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The commercial wearable device market today majorly consists of activity trackers and 

smartwatches: that enable the monitoring of user states such as walking, sleeping, and exercising 

using sensors relying on physically measurable quantities. These devices are the ones that make a 

huge impact on the lives of people suffering from chronic illnesses and their quality of life. 

Integrating a sweat-based electrochemical biosensor with a wearable device opens new avenues in 

health management and decision support systems for healthcare providers as they can provide a 

physiologically relevant and clinically acceptable output. Integrating a glucose-sensing sweat 

biosensor adds more value in the lives of diabetics, who require support in terms of balancing 

quality of life using good diet and exercise routines. This work is a methodology of understanding 

the aspects of making such a wearable platform, starting from understanding the needs of the 

wearable device user population. The current market technology is thoroughly studied to pick 

relevant aspects and an electronic front end is designed within the bounds of good design practice 

to enable good accuracy, ease of use, and 1-week battery life. This in turn is utilized to collect 

human subject data to get an understanding of the performance of the sensors in varying 
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environmental conditions and user states. Finally, mathematical modeling approaches are used to 

build correlations between the outcome to be presented to the user against change in the recorded 

data features as per the human subject experimentation.  

 

 

 

 



 

 
 

ix 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ...............................................................................................................v 

ABSTRACT .................................................................................................................................. vii 

LIST OF FIGURES ...................................................................................................................... xii 

LIST OF TABLES ....................................................................................................................... xvi 

CHAPTER 1 INTRODUCTION ...................................................................................................1 

1.1 Overview ..................................................................................................................1 

1.2 Motivation and problem analysis .............................................................................1 

1.3 Proposed research ....................................................................................................2 

CHAPTER 2 SPECIFICATION DEFINITION FOR WEARABLE DEVICES ..........................3 

2.1 Expanse and user acceptance criteria for wearable devices .....................................3 

2.2 Anatomy of a wearable device .................................................................................6 

2.3 Classification of sensing mechanisms ...................................................................12 

2.4 Types of electrochemical sensing techniques ........................................................14 

2.4.1 Potentiometric sensing ...............................................................................14 

2.4.2 Amperometric sensing................................................................................15 

2.4.3 Conductometric sensing .............................................................................15 

2.4.4 Impedimetric sensing .................................................................................15 

2.5 Concept of impedance............................................................................................16 

2.6 Types of impedance measurement techniques .......................................................17 

2.6.1 Zero crossing detector ................................................................................18 

2.6.2 Lissajous patterns .......................................................................................19 

2.7 Comprehensive digital assistance for impedance measurements ..........................21 

2.7.1 Odd and even part of a signal .....................................................................21 

2.7.2 Extraction of odd and even parts ................................................................22 

2.7.3 Simulation-based verification ....................................................................23 

CHAPTER 3 DESIGN AND VALIDATION OF THE PROPOSED WEARABLE DEVICE ..26 



 

x 

3.1 Sensors and wearables for diabetes........................................................................26 

3.1.1 Evolution of the glucose biosensor ............................................................26 

3.1.2 Contemporary clinical and wearable glucose-sensing technology ............28 

3.2 Design objectives of the proposed wearable device ..............................................30 

3.3 Analysis of lab instrument circuitry .......................................................................31 

3.4 Selection of measurement hardware ......................................................................35 

3.5 System-level design methodology for proposed wearable device .........................36 

3.6 Dry-load calibration ...............................................................................................37 

3.7 Calibration using control buffers ...........................................................................40 

3.8 Effect of temperature and RH ................................................................................41 

3.9 Incremental noise analysis of the sensor ................................................................43 

3.10 Finite state machine (FSM) approach to firmware implementation ......................46 

3.11 Power optimization using time-averaging .............................................................48 

CHAPTER 4 MODELLING SENSOR BEHAVIOR FOR HUMAN SUBJECT DATA ...........50 

4.1 Collection of human subject data ...........................................................................50 

4.2 Methods of modeling .............................................................................................51 

4.3 Exploratory data analysis and preparation .............................................................51 

4.3.1 Interpolation ...............................................................................................54 

4.4 Machine learning-based regression........................................................................55 

4.4.1 Generalization ............................................................................................58 

4.4.2 Validation methodology .............................................................................59 

4.4.3 Training results ...........................................................................................60 

4.4.4 Test results..................................................................................................61 

4.5 Time series analysis ...............................................................................................62 

4.5.1 Trend ..........................................................................................................62 

4.5.2 Seasonality .................................................................................................62 

4.5.3 Autocorrelation...........................................................................................65 

4.5.4 Stationarity in time-series data ...................................................................66 

4.5.5 Operations on time-series data ...................................................................67 

4.5.6 ARIMA modeling and test results ..............................................................69 



 

xi 

CHAPTER 5 CONCLUSION ......................................................................................................73 

APPENDIX    ELECTRICAL DESIGN DOCUMENTATION....................................................74 

REFERENCES ..............................................................................................................................86 

BIOGRAPHICAL SKETCH .........................................................................................................92 

CURRICULUM VITAE ................................................................................................................93 

 

 

  



 

xii 

LIST OF FIGURES 

 

Figure 2.1. An infographic of a consumer survey report that highlights acceptance of the form 

factor of wearable devices. Source: [10][11] .......................................................................4 

Figure 2.2. Acceptance percentage of a new wearable device among new users versus 

experienced users in a survey. Source: [10].........................................................................5 

Figure 2.3. Major reasons cited in a survey as to why a user chose to abandon a wearable device. 

Source: [10] ..........................................................................................................................6 

Figure 2.4. Classification of wearable devices into basic versus the high end. Source: [12] ..........7 

Figure 2.5. Teardown of a Microsoft® Band. The PPG sensor and the board are in the center of 

the band, whereas 2 batteries are integrated into the band body[15]. ................................10 

Figure 2.6. A motherboard of the Huawei® Watch 3 centered around Ambiq Apollo® 4 ARM® 

processor with an active current of 4µA/MHz. The recess above the processor is for the 

battery, whereas auxiliary circuits are on the other side of the board (not shown)[16]. ....10 

Figure 2.7. A motherboard of the Fitbit® Sense with a Mediatek® GPS SoC, Kingston® external 

flash memory, USI® BLE module, and FitBit® application SoC. Auxiliary sensors are on 

the other side of this board (not shown)[17]. .....................................................................11 

Figure 2.8. Teardown of a variant of Apple® Watch Series 6 with the S6 system-in-package 

(SiP) with connectors allowing access for auxiliary circuits (power, wireless 

communication) to interface (not shown)[18]. ..................................................................11 

Figure 2.9. Classification of sensing mechanisms in mainstream use. Source: [19] .....................12 

Figure 2.10. Classification of biosensors used in mainstream testing scenarios. This work focuses 

on the integration of impedimetric sensors. Source: [20] ..................................................13 

Figure 2.11. A generic signal flow for a biosensor system. Source: [20] ......................................14 

Figure 2.12. A comparison of schematics for commonly used electrochemical sensing techniques 

such as (A) Amperometric/voltammetric (B) potentiometric (C) conductometric and (D) 

impedimetric biosensors. Source: [19] ..............................................................................16 

Figure 2.13. A phase measurement circuit for a piezoelectric transducer using a threshold 

detector and an XOR gate, reprinted from [26]. ................................................................18 

Figure 2.14. Trigonometric evaluation of Lissajous curves to the slope and phase of the input 

signal [27]. .........................................................................................................................20 



 

xiii 

Figure 2.15. Output for a Lissajous pattern for variation of frequency and phase of one signal to 

the other. ............................................................................................................................21 

Figure 2.16. Comparison of an even versus an odd function. ........................................................22 

Figure 2.17. A MATLAB® Simulink model of the FFT-based impedance measurement system 

using a conductance transfer function for resistance and Randle’s circuit. This method 

will be used for impedance measurement in subsequent works. .......................................25 

Figure 3.1. Evolution of glucose biosensors over the last century. Source [36] ............................27 

Figure 3.2. An ideal representation of a programmable potentiostat with necessary signal 

generation, excitation, sensing and signal conditioning blocks. Source: [54] ...................32 

Figure 3.3. Signal generation architecture for the Gamry® Reference 3000. Source: [55] ..........32 

Figure 3.4. Electrochemical cell connection to the Gamry® Reference 3000. Source: [55].........33 

Figure 3.5. Voltage and current sensing ADC circuitry channel for the Gamry® Reference 3000. 

Source: [55] ........................................................................................................................34 

Figure 3.6. A system-level representation of the proposed FFT-based impedance measurement 

wearable device. Auxiliary circuits include Bluetooth Low Energy, LiPo battery 

management, and temperature + RH sensor. .....................................................................37 

Figure 3.7. A universal dummy cell by Gamry Instruments®. All calibration experiments for this 

work were done using the side marked for calibration. .....................................................38 

Figure 3.8. Comparison of measured accuracy for Gamry measured impedance values versus the 

wearable device for a universal load cell. ..........................................................................39 

Figure 3.9. Comparison of measured precision for Gamry measured impedance values versus the 

wearable device for a universal load cell. ..........................................................................39 

Figure 3.10. A. Calibration dose-response of the system using synthetic sweat buffer of various 

pH. B. A box-whisker plot is used to observe the true variability of a given dose 

concentration as a composite of all buffers used in this experiment. ................................41 

Figure 3.11. The sensor module was connected to four cortisol biosensors and placed in the 

temperature chamber for temperature testing. The change of measured impedance 

parameters was recorded, along with the instantaneous temperature. Cortisol doses made 

in synthetic sweat buffer of pH 4 and 8 were used for this experiment. (B) The test 

conditions for temperature study include an increase of dose concentration every 5 min 

and a change of temperature as per a profile. (C) Fractional change of Zmod. (D) 

Fractional change of Zimag. The change in Zimag is a quadratic function corresponding 

to an increase in cortisol dose concentration irrespective of change in temperature[57]. .42 



 

xiv 

Figure 3.12. (a) A cross-section of antigen-antibody interaction on the functionalized biosensor 

surface. (b) Cross-section of the materials of the biosensor when placed on the skin (not 

to scale). (c) Incremental circuit model of the biosensor. (d) Noise source superposition 

on the incremental circuit model. (e) FFT noise spectrum of the biosensor when dosed 

with synthetic sweat without glucose, demarcated with noise margins. (f) Noise voltage 

level progression for the 100 Hz band of the FFT spectrum over 30 minutes...................46 

Figure 3.13. An example of a finite state machine for the proposed wearable device with states 

demarcated as Sn and relevant flags. .................................................................................47 

Figure 3.14. Measured current consumption of the proposed wearable device using a DC power 

analyzer. Each of the FSM states is demarcated to highlight the shape of the current 

waveform as per firmware execution. ................................................................................49 

Figure 4.1. Classification of methods of data modeling for the proposed wearable device. The 

methods shown in bold are discussed in this work. ...........................................................51 

Figure 4.2. (A) Box plot of values of selected features across the data collected from various 

subjects. (B) Correlation matrix of the selected features for the training data. .................52 

Figure 4.3. Concept diagram of interpolation signal generation using reference points. ..............54 

Figure 4.4. Complete system-level diagram of the wearable device-app-cloud platform 

infrastructure to support collection, curation, and analysis of sweat biosensor data, part 1 

of 2. ....................................................................................................................................56 

Figure 4.5. Complete system-level diagram of the wearable device-app-cloud platform 

infrastructure to support collection, curation, and analysis of sweat biosensor data, part 2 

of 2. ....................................................................................................................................57 

Figure 4.6. Change in the skew of interpolated training dataset when adding Gaussian noise with 

varying equivalent SNR of the output signal. This affects the change in train and test loss.

............................................................................................................................................58 

Figure 4.7. An example of the workflow of the k-fold validation methodology. ..........................59 

Figure 4.8. Comparison of the RMSE and R2 values obtained for various machine learning 

regression models used during the model training process. ..............................................60 

Figure 4.9. Results obtained on the test dataset for the 3 human subject data showing the actual 

progression of reported values and interpolated reference values. ....................................61 

Figure 4.10. An example of an autoregression function with window sizes 8, 16, and 24 when 

evaluated for a square wave pulse. Higher AR order implies a good fit for fast-moving 

input signals. ......................................................................................................................68 



 

xv 

Figure 4.11. An example of a moving average function with window sizes 3 and 9 when 

evaluated for a square wave pulse. Higher window size implies a sluggish response in 

time. ...................................................................................................................................68 

Figure 4.12. (A) Autocorrelation plot for Zmod for subject 1. (B) Autocorrelation plot for Zmod 

for subject 2. (C) Autocorrelation plot for dZmod for subject 1. (D) Autocorrelation plot 

for dZmod for subject 2. (E) Skin temperature and relative humidity for subject 1. (F) 

Skin temperature and relative humidity for subject 2. .......................................................71 

Figure 4.13. (A) Comparison of interpolated vs. RegARIMA sweat glucose concentrations for 

subject 1. (B) Comparison of interpolated vs. RegARIMA sweat glucose concentrations 

for subject 2. (C) Histogram of residuals for ARIMA(10,0,3) model. ..............................72 

Figure A.1. Schematic, printed circuit board layers and assembly information for the proposed 

wearable device. .................................................................................................................74 



 

 
 

 xvi 

LIST OF TABLES 

Table 3.1. Comparison of prevalent glucose level measurements. ................................................28 

Table 3.2. Comparison of commercial continuous glucose monitoring devices. ..........................29 

Table 4.1. ARIMA (10,0,3) coefficients ........................................................................................70 

Table A.1. Pick and place information for components used for the wearable device. .................83 

Table A.2. Bill of materials for the components used in the wearable device. .............................84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Overview  

Wearable healthcare devices are envisioned to be the modern technology that will disrupt methods 

of diagnosis and significantly enhance human health[1]. These will enable patients to monitor their 

health themselves, without the need for blood-based diagnostic procedures; take responsibility for 

their health, and be better informed about dynamic changes to their health[2]. 

1.2 Motivation and problem analysis  

According to the CDC National Center for Health Statistics, the prevalence of obesity in adults 

was 42.4% in 2018. With the hectic lifestyle combined with the decrease in the quality of food 

being consumed, these numbers are expected to skyrocket by the end of this decade[3]. This 

prevalence has led to World Health Organization (WHO) declaring obesity as a major unmet public 

health problem[4], [5]. Obesity is linked to several pathological disorders including hypertension, 

type 2 diabetes mellitus, cardiovascular diseases, cancer, respiratory system abnormalities, sleep 

disorders, and metabolic disorders[6]. Specifically, this obesity pandemic has resulted in a 

dramatic increase in cases of type 2 diabetes mellitus and cardiovascular diseases. However, the 

outcomes of being obese do not often lead to complications resulting in the development of 

lifestyle disorders. This case-by-case variation in the disease progression is caused due to a 

complex interplay of genetic and environmental factors that contributed to obesity in the first place. 

The origins of this disease can be either due to genetic predisposition or due to dietary intake 

combined with a sedentary lifestyle[7]. One of the factors that exacerbate the outcomes of obesity 
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includes dietary fat and carbohydrate intake[8]. With the recent advancement in the development 

of point-of-need wearables, it has now become feasible to monitor both glucose and cortisol 

independently in a noninvasive manner. Human eccrine sweat has emerged to be the bio-fluid of 

choice toward enabling the dynamic and on-demand tracking of these biomarkers[9]. 

1.3 Proposed research  

The key to informed health-related decision-making would be a system that has the capability of 

reporting on-demand measurements for several biomolecules. This work is a methodology for 

designing such a wearable hardware and software infrastructure around a novel passive-sweat 

biosensor, albeit the conventional approach of designing lancet-based approaches. Preexisting 

wearable device architectures are studied and discussed to come up with the specifications and 

needs of such an on-demand wearable system. Thereafter, the concept of electrochemical 

impedance spectroscopy (EIS) is discussed along with probable implementation methods and 

trade-offs. This led to the conception of a power-efficient, small form-factor, EIS-based wearable 

device with wireless communication capability, which was tested for accuracy, battery life, reliable 

output using controlled buffer solutions, and inherent noise threshold. Finally, the data collection 

of human data, exploratory data analysis, and two methodologies of data analyses are discussed.  
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CHAPTER 2 

SPECIFICATION DEFINITION FOR WEARABLE DEVICES 

The creation of an electrochemical wearable platform incorporates 2 major components: a sensing 

element and an electronic measurement front-end. However, it is important to discuss how these 

two blocks will come together to interact to form the system that will be called a wearable device 

to the levels of acceptance of the target user population. Modern wearable devices are aimed to 

utilize physical sensing methods such as acceleration, location, infrared reflectance for heart rate, 

and oxygen saturation to build correlations between states of activity. However, they may not be 

a true reflection of the bodily function of the user, and it would add value to integrate an 

electrochemical or biological sensing modality to a wearable. To do so, this chapter is an 

understanding of how wearable devices are perceived by users and how they can be made better 

and more lucrative to use, in turn adding more value to the quality of life of the user.     

2.1 Expanse and user acceptance criteria for wearable devices 

From the bulky mobile phone wristwatches from the 2000s to the latest fitness bands, wearable 

technology has dramatically evolved in recent years. Now, wearables are changing the way 

consumers interact with the environment, and their popularity is growing. However, the wearables 

market is still in the early phases of expansion and currently dominated by health, wellness, and 

activity tracking devices – despite industry developments pointing to an increasing number of use 

cases[10]. It would be helpful to understand how wearables might break beyond health and 

wellness scenarios and cover more diverse needs. 
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The first criterion of user acceptance begins with the form factor of the device.  Figure 2.1 shows 

the results of a survey[11] about what form factor would be ideal for users to see and use for a 

wearable device. 29% of the survey population voted for a wearable that could be embedded into 

clothing, 28% voted for a wearable to wear on the wrist, whereas smaller percentages voted for 

wearables that can be worn on the arm, legs, glasses, ears, etc. Hence, this sets a clear precedent 

that wearable devices should be designed as part of clothing or as something that could be worn 

on a wrist for easy access.  

 

 

Figure 2.1. An infographic of a consumer survey report that highlights acceptance of the form 

factor of wearable devices. Source: [10][11] 
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The demographic classification of the user population may affect the acceptance of new 

technology based on its ease of use. For example, younger users may be more accepting of a new 

product introduction rather than older populations. In a survey[10], a staggering 32% of new users 

of age 25-24 and 24% of new users of age 15-24 had purchased a wearable in the last 3 months 

from the date of the survey. Moreover, beyond the purchase of a wearable device, the users saw 

an increase in their fitness and wellness which can be termed as an experienced user category. In 

this scenario, the most prominent age group to have fully integrated a wearable device was the age 

group 35-44. Hence this showed that people are more willing to accept a wearable device into their 

routine to move away from a sedentary lifestyle. 

 

Figure 2.2. Acceptance percentage of a new wearable device among new users versus experienced 

users in a survey. Source: [10] 

 

The above analysis shows how well wearable devices integrate into the user’s lifestyle; however, 

it is also important to understand the reason why users may abandon wearable devices. Among the 
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people to abandon the wearable they purchased, the primary reason was the limited functionality 

of the device they purchased (21%), followed by the devices being not standalone (14%) and no 

LTE connectivity (9%). Other users rated inaccurate data (9%), poor phone integration (9%), low 

battery life (8%), poor design (6%), etc. Hence, the feedback provided by the survey[10] raises 

important questions in the direction of how wearable devices can be made better and easier to use, 

especially among the user population that may face challenges in integrating them into their daily 

lives.  

 

Figure 2.3. Major reasons cited in a survey as to why a user chose to abandon a wearable device. 

Source: [10] 

 

2.2 Anatomy of a wearable device 

A wearable device comprises an electronic circuit that is capable of recording and reporting various 

measures of human health and wellness. Thus, it is equipped in a manner that it can seamlessly 

integrate into the lifestyle of the user for recording this data. Wearable devices today are available 
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in small form factors, however, are powerful enough to measure, record and report data regarding 

sedentary or activity states of the user, heart rate, oxygen saturation, calories burnt for a specified 

activity, steps walked along with GPS pinpoints, speed of walking or running, etc. Hence, a well-

designed electronic system is needed that enables all features mentioned above. The most generic 

system design approach in this scenario would be a central processor system that controls 

peripheral sensors to measure these physical signals and report them promptly. This processor 

would ensure that signals are sampled well above the Nyquist rate of information collection to 

ensure the recorded signal captures the true change of the physical quantity. A potential challenge 

for this scenario would be maintaining a low battery consumption to make the device last longer 

on a single charge.  

 
Figure 2.4. Classification of wearable devices into basic versus the high end. Source: [12] 

 

A basic classification of wearable devices can be done into the basic or high end. A basic wearable 

device consists of minimalistic peripheral blocks to achieve rudimentary fitness goals. These goals 
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are primarily walking and running step count, activity and sleep detection, heart rate monitoring, 

and display. A high-end wearable device consists of the same peripherals as a basic wearable 

fitness band; however, more features may be added to it that may not necessarily align with one’s 

fitness goals and may be more aligned with added functionality. Figure 2.4 shows the basic 

difference between a basic versus a high-end wearable device, clearly with more blocks and 

always-on processing capability. One can understand the balance of available peripherals versus 

the battery life using some of the commercially available wearable device architectures is 

discussed below.  

Figure 2.5 shows an image of a teardown of a Microsoft® Band 2, which is an example of a basic 

wearable device. The dissection of the device shows two batteries interconnected to a central 

processing board via flexible printed circuit (FPC) substrates. The screen is on the other side of 

the motherboard, hence not seen. The motherboard also supports a heart rate and oxygen saturation 

measurement front end, which is a combination of an LED and a photosensor. The reported battery 

life for this device is 48 hours, hence a clear indicates power optimization issues against the two 

batteries seen in the image.  

Figure 2.6 shows an image of the Huawei® Watch 3, which is an example of a high-end wearable 

device in a round form factor. The dissection of the device revealed multiple boards to incorporate 

auxiliary circuitry, however, the main battery and the main processor system lie on one of the 

boards as shown. This wearable features a subthreshold processor[13] system, which has a lower 

active current in the µA range, thus, even inactive modes, this wearable would perform better than 

the former. In addition, even though this wearable has a color touchscreen since the active current 

is already significantly reduced, this would not cause higher battery consumption and reports 1-
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week battery life. Hence, having an advantage in processor technology may prove to be beneficial 

while designing a wearable device rather than strictly connecting more batteries. Moreover, the 

reported 1-week battery life relies on the fact that only certain peripherals are turned on, e.g. SpO2, 

normal motion with 3 high-intensity workouts per week, and 50 message alerts per week. Hence, 

the amount of data recorded may also affect the battery life irrespective of good battery 

optimization or processor and/or auxiliary circuit technology used.  

Going higher into the high-end wearable products, Figure 2.7 shows the motherboard for a FitBit 

® Sense with 1-week battery life. This wearable is also supported by a motherboard, with a 

touchscreen, SpO2 sensors, GPS, and always-on notifications. However, one additional feature 

that can be seen in this dissection is an external flash engine that helps record more data over time. 

External flash memory has two additional advantages: data retention over power cycles and a lesser 

need to synchronize health data from the device to the phone. Hence, this wearable seems more 

aligned with a user’s need with minimal synchronization needs. 

Figure 2.8 shows a dissection for Apple® Watch Series 6, which is designed for a 1-day battery 

life with motion sensing, heart rate, and SpO2, FDA-approved ECG[14], altitude sensor, compass, 

VO2max, GPS, WiFi, BLE, NFC, and LTE with eSim technology. Even though this wearable has 

poor battery life, it provides better hardware integration into one system-in-package system (SiP) 

for less hardware circuit complexity, meaning most required system blocks may be laid down on 

one silicon. It also provides better user interaction in terms of mobile connectivity, mobile-less 

connectivity, data recording accuracy, fitness notifications, and medical value by detecting A-fib 

and sleep apnea. Hence, at the cost of battery life, one may create a wearable device that may be 

able to provide more user interactivity, measurement accuracy, and wellness-centric feedback. 
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Thus, the lifestyle of the user dominates which wearable may be useful, however, the ideal design 

principles of high battery life and good measurement accuracy and interactivity still stand. 

 

 

Figure 2.5. Teardown of a Microsoft® Band. The PPG sensor and the board are in the center of 

the band, whereas 2 batteries are integrated into the band body[15]. 

 

 

 

Figure 2.6. A motherboard of the Huawei® Watch 3 centered around Ambiq Apollo® 4 ARM® 

processor with an active current of 4µA/MHz. The recess above the processor is for the battery, 

whereas auxiliary circuits are on the other side of the board (not shown)[16]. 
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Figure 2.7. A motherboard of the Fitbit® Sense with a Mediatek® GPS SoC, Kingston® external 

flash memory, USI® BLE module, and FitBit® application SoC. Auxiliary sensors are on the other 

side of this board (not shown)[17]. 

 

Figure 2.8. Teardown of a variant of Apple® Watch Series 6 with the S6 system-in-package (SiP) 

with connectors allowing access for auxiliary circuits (power, wireless communication) to 

interface (not shown)[18].  
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2.3 Classification of sensing mechanisms  

The terms ‘sensor’ and ‘transducer’ are used interchangeably in the system design space, however, 

there is a fundamental difference in the expression of the output signal. A sensing mechanism 

expresses its output in terms of its inherent physical properties. A transducing mechanism 

translates the change in a property to be sensed into readable, meaningful data.  

 

Figure 2.9. Classification of sensing mechanisms in mainstream use. Source: [19] 
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Hence a sensor pairs better with a detecting system, whereas a transducer is more so a translation 

system. The method of some of the biological signals is shown in Figure 2.9, which ranges from a 

variety of physical quantities such as magnetic, electrical, mechanical, optical, etc.  

A biosensor is an analytical device, which converts a biological response into an electrical signal. 

It consists of two main components: a bioreceptor or biorecognition element, which recognizes the 

target analyte, and a transducer, for converting the recognition event into a measurable electrical 

signal[20]. A bioreceptor can be a microorganism, cell, enzyme, antibody, etc. and the transduction 

may be optical, electrochemical, thermometric, piezoelectric, magnetic, and micromechanical or 

combinations of one or more of the above techniques.  

 

Figure 2.10. Classification of biosensors used in mainstream testing scenarios. This work focuses 

on the integration of impedimetric sensors. Source: [20] 

 

Figure 2.11 shows a system-level diagram of a biosensor. The bioreceptor recognizes the target 

analyte and the corresponding biological responses are then converted into equivalent electrical 
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signals by the transducer. The amplifier in the biosensor responds to the small input signal from 

the transducer and delivers a large output signal that contains the essential waveform features of 

an input signal. The amplified signal is then processed by the signal processor where it can later 

be stored, displayed, and analyzed.  

 

 
Figure 2.11. A generic signal flow for a biosensor system. Source: [20]  

 

2.4 Types of electrochemical sensing techniques  

An electrochemical sensing technique is a process of applying an electrical signal to obtain an 

electrical and/or chemical output. The applied electrical signal may vary in terms of amplitude in 

voltage, current, or frequency of the signal over time. A detailed overview of the commonly used 

technique and circuit design techniques are discussed in Figure 2.12.  

2.4.1 Potentiometric sensing 

Potentiometric biosensors measure the charge accumulated due to the analyte and bioreceptor 

interaction at the working electrode relative to the reference electrode under zero current. To 

transform a biochemical reaction into a potential signal, ion-selective electrodes, and ion-

sensitive field-effect transistors are used[19], [21]–[23]. 
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2.4.2 Amperometric sensing 

Amperometric biosensors operate in two or three-electrode configurations. These sensors measure 

the current produced due to electrochemical oxidation or reduction of electroactive species at the 

working electrode when a constant potential is applied to the working electrode concerning the 

reference electrode. The current produced on the surface of the working electrode is proportional 

to the concentration of the analyte present in the solution[19], [21]–[23]. Compared with 

potentiometric biosensors, this method allows sensitive, fast, precise, and linear response, which 

makes it more suitable for mass production. However, poor selectivity and interferences from other 

electroactive substances are the disadvantages of these sensors [19], [24]. 

2.4.3 Conductometric sensing  

Conductometric biosensors: Conductometric biosensors quantify the change in the conductance 

between the pair of electrodes because of an electrochemical reaction (change in conductivity 

properties of the analyte). Conductometric and impedimetric biosensors are usually used to 

monitor metabolic processes in living biological systems[19], [21]. 

2.4.4 Impedimetric sensing  

Impedimetric biosensors measure the electrical impedance produced at the electrode/electrolyte 

interface when a small sinusoidal excitation signal is applied. It involves the application of low 

amplitude AC voltage at the sensor electrode and then the in/out-of-phase current response is 

measured as a function of frequency using an impedance analyzer[19], [21], [25]. This technique 

is also known as Electrochemical Impedance Spectroscopy (EIS). This work will discuss in 
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expanse an integration of a sweat-based impedance biosensor; hence the concept of impedance 

measurement and collateral circuit design schemes are discussed in subsequent sections.  

 

Figure 2.12. A comparison of schematics for commonly used electrochemical sensing techniques 

such as (A) Amperometric/voltametric (B) potentiometric (C) conductometric and (D) 

impedimetric biosensors. Source: [19]  

2.5 Concept of impedance  

The theoretical equation for measuring impedance is as shown in Eqn. 2.1.  

 𝑍(𝜃) = 𝑍𝑐𝑜𝑠𝜃 + 𝑗𝑍𝑠𝑖𝑛𝜃 (2.2) 

 

 
𝑍(𝜃) =

𝑉(𝜔𝑡)

𝐼(𝜔𝑡 ± 𝜃)
= 𝑅𝑒(𝑍) + 𝑗 × 𝐼𝑚(𝑍) 

 

(2.1) 
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This equation gives some information about a generic impedance measurement process as listed 

below. If the excitation voltage is constant, the variation in the amplitude and phase of the current 

will manifest as an impedance. If there is no variation in phase, the impedance is truly the 

resistance of the system. The measurement of impedance will need a measurement of both 

magnitude and phase of the measured voltage and current of the DUT. Based on the deductions 

made above, two prominent, conventional methods viz. zero-crossing detection and Lissajous 

patterns were devised previously to make such measurements and are discussed in the latter 

subsections. However, the challenge still stands to design such a system for low current 

consumption in a small form factor, preferably with minimal hardware components. 

2.6 Types of impedance measurement techniques  

Resistance measurement can be performed in the most rudimentary method by measuring the 

voltage applied to the load and dividing it by the current flow measured through the load. 

However, impedance being a complex number will have time components associated with it, the 

reason being the use of a sine wave excitation voltage used to measure corresponding current and 

impedance. Moreover, the existence of energy-storing components such as inductors and 

capacitors introduce a time lag or lead in the current signal. Hence, using these properties of 

circuits in mind with linear time-invariant behavior assumptions, the following impedance 

measurements can be used.  



 

18 

2.6.1 Zero crossing detector 

 

Figure 2.13. A phase measurement circuit for a piezoelectric transducer using a threshold detector 

and an XOR gate, reprinted from [26].  

 

A zero-crossing detector is a circuit that detects when a signal amplitude crosses zero or a reference 

voltage. The output of this system depends on the fact that if there is a non-zero, non-negative 

voltage signal used to excite a load, there will be a current signal with some lead or lag, which can 

be compared. The method of comparison is usually an XOR operation, wherein the rising edges 

of a comparator output are compared for the delay, it may be represented as a high output. Figure 

2.13 shows a simplified circuit diagram for phase measurement. A rectangular pulse train Vin(t) 

is buffered by an operational amplifier (opamp) and applied to an impedance, in this case, a piezo 

transducer. The output of opamp OP3 is the current through the load, which is delayed in time by 

a certain amount. The reference voltage Vref shifts the DC level of the applied input voltage, and 

it is set to one-half of the peak-to-peak voltage of input signal Vin(t). OP4 is a comparator, which 

shapes the current waveform into digital. The XOR gate detects the difference between the input 

voltage and the current through the load. OP1 is necessary to drive a highly capacitive PZT, and 

OP2 is added to delay the excitation signal by the same amount as OP1[26]. A potential advantage 

of using this scheme is that the phase can be obtained using the minimum number of components, 

without digital assistance. Moreover, a similar circuit can be used to evaluate magnitude by an 
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appropriately designed I-V converter using one opamp. This accounts for the simplicity of design 

and low inherent power consumption. However, a potential disadvantage may be offsets 

introduced due to the opamps in the signal chain, which may need a good characterization effort, 

or digital assistance to correct this.  

2.6.2 Lissajous patterns 

Lissajous patterns are a method of comparison of two waveforms rather than making an absolute 

judgment about the period and phase offset of the measured waveform. Thus, instead of plotting 

two waveforms against a time axis, if a reference waveform is plotted against a measured 

waveform, then the resultant plot can be used to make some necessary assumptions regarding the 

properties of the measured waveform. Figure 2.14 shows how this plotting will give an output 

curve that can find the phase shift of the measured waveform assuming equal reference and 

measured voltage magnitudes. Figure 2.15 shows the change in the number of lobes for the change 

in the ratio of frequencies of the reference and measured waveforms. 

Lissajous patterns give a two-dimensional output plot, thus it is easier to realize such plots on a 

paper plotter or an oscilloscope. The phase measurement in this case is highly accurate as the 

reference waveform may not be generated by the circuit. Thus, a true phase offset is received as 

an output when the voltage and current waveform are compared. This is better than the former 

zero-crossing detection technique as the noise effects cancel out on the output plot and does not 

require a true zero voltage to trigger the timer. However, the disadvantage is the difficulty in 

programming the interpretation of the Lissajous pattern as a program and the longer processing 

time in comparison to the zero-crossing detection technique when using digital assistance.  
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Figure 2.14. Trigonometric evaluation of Lissajous curves to the slope and phase of the input 

signal [27]. 
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Figure 2.15. Output for a Lissajous pattern for variation of frequency and phase of one signal to 

the other.  

 

2.7 Comprehensive digital assistance for impedance measurements 

The process of impedance measurements can be done using the above methods; however, they 

offer their circuit-level offsets and errors due to distortion from analog blocks. Moreover, the 

measurement needs to be digitized using an ADC to store on processor memory for further data 

analysis. Hence, a method of digital impedance measurement would suit a modern application 

such as making wearable devices. The process of comprehensive digitization is discussed below.  

2.7.1 Odd and even part of a signal 

The definition of an even signal is one which is mirror-symmetric if x(t) = x(-t), whereas for an 

odd signal, x(t) = -x(t) defines antisymmetric nature of a waveform. This can be observed from the 

example given below. The sine function is the most simplistic odd function whereas the cosine 
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function is the most simplistic even function. Thus, if provided with an arbitrary input signal, one 

can segregate a signal into two output functions, namely an odd and even function.  

2.7.2 Extraction of odd and even parts 

If we have a signal x(t), then by applying a Fourier transform on this signal, we can obtain a sum 

of its odd and even parts as shown below. 

 
𝑋(𝑓) = ℱ[𝑥(𝑡)] =  ∫ [𝑥𝑟(𝑡) + 𝑗𝑥𝑖(𝑡)]𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞

 
(2.3) 

 
=  ∫ [𝑥𝑟(𝑡) + 𝑗𝑥𝑖(𝑡)][cos(2𝜋𝑓𝑡) − 𝑗 𝑠𝑖𝑛(2𝜋𝑓𝑡)]𝑑𝑡

∞

−∞

 
(2.4) 

 
=  ∫ 𝑥𝑟(𝑡) cos(2𝜋𝑓𝑡) 𝑑𝑡

∞

−∞

+ ∫ 𝑥𝑖(𝑡) sin(2𝜋𝑓𝑡) 𝑑𝑡
∞

−∞

+ 𝑗[∫ 𝑥𝑖(𝑡) cos(2𝜋𝑓𝑡) 𝑑𝑡
∞

−∞

− ∫ 𝑥𝑟(𝑡) sin(2𝜋𝑓𝑡) 𝑑𝑡
∞

−∞

] 

(2.5) 

 = [𝑋𝑟𝑒(𝑓) + 𝑋𝑟𝑜(𝑓)] + 𝑗[𝑋𝑖𝑒(𝑓) + 𝑋𝑖𝑜(𝑓)] (2.6) 

 = 𝑋𝑟(𝑓) + 𝑗𝑋𝑖(𝑓) (2.7) 

 

 
Figure 2.16. Comparison of an even versus an odd function. 

 

With further simplification, one can derive that the even and odd signal manifests from the original 

signal by manipulating it along with its mirror image. 
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𝑓𝑒(𝑛) ≜

𝑓(𝑛) + 𝑓(−𝑛)

2
 

(2.8) 

 
𝑓𝑜(𝑛) ≜

𝑓(𝑛) − 𝑓(−𝑛)

2
 

(2.9) 

 

The advantage of this decomposition is the output being purely odd and even functions, which can 

be correlated to being imaginary and real values of a measured input function. Thus, the real and 

imaginary parts of an input signal can be obtained directly, which can be used to calculate the 

magnitude and phase of the measured signal.  

2.7.3 Simulation-based verification  

The simulation of the impedance measurement system depends on two facts: measurement of the 

current passing through the impedance as accurately as possible; and splitting of the real and 

imaginary part of the signal to represent the real and imaginary part of the impedance. The 

current sensing mechanism can be implemented in a circuit using an I-V converter.  

 
𝐼𝑖𝑛 =

𝑉𝑜𝑢𝑡

𝑅
 

(2.10) 

 

It can be assumed that the voltage waveform is tapped from the generator and the current waveform 

is tapped from an I-V amplifier and sampled using an ADC. An instrumentation amplifier can be 

used to subtract these two waveforms to obtain an analog signal that has phase offset and 

magnitude ratio data. This output waveform is processed by the Fourier transform method in the 

discrete domain due to the ease of digital implementation. The digital implementation is simplistic: 

it takes in all the samples, mirrors them simultaneously, and gives out an odd and even value, 

which is also an imaginary value and real value of the impedance of the load. This implementation 

is different for the fact that the ADC is preceded by an instrumentation filter for a true comparison 
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of voltage and current waveforms[28]. Based on these, an ideal model was tested in MATLAB® 

Simulink as shown in Figure 2.17. A MATLAB® Simulink model of the FFT-based impedance 

measurement system using a conductance transfer function for resistance and Randle’s circuit. 

Figure 2.17.  
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Figure 2.17. A MATLAB® Simulink model of the FFT-based impedance measurement system 

using a conductance transfer function for resistance and Randle’s circuit. This method will be 

used for impedance measurement in subsequent works. 
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CHAPTER 3 

DESIGN AND VALIDATION OF THE PROPOSED WEARABLE DEVICE 

3.1 Sensors and wearables for diabetes 

Diabetes is an endocrine disorder of the pancreas, which is the inability to process sugar taken in 

as food. As shown in the WHO infographic, roughly 422 million adults worldwide are affected by 

diabetes, which is 1 in 11 people. Types of diabetes are type 1 where glucose levels drop 

drastically. Type 2 diabetes creates elevated glucose levels. We will highly focus on the detection 

of type 2 diabetes for this presentation. Elevated glucose levels lead to other complications such 

as heart attack, renal failure, gangrene and amputation, blindness, and brain stroke. This in turn 

also has various financial implications on the patients which include insulin administration and 

other drugs and in many cases loss of ability to work due to amputation. Alone in the US, 26 

million patients have diabetes, among which 7 million are unaware of their condition. Undiagnosed 

diabetes is more dangerous as the resulting complications could have been prevented by proper 

diagnosis and treatment in its early stages. Thus, there is a need to create a wearable device that 

can sense elevated glucose levels. 

3.1.1 Evolution of the glucose biosensor 

The glucose enzyme electrode was proposed by Clark and Lyons[29] in 1962. Their device relied 

on the entrapment of the enzyme GOx over an amperometric oxygen electrode that monitored the 

oxygen consumed by the biocatalytic reaction. Biosensors gained popularity during the 1980s, 

reflecting the growing emphasis on biotech. New biosensor transduction principles were 
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introduced during this decade, including fiber-optic and mass-sensitive (piezoelectric) 

devices[30]–[36].  

 

Figure 3.1. Evolution of glucose biosensors over the last century. Source [36] 

 

Considerable efforts during the 1980s led also to the introduction of commercial self-testing blood 

glucose strips that used mediator-based enzyme electrodes[36]–[38]. Subsequent activity during 

the 1990s resulted in subcutaneously implantable needle-type electrodes for real-time in vivo 

glucose monitoring[36], [39]. These subcutaneously implantable glucose sensors moved in the 

early 2000s to commercial continuous glucose monitors that track in real-time the glucose level in 

the ISF, along with diabetes-relevant trends and patterns[36], [40], [41]. The emergence of 

nanotechnology in the late 1990s has led to a variety of nanomaterial-based biosensors exploiting 

the attractive properties of different nanomaterials, such as silicon nanowires and gold 

nanoparticles, for label-free or amplified biosensing, respectively[36], [42], [43]. The specific 

base-pair recognition of DNA sequences led to the development of different DNA biosensors in 
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the late 1990s[36], [44]–[46]. Such nucleic acid sensors are playing a growing role in genomic 

sequence analysis. These advances in biosensor technology over the past five decades paved the 

way for modern wearable biosensors.  

3.1.2 Contemporary clinical and wearable glucose-sensing technology  

Glucose level sensing by clinically acceptable methods includes 2 major methods: a lab-based 

sample collection and testing versus a portable glucometer system. For a lab-based approach, a 

venous blood sample is taken pre and post-fasting, which is a fasting glucose testing methodology.  

 

Table 3.1. Comparison of prevalent glucose level measurements.   

Test method 

 

Lab-based testing 

 

Portable glucometer 

Test turn in time Fasting plasma glucose = few 

hours 

HbA1c = every 2-3 months 

1-2 minutes before and after a 

meal 

Basis of testing Dye or optical techniques Electrochemical measurement 

Professional 

help 

Required Not required 

Invasive Yes Yes 
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Table 3.2. Comparison of commercial continuous glucose monitoring devices. 

Commercial 

device 

DexcomTM G5 CGM 

 

FreestyleTM Libre GlucoWiseTM 

Sensor sample Interstitial fluid Interstitial fluid Skin proximity  

Sensing 

technique 

Chronoamperometry Chronoamperometry RF-based 

dielectric 

(65GHz) 

Data recording Smartwatch, smartphone Dedicated recorder Smartphone 

Continuous 

glucose 

measurement 

(CGM) 

Yes Yes No 

Invasive Yes Yes No 
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For long-term cumulative analysis of the glucose levels of a patient, one may rely on the Hb-A1c 

methodology, which relies on the detection of glycosylated hemoglobin, formed because of 

extended exposure of hemoglobin to glucose. Contrary to being a gold standard, some studies do 

suggest that Hb-A1c may not be able to provide information on glucose trends and excursions and 

variation in diurnal pattens of the patient[47], [48]. While lab-testing may require professional 

help, a portable glucometer and lancet can be used by a patient directly to sample their blood 

glucose level using blood samples from the index finger.  

Continuous glucose monitoring (CGM) systems have evolved because of a need for accurately 

measuring glucose levels on-demand and providing better glycemic management and quality of 

life[47]. Uses reported better user satisfaction and reduced fear of hypoglycemia since CGM 

systems allow easy and quick identification of dysglycaemia[47], [49]–[52]. Such a system also 

aids the user in understanding the impact of food and exercise on glucose management, enabling 

short-term planning such as mealtime adjustment and reducing exercise to prevent 

dysglycaemia[47], [49]–[52]. However, CGM systems rely on an amperometric interstitial fluid 

sensor and lancet, that must remain embedded in the skin of the user for extended periods to 

measure glucose levels. Hence, there is great value to improving the quality of life of the user by 

providing a wearable solution that is lancet-free and provides the same features and advantages as 

a CGM system. 

3.2 Design objectives of the proposed wearable device 

The design objectives for the proposed wearable device can be listed below to set a pathway to 

integrating the glucose sweat biosensor. The wearable device 

1. Is fully non-invasive  
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2. Has small form factor with minimal external hardware 

3. Measure within 20% acceptable error 

4. Accepts low sweat sample volume (1-5 µL) 

5. Can be used by a sedentary or active user for a week 

3.3 Analysis of lab instrument circuitry 

In previous works that mention the design of the biosensor, EIS measurements taken by recording 

current flow using a potentiostat (Gamry Instruments, Warminster, PA, USA) after applying 

10 mV AC voltage with a frequency sweep of 1 Hz to 1 kHz[53]. Hence, it would be valuable to 

understand a pre-existing implementation of a potentiostat and select the useful parts of the 

architecture for the wearable device. Figure 3.2 shows an ideal representation of the internal 

components of a potentiostat. As mentioned in the previous section, electrochemical biosensors 

work on various transduction of electrical signals such as voltage, current, impedance or 

conductance. These can be sensed using a multitude of circuits that are shown below.  

Figure 3.3 shows the signal generation circuitry for the Gamry potentiostat, where there are three 

16-bit DACs with 0.25mV bit resolution: DC bias control DAC, scan DAC and attenuation DAC. 

The DC bias control DAC’s controls the DC bias point of the measurement in the +/-8V range, 

whereas the attenuation DAC is used to generate sine waves using direct digital synthesis (DDS) 

in the 1MHz to 1mHz range with an amplitude of 5.9V to 11µV using gain control. All sine waves 

below 1mHz are generated using the scan DAC. In this work, only the DDS based attenuation 

DAC would be of value to support EIS measurements for the wearable device. Moreover, the 1 Hz 

- 1kHz range is apt for measuring glucose modulations for the biosensor.   

https://www.sciencedirect.com/topics/engineering/potentiostat
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Figure 3.2. An ideal representation of a programmable potentiostat with necessary signal 

generation, excitation, sensing and signal conditioning blocks. Source: [54] 

 

Figure 3.3. Signal generation architecture for the Gamry® Reference 3000. Source: [55]  
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Figure 3.4. Electrochemical cell connection to the Gamry® Reference 3000. Source: [55] 
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Figure 3.5. Voltage and current sensing ADC circuitry channel for the Gamry® Reference 3000. 

Source: [55] 

 

Figure 3.4. shows the connections to an electrochemical cell in EIS mode. The measurement loop 

signal flow begins from the SIG_GEN node, which is supplied by the excitation circuitry in Figure 

3.3. The signal is boosted as necessary using the 4x booster which operates in 2 ranges: 1.5 A at 

30 V and 3 A at 15 V which helps current support measurement of electrochemical cells used 

in industry and academia. In this work, such a booster may not be necessary due to the low-voltage 

operation of the biosensor. This schematic also shows a 3-wire electrochemical cell with working, 

counter, and reference electrodes. However, in this work, a 2-wire biosensor is used, thus there 

may not be a need of an overdesigned voltage sense network for ESIG→ADC. For the current 

sense mechanism, Rm is a set of 11 fixed-value decade resistors connected by a relay to change 

current sensing range from 50mΩ to 500 MΩ. Moreover, this network is connected to an 

instrumentation amplifier which eliminates the need for good impedance matching to the load, as 

well as provides high gain, low offset and low drift. One may select one resistor instead of a decade 

resistor set as the impedance of the glucose biosensor is well-established[56]. Hence, a 2-wire 
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current sensor network with a fixed current sense resistor with an instrumentation amplifier is well-

suited for the wearable device for minimal possible form factor.  

Figure 3.5 shows the ADC sensing circuitry for the Gamry potentiostat. This potentiostat has three 

16-bit ADCs. These channels are used to measure load current signal, load voltage in case using 

>2 wire connection, and system level signal checks respectively. All channels are activated 

simultaneously to measure voltage and current signals without inherent lag, ensuring good phase 

measuring accuracy. Each channel is provided with a multiplexed filter system with poles at 5 Hz, 

1 kHz, and 200 kHz to support wide band impedance measurement. For a wearable biosensor 

system, multiple ADC channels may result in higher current consumption. Moreover, unlike lab 

equipment where cables may be longer and need compensation, the wearable will be small in form 

factor. Hence, there will not be a need to measure voltage in sync with current and programmatic 

values of generated V may be used digitally. Hence, one 16-bit ADC is sufficient for the current 

sensing system for the proposed wearable device.  

3.4 Selection of measurement hardware  

EIS measurements can be performed using a potentiostat; however, the method of measuring 

impedance can be based on the Lissajous pattern or discrete Fourier transform (DFT)[57]. In the 

case of the Lissajous pattern, two waveforms are divided, and their phase difference is calculated 

using XY plotting. This is a processor-intensive operation and can take a few seconds to yield 

results. Moreover, this will only allow one sensor to be connected to the potentiostat unless a 

multiplexer is used. To show larger throughput and least hardware requirement, a DFT-based time 

division multiplexed (TDM) sensor module has been used, wherein the measurement time was 

fixed to 13 ms and impedance measurement was performed on four sensors in quick succession. 
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3.5 System-level design methodology for proposed wearable device 

The ADuCM350 (Analog Devices Inc., Norwood, MA) system-on-chip (SoC) is at the heart of 

the measurement setup. The system-level block diagram is shown in Figure 3.6. The SoC consists 

of a configurable analog front end (AFE), which consists of a wave generator, a switch matrix, and 

a 2048-point discrete Fourier transform-based impedance analyzer. The amplitude and frequency 

of the wave generator are fixed using digital words. The AFE is operated using a binary sequence, 

which controls wave generation, switching sensor channels, and evaluation impedance. The switch 

matrix enables time-division multiplexing of sensors with the instrumentation loop to measure 

each sensor. The process of TDM frequency measurement is as follows. The sequence of the 

instructions is sent to the AFE first-in-first-out (FIFO) buffer using direct memory access. This 

helps in achieving low power consumption, as the core processor is not turned on. The wave 

generator amplitude and frequency are set using respective binary words. Now, the switch matrix 

connects to a calibration resistor channel to measure the resistance of a precision resistor and uses 

it as a reference for subsequent measurements. The impedance analyzer block is formed by an I-

V converter, analog-to-digital converter (ADC), and DFT engine. The current sensed is converted 

to a proportional voltage and a 2048-point DFT is performed on it. The real and imaginary parts 

of the data are converted to magnitude and phase. Two analog pins are selected from which one 

acts as a generator and the other as a sink. These pins are in turn connected to one of the sensors 

due to the switching action of the switch matrix. After a 13-ms DFT cycle on one sensor, the AFE 

switches to the next sensor channel. Thus, the impedance measurement is performed on all four 

sensors in a combinatorial sequence. Additional details of the circuit are shown in the appendix.  
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Figure 3.6. A system-level representation of the proposed FFT-based impedance measurement 

wearable device. Auxiliary circuits include Bluetooth Low Energy, LiPo battery management, and 

temperature + RH sensor.  

 

3.6 Dry-load calibration  

The proposed wearable device was tested for individual channel offset on the calibration channel 

of a universal dummy cell (Gamry Instruments) against a Gamry® Reference 3000 potentiostat. 

The dummy cell is shown in Figure 3.7, wherein the calibration side of the cell was used in 2-wire 

configuration by shorting the reference, counter, and counter sense terminals together on the sink 

end and working and working sense terminals on the source end. Figure 3.8 shows a Bode plot 

comparison of the measurements of the over 80-1000 Hz frequency of excitation at 10mVRMS. 

The 80 Hz limit was chosen based on the Nyquist limit of the 13 ms DFT block in the ADuCM350. 

For a 13ms processing block, a signal with frequency the inverse of 13 ms can be processed 

through the said block, which is ~80 Hz. However, if the Nyquist theorem is considered, a signal 

with atleast 2 x 80 Hz will be captured with magnitude and phase information more correctly via 

this block. Thus, to verify the Nyquist limit, 80 Hz was chosen to understand the performance of 
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the ADuCM350 impedance measurement system. While no such limit exists for the Gamry® 

instrument due to low frequency sampling capability, the ADuCM350 shows a higher variation in 

measurement from 80 Hz to 200 Hz. Higher frequency performance is comparable for both the 

Gamry® and the ADuCM350 based wearable device. Hence, the accuracy of the device is 

comparable to the lab instrument. 

Precision of both systems was compared by taking n=800 measurements of the same cell at 

10mVRMS, 1 kHz excitation frequency. The standard deviation and average of all measurements 

are shown in this plot for both magnitude and phase of impedance. For both systems, the variation 

of the measurement is well within the 3 standard deviations, showing good reproductivity of the 

measured impedance magnitude and phase. A slightly quantized jitter is more prominent in the 

wearable device due to the DFT based impedance calculation, whereas in case of the Gamry®, the 

measurements are performed using Lissajous patterns. Hence, the variation of measurement is 

slightly lesser in the Gamry® instrument compared to the wearable device. Nonetheless, the 

wearable device performance is acceptable for further experimentation.  

 

Figure 3.7. A universal dummy cell by Gamry Instruments®. All calibration experiments for this 

work were done using the side marked for calibration.  
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Figure 3.8. Comparison of measured accuracy for Gamry measured impedance values versus the 

wearable device for a universal load cell. 

 
Figure 3.9. Comparison of measured precision for Gamry measured impedance values versus the 

wearable device for a universal load cell. 
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3.7 Calibration using control buffers  

Glucose dose concentrations ranging from 5-200 mg/dL were made in synthetic sweat buffer with 

pH values 4, 6, and 8 were introduced on a functionalized sensor and the impedance at 100Hz was 

recorded to demonstrate proof of binding interaction on the sensor surface. Fig. 3a shows the 

response of the system as the standard error of the mean of the percentage change function of 

impedance to varying pH and dose concentrations with a linear fit. Eqn. 1 shows the mathematical 

percentage change of the measured impedance used to plot dose-response. The system response 

shows a 3% standard error on most of the dose concentrations thus demonstrating the precision of 

measurement. Box-whisker plots were created as shown in Fig 3b to investigate the variability of 

the system response for a given dose concentration irrespective of buffer pH. The true variability 

of the sensor response was observed to be 10% inter-sample variation in the form of inter-quartile 

region height of each of the glucose dose concentrations. It can be observed that even with a larger 

variability, the median divides the inter-quartile region symmetrically, demonstrating a Gaussian 

distribution. However, there is a need to model this variation as a mathematical relationship to 

allow accurate detection as well as differentiation of glucose dose concentrations across the 

dynamic range. 
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Figure 3.10. A. Calibration dose-response of the system using synthetic sweat buffer of various 

pH. B. A box-whisker plot is used to observe the true variability of a given dose concentration as 

a composite of all buffers used in this experiment.  

 

3.8 Effect of temperature and RH  

The goal of the sensor is to function as a wearable device; hence, assessing its performance over a 

wide range of temperatures from room temperature to elevated body temperature is important. 

Figure 9B shows the test conditions set for the temperature study, in which a temperature profile 

ranging from 25 to 40 °C and back to 25 °C was applied twice to the sensor as well as the sensor 

module. Concurrently, at an interval of 5 min, dose concentrations starting from 10 to 200 ng/mL 

were dispensed in increments of 10 ng/mL. Figure 9C, D shows measured fractional change in 

Zmod and Zimag for synthetic sweat buffer for pH 4 and 8. The measured change of Zimag was 

fit to a second-order polynomial with an R2 of ~0.92. Table 2 shows the R2 and the variability of 

the fractional change function of Zimag measured for 90 min. Based on this R2 value, a variability 
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of ~7.6% from the ideal second-order polynomial fit was shown for a temperature range of 25–40 

°C for repetitive temperature cycles. 

 

 

Figure 3.11. The sensor module was connected to four cortisol biosensors and placed in the 

temperature chamber for temperature testing. The change of measured impedance parameters 

was recorded, along with the instantaneous temperature. Cortisol doses made in synthetic sweat 

buffer of pH 4 and 8 were used for this experiment. (B) The test conditions for temperature study 

include an increase of dose concentration every 5 min and a change of temperature as per a 

profile. (C) Fractional change of Zmod. (D) Fractional change of Zimag. The change in Zimag is 

a quadratic function corresponding to an increase in cortisol dose concentration irrespective of 

change in temperature[57]. 
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3.9 Incremental noise analysis of the sensor  

Noise is an undesirable measured quantity that accompanies a true measured quantity. This 

introduces an amount of uncertainty in the accuracy and repeatability of the measurement device. 

Sources of noise have been well characterized for CMOS devices in the past[58]–[60]. Primarily, 

the two major sources of noise discussed in academic as well as industrial design are thermal noise 

and flicker noise for complementary metal-oxide-semiconductor (CMOS) transistors. Thermal 

noise is a result of electrical fluctuations caused by thermal energy[60]. This electron motion is 

popularly known as Brownian motion. The RMS noise voltage is expressed as in (3.1) where k is 

the Boltzmann constant, T is the absolute temperature in kelvin and R is the resistance of the device 

under test. Thus, thermal noise will increase with the temperature rise. In CMOS transistors, this 

noise is a summation of the noise generated by the gate and channel resistance. In case a capacitor 

is connected in parallel with the resistive noise source, the RMS thermal noise is denoted as in 

Eqn. 3. Thus, thermal noise can be controlled using a shunt capacitor[61]. 

 𝑣𝑡ℎ𝑒𝑟𝑚𝑎𝑙
2  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4𝑘𝑇𝑅 (3.1) 

 

 
𝑣𝑅𝐶

2  ̅̅ ̅̅ ̅ =
𝑘𝑇

𝐶
 

 

(3.2) 

Flicker noise or popularly known as 1/f noise is the resultant of attractive forces at the silicon-

oxide interface in a CMOS transistor giving rise to several energy states[58]. The RMS flicker 

noise is expressed as in Eqn. 4 where K is a statistically calculated, process-dependent parameter, 

W and L are the dimensions of the transistor, Cox is the capacitance of oxide film per square and f 

is the frequency of interest. Thus, 1/f noise is a function of frequency and is a source of error for 

low-frequency circuits. 
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𝑣𝑓

2 ̅̅ ̅̅ =
𝐾

𝑊𝐿𝐶𝑜𝑥Δ𝑓
 

 

(3.3) 

A comprehensive noise model [62] is used to provide a noise treatment for the biosensors 

mentioned in this work. For a non-faradaic electrode-electrolyte interface, the valence of the 

electrolyte is z. In addition, the measurement is performed for a single frequency, thus the 

bandwidth of the system is 1 Hz. Fig 1c shows the incremental circuit model established using 

impedance measurements[63]. Three noise sources due to Rs, RASA, and Rct can be identified using 

previously mentioned noise equations. Moreover, the measurement device’s response time of 13 

ms is smaller than the biosensor’s response time of 5 minutes. Based on these assumptions, a noise 

model was proposed for the biosensor used in this work as shown in Fig. 1d, which was derived 

from Fig. 1c9 by dividing the cross-section of the sensor into three parts. Since an active 

semiconducting film is a partially conductive film with some resistance based on its doping levels, 

it is prone to a noise voltage like a resistor and can be modeled as a thermal noise source. It can be 

assumed that there is a presence of 1/ f noise due to this film due to semiconductor material, which 

is a result of charge carrier generation as well as recombination. However, since a capacitance 

CASA exists in parallel with the noise sources, this noise can be modeled as a kT/C noise of the 

active semiconducting film. Considering the biosensing electrical double layer and charge transfer 

resistance, these are modeled to be circuit components for an ideal polarized electrode (IPE), 

however, they are imperfect in a real scenario. Thus, the noise of this region can be assumed to be 

a variation in the current density of the charge carriers depending upon the strength of the electrical 

potential, which in turn depends on the location of the slip plane. However, since the ion motion 

is slower than an electron’s motion, a function M(ω) is used to model the frequency-dependent 
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effect of this current noise source. The solution resistance is a bulk effect and can be assumed to 

be a resistor, thus the thermal noise effect. The final expression of the noise voltage would be a 

summation of all these noise sources as given in Eqn. 5.  

 
𝑣2̅̅ ̅ = 4𝑘𝑇(𝑅𝑆 + 𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) + 2𝑧𝑞𝐼. 𝑀(𝜔). (𝑅𝑐𝑡| |

1

𝑗𝜔𝐶𝑑𝑙
) + 𝑘𝑇 𝐶𝐴𝑆𝐴

+
𝐾

𝑊𝐿𝐶𝑜𝑥Δ𝑓
 

 

(3.4) 

The veracity of this model is confirmed using a noise test for 30 minutes on a non-functionalized 

sensor surface wet with 1X phosphate saline buffer (PBS) using a high-speed potentiostat (Zurich 

Instruments, Switzerland). Fig. 2c shows the variation of noise spectra at an interval of 5 minutes. 

The noise voltage follows a trend inversely proportional to the frequency and is maximum at t=5 

minutes, whereas it decreases with time and is at a minimum at t=30 minutes at 100 Hz excitation 

frequency. Thus, as the introduction of PBS reaches an equilibrium, the noise amplitude of the 

system starts decreasing for 100 Hz excitation frequency. The RMS noise voltage is shown in Fig. 

2b. 
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Figure 3.12. (a) A cross-section of antigen-antibody interaction on the functionalized biosensor 

surface. (b) Cross-section of the materials of the biosensor when placed on the skin (not to scale). 

(c) Incremental circuit model of the biosensor. (d) Noise source superposition on the incremental 

circuit model. (e) FFT noise spectrum of the biosensor when dosed with synthetic sweat without 

glucose, demarcated with noise margins. (f) Noise voltage level progression for the 100 Hz band 

of the FFT spectrum over 30 minutes.  

3.10 Finite state machine (FSM) approach to firmware implementation 

A finite state machine (FSM) is a finite automaton, which is a mathematical model of computation. 

It is an abstract machine that can have one or more states at a given point in time. This architecture 
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is capable of transitioning from one state to the other when provided with the right input triggers. 

FSMs can execute a predetermined set of tasks based on the sequence of events that may interact 

with it, e.g., vending machines, elevators, traffic lights, etc. Wearable device firmware also 

depends on FSM architecture to ensure proper user interaction and data collection when deployed. 

The FSM used for this work is shown in Figure 3.13. 

 
Figure 3.13. An example of a finite state machine for the proposed wearable device with states 

demarcated as Sn and relevant flags.  

The wearable firmware begins proper initialization of the device at state S1, then moves into state 

S2, which performs a read from the Bluetooth coprocessor. This checks for any commands 

received from a smartphone. If the command is received, it will be parsed and proper actions will 
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be taken, e.g., a trigger of a measurement or memory readback. However, if no measurement was 

performed earlier, and a measure command is received, the flag will be set high in state S3. This 

will ensure program execution now goes through states S4 and S5. State S6 is introduced as a sleep 

time to ensure the FSM does not enable any peripherals or processor cores during this period for 

saving battery power. This time may be adjusted and is discussed in the next section. When a 

readback command is issued, state S7 sends all stored impedance measurements to the smartphone 

for data curation. When the measurement is not required anymore, the erase command is issued, 

wherein state 8 erases all recorded measurements and disables the measure flag. 

3.11 Power optimization using time-averaging 

For the proposed wearable device, the ultimate objective to be achieved would be very similar to 

a data conversion system, i.e., achieving a low power consumption per every measurement 

performed. Similarly, the capability of the device to measure with minimal power will be observed 

by varying operating conditions. A battery-operated device is generally operated at a very low, 

sleep-mode supply current. However, the device requires a larger amount of current to operate in 

an active state. Thus, for such an uneven distribution of current, an average over the time taken by 

the device to execute the program from start to end. Thus, the battery selection for a fixed average 

current is performed as follows. 
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Figure 3.14. Measured current consumption of the proposed wearable device using a DC power 

analyzer. Each of the FSM states is demarcated to highlight the shape of the current waveform as 

per firmware execution.  

 

Let the sleep current of the device in question be Isleep for time tsleep and the active current of the 

device is Iactive for time tactive. Since the device completes one program cycle, the total time for one 

program cycle ttotal is the summation of tsleep and tactive. For the proposed device, Isleep was found to 

be 0.1mA, Iactive as 12mA, tsleep as 60 s, and tactive as 1s. Assuming the Bluetooth data transfer does 

not happen until explicitly triggered, the battery life can be calculated using the measurements 

above, leading to an average current of 1 mA using Eqn. (3.5) and Eqn. (3.6). If a battery of 

168mAh is used, the system will be functional for 168 hours, i.e., 1-week, meeting the target 

objective.  

 

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑠𝑙𝑒𝑒𝑝 + 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 (3.5) 

 

 
𝐼𝑎𝑣𝑔 = 𝐼𝑠𝑙𝑒𝑒𝑝 ×

𝑡𝑠𝑙𝑒𝑒𝑝

𝑡𝑡𝑜𝑡𝑎𝑙
+ 𝐼𝐴𝑐𝑡𝑖𝑣𝑒 ×

𝑡𝑎𝑐𝑡𝑖𝑣𝑒

𝑡𝑡𝑜𝑡𝑎𝑙
 

(3.6) 
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CHAPTER 4 

MODELLING SENSOR BEHAVIOR FOR HUMAN SUBJECT DATA 

The behavior of a biosensor can be established using conventional methods in a steady 

environment, at a fixed temperature, and relative humidity. However, the effects of the 

environmental and human subjects may affect the outcome of the sensor quite differently in 

comparison to the pre-established sensor. Hence, understanding the behavior of the wearable 

device in interaction with a cohort of human subjects would give a deeper insight into system 

robustness towards clinical acceptance. The upcoming sections discuss the collection and analysis 

of human subject data using time-series analysis and machine learning regression methods.  

4.1 Collection of human subject data 

An independent sample t-test was performed between the reference and the sensor data to validate 

the distribution probability and to compare the mean distribution between the analytical methods. 

The total mean measurements at each time point are accompanied by a sample size of 40 (10 

subjects × 4-time points) and their respective variability in concentrations are presented in the 

supplementary section. These values confirm that the differences in the distributions of the 

measurements by the method are statistically insignificant. Regarding reporting the biomarker 

levels among the three methods of data collection for the two sweat markers, it can be observed 

that the power lies between 0.82 and 0.87 with an α of 0.05. Based on this study, we are confident 

that there is a possibility of achieving a power value of >0.93 in future work by increasing the 

cohort of participants in the study. This would help healthcare professionals in understanding the 
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relationship between macronutrient consumption versus fluctuations in glycemic-adrenal indices 

by relying on measurements from the WATCH sensing platform. 

4.2 Methods of modeling 

 

Figure 4.1. Classification of methods of data modeling for the proposed wearable device. The 

methods shown in bold are discussed in this work.  

4.3 Exploratory data analysis and preparation 

Exploratory data analysis is the process of performing an initial investigation on data to discover 

patterns, correlations, find anomalies check for assumptions using graphical plots.  
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Figure 4.2. (A) Box plot of values of selected features across the data collected from various 

subjects. (B) Correlation matrix of the selected features for the training data.  

 

Before building a machine learning algorithm for glucose sweat prediction, the dataset was 

explored to understand the underlying relationship between the data set. The signal obtained is the 

impedance signal of the sensor which translates to values of glucose present in the sweat.  As seen 
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in Figure 2(A) we see the distribution box plot overall range for Zmod value lies between 1-20kΩ. 

The sensor used for this study is the capacitive sensor and we expect to see the values of Zmod 

within 30kΩ and subsequent Zphase values would be mostly negative. Apart from the impedance 

signal, we have also integrated temperature and RH sensors on the reader. The skin temperature 

and %RH have been measured at every minute and provided as the input for the prediction of the 

sweat glucose. Figure 2(A) shows the overall distribution of measure input parameters. Overall 

observed values for the temperature are in the range of 28-36 °C with a mean value of 33.5 °C of 

and mean %RH values for the subjects included in the study is 82. The observed temperature 

statistics do match with the generalized description of the healthy human cohort while performing 

routine activities as described in figure 1(B). With the input signal being a complex impedance 

signal in terms of Zmod and Zphase, another confounding which is dZmod, which is the running 

difference of the Zmod values between the previous and current values. As explained in the model 

building section we have seen the improvement of accuracy in the model with addition dZmod. 

The relationship within the input parameters has been analyzed with the help of a correlation 

matrix. Figure 2(B) shows the correlation matrix presented in terms of heatmap where blue is 1 

which is the highest possible positive correlation and yellow is the maximum negative correlation 

of -1. The in-between values are represented by the gradients of yellow for the negative correlation 

and gradients of blue for the positive correlation. The main intent behind analyzing the correlation 

matrix is to avoid redundant features while modeling. The highest correlation is seen between 

Zmod and Zphase with 0.97 Pearson’s correlation coefficient.  As both the parameters are highly 

correlated, so we include only Zmod values for the model building. Other parameters that show 

reasonable correlation with each other can be used as input parameters to the machine learning 
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model. This confirms there are no redundant features that will be included in the model-building 

stage.  

 

4.3.1 Interpolation 

 

Figure 4.3. Concept diagram of interpolation signal generation using reference points. 

 

Figure 3(A) represents the building of a continuous signal using the discrete data points. The 

discrete glucose concentration from the sweat is measured using the ELISA method and the signal 

is interpolated to obtain a smooth continuous time-varying signal. Given the periodic nature of the 

glucose molecule, we use a bicubic method of interpolation. The obtained continuous signal is 

used as the output parameter for regression building. The continuous signal is obtained for minute 

frequency. The interpolation method allows performing on-demand sampling of the glucose. 

Based on the nature of the dataset we have tested the linear regression, decision tree regression, 

and ensemble regression algorithm available in the MATLAB toolbox.   
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4.4 Machine learning-based regression  

 

The system-level block diagram used for the glucose monitoring system has been explained in 

Figure 7. The data collection is done with the help of an electrochemical sensor and reader. The 

reader samples the impedance signal at every minute. Along with impedance skin temperature and 

relative humidity are also measured. The raw input signal is transferred to the cloud storage server 

via a mobile application. The raw input signal is passed to the data pipeline and predicted glucose 

concentration. output is obtained at the end of the pipeline. As the system is the on-demand user 

can request any time to see the predicted glucose output. The training of the model has been taken 

care of in a separate pipeline. The extracted final model is used for the prediction of glucose 

concentration. 
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Figure 4.4. Complete system-level diagram of the wearable device-app-cloud platform 

infrastructure to support collection, curation, and analysis of sweat biosensor data, part 1 of 2.  
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Figure 4.5. Complete system-level diagram of the wearable device-app-cloud platform 

infrastructure to support collection, curation, and analysis of sweat biosensor data, part 2 of 2. 
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4.4.1 Generalization  

 

Figure 4.6. Change in the skew of interpolated training dataset when adding Gaussian noise with 

varying equivalent SNR of the output signal. This affects the change in train and test loss.  

 

Figure 4 explains the noise addition to introduce the variability for generalization. The results 

obtained from the interpolation are vulnerable to real-world noises from various sources. To take 

care of these shortcomings, a Gaussian noise parameter, also known as additive white noise, was 

introduced to the result set that was obtained from the interpolation. The results obtained after 

adding white noise resulted in response signals with a signal-to-noise (SNR) ratio of values 1, 5, 

10, 15, and 20 dB were analyzed to select the final choice of model. The objective is to minimize 

the loss but also to allow room for generalization and avoid overfitting. From Figure 4, SNR of 10 

dB avoided overfitting of the train and test loss with the minimum gap between predicted and 

actual output. In the case of higher SNR values, the train and test loss look very similar to the 
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response signal without any noise. In the case of lower SNRs, the train and test loss values do not 

seem to converge, showing an error of >20%, which is beyond the acceptable clinical limits[64]. 

Hence, SNR of 10 dB was found to be the optimal SNR ratio for the generalization of the model 

training process.   

4.4.2 Validation methodology 

 

Figure 4.7 An example of the workflow of the k-fold validation methodology. 

 

Figure 4.7 represents the k-fold method where the execution was done in the iteration manner 

and the results are represented as box plots for the visual comparison in Fig. 4B. K value was 

chosen as 5 for this study. The dataset size was comparatively small, hence k = 5 provided a 

robust outcome. K-fold validation helps to build confidence in the model performance. Figure 

4B captured the essence of all 5 iterations with the methodology they were executed. The next 

phase of model building is algorithm selection. We have tested logistic regression, naïve Bayes, 

k-nearest neighbor, decision tree, and support vector machine using the k-fold cross-validation 

method for spot quick checking the performance of the algorithms. K-fold cross-validation 
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process adds the additional validation phase during the training phase itself. This happens before 

the model is exposed to the test dataset. The training process is broken down into k iterations. 

The training dataset is divided into the k sections. All (k-1) sections are used for the training and 

the remaining one is used as the internal validation set. The performance of the algorithm is 

noted for the iteration. The same is repeated for the k items every time the validation set is 

different. The performance of the algorithm is aggregated for comparison. For the study, we have 

used k=5. 

4.4.3 Training results  

 

Figure 4.8. Comparison of the RMSE and R2 values obtained for various machine learning 

regression models used during the model training process. 
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4.4.4 Test results 

 
Figure 4.9. Results obtained on the test dataset for the 3 human subject data showing the actual 

progression of reported values and interpolated reference values. 

 

The next set of results obtained were from testing the algorithms for sweat glucose prediction on 

the human subject and the algorithm has been tested on three subjects The predicted value follows 

the trends for the sweat glucose value. The sweat values for the test subject are converted to a 

continuous curve using the same bicubic interpolation methodology used for building the 

continuous monitoring set values. The predicted values show the presence of the noise when added 

via the generalization process. The decision tree model building has used two types of 

generalization techniques. As given in the MATLAB Machine Learning toolbox the L1 

regularization offered by the algorithm to reduce the statistical overfit of the model was used. Also, 

the addition of external white noise to the level of SNR=10 dB signal to the training values. The 

noise addition takes care of variability that might be present in the real signal. The overall results 

give a good fit when the predicted signal is compared with the actual signal. 
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4.5 Time series analysis  

A time series is simply a series of data points ordered in time. In time series, time is often the 

independent variable, and the goal is usually to make a forecast for the future. Time series data can 

be described using certain mathematical characteristics such as the change in value over time and 

the direction in which the amplitude of the data fluctuates. Such properties of the time series data 

used in common literature are discussed below.  

4.5.1 Trend 

A trend is a gradual upward or downward shift in the level of the series or the tendency of the 

series values to increase or decrease over time. Trends are either local or global, but a single 

series can exhibit both types. Trends can also be either linear or nonlinear. Linear trends are 

positive or negative additive increments to the level of the series, comparable to the effect of 

simple interest on the principal. Nonlinear trends are often multiplicative, with increments that 

are proportional to the previous series value(s). 

4.5.2 Seasonality 

A seasonal cycle is a repetitive behavior of values in the time series data and depends on the 

interval of your series. For instance, monthly data typically cycles over quarters and years. A 

monthly series might show a significant quarterly cycle with a low in the first quarter or a yearly 

cycle with a peak every December. Series that show a seasonal cycle is said to exhibit 

seasonality. Seasonal patterns are useful in obtaining good fits and forecasts, and there are 

exponential smoothing and ARIMA models that capture seasonality. 

A nonseasonal cycle is a repetitive, possibly unpredictable, pattern in the series values. 
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Some series, such as the unemployment rate, clearly display cyclical behavior; however, the 

periodicity of the cycle varies over time, making it difficult to predict when a high or low will 

occur. Other series may have predictable cycles but do not neatly fit into the Gregorian calendar 

or have cycles longer than a year. For example, the tides follow the lunar calendar, international 

travel and trade-related to the Olympics swell every four years, and there are many religious 

holidays whose Gregorian dates change from year to year. 

Nonseasonal cyclical patterns are difficult to model and generally increase uncertainty in 

forecasting. The stock market, for example, provides numerous instances of series that have 

defied the efforts of forecasters. All the same, nonseasonal patterns must be accounted for when 

they exist. In many cases, you can still identify a model that fits the historical data reasonably 

well, which gives you the best chance to minimize uncertainty in forecasting. 

Many series experience abrupt changes in level. They generally come in two types: 

• A sudden, temporary shift, or pulse, in the series level 

• A sudden, permanent shift, or step, in the series level 

• When steps or pulses are observed, it is important to find a plausible explanation. Time 

series models are designed to account for gradual, not sudden, change. As a result, they tend to 

underestimate pulses and be ruined by steps, which leads to poor model fits and uncertain 

forecasts. (Some instances of seasonality may appear to exhibit sudden changes in level, but the 

level is constant from one seasonal period to the next.) 

• If a disturbance can be explained, it can be modeled using an intervention or event. For 

example, during August 1973, an oil embargo imposed by the Organization of Petroleum 

Exporting Countries (OPEC) caused a drastic change in the inflation rate, which then returned to 
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normal levels in the ensuing months. By specifying a point intervention for the month of the 

embargo, you can improve the fit of your model, thus indirectly improving your forecasts. For 

example, a retail store might find that sales were much higher than usual on the day all items 

were marked 50% off. By specifying the 50%-off promotion as a recurring event, you can 

improve the fit of your model and estimate the effect of repeating the promotion on future dates. 

Shifts in the level of a time series that cannot be explained are referred to as outliers. These 

observations are inconsistent with the remainder of the series and can dramatically influence the 

analysis and, consequently, affect the forecasting ability of the time series model. 

The following figure displays several types of outliers commonly occurring in time series. The 

blue lines represent a series without outliers. The red lines suggest a pattern that might be present 

if the series contained outliers. These outliers are all classified as deterministic because they 

affect only the mean level of the series. 

• Additive Outlier. An additive outlier appears as a surprisingly large or small value 

occurring for a single observation. Subsequent observations are unaffected by an additive outlier. 

Consecutive additive outliers are typically referred to as additive outlier patches. 

• Innovational Outlier. An innovational outlier is characterized by an initial impact with 

effects lingering over subsequent observations. The influence of the outliers may increase as time 

proceeds. 

• Level Shift Outlier. For a level shift, all observations appearing after the outlier move to a 

new level. In contrast to additive outliers, a level shift outlier affects many observations and has 

a permanent effect. 
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• Transient Change Outlier. Transient change outliers are similar to level shift outliers, but 

the effect of the outlier diminishes exponentially over the subsequent observations. Eventually, 

the series returns to its normal level. 

• Seasonal Additive Outlier. A seasonal additive outlier appears as a surprisingly large or 

small value occurring repeatedly at regular intervals. 

• Local Trend Outlier. A local trend outlier yields a general drift in the series caused by a 

pattern in the outliers after the onset of the initial outlier. 

Outlier detection in time series involves determining the location, type, and magnitude of any 

outliers present. Tsay (1988) proposed an iterative procedure for detecting a mean level change 

to identify deterministic outliers. This process involves comparing a time series model that 

assumes no outliers are present to another model that incorporates outliers. Differences between 

the models yield estimates of the effect of treating any given point as an outlier. 

4.5.3 Autocorrelation 

Autocorrelation and partial autocorrelation are measures of association between current and past 

series values and indicate which past series values are most useful in predicting future values. With 

this knowledge, you can determine the order of processes in an ARIMA model. Hence, an 

autocorrelation function (ACF) is the correlation between series values that are k intervals apart. 

Partial autocorrelation function (PACF) is the correlation between series values that are k intervals 

apart, accounting for the values of the intervals between. The x-axis of the ACF plot indicates the 

lag at which the autocorrelation is computed; the y axis indicates the value of the correlation 

(between −1 and 1). For example, a spike at lag 1 in an ACF plot indicates a strong correlation 

between each series value and the preceding value, a spike at lag 2 indicates a strong correlation 



 

66 

between each value and the value occurring two points previously, and so on. A positive 

correlation indicates that large current values correspond with large values at the specified lag; a 

negative correlation indicates that large current values correspond with small values at the 

specified lag. The absolute value of a correlation is a measure of the strength of the association, 

with larger absolute values indicating stronger relationships. 

4.5.4 Stationarity in time-series data  

A stationary time series is one for which the statistical properties do not change over time, 

however, it does not imply that the time series data does not vary over time. In a clearer aspect, 

the properties of the change of values in the times series data can be considered as conserved or 

unchanged.  

The Augmented Dickey-Fuller test for a unit root assesses the null hypothesis of a unit root using 

the model 

yt=c+δt+ϕyt−1+β1Δyt−1+…+βpΔyt−p+εt, 

where 

• Δ is the differencing operator, such that Δyt=yt−at−1. 

• The number of lagged difference terms, p, is user-specified. 

• εt is a mean zero innovation process. 

The null hypothesis of a unit root is 

H0: ϕ=1. 

Under the alternative hypothesis, ϕ<1. 

Variants of the model allow for different growth characteristics. The model with δ = 0 has no 

trend component, and the model with c = 0 and δ = 0 has no drift or trend. 
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A test that fails to reject the null hypothesis fails to reject the possibility of a unit root. Engle’s 

ARCH test assesses the null hypothesis that a series of residuals (rt) exhibits no conditional 

heteroscedasticity (ARCH effects), against the alternative that an ARCH(L) model describes the 

series. 

The ARCH(L) model has the following form: 

rt2=a0+a1r2t−1+…+aLr2t−L+et, 

where there is at least one aj ≠ 0, j = 0,..,L. 

The test statistic is the Lagrange multiplier statistic TR2, where: 

• T is the sample size. 

• R2 is the coefficient of determination from fitting the ARCH(L) model for several lags 

(L) via regression. 

Under the null hypothesis, the asymptotic distribution of the test statistic is chi-square with L 

degrees of freedom. 

4.5.5 Operations on time-series data  

The most common operations that can be applied to time-series data are autoregression and 

moving average.  

 𝑦 = 𝑋1𝛽1 + ⋯ + 𝑋𝑝𝛽𝑝 + 𝜀𝑡 

 

(4.1) 

  

 
𝑦 =

1

𝑞
 (𝑋1𝛽1 + ⋯ + 𝑋𝑞𝛽𝑞) 

 

(4.2) 
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Figure 4.10. An example of an autoregression function with window sizes 8, 16, and 24 when 

evaluated for a square wave pulse. Higher AR order implies a good fit for fast-moving input 

signals.  

 

 

Figure 4.11. An example of a moving average function with window sizes 3 and 9 when 

evaluated for a square wave pulse. Higher window size implies a sluggish response in time.  
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4.5.6 ARIMA modeling and test results 

ARIMA(p,d,q) is one of the most commonly used curve fit functions used for time-series analysis, 

where p is the order of auto-regressive (AR) terms, d is the number of integrating terms and q is 

the number of moving -average (MA) terms. For the above data set, p was determined using the 

number of significant peaks in the auto-correlation plot of the primary predictor's impedance 

magnitude (Zmod) and first differential of impedance magnitude (dZmod), which shows a change 

in sensor response with change in glucose concentration as per dose calibration. Figs. 4a,4d show 

2 extreme cases among the 20 data set, wherein the autocorrelation plot shows 5 initial lag peaks 

for subject 1 and 10 initial lag peaks for subject 2, which exceed the 3σ confidence interval. Hence, 

the maximum peaks are defined as p = 10. The ARIMA(10,0,3) regression curve fit used for the 

above data sets is given in Eqn. 13 and Eqn. 14, where y is the output, X is the input values for the 

predictors, β are the coefficients obtained from regression ARIMA fit, µt is the variance, L is the 

lag operator, θ are the moving average coefficients and εt is Gaussian white noise. The coefficients 

of the ARIMA(10,0,3) curve fit are shown in Table 2. The p-value for a given predictor defines its 

significance in predicting the output time series, which is the interpolated sweat glucose value. If 

p < 0.05, then the predictor 5/14 is assumed to be significant as it rejects the null hypothesis, else 

the predictor can be assumed to be non-significant, hence can be removed from the curve fit 

expression. In this case, predictors AR4 can be safely assumed to not contribute to the prediction. 

The AIC of this curve fit was −3131.438, ensuring a good curve fit and low prediction error. This 

is corroborated by the ARIMA outputs plotted against the interpolated glucose values in Figs. 5a, 

5b. The error histogram is shown in Fig. 5c, demonstrating a low predicted sweat glucose error for 

the interpolated sweat glucose measurements. 
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 𝑦 = 𝑋1𝛽1 + ⋯ + 𝑋10𝛽10 + 𝜇𝑡   (4.3) 

 (1 − 𝜙1𝐿 − ⋯ − 𝜙10𝐿10)𝜇𝑡

= (1 + 𝜃1𝐿 + 𝜃2𝐿2 + 𝜃3𝐿3)𝜀𝑡  (2) 

(4.4) 

 

 

 

Table 4.1. ARIMA (10,0,3) coefficients  

Predictor Value Std. Error p-value 

Intercept 2.2236 0.0011792 0 

AR1 1.1696 0.016376 0 

AR2 -0.79248 0.015316 0 

AR3 0.71839 0.044644 2.9197e-58 

AR4 0.10234 0.044076 0.020235 

AR5 -0.22962 0.032213 1.0166e-12 

AR6 0.1 0.034417 0.0036662 

AR7 -0.20436 0.034488 3.109e-09 

AR8 0.11278 0.03253 0.00052668 

AR9 -0.075336 0.032725 0.021328 

AR10 0.085203 0.026248 0.0011702 

MA1 -0.60583 0.017528 9.1092e-262 

MA2 0.7133 0.024382 3.8771e-188 

MA3 -0.40103 0.050977 3.6377e-15 

Beta(Zimag) -0.00025308 4.887e-06 0 

Beta(Zmod) 0.00054978 1.1027e-05 0 

Beta(Zphase) -0.023363 0.0014868 1.2261e-55 

Beta(Zreal) -0.00047466 9.8819e-06 0 

Beta(dZimag) -5.2582e-06 6.8561e-07 1.7285e-14 

Beta(dZmod) -7.0023e-06 1.5741e-07 0 

Beta(dZphase) -0.0045203 0.0022546 0.044974 

Beta(dZreal) 1.1458e-05 6.5176e-07 3.5439e-69 

Beta(rh) -0.022069 0.00070336 4.2615e-216 

Variance 0.0075866 0.00025797 4.2045e-190 
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Figure 4.12. (A) Autocorrelation plot for Zmod for subject 1. (B) Autocorrelation plot for Zmod 

for subject 2. (C) Autocorrelation plot for dZmod for subject 1. (D) Autocorrelation plot for 
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dZmod for subject 2. (E) Skin temperature and relative humidity for subject 1. (F) Skin 

temperature and relative humidity for subject 2. 

 

Figure 4.13. (A) Comparison of interpolated vs. RegARIMA sweat glucose concentrations for 

subject 1. (B) Comparison of interpolated vs. RegARIMA sweat glucose concentrations for 

subject 2. (C) Histogram of residuals for ARIMA(10,0,3) model. 
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CHAPTER 5 

CONCLUSION  

This work is a discussion of the methodology of designing a wearable device that is integrated 

with an electrochemical glucose sensing, sweat biosensor which can be used as a decision support 

system for diabetic users. The wearable device was designed keeping in mind the philosophy of 

design from the commercial wearable market while adding novelty in linking a biological signal 

response to auxiliary sensing and a data collection platform. The wearable device was tested for 

impedance measurement accuracy of 1% and noise performance that is at least 20x better than the 

noise performance of the sensor at 100 Hz. The firmware of the device was written as a finite state 

machine to provide rudimentary interaction with the device for starting data recording, retrieving 

data, and turning off measurement for efficient battery usage for 1 week. The resultant wearable 

platform was implemented and used to collect data from 10 human subjects to understand the 

behavior of the system under varied user conditions, environmental states, and sedentary lifestyles. 

The data collected was used to analyze the measurement performance of the device against a 

clinical reference, and two modeling methodologies, ARIMA vis-à-vis machine learning 

regression, were used to assess the interdependence of data features with the interpolated reference 

output. This sensing scheme can be further extended for multiplexed detection of biomarkers in 

various combinations and biological media to detect the presence, absence, or modulation of said 

biomarker(s) due to an underlying condition or factor affecting the user’s lifestyle.  
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APPENDIX 

ELECTRICAL DESIGN DOCUMENTATION  

 

 

 
Figure A.1. Schematic, printed circuit board layers and assembly information for the proposed 

wearable device. 
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Figure A.1. continued. 
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Figure A.1. continued. 
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Figure A.1. continued. 
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Figure A.1. continued. 
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Figure A.1. continued. 

 



 

80 

 

Figure A.1. continued. 
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Figure A.1. continued. 
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Figure A.1. continued. 
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Table A.1. Pick and place information for components used for the wearable device.  
Designator Layer Footprint Center-X(mil) Center-Y(mil) Rotation 

R14 Top Layer 402 797.945 722.52 360 

C17 Top Layer 402 306.386 344.567 180 

C18 Top Layer 402 284.449 202.551 270 

C22 Top Layer 402 766.732 84.724 360 

C12 Top Layer 402 1313.976 643.779 180 

Y1 Top Layer          TSX3225 1182.087 246.142 90 

ANT1 Top Layer FR05-S1-N-0110B 1436.024 137.874 180 

R12 Top Layer 402 869.095 315.039 360 

R5 Top Layer 402 524.575 83.039 360 

SENSOR_OUT Top Layer MOLX-51296-1894 144.685 279.606 270 

R11 Top Layer 402 382.874 202.835 180 

R10 Top Layer 402 426.181 409.527 270 

R9 Top Layer 402 390.465 606.378 180 

R8 Top Layer 402 873.032 136.189 90 

R6 Top Layer 402 1502.953 383.937 90 

R1 Top Layer 402 1107.284 116.22 90 

L3 Top Layer 402 1485.236 683.149 360 

L2 Top Layer 402 1319.102 520.047 360 

L1 Top Layer 805 871.063 541.417 270 

FL1 Top Layer 603 796.26 805.197 180 

C21 Top Layer 402 640.748 82.756 360 

C20 Top Layer 402 380.622 505.984 180 

C19 Top Layer 402 538.386 583.291 90 

C16 Top Layer 402 1101.661 733.425 90 

C15 Top Layer 402 866.221 401.937 180 

C14 Top Layer 402 1483.268 285.512 180 

C13 Top Layer 402 1483.268 598.504 180 

C11 Top Layer 402 1500.984 496.142 270 

C10 Top Layer 402 1311.728 398.212 270 

C9 Top Layer 402 752.953 547.323 90 

C8 Top Layer 402 1163.465 823.976 360 

C7 Top Layer 402 1191.929 728.425 90 

C6 Top Layer 402 1229.334 398.838 270 

C5 Top Layer 402 979.331 583.583 90 

C4 Top Layer 402 1000.701 336.693 180 

C3 Top Layer 402 998.732 423.307 180 

C2 Top Layer 603 953.74 809.134 0 
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U1 Top Layer DSQ10_P9X1P5 650.748 776.89 0 

D1 Top Layer LED0402 884.842 714.646 180 

D2 Top Layer LED0402 1392.433 822.913 360 

U4 Top Layer DMB0006A 982.6 160.971 0 

USB Top Layer USB_B_MICRO 165.354 702.835 270 

U3 Top Layer TI_RSM_4x4mm 1156.614 544.213 180 

U2 Top Layer BC_120_3 640.748 303.228 270 

R4 Top Layer 402 1274.323 822.913 180 

R3 Top Layer 402 536.417 734.331 270 

R2 Top Layer 402 459.646 738.551 90 

R7 Top Layer 402 995.362 714.646 0 

C1 Top Layer 402 378.654 838.661 180 

 

Table A.2. Bill of materials for the components used in the wearable device.  
Designator Description Manufacturer Part 

Number  

Manufacturer  

ANT1 Fractus Micro Extend 2.5Ghz Chip 

Antenna 

FR05-S1-N-0-102 Fractus 

C1, C3, C5, C17 Polarized Capacitor (Surface Mount) GRM155R60J106ME44D Murata 

C2 
 

DNM DNM 

C4 Capacitor, Ceramic X7R, 100nf, 

25V, -10%/+10%, - 

C0402C104K8PACTU KEMET 

C6, C14 
 

DNM DNM 

C7, C8, C9, 

C10, C15, C20, 

C21 

CAPACITOR, CERAMIC X7R, 

100nf, 6.3V, -10%/+10%, -, 0402, 

SMD 

C0402C104K8PACTU KEMET 

C11 CAPACITOR, CERAMIC 

C0G/NP0, 12pf, 50V, -5%/+5%, -, 

0402, SMD 

GRM1555C1H120GA01D Murata 

C12, C13 CAPACITOR, CERAMIC 

C0G/NP0, 1.2pf, 50V, -0.1pf/ 

+0.1pf, -, 0402, SMD 

GJM1555C1H1R2BB01D Murata 

C16, C18, C19, 

C22 

CAPACITOR, CERAMIC X5R, 

1uf, 10V, -10%/+10%, -

55DEGC/+85DEGC, 0402, SMD 

C0402C105K8PACTU KEMET 

D1, D2 Typical RED, GREEN, YELLOW, 

AMBER LED 

HSMS-C150 Broadcom 

Avago 

FL1 FILTER, EMI, 1500@100mhz, -, 

0603, SMD 

BLM18HE152SN1D Murata 

L1 INDUCTOR, CHIP, 10uh, -

20%/+20%, 0.11A, 0805, SMD 

CKS2125100M-T Taiyo Yuden 
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L2 INDUCTOR, CHIP, 15nh, -

5%/+5%, 0.3A, 0402, SMD 

LQW15AN15NJ00D Murata 

L3 INDUCTOR, CHIP, 2nh, -0.3nh/ 

+0.3nh, 0.3A, 0402, SMD 

LQP03TN2N0B02D Murata 

R1, R8, R9, 

R10, R11, R14 

Resistor RC0402FR-0710KL Yageo 

R2, R4, R7 Resistor ERA6AEB4023V Panasonic 

R3 Resistor ERA6AEB4023V Panasonic 

R5, R12 Resistor ERJ-2RKF4023X Panasonic 

R6 Resistor, Thick Film, 0, -1%/+1%, 

0.063w, 50V , 0402 

CRCW04020000Z0ED Vishay 

SENSOR_OUT 0.5 Mm Pitch Easy-On (TM) Type 

FPC Connector, 1.3 Mm Mated 

Height, Right Angle, ZIF, SMT, 

Bottom Contact, 18 Circuits,  

51296-1894 Molex 

U1 1A Li Ion Battery Charger BQ24040DSQT Texas 

Instruments 

U2 Configurable Impedance Network 

Analyzer & Potentiostat with 

Integrated Cortex M3 Core 

ADUCM350BBCZ Analog 

Devices 

U3 IC, Digital, 2.4ghz Simple link 

Wireless MCU, Pitch 0,4mm, 

Qfn32, SMD 

CC2650F128RSMT Texas 

Instruments 

U4 Temperature + Rh Sensor HDC1080DMBR Texas 

Instruments 

USB USB On-The-Go (OTG) Mini-B 

Receptacle, Right Angle, SMT, 

0.80mm (.031") Pitch, Solder Tabs 

with Back Cover, Recessed Type 

UJ2-MIBH2-4-SMT-TR CUI Devices 

Y1 CRYSTAL, CRYSTAL 

OSCILLATOR, 24mhz, -

15PPM/DEGC/+15PPM/DEGC, -, 

SMD 

ABM3B-24.000MHZ-B2-

T 

Abracon 
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