O. Pell, O. Mencer, K. H. Tsoi, and W. Luk, “Maximum performance computing with dataflow
engines,” in High-Performance Computing Using FPGAs. Springer, 2013, pp. 747–774.

[34] J. Sérot and F. Berry, “High-level dataflow programming for reconfigurable computing,” in
Computer Architecture and High Performance Computing Workshop (SBAC-PADW), 2014
International Symposium on. IEEE, 2014, pp. 72–77.

[35] F. Plavec, “Stream computing on fpgas,” Ph.D. dissertation, 2010.

[36] Creating and Packaging Custom IP - UG1118, Xilinx, 2015.

[37] Designing IP Subsystems Using IP Integrator - UG994, Xilinx, Apr. 2015.

87

BIOGRAPHICAL SKETCH

Mihir Shah was born in Mumbai, India on 10th May, 1992. He finished his high school in 2008

from St. Joseph’s High School, Mumbai and college in 2010 from G.N Khalsa, Mumbai. After

that, he completed his undergraduate degree (B.Tech) in Electronics and Computer Engineering

with distinction from SRM Institute of Science and Technology, Chennai in 2014. He worked as

a Research Associate at IIIT Hyderabad after completing his bachelors where he published his

research work at IROS 2015. He joined The University of Texas at Dallas for his Master of Science

in Electrical Engineering in August 2015. He has been working with DARClab (Design Automation

and Reconfigurable Computing lab) since December 2016.

88

CURRICULUM VITAE

Mihir Shah
January 12th, 2018

Contact Information:

Department of Electrical Engineering
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080-3021, U.S.A.

Voice: (972) 408-6307
Email: mihir.shah2@utdallas.edu

Educational History:

M.S.E.E, The University of Texas at Dallas, 2018
MSEE Thesis: Flexible Partial Reconfiguration based Design Architecture for Dataflow Computing
Thesis Advisor: Dr. Benjamin Carrion-Schaefer

B.Tech., Electronics & Computer Engineering, SRM Institute of Science and Technology, India,
2014

Work Experience:
FPGA Design & Validation Intern, Signal Laboratories, Inc-Menlo Park, CA (May’17-Aug’17)
Hardware Design Intern, DEKA Research & Development Corp-Boston, MA (May’16 - Dec’16)
Research Associate, IIIT Hyderabad -India (June’14- July’15)

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of NOMENCLATURE
	Introduction
	Thesis Motivation
	Thesis Contribution
	Thesis Organization

	High-Level Synthesis (HLS)
	Introduction
	High-Level Synthesis Design Steps
	RTL Generation
	Commercial HLS Tool
	NEC's CyberWorkBench HLS Tool

	Summary

	Programmable SoC FPGA and Partial Reconfiguration Design Flow
	Introduction
	SoC FPGAs
	Altera SoC FPGAs
	Xilinx ZYNQ Architecture

	Partial Reconfiguration Design Process
	Basic Ideology of Partial Reconfiguration
	Configuring Bitstreams in PR Design
	Benefits of Partial Reconfiguration

	Summary

	Dataflow Computation
	Introduction
	S2CBench v.2.0: JPEG Encoder
	Discrete Cosine Transform (DCT)
	Quantization
	RunLength Encoding
	Entropy Coding

	Summary

	Dedicated JPEG Hardware Accelerator Generation and Validation
	Validation Design Flow
	High-Level Synthesis using NEC’s CyberWorkBench
	Logical Synthesis and Simulation using Xilinx Vivado Suite
	Creating and Packaging Custom IP using Vivado IP Packager
	Creating a System Level Design and Validating the IP using Xilinx SDK

	Validating JPEG Encoder Processing Elements
	Discrete Cosine Transform IP Block
	Quantization IP Block
	Run-Length Encoding IP Block
	Huffman Encoding IP Block

	Summary

	Design Methodologies for Dataflow Computation
	Overview of the Proposed Design Methodology
	Stage 1: SystemC/BDL Algorithm Description to RTL Generation
	Stage 2: Validation and Creation of Custom IPs
	Stage 3: TCL Automated Floorplan for PR Designs
	Stage 4: Deploying the Binaries on Zynq-7000

	Spatial Design Implementation : JPEG Encoder
	System Implementation and Setup
	Experimental Results

	Implementation using DDR3 Memory [PRDDR]: JPEG Encoder
	System Implementation and Setup
	Experimental Results

	Proposed Architecture PRBRAM Implementation: JPEG Encoder
	System Implementation and Setup
	Experimental Results

	Results and Analysis of Design Implementations : Comparative Study
	Area vs Runtime Comparison
	Runtime and Latency Comparison

	Summary

	Conclusion and Future Work
	Conclusion
	Future work

	References
	Biographical Sketch
	Curriculum Vitae

