
REAL-TIME SMARTPHONE APPS INTEGRATING

SIGNAL PROCESSING MODULES OF HEARING AIDS

by

Tahsin Ahmed Chowdhury

APPROVED BY SUPERVISORY COMMITTEE:

__
Dr. Nasser Kehtarnavaz, Chair

__
Dr. Chin-Tuan Tan

__
Dr. William (Bill) Swartz

Copyright 2018

Tahsin Ahmed Chowdhury

All Rights Reserved

REAL-TIME SMARTPHONE APPS INTEGRATING
SIGNAL PROCESSING MODULES OF HEARING AIDS

By

TAHSIN AHMED CHOWDHURY

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirement

for the Degree of

MASTER OF SCIENCE IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

May 2018

 iv

ACKNOWLEDGEMENTS

First of all, I would like to thank GOD for His endless graces and blessings.

I would like to express my sincere appreciation to my advisor, Dr. Nasser Kehtarnavaz for his

continuous guidance, patience and motivation in my Master’s thesis.

Besides my advisor, I would like to thank Dr. Chin-Tuan Tan and Dr. William (Bill) Swartz for

their time and support as committee members.

I would also like to thank my lab colleagues in the Signal and Image Processing Lab, Abhishek

Sehgal, Nasim Alamdari and Neha Dawar for their valuable support and discussions.

Finally, I would like to thank my parents, Taher Ahmed Chowdhury and Romana Parvin, my

wife, Armina Jahan, my brother, Tausif Ahmed Chowdhury and my sister, Tasnim Chowdhury

Hridita for their moral support in my life.

Tahsin Ahmed Chowdhury

May 2018

 v

REAL-TIME SMARTPHONE APPS INTEGRATING
SIGNAL PROCESSING MODULES OF HEARING AIDS

Tahsin Ahmed Chowdhury, MS
The University of Texas at Dallas, 2018

 Supervisory Professor: Dr. Nasser Kehtarnavaz

This thesis covers the integration of several signal processing modules that appear in digital

hearing aids as real-time smartphone apps. The modules that are considered for integration in the

developed apps in this thesis are voice activity detector, supervised noise classifier, noise

reduction, and compression. The objective of this work has been to lay the foundation for real-

time implementation of integrating various signal processing pipelines that are used in digital

hearing aids on the smartphone platform as an open source platform which is widely used and

carried by people. More specifically, two integrations are covered in this thesis. The first

integration involves combining a previously developed voice activity detector and a previously

developed supervised noise classifier into a real-time smartphone app. The second integration

involves combining another previously developed voice activity detector, a previously developed

noise reduction, and the compression module in the MATLAB Audio System Toolbox into a

real-time smartphone app. The results obtained indicate that the developed integrations run in

real-time on both iOS and Android smartphones.

 vi

TABLE OF CONTENTS

ACKNOWLEDGMENT ………………………………………………………………... iv

ABSTRACT……………………………………………………………………………… v

TABLE OF CONTESTS………………………………………………………………… vi

LIST OF FIGURES……………………………………………………………………… vii

LIST OF TABLES………………………………………………………………………. ix

CHAPTER 1 INTRODUCTION………………………………………………………... 1

CHAPTER 2 USER’S GUIDE: A SMARTPHONE APP INTEGRATING VAD AND
SUPERVISED NOISE CLASSIFIER FOR HEARING IMPROVEMENT STUDIES....

3

CHAPTER 3 INTEGRATING SIGNAL PROCESSING MODULES OF HEARING
AIDS INTO A REAL-TIME SMARTPHONE APP …………………………………….

24

CHAPTER 4 NOISE REDUCTION STUDY OF INTEGRATION …………………... 36

CHAPTER 5 USER’S GUIDE: A SMARTPHONE APP INTEGRATING SIGNAL
PROCESSING MODULES OF HEARING AIDS………………………………………

47

REFERENCES…………………………………………………………………………... 88

BIOGRAPHICAL SKETCH………..…………………………………………………... 91

CURRICULUM VITAE………………………………………………………………... 92

 vii

LIST OF FIGURES

1. Contents of the VAD and NoiseClassifier integrated app folders ...………………… 5

2. VAD and NoiseClassifier integrated app GUI – iOS version………………………… 7

3. VAD and NoiseClassifier integrated app code flow – iOS version ………………….. 10

4. VAD and NoiseClassifier integrated app GUI – Android version……………………. 16

5. VAD and NoiseClassifier integrated app code flow – Android version……………… 19

6. Integration of signal processing modules of hearing aids as a real-time smartphone
app………………………………………………………………………………………..

27

7. A typical compression function……………………………………………………….. 29

8. GUI of the integrated app (main page)………………………………………………... 33

9. CPU and memory consumptions of the integrated app ………………………………. 34

10. PESQ measure for fixed and adaptive noise estimation……………………………...

35

11. Objective evaluation of noise reduction with fixed and adaptive noise estimation at
SNR 5dB...

39

12. Objective evaluation of noise reduction with fixed and adaptive noise estimation at
SNR 0dB...

40

13. Objective evaluation of noise reduction with fixed and adaptive noise estimation at
SNR -5dB...

42

14. Compression app: iOS……………………………………………………………….. 43

15. Noise estimation before speech activity frames……………………………………... 45

16. Moving average of all previous noise frames estimated before speech activity
frames…………………………………………………………………………………….

45

17. Integrated app folder contents……………………………………………………….. 49

 viii

18. Signing with Apple Developer ID…………………………………………………… 51

19. Integrated app iOS GUI: Main View………………………………………………… 52

20. Integrated app iOS GUI: Noise Reduction Settings View…………………………... 54

21. Integrated app iOS GUI: Compression Settings view……………………………….. 57

22. Integrated app iOS code flow………………………………………………………... 58

23. Further breakdown of native code modules in iOS………………………………….. 60

24. Supporting files……………………………………………………………………… 62

25. Setting optimization level in Xcode for the integrated app iOS…………………….. 67

26. Integrated app Android GUI: Main view……………………………………………. 70

27. Integrated app Android GUI: Noise Reduction Settings view………………………. 72

28. Integrated app Android GUI: Compression Settings view………………………….. 75

29. Integrated app Android version: project organization……………………………….. 76

30. Further breakdown of native code modules in Android……………………………... 80

31. Add native folder paths……………………………………………………………… 82

32. Creating native linking function……………………………………………………... 83

33. Setting optimization level in Android Studio for the integrated app Android………. 86

 ix

LIST OF TABLES

1. Listening effort scale………………………………………………………………… 45

2. Subjective evaluation on noise reduction for different noise estimations…………… 46

3. Timing difference between the iOS and Android versions of the integrated app…… 87

1

CHAPTER 1

INTRODUCTION

As per the World Health Organization, over 450 million people worldwide have some level of

hearing impairment. As a solution to this problem, initially analog and now digital hearing aids

have been developed by many companies. The main function of a hearing aid is to amplify sound

within the hearing range of the person having a hearing impairment. Due to the limitation of the

processing power of processors in hearing aids, researchers have started using smartphones as an

assistive device to hearing aids. Smartphones have powerful processors that can be used in

conjunction with or in addition to hearing aid processors to address hearing impairments.

Software tools have been developed by the Signal and Image Processing (SIP) Laboratory at the

University of Texas at Dallas which enable real-time implementation of signal processing

algorithms on smartphones. Furthermore, based on these software tools, a number of smartphone

apps have been developed in this lab that run one component of the signal processing pipeline of

hearing aids on smartphones as an open platform or source manner. These apps include voice

activity detection, noise classification, noise reduction, and compression.

This thesis involves the integration of the previously developed individual signal processing

components into smartphone apps that run in real-time and with low audio latency. More

specifically, two integrations are covered in this thesis. The first integration involves combining

a previously developed voice activity detector and a previously developed supervised noise

2

classifier into a real-time smartphone app. This first integration was carried out as part of an NIH

sponsored project. The second integration involves combining another previously developed

voice activity detector, a previously developed noise reduction, and the compression module in

the MATLAB Audio System Toolbox into a real-time smartphone app.

The rest of the thesis is organized into the following four chapters:

Chapter 2 covers the user’s guide describing how to run and use the app code for the integration

of a previously developed voice activity detector app and a previously developed supervised

noise classifier app. The work in this chapter was carried out as part of the NIH project entitled

“Smartphone-Based Open Research Platform for Hearing Improvement Studies.”

Chapter 3 covers the work done in the SIP Lab to integrate another previously developed voice

activity detector app, a previously developed noise reduction app, and a newly developed

compression app based on the MATLAB Audio System Toolbox.

Chapter 4 provides further analysis of the integrated app in Chapter 3. Finally, Chapter 5 covers

the user’s guide describing how to run and use the app code for the integrated app discussed in

Chapter 3.

3

CHAPTER 2

USER’S GUIDE:

A SMARTPHONE APP INTEGRATING VAD AND SUPERVISED NOISE

CLASSIFIER FOR HEARING IMPROVEMENT STUDIES

T. Chowdhury, A. Sehgal, and N. Kehtarnavaz

Signal and Image Processing Lab

University of Texas at Dallas Copyright 2018

800 West Campbell Road

Richardson, Texas 75080-3021

The work in this chapter was supported by the National Institute of the Deafness and Other
Communication Disorders (NIDCD) of the National Institutes of Health (NIH) under the award
number 1R01DC015430-01. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH.

4

Introduction

This user’s guide describes how to run an integrated smartphone app consisting of two

previously developed apps of Voice Activity Detector (VAD) covered in [1, 2] and the

supervised noise classifier covered in [3, 4].

The first part of this guide covers the iOS version of this integrated app and the second part

covers its Android version. Each part consists of four sections. The first section discusses the

GUI of the app. The second section covers the code flow of the app. In the third section, the

process of data collection for training is mentioned. Finally, how to run the MATLAB training

code to generate the parameters associated with the classifiers, is covered in the fourth section.

Devices used for running this integrated app

• iPhone7 as iOS platform

• Google Pixel as Android platform

Folder Description

The codes for the Android and iOS versions of the app are arranged as described below. These

codes can be downloaded from the website at [5]. Fig. 1 lists the contents of the folder

containing the app codes. These contents include:

• “VAD_NC_iOS” includes the iOS Xcode project. To open the project, double click on

the “VAD_NC iOS.xcodeproj” inside the folder.

• “VAD_NC_Android” includes the Android Studio project. To open the project, open

Android Studio, click on “Open an existing Android Studio Project” and navigate to the

project” VAD_NC_Android”.

5

• “VAD_RandomForest_Training” contains the MATLAB code to train the random forest

classifier for VAD, based on data collected by the smartphone on which the app is to be

run.

• “NoiseClassifier_RandomForest_Training” contains the MATLAB code to train the

random forest classifier for NoiseClassifier, based on data collected by the smartphone on

which the app is to be run.

Figure 1: Contents of the VAD and NoiseClassifier integrated app folders

6

PART 1

IOS

7

Section 1: iOS GUI

This section covers the iOS GUI of the integrated app consisting of VAD and Noise Classifier

and its entries. The GUI consists of 4 views, see Fig. 2:

Figure 2: VAD and NoiseClassifier integrated app GUI – iOS version

8

• Title View

• Settings View

• Status View

• Button View

1.1 Title View

The title view displays the title of the app.

1.2 Settings View

This view controls the app settings as follows:

• Sampling Frequency in Hertz (Hz),

• Frame Rate in milliseconds (ms),

• Decision Rate in seconds,

• Quite Adjustment in dB SPL (sound pressure level),

• Play Audio, a switch to play audio signal to the smartphone speaker,

• Store Features, a switch to enable feature collection from audio environment.

Details of these settings are described in the user’s guides for the individual VAD and Noise

Classifier apps in [2] and [4]. For integrating these two modules, the sampling frequency is kept

fixed at 48kHz in order to have the lowest audio latency imposed by the i/o hardware of

smartphones. Other settings can be changed by the user before the app is run.

9

1.3 Status View

The status view provides real-time feedback on:

• Whether captured audio signal frames are noise or speech+noise;

• If noise is detected, it shows the noise type (babble, machinery or traffic) for which the

app has been trained;

• How much processing time is taken per frame in milliseconds; and

• SPL in dB.

1.4 Button View

This view allows the user to start and stop the app. The app can also operate on audio files of

“.wav” format. The user’s guides in [2] and [4] describe how to add an audio file to the app

project.

10

Section 2: Code Flow

This section states the app code flow. The user can view the code by running “VAD_NC

iOS.xcodeproj” as shown in Fig. 1. The code is divided into 3 parts, see Fig. 3:

Figure 3: VAD and NoiseClassifier integrated app code flow – iOS version

• View

• Controller

• Native Code

11

2.1 View

This part provides the setup for the GUI of the app and has the following components:

• Main.storyboard: This component provides the layout of the app GUI.

• ViewController: This component provides the GUI elements and actions of the GUI

View.

• popoverViewController: This component enables popping over the app GUI when

the“Read File” button is clicked, populating a table view of audio files.

2.2 Controller

This part provides the controllers to pass data from the GUI to the native code and to update the

status from the native code to appear in the GUI. The components are:

• GlobalVariable: This component acts as a bridge between the view and the native code.

• IosAudioController: This component controls the audio i/o setup for processing

incoming audio frames by calling the native code.

2.3 Native Code

This part comprises the integrated app modules written in C. It is divided into the following

components:

• Speech Processing: This component is the entry point of the native codes of the app. It

initializes all the settings for the two modules and then processes incoming audio signal

frames to detect noise/speech+noise and noise type. It consists of:

12

o Transform: This component computes the FFT of the incoming audio frames.

o SubbandFeatures: This component uses the FFT to extract subband features used by

both the VAD and NoiseClassifier modules of the app.

o VADFeatures: Besides the subband features, this component is used to extract the

additional features required by the VAD module of the app.

o VADRandomForest: This component classifies the incoming feature vector as noise

or speech+noise.

o NCRandomForest: This component classifies the noise type if the VAD detects the

incoming feature vector as noise.

o VADTrainData: This component is the random forest classifier designed for the

VAD module. Its parameters are obtained by performing training in MATLAB on the

HINT sentences audio files [6].

o NCTrainData: This component is the random forest classifier designed for the

NoiseClassifier module. Its parameters are obtained by performing training in

MATLAB on the HINT sentences audio files [6].

 Readers are referred to the user’s guides of the individual apps in [2] and [4] for more

details. The above components appear in a modular manner to allow their modification or

replacement with ease.

13

Section 3: Data Collection for Training

Considering that both the classifiers in the VAD and NoiseClassifier modules are supervised

classifiers, data are needed to train them. Data can be collected using the “Store Features” switch

button in the app. When this button is turned on and the app is run, the app stores the data needed

for training the classifiers. The data get stored in the form of a “.txt” file with comma separated

values and each data frame appears on a new line. The data corresponds to the following features

extracted from audio signal frames:

• 4 band periodicities (BP1, BP2, BP3, BP4),

• 4 band entropies (BE1, BE2, BE3, BE4),

• Short-Time Energy Deviation (STED),

• Subband Power Spectral Deviation (SPSD), and

• Spectral Flux (SF).

 All of the above 11 features are used by the VAD module. From these features, the first 8

modules (BPs and BEs) are also used by the NoiseClassifier module. The user’s guides in [2]

and [4] provide more details on data collection.

14

Section 4: Training Classifiers

After data get collected, the random forest classifiers need to be trained in MATLAB for

obtaining their parameters. The obtained parameters for both of the classifiers are then assigned

to the native code for actual operation.

 The classification operation consists of two parts:

• VAD operation: This module classifies whether audio signal frames are noise or

speech+noise. A random forest training script in MATLAB appears inside the folder

“VAD_RandomForest_Training”, see Fig. 1. This generates a header file containing the

model which is renamed as “VADTrainData.h” and used in the project.

• NoiseClassifier operation: This module classifies the noise type detected by the VAD

among three previously trained classes of babble, machinery, and traffic. A random forest

training script in MATLAB appears inside the folder

“NoiseClassifier_RandomForest_Training”, see Fig. 1. This generates a header file

containing the model which is renamed as “NCTrainData.h” and used in the project.

15

PART 2

ANDROID

16

Section 1: Android GUI

This section covers the Android GUI of the integrated app consisting of VAD and Noise

Classifier and its entries. The GUI consists of 4 views, see Fig. 4:

Figure 4: VAD and NoiseClassifier integrated app GUI – Android version

17

• Title View

• Settings View

• Status View

• Button View

1.1 Title View

The title view displays the title of the app.

1.2 Settings View

This view controls the app settings as follows:

• Sampling Frequency in Hertz (Hz),

• Frame Rate in milliseconds (ms),

• Decision Rate in seconds,

• Quite Adjustment in dB SPL (sound pressure level),

• Play Audio, a switch to play audio signal to the smartphone speaker,

• Store Features, a switch to enable feature collection from audio environment.

Details of these settings are described in the user’s guides for the individual VAD and Noise

Classifier apps in [2] and [4], respectively. For integrating these two modules, the sampling

frequency is kept fixed at 48kHz in order to have the lowest audio latency imposed by the i/o

hardware of smartphones. Other settings can be changed by the user before the app is run.

18

1.3 Status View

The status view provides real-time feedback on:

• Whether captured audio signal frames are noise or speech+noise;

• If noise is detected, it shows the noise type (babble, machinery or traffic) for which the

app has been trained;

• How much processing time is taken per frame in milliseconds; and

• SPL in dB.

1.4 Button View

This view allows the user to start and stop the app. The app can also operate on audio files of

“.wav” format. The user’s guides in [2] and [4] describe how to add an audio file to the app

project.

Section 2: Code Flow

To be able to run the Android version of the app, it is required to link the Superpowered SDK

library [7] to it. The steps described in the user’s guides in [2] and [4] need to be followed to

open the “VAD_NC_Android” project and run the app.

2.1 Project Organization

After the project is opened in Android Studio, the project organization appears as shown in Fig.

 5.

19

Figure 5: VAD and NoiseClassifier integrated app code flow – Android version

• java: This java folder contains the “MainActivity.java” file which handles all the

operations of the app and allows the user to link the GUI to the native code.

• cpp: This folder contains the native code divided into two subfolders:

o AndroidIO: This subfolder contains the Superpowered sources root files which

control the audio interface to the app.

o jni: This subfolder includes the native codes to start audio i/o and also the audio

processing files of the VAD and NoiseClassifier modules.

20

2.2 Native Code

The native code part comprises the integrated app modules written in C and a bridging file

written in C++. It is divided into the following components:

• Frequency Domain: This component is the C++ file that acts as a bridge between the

native code and the java GUI. This file creates an audio i/o interface with the GUI

settings.

• Speech Processing: This component is the entry point of the native codes of the app. It

initializes all the settings for the two modules and then processes incoming audio signal

frames to detect noise/speech+noise and noise type. It consists of:

o Transform: This component computes the FFT of the incoming audio frames.

o SubbandFeatures: This component uses the FFT to extract subband features used by

both the VAD and NoiseClassifier modules of the app.

o VADFeatures: Besides the subband features, this component is used to extract the

additional features required by the VAD module of the app.

o VADRandomForest: This component classifies the incoming feature vector as noise

or speech+noise.

o NCRandomForest: This component classifies the noise type if the VAD detects the

incoming feature vector as noise.

o VADTrainData: This component is the random forest classifier designed for the

VAD module. Its parameters are obtained by performing training in MATLAB on the

HINT sentences audio files [6].

21

o NCTrainData: This component is the random forest classifier designed for the

NoiseClassifier module. Its parameters are obtained by performing training in

MATLAB on the HINT sentences audio files [6].

Readers are referred to the individual user’s guides in [2] and [4] for more details. The above

components appear in a modular manner to allow their modification or replacement with ease.

Section 3: Data Collection for Training

Considering that both the classifiers in the VAD and NoiseClassifier modules are supervised

classifiers, data are needed to train them. Data can be collected using the “Store Features” switch

button in the app. When this button is turned on and the app is run, the app stores the data needed

for training the classifiers. The data get stored in the form of a “.txt” file in the device storage

under the folder labelled “VAD_NCAndroid”, with comma separated values and each data frame

appears on a new line. The data corresponds to the following features extracted from audio

signals:

• 4 band periodicities (BP1, BP2, BP3, BP4),

• 4 band entropies (BE1, BE2, BE3, BE4),

• Short-Time Energy Deviation (STED),

• Subband Power Spectral Deviation (SPSD), and

• Spectral Flux (SF).

All of the above 11 features are used by the VAD module. From these features, the first 8

modules (BPs and BEs) are also used by the NoiseClassifier module. The user’s guides in [2]

22

and [4] provide more details on data collection.

Section 4: Training Classifiers

After data get collected, the random forest classifiers need to be trained in MATLAB for

obtaining their parameters. The obtained parameters for both of the classifiers are then assigned

to the native code for actual operation.

The classification operation consists of two parts:

• VAD operation: This module classifies whether audio signal frames are noise or

speech+noise. A random forest training script in MATLAB appears inside the folder

“VAD_RandomForest_Training”, see Fig. 1. This generates a header file containing the

model which is renamed as “VADTrainData.h” and used in the project.

• NoiseClassifier operation: This module classifies the noise type detected by the VAD

among three previously trained classes of babble, machinery, and traffic. A random forest

training script in MATLAB appears inside the folder

“NoiseClassifier_RandomForest_Training”, see Fig. 1. This generates a header file

containing the model which is renamed as “NCTrainData.h” and used in the project.

23

CHAPTER 3

INTEGRATING SIGNAL PROCESSING MODULES OF HEARING AIDS

INTO A REAL-TIME SMARTPHONE APP

Authors - Tahsin A. Chowdhury, Abhishek Sehgal, Nasser Kehtarnavaz,

Signal and Image Processing Lab

University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

At the time of this writing, this chapter has been accepted for publication in Proceedings of the

40th International Conference of IEEE Engineering in Medicine and Biology Society (EMBC,

18). © 2018 IEEE

24

Abstract— This paper presents the integration of three major modules of the signal processing

pipeline that go into a typical digital hearing aid as a real-time smartphone app. These modules

include voice activity detection, noise reduction, and compression. The steps taken to allow the

real-time implementation of this integration or signal processing pipeline are discussed. These

steps can be utilized to create similar signal processing pipelines or integrated apps to evaluate

hearing improvement algorithms. The real-time characteristics of the developed integrated app

are reported as well as an objective evaluation of its noise reduction.

1. Introduction

In order to give more control to hearing aid users, smartphones can be used to run in real-time

the modules that form the signal processing pipeline of a typical digital hearing aid. For example,

the modules of noise reduction, compression, and amplification can be designed to run on a

smartphone and the smartphone can then be interfaced wirelessly with low-latency Bluetooth

hearing aids such as Starkey Halo2 [8]. The use of smartphones allows different algorithms for

each hearing aid module to be easily tested. In other words, smartphones can be used as a

research platform to evaluate different hearing improvement algorithms that form the signal

processing pipeline of digital hearing aids.

Steps have been taken by our research team to use smartphones as an open source platform for

hearing improvement studies noting that currently no open source, programmable and mobile

platform exists in the public domain for carrying out hearing improvement studies. A

smartphone-based platform enables the utilization of a programmable, mobile, and widely used

device by researchers and audiologists towards exploring and field testing new and existing

hearing improvement algorithms. The smartphone platform offers the following benefits: (a)

25

smartphones have powerful ARM processors enabling the real-time implementation of

computationally intensive signal processing algorithms, (b) smartphones are already possessed

and carried by most people (thus making them effectively a cost-free mobile platform), and (c)

software development tools of smartphones are free of charge and are well maintained by

smartphone companies.

A major challenge in using smartphones as a research platform lies in the fact that the

programming languages used by the great majority of researchers when developing hearing

improvement algorithms is C/MATLAB while the software development environment of iOS

smartphones is based on Objective-C and the software development environment of Android

smartphones is based on Java. In other words, one needs to address the mismatch between

C/MATLAB programming that researchers use and Objective-C/Java programming

environments of smartphones. We have previously met this challenge by developing software

shells in [9, 10] which allow running C/MATLAB codes seamlessly within the software

environments of iOS and Android smartphones. The development of these open source shells has

enabled keeping the programming languages in using smartphones the same as the programming

languages used by the great majority of researchers, namely C/MATLAB.

A number of smartphone apps have already been developed by our research team for an

individual or a specific module of the signal processing pipeline of a digital hearing aid, for

example smartphone apps for voice activity detection [1, 11], background noise reduction [12],

and noise classification [3]. Each of these apps performs a specific task or one module of the

signal processing pipeline of hearing aids. This paper presents the integration of three individual

26

modules to form an integrated app running in real-time on smartphones. The modules that are

chosen for this integration include voice activity detection, noise reduction, and compression.

The paper discusses the steps taken in order to enable this integrated app or in general any

integrated app to run in real-time and with low audio latency when interfaced with Bluetooth-

capable hearing aids. The output of the integrated app can also be heard simply by using a

headphone audio cable. It is worth stating that this work is an extension of the solution submitted

to the NSF Hearables Challenge that was selected as the second winner of this challenge [13].

The rest of the paper is organized as follows: In Section 2, the integrated signal processing

modules to form the pipeline are discussed. Then, the implementation issues to run this signal

processing pipeline as an integrated smartphone app in real-time are covered in Section 3.

Section 4 provides the integrated app real-time characteristics and results. Finally, the paper is

concluded in Section 5.

2. Integrated Signal Processing Modules

Considering that the functions of voice activity detection, noise reduction, and compression

constitute three major functions or modules in a digital hearing aid, we have considered these

functions to form our signal processing pipeline. Fig. 6 illustrates all the modules that are

integrated to form the pipeline which includes both the input/output (i/o) modules for performing

frame-based signal processing and the processing modules consisting of voice activity detection,

noise reduction, and compression. In what follows, each of these modules is described in the

order they appear in the figure or the pipeline.

27

Figure 6. Integration of signal processing modules of hearing aids as a real-time smartphone app.

2.1 Input and Output Circular Buffers

As discussed in [14], the input audio signal from the smartphone microphone is captured via an

input circular buffer and is outputted to the smartphone speaker or to a hearing aid via an output

circular buffer in order to achieve the frame size corresponding to the lowest audio latency

associated with the i/o hardware of smartphones.

2.2 Lowpass Filtering, Down-Sampling, Up-Sampling, and Interpolation Filtering

After circular buffering, as discussed in [14], a lowpass filter is used to remove signal activity

beyond the frequency range of speech. Then, down-sampling is applied to decrease the sampling

rate for the purpose of gaining computational efficiency or real-time throughput. In order to meet

the hardware constraint associated with the lowest audio latency on a smartphone device, the

down-sampling process is reversed by performing up-sampling or adding zeros between samples

and by an interpolation filter to remove up-sampling artifacts.

Lowpass filter

Down-sampling

Post Filter Noise
Estimation/Noise

Reduction

Compression

Up-sampling

Interpolation
filter

Log-Mel
Energy

Spectrum
Formation

Convolutional
Neural Network

Classifier

Input noisy speech signal
from smartphone

microphone

Noise-only frames

Noise reduced and
compressed output

speech signal Noise Reduction
module

VAD Module

Input circular
buffer

Output circular
buffer

Amplification

28

2.3 Voice Activity Detection

After the i/o modules, a Voice Activity Detector (VAD) module is activated in order to separate

the noise-only segments of an input noisy speech signal from segments that contain speech

activity. This module is the one that was developed in [11]. It consists of two sub-modules: an

image formation sub-module which generates log-mel energy spectrum images, and a

classification sub-module which involves a convolutional neural network (CNN) classifier. The

VAD output is used to make the noise reduction module noise adaptive. That is, noise estimation

is carried out during noise segments of an input noisy speech signal and noise reduction is

carried out during speech activity segments of an input noisy speech signal.

2.4 Adaptive Noise Reduction

The noise reduction module developed in [13] is executed next in the pipeline. This module uses

a Wiener filter for noise reduction and is made noise adaptive in this work. Two types of noise

estimation adaptive to the background noise environment are considered: (i) Noise power or

variance is obtained for noise-only frames occurring before speech activity frames and the

average value over these frames is used to reduce noise when the VAD specifies there is speech

activity. (ii) Noise power is obtained for all noise-only frames as specified by the VAD and a

moving average is used to reduce noise for speech activity frames. The first approach was found

to generate audio fluctuations in realistic audio environments due to noise power changing across

different noise frames. The second approach is thus implemented in our integrated app.

Furthermore, a postfilter as discussed in [13] is used to reduce musical noise artifacts introduced

by the Wiener filter in the noise reduction module.

29

2.5 Multiband Dynamic Range Compression

Compression is a key module in hearing aids. This module is used to amplify weak signals and

suppress loud signals to bring them into the hearing range or hearing comfort zone of those

suffering from hearing loss. Detailed descriptions of the compression module are provided in

[15, 16].

There are many compression algorithms in the literature. Here, as part of our integrated app, we

have used the so-called Dynamic Range Compression (DRC) module that is provided in the

MATLAB Audio System Toolbox [17]. This module divides the input signal into five frequency

bands and a compression function is applied to each band. The app implemented uses the

following five frequency bands: 0-500Hz, 500-1000Hz, 1000-2000Hz, 2000-4000Hz and above

4000Hz. The major parameters associated with a compression function include (see Fig. 7):

Figure 7. A typical compression function.

30

(i) Compression Threshold (CT) - This parameter indicates the point after which the compression

is applied. (ii) Compression Ratio (CR) - This parameter indicates the amount of compression.

(iii) Attack Time (AT) – This parameter indicates the time it takes for the compression module to

respond when the signal level changes from a high to a low value. (iv) Release Time (RT) –

This parameter indicates the time it takes for the compression module to respond when the signal

level changes from a low to a high value. After compression, a final amplification is applied to

the output signal before passing it to the speaker or sending it via Bluetooth to a hearing aid.

3. Real-time Implementation

This section discusses the steps taken to incorporate the modules mentioned above as a

smartphone app on iOS and Android devices. Both iOS and Android versions were developed. It

should be noted that the iOS version running on iPhones exhibits a lower audio latency (10-

15ms) as compared to Android smartphones. For example, for Google Pixel Android

smartphone, the audio latency is about 40ms. It should be noted that since different Android

smartphone manufacturers use different audio i/o hardware, audio latency of Android

smartphones varies from phone to phone and in many cases, it is higher than 40ms.

All the algorithms were written in C or ported to C from MATLAB using the MATLAB Coder

[18]. The smartphone shells developed in [9, 10] were used to incorporate the modules as an

integrated app. These shells are written in Objective-C for iOS and in Java for Android. To

deploy the apps on iPhones, the software tool Xcode IDE [19] was used and on Android

smartphones the software tool Android Studio IDE [20] was used. The smartphones used for the

experimentation reported in the next section were iPhone7 and Google Pixel. The low-latency

31

audio i/o setup for iOS was done using the software package CoreAudio API [21] and for

Android was done using the software package Superpowered SDK [7]. It is worth noting that the

integration of the modules is made modular in the integrated app by sharing common supporting

files so that each module can be easily replaced by other similar modules than the ones used in

this implemented integrated app. This modular design allows similar integrated app to be

generated by using other VAD, noise reduction, and compression algorithms.

Due to the limitation imposed by the i/o hardware of smartphones, for the integrated app to have

the lowest audio latency, the audio i/o needs to run at 48kHz and the i/o buffer size needs to be

kept at 64 samples or 64/48000=1.33ms for iOS smartphones and 192 samples or 192/48000 =

4ms for Android smartphones (Pixel). The hearing aid modules run in frame-based manner at

16kHz with a 25ms processing frame size and with 50% overlap, that is a frame gets processed

every 12.5ms. To synchronize the audio i/o and the hearing aid modules, circular buffers are

utilized. An input circular buffer collects input samples from the audio i/o buffer till the

overlapped frame size of 12.5ms (600 samples) is reached. It is then down-sampled and

decimated by a factor of 3 and fed into the hearing aid modules. After a frame is passed through

the modules, it is up-sampled and interpolated before being placed into an output circular buffer,

which outputs the audio at the i/o rate of 64 samples at 48kHz, thus maintaining the lowest audio

latency that is offered by the i/o hardware of smartphones.

The VAD app reported in [11] took about 0.43ms per audio frame and the noise reduction app

reported in [12] took about 4ms per audio frame. The compression module when implemented as

32

an app took about 1ms per audio frame. For iOS smartphones, the processing time that is

available to go through all the hearing aid modules of the pipeline with the lowest latency

corresponds to the audio i/o time of 1.33ms per audio frame. That is, in order to have the lowest

audio latency, if the processing time of a frame exceeds 1.33ms, it causes frames to get skipped.

Initially, the integrated app took between 1.2ms to 1.5ms which caused some frames getting

skipped due to not always meeting the lowest latency i/o time of 1.33ms. This problem was

alleviated by using the GCC compiler optimization level 2. As a result, on average, the

processing time of any frame going through the entire pipeline was brought down to 0.75ms on

iPhone7 which enabled no frames getting skipped and a real-time operation was achieved. On

the Pixel smartphone, the processing time for the entire pipeline was slightly higher but still

within the available processing time of 4ms leading to a real-time operation as well.

4. Results of Real-time Operations

The GUI of the integrated app (iOS version) is shown in Fig. 8. On the GUI main page, the

entries include: The VAD output (noise, speech+noise, or quiet), the option to turn on and off the

noise reduction module, the option to turn on and off the compression module, the option to

adjust the final output amplification, the settings associated with the noise reduction and the

compression modules, and finally the option to store input/output signals.

33

Figure 8. GUI of the integrated app (main page).

The CPU and memory consumptions of the integrated app on iPhone 7 and Pixel smartphones

when all the modules are turned on is shown in Fig. 9. This information was generated via the

Xcode IDE/Android Studio software tools. As can be seen from this figure, both the CPU and

memory consumptions of the developed integrated app are low.

34

(a) iOS

(b) Android

Figure 9. CPU and memory consumptions of the integrated app.

Furthermore, an experiment was conducted by comparing the noise reduction of the developed

integrated app with the noise reduction app reported in [12] where noise power is computed only

once with no adaptation. In the app reported in [12], it is required to start with noise and with no

speech presence in order to estimate the noise power. In the developed integrated app, this

requirement is eased. The comparison was done by examining the widely used speech quality

measure of PESQ described in [22] for the HINT sentences commonly used in audiology [6].

Babble and machinery noises were added to the sentences at 0dB and 5dB SNR levels and the

effectiveness of the noise reduction was measured by computing the PESQ measure when the

noise reduction module was turned on. The results obtained are shown in Fig. 10 where the

PESQ measure is averaged over all the sentences. As can be seen from this figure, the adaptive

35

noise estimation approach implemented in the integrated app achieved higher PESQ measures

compared to the fixed noise estimation approach in [6].

Figure 10. PESQ measure for fixed and adaptive noise estimation .

A video clip of the developed integrated app as well as its settings can be viewed at this link:

www.utdallas.edu/~kehtar/IntegratedApp.mp4 .

5. Conclusion

In this paper, three major modules of digital hearing aids consisting of voice activity detection,

noise reduction, and compression have been integrated to run in real-time and with low audio

latency as a smartphone app. The steps discussed in this work to achieve a real-time operation of

this integration can be utilized to develop other integrated apps or similar signal processing

pipelines. In our future work, it is planned to develop similar integrated apps in which other

algorithms in the signal processing pipeline of digital hearing aids are incorporated.

36

CHAPTER 4

 NOISE REDUCTION STUDY OF INTEGRATION

This chapter provides a noise reduction study of the integrated app discussed in Chapter 3. To

reduce noise, proper noise estimation is essential to obtain good performance from the noise-

reduction module. The module discussed in [12] estimates the average power of first six

incoming audio frame as noise, which gets updated based on the “incoming audio signal to

previously estimated noise ratio”. One can easily see that this approach is not an effective way of

estimating noise, because it is estimated in a fixed manner, only at the beginning; those six

frames may contain noise or may contain speech signal. Furthermore, while running the noise

reduction module as an app, it is required to first wait with no speech presence for the app to

estimate the noise and then proceed with the noise reduction task. A modification is done here to

avoid this problem by estimating the noise in an adaptive manner as described below.

The Voice Activity Detection (VAD) module is used to provide a separation between noise and

speech+noise frames. Initially, a supervised Random Forest (RF) classifier based on subband

features, described in [4], was used as the VAD. Later on, a Convolutional Neural Network

(CNN) classifier based on log-mel energy spectrum features, described in [11], was used as the

VAD to separate noise and speech+noise frames. The VAD allowed the noise estimation to be

done only during the noise frames.

An analysis was performed to study the noise estimation when it was done in an adaptive manner

based on the VAD decision. Audio files (both noise and clean speech) used here were obtained

37

from [6]. The speech data were mixed with noise to create noisy speech data at the following

Signal-to-Noise-Ratios (SNRs):

i. SNR level at -5dB, 0dB and 5 dB,

ii. Babble and Machinery noise types for the following scenarios:

a. 10 separate speech (HINT) sentences.

b. Repeating the sentences with the same interval in between to mimic a conversation.

c. Repeating the sentences with different intervals in between to mimic a more natural

conversation.

These audio data were analyzed frame by frame. Each frame was given a label whether it was

noise or speech+noise.

The processed output was evaluated using the following three objective measures as discussed in

[22]:

i. PESQ: The PESQ (Perceptual Evaluation of Speech Quality) measure is an ITU-T

standardization measure that takes into consideration distortions that generally take

place when speech goes through a telecommunication channel. This measure is

widely used for speech quality evaluation.

ii. FWSEG: The FWSEG (Frequency Weighted Segmented) SNR measure is known to

show high correlation with subjective listening tests.

iii. Overall SNR: The Signal to Noise (SNR) measure is a general approach to measure the

quality of the processed output signal compared to the environmental noise.

The outcome of the above analysis appears below. PESQ score was found to be quite sensitive to

the alignment of clean speech with the noisy speech and it was sometimes challenging to obtain

good scores for low SNR -5dB, while frequency weighted SNR and total SNR exhibited good

38

scores when the noise estimation was done adaptively. Fig. 11, 12 and 13 provide a graphical

comparison with the noise estimation in [12] and the adaptive noise estimation adopted in this

work.

i. SNR 5dB:

(a) Single Sentences

(b) Repeating sentences to mimic a conversation with the same interval in between

39

(c) Repeating sentences to mimic a conversation with different intervals

Figure 11. Objective evaluation of noise reduction with fixed and adaptive noise estimation at SNR 5dB

ii. SNR 0dB:

(a) Single Sentences

40

(b) Repeating sentences to mimic a conversation with the same interval in between

(c) Repeating sentences to mimic a conversation with different intervals

Figure 12. Objective evaluation of noise reduction with fixed and adaptive noise estimation at SNR 0dB

41

iii. SNR -5dB

(a) Single Sentences

(b) Repeating sentences to mimic a conversation with the same interval in between

42

(c) Repeating sentences to mimic a conversation with different intervals

Figure 13. Objective evaluation of noise reduction with fixed and adaptive noise estimation at SNR -5dB

It is worth pointing out that the noise reduction module used had already been evaluated using

objective measures in [12] and the analysis conducted here was only meant to provide the

justification for using the VAD for a better noise estimation.

4.1 Implementation of Multi-Band Dynamic Range Compression as a Separate

Smartphone App

A separate compression smartphone app was also developed here. The app was developed in

such a way that the code and the GUI (see, Fig. 14) could easily be added to another app without

the need to make any major changes. This app was developed using the pipeline described in

[14] which brought down the frame processing time from 4.6ms to 1.00ms. The code for this app

was converted to C code using the MATLAB Coder.

43

Figure 14. Compression app: iOS version

44

4.2 Compiler Optimization

Initially, some frames in the integrated app got skipped due to not meeting the available time

bandwidth. The following three approaches were considered to address any frame getting

skipped:

• Reducing filter coefficients: Reducing the number of coefficients of the lowpass and

interpolation filter in the pipeline provided some computational improvement. However,

this led to relatively poor filtering functionality.

• Increasing audio i/o buffer size: Increasing the audio i/o buffer size extended the

available time bandwidth for processing audio frames. However, this created a higher

audio latency.

• GCC compiler level optimization: GCC compiler optimization at level 2 (-O2) provided a

significant improvement in computational time leading to less than 1.00ms frame

processing time for the entire integrated pipeline.

4.3 Adaptive Noise Estimation Approaches

As mentioned in Chapter 3, two types of noise estimation adaptive to the background noise

environment were examined:

• Noise power or variance was obtained for noise-only frames occurring before speech

activity frames and the average value over these frames was used to reduce noise when

the VAD specified there was speech activity as shown in Fig.15.

45

Figure 15. Noise estimation before speech activity frames

This approach exhibited fluctuations in noise reduction. This occurred due to noise power

changing across different noise frames. As an alternative, the following second approach was

considered:

• Noise power was obtained for all noise-only frames as specified by the VAD and a

moving average was used to reduce noise for speech activity frames as shown as Fig.16.

 Figure 16. Moving average of all previous noise frames estimated before speech activity frames

A subjective study was conducted to see which noise estimation preferred from a subjective

point-of-view based on the listening effort scale shown in Table 1:

 TABLE 1. LISTENING EFFORT SCALE
Effort required to understand sentences Score

Complete relaxation possible: no effort required 5

Attention necessary: no appreciable required 4

Moderate effort required 3

Considerable effort required 2

No meaning understood with any feasible effort 1

46

Table 2 presents the scores at various noisy environments including restaurant, coffee shop,

shopping mall, etc., for both of the noise estimation approaches with comments appearing in

parentheses. As noted in this table, it was noticed that the first approach causes suffering from

fluctuations while the second approach was found to be more consistent. The second approach

was thus the approach that was considered for implementation in the integrated app.

 TABLE 2. SUBJECTIVE EVALUATION ON NOISE REDUCTION FOR DIFFERENT

NOISE ESTIMATIONS

Evaluations 1. Noise Estimation Before Speech
Activity

2. Moving Averaged
Noise Estimation Before

Speech Activity
1 4 (fluctuation) 5 (consistent)
2 4 (fluctuation) 4
3 4 (fluctuation) 5 (consistent)
4 3 (fluctuation) 5 (consistent)
5 2 (echo + fluctuation) 4 (better, stable)
6 3 (fluctuation) 4 (better, stable)
7 4 (fluctuation) 5 (stable)
8 4 (fluctuation) 5 (consistent)

Average 3.5 4.625

47

CHAPTER 5

USER’S GUIDE:

A SMARTPHONE APP INTEGRATING SIGNAL PROCESSING

MODULES OF HEARING AIDS

T. Chowdhury, A. Sehgal, and N. Kehtarnavaz

Signal and Image Processing Lab

University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

48

Introduction

This user’s guide covers how to use a smartphone app developed in the Signal and Image

Processing Laboratory at the University of Texas at Dallas. This app is an integration of three

signal processing modules encountered in digital hearing aids, all running together in real-time as

discussed in Chapter 3. The integrated modules include the Voice Activity Detector (VAD)

discussed in [1], the noise reduction module discussed in [12] and the compression module

discussed in [15] and [16]. Interested readers are referred to these references for the details of

these modules or algorithms.

This user’s guide is divided into two parts. The first part covers the iOS version of the integrated

app and the second part covers the Android version. Each part consists of four sections. The first

section discusses the steps to be taken to run the app. The second section covers the GUI of the

app. In the third section, the app code flow is explained. Finally, the modularity and modification

of the app are mentioned in the fourth section.

Devices used for running the integrated app

• iPhone7 as iOS platform

• Google Pixel as Android platform

Integrated App Folder Description

The codes for the Android and iOS versions of the app are arranged as described below. Fig. 17

lists the contents of the folder containing the app codes. These contents include:

• “Integrated_App_Android” denoting the Android Studio project

• “Integrated_App_iOS” denoting the iOS Xcode project

49

Figure. 17: Integrated app folder contents

50

PART 1

IOS

51

Section 1: Running the App

The iOS version of the integrated app was developed using the Xcode development tool (Version

9.0). It is required to have an Apple ID to run the iOS version of the app, see [19] for more

details.

To open the app project, double click on the “Integrated_App.xcodeproj” in the

“Integrated_App_iOS” folder, refer to Fig. 17.

To run the project, enable developer mode in iPhone if required (see [23]), connect iPhone to a

MAC computer using a USB cable, and then run the app by Command+R. The app gets

installed. Make sure the Xcode is signed into using your Apple Developer ID, refer to Fig. 18.

Figure. 18: Signing with Apple Developer ID

52

Section 2: iOS GUI

This section covers the GUI of the developed integrated app and its entries. The GUI consists of

three views.

• Main View

• Noise Reduction Settings View

• Compression Settings View

2.1 Main View

Figure. 19: Integrated app iOS GUI: Main view

53

Main view consists of 4 segments, see Fig. 19.

• Title View

• VAD Output View

• Audio Output View

• User Settings and Actions View

2.1.1 Title View

The title view displays the title of the app.

2.1.2 VAD Output View

This view displays the VAD output, that is, noise, speech+noise, or quiet.

2.1.3 Audio Output View

This view shows:

• A switch to turn on and off the noise reduction module

• A switch to turn on and off the compression module

• A slider to control final amplification

2.1.4 User Settings and Actions Views

This view displays the following entries:

• Noise reduction (and audio) settings

• Compression settings

• An option to save input/output audio signals

• A button for starting and stopping the app

54

2.2 Noise Reduction Settings View

This view contains the settings for the noise reduction and audio processing. As shown in Fig.

20, the fields in this view are:

Figure. 20: Integrated app iOS GUI: Noise Reduction Settings view.

55

• Sampling Frequency: This field shows the sampling frequency. To obtain the lowest

latency when using iOS mobile devices, this value is set to 48000 Hz. The audio signal is

down-sampled to a sampling frequency of 16000 Hz in order to make the processing time

computationally efficient as described in chapter 3.

• Window Size (ms): This field shows the window (frame) size in milliseconds. Basically,

this entry indicates how many data samples (of this window length) get processed by the

integrated app. To obtain the number of samples, multiply the window size in seconds

with the sampling frequency.

• Overlap Size (ms): This field shows the overlap (step) size in milliseconds. Since audio

frames are processed with 50% overlap, a processing frame is updated at half of the

window size time.

• SPL Calibration (dB): This field allows the user to set a calibration constant which

converts the audio level from dB FS (full scale) to dB SPL (sound pressure level). This

value needs to get properly set before the app is activated.

• Audio Level: This field shows the measured sound pressure level (SPL) in dB of the

audio signal using the calibration constant.

• Frame Processing Time: This field shows the processing time of the integrated app in

milliseconds per data frame.

• GUI Update Rate (sec): This field allows the user to set the time at which the audio

level and frame processing time are updated. This time can be adjusted by the user.

56

• Noise Update Rate (sec): This field allows the user to set the time at which the noise

estimation is updated for noise reduction. This time can be adjusted by the user.

2.3 Compression Settings View

This view shows various settings for the five frequency bands of the compression module that

the user can set, see Fig 21. These settings include:

• Compression Ratio: This parameter indicates the amount of compression.

• Compression Threshold (dB): This parameter indicates the point after which the

compression is applied.

• Attack Time (ms): This parameter indicates the time it takes for the compression module

to respond when the signal level changes from a high to a low value.

• Release Time (ms): This parameter indicates the time it takes for the compression

module to respond when the signal level changes from a low to a high value.

The integrated app provides the following 5 frequency bands:

• 0 - 500 Hz

• 500 – 1000 Hz

• 1000 – 2000 Hz

• 2000 – 4000 Hz

• above 4000 Hz

The compression function using the above 4 parameters is applied to each band. The app uses a

scrolling option for the large view shown in Fig. 21.

57

Fig. 21: Integrated app iOS GUI: Compression Settings view

58

Section 3: Code Flow

This section states the app code flow. The user can view the code by running

“Integrated_App.xcodeproj” in the folder “Integrated-App” as shown in Fig. 17. The code is

divided into 3 parts, see Fig. 22:

Figure. 22: Integrated app iOS code flow

59

• Native Code

• View

• Classes

3.1 Native Code

The native code section comprises the hearing aid modules written in C. It is divided into the

following components:

• Speech Processing: This is the entry point of the native codes of the hearing aid

modules. It initializes all the settings for the three modules and then processes the

incoming audio signal according to the signal processing pipeline described in chapter 3.

• FIRFilter: FIR filtering is done for lowpass filtering before down-sampling and

interpolation filtering is done after up-sampling.

• Transform: This component computes the FFT of the incoming audio frames.

• SPLBuffer: This component computes the average SPL over the GUI update time (noted

in section 2.2).

• VAD: This component applies the codes as described in [2] for VAD. It includes:

o Feature Extraction: This extracts the sub-band features using FFT and other

features.

o Random Forest Classifier: This is the random forest classifier detecting whether

the incoming signal is noise or speech+noise based on the extracted feature

vector.

60

o VADProcessing: This calls the feature extraction and random forest classifier

acting together as VAD.

• NoiseReductionCode: This is the code for the noise reduction module as described in

[12], which was initially developed in MATLAB and then converted into C using the

MATLAB Coder [18].

• DynamicRangeMultibandCompression: This is the code for the compression module,

which is also developed in MATLAB and then converted into C using the MATLAB

Coder [18].

• Common Headers: This provides some common headers shared by both the noise

reduction and compression modules. Note that these files are generated by the MATLAB

Coder by converting MATLAB codes into C codes.

The breakdown of the three modules along with the common header is shown in Fig. 23.

Figure. 23: Further breakdown of native code modules in iOS

61

3.2 View:

This section provides the setup for the GUI of the integrated app. The GUI has the following

components:

• Main.storyboard: This provides the layout of the integrated app GUI.

• MainTableViewController: This provides the GUI elements and actions of the main

GUI view. This is developed using Swift [24].

• NoiseReductionSettingsTableViewController: This provides the GUI elements and

actions for the noise reduction and audio settings. This is developed using Swift.

• CompressionViewController: This provides the GUI elements and actions for the

compression settings. This is developed in Objective-C.

3.3 Classes:

This section covers the controllers to pass data from the GUI to the native code and to update the

status from the native code to appear in the GUI. The components are:

• AudioSettingsController: This provides the controls for audio processing and settings.

This is written in Swift.

• Settings: This provides the variables for the audio control settings. Native codes use

these variables settings for audio processing. These variables are updated through

AudioSettingsController appearing in the GUI. This is written in C.

• IosAudioController: This controls the audio i/o setup for processing incoming audio

frames by calling the native code. This is written in Objective-C. This loads/destroys the

62

settings and native variables by calling their initializers/destructors.

• MovingAverageBuffer: This provides a separate class written in Objective-C to

compute the frame processing time. It provides the average processing time over the GUI

Update Time mentioned in section 2.2.

• CompressionSettingController: This provides a separate variable array for the

compression settings. Any update from the GUI elements of

“CompressionViewController” gets updated here and the array of compression

parameters for the 5 bands is used by the native code for compression. This is written in

C.

*Supporting Files:

There are supporting files as shown in Fig. 24. Along with the app logo and launcher images,

there are:

Figure 24: Supporting files

• TPCircularBuffer: This is an implementation of the circular buffer in [25], which is

used in the integrated app to obtain a desirable frame size for audio processing.

63

• AppDelegate: This is called when the app is launched and initializes

AudioSettingController.

Section 4: Modularity and Modification

This section covers the modularity of the integrated app and the steps to be taken to modify the

app or any portion of the modules if needed.

• Available bandwidth: The app is developed in such a way that the hearing aid modules

used here (i.e., VAD, Noise Reduction and Compression) can be replaced with other

similar modules. It is also possible to add new modules if the available processing time

bandwidth is not exceeded. The available processing time bandwidth can be obtained

from the sampling frequency and audio i/o buffer size of iOS smartphones. For the lowest

latency, iOS smartphones process 64 samples of incoming audio signal per frame at

48KHz sampling frequency which translates into an available processing time bandwidth

of 64/48000 = 1.33ms.

• App Work Flow: The work flow of the integrated app is straightforward and includes:

o Detection of speech or noise activity of incoming audio frames by the VAD.

o Noise estimation and reduction of incoming audio frames based on the VAD

decision.

o Compression of the noise reduction module output.

The declarations and definitions of initializations and destructions as well as the main function

that call these modules are written the “SpeechProcessing” source files (.h and .c).

64

• Replace or Add modules: To replace or add module(s), include/remove:

o Corresponding headers in “SpeechProcessing.h”

o Set variables in the “VADNoiseReductionCompression” structure (same header).

o Initialize variables inside the “initVAD_NoiseReduction_Compression” function

as defined in “SpeechProcessing.c”.

o Destruct variables inside the function named

“destroyVAD_NoiseReduction_Compression” for optimized memory allocation

and usage.

o Function(s) that calls an updated module at the proper place inside the main

function is named “doNoiseReduction_Compression_withVAD”.

• Data transaction between the GUI and native code: The “Settings” source files (.h

and .c) provide an interface between the GUI and the native code for exchanging audio

settings parameters. These parameters are:

o VAD Results: The VAD decision is saved in “settings->classLabel”. If the user

wishes to replace it with a new VAD, the decision can be saved in this variable.

“MainTableViewController” takes this decision from the setting variable. Since

“MainTableViewController” is written in Swift, the access to Settings is bridged

through “Integrated_App-Bridging-Header.h” which is included inside the native

code folder (refer to Fig. 22). To train the VAD module of the app, use the VAD

app as described in [2] and available at [26]. Make sure the app is used with the

proper window size and sampling frequency (decimated sampling frequency).

o AudioOutput controls:

65

§ “settings->noiseReductionOutputType” saves the switch status for noise

reduction.

§ “settings->compressionOutputType” saves the switch status for

compression.

§ “settings->amplification” saves final amplification value from the slider.

§ “settings->doSaveFile” saves the status of save i/o data switch.

§ “settings->playAudo” saves the start/stop button status.

§ “settings->fs” provides the sampling frequency.

§ “settings->frameSize” provides the window size.

§ “settings->stepSize” provides the overlap size.

§ “setting->calibration” saves the SPL calibration value.

§ “settings->guiUpdateInterval” saves the time at which audio level and

processing time get updated.

§ “settings->dbpower” provides dB SPL power computed in “Transform”

and averaged in“SPLBuffer” over the “guiUpdateInterval” time.

§ “settings->processTime” provides the average frame processing time

computed by “MovingAverageBuffer” over the “guiUpdateInterval” time.

§ “settings->noiseEstimateTime” saves the time over which noise

parameters are estimated and averaged.

These data are passed to the GUI through “AudioSettingsController.swift”. The

user needs to update this file. Also, in the view files if there are any changes

(replace/addition), they appear in the “Settings” source files.

66

o Compression Controls: “CompressionSettingsController” provides a separate set

of parameters for the compression module that are passed between the native code

and “CompressionViewController”. The compression parameters set by the user

are saved in the “dataIn” array variable and 5 separate flags are set to update the

compression function or curves for 5 frequency bands of the compression module.

The native compression module calls the “CompressionSettingsController”

header.

• Compiler optimization: Using compiler optimization improves the code performance

and/or size depending on which optimization level is used. For the iOS version of the

integrated app, “-O2” optimization level is used for debugging and “-Os” is used for

releasing. Details are given in [27] and [28]. The user can change them according to

specific requirements. To set these flags, follow the steps noted below, see Fig. 25.

o Select the project name on the left in the project view.

o Select the project under the “TARGETS” option in the middle.

o Select “Build Settings” from the toolbar above.

o In the search field, type “optimization”.

o Under optimization level, set optimization flags accordingly.

67

Figure. 25: Setting optimization level in Xcode for the integrated app iOS

68

PART 2

ANDROID

69

Section 1: Running the App

The Android version of the integrated app was developed using Android Studio (Version 2.3.3).

To run the Android version of the integrated app, it is necessary to have Superpowered SDK

which can be obtained from the link at [7]. The use of SuperpoweredSDK enables low latency

audio processing.

 To open and run the app:

• Open Android Studio.

• Click on ““Open an existing Android Studio project”.

• Navigate to the app location and open it.

• Make sure that the NDK is installed. The proper locations of ndk, sdk and

superpoweredSDK are given in “local.properties”.

• Make sure the environment has the proper platform and build tools version.

• Enable the developer option on the Android smartphone to be used.

• Connect the Android smartphone using a USB cable and allow data access and

debugging to the smartphone.

• Clean the project first, then click run button from Android Studio and select the device.

More details of the above steps are covered in [29].

Section 2: Android GUI

This section covers the GUI of the developed integrated app and its entries. The GUI consists of

three views:

• Main View

70

• Noise Reduction Settings View

• Compression Settings View

2.1 Main View

Figure. 26: Integrated app Android GUI: Main view

Main view consists of 4 views, see Fig. 26:

• Title View

71

• VAD Output View

• Audio Output View

• User Settings and Actions View

2.1.1 Title View

The title view displays the title of the app.

2.1.2 VAD Output View

This view corresponds to the VAD output, that is, noise, speech+noise, or quiet.

2.1.3 Audio Output View

This view consists of:

• A switch to turn on and off the noise reduction module

• A switch to turn on and off the compression module

• A seek bar (in Android, slider is named a seek bar) to control final amplification.

2.1.4 User Settings and Actions Views

This view provides the following entries:

• Noise reduction (and audio) settings

• Compression settings

• An option to save input/output audio signals

• A button for starting and stopping the app

72

2.2 Noise Reduction Settings View

This view contains various settings for the noise reduction and audio processing. As shown in

Fig. 27, the items of this settings view are:

Fig. 27: Integrated app Android GUI: Noise Reduction Settings view

73

• Sampling Frequency: This field shows the sampling frequency. To obtain the lowest

latency for Android mobile devices, this value is set to 48000 Hz. The audio signal is

down-sampled to a sampling frequency of 16000 Hz in order to make the processing

computationally more efficient.

• Window Size (ms): This field shows the window (frame) size in milliseconds. Basically,

this indicates how many data samples (of this window length) get processed by the

integrated app. To obtain the number of samples, multiply the window size in seconds

with the sampling frequency.

• Overlap Size (ms): This field shows the overlap (step) size in milliseconds. Since audio

frames are processed with 50% overlap, the content of a processing frame is updated at

half of the window size time.

• SPL Calibration (dB): This field allows the user to set a calibration constant which

converts the audio level from dB FS (full scale) to dB SPL (sound pressure level). This

value can be adjusted by the user.

• Audio Level: This field shows the measured sound pressure level (SPL) in dB of the

audio signal using the calibration constant.

• Frame Processing Time: This field shows the processing time in milliseconds taken by

the integrated app per data frame.

• GUI Update Rate (sec): This field allows the user to set the time at which the audio

level and frame processing time are updated. The audio level and frame processing time

are averaged over this time. This time can be adjusted by the user.

74

• Noise Update Rate (sec): This field allows the user to set the time at which the noise

estimation is updated for performing noise reduction. This time can be adjusted by the

user.

2.3 Compression Settings View

This view shows various settings for the compression module for the five frequency bands, see

Fig 28. These settings include:

• Compression Ratio: This parameter indicates the amount of compression.

• Compression Threshold (dB): This parameter indicates the point after which the

compression is applied.

• Attack Time (ms): This parameter indicates the time it takes for the compression module

to respond when the signal level changes from a high to a low value.

• Release Time (ms): This parameter indicates the time it takes for the compression

module to respond when the signal level changes from a low to a high value.

The integrated app has the following 5 frequency bands:

• 0 - 500 Hz

• 500 – 1000 Hz

• 1000 – 2000 Hz

• 2000 – 4000 Hz

• above 4000 Hz

The compression function based on the above 4 parameters is applied to each band. The app

uses a scrolling option for the large view of the compression settings, see Fig. 28.

75

Fig. 28: Integrated app Android GUI: Compression Settings view

76

Section 3: Code Flow

This section covers the integrated app code flow. The folder organization of the app can be seen

under the “Android” view, see Fig. 29.

Fig. 29: Integrated app Android version: project organization

77

The Android project of the app is organized into the following code flow:

• java: The java folder contains three “.java” files, which handle all the operations of the

app and provide the link between the GUI and the native code.

o MainActivity: This contains the GUI elements and controls the Main view of the

app.

o NoiseReductionSettings: This contains the GUI elements and controls the Noise

Reduction Settings view.

o CompressionSettings: This contains the GUI elements and controls the

Compression Settings view.

• cpp: This folder contains the native code, which is subdivided into these two folders:

o AndroidIO: This subfolder provides the Superpowered source root files to

control the audio i/o interface of the app.

o jni: This folder contains all the function calls to start the audio i/o and the C codes

of the implemented hearing aid modules.

• res->layout: The layout subfolder of the recourse folder contains the GUI layouts of the

integrated app appearing in these three .xml files:

o activity_main.xml: It provides the layout for Main view.

o activity_noise_reduction_settings.xml: It provides the layout for Noise

Reduction Settings view.

o activity_compression_settings.xml: It provides the layout for Compression

Settings view.

78

3.1 Native Code and Settings

This native code section states the implementation aspects of the hearing aid modules and

settings in C++/C code. It is divided into the following:

• FrequencyDomain: This file acts as a connection or bridge between the native code and

the java activities/GUI. It contains the necessary function calls and initializations for

creating the audio i/o interface with the GUI settings and processing of the hearing aid

modules per frame. The result of the processed audio is passed back to the app GUI. This

file is written in C++. The other parts stated below are written in C.

• Speech Processing: This is the entry point of the native codes of the hearing aid

modules. It initializes all the settings for the three modules and then processes the

incoming audio signal according to the signal processing pipeline described in chapter 3.

• FIRFilter: FIR filtering is done for lowpass filtering before down-sampling and

interpolation filtering is done after up-sampling.

• Transform: This computes the FFT of incoming audio frames.

• SPLBuffer: This computes the average SPL over the GUI update time (mentioned earlier

in section 2.2).

• Settings: This provides the variables for the audio control settings. The native codes use

the variables in this settings (in a structure) for audio processing. “MainActivity” initially

loads this settings structure when the app is loaded. The corresponding variables are

updated through FrequencyDomain appearing in the GUI.

• CompressionSettingController: This provides a separate variable array for

79

compression settings. Any update from the GUI elements of the “CompressionSettings”

activity gets updated here and the array of compression parameters for the 5 bands is used

by the native code for compression.

• VAD: This corresponds to the VAD codes as described in [2] including:

o Feature Extraction: This extracts the subband features using FFT and other

VAD features.

o Random Forest Classifier: This is the classifier that detects whether the

incoming signal is noise or speech+noise based on the extracted feature vector.

o VADProcessing: This calls the feature extraction and random forest classifier to

perform VAD.

• NoiseReductionCode: This corresponds to the codes as described in [29] for the noise

reduction module, which is developed in MATLAB and then converted into C using the

MATLAB Coder [18].

• DynamicRangeMultibandCompression: This corresponds to the codes for the

compression module, which is also developed in MATLAB and then converted into C

using the MATLAB Coder [18].

• Common Headers: This provides some common headers shared by both the noise

reduction and compression modules. Note that these files are generated by the MATLAB

Coder by converting MATLAB codes into C codes.

The breakdown of the three modules along with the common header is shown in Fig. 30.

80

Figure 30: Further breakdown of native code modules in Android

Section 4: Modularity and Modofication

This section covers the modularity of the integrated app and the steps one needs to take to

modify the app or any portion of the modules if needed.

• Available bandwidth: The app is developed in such a way that the hearing aid modules

used (i.e., VAD, Noise Reduction and Compression) can be replaced with other similar

modules. It is also possible to add new modules if the available processing time

bandwidth is not exceeded. The processing time bandwidth can be obtained from the

sampling frequency and audio i/o buffer size of the Android smartphone. For the lowest

latency, many Android smartphones process 192 samples of incoming audio signal per

81

frame at 48KHz sampling frequency. This translates into an available processing time

bandwidth of 192/48000 = 4ms. This number of samples (192) can be obtained by calling

“getProperty()” API of Android’s “AudioManager” with the attribute

“PROPERTY_OUTPUT_FRAMES_PER_BUFFER”.

• App Work Flow: The working flow of the integrated app is straightforward and is as

follows:

o Detection of speech or noise activity of incoming audio frames by the VAD.

o Noise estimation and reduction of incoming audio frames based on the VAD

decision.

o Applying compression on the output of the noise reduction module.

The declarations and definitions of initializations and destructions as well as the main function

that calls these modules are written in the “SpeechProcessing” source files (.h and .c).

• Replace or Add modules: To replace or add module(s), include/remove the following:

o Corresponding headers in “SpeechProcessing.h”.

o Appropriate variables in the “VADNoiseReductionCompression” structure (same

header).

o Initialization of variables inside the “initVAD_NoiseReduction_Compression”

function as defined in “SpeechProcessing.c”.

o Destruction of variables inside the function named

“destroyVAD_NoiseReduction_Compression” for optimized memory allocation

and usage.

82

o Function(s) that calls the updated module at the proper place inside the main

function named “doNoiseReduction_Compression_withVAD”.

All the native codes and headers folder path have to be included in the “build.gradle” file inside

“android.sources.main.jni { exportedHeaders {….} } as shown in Fig. 31. It is required to add

the path of each folder and also its subfolders separately.

Fig. 31: Add native folder paths

• Data transaction between the GUI and Native Code: For the Android version of the

developed integrated app, Java Native Interface (JNI) is used to interface with native

codes in the Java environment. This approach is described in [9, 10, 30]. The following

procedure needs to be followed:

o To call any C function or update setting parameters, declare a linking function in

the Java Activity file in which it will be utilized (MainActivity,

NoiseReductionSettings, or CompressionSettings) using the Java keyword

“native”.

Example: To get sampling frequency in MainActivity, declare “private native int

getFs()” inside “public class MainActivity extends AppCompatActivity {}”. A red

83

inspection alert will pop up to create the linking function in FrequencyDomain.cpp, see

Fig. 32a.

o Click on the create option. It will create a function in FrequencyDomain.cpp, see

Fig. 32b.

o Modify the function definition using extern “C” keyword, see Fig. 32c, since it is

calling the “setting->fs” variable from a C file.

Follow the steps for all the native calls. The entry point to Native Portion of the app from Java is

obtained through the “private native void FrequencyDomain()” function after following the

above steps.

(a)

(b)

(c)

Figure 32: Creating native linking function

The “Settings” source files (.h and .c) provide an interface between the GUI and the native code

84

to exchange audio settings parameters. The Main settings parameters are:

o VAD Results: VAD decision is saved in “settings->classLabel”. If the user

wishes to include a new VAD, the decision can be saved in this variable. The

“MainActivity” takes this decision from the settings variable. Since

“MainActivity” is written in Java, the access to Settings is bridged through

“FrequencyDomain.cpp” following the steps noted in Fig. 16. To train the VAD

module of the app, use the VAD app guidelines as described in [2] which is

available at [26]. Make sure to use the app with a proper window size and

sampling frequency (decimated sampling frequency).

o AudioOutput controls:

§ “settings->noiseReductionOutputType” saves the switch status for noise

reduction.

§ “settings->compressionOutputType” saves the switch status for

compression.

§ “settings->amplification” saves final amplification value from the seek

bar.

§ “settings->playAudo” saves the start/stop button status.

§ “settings->fs” provides the sampling frequency.

§ “settings->frameSize” provides the window size.

§ “settings->stepSize” provides the overlap size.

§ “setting->calibration” saves the SPL calibration value.

85

§ “settings->guiUpdateInterval” saves the time at which audio level and

processing time get updated.

§ “settings->dbpower” provides the dB SPL power computed in

“Transform” and averaged from “SPLBuffer” over the

“guiUpdateInterval” time.

§ “settings->noiseEstimateTime” saves the time over which noise

parameters are estimated and averaged.

These data are passed to the GUI through “FrequencyDomain.cpp” as per the

steps illustrated in Fig. 32. The user needs to update this file and also the activity

files if there is any update (i.e. replace/addition) in the “Settings” source files.

o Compression Controls: “CompressionSettingsController” provides a separate

setting parameters for the compression module that are passed between the native

code and the “CompressionSettings” activity. The compression parameters set by

the user are saved in the “dataIn” array variable and 5 separate flags are set to

update the compression function or curves for the 5 frequency bands of the

compression module. The native compression module calls this

“CompressionSettingsController” header. The interaction with the GUI is also

done by the same steps as illustrated in Fig. 32.

• Compiler optimization: Using compiler optimization improves the code performance

and/or size depending on which optimization level is used. For the Android version of the

integrated app, several optimization flags are listed below:

o –O2: Optimization level, recommended.

86

o –s: Removes all symbol table and relocation information from the executable.

o –fsigned-char: char data type is signed.

o –pipe: makes compilation process faster.

The details of the above are given in [27] and [28]. The user can change them according to

specific requirements. To set these flags, follow the steps as noted in Fig. 33.

(left)

(right)

Fig 33: Setting optimization level in Android Studio for the integrated app Android

• Under “Android” of the project view explorer of Android Studio, select build.gradle

(Module: app) under Gradle Scripts, see left side of Fig. 33.

• At the right side of Fig. 28, set the optimization flags under model à android.ndk à

CFlags.addAll();

87

Timing Difference Between iOS and Android Versions of the Integrated App

The low-latency audio i/o setup for iOS is done using the software package CoreAudio API [21]

and for Android using the software package Superpowered SDK [7] Both the iOS and the

Android version of the Integrated App use the same C codes for the lowpass filtering, down-

sampling, implementing hearing aid modules, up-sampling and interpolation filtering. The

average frame processing time for the complete pipeline with and without the implementation of

hearing aid modules is given in the table below:

TABLE 3: TIMING DIFFERENCE BETWEEN THE IOS AND ANDROID VERSIONS OF THE

INTEGRATED APP

Version of the

Integrated App

Overall frame

processing time,

T1 (ms)

Frame processing

time without hearing

aid modules, T2 (ms)

Processing time for

hearing aid modules,

T1-T2 (ms)

iOS 0.75 0.6 0.15

Android 1.33 0.3 1.03

Table 3 indicates lower frame processing time for the iOS version than the Android version of

the app. The iOS platform gives more compatibility and lower latency Bluetooth connection than

the Android platform. In our experimentation, the lowest Bluetooth latency was achieved by

using iPhone 7 with Starkey Halo2 [8] hearing aid.

88

REFERENCES

1. A. Sehgal, F. Saki, and N. Kehtarnavaz, “Real-time implementation of voice activity detector
on ARM embedded processor of smartphones,” Proceedings of IEEE 26th International
Symposium on Industrial Electronics (ISIE), Edinburgh, UK, pp. 1285-1290, 2017.

2. A. Sehgal and N. Kehtarnavaz, ‘User’s Guide: A Voice Activity Detector (VAD)
Smartphone App for Hearing Improvement Studies’, 2017. [Online]. Available:
http://www.utdallas.edu/ssprl/files/Users-Guide-VAD.pdf

3. F. Saki, A. Sehgal, I. Panahi and N. Kehtarnavaz, “Smartphone-based real-time classification
of noise signals using subband features and random forest classifier,” Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai,
China, pp. 2204 – 2208, 2016.

4. A. Sehgal and N. Kehtarnavaz, ‘User’s Guide: A Noise Classifier Smartphone App for
Hearing Improvement Studies’, 2017. [Online]. Available:
http://www.utdallas.edu/ssprl/files/UsersGuide-NoiseClassifier-App1.pdf

5. ‘Integrated VAD and Noise Classifier’. [Online]. Available:

https://utdallas.app.box.com/v/SIP-IntegratedVAD-NoiseClass

6. California Ear Institute, ‘Hearing in Noise Test (HINT)’, [Online]. Available:
http://www.californiaearinstitute.com/audiology-services-hint-bay-area-ca.php

7. ‘Superpowered: Fastest Mobile Audio Engine for Games, VR, Music and Interactive Audio
Apps’, [Online]. Available: http://superpowered.com

8. Starkey Hearing Technologies, ‘Halo 2’, [Online]. Available:
http://www.starkey.com/hearing-aids/technologies/halo-2-made-for-iphone-hearing-aids

9. N. Kehtarnavaz and F. Saki, Anywhere-Anytime Signals and Systems Laboratory: From
MATLAB to Smartphones, Morgan and Claypool Publishers, 2016.

10. N. Kehtarnavaz, S. Parris, A. Sehgal, Smartphone-Based Real-Time Digital Signal
Processing, Morgan and Claypool Publishers, 2015.

11. A. Sehgal and N. Kehtarnavaz, "A convolutional neural network smartphone app for real-
time voice activity detection," IEEE Access, online open access, Feb 2018.

12. A. Bhattacharya, A. Sehgal, and N. Kehtarnavaz, “Low-latency smartphone app for real-time
noise reduction of noisy speech signals,” Proceedings of IEEE 26th International Symposium
on Industrial Electronics (ISIE), Edinburgh, UK, pp. 1280 – 1284, 2017.

89

13. Nine Sights, ‘National Science Foundation Hearables Challenge’, 2017. [Online]. Available:
https://ninesights.ninesigma.com/web/hearables/innovationcontest

14. A. Sehgal and N. Kehtarnavaz, "Utilization of two microphones for real-time low-latency
audio smartphone apps,” Proceedings of IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, Jan 2018.

15. Starkeypro.com, ‘The Compression Handbook’, [Online]. Available:
https://starkeypro.com/pdfs/The_Compression_Handbook.pdf

16. D. Giannoulis, M. Massberg, and J. Reiss, "Digital dynamic range compressor design –– a
tutorial and analysis," Journal of Audio Engineering Society, vol. 60, pp. 399–408, 2012.

17. Mathworks.com, ‘Multiband Dynamic Range Compression’, [Online]. Available:
https://www.mathworks.com/help/audio/examples/multiband-dynamic-range-
compression.html

18. Mathworks.com, ‘MATLAB Coder: Generate C and C++ code from MATLAB code’,
[Online], Available: https://www.mathworks.com/products/matlab-coder.html

19. Developer.apple.com, ‘Xcode’, [Online]. Available: https://developer.apple.com/xcode

20. Developer.android.com, ‘Android Studio’, [Online]. Available:

https://developer.android.com/studio/index.html

21. Developer.apple.com, ‘Core Audio’, [Online], Available:
https://developer.apple.com/documentation/coreaudio

22. P. Loizou, Speech Enhancement: Theory and Practice, CRC Press, 2013.

23. Codewithchris.com, ‘How to Deploy your App on an iPhone’, 2016. [Online]. Available:
http://codewithchris.com/deploy-your-app-on-an-iphone/

24. Developer.apple.com, ‘The Swift Programming Language’, [Online], Available:
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Program
ming_Language/index.html

25. M. Tyson, ‘A simple, fast circular buffer implementation for audio processing’, [Online].
Available: https://github.com/michaeltyson/TPCircularBuffer

26. ‘Voice Activity Detection (VAD)’, [Online]. Available:

https://utdallas.app.box.com/v/SIP-NP-VAD1

90

27. Wiki.gentoo.org, ‘GCC Optimization’, [Online]. Available:
https://wiki.gentoo.org/wiki/GCC_optimization

28. Gcc.gnu.org, ‘Options for Linking’, [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Link-Options.html#Link-Options

29. A. Sehgal, A. Bhattacharya, T. Chowdhury, and N. Kehtarnavaz, ‘User’s Guide: A Low-

Latency Noise Reduction Smartphone App for Hearing Improvement Studies’, 2017.
[Online]. Available: http://www.utdallas.edu/ssprl/files/Users-Guide-Noise-Reduction.pdf

30. N. Kehtarnavaz and A. Sehgal, ‘User’s Guide: How to Run C/MATLAB Codes on Android
Smartphones as Open Source and Portable Research Platforms for Hearing Improvement
Studies’, 2017. [Online]. Available:
http://www.utdallas.edu/ssprl/files/Users-Guide-Android.pdf

91

BIOGRAPHICAL SKETCH

Tahsin Ahmed Chowdhury received his Bachelor in Science degree in Electrical and Electronic

Engineering from Khulna University of Engineering & Technology (KUET) in Bangladesh in

2013. He is currently pursuing his MS degree in Electrical Engineering at the University of

Texas at Dallas. His research interests include real-time audio signal processing, signal and

image processing.

92

CURRICULAM VITAE

EDUCATION:
• The University of Texas at Dallas, Richardson, TX May, 2018

MS in Electrical Engineering, CGPA: 3.585/4

• Khulna University of Engineering and Technology (KUET), Bangladesh. Sept, 2013
BSc. in Electrical and Electronic Engineering, CGPA: 3.67/4

WORK EXPERIENCE:
• Systems Engineer. Sales: Cisco Systems Inc., Richardson, Texas Jan 2018 – present
• Student Worker: SIP Lab, The University of Texas at Dallas Aug 2017 – Dec 2017
• Software Engineer: Samsung R&D Institute, Bangladesh (SRBD) May 2014 – Dec 2015
• System Support Engineer: Thakral Information Systems Pvt Ltd. Jan 2014 – Apr 2014

SKILL SET:

• Programing Skill: C, C++, MATLAB, Java, Python and SQL.
• Machine Learning: Neural Networks, Random Forest, and other supervised methods.
• Coding optimization: NEON Instincts for vectorization in ARM processor (smartphones).
• Software Packages: Microsoft Word, Excel, PowerPoint, Visio, Visual Studio.
• ACM Solving: Solved 144 programming related problems in uVa online judge.
• Miscellaneous: Working knowledge of Android Studio, XCode, Windows, Mac OS,

Ubuntu.
• Coursework: Pattern Recognition, Speech and Speaker Recognition, Microprocessor

Systems, DSP-I, DSP-II, Computer Networks, Programming with C, C++, Matlab.

RESEARCH PROJECT:

• Real-Time Smartphone Apps Integrating Signal Processing Modules of Hearing
Aids: MSEE Thesis

o Development of a smartphone app integrating voice activity detector (VAD) and
supervised noise classifier for hearing improvement studies: To classify noise
from environment based on the decision made by VAD.

o Integrating signal processing modules of hearing aids into a real-time smartphone
app: To provide an open source research platform where VAD, noise reduction
and compression modules were incorporated together in a same pipeline for
further studies in hearing improvement.

• Performance Analysis on Handover Priority Schemes and a New Adaptive Channel
Reservation for Handover Priority in Wireless Networks: BSc. Thesis

o An improved model for optimized channel utilization with better handover
priority and new call blocking probability within acceptable range; used
MATLAB for developing the model and analyzing the model properties.

93

ACADEMIC PROJECTS:
• Signal Processing Algorithm Implementation on Smartphones in C Programming

Language: An Independent Study
Converted an existing algorithm from MATLAB into C (without using MATLAB Coder)
to obtain better process time for noise reduction in real time incoming audio signal from
smartphone microphone.

• Detecting Speech Activity Using Convolutional Neural Network(CNN): Pattern
Recognition project.
Classifying speech from noisy speech from given feature extracted data using CIFAR-10
framework of MatCovNet (MATLAB based) toolbox.

• Comparative Classification of Speech Emotions Using MFCC Features: Speech and
Speaker Recognition project.

 Detection of speech emotion (Happiness, sadness, anger and neutral) using neural
network.

• System Identification Using Real Data: Digital Signal Processing II project

Identifying system using input and output audio data using DSP system toolbox in
MATLAB, applied Adaptive Filtering (NLMS) algorithm.

• Undergrad Projects:
o Development of Symmetrical Three-Phase Circuit Analyzing Tool using C

programming language.
o Development of a Simple Banking System Software using C++ Programming

language.
o Micro-controller Based Secured Room Access using Code Vision AVR with

Atmega32 Microcontroller.

PUBLICATIONS:

• T. A. Chowdhury, A. Sehgal, N. Kehtarnavaz, “Integrating Signal Processing Modules of
Hearing Aids into A Real-Time Smartphone App,” accepted for publication in
Proceedings of the 40th International Conference of IEEE Engineering in Medicine and
Biology Society, Honolulu, Hawaii, 2018.

• T. A. Chowdhury, R. Bhattacharjee, M. Z. Chowdhury, “Handover priority based on
adaptive channel reservation in wireless networks,” International Conference on
Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, pp.
1-5, 2014.

• R. Bhattacharjee, T. A. Chowdhury, M. Z. Chowdhury, “Priority based adaptive guard
channel for multi-class traffic in wireless networks,” International Conference on
Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, pp.
1-4, 2014.

