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Many complex human diseases are associated with genetic factors. Identifying genetic mark-

ers is the key step to account for disease heritability, and develop disease diagnosis, risk

prediction, prevention and therapeutic strategies. Genome-wide association study (GWAS)

has emerged as a powerful tool to identify genetic variants that are associated with various

cancers. The common statistical methodologies in GWAS focus on case-control data where

cases and controls are sampled independently from the populations. Despite the success of

GWAS in finding a number of genetic variants that are associated with cancers, the power

of conventional GWAS is limited. Extensive research has shown that many tumors develop

as a consequence of the progressive accumulation of somatic mutations over time. We focus

on GWAS data from tumor and paired normal tissues to unravel the genetic association

of somatic mutations. To address the limitation that conventional GWAS methods are not

applicable to matched-paired data, we propose in this dissertation a framework that incor-

porates allelic relative risk, frequency and mutation rate to accommodate the structure of

paired data.

We first apply the penalized maximum likelihood estimation (MLE) to perform single marker

analysis based on the framework. Simulation studies are carried out to assess the perfor-

mance of penalized MLE. To further improve the estimation accuracy and power of single
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marker analysis, we develop a Bayesian hierarchical model that takes advantage of applying

Bayesian shrinkage and making inferences based on the posterior distributions. The hier-

archical Bayesian model has the flexibility to take into account the prior knowledge and

extend to multiple marker analysis. We find that the single-marker Bayesian model has

improved the estimation and power performance in most simulation scenarios. To identify

DNA segments and SNP sets, rather than single genetic variants that are associated with

the disease, we develop a multiple-SNP Bayesian model which considers SNP sets that are

grouped together in a biologically meaningful way, such as genes or pathways. The multiple-

SNP analysis considers the joint effects of the SNP set, which improves the power to identify

SNPs that have moderate marginal effects by themselves. Simulation studies show that the

multi-marker Bayesian model has higher power to identify associated SNPs and lower type

I error rates. Next, we apply the proposed methods to a breast cancer data set from The

Cancer Genome Atlas (TCGA).We compare the most significant genes identified by single

marker analysis and multiple marker analysis to external resources on somatic mutations of

breast cancer. We find that both methods identify genes associated with breast cancer, and

multiple marker analysis provides more consistent results with external resources.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

1.1.1 Review of Genome-wide association studies with traditional case-control

data

Many human complex diseases, including diabetes, heart disease, hypertension and vari-

ous types of cancers, are associated with genetic factors. Identifying the genetic factors of

complex diseases is essential to the understanding of disease heritability, which may lead to

better strategies of the diagnosis and the treatment of disease. A single nucleotide polymor-

phism (SNP) is the single base substitution in genome, which contributes to nearly 90% of

the genetic variations (Smith et al., 2009). In recent years, Genome-wide association study

(GWAS) has emerged as a powerful tool to identify common genetic variations that are

associated with complex diseases, such as various types of cancers, type I and II diabetes,

Crohn’s disease, bipolar disorder, and hypertension (Stadler et al., 2010; Marees et al., 2018;

Kim et al., 2013). A typical GWAS design is a case-control study, which independently sam-

ples controls from the healthy population and cases from the diseased population. The aim

of GWAS is to identify SNPs that are linked to the disease susceptibility from hundreds of

thousands or even millions of genetic loci across the entire genome. Despite the great success

of traditional GWAS, the identified SNPs only explains a small portion of disease heritabil-

ity (Manolio et al., 2009). In this dissertation, we focus on several alternative strategies to

explore the missing heritability in cancer and develop statistical techniques to improve the

power to detect contributory genetic variants.

The typical GWAS strategy is to examine the individual association status of large

amount of biomarkers across the entire genome. Nowadays over one million SNPs can be

genotyped as genetic markers among cases and controls. The common statistical methods
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in GWAS often requires independent case-control samples. The contingency table method,

often known as chi-square test or Fisher’s exact test, is widely used in GWAS with dichoto-

mous traits. The null hypothesis of the test is that there is no association between the

genotypes and the phenotype. The test p-values are used to determined statistical signifi-

cance in GWAS (Timpson et al., 2009; Bush et al., 2008). However, these approaches suffer

from the disadvantage of lacking estimation for allelic effect size. Another common method

is the logistic regression, which is able to include clinical covariates to account for addi-

tional heritability and provide odds ratios as a proxy for effect size. The generalized linear

model (GLM) methods are generally applied for quantitative traits. With these common

approaches, the conventional GWAS has identified numerous loci that are associated with a

variety of human cancers over the recent years (Zeng et al., 2015).

Although it has been successful to identify significant genetic loci from case-control study,

most GWAS methods require the assumption of independent samples. Under typical GWAS

using independent case-control samples, a common practice is that the confounding fac-

tors such as population stratification need to be adjusted. The population stratification,

which represents the systematic allele frequency differences between cases and controls due

to ancestry differences, can cause spurious discoveries in GWAS. The principal components

analysis (PCA) is used to infer the axes of ancestry differences and correct for population

stratification (Price et al., 2006). The mixed models are developed to correct for population

structure using random effects (Kang et al., 2010; Yu et al., 2005). These corrections gener-

ally have demonstrated to be useful for GWAS but their adjustment performances subject

to the experimental design of choosing cases and controls (François et al., 2016).

1.1.2 Genome-wide association studies with matched pair design

Unlike traditional case-control design, another type of samples in cancer studies is the paired

tumor-normal data, where cases are genotyped from tumor tissues and controls are from nor-

mal tissues of the same patients. The genotypic differences between normal tissue and tumor

2



tissue are due to somatic mutations. The somatic mutations accumulate in any somatic cells

throughout lifetime. Many of mutations do not have noticeable effects, however some so-

matic mutations are linked to cellular dysfunction and cancerogenesis (Martincorena and

Campbell, 2015). It has been reported that the majority of cancer genes are somatically

mutated in cancers (Futreal et al., 2004). Many somatic mutations are closely associated

with heritable genetic risk factors and they can be treated as phenotypes that have direct

links with carcinogenesis. Study of somatic mutations in cancer may unravel previously un-

known genetic markers. The Cancer Genome Atlas (TCGA) project has collected genotypic

sequencing data from over 22,000 tumor and match normal samples for 33 types of cancers.

Among all cancers, the breast cancer is the most common invasive cancer in women world-

wide (Anastasiadi et al., 2017). To address the limitation of conventional GWAS, we propose

a framework to accommodate the structure of paired data and develop statistical methods to

measure the association of somatic mutations. Most traditional GWAS evaluates effects of

germline variations among independent samples, where cases and controls are independent.

In spite of the combination of GWAS and independent samples have successfully discov-

ered germline variants with high or moderate effect sizes, the effects of somatic mutations

associated to tumor development are largely understudied. To study the effects of somatic

mutations, the matched tumor-normal data are collected In summary, there is an increasing

need of studying matched tumor-normal genetic data to better understand the associations

of genetic factors and enhance explanations of heritability.

In case-control studies, GWAS typically focuses on individual SNP susceptibility de-

tection. Existing methods such as logistic regression, association test are implemented to

derived an estimation for each genetic marker. Then a decision threshold, such as p-value,

is determined to conclude the association status for each marker. In conventional GWAS,

more than 1 million genetic markers are commonly sequenced and evaluated. In order to

control the overall type I error, a very stringent threshold must be used to adjust for mul-

tiple hypothesis testing to reach a genome-wide significance level. The threshold is usually

3



too stringent that many genetic markers with moderate effects fail to reach beyond the this

boundary and are concluded as not associated. In fact, The underlying basis of GWAS is the

Common Disease Common Variant (CDCV) hypothesis, which states that complex diseases

are mainly attributed to common variants with moderate effect size (Reich and Lander, 2001;

Pritchard, 2002). With a threshold at genome-wide significant level, the moderate genetic

markers can hardly be identified in hypothesis testings. Complex diseases are linked to many

genetic factors. While standard GWAS has identified numerous significant variants, many

traditional GWAS only focuses on single SNP analysis. As a matter of fact, it is widely

known that interactions between genetic factors are commonly presented in many diseases

(Moore, 2003; Millstein et al., 2006; Zhang and Liu, 2007; Kooperberg and LeBlanc, 2008).

Traditional GWAS only studies individual SNP and fails to discover the joint effects of these

genetic factors.

1.1.3 Single-marker and multi-marker analysis

Multiple marker analysis methods in GWAS such as gene-based association have become

an important tool. In addition, thanks to the blossom of high throughput sequencing tech-

nologies, there is an increasing demand for appropriate statistical methodologies that can

be applied to multi-locus association studies. Researchers have developed many SNP-set

analysis recently (Tibshirani, 1996; Gayán et al., 2008; Borecki and Province, 2008; Bush

et al., 2008; Mukhopadhyay et al., 2009). A SNP-set analysis is proposed to combine a set

of SNPs that are proximate in terms of genomic characteristics such as genes or haplotypes

(Wu et al., 2010; Larson and Schaid, 2013) . The SNP-set is tested for the joint associa-

tion status without concluding the association status for each SNP. In this dissertation, a

Bayesian model in the novel framework to analyze joint effects of variants on the gene level.

4



1.2 Overview of the dissertation

The remaining of this dissertation is organized as follows: In Chapter 2 we introduce the

proposed framework for tumor and normal paired data. The penalized maximum likelihood

estimation (MLE) is developed to measure single allelic effect size. The Wald test, Score

test and likelihood ratio test are used in hypothesis testings in simulation studies. To im-

prove the model performance, a hierarchical Bayesian model is developed to incorporate the

Bayesian inferential framework for single-marker analysis. We conduct simulation studies

under different settings to compared the Bayesian and penalized MLE methods. To further

increase power to detect associated variants, Chapter 3 extends the hierarchical Bayesian

model to group biologically related SNPs and perform multi-marker analysis. We use the

simulated data to evaluate performance of the proposed methods under different scenarios.

In Chapter 4 the single- and multi- marker models are applied to the TCGA breast cancer

data. We use external databases of breast cancer genes to compared with the genes identified

by the hierarchical Bayesian models. Finally, Chapter 5 summarizes the proposed methods

and discusses potential future work.
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CHAPTER 2

SINGLE MARKER ANALYSIS

2.1 Introduction

The widely available high throughput sequencing has greatly facilitated the understanding

and studies of genetic factors in complex diseases. Conventional genome-wide association

studies (GWAS) have reported meaningful findings, where a large number of single nucleotide

polymorphisms (SNPs) are genotyped to test the individual association between these SNPs

and the disease. One of the common statistical methodologies to test for association in

case-control studies is the chi-square test, which has considerable power but comes with a

drawback that covariates cannot be added (Cantor et al., 2010). Another common approach,

logistic regression, allows inclusion of additional factors to take into account confounding ef-

fects. In these methods, the p-values or effect size of SNPs are evaluated and thresholds

are set up to determine significant association. They have proven useful in GWAS to de-

tect genetic variants associated with complex disease susceptibility, such as type 2 diabetes

(Voight et al., 2010) , Crohn’s disease and rheumatoid arthritis (The Wellcome Trust Case

Control Consortium, 2007). However, the common approaches are not able to address the

impact of somatic mutations. Numerous studies have suggested that the accumulation of

somatic mutations over the lifetime can gradually lead to changes in protein functions and

tumor progression (Greenman et al., 2007; Martincorena and Campbell, 2015). The Cancer

Genome Atlas (TCGA) has provided abundant tumor and normal paired data, where geno-

types are assayed from normal and tumor tissues of the same individual, for many kinds of

cancers. However, the common statistical GWAS methods requires that cases and controls

are independent. There is a growing need of appropriate methods for matched tumor-normal

data to investigate the effects of somatic variants on tumor development.

We present novel approaches to developing single-marker analysis using frequentist and

Bayesian methods, along with the comparisons of these two methods in this chapter. The

6



approaches utilize a framework suited for the matched-pair data. Point estimation, interval

estimation and hypothesis testing can be derived to make inferences about the loci associated

with cancer risk. In this chapter, the estimation and inference will focus on single marker

analysis, where only one marker is considered. The penalized maximum likelihood estimation

and Bayesian methods will be used to estimate and infer the association of each locus.

The remainder of this chapter is organized as follows. Section 2.2 describes the framework

for tumor and normal paired data. Section 2.3 describes the penalized maximum likelihood

estimation with results of the simulation study under different situations. More specifically,

the penalized term, or regularization is accomplished through Ridge Regression to keep

parameters away from the boundaries. In addition, the performance of penalized maximum

likelihood estimation will be evaluated through mean squared error (MSE), hypothesis testing

and power curve. Then the Bayesian method is introduced to further improve the analysis.

Section 2.4 incorporates Bayesian model and shows the model formulation and posterior

distribution for parameters. Markov Chain Monte Carlo (MCMC) algorithm is used to

sample from the posterior distributions. Simulation studies are conducted to compare the

two methods and the results are reported in Section 2.5.

2.2 Framework for matched pair data

A growing number of research has suggested that various cancers are associated with so-

matic mutations (Alexandrov and Stratton, 2014). Often the development of cancer is a

progressive process in which multiple mutations are accumulated in a normal cell that even-

tually evolves to a cancerous cell, which can evade the immune mechanisms and start to

proliferate. Understanding the role of somatic mutations in carcinogenesis can be critical in

risk prediction, continuous monitoring and early detection of cancer, and may lead to indi-

vidualized prevention and therapeutic strategies. The Cancer Genome Atlas (TCGA) has

been collecting tumor tissues along with their matched normal samples for different types of
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cancers since 2005. More than 30 cancer types are involved in genomic characterization and

sequence analysis in the TCGA project by 2014. A number of studies focusing on different

types of cancer have discovered somatic variants that are associated with the susceptibility

based on the TCGA database. One advantage of association study involving tumor DNA and

the matched normal DNA is that the two samples share identical genetic and environmental

background. The study design of matched data intrinsically controls many confounding risk

factors, and therefore has the potential to greatly improve the power of detecting true signals

coming from genetic variations. The proposed methods are designed for matched data in

which the cases and controls are no longer independent.

Many existing methods for GWAS fail to provide valid results for matched data, since

the assumption of independence is violated. To perform GWAS on matched pairs, we pro-

pose a sampling scheme to illustrate the difference between germline variations and somatic

mutations. Specifically, this sampling scheme characterizes the allelic relative risks for so-

matic mutations. Using the following sampling scheme, the relative risk, allele frequency

and somatic mutation rate can be estimated and tested.

2.2.1 Sampling framework

In the matched-pair design specimens are only sampled from the disease population. The

cases are tumor tissues while controls are tumor-adjacent normal tissues of the same patient.

Thus it can provide a reliable detection of somatic mutations. A general matched data have

the same structure as the case-control data in GWAS. Assume the sample size is 1000 and

the number of genetic marker is 1,000,000. For a certain sample, the genotype can be 0, 1

or 2 at each SNP. The raw data structure is as follow:

The sampling framework is introduced to characterize the relation of relative risk, allele

frequency and mutation rate. Given that the tumor and normal tissues are from the same

patient, the alteration of SNPs at the same locus is due to somatic mutation. The somatic

mutation rate acts as a bridge between dependent cases and controls.
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Table 2.1: Tumor tissue data structures

Tumor tissue genotypes

Samples SNP 1 SNP 2 ... SNP 1000000
1 0 0 ... 1
2 1 0 ... 1

...
...

...
...

1000 0 2 ... 1

Table 2.2: Matched normal data structures

Matched Normal tissue genotypes

Samples SNP 1 SNP 2 ... SNP 1000000
1 0 0 ... 1
2 1 0 ... 0

...
...

...
...

1000 0 1 ... 0

Let N be the whole population size, A be the risk allele frequency, M be the somatic

mutation rate. Genotype is the genetic makeup of alleles at a locus. Under genetic equilib-

rium, the probability of carrying genotype 0, 1, 2 are (1 − A)2, 2A(1 − A), A2, respectively.

Hence the expected frequencies of genotypes in whole population are as follows:

Table 2.3: Expected genotype frequency

Normal Genotype 0 1 2
Expected Frequency (1− A)2 2A(1− A) A2

Considering the somatic mutations accumulate over time, the mutation rate M charac-

terizes the probability of the alternation at a locus. Given normal genotype is 0, the mutant

genotypes in tissue can be 0, 1 and 2 with probabilities of (1−M)2, 2M(1−M),M2, respec-

tively. Given normal genotype is 1, the mutant genotypes can be 0, 1 and 2 with probabilities

of M(1−M),M2 + (1−M)2,M(1−M). Given normal genotype is 2, the mutant genotypes

can be 0, 1 and 2 with probabilities of M2, 2M(1−M), (1−M)2. The Table 2.4 shows the

expected frequencies of genotypes in whole population given normal genotypes and mutant
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genotypes. The total of the expected frequencies is population size N . The population can

be divided into 9 categories based on the genotypes in normal and mutant tissues.

Table 2.4: Expected frequency of genotypes in whole population

Freq Tissue with mutant genotypes
Normal

genotype
0 1 2

0 (1−A)2(1−M)2N 2(1−A)2M(1−M)N (1−A)2M2N
1 2A(1−A)M(1−M)N 2A(1−A)[M2 +(1−M)2]N 2A(1−A)M(1−M)N
2 A2M2N 2A2M(1−M)N A2(1−M)2N

The penetrance is defined as the probability of having cancer given a specific genotype.

In general, if the SNP is unassociated with disease, π2 = π1 = π0. If the SNP is associated

with disease, π2 ≥ π1 ≥ π0.

πt = P (Having disease|Mutated genotype = t) wheret = 0, 1, 2 (2.1)

Let Np be the total number of patients in the population. The Table 2.5 shows the

expected frequencies of genotypes in the patient population. The sum of the expected

frequencies is the patient population size Np.

Table 2.5: Expected frequency of genotypes in the patient population

Freq Tumor genotype
Normal

genotype
0 1 2

0 (1−A)2(1−M)2Nπ0 2(1−A)2M(1−M)Nπ1 (1−A)2M2Nπ2
1 2A(1−A)M(1−M)Nπ0 2A(1−A)[M2+(1−M)2]Nπ1 2A(1−A)M(1−M)Nπ2
2 A2M2Nπ0 2A2M(1−M)Nπ1 A2(1−M)2Nπ2

Given the expected genotype frequencies in patient population, we assume a simple ran-

dom sample is drawn from all patients. Let n be the sample size and Psampled be the sampling

rate. The Table 2.6 shows the expected frequencies of genotypes in the sample. The sum of

the expected frequencies in this table is sample size n.

Let Rt be the allelic relative risk (RR) given a specific genotype: R1 = π1/π0, R2 = π2/π0.

Under different types of genetic risk models, there are 4 representations of R1 and R2 using a

10



Table 2.6: Expected frequency of genotypes in the sample

Freq Tumor genotype
Normal
genotype

0 1 2

0 (1−A)2(1−M)2Nπ0Psampled 2(1−A)2M(1−M)Nπ1Psampled (1−A)2M2Nπ2Psampled

1 2A(1−A)M(1−M)Nπ0Psampled 2A(1−A)[M2 + (1−M)2]Nπ1Psampled 2A(1−A)M(1−M)Nπ2Psampled

2 A2M2Nπ0Psampled 2A2M(1−M)Nπ1Psampled A2(1−M)2Nπ2Psampled

unified parameter. If the somatic mutation are not associated with cancer, the corresponding

relative risk should be 1. The additive genetic risk model is used in this dissertation. Other

genetic risk models, such as dominant, recessive and multiplicative can be considered as well.

Table 2.7: Genetic models

Genetic Model Allelic Penetrance Relative Risk
aa Aa AA R1 R2

Dominant π0 π1 π2 R R
Recessive π0 π1 π2 1 R
Additive π0 π1 π2

R+1
2

R
Multiplicative π0 π1 π2 R R2

Given the expected genotype frequencies in the sample, a normalization of sample size

n is performed. During the normalization process, the population size N , sampling rate

Psampled are cancelled out. The penetrance π2, π1, π0 can be represented by relative risk

parameter R. Thus, the expected probability of genotypes in the sample can be derived as

in Table 2.8, where qsum is the normalization constant such that probabilities add up to 1

and qsum is a function of R,A,M .

Therefore, for each patient, the joint distribution of normal-tumor genotypes of a SNP

follows Multinoulli distribution, which is also known as the generalized Bernoulli distribution.

The normal-tumor genotypes of the SNP among all patients in the sample can be summarized

into one table. Let Pi,j be the probability in each category, where i = 0, 1, 2 is the normal

tissue genotype and j = 0, 1, 2 is the tumor tissue genotype. The sum of Pi,j is 1 and each

Pi,j = fi,j(R,A,M) is a function of R,A,M . The Table 2.9 shows Multinoulli distribution

with probabilities Pi,j for all patients.
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Table 2.8: Expected probability of genotypes in the sample

Prob Tumor genotype
Normal

genotype
0 1 2

0 (1−A)2(1−M)2

qsum

2(1−A)2M(1−M)
qsum

R+1
2

(1−A)2M2

qsum
R

1 2A(1−A)M(1−M)
qsum

2A(1−A)[M2+(1−M)2]
qsum

R+1
2

2A(1−A)M(1−M)
qsum

R

2 A2M2

qsum

2A2M(1−M)
qsum

R+1
2

A2(1−M)2

qsum
R

Table 2.9: Paired tumor-normal data follows Multinoulli distribution

Probabilities Tumor genotypes
Normal

genotypes
0 1 2

0 P00 P01 P02

1 P10 P11 P12

2 P20 P21 P22

where

P00 =
(1− A)2(1−M)2

qsum

P01 =
2(1− A)2M(1−M)

qsum
· R + 1

2

P02 =
(1− A)2M2

qsum
R

P10 =
2A(1− A)M(1−M)

qsum

P11 =
2A(1− A)[M2 + (1−M)2]

qsum
· R + 1

2

P12 =
2A(1− A)M(1−M)

qsum
R

P20 =
A2M2

qsum

P21 =
2A2M(1−M)

qsum
· R + 1

2

P22 =
A2(1−M)2

qsum
R

(2.2)
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For each SNP, the joint genotype of the tumor and its matched normal tissue follows

the Multinoulli distribution with 9 categories, of which the probabilities are functions of the

parameters (R,A,M) as defined previously. In the next section, we will derive the estimation

of the parameters.

2.3 Maximum Likelihood Method

The frequentist inference of parameters is based on the penalized maximum likelihood esti-

mation for each parameter. The likelihood function is the probability mass function of the

observed value of the Multinoulli distribution, which is derived under the sampling frame-

work for matched data described in Section 2.2. In the sampling scheme framework, three

parameters: relative risk, allele frequency and mutation rate are defined to describe the rela-

tion between normal data and tumor data. Under Hardy-Weinberg equilibrium assumptions,

there are expected genotypic frequencies given the allele frequency for each marker. With

mutation rate, the expected genotypic frequencies of germline with and without somatic

mutation can be derived as a 3 by 3 table, where each column represent a genotype. In

reality, the paired data set is sampled from patients that have already developed cancer.

The above expected genotypic frequencies incorporates penetrance to filter out samples that

carry the disease . Thus the risk alleles tend to be enriched in the samples with disease,

which causes allele frequencies to shift higher in the sample. The final stage of the sampling

scheme is normalize genotypic frequencies by dividing the sum of all frequencies, such that

the data follows a Multinoulli distribution. And relative risk is incorporated as the ratio of

penetrance given one or two risk alleles and the penetrance given homozygous major alleles.

Therefore, the framework purposed for paired data allows to handle dependent genotype

data and derive estimation and inference about relative risk, the link between genetics and

disease susceptibility.
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The sampling framework transforms the paired data into 9 proportions according to the

corresponding genotypes, as shown in the following table and forms a Multinoulli distribution

with sample size n and probabilities P = (P00, P01, P02, P10, P11, P12, P20, P21, P22), where each

Pi,j is a function of parameters, i.e., Pi,j = fi,j(R,A,M). Then the likelihood function can

be derived using data as a function of these parameters.

Table 2.10: Multinoulli Distribution on each genetic marker

Counts
Tumor genotypes
0 1 2

Normal genotypes
0 n00 n01 n02

1 n10 n11 n12

2 n20 n21 n22

Thus, on each genetic marker, the sample n = (n00, n01, n02, n10, n11, n12, n20, n21, n22)

follows Multinoulli
(
n, (P00, P01, P02, P10, P11, P12, P20, P21, P22)

)
, where n is the summation of

the counts in all components. The likelihood function is written as follows:

L(P00, P01, P02, P10, P11, P12, P20, P21, P22|n)

= f
(
n|P00, P01, P02, P10, P11, P12, P20, P21, p22

)
=
∏

i=0,1,2

∏
j=0,1,2

(Pi,j)
ni,j

(2.3)

Replace the Pi,j with the functions of parameters Pi,j = fi,j(R,A,M). The likelihood

function can be represented as follows:

L(R,A,M |n) =
∏

i=0,1,2

∏
j=0,1,2

(fi,j(R,A,M))ni,j
(2.4)

Correspondingly likelihood function is as follows:

l(R,A,M |n) =
∑
i=0,1,2

∑
j=0,1,2

ni,j · log(fi,j(R,A,M)) (2.5)

The log-likelihood function can be represented as a function of the three parameters.
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2.3.1 Likelihood Function

The model uses penalized maximum likelihood estimation method to estimate the value of

parameters.The penalized term is added to prevent parameter estimations on the bound-

ary. The boundaries of relative risk (R), allele frequency (A) and mutation rate (R) are

(0,∞), (0, 1) and (0, 1) respectively. The penalty term is introduced as the L2 (Ridge) norm

to penalize extreme allele frequency (A) and mutation rate (R):

lp(R,A,M |n) =
∑
i=0,1,2

∑
j=0,1,2

ni,j log(fi,j(R,A,M))− λ log2(A) − λ log2(1− A)

− λ log2(M)− λ log2(1−M)− α log2(R)

(2.6)

where α and λ are the tuning parameters. When the estimations of parameters A and

M are close to the their boundaries, at least one of the terms A, 1-A, M, 1-M are close to

0. Thus, at least one of the terms log2(A), log2(1−A), log2(M), log2(1−M), will be fairly

large enough to add penalty through tuning parameters to the likelihood function, and to

pull parameter estimations away from the boundaries. In the following simulation study, the

value of tuning parameter λ will be 0.05, which is not too large to introduce much bias, and

still carries the influence of penalty.

The penalized maximum likelihood is derived as:

argmax
R,A,M

lp(R,A,M |n) = argmax
R,A,M

∑
i=0,1,2

∑
j=0,1,2

ni,j log(fi,j(R,A,M))− λlog2(1− A)

− λlog2(A)− λlog2(M)− λlog2(1−M)− α log2(R)

(2.7)

2.3.2 Hypothesis Testing

Hypothesis testing for each SNP is conducted to decide if relative risk is statistically signif-

icant. We are interesting in testing null hypothesis H0 : R = R0 = 1, which states that the

genetic marker is not associated with cancer, versus alternative hypothesis H1 : R 6= R0 = 1,
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which states that the genetic marker is associated with the disease. The Wald test is one ap-

proach to determine statistical significance. It measures the squared difference R̂MLE − R0

weighted by the curvature of log-likelihood function. The Wald statistic is calculated as

follows:

W =
(R̂MLE −R0)

2

var(R̂MLE)
(2.8)

where var(R̂MLE) is the variance of penalized maximum likelihood estimator. The vari-

ance is estimated by the inverse of the expected information matrix evaluated at the max-

imum likelihood estimate. Under the null hypothesis, the Wald test statistic W follows an

asymptotic χ2-distribution with one degree of freedom.

Score test assesses the statistical significance of parameter based on the gradient of the

likelihood function. The value of score function is evaluated at R0 and equaled to 0 when

R0 = R̂MLE. When the score function at R0 deviates far from 0, the alternative hypothesis

is more plausible than H0. The Score test statistic is calculated as follows:

S =
(u(R0))

2

I(R0)
(2.9)

where u(R0) is the score function evaluated at R0 and other parameters are replaced by

the MLE. I(R0) is the fisher information evaluated by R0 and other parameters are fixed

at their MLE. The test statistic asymptotically follows a χ2 distribution with one degree of

freedom.

The likelihood-ratio test is another method to assess statistical significance based on

comparison of log-likelihood function evaluated at MLE and R0. The likelihood-ratio test

statistic is calculated as follows:

LR = 2l(R̂MLE)− 2l(R0) (2.10)
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where l(R̂MLE) and l(R0) is the log-likelihood function evaluated at R̂MLE and R0, re-

spectively. Under large samples the likelihood-ratio test statistic asymptotically follows a χ2

distribution with one degree of freedom.

2.3.3 Simulations

Simulation studies are carried out with these test statistics in different settings. Figure

2.1 shows the p-value distribution of Wald test under settings (1) n = 1000, M= 0.001

and (2) n = 3000, M= 0.005. Figure 2.2 shows the p-value distribution of Score test

under settings where n= 3000 and M= 0.005. Figure 2.3 shows the p-value distribution of

likelihood-ratio test under the same setting. The full simulation results are listed in Appendix

A. Statistical theory has stated that p-value should be uniformly distributed under null

hypothesis R = 1. As can be seen in these figures, the p-value in Wald test is approximately

uniformly distributed under the null hypothesis with large sample sizes, but this is not true

for small sample sizes. For Score test and likelihood-ratio test, the performance is similar. In

addition, the type I errors are inflated in settings with small sample size, low allele frequency.

The powers under these scenarios may not be reliable due to the corresponding type I errors

are not well controlled. This suggests that the performance of penalized MLE method needs

to be improved in some settings. These results motivate us to develop the Bayesian method

which can incorporate prior knowledge to the model.

2.4 Bayesian Hierarchical Models

2.4.1 Motivation

The performance of penalized Maximum likelihood estimation has relatively low power in the

testing. We propose Bayesian hierarchical model that incorporates prior distributions on the

SNP association status and other model parameters. The advantage of this method is that it
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Figure 2.1: The p-value distribution of Wald test in settings (1) sample = 1000, MR = 0.001
and (2) sample = 3000, MR = 0.005.
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Figure 2.2: The p-value distribution of Score test in settings sample = 3000 and MR = 0.005.

allows us to perform Bayesian regularization through prior distributions and make Bayesian

inferences based on the posterior distributions. In this section, we describe the Bayesian

hierarchical model on single markers. Simulation studies are carried out to compare the

Bayesian model with the Maximum likelihood estimation method.
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Figure 2.3: The p-value distribution of likelihood-ratio test in settings sample = 3000 and
MR = 0.005.

2.4.2 Prior Distribution

Let H represent the SNP association status. If a SNP is associated with cancer, then H = 1,

otherwise, H = 0. The SNP status H follows a Bernoulli distribution with probability b,

where b is a hyper-parameter with a hyper prior. The hyper-parameter b has a range between

0 and 1, and follows a Beta distribution with mean at 0.2.

The prior distribution of SNP association status and hyper-parameter can be expressed

as follows:

H ∼ Bernoulli(b)

b ∼ Beta(αb, βb)

(2.11)

The prior distribution of effect size depends on the association status of each SNP. If the

SNP status is associated, the effect size is expected to be greater than 1. Then conditional

effect size R|(H = 1) is assigned a prior Gamma(k1, θ1) with a mean greater than 1 when

it is associated. On the other hand, when the SNP status is not associated, the effect size

should be 1. Then conditional effect size R|(H = 0) is assigned a prior Gamma(k0, θ0) with

the mean at 1 when it is irrelevant. Thus, the relative risk distribution is as follows:

19



R|(H = 1) ∼ Gamma(k1, θ1)

R|(H = 0) ∼ Gamma(k0, θ0)

R|H ∼ Gamma(k1, θ1)
H ·Gamma(k0, θ0)

1−H
(2.12)

Let A denote the allele frequency (AF). The prior distribution of A depends on the

association status of the SNP. When the SNP is irrelevant to the tumor, the variant is

neither enriched nor diminished in disease population. The AF in disease population is

expected to be the same as the AF in normal population. Thus for non-associated SNP, the

conditional AF A|(H = 0) is assigned a prior Beta(α0, β0). The mean of Beta(α0, β0) is at

Aobs.

On the other hand, if a SNP is associated with tumor development, the SNP frequency will

be enriched in disease population. Therefore the AF observed in disease population is higher

than the AF in the normal population. For A|(H = 1), we assign a prior Beta(αA1, βA1).

From above, the distribution of AF is as follows:

A|(H = 1) ∼ Beta(αA1, βA1)

A|(H = 0) ∼ Beta(αA0, βA0)

A|H ∼ Beta(αA1, βA1)
H ·Beta(αA0, βA0)

1−H

(2.13)

The mean of Beta(αA1, βA1) depends on the effect size. For a higher effect size, more allele

enrichment is expected in disease population. To determine the mean of Beta(αA1, βA1),

let Aobs be the AF observed in samples. The observed AF in disease population has the

expectation and estimation as follows:
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Aobs =
n10 + n11 + n12 + 2n20 + 2n21 + 2n22

2n

µAobs
= E(Aobs) = E

(
n10 + n11 + n12 + 2n20 + 2n21 + 2n22

2n

)
=

A(R− A+RA+ 2AM − 2RAM + 1)

2(RA−M − A+RM + 2AM − 2RAM + 1)

(2.14)

When µR = 1, there is µAobs
= A. When R 6= 1, the equation 2.14 is a quadratic function

of A when R 6= 1 with coefficients:

a = (R− 1)(1− 2M)

b = (R + 1)− (R− 1)2µAobs
(1− 2M)

c = −2Aobs(RM −M + 1)

(2.15)

For a risky SNP, the effect size R > 1. The parameter A can be represented by Aobs

and other parameters (R,M). The relation can be used to determine the AF prior mean

Beta(αA1, βA1) when the SNP is associated.

Â = Aobs +
R+ 1−

√
[R+Aobs2(2M − 1)(R− 1) + 1]2 − 8Aobs(2M − 1)(R− 1)(RM −M + 1)

2(2M − 1)(R− 1)
(2.16)

The relative risk parameter R is set to 2.5 for a risky SNP based on the empirical

observation. Let MR parameter M be estimated by the observed MR from samples since it

has little impact. The expect Aobs can be estimated from samples. Thus the prior mean of

A can be determined from the below equation:

Â = Aobs +
3.5−

√
(3Aobs(2M − 1) + 3.5)2 − 12Aobs(2M − 1)(1.5M + 1)

3(2M − 1)
(2.17)

Let M denote the mutation rate (MR). The prior distribution of M depends on the

SNP association status. When the SNP is non-associated, the mutation rate is assigned a
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prior Beta(αM0, βM0). When the SNP is associated, the mutation rate is assigned a prior

Beta(αM1, βM1).

M |(H = 1) ∼ Beta(αM1, βM1)

M |(H = 0) ∼ Beta(αM0, βM0)

M |H ∼ Beta(αM1, βM1)
H ·Beta(αM0, βM0)

1−H

(2.18)

Let Mobs be the observed mutation from tumor samples. The observed MR has the

expectation and estimation as follows:

Mobs =
n01 + 2n02 + n10 + n11mut + n12 + 2n20 + n21

2n

µMobs
= E(Mobs) = E

(
n01 + 2n02 + n10 + n11mut + n12 + 2n20 + n21

2n

)
=

M(R−M +RM + 2AM − 2RAM + 1)

2(RA−M − A+RM + 2AM − 2RAM + 1)

(2.19)

When R = 1, there is µMobs
= M . The equation 2.19 is a quadratic function of M when

R 6= 1. The quadratic equation has coefficients:

a = (R− 1)(1− 2A)

b = (R + 1)− (R− 1)2µMobs
(1− 2A)

c = −2Mobs(RA− A+ 1)

(2.20)

For a risky SNP, the effect size R > 1. The parameter M can be represented by Mobs

and other parameters R,A. The relation can be used to determine the MR prior mean of

Beta(αM1, βM1) when SNP is associated.

M̂ = Mobs +
−(R+ 1) +

√
[R+ 1− 2Mobs(R− 1)(1− 2A)]2 + 8Mobs(1− 2A)(R− 1)(RA−A+ 1)

2(R− 1)(1− 2A)
(2.21)
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In the above equation, the relative risk parameter R is estimated to be 2.5 for a risky

SNP. The AF parameter A is estimated by equation 2.17. Then the prior mean 2.18 of MR

can be estimated.

2.4.3 Joint Posterior Distribution

Let Θ = {R,A,M} denote the set of parameters for each SNP, with prior distribution

depending on the SNP status H. The joint distribution of these parameters can be derived

as follows:

f(Θ, H, b) = f(Θ|H, b) · f(H, b)

= f(Θ|H, b) · f(H|b) · f(b)

(2.22)

The parameters (R,A,M) have prior distribution conditional on the SNP status. Assume

that relative risk, allele frequency and mutation rate are conditionally independent given the

SNP status, there is

f(Θ, H, b) = f(Θ|H, b)f(H|b)f(b)

= f(R,A,M |H, b)f(H|b)f(b)

= f(R,A,M |H)f(H|b)f(b)

= f(R|H)f(A|H)f(M |H)f(H|b)f(b)

(2.23)

Based on the proposed framework, samples are collected from both tumor and controlled

normal tissues. For each SNP, the corresponding samples follows a Multinoulli distribution

with 9 categories, where the expected probability of each category is a function of relative

risk, AF and mutation rate, each Pij can be presented as Pi,i′ = fi,i′(Θ) and i, i′ = 0, 1, 2.

Let n = (n00, n01, n02, n10, n11, n12, n20, n21, n22) denote the samples, then there is

f(n|Θ) =

0,1,2∏
i,i′

(Pi,i′)
ni,i′ =

0,1,2∏
i,i′

fi,i′(R,A,M)ni,i′ (2.24)
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The distribution of sample n is dependent on SNP status. Therefore, from previous equations

2.23 the joint probability distribution of all parameters is as follows:

f(n,Θ, H, b) = f(n|Θ, H, b) · f(Θ, H, b)

= f(n|Θ, H, b)f(Θ|H, b)f(H, b)

= f(n|Θ, H, b)f(Θ|H, b)f(H|b)f(b)

= f(n|Θ, H)f(Θ|H)f(H|b)f(b)

= f(n|R,A,M)f(R|H)f(A|H)f(M |H)f(H|b)f(b)

(2.25)

Due to the complexity of joint distribution and prior distribution in Bayesian model, it is

difficult to sample from the posterior distribution directly. In our situation, the conditional

distributions of the parameters b and H have a nice closed-form distribution so that they can

be directly sampled using Gibbs sampler. At the same time, the conditional distributions

of parameters (R,A,M) do not have simple conditional distributions. Then the Metropolis-

Hasting method is applied to (R,A,M) to draw samples within each Gibbs sampling step.

The Gibbs sampler is a MCMC algorithm that allows to generate a series of Markov chain

observations from the conditional distribution of a parameter while other variables are fixed

at their current values (Casella and George, 1992). Since it is usually infeasible to directly

sample from a multivariate distribution, the Gibbs sampler makes such process easier by

sampling a single variable at a time. It is very useful when the conditional distribution,

which based on other fixed variables, has a closed-form expression. Variables are sampled

iteratively conditioned on the most recent states of the remaining variables.

Sometimes, the closed-form expression may not be attainable for some parameters in

Bayesian modeling. The conditional distribution is proportionally known, thus direct sam-

pling is unavailable. The Metropolis-Hasting method is a MCMC algorithm that can draw

samples from any probability distributions, given that a function proportional to the target
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density is provided. It uses a Markov process that generates a series of states and asymptot-

ically reach to the target distribution. The advantage of Metropolis-Hastings algorithm is

that it does not require a known probability distribution of the target variable, but a function

that is proportional to the density function. This requirement is easy to satisfy and useful

when the normalization factor is hard to measure. We will use both Gibbs sampler and

Metropolis-Hastings method to estimate the posterior distribution of the Bayesian model.

2.4.4 Posterior sampling

The posterior distribution will be estimated using Markov Chain Monte Carlo (MCMC)

simulation. Parameters are updated iteratively within Gibbs framework and RR, AF, MR

are updated with Metropolis-Hastings algorithm. The Markov Chain Monte Carlo simulation

is given as follows for a sample n:

1. Initialization of parameters.

Assign random initial values to b0, H0,Θ0 in the beginning of the simulation. For each

sample n, three chains with different initial status are generated in the Markov Chain

Monte Carlo simulation.

2. Update b.

Given other parameters are fixed, the conditioned posterior distribution at step t can

be derived from 2.25 as follows:

f(bt|n,Θt, H t) =
f(n,Θt, H t, bt)∫
f(n,Θt, H t, bt) dbt

=
f(H t|bt)f(bt)∫
f(H t|bt)f(bt) dbt

∝ (bt)H
t+αb−1(1− bt)βb−Ht

(2.26)

The conditioned posterior distribution is proportional to a Beta distribution with

αnew = H t + αb, βnew = βb − H t + 1. The next state bt+1 can be directly sampled
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from the closed-form conditioned posterior distribution based on current state:

f(bt+1|H(t)) = Beta(αnew = H(t) + αb, βnew = βb −H(t) + 1) (2.27)

Note that means of conditioned posterior distribution and prior distribution satisfy

the inequality: E(f(bt+1|H(t) = 0)) < E(f(bt)) < E(f(bt+1|H(t) = 1)). The difference

between conditioned posterior means can be represented as:

E(f(bt+1|H(t) = 1))− E(f(bt+1|H(t) = 0)) =
1

αb + βb + 1
(2.28)

The denominator should be relatively small to make SNP status more distinguishable.

Thus, αb = 1 and βb = 2 are chosen due to the fact that most SNPs are non-associated.

3. Update H.

Given other parameters are fixed, the conditioned posterior distribution at step t can

be derived as follows:

f(H t| bt,n,Θt) =
f(n,Θt, H t, bt)∑

h=0,1 f(n,Θt, H t = h, bt)

=
f(n|Θt)f(Θt|H t)f(H t|bt)f(bt)∑

h=0,1 f(n|Θt)f(Θt|H t = h)f(H t = h|bt)f(bt)

=
f(Θt|H t)f(H t|bt)∑

h=0,1 f(Θt|H t = h)f(H t = h|bt)

(2.29)

Substitute the prior distributions, there are

f(Ht| bt,Θt,n) ∝
(
Gamma(Rt; k1, θ1)Beta(A

t;αA1, βA1)Beta(M
t;αM1, βM1)b

)Ht

·(
Gamma(Rt; k0, θ0)Beta(A

t;αA0, βA0)Beta(M
t;αM0, βM0)(1− b)

)1−Ht

(2.30)

Let d1 be the probability corresponding to H t = 1, and d0 be the probability corre-

sponding to H t = 0 in the above formula. Thus the conditioned posterior probability

density function of H t follows a Bernoulli distribution. Based on current state, the

next state H t+1 can be directly sampled with probability p = d1
d1+d0

.
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4. Update relative risk R.

Since the conditioned probability density function has no closed form, the posterior dis-

tribution of relative risk R will be simulated by Metropolis-Hastings algorithm within

Gibbs sample framework.

4.1. Conditional posterior distribution.

Given other parameters are fixed, the proportional posterior distribution of rela-

tive risk Rt at current state can be derived as follows:

f(Rt|n, H t, At,M t, bt) =
f(n,Θt, H t, bt)∫
f(n,Θt, H t, bt) dRt

=
f(nt|Θt)f(Θt|H t)∫
f(nt|Θt)f(Θt|H t) dRt

=
f(nt|Θt)f(Rt|H t)∫
f(nt|Θt)f(Rt|H t) dRt

∝ f(nt|Θt)f(Rt|H t)

(2.31)

where f(Rt|H t) is defined in 2.12.

4.2. Proposal distribution.

The proposal function will generate a value R∗ in the neighborhood based on

current state Rt through Gamma distribution.

q(R∗|Rt) = Gamma(shape = 1 + 5Rt, rate = 5) (2.32)

Correspondingly, there is

q(Rt|R∗) = Gamma(shape = 1 + 5R∗, rate = 5) (2.33)

4.3. Acceptance probability.

Compute the acceptance ratio based on the proposal distribution and joint density
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function.

accept ratio =
f(nt|Θ∗)f(R∗|H t) · q(Rt|R∗)
f(nt|Θt)f(Rt|H t) · q(R∗|Rt)

=
f(n|R∗, At,M t)f(R∗|H t) · q(Rt|R∗)
f(n|Rt, At,M t)f(Rt|H t) · q(R∗|Rt)

(2.34)

Then compute the acceptance ratio

r = min

(
1,

f(n|R∗, At,M t)f(R∗|H t) · q(Rt|R∗)
f(n|Rt, At,M t)f(Rt|H t) · q(R∗|Rt)

)
The acceptance indicator is from Bernoulli distribution with probability r. If

acceptance ratio is greater than 1, let acceptance probability be 1.

4.4. Iterative updates.

Take R∗ as the current state, repeat above steps to generate the next state R∗1.

For Metropolis-Hastings iteration h = 1, 2, ..., 99, let R∗(h) as current state, re-

peat above steps to generate next state R∗(h+1). Finally, the next state of Gibbs

iteration Rt+1 is updated with the last state of Metropolis-Hastings iteration:

Rt+1 = R∗(H) where H is the last state in MH iterations

5. Update At.

5.1. Conditional posterior distribution.

Given other parameters are fixed, the proportional posterior distribution of rela-

tive risk At at current state can be derived as follows:

f(At|n, Rt,M t, H t, bt) =
f(n,Θt, H t, bt)∫
f(n,Θt, H t, bt) dAt

=
f(nt|Θt)f(Θt|H t)∫
f(nt|Θt)f(Θt|H t) dAt

=
f(nt|Θt)f(At|H t)∫
f(nt|Θt)f(At|H t) dAt

∝ f(nt|Θt)f(At|H t)

(2.35)
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5.2. Proposal distribution.

The proposal function generates a candidate value A∗ in the neighborhood based

on current state At through Beta distribution.

q(A∗|At) = Beta(α =
1 + 100At

1− At
, β = 102) (2.36)

Correspondingly, there is

q(At|A∗) = Beta(α =
1 + 100A∗

1− A∗
, β = 102) (2.37)

5.3. Acceptance probability.

Compute the acceptance ratio based on the proposal distribution and joint density

function.

accept ratio =
f(nt|Θ∗)f(A∗|H t) · q(At|A∗)
f(nt|Θt)f(At|H t) · q(A∗|At)

=
f(n|Rt, A∗,M t)f(A∗|H t) · q(At|A∗)
f(n|Rt, At,M t)f(At|H t) · q(A∗|At)

(2.38)

Accept the proposed candidate with probability of acceptance ratio. If acceptance

ratio is greater than 1, let acceptance probability be 1.

r = min

(
1,

f(n|Rt, A∗,M t)f(A∗|H t) · q(At|A∗)
f(n|Rt, At,M t)f(At|H t) · q(A∗|At)

)
5.4. Iterative updates.

Take A∗ as the current state, repeat above steps to generate the next state A∗1.

For Metropolis-Hastings iteration h = 1, 2, ..., 99, use A∗(h) as current state, re-

peat above steps to generate next state A∗(h+1). Finally, the next state of Gibbs

iteration At+1 is updated with the last state of Metropolis-Hastings iteration:

At+1 = A∗(H) where H is the last state in MH iterations

6. Update M t.
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6.1. Conditional posterior distribution.

The proportional posterior distribution of current mutation rate M t conditioned

on other parameters and data is as follows:

f(M t|n, Rt, At, H t, bt) =
f(n,Θt, H t, bt)∫

f(n,Θt, H t, bt) dM t

=
f(nt|Θt)f(Θt|H t)∫

f(nt|Θt)f(Θt|H t) dM t

=
f(nt|Θt)f(M t|H t)∫

f(nt|Θt)f(M t|H t) dM t

∝ f(nt|Θt)f(M t|H t)

(2.39)

6.2. Proposal distribution.

The proposal function generates a candidate value M∗ in the neighborhood based

on current state M t through Beta distribution.

q(M∗|M t) = Beta(α =
1 + 1000M t

1−M t
, β = 1002)

q(M t|M∗) = Beta(α =
1 + 1000M∗

1−M∗ , β = 1002)

(2.40)

6.3. Acceptance probability.

Compute the acceptance ratio based on the proposal distribution and joint density

function.

accept ratio =
f(nt|Θ∗) f(M∗|H t) q(M t|M∗)

f(nt|Θt) f(M t|H t) q(M∗|M t)

=
f(n|Rt, At,M∗) f(M∗|H t) q(M t|M∗)

f(n|Rt, At,M t) f(M t|H t) q(M∗|M t)

(2.41)

Accept the proposed candidate with probability of acceptance ratio. If acceptance

ratio is greater than 1, let acceptance probability be 1.

r = min

(
1,

f(n|Rt, At,M∗) f(M∗) q(M t|M∗)

f(n|Rt, At,M t) f(M t) q(M∗|M t)

)
(2.42)

6.4. Iterative updates.

Take M∗ as the current state, repeat above steps to generate the next state
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M∗1. For Metropolis-Hastings iteration h = 1, 2, ..., 99, use M∗(h) as current

state, repeat above steps to generate next state M∗(h+1). Finally, the next state

of Gibbs iteration M t+1 is updated with the last state of Metropolis-Hastings

iteration:

M t+1 = M∗(H) where H is the last state in MH iterations

7. Burn-in and thinning.

The burn-in and thinning process is performed to correct the potential bias introduced

by the initial status. Some starting points may over sample the regions that are rare

events. The beginning samples may not be stabilized to the stationary distribution,

thus it should not contribute to the inferences. In this simulation, the initial 20% period

of Gibbs sampler iterations is discarded and every 5th value is kept. The remaining

sequences are used for inferences after burn-in and thinning process.

8. Convergence and diagnosis.

A major consideration in MCMC simulations is the convergence of Markov chains. The

simulated chains are expected to fully explore the target distribution. Multiple chains

initiated with different starting values are adopted. A common method to assess the

MCMC convergence is to analyze and compare the differences between multiple chains.

The Gelman-Rubin statistic is applied to diagnose the MCMC convergence by analyz-

ing the differences between multiple Markov chains. The convergence is evaluated by

comparing the estimated between-chains and within-chains variances. Large differences

between these variances indicate non-convergence.

Suppose there are M simulated chains with length T . Given a model parameter θ, let

θmt be the value at the tth updates on the mth simulated chains, where t = 1, 2, ..., T

and m = 1, 2, ...,M . Let θ̂m and σ̂2
m be the sample posterior mean and variance of the

mth chain. The between-chains variance B and within-chains variance W are given by
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B =
T

M − 1

M∑
m=1

(
θ̂m − θ̂

)2
W =

1

M

M∑
m=1

σ̂2
m

(2.43)

The pooled variance V̂ = T−1
T
W + M+1

MT
B is an unbiased estimator of the marginal

posterior variance of θ under certain stationarity conditions (Gelman and Rubin 1992).

The potential scale reduction factor (PSRF) is defined to be the ratio of V̂ and W .

If the simulated M chains converge to the target distribution, then PSRF should be

close to 1. The PSRF is given as below, where d̂ is the degrees of freedom estimate of

a t distribution.

Rc =

√
d̂+ 3

d̂+ 1

V̂

W

According to (Brooks and Gelman, 1998), if for all parameters the conditions Rc < 1.2

are satisfied, then it can be concluded that multiple Markov chains are converged. If

PSRF reaches beyond this threshold, then simulated chains may not explore the full

posterior distribution or longer simulations are needed.

9. Bayesian inferences.

The SNP status H is estimated by posterior mean. It assesses the probability that the

SNP is associated with disease. We will use estimation of SNP status to evaluate the

power of model to identify associated SNPs. The hyper-parameter b and other param-

eters R,A,M are estimated by posterior median. The estimation of these parameters

are used to evaluated the prediction accuracy of Bayesian model.

2.5 Simulation study

The simulation study evaluates the performance of single marker analysis using penalized

maximum likelihood method and the Bayesian methods. We will consider performance of the
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estimators and power of the hypothesis testing. The quality of the estimator is assessed by

mean square error (MSE) of the RR estimators. The power of hypothesis testing measures

the probability one method identifies a positive variant given that variant is associated.

The simulation data are generated in combinations of different settings: R = 1, 2, 3, A =

0.05, 0.1, 0.2,M = 0.001, 0.005 and n = 1000, 3000. In each setting we generate 400 data sets

to assess the performance. A simulated data set will contain a two-way summary counts of

normal and tumor genotypes, generated under the settings of the parameters RR, AF, MR

and sample size.

The simulated data sets are regarded as independent variants for single marker analysis

using penalized MLE and Bayesian methods. We propose to estimate the allelic effect size

under additive model, which is one of the most commonly used risk models (Thakkinstian

et al., 2005; Attia, 2003). In additive model, the impact of heterozygous genotype is the

additive mean of impacts of the homozygous genotypes.

2.5.1 Performance of estimators

The quality of RR estimator is assessed by the MSE. We calculate the MSE of RR estimator

with all 400 data under different settings for penalized MLE and single Bayesian methods.

Due to sampling variation, the parameter estimation in MLE can be infeasible. The ridge

coefficient is added to avoid the RR estimations from being too large, and to keep AF and

MR estimations from being on the boundaries. The ridge coefficient is set as 0.05. In

Bayesian modeling, the prior distribution RR|H = 0 ∼ Gamma(3, 3) centers at 1. The prior

AF |H = 0 follows Beta distribution that centers at observed allele frequency in sample.

The prior MR|H = 0 follows Beta distribution that centers at observed mutation rate

in sample. Under null hypothesis, the non-associated variant has effect size equaled to

1 and allele frequency remains unchanged from population to control samples. Thus the

SNP status tends to be close to 0. Under alternative hypothesis, the prior distribution

33



RR|H = 1 ∼ Gamma(3, 8) has center around 2.6. The prior AF |H = 1 follows Beta

distribution that has prior mean calculated by the observed allele frequency and effect size

in 2.16. The prior MR|H = 1 follows Beta distribution that has prior mean calculated

by observed mutation rate, observed allele frequency and effect size in 2.21. In alternative

hypothesis, the variant has effect size larger than 1 and allele frequency is enriched in control

samples. Under this assumption, the prior distribution of AF and MR in population should

be adjusted by the formula 2.16-2.21.

The posterior distribution of Bayesian model is drawn from MCMC simulations, which

uses Metropolis-Hastings algorithm embedded in the Gibbs sampler structure. Three in-

dependent Markov chains are generated with different starting values. The parameters are

estimated by the mean or median of posterior distribution after burn-in and thinning. The

Figure 2.4 shows the MSE comparison of penalized MLE and Bayesian model under different

settings in single marker analysis.

The above comparison shows that Bayesian model systematically has lower MSE than

the regularized maximum likelihood estimation. For settings with lower mutation rate, the

regularized MLE has much higher estimation errors. Due to few observations in the off-

diagonal entries of data matrix, the sampling error can bring high impact on MLE, even

with parameter regularization. On the other hand, Bayesian model with predetermined

prior distribution has higher accuracy in prediction. In settings with higher mutation rate,

regularized MLE and Bayesian model both performs better. In settings with higher mutation

rate and higher allele frequency, performance of regularized MLE and Bayesian method is

close.

2.5.2 Power analysis

We consider the null hypothesis H0 : R = R0 = 1 and alternative hypothesis H1 : R 6= R0 =

1. In MLE method, the Wald test is calculated as 2.8 for RR estimation. The posterior

34



0.05 0.1 0.2 0.3 0.5

1000

3000

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

0

2

4

6

0

2

4

6

MSE Setting MR = 0.001

0.05 0.1 0.2 0.3 0.5

1000

3000

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

0

1

2

0

1

2

Relative Risk

penalized MLE Single Bayes

MSE Setting MR = 0.005

Figure 2.4: Simulation studies of single marker analysis. The MSE is calculated for MLE
and Bayesian method.

distribution is sampled from MCMC simulations with three sequences. The probability of

SNP status H = 1 can be interpreted as the probability of the SNP being associated. The

SNP association status is estimated by the posterior median. The Figure 2.5 shows the

power comparison of both penalized MLE and Bayesian model under different settings in

single marker analysis.

The above comparison shows that the Bayesian model has higher power under settings

with higher RR and MR. Under large samples and relative large allele frequency, both

performances are similar. The power to identify variants with moderate to large effect size
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Figure 2.5: Simulation studies of single marker analysis. The MSE is calculated for MLE
and Bayesian method.

is high. In the meanwhile, the type I error, where a neutral variant is classified as a risky

variant under null hypothesis, is low.

In summary, the simulations reveal that Bayesian model overall performs better in pa-

rameter estimation and power analysis. By selecting proper prior distribution associated

with SNP status for RR, AF and MR, it can reduce the variance of the estimator and mit-

igate the impact of sampling variation. Thus MSE of Bayesian estimator is relatively low.

By assigning proper prior distribution for SNP status, the posterior distribution can be a

good indicator of SNP status under different association scenarios. The power to identify

risk variant is relative high while the type I error remains relative low. The penalized MLE

method has similar performance in settings with sufficient large sample sizes and high allele

frequency. There are several settings where the penalized MLE method has a slightly higher
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power and a much higher MSE. The reason is that the penalized MLE is not stable when few

data are available and sampling variation presents. From these studies, the Bayesian model

has better performance under most scenarios. We will explore multiple marker analysis by

extending the Bayesian framework to multiple SNPs in the next chapter.
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CHAPTER 3

MULTIPLE MARKERS ANALYSIS

3.1 Introduction

The typical genome-wide association studies have effectively detected large amounts of SNPs

that are associated with various diseases, however the identified variants explain a limited

portion of the disease heritability (Manolio et al., 2009). There are many associated variants

remained undiscovered partly because the single locus GWAS has limited power to reveal

the associations. The single locus GWAS typically examines each genetic marker for asso-

ciation and conducts multiple hypothesis testings to get statistically significant variants at

the genome level. The high-throughput genotyping technology nowadays has made rapid

progress in producing up to millions of candidate SNPs, which are further evaluated and

tested individually. In multiple hypothesis testings, the type I error rates should be ad-

justed using Bonferroni or other correction methods. For hundreds of thousands or even

millions of candidate markers, the threshold for each individual marker will be very small,

causing very few markers with large effect sizes can be declared significant among all tests.

Candidate markers with moderate effect sizes often fail to be identified in the single locus

GWAS analysis. In addition, the SNP interactions are ignored in single marker analysis.

The consideration of joint effects of a set of related SNPs can play an important role in un-

derstanding the complex diseases susceptibility (Li et al., 2014). Thus, limitations in single

locus GWAS necessitates a multiple markers analysis, which can jointly examine a SNP-set

to improve the detection powers.

We propose a multiple marker model by extending the single-marker Bayesian model.

The multiple marker model considers SNP-sets aggregated in a biological meaningful region,

such as genes, pathways, or topological 3D structures. For simplicity, we use genes as an

example of grouping SNPs into sets in the following sections, with a note that the model

applies to any other biologically meaningful ways of grouping SNPs.
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3.2 Bayesian Hierarchical Models

The Bayesian hierarchical framework is discussed in Chapter 2 for single marker analysis. In

Chapter 3, we extend the Bayesian hierarchical framework to multiple marker analysis. The

purpose of developing a Bayesian model is to fully take advantage of all genetic markers by

jointly analyze the effect sizes on the gene level. The multiple marker model is applied to

determine the association status of a gene, given that the samples of genetic markers on the

gene are provided. The multi-locus Bayesian structure is similar to the single-locus Bayesian

structure. In the rest of this section, we will discuss the prior distribution, joint distribution

and posterior sampling of the multi-locus Bayesian hierarchical model.

3.2.1 Prior Distribution

Suppose there are J SNPs on a gene. Let G denote the gene association status: 1 for asso-

ciated and 0 for not associated. Gene status G is assigned a Bernoulli prior with probability

b, where b is assigned a Beta prior. As is well known that only a small proportion of genes

are associated with cancer, the prior mean of b is predetermined at 0.2. The distributions of

gene status G and probability b are as follows:

G ∼ Bernoulli(b)

b ∼ Beta(αb, βb)

(3.1)

Let Hj represent the SNP association status for the jth SNP on the gene, where Hj = 1

indicates a risky marker, Hj = 0 indicates an unrelated or neutral marker, j = 1, ..., J . The

probability of Hj = 1 depends on the gene status G. If the gene is associated with the

disease, there is a higher probability that the SNPs on the gene associated with the disease,

let Hj|(G = 1) ∼ Bernoulli(p1). On the other hand, if the gene is not associated with the

disease, the chance that each SNP is associated is low. Let Hj|(G = 0) ∼ Bernoulli(p0),
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where p0 = 0.1 and p1 = 0.9. Thus for each SNP the conditional prior distribution is

Hj|G ∼ G ·Bernoulli(p1) + (1−G) ·Bernoulli(p0), which is equivalent to:

Hj|G ∼ Bernoulli(p1)
G ·Bernoulli(p0)(1−G) (3.2)

Let H = {H1, . . . , HJ} be the set of parameters for SNP association status. Assume that

each Hj is conditionally independent, the prior distribution is as follows:

f(H|G) = f(H1, . . . , HJ |G) =
J∏
j=1

f(Hj|G) (3.3)

Let Rj denote the relative risk (RR) of the jth SNP on the gene. The prior distribution

of RR depends on the association status of the jth SNP. When the jth SNP is risky, the

effect size should be greater than 1. Then Rj is assigned a prior Gamma(k1, θ1) with mean

predefined at 2.5. On the other hand, when the jth SNP is neutral, the effect size should be

1. Then Rj is assigned a prior Gamma(k0, θ0) with mean at 1. Let R = {R1, . . . , RJ} be a

set of RR variables on the same gene. Assume Rj|Hj is independent of each other, and Rj

is independent of Hj′ when j 6= j′. Then the prior distribution of RR is as follows:

Rj|(Hj = 1) ∼ Gamma(k1, θ1)

Rj|(Hj = 0) ∼ Gamma(k0, θ0)

Rj|Hj ∼ Gamma(k1, θ1)
Hj Gamma(k0, θ0)

(1−Hj)

f(R|H) =
J∏
j=1

f(Rj|Hj)

(3.4)

Let Aj denote the allele frequency (AF) of the jth SNP on the gene. The prior distribution

of AF depends on the association status of the jth SNP. When a SNP is neutral, the allele

frequency is neither enriched nor diminished in the disease population. That is, we expect

to observe the same the true allele frequency in the disease population. The observed AF at

jth SNP is Aobs,j = n10+n11+n12+2n20+2n21+2n22

2n
, which is an estimator of true AF when a SNP
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is assumed to be non-associated. Thus Aj|(Hj = 0) is assigned a prior Beta(αA0,j, βA0,j)

with mean at µAobs,j
.

On the other hand, for a risky SNP, the allele frequency is enriched in the disease pop-

ulation. The level of enrichment depends on effect size and mutation rate from equation

2.14. The effect size is estimated to be 2.5 for risky SNP. Let MR parameter be estimated

by the observed MR. Then for a risky association status, Aj|(Hj = 1) is assigned a prior

Beta(αA1,j, βA1,j), with prior mean evaluated by formula 2.17. Let A = {A1, . . . , AJ} be a

set of AF variables on the same gene. Assume that Aj|Hj is independent of each other, and

Aj is independent of Hj′ when j 6= j′. Therefore, the distribution of AF is as follows:

Aj|Hj=1 ∼ Beta(αA1,j, βA1,j)

Aj|Hj=0 ∼ Beta(αA0,j, βA0,j)

f(Aj|Hj) = Beta(αA1,j, βA1,j)
Hj Beta(αA0,j, βA0,j)

(1−Hj)

f(A|H) =
J∏
j=1

f(Aj|Hj)

(3.5)

Let Mj represent the mutation rate (MR) of the jth SNP on the gene. The prior dis-

tribution of MR depends on the association status of the jth SNP. When the SNP is non-

associated, the MR variable Mj|(Hj = 0) is assigned a prior Beta(αM0,j, βM0,j). From 2.19 ,

the observed MR Mobs,j of the jth SNP is an estimator of true MR since allele frequency does

not change in disease population. For a risky SNP, the observed MR depends on the true

RR, AF and MR, thus the MR variable Mj|(Hj = 1) is assigned a prior Beta(αM1,j, βM1,j)

with mean calculated from 2.21. Let M = {M1, . . . ,MJ} be a set of MR variables on the

same gene. Assume that Mj|Hj is independent of each other, and Mj is independent of Hj′

when j 6= j′. Therefore, the distribution of MR is as follows:
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Mj|Hj=1 ∼ Beta(αM1,j, βM1,j)

Mj|Hj=0 ∼ Beta(αM0,j, βM0,j)

f(Mj|Hj) = Beta((αM1,j, βM1,j))
Hj Beta(αM0,j, βM0,j)

(1−Hj)

f(M|H) =
J∏
j=1

f(Mj|Hj)

(3.6)

3.2.2 Joint Posterior Distribution

Let Θj = {Rj, Aj,Mj} be the set of RR, AF and MR variables on the jth SNP, where Θj

and Θ′j are independent when j 6= j′. Let Θ = {R1, ..., RJ , A1, ..., AJ ,M1, ...,MJ} be the set

of RR, AF and MR variables on all SNPs of a given gene. Let H = {H1, ..., HJ} be a set of

all SNP association status on a given gene. Under assumption that Rj|Hj, Aj|Hj, Mj|Hj

are independent of each other, the joint distribution of Θ,H, G, b can be derived as follows:

f(Θ,H, G, b) = f(Θ|H, G, b) f(H, G, b)

= f(Θ|H, G, b) f(H|G, b) f(G, b)

= f(Θ|H, G, b) f(H|G, b) f(G|b) f(b)

= f(Θ|H) f(H|G) f(G|b) f(b)

= f(R,A,M|H) f(H|G) f(G|b) f(b)

= f(R|H)f(A|H)f(M|H) f(H|G) f(G|b) f(b)

=

(
J∏
j=1

f(Rj|Hj)f(Aj|Hj)f(Mj|Hj) f(Hj|G)

)
f(G|b) f(b)

(3.7)

Based on the sampling framework in Chapter 2, the jth SNP samples Sj = {s00(j), s01(j),

s02(j), s10(j), s11(j), s12(j), s20(j), s21(j), s22(j)} follow a Multinoulli distribution with 9 categories,

where the expected probability of Pk,k′ in each category is a function of RR, AF and MR.

For each marker, f(Sj|Θj) =
∏0,1,2

k,k′ P
sk,k′(j)
k,k′(j) .
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Let S = {n1, ...,nJ} be the set of samples on a given gene, where each column are samples

on the jth SNP. The samples Sj is independent of Θ′j when j 6= j′. The likelihood function

is as follows:

f(S|Θ) =
J∏
j=1

f(Sj|Θj)

=
J∏
j=1

0,1,2∏
k,k′

P
sk,k′(j)
k,k′(j)

(3.8)

Therefore the joint posterior distribution can be derived as follows:

f(S,Θ,H, G, b) = f(S|Θ,H, G, b) f(Θ,H, G, b)

= f(S|Θ) f(Θ,H, G, b)

= f(S|Θ) f(R,A,M|H) f(H|G) f(G|b) f(b)

= f(S|Θ)

(
J∏
j=1

f(Rj|Hj)f(Aj|Hj)f(Mj|Hj) f(Hj|G)

)
f(G|b) f(b)

(3.9)

where each part is given from equations 3.1, 3.3, 3.4, 3.5, 3.6, 3.8.

The posterior distributions do not have closed-form expressions, thus it is difficult to sam-

ple from the posterior distributions directly. Alternatively, conditional posterior distribution

can be easily derived. Markov Chain Monte Carlo method is used to draw samples from

conditional posterior distribution. The Gibbs sampler and Metropolis-Hasting algorithm are

combined to approximate target distribution. For variables having a closed-form conditional

posterior distribution, Gibbs sampler is used to approximate target distribution.

3.2.3 Posterior sampling

The posterior distribution is estimated using Markov Chain Monte Carlo (MCMC) simula-

tion. Parameters are updated iteratively by Gibbs sampling framework. Variables b,G,H
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are sampled directly from closed-form conditional posterior distribution, while other vari-

ables are sampled from Metropolis-Hastings algorithms within each update step in the Gibbs

framework. For a gene with J SNPs, the Markov Chain Monte Carlo simulation is given as

follows:

1. Initialization of parameters.

Assign random initial values to b0, G0,H0,R0,A0,M0 parameters. For each gene,

three chains with different initial status are generated in Markov Chain Monte Carlo

simulation.

2. Update bt.

Given other parameters are fixed, the conditioned posterior distribution is derived as

follows:

f(bt|S, Gt,Ht,Θt, ) =
f(S,Θt,Ht, Gt, bt)∫
f(S,Θt,Ht, Gt, bt) dbt

=
f(Gt|bt)f(bt)∫
f(Gt|bt)f(bt) dbt

∝ f(Gt|bt)f(bt)

∝ (bt)
Gt+αb−1(1− bt)βb−G

t

(3.10)

The right hand side is proportional to a Beta distribution. Thus conditioned posterior

distribution of b is a Beta distribution with parameters αnew = G(t) + αb, βnew =

βb−G(t) +1. Update bt by sampling from the Beta distribution based on current state:

bt+1 ∼ Beta(αnew = G(t) + αb, βnew = βb −G(t) + 1)
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3. Update G.

f(Gt|S, bt,Ht,Θt) =
f(S,Θt,Ht, Gt, bt)

f(S,Θt,Ht, bt)

=
f(S,Θt,Ht, Gt, bt)∑

g=0,1 f(S,Θt,Ht, Gt = g, bt)

=
f(S|Θt) f(Θt|Ht) f(Ht|Gt) f(Gt|bt) f(bt)∑

g=0,1 f(S|Θt)f(Θt|Ht)f(Ht|Gt = g)f(Gt = g|bt)f(bt)

=
f(Ht|Gt)f(Gt|bt)∑

g=0,1 f(Ht|Gt = g)f(Gt = g|bt)

∝ f(Ht|Gt)f(Gt|bt)

(3.11)

Substitute the previous equations, there are

f(Gt| bt,Ht,Θt,S) ∝
[
btp

∑
Ht

j

1 (1− p1)J−
∑
Ht

j

]Gt

·
[
(1− bt) · p

∑
Ht

j

0 (1− p0)J−
∑
Ht

j

](1−Gt)
(3.12)

The conditioned posterior probability density function of Gt is proportional to a

Bernoulli distribution. The next state Gt+1 can be sampled from Gibbs sampler based

on current state:

Gt+1 ∼ Bernoulli

(
btp

∑
Ht
j

1 (1−p1)
J−

∑
Ht
j

btp

∑
Ht
j

1 (1−p1)
J−

∑
Ht
j+(1−bt)·p

∑
Ht
j

0 (1−p0)
J−

∑
Ht
j

)
(3.13)

4. Update H = H1, H2, ..., HJ .

Let Hj = 0 or 1 denote the association status of each jth SNP on the gene. When

Hj = 1, the jth SNP is associated. Otherwise the jth SNP is not associated. Given

other parameters are fixed, the conditioned posterior distribution at step t can be

derived as follows:
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f(H t
j |S, bt, Gt, H t

1, ..., H
t
j−1, H

t
j+1, ..., H

t
J ,Θ

t)

=
f(S|Θt)f(Θt|Ht)f(Ht|Gt)f(Gt|bt) f(bt)∑

Ht
j=0,1 f(S|Θt)f(Θt|Ht)f(Ht|Gt)f(Gt|bt) f(bt)

=
f(S|Θt)

(∏J
l=1 f(Rt

l |H t
l )f(Atl |H t

l )f(M t
l |H t

l )f(H t
l |Gt)

)
f(Gt|bt) f(bt)∑

Ht
j=0,1 f(S|Θt)

(∏J
l=1 f(Rt

l |H t
l )f(Atl |H t

l )f(M t
l |H t

l )f(H t
l |Gt)

)
f(Gt|bt) f(bt)

=
f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j)f(H t
j |Gt)∑

Ht
j=0,1 f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j)f(H t
j |Gt)

∝ f(Rt
j|H t

j)f(Atj|H t
j)f(M t

j |H t
j)f(H t

j |Gt)

(3.14)

The conditional posterior distribution of H t
j is proportional to Bernoulli distribution.

The next state can be directly sampled:

f(Ht
j |S, bt, Gt, Ht

1, ...,H
t
j−1, H

t
j+1, ...,H

t
J ,Θ

t)

∝
(
Gamma(Rt

j ; k1, θ1)Beta(A
t
j ;αA1,j , βA1,j)Beta(M

t
j ;αM1,j , βM1,j)p1

Gt

p0
1−Gt

)Ht
j

·(
Gamma(Rt

j ; k0, θ0)Beta(A
t
j ;αA0,j , βA0,j)Beta(M

t
j ;αM0,j , βM0,j)(1− p1)G

t

(1− p0)1−Gt
)1−Ht

j

(3.15)

5. Update relative risk Rt = Rt
1, R

t
2, ..., R

t
J .

Parameters are updated one by one in the order R0
1, R

0
2, ..., R

0
J , R

1
1, R

1
2, ..., R

1
J , ..., R

t
1, R

t
2,

..., Rt
J , R

t+1
1 , Rt+1

2 , ..., Rt+1
J , conditioning on all other parameters being fixed at their

current values. Since there is no closed-form for conditional posterior distribution,

the desired conditional posterior distribution will be sampled by Metropolis-Hastings

algorithm within each Gibbs step.

5.1. Conditional posterior distribution.

The proportional posterior distribution of Rt
j conditioned on other parameters is

derived as follows:
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f(Rt
j|S, bt, Gt,Ht, Rt

1, ..., R
t
j−1, R

t
j+1, ..., R

t
J ,A

t,Mt)

=
f(S,Θt,Ht, Gt, bt)∫
f(S,Θt,Ht, Gt, bt) dRt

j

=

(∏J
l=1 f(nt

l |Θt
l )f(Θt

l |H t
l )f(H t

l |Gt)
)
f(Gt|bt)f(bt)∫ (∏J

l=1 f(nt
l |Θt

l )f(Θt
l |H t

l )f(H t
l |Gt)

)
f(Gt|bt)f(bt) dRt

j

=
f(nt

j |Θt
j)f(Θt

j |H t
j)∫

f(nt
j |Θt

j)f(Θt
j |H t

j) dR
t
j

=
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j)∫
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j) dR
t
j

=
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)∫

f(nt
j |Rt

j, A
t
j,M

t
j )f(Rt

j|H t
j) dR

t
j

∝ f(nt
j |Rt

j, A
t
j,M

t
j )f(Rt

j|H t
j)

(3.16)

The marginal distribution can hardly be integrated. Thus the proportional pos-

terior distribution is used and Metropolis-Hastings algorithm is applied.

5.2. Proposal distribution.

Gamma distribution is used as the proposal distribution to generate a candidate

value R∗j in the neighborhood based on the value of current state Rt
j. The tran-

sition probability and reverse transition probability are as follows:

q(R∗j |Rt
j) = Gamma(shape = 1 + 5Rt

j, rate = 5)

q(Rt
j|R∗j ) = Gamma(shape = 1 + 5R∗j , rate = 5)

5.3. Acceptance probability.

Compute the acceptance ratio and determine the acceptance probability:

acceptance ratio =
f(nt

j |R∗j , Atj,M t
j )f(R∗j |H t

j) · q(Rt
j|R∗j )

f(nt
j |Rt

j, A
t
j,M

t
j )f(Rt

j|H t
j) · q(R∗j |Rt

j)
(3.17)
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Then compute the acceptance probability:

r = min

{
1,
f(nt

j |R∗j , Atj,M t
j )f(R∗j |H t

j) · q(Rt
j|R∗j )

f(nt
j |Rt

j, A
t
j,M

t
j )f(Rt

j|H t
j) · q(R∗j |Rt

j)

}

The acceptance indicator is generated from Bernoulli(r) distribution with prob-

ability equals r. If acceptance indicator equals to 1, the next state R∗1j = R∗j ,

otherwise R∗1j = Rt
j.

5.4. Iterative updates.

For Metropolis-Hastings iterations h = 1, 2, ..., 99, take R∗hj as the current state,

repeat the above steps to update the next state in Metropolis-Hastings sequences

R∗1j , R
∗2
j , ..., R

∗100
j . Finally, the next state of Gibbs iterations Rt+1

j is updated with

the last state in Metropolis-Hastings iterations:

Rt+1
j = R∗Hj where H is the last state in MH iterations

6. Update allele frequency At = At1, A
t
2, ..., A

t
J .

Parameters are updated one by one in the order A0
1, A

0
2, ..., A

0
J , A

1
1, A

1
2, ..., A

1
J , ..., A

t
1,

At2, ..., A
t
J , A

t+1
1 , At+1

2 , ..., At+1
J , given that all other parameters are fixed at their current

values. Within each Gibbs iteration, the Metropolis-Hastings algorithm proposes and

updates the parameter for 100 times.

6.1. Conditional posterior distribution.

The proportional posterior distribution of Atj conditioning on other parameters is

derived as follows:
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f(Atj|S, bt, Gt,Ht,Rt, At1, ..., A
t
j−1, A

t
j+1, ..., A

t
J ,M

t)

=
f(S,Θt,Ht, Gt, bt)∫
f(S,Θt,Ht, Gt, bt) dAtj

=

[∏J
l=1 f(nt

l |Θt
l )f(Θt

l |H t
l )f(H t

l |Gt)
]
f(Gt|bt)f(bt)∫ [∏J

l=1 f(nt
l |Θt

l )f(Θt
l |H t

l )f(H t
l |Gt)

]
f(Gt|bt)f(bt) dAtj

=
f(nt

j |Θt
j)f(Θt

j |H t
j)∫

f(nt
j |Θt

j)f(Θt
j |H t

j) dA
t
j

=
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j)∫
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j) dA
t
j

=
f(nt

j |Rt
j, A

t
j,M

t
j )f(Atj|H t

j)∫
f(nt

j |Rt
j, A

t
j,M

t
j )f(Atj|H t

j) dA
t
j

∝ f(nt
j |Rt

j, A
t
j,M

t
j )f(Atj|H t

j)

(3.18)

The marginal distribution of Atj can hardly be integrated. Thus the proportional

posterior distribution is used and Metropolis-Hastings algorithm is applied.

6.2. Proposal distribution.

Beta distribution is used as the proposal distribution to generate a candidate value

A∗j in the neighborhood based on the value of current state Atj. The transition

probability and reverse transition probability are as follows:

q(A∗j |Atj) = Beta(α =
1 + 10Atj
1− Atj

, β = 10)

q(Atj|A∗j) = Beta(α =
1 + 10A∗j
1− A∗j

, β = 10)

(3.19)

6.3. Acceptance probability.

Compute the acceptance ratio and determine the acceptance probability:

acceptance ratio =
f(nt

j |Rt
j, A

∗
j ,M

t
j )f(A∗j |H t

j) · q(Atj|A∗j)
f(nt

j |Rt
j, A

t
j,M

t
j )f(Atj|H t

j) · q(A∗j |Atj)
(3.20)
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Then acceptance probability is determined as:

r = min

{
1,

f(nt
j |Rt

j, A
∗
j ,M

t
j )f(A∗j |H t

j) · q(Atj|A∗j)
f(nt

j |Rt
j, A

t
j,M

t
j )f(Atj|H t

j) · q(A∗j |Atj)

}

The acceptance indicator is generated from Bernoulli(r) distribution with proba-

bility equals to r. If acceptance indicator equals to 1, the next state in Metropolis-

Hastings iterations is updated A∗1j = A∗j . Otherwise A∗1j = Atj.

6.4. Iterative updates.

For Metropolis-Hastings iterations h = 1, 2, ..., 99, take A∗hj as the current state,

repeat the above steps to update the next state in Metropolis-Hastings sequences

A∗1j , A
∗2
j , ..., A

∗100
j . Finally, the next state of Gibbs iteration At+1

j is updated with

the last state in Metropolis-Hastings iterations:

At+1
j = A∗Hj where H is the last state in MH iterations

7. Update mutation rate M = M1,M2, ...,MJ .

Parameters are updated one by one in the order M0
1 ,M

0
2 , ...,M

0
J ,M

1
1 ,M

1
2 , ...,M

1
J ,

...,M t
1,M

t
2, ...,M

t
J ,M

t+1
1 ,M t+1

2 , ...,M t+1
J when all other parameters are fixed. Within

each Gibbs iteration, the Metropolis-Hastings algorithm proposes and updates the

parameter for 100 times. Then the next Gibbs iteration is updated from the Metropolis-

Hastings iterations.

7.1. Conditional posterior distribution.

The proportional posterior distribution of M t
j conditioning on other parameters

is derived as follows:
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f(M t
j |S, bt, Gt,Ht,Rt,At,M t

1, ...,M
t
j−1,M

t
j+1, ...,M

t
J)

=
f(S,Θt,Ht, Gt, bt)∫

f(S,Θt,Ht, Gt, bt) dMj

=

[∏J
l=1 f(nt

l |Θt
l )f(Θt

l |H t
l )f(H t

l |Gt)
]
f(Gt|bt)f(bt)∫ [∏J

l=1 f(nt
l |Θt

l )f(Θt
l |H t

l )f(H t
l |Gt)

]
f(Gt|bt)f(bt) dM t

j

=
f(nt

j |Θt
j)f(Θt

j |H t
j)∫

f(nt
j |Θt

j)f(Θt
j |H t

j) dM
t
j

=
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j)∫
f(nt

j |Rt
j, A

t
j,M

t
j )f(Rt

j|H t
j)f(Atj|H t

j)f(M t
j |H t

j) dM
t
j

=
f(nt

j |Rt
j, A

t
j,M

t
j )f(M t

j |H t
j)∫

f(nt
j |Rt

j, A
t
j,M

t
j )f(M t

j |H t
j) dM

t
j

∝ f(nt
j |Rt

j, A
t
j,M

t
j )f(M t

j |H t
j)

(3.21)

The marginal distribution of M t
j can hardly be integrated. Thus the proportional

posterior distribution is used and Metropolis-Hastings algorithm is applied.

7.2. Proposal distribution.

Beta distribution is used as the proposal distribution to generate a candidate value

M∗
j in the neighborhood based on the value of current state M t

j . The transition

probability and reverse transition probability are as follows:

q(M∗
j |M t

j ) = Beta(α =
1 + 1000M t

j

1−M t
j

, β = 1002)

q(M t
j |M∗

j ) = Beta(α =
1 + 1000M∗

j

1−M∗
j

, β = 1002)

(3.22)

7.3. Acceptance probability.

Compute the acceptance ratio and determine the acceptance probability:

acceptance ratio =
f(nt

j |Rt
j, A

t
j,M

∗
j )f(M∗

j |H t
j) · q(M t

j |M∗
j )

f(nt
j |Rt

j, A
t
j,M

t
j )f(M t

j |H t
j) · q(M∗

j |M t
j )

(3.23)
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Then acceptance probability is determined as:

r = min

{
1,

f(nt
j |Rt

j, A
t
j,M

∗
j )f(M∗

j |H t
j) · q(M t

j |M∗
j )

f(nt
j |Rt

j, A
t
j,M

t
j )f(M t

j |H t
j) · q(M∗

j |M t
j )

}

The acceptance indicator is generated from Bernoulli(r) distribution with proba-

bility equals to r. If acceptance indicator equals to 1, the next state in Metropolis-

Hastings iterations is updated M∗1
j = M∗

j . Otherwise M∗1
j = M t

j .

7.4. Iterative updates.

For Metropolis-Hastings iterations h = 1, 2, ..., 99, take M∗h
j as the current state,

repeat above steps to update the next state in Metropolis-Hastings sequences

M∗1
j ,M

∗2
j , ...,M

∗100
j . Finally, the next state of Gibbs iteration M t+1

j is updated

with the last state in Metropolis-Hastings iterations:

M t+1
j = M∗H

j where H is the last state in MH iterations

8. Burn-in and thinning.

The burn-in and thinning process is performed to correct the potential bias introduced

by the initial status. Some starting points may over sample the regions that are rare

events. The beginning samples may not be stabilized to the stationary distribution,

thus it should not contribute to the inferences. In this simulation, the initial 20% period

of Gibbs sampler iterations is discarded and every 5th value is kept. The remaining

sequences are used for inferences after burn-in and thinning process.

9. Convergence and diagnosis.

A major consideration in MCMC simulations is the convergence of Markov chains. The

simulated chains are expected to fully explore the target distribution. Multiple chains

initiated with different starting values are adopted. A common method to assess the

MCMC convergence is to analyze and compare the differences between multiple chains.
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The Gelman-Rubin statistic is applied to diagnose the MCMC convergence by analyz-

ing the differences between multiple Markov chains. The convergence is evaluated by

comparing the estimated between-chains and within-chains variances. Large differences

between these variances indicate non-convergence.

Suppose there are M simulated chains with length T . Given a model parameter θ, let

θmt be the value at the tth updates on the mth simulated chains, where t = 1, 2, ..., T

and m = 1, 2, ...,M . Let θ̂m and σ̂2
m be the sample posterior mean and variance of the

mth chain. The between-chains variance B and within-chains variance W are given by

B =
T

M − 1

M∑
m=1

(
θ̂m − θ̂

)2
W =

1

M

M∑
m=1

σ̂2
m

(3.24)

The pooled variance V̂ = T−1
T
W + M+1

MT
B is an unbiased estimator of the marginal

posterior variance of θ under certain stationarity conditions (Gelman and Rubin 1992).

The potential scale reduction factor (PSRF) is defined to be the ratio of V̂ and W .

If the simulated M chains converge to the target distribution, then PSRF should be

close to 1. The PSRF is given as below, where d̂ is the degrees of freedom estimate of

a t distribution.

Rc =

√
d̂+ 3

d̂+ 1

V̂

W

According to (Brooks and Gelman, 1998), if for all parameters the conditions Rc < 1.2

are satisfied, then it can be concluded that multiple Markov chains are converged. If

PSRF reaches beyond this threshold, then simulated chains may not explore the full

posterior distribution or longer simulations are needed.
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3.3 Simulation study

The simulation studies are carried out under different settings to assess the performance of

multi-marker Bayesian model, single-marker Bayesian model and penalized MLE methods

for paired tumor-normal data. Similar to simulation studies in single marker analysis, we

consider the quality of estimators and hypothesis testing. The quality of estimator is assessed

by the mean square error (MSE) of RR estimator. The hypothesis testing measures the

type I error under null hypothesis, and the power to identify an associated variant under

alternative hypothesis. The simulation data is generated in combinations of different setting:

R = 1, 2, 3, A = 0.05, 0.1, 0.2,M = 0.001, 0.005 and sample size n = 1000, 3000. In each

setting there are 400 data sets generated to provide adequate data to assess performance.

Each simulated data set is a two-way summary counts of normal and tumor genotypes

generated under setting parameters RR, AF, MR and sample size. The simulated data is

independent variant without linkage disequilibrium (LD). The allelic effect size is evaluated

by additive genetic model, where heterozygous genotype impact is the additive mean of

homozygous genotype impact (Ziegler and König, 2010).

We consider the situation where 4 similar SNPs are grouped together to evaluate the

joint effect of the SNP set. In multi-marker Bayesian model, the 4 SNPs share the same

gene statue while in single-marker Bayesian model the individual gene statue is identical to

the SNP status. In each settings 400 SNPs data sets are generated. There are 100 artificial

genes formed in multi-marker Bayesian model. The Figure 3.1 shows the SNPs and genes in

simulation studies.

In multiple marker simulation studies, we extend the hierarchical Bayesian model to

combine neighboring biomarkers and inference the status of the SNP set by jointly evaluating

the impact of multiple SNPs. Compared to single locus association analysis in a typical

GWAS, combining SNPs that share similar biological characteristics has shown advantages

in aggregating individual moderate effects.
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Figure 3.1: Simulation for multiple marker analyzes on a SNP set of 4 markers and estimate
aggregated gene status of each group

3.3.1 Quality of estimator

The quality of RR estimator is assessed by MSE. We calculate the MSE with the simulated

400 data sets under different settings. Comparison of MSE is conducted for penalized MLE,

the single Bayesian model and the multiple Bayesian model. In the penalized MLE method,

we let ridge coefficient = 0.05 to regularize the RR estimation.

In Bayesian modeling, the prior distribution under given neutral SNP status is RR|H =

0 ∼ Gamma(3, 3). AF |H = 0 follows Beta distribution with mean at the observed allele

frequency. MR|H = 0 follows Beta distribution with mean at observed mutation rate. Under

null hypothesis, the neutral variant has allelic effect size equal to 1. The allele frequency is not

enriched or diminished through sampling for a certain disease , and thus remains unchanged

from population to case samples. The mutation rate remains unchanged from population

to samples under null hypothesis as well. Therefore, the observed AF and observed MR is

assumed to be the prior mean given neutral SNP status. Under alternative hypothesis, the

prior RR|H = 1 ∼ Gamma(3, 8) has center around 2.6. AF |H = 1 follows Beta distribution

with mean calculated by the observed AF and a moderate effect size in 2.16. MR|H = 1

follows Beta distribution with mean calculated by the observed MR, observed AF and a

moderate effect size 2.21. When variant is associated with the disease, the allele frequency

is generally enriched and mutation rate is impacted in the case samples. The calculations

2.16, 2.21 are to adjust for the prior mean under alternative hypothesis.
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MCMC simulations are used to drawn posterior distribution for Bayesian model param-

eters. To handle more variables, the Metropolis-Hastings algorithm is embedded in Gibbs

sampler framework to sample from complicated distribution. Three chains are generated for

each variable. The Bayesian estimation is derived by the mean or median of conditional

posterior distribution after burn-in and thinning. The Figure 3.2, 3.3 shows the quality of

estimators in penalized MLE, single Bayesian model and multiple Bayesian model.

The results show that multiple-marker Bayesian model has the lowest MSE in most set-

tings. This indicates that multiple Bayesian models can have better RR estimation than

single SNP by considering the joint effect of variants on neighboring locations. The im-

provement of estimation performance is much better in settings without sufficient sample

size, allele frequency and mutation rate. This advantage in multiple Bayesian model will be

helpful in GWAS with limited sample size and allele frequency.

3.3.2 Power analysis

Let the null hypothesis be H0 : R = R0 = 1 and alternative hypothesis H1 : R 6= R0 = 1.

The Wald test is used in penalized MLE method. In single and multiple Bayesian models, let

the SNP status H represent the probability of variant has association. The prior distribution

of SNP status H|G = 1 ∼ Bernoulli(p1) and H|G = 1 ∼ Bernoulli(p0) is dependent on

gene status. In single Bayesian model, p1 = 0.99 and p0 = 0.01 are assigned such that G

is equivalent to H. In multiple Bayesian model, the value of p1 and p0 is determined by

an assumption of probability of positive variants on the gene. The gene status has prior

distribution G ∼ Bernoulli(b). The posterior distribution of G and H is drawn by Gibbs

sampler with burn-in and thinning. The Figure 3.4, 3.5 show the power comparison of the

three methods.

The type I error of multiple Bayesian model is lowest among all three methods in most

settings. In moderate risk R = 2 settings, the power of multiple Bayesian exceeds single
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Bayesian model in some settings. From R = 2 to R = 3 settings, the power improvement

of multiple Bayesian is much higher than the other two methods. Their performance are

similar in settings with large sample size and risk allele frequency.

Overall, from both MSE and power analysis results, the multiple Bayesian model outper-

forms the other two methods in most settings. The Bayesian model provides a more stable

estimation than penalized MLE. In scenarios where data are limited by insufficient sample

sizes, small allele frequencies or low mutation rates, the multiple Bayesian model remains

a relative low type-I-error rate, and has a higher power improvement under the alternative

hypothesis.
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Figure 3.2: Mean square error comparison of penalized MLE, Single Bayesian and Multiple
Bayesian model in setting MR = 0.005. Comparison shows that multiple Bayesian model
has lowest MSE in most settings.
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Figure 3.3: Mean square error comparison of penalized MLE, Single Bayesian and Multiple
Bayesian model in setting MR = 0.001. Comparison shows that multiple Bayesian model
has lowest MSE in most settings.
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Figure 3.4: Power analysis of penalized MLE, Single Bayesian and Multiple Bayesian model
in setting MR = 0.005. Comparison shows that multiple Bayesian model has highest power
in most settings.
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Figure 3.5: Power analysis of penalized MLE, Single Bayesian and Multiple Bayesian model
in setting MR = 0.001. Comparison shows that multiple Bayesian model has highest power
in most settings.
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CHAPTER 4

REAL DATA APPLICATION

4.1 Application to matched-pair Breast Cancer Data

We consider the tumor-normal matched-pair data from The Cancer Genome Atlas (TCGA)

on breast cancer. The total number of SNPs available is 905461 and number of matched

samples is 1070. We apply common quality control methods to remove invalid SNP geno-

types. First, Hardy-Weinberg equilibrium test (Emigh, 1980) is applied and p-value = 0.05

is a cut-off threshold. SNPs with missing genotypes and allele frequency less than 0.05 are

removed. After quality control step, there are 614883 SNPs.

Second, the principal Component Analysis (PCA) is applied to genotype data to de-

termine patient population structure. Among the 1070 samples, there are 725 White, 176

Black, 60 Asians, 95 Others and 109 Unknown. We observe that people with different eth-

nicity groups are highly distinguishable using the top two principal components as shown in

Figure 4.1. Emerging studies in GWAS have shown that population heterogeneity can pro-

duce spurious associations if sub-population structure is not properly adjusted (Price et al.,

2010). We use 95% confidence interval of each group to impute missing racial ancestry for

the unknown patients. To adjust for population stratification, we extract the major ethnic-

ity group that has the largest population for subsequent association analysis. 807 samples

classified as white people are used in the analysis. The normal and tumor matched data

are converted to Multinoulli data Table 2.10 by counting the frequencies in each combined

genotype.

We consider the refFlat gene annotation (UCSC hg19) for human genome references. The

gene region is determined using transcription start and end positions. We consider SNPs on

a gene when they locate within 1000 base pairs upstream and downstream of a gene region.

A total of 58545 genes are available. 20353 unique genes contains biomarkers and 220268
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Figure 4.1: principal Component Analysis on breast cancer data

SNPs are mapped to these genes. The summary statistics about SNP counts and gene length

in base pairs across all genes are provided in Table 4.1.

Table 4.1: Summary of SNP counts, gene length on all genes

Summary Min Q1 Median Mean Q3 Max
SNP Counts 1 3 8 42 39 1242
Gene Length 21 16215 47282 159292 166206 2.32× 106
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The SNPs tend to be widely separated across a long gene region, where linkage disequi-

librium can hardly be observed. To measure the joint effects of adjacent biomarkers, we

consider to split large genes evenly into small gene segments that contains 32000 base pairs

or less. After segmentation, there are 58161 gene segments. Summary statistics about SNP

counts on each gene segment is given in Table 4.2.

Table 4.2: Summary of SNP counts on gene segments

Summary Min Q1 Median Mean Q3 Max
SNP counts 2 3 5 6 8 40

We consider to apply the maximum likelihood estimation and Bayesian single marker

analysis to all 220268 SNPs to investigate individual SNP effect. Then multi-marker Bayesian

analysis method is applied to all 58161 gene segments to jointly measure adjacent SNP effects.

4.1.1 Single Marker Analysis

After preliminary analysis, the tumor-normal matched breast cancer data from TCGA con-

tains 807 samples from major ethnicity group and 220268 SNPs after common quality control

process. The counts of genotypes from tumor and normal tissues can summarized as in Ta-

ble 2.10, where row counts and column counts correspond to normal genotypes and tumor

genotypes, respectively. According to the sampling framework described in Chapter 2, the

observed genotype counts have a Multinoulli distribution with parameters R,A,M . The

expected probabilities can be expressed as a function of parameters R,A,M as in 2.2.1.

In maximum likelihood method, the maximum likelihood estimation with ridge penalty de-

scribed in 2.7 is applied to evaluate parameters R,A,M . We conduct a hypothesis testing for

each SNP with null hypothesis H0 : R = R0 = 1 and alternative hypothesis H1 : R 6= R0 = 1.

The Wald test is applied to determine significance of SNP effects.

The single marker analysis is applied to the breast cancer data using the Bayesian model.

The individual SNP status is estimated by the mean of the posterior distribution. The
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SNP relative risk, allele frequency and mutation rate is estimated by the mean of posterior

distribution. To obtain aggregated scores for genes, we considered a SNP on a gene segment

if its locus resides within the gene segment region. The aggregated gene status of a gene

segment is derived as the mean of SNP status of all SNPs on the segment. Let the gene

status be represented by the maximum gene segment status. We rank the all the genes based

on aggregated posterior gene status.

Table 4.3: Genes with highest gene status estimated by posterior median in single marker
analysis

Gene Name Chr Gene Status
IL7 chr8 0.975

TIAM1 chr21 0.972
CKAP2L chr2 0.961
TTC28 chr22 0.956
NDST4 chr4 0.952
EIF2AK2 chr2 0.952
CACNB4 chr2 0.95
PARD3B chr2 0.946
TMEM117 chr12 0.944
ATP6V0D1 chr16 0.943

Table 4.3 shows the top genes that are identified by single marker Bayesian model. The

Appendix B lists the top 100 genes identified by single-marker Bayesian analysis. Among

them, many genes have been reported to be cancer related. Multiple recent studies have

indicated a positive correlation between boosted TIAM1 expression level and higher grade

of human breast cancer (Minard et al., 2004; Adam et al., 2001). The TIAM1 gene and

the encoded protein has been implicated cell proliferation, migration, invasion and tumor

progression in a variety of human cancers (Walch et al., 2008; Engers et al., 2006; Minard

et al., 2006; Ding et al., 2009). NDST4 genetic loss is significantly associated with tumor

progression and NDST4 gene is identified as a novel candidate tumor suppressor in human

colorectal cancer (Tzeng et al., 2013). A number of studies have suggested that the activation

of EIF2AK2 can suppress tumor growth(Meurs et al., 1993; Shir and Levitzki, 2002; Kim
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and Cho, 2017), while elevated expression of EIF2AK2 increases carcinoma progression in a

variety of human cancers, including breast cancer (Kim et al., 2000; Lee et al., 2019; Garcia

et al., 2006). The TMEM117 gene belongs to the TMEM family. Evidences have shown that

down- or up-regulated TMEM expression has been identified in tumor tissues compared to

adjacent healthy tissues, and suggest some TMEMs as prognostic biomarkers(Schmit and

Michiels, 2018).

4.1.2 Multi-Marker Analysis

The multiple marker Bayesian model is also applied to the TCGA breast cancer data. In

multiple marker analysis results, the gene segment status is estimated by the median of pos-

terior distribution, and the SNP relative risk, allele frequency and mutation rate is estimated

by the mean of posterior distribution. Let the gene status be represented by the maximum

value of gene segment status. All the genes are ranked based on the gene status.

Table 4.4: Genes with highest gene status estimated by posterior median in multiple marker
analysis

Gene Name Chr Gene Status
LINC00383 chr13 0.999
KIRREL3 chr11 0.999
STX3 chr11 0.999

AGPAT4 chr6 0.999
SYCE1 chr10 0.997
RCBTB1 chr13 0.997
PKNOX2 chr11 0.997
RGS3 chr9 0.997
GCSH chr16 0.997
CSMD1 chr8 0.996

Table 4.4 shows the top genes in multiple marker Bayesian model ranked by gene status.

The Appendix B lists the top 100 genes identified by multi-marker Bayesian analysis. Recent

studies have identified highly significant association on KIRREL3 region with breast cancers

(Wang et al., 2010). Novel research has shown that STX3 gene plays a potential role in

66



carcinogenesis via up- or down- regulation in different cancers and promoting breast cancer

cell growth (Giovannone et al., 2018; Nan et al., 2018). Higher Agpat4 expression in cancer

tissues correlates positively with worse survival rates among colorectal cancer patients (Zhang

et al., 2020). Previous studies have indicated that deletion in PKNOX2 region is prone to

breast cancer and ovarian cancer malignancies (Launonen et al., 1998; Gentile et al., 2001).

Some studies also suggested the possible function of RGS3 protein as a cancer suppressor

(Chen et al., 2015). Research in CSMD1 revealed that CSMD1 is a tumor suppressor gene

and its low expression is significantly associated with high breast tumor grade (Escudero-

Esparza et al., 2016; Kamal et al., 2009).

4.2 Comparison with existing breast cancer research

We use the external oncogenic database, the Catalogue Of Somatic Mutations In Cancer

(COSMIC), which provides comprehensive somatic mutations and genes that are associated

with all types of breast cancer tissues. The gene list contains gene symbol, mutated samples

and total samples. The COSMIC breast cancer genes are sorted by mutated rates. Genes

with higher mutation rates tend to have greater risk in breast cancers. The ranked gene

list from COSMIC is compared with ranked gene list of multi- and single- marker analysis.

From the ranked multi- and single- marker analysis results, we consider the gene status to

be the prediction probabilities, and indicators whether the gene belongs to the set of top 500

COSMIC genes to be the true binary labels. We calculate the true positive rate and false

positive rates to plot the receiver operating characteristic (ROC) curve. Figure 4.2 shows

the ROC curves of multi- and single- marker analysis and the area under curve (AUC) of

both methods. The AUC of multi-marker analysis is 0.86 and the AUC of single-marker

analysis is 0.83.

We consider the somatic copy-number alternation (SCNA) regions that are significantly

associated with the breast invasive carcinoma. The highly significant SCNA regions are
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Figure 4.2: ROC curves of multiple and single marker models

identified using TCGA breast cancer data by GISTIC (Genomic Identification of Significant

Targets in Cancer), a tool to identify genomic regions that are significantly gained or lost

across a set of tumors (Mermel et al., 2011). There are 28 significant focal amplifications and

42 significant focal deletions found in the TCGA breast genome analysis (Broad Institute

TCGA Genome Data Analysis Center, 2016). We perform a comparison analysis between

significant SCNA regions and non-significant SCNA regions on gene segment level and SNP

level.

On gene segment level, we consider a gene segment to be located in significant SCNA

regions if they overlap. Otherwise the gene segments are located in non-significant SCNA

regions. The non-parametric Kolmogorov–Smirnov (KS) test and Mann–Whitney U test are

used to compare the distribution of gene segment association status predicted by multiple

marker Bayesian model among these two groups. The KS test states the null hypothesis H0

that the distributions of gene segment scores for the two groups are equal and alternative

hypothesis H1 that distributions are not equal. The Mann–Whitney U test states the null

hypothesis H0 that two groups have same distribution and alternative hypothesis H1 that
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one group has larger or smaller values than the other. The Table 4.5 shows the comparison

tests between two groups of gene segments. The test results conclude that distributions

of segment association status are different for significant SCNA regions and non-significant

SCNA regions. The Figure 4.3 compares the gene segment score distributions for significant

SCNA regions and non-significant SCNA regions. Each interval corresponds to 10th per-

centile of all gene segment scores. It shows that the high risk gene segments are enriched

on deletion and amplification cytobands, which genomic associated predicted by multiple

marker Bayesian model is aligned with GISTIC analysis.

Table 4.5: Test on gene segment level

Significant Regions Test Statistics P Value
Deletions KS test 0.07589 < 2.2e− 16
Deletions Mann–Whitney U test 141020239 < 2.2e− 16

Amplifications KS test 0.04444 0.004762
Amplifications Mann–Whitney U test 39894790 0.1943

On SNP level, we compare the relative risk of SNPs on significant deletion and amplifi-

cation regions and SNPs outside these regions. The KS test and Mann–Whitney U test are

used to compare the distribution of relative risk for the two groups. The Table 4.6 shows

that the distribution of relative risk of SNPs on deletion and amplification cytobands are

different than the distribution of SNPs outside these cytobands. The Figure 4.4 shows that

high risk SNPs are enriched in deletion cytobands while the enrichment can not be observed

in amplification cytobands. It indicates that the relative risk predicted by single marker

Bayesian model is more aligned with significant deletion regions identified by GISTIC.

We also explore another external resources from the Genomic Data Commons (GDC)

Data Portal to compare with the gene lists provided by our Bayesian models. The data

contains mutations that have been reported to associated with breast cancers. The impact

of breast cancer mutations are classified on the basis of the severity of the variant conse-

quences by three tools: Ensembl Variant Effect Predictor (VEP), Polymorphism Phenotyping
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Figure 4.3: Comparison of gene segment scores for significant SCNA regions and non-
significant SCNA regions.

Table 4.6: Test on SNP level

Significant Regions Test Statistics P Value
Deletions KS test 0.06212 < 2.2e− 16
Deletions Mann–Whitney U test 1954578458 < 2.2e− 16

Amplifications KS test 0.02395 0.002515
Amplifications Mann–Whitney U test 573484616 0.002193

(PolyPhen) and Sorting Intolerant From Tolerant (SIFT). The Ensembl VEP tool provides

the effect of a genomic variant in coding and non-coding regions. The effect levels include

high, moderate, low and modifier, which ranges from high impact in protein to no evidence

of impact. The SIFT tool predict whether an amino acid substitution will affect protein

function and phenotype based on sequence homology. The impact levels are“deleterious”,

“deleterious low confidence”, “tolerated low confidence” and “tolerated”, which ranges from

very likely to have a phenotypic effect to not likely to have a phenotypic effect. The PolyPhen
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Figure 4.4: Comparison of relative risk for significant SCNA regions and non-significant
SCNA regions.

tool predicts the potential impact of an amino acid substitution on human proteins. The im-

pact levels are “probably damaging”, “possibly damaging”, “benign” and “unknown”, which

ranges from high confidence to affect protein function or structure, to unknown prediction.

In Figure 4.5 we summarise the counts of each impact levels using the variants that located

within the top 100 associated genes identified by single-marker Bayesian model and multi-

marker Bayesian model. The results show that the variants from the top genes identified by

multi-marker model have more classifications as high impact variants, compared to the sets

from top genes identified by single-marker model.

In addition, we also explore the differences between association status and variant effect

size estimated by multiple Bayesian model and single Bayesian model. In multiple-marker

analysis, the segment association status is estimated by the posterior mean of MCMC sim-

ulation. In single-marker analysis, the segment association status is derived as the mean of
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Figure 4.5: The counts of impact levels predicted by three tools: Ensembl VEP, SIFT and
PolyPhen using the variants from the top 100 associated genes identified by multiple-marker
Bayesian model and single-marker Bayesian model.

estimated association status of individual variants. We compare the estimations of genes

TACC2, CSMD1 and CDH13, which have been recognized to associate with breast cancer

in multiple literature (Conte et al., 2003; Ma et al., 2009; Toyooka et al., 2001). Figure

4.6-4.8 plot the relative risk distribution, segment association status and variant counts on

each gene segment of the target gene. The plots show that the distributions of the estimated

allelic relative risk are similar in both models. However, multi-marker Bayesian model is

more sensitive to moderate variants by considering the joint effects of neighboring SNPs on

a segment. Take the segment 6 and 7 in CSMD1 gene for example, given that the SNP

counts are the same, the relative risk distribution has a small increase from segment 6 to

segment 7. Correspondingly, the multi-marker model has a sharp jump on association sta-

tus estimations from around 0.2 to 0.8, while single-marker model has a mild increase on
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association status estimations from 0.2 to 0.4. On the other hand, the number of variants

also affects the aggregation impact. For example, the segments 44 and 46 of CSMD1 gene

have 32 and 9 variants respectively. Both segments have moderate relative risk distributions,

multi-marker model has association status 0.8 and 0.6 while single-marker model has both

association status around 0.4.
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Figure 4.6: TACC2 gene is divided to 10 segments. The relative risk estimations, segment
status and segment SNP counts are plotted.
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Figure 4.7: CSMD1 gene is divided to 71 segments. The relative risk estimations, segment
status and segment SNP counts are plotted.
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Figure 4.8: CDH13 gene is divided to 41 segments. The relative risk estimations, segment
status and segment SNP counts are plotted.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

In this dissertation, we propose a novel model framework to analyze variants in tumor and

matched normal tissue data in GWAS. This framework establishes a connection between

paired genotype data and allelic association, and allows to apply frequentist and Bayesian

methods to evaluate the association status. There are limited studies for matched tumor-

normal data in traditional GWAS, since most statistical models, such as regression and chi-

square test, require the independence of control and case samples(Bush and Moore, 2012).

Due to the specific structure of matched data, the traditional GWAS is not applicable and

may cause spurious results. Studies have indicated that the progression of cancer is associated

with the accumulation of somatic mutations (Alexandrov and Stratton, 2014; Alexandrov

et al., 2013; Greenman et al., 2007). Exploring the impact of somatic mutations in carcinoma

can be significant in risk prediction, continuous monitoring and early detection of cancer, and

can contribute to individualized prevention and therapeutic strategies. By considering the

sampling process from precancerous tissue to tumor tissue, the proposed framework assigns a

Multinoulli distribution to matched data and connects the distribution with allelic effect size,

frequency and mutation rate. Another benefit of the framework is that the association result

is more reliable due to the matched data intrinsically control many confounding factors.

With this cornerstone, frequentist and Bayesian statistical models can be applied to assess

the association of variants in matched data.

The penalized maximum likelihood estimation (MLE) is proposed to provide the individ-

ual effect size, allele frequency and mutation rate estimation that maximize the likelihood

function with penalty terms. The single-marker hierarchical Bayesian model is proposed to

provide more flexibility to assess the individual SNP status in addition to the above allelic

estimation. From simulation studies, we find that the single Bayesian model, compared to
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penalized MLE method, has relative low mean square error (MSE) in RR estimation and rel-

ative high power to identify associated SNPs in different settings. However, in settings with

sufficient sample size, high allele frequency and mutation rate, the performance of penalized

MLE and single Bayesian method are similar. While the analytical or numerical solution of

maximum likelihood function is efficient, the MCMC simulation of Bayesian model requires

much more computation. The performance under frequentist method is as good as Bayesian

model in settings with large samples, relatively high allele frequencies, high mutation rates

and high relative risks. On the other hand, the single Bayesian is better in scenarios with

limited sample sizes and low values of the model parameters. In addition, the advantages

of single Bayesian model includes flexibility of hierarchical model, posterior inference of

variables, as well as the prior knowledge that is taken into account for uncertainty.

The multiple-marker hierarchical Bayesian model is extended from the single-marker

Bayesian model by combining SNPs into groups in a biologically meaningful way and per-

forming SNP-set analysis. It allows to collect the joint effects of multiple SNPs and enhance

the power to detect SNPs with moderate risk. Simulations have shown that the multiple

Bayesian model improves the power to identify a contributory SNP-set while remains a rela-

tive low type-I-error rate. Another benefit of multiple Bayesian model is that by reducing the

number of hypothesis testings, the threshold to declare significance is less stringent and the

power to detect moderate SNPs is further improved. The comparisons of the three proposed

methods show that the multiple Bayesian model outperforms in most scenarios. It is worth

mention that cost of computation is similar for multiple and single Bayesian model. While

penalized MLE is more computational efficient, it requires a better data quality especially

a large sample size to achieve a comparable performance. The process to obtain a large

population and sequence genotypes can be costly(Spencer et al., 2009).

With the application to breast cancer data from The Cancer Genome Atlas (TCGA),

we find that the top genes identified by multiple-marker Bayesian model are mostly cancer
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related genes. From literature, many of the identified top genes have been reported to

have positive correlation with breast tumor progression, or act as a cancer suppressor. It is

worth mentioning that multiple Bayesian highlights the genes that are normally downgraded

in single marker analysis due to the vast majority of SNPs having medium effects. The

multiple Bayesian model is more advantageous for large genes, whose gene impact can be

mitigated by most individual moderate SNPs, when the joint effects are not taken into

account. Finally we consider another somatic mutation resources for human breast cancer

from the Catalogue of Somatic Mutations in Cancer (COSMIC). By comparing the top

associated gene list identified by Bayesian models, we find that the gene lists from multiple-

marker analysis is more consistent with the COSMIC data. We also consider the breast

cancer variants, classified into different impact level by three predictive tools, from the

Genomic Data Commons (GDC) Data Portal for comparison. In addition, the segment

status and relative risk distribution are plotted to measure the aggregation of joint effects

in multiple-marker analysis. It shows that the multiple-marker analysis are more sensitive

to SNP sets with moderate effect size, and the aggregation effect can be improved as the

number of SNPs increases.

The data framework and hierarchical Bayesian model proposed in this dissertation has

provided a statistical method to analyze tumor and normal matched-paired data in GWAS.

The simulation studies and real data application show that multiple-marker analysis has

improved power to identify related variants while remaining a relative low type I error.

However, this advantage may not be obvious in some situations. When variants are located

sparsely or far away from other variants on the genes, the aggregation of joint effect is

decreased.

There are possible ways to further improving our proposed framework and models. Our

current methods focus on case-control studies in which the phenotypes are dichotomous

traits. One extension is to develop the framework and models for quantitative traits in GWAS
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with matched pair data. This can be further combined with gene expression profiling, such as

expression quantitative trait loci (eQTLs) to identify contributory genes. Extensive research

and much effort have been devoted to eQTL-based analysis to reveal the association between

gene expressions and cancers (Li et al., 2013; Loo et al., 2012). However, few studies have

been conducted on eQTL analysis with matched pair data in GWAS. Having appropriate

tools to address somatic alternations using matched data in GWAS would contribute to

power improvement and better genetic insights.
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Figure A.1: The distribution of p-values in Wald test using penalized MLE method under
different settings of RR, AF, MR and sample size.
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Figure A.2: The distribution of p-values in Score test using penalized MLE method under
different settings of RR, AF, MR and sample size.
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Figure A.3: The distribution of p-values in Likelihood Ratio test using penalized MLE
method under different settings of RR, AF, MR and sample size.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 4

Table B.1: Top associated genes identified by multiple-marker analysis. Each gene has been

divided into segments based on the length of the gene. The gene status is represented by

the highest association status of its segments. In multi-marker analysis, the gene segment

status is estimated by the posterior mean of the parameter.

Gene Name Chromosome Gene Status

LINC00383 chr13 0.999

KIRREL3 chr11 0.999

STX3 chr11 0.999

AGPAT4 chr6 0.999

SYCE1 chr10 0.997

RCBTB1 chr13 0.997

PKNOX2 chr11 0.997

RGS3 chr9 0.997

GCSH chr16 0.997

CSMD1 chr8 0.996

WWOX chr16 0.996

ADAMTS19 chr5 0.996

MSR1 chr8 0.995

ALK chr2 0.995

TACC2 chr10 0.995

PTPRK chr6 0.995

PHF21B chr22 0.994

ADAM28 chr8 0.994

LOC101929294 chr8 0.994

ARSJ chr4 0.994

DOCK2 chr5 0.994

SGCZ chr8 0.993

NEBL chr10 0.993

CDH13 chr16 0.993

PPL chr16 0.993
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COTL1 chr16 0.991

EIF3D chr22 0.991

UNC5D chr8 0.99

PBLD chr10 0.99

PTPRD chr9 0.99

SYK chr9 0.99

SMARCA2 chr9 0.989

PALLD chr4 0.989

MYO5B chr18 0.989

PIGG chr4 0.988

NAXD chr13 0.988

ADAMTS18 chr16 0.988

TANGO6 chr16 0.988

DCLK1 chr13 0.988

LOC101928516 chr6 0.988

LOC102724084 chr16 0.987

NAALADL2 chr3 0.987

MGMT chr10 0.986

FAM19A5 chr22 0.986

EDNRB-AS1 chr13 0.986

BNC2 chr9 0.986

CCDC88C chr14 0.985

NTM chr11 0.985

DDR2 chr1 0.985

KIFC3 chr16 0.985

ZNF664-FAM101A chr12 0.985

SAXO1 chr9 0.985

DLGAP1 chr18 0.984

FGF14 chr13 0.984

CLYBL chr13 0.984

ENDOD1 chr11 0.984

KCNC2 chr12 0.984

MDGA2 chr14 0.984

IL17RD chr3 0.984

ADRA1A chr8 0.984
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SYT1 chr12 0.984

AFAP1 chr4 0.983

DLG2 chr11 0.983

MTMR9 chr8 0.983

MICU3 chr8 0.983

DEC1 chr9 0.983

LOC101927815 chr8 0.983

GPC6 chr13 0.983

CENPN chr16 0.983

MARCH1 chr4 0.983

SHFM1 chr7 0.983

FAM172A chr5 0.983

PLCG2 chr16 0.983

NPAS3 chr14 0.982

CTU2 chr16 0.982

OPRM1 chr6 0.982

CAMK4 chr5 0.982

SPATA5 chr4 0.982

GABBR2 chr9 0.982

PSD3 chr8 0.981

MSRA chr8 0.981

ASIC2 chr17 0.981

TECTA chr11 0.981

EFCAB6-AS1 chr22 0.981

INPP4B chr4 0.981

LOC400655 chr18 0.981

LRRC7 chr1 0.981

XIRP2 chr2 0.981

PKP1 chr1 0.981

DPYSL2 chr8 0.981

RGS6 chr14 0.981

EPHX2 chr8 0.98

ZBTB20 chr3 0.98

PTPN13 chr4 0.98

ITSN1 chr21 0.98
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PKD1L2 chr16 0.979

CMIP chr16 0.979

SCTR chr2 0.979

NCAPG2 chr7 0.979

DPF3 chr14 0.979

Table B.2: Top associated genes identified by single-marker analysis. Each gene has been

divided into segments based on the length of the gene. The gene status is represented by the

highest association status of its segments. In single-marker analysis, the individual variant

association status is estimated by the posterior mean. The gene segment status is derived as

the mean of individual status and the gene association status is represented by the highest

segment status.

Gene Name Chromosome Average Gene Status

IL7 chr8 0.975

TIAM1 chr21 0.972

CKAP2L chr2 0.961

TTC28 chr22 0.956

NDST4 chr4 0.952

EIF2AK2 chr2 0.952

CACNB4 chr2 0.95

PARD3B chr2 0.946

TMEM117 chr12 0.944

ATP6V0D1 chr16 0.943

LOC101928058 chr8 0.943

KIFC3 chr16 0.941

LRRC4C chr11 0.937

SPATA5 chr4 0.937

C1orf101 chr1 0.937

MIR6126 chr16 0.934

DLGAP1 chr18 0.932

KIAA0556 chr16 0.93

RNF166 chr16 0.928
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UPP2 chr2 0.927

CMTM4 chr16 0.927

GCSH chr16 0.924

GNA14 chr9 0.922

SLC18A2 chr10 0.921

HBB chr11 0.92

LOC100128317 chr7 0.919

IMPAD1 chr8 0.919

CDKL3 chr5 0.918

INTS6 chr13 0.917

LOC101928775 chr9 0.917

BEAN1 chr16 0.916

DCC chr18 0.916

APLP2 chr11 0.915

EVL chr14 0.914

NPNT chr4 0.913

CTB-12O2.1 chr5 0.912

TMEM232 chr5 0.912

MYLK3 chr16 0.911

LINGO2 chr9 0.91

LINC00456 chr13 0.91

GPALPP1 chr13 0.909

BMP1 chr8 0.909

MCF2L2 chr3 0.908

LEPROTL1 chr8 0.907

SAMD12 chr8 0.907

LOC102724874 chr8 0.907

PSD3 chr8 0.906

PPL chr16 0.906

MAPK14 chr6 0.905

CLCC1 chr1 0.905

LOC100129307 chr13 0.904

CAMTA2 chr17 0.903

BTNL3 chr5 0.903

GOLM1 chr9 0.902

86



MYRIP chr3 0.902

YWHAE chr17 0.901

SPOPL chr2 0.899

STX3 chr11 0.899

UNC5D chr8 0.898

ARID1B chr6 0.895

TAF4 chr20 0.894

CHODL chr21 0.894

CNST chr1 0.893

LINC00606 chr3 0.893

PHF21A chr11 0.891

NUDC chr1 0.891

CX3CL1 chr16 0.891

KIRREL3-AS2 chr11 0.891

METTL16 chr17 0.89

HEATR6 chr17 0.889

SLC4A10 chr2 0.887

KIAA0355 chr19 0.886

VCL chr10 0.886

ATP2C1 chr3 0.885

LOC339874 chr3 0.884

ZGRF1 chr4 0.883

LOC101927849 chr4 0.883

SERINC3 chr20 0.883

APOA1 chr11 0.882

FAM110B chr8 0.882

KIF6 chr6 0.881

C16orf46 chr16 0.88

ADAMTS20 chr12 0.878

HBS1L chr6 0.878

DPH6 chr15 0.877

SYNJ2 chr6 0.877

APLF chr2 0.877

YLPM1 chr14 0.876

DLG2 chr11 0.874
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NRXN3 chr14 0.874

MICU3 chr8 0.872

ATG5 chr6 0.871

CMA1 chr14 0.871

PARK2 chr6 0.871

PRKG2 chr4 0.87

LINC00383 chr13 0.869

LOC101928203 chr16 0.868

SLC5A1 chr22 0.867

NRG1 chr8 0.866

IRS1 chr2 0.866
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