
FPGA IMPLEMENTATION OF REDUCED PRECISION CONVOLUTIONAL

NEURAL NETWORKS

by

Muhammad Mohid Nabil

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Dinesh Bhatia, Chair

Dr. Poras T. Balsara

Dr. Mehrdad Nourani

 ii

Copyright 2018

Muhammad Mohid Nabil

All Rights Reserved

 iii

To Mom, Dad and Tooba

FPGA IMPLEMENTATION OF REDUCED PRECISION CONVOLUTIONAL

NEURAL NETWORKS

by

MUHAMMAD MOHID NABIL, BS

THESIS

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

August 2018

 v

ACKNOWLEDGMENTS

This research is the culmination of a lot of hard work and support from a number of people. I

would like to start by thanking Dr. Dinesh K. Bhatia for agreeing to be my supervisor and

guiding me throughout the course of this research. I am grateful to him for not only being a

teacher and advisor but also my mentor. Working at IDEA lab under his guidance has been the

most fulfilling part of my academic journey at The University of Texas at Dallas. I would also

like to thank him for meticulously going through my thesis, making valuable suggestions for

improvement.

I am also thankful to Dr. Poras Balsara and Dr. Mehrdad Nourani for their guidance and being a

part of my committee. I am thankful to Ritchie Zhao and M. Courbariaux for answering my

queries on emails and helping to develop a better understanding of concepts during the early

stages of my literature review.

I would like to thank all my lab mates for their words of encouragement during the course of this

work. Their company made the long hours in the lab much more enjoyable.

In the end I would thank my entire family for their tireless support and prayers during the last 2.5

years. It would not have been possible without them by my side every step of the way.

June 2018

vi

FPGA IMPLEMENTATION OF REDUCED PRECISION CONVOLUTIONAL

NEURAL NETWORKS

Muhammad Mohid Nabil, MSEE

The University of Texas at Dallas, 2018

ABSTRACT

 Supervising Professor: Dr. Dinesh Bhatia

With the improvement in processing systems, machine learning applications are finding

widespread use in almost all sectors of technology. Image recognition is one application of

machine learning which has become widely popular with various architectures and systems aimed

at improving recognition performance. With classification accuracy now approaching saturation

point, many researchers are now focusing on resource and energy efficiency. With the increased

demand for learning applications in embedded devices, it is of paramount importance to optimize

power and energy consumption to increase utility in these low power embedded systems.

In recent months, reduced precision neural networks have caught the attention of some researchers.

Reduced data width deep nets offer the potential of saving valuable resources on hardware

platforms. In turn, these hardware platforms such as Field Programmable Gate Arrays (FPGAs)

offer the potential of a low power system with massive parallelism increasing throughput and

performance.

 vii

In this research, we explore the implementations of a deep learning architecture on FPGA in the

presence of resource and energy constraints. We study reduced precision neural networks and

implement one such architecture as a proof of concept.

We focus on binarized convolutional neural network and its implementation on FPGAs. Binarized

convolutional nets have displayed a classification accuracy of up to 88% with some smaller image

sets such as CIFAR-10. This number is on the rise with some of the new architectures.

We study the tradeoff between architecture depth and its impact on accuracy to get a better

understanding of the convolutional layers and their impact on the overall performance. This is

done from a hardware perspective giving us better insight enabling better resource allocation on

FPGA fabric.

Zynq ZCU-102 has been used for accelerator implementation. High level synthesis tool (Vivado

HLS) from Xilinx is used for CNN definition on FPGA fabric.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT ... vi

LIST OF TABLES ... xiii

LIST OF FIGURES .. xv

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Contribution of Thesis ... 2

CHAPTER 2: BACKGROUND ... 4

2.1 Network Components .. 4

2.1.1 Perceptron ... 4

2.1.2 Perceptron Training Rule.. 5

2.1.3 Neural Network .. 6

2.1.4 Neural Network Training.. 7

2.1.5 Convolutional Neural Network .. 8

2.1.6 Working Principle... 9

2.1.7 Architecture .. 9

2.1.8 Convolutional Layer ... 9

2.1.9 Activation Layer ... 11

2.1.10 Pooling Layer ... 12

2.1.11 Normalization ... 12

2.1.12 Fully Connected Layer ... 12

2.1.13 Softmax Layer .. 13

2.2 Popular Datasets .. 13

2.2.2 CIFAR-10 ... 14

2.2.3 ImageNet .. 14

 ix

2.3 CNN Architectures .. 15

2.3.1 AlexNet ... 15

2.3.2 VGG.. 15

2.3.3 GoogleNet ... 17

2.3.4 SqueezNet ... 17

CHAPTER 3: CNN ANALYSIS AND BINARY WEIGHTED NETWORKS 18

3.1 Introduction ... 18

3.2 Memory Analysis .. 18

3.3 Processing Requirements .. 20

3.4 Reduced Precision Networks .. 21

3.5 Binary Convolutional Neural Networks .. 22

3.5.1 Binary Convolution .. 23

3.5.2 Batch Normalization ... 24

3.5.3 Binarization Layer .. 25

3.5.4 Fully Connected Binary Layer ... 25

CHAPTER 4: NETWORK TRAINING ... 26

4.1 CNN Training Setup .. 26

4.1.1 PC Based .. 26

4.1.2 GPU Based Workstation ... 26

4.1.3 Software Setup .. 27

4.2 Architectural Implications on CIFAR-10 .. 28

4.3 Problem Statement .. 29

4.3.1 Filter/Kernel Size .. 30

4.3.2 Output Maps ... 32

4.3.3 Fully Connected Layers .. 33

4.3.4 Convolution Layers .. 35

4.4 Binary weighted CNN ... 41

4.4.1 Convolution Layers .. 41

4.4.2 Convolution Layer Outputs .. 42

 x

4.4.3 Filter Size .. 42

4.4.4 Pooling Layers .. 43

4.4.5 Fully Connected Layers .. 43

4.4.6 Final Configuration... 44

4.5 Binary CNN Training .. 46

4.6 Binary Training Algorithm .. 46

4.6.1 Deterministic vs Stochastic Binarization .. 46

4.6.2 Gradient Computation .. 47

4.6.3 Algorithm Forward Pass ... 47

4.6.4 Algorithm Backward Pass .. 47

4.6.5 Results .. 47

4.7 Binary CNN Training Setup .. 47

CHAPTER 5: IMPLEMENTATION HARDWARE AND SOFTWARE OVERVIEW 50

5.1 Introduction ... 50

5.2 FPGA Capabilities... 50

5.3 FPGA vs GPU ... 51

5.4 Zynq-7000 Architecture .. 52

5.5 Software Overview .. 54

5.6 VIVADO Components .. 54

5.7 Coding Guidelines ... 56

5.7.1 HLS Stream .. 56

5.7.2 Pragma .. 57

5.7.3 Pragma Interface ... 57

5.7.4 Pragma Inline .. 58

5.7.5 Pragma Pipeline .. 58

5.7.6 Pragma Unroll... 59

5.7.7 Dynamic Programming... 59

5.7.8 Loop Iterations .. 59

5.7.9 Object Oriented Programming.. 59

 xi

CHAPTER 6: CNN HARDWARE DESIGN ... 60

6.1 Problem Formulation... 60

6.2 Design Algorithm .. 60

6.3 Hardware Convolution Techniques ... 62

6.3.1 Matrix-Matrix Multiplication ... 62

6.3.2 Line Buffer and Sliding Window ... 63

6.4 Scheduled Hardware Pipeline ... 64

CHAPTER 7: HARDWARE IMPLEMENTATION ... 65

7.1 First Convolutional Layer (C-1) .. 65

7.2 Single Data Stream .. 65

7.2.1 Algorithm (single stream) ... 67

7.2.2 Results .. 68

7.3 Multiple Data Stream .. 69

7.3.1 Algorithm (Multiple Stream) .. 70

7.3.2 Results .. 71

7.4 Design Optimization ... 71

7.4.1 Temporary Memory Removal .. 71

7.4.2 LUT Consumption .. 72

7.4.3 Filter Weight Packing ... 72

7.4.4 Algorithm (Optimized Design) ... 73

7.4.5 Results .. 74

7.5 Binary Convolution Layers (C-2 to C-6) .. 75

7.5.1 Unoptimized Algorithm .. 75

7.5.2 Algorithm (Un-Optimized Design) .. 77

7.5.2 Results .. 78

7.5.3 Optimized Algorithm .. 79

7.5.4 Results .. 79

7.6 Fully Connected Layer .. 83

7.6.1 Algorithm.. 84

 xii

7.6.2 Algorithm (FC Layer) ... 85

7.6.3 Results .. 86

CHAPTER 8: NETWORK BLOCK DESIGN ... 89

8.1 Introduction ... 89

8.2 ZYNQ ULTRASCALE ... 90

8.3 IP Block Ports.. 90

8.4 Auxiliary Components .. 91

CHAPTER 9: CONCLUSIONS AND FUTURE WORK .. 92

9.1 Conclusions ... 92

9.2 Future Work .. 92

REFERENCES ... 93

BIOGRAPHICAL SKETCH .. 97

CURRICULUM VITAE

xiii

LIST OF TABLES

Table 1: Resource Analysis of VGG Network ... 20

Table 2: Binary Convolution Resource Requirement ... 23

Table 3: Network Architecture Proposed in [1] .. 29

Table 4: Network Performance in Relation with Network Configuration 32

Table 5: Network Performance in Relation with Increasing Neurons in FC Input 36

Table 6: Resource Requirement of 3x3 Binary Filters ... 41

Table 7: Comparison of Resource Requirement in with Filter Size ... 42

Table 8: Relation of Input Neurons with Filter Dimensions... 43

Table 9: Fully Connected Layer Dimensions ... 44

Table 10:Python Libraries... 48

Table 11:Classification Error Rates .. 48

Table 12: Resource specifications of latest FPGAs. ... 50

Table 13: FPGA Implementations of CNN .. 51

Table 14: Single Stream Resource Requirement .. 68

Table 15: Latency for Single Stream Design .. 69

Table 16: MultiStream Design Resource Utilization .. 71

Table 17: Optimized Design Resource Utilization ... 74

Table 18: Unoptimized Design Requirements .. 78

Table 19: Layer 2 Requirements ... 79

Table 20: Layer 3 Requirements ... 80

Table 21: Layer 4 Requirements ... 81

 xiv

Table 22: Layer 5 Requirements ... 82

Table 23: Layer 6 Requirements ... 82

Table 24: FC1 Requirements .. 86

Table 25: FC2 Requirements .. 87

Table 26: FC3 Requirements .. 88

 xv

LIST FIGURES

Figure 1: Illustration of linear decision boundry of a perceptron ... 4

Figure 2: Perceptron Architecture ... 5

Figure 3: Neural Network Schematic inspired from [10] ... 6

Figure 4: Illustration of a Non Linear Decision Boundary on Random Data Points 7

Figure 5: Convolution Layer Operation .. 10

Figure 6: Different Activation Layer Curves .. 11

Figure 7: Conversion of data representation from image to an array ... 13

Figure 8: MNIST Dataset Images ... 14

Figure 9: CIFAR-10 Dataset Images [18] ... 14

Figure 10: Alexnet Architecture from Authors Original Work [20] ... 15

Figure 11: VGG Layer Configurations [21] ... 16

Figure 12: Distribution of weights in VGG 16 and VGG 19 from [24]. 18

Figure 13: Memory analysis of AlexNet from [1]. ... 19

Figure 14: Processing Requirements of CNN Layers of AlexNet [1]. ... 21

Figure 15: Comparison of CNN and Binary Networks Adopted from [1]. 22

Figure 16: Impact of Normalization Layer on Convergence During Training 24

Figure 17: Fully Connected Layer Operation ... 25

Figure 18: Specifications of GPU Used for Network Training [29]. .. 27

Figure 19: Image Showing Interface of Training Tool ... 28

Figure 20: Architecture of Network Under Test ... 30

 xvi

Figure 21: CNN Performance with various Filter/Kernel Size ... 31

Figure 22: Comparison of Classification Accuracy with Filter Size and Number of Outputs 32

Figure 23: Increase in Classification Accuracy with Increasing Number of Output Maps 33

Figure 24: Architecture of Network Under Test with 2 FC layers ... 33

Figure 25: Network Performance with Increasing Number of FC Layers for Various Filter Size34

Figure 26: Architecture of Network Under Test with 2 Conv Layers .. 35

Figure 27: Comparison of Performance with Increasing Number of Convolution Layers 37

Figure 28: Performance Analysis with Increasing Outputs from Conv Layer 2 37

Figure 29: Architecture of Network Under Test with ... 38

Figure 30: Performance Analysis with Increasing no. of Filters in Layer 2 and Layer 1 39

Figure 31: Performance impact of increasing data generated by convolution layers 40

Figure 32: Final Network Architecture to be implemented. ... 45

Figure 33: ZYNQ SOC Architecture Schematic [7]. .. 53

Figure 34: Network Architecture to be implemented on FPGA. .. 61

Figure 35: Illustration of Matrix Multiplication Using Preformatting and Indexing 62

Figure 36: Sliding Window Schematic. .. 63

Figure 37: Overview of Network Architecture with Zynq Core ... 64

Figure 38: Single Data Stream Design.. 66

Figure 39: Multiple Data Stream Design .. 69

Figure 40: Unoptimized Binary Convolution Layer ... 76

Figure 41: Fully Connected Layer Architecture ... 84

Figure 42: Illustration of Efficient Memory Fetch in Fully Connected Layer 85

 xvii

Figure 43: Overview of Block Design Complexity .. 89

Figure 44: Expanded View for IP core Integration with ZYNQ Core in Block Design 90

Figure 45: Expanded View for Auxiliary Components of Design ... 91

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Image recognition tasks have gained immense popularity in the past few years. From the complex

task of autonomous vehicles to simply unlocking a mobile device, recognition tasks are now

considered essential to any embedded system. They also have other potential uses such as medical

diagnosis and aerial vehicle control which require high levels of reliability in their performance.

For all these applications, there is a need for high performance machine learning architecture which

is highly accurate. Due to the mobile nature of a lot of these applications and their implementation

on embedded platforms, they are also required to have excellent performance in terms of energy

consumption.

In recent years, success with image recognition using convolutional neural networks (CNN) has

made them exceedingly popular. CNNs became popular after the success of Alexnet in the 2012

ImageNet competition. This was the first time that CNNs had shown a promising accuracy. In the

subsequent competitions, improved architectures of CNN were proposed each improving on the

accuracy of the previously proposed scheme. In 2015, top-5 classification had achieved

performance at par with human scores using GoogleNet with an error of 6.7%. These CNN

architectures will be explained in later chapters for more clarity.

The basic building blocks of all these convolutional neural networks are the same. They consist of

a layered architecture of convolutional, pooling, activation and fully connected layers. Together,

multiple iterations of these layers form a dense structure of filters and neurons which work together

to extract critical information for successful classification of input data. However, this dense

architecture implies a large memory size along with a large computational complexity.

Graphical processing units (GPUs) have traditionally been used for neural network

implementations. They are first used for the training phase and subsequently for inference (these

concepts will be introduced in later sections). GPUs present an ideal platform for this process due

to their highly parallel architectures. Extremely high throughput is achieved due to large number

of processing elements (PE) available on chip. As evident, these systems have very high-power

requirements which power these processing elements.

Field Programmable Gate Arrays (FPGA) present an ideal alternative to the above stated systems

for CNN implementation. They provide a large number of programmable logic blocks which can

be reconfigured on the fly. Massive parallelism can be achieved by efficient design on the FPGA

 2

fabric while keeping power consumption at a minimum. This however, is not without its own set

of challenges.

As explained above, deep networks have a large memory size and computational complexity.

While FPGAs present an opportunity for high performance low power platform, their limited on-

chip resources and memory limit the size of the convolutional neural networks. Owing to this,

researchers are now focusing on low precision implementation for such platforms. This work

addresses the problem of FPGA based CNN design for low precision networks.

Binarized neural network is one such low precision network which has recently been explored [1].

All data size is one-bit wide which limit the memory consumption as well as alter the way results

are computed than traditional 16 or 32 bit precision networks on FPGAs.

1.2 Contribution of Thesis

This research has focused on various binarized network architectures and their implementation on

FPGAs. In this regard, different structural combinations of the deep nets were studied to form a

correlation between layers and prediction accuracy on a 32 bit precision network.

Due to the exploratory nature of this research work, we experiment with different machine learning

libraries to get a better understanding of coding deep learning algorithms. In this regard,

Tensorflow [2] and Caffe [3] were used for full precision network implementation. DIGITS from

NVIDIA [4] is an excellent tool with Caffe backend which has been used for the results presented

later in this thesis.

For binarized neural networks, we used a Theano based library from Courbariaux et al [5] which

has been used widely by researchers working with low precision networks. Using this work, the

trained weights are limited to -1 and 1 as per requirements of our binary model [6].

For hardware implementation of the network, zcu102 board from Xilinx has been used [7]. The

board has over 32Mb of on chip memory which is sufficient to store trained neural network model.

The large memory size was needed to eliminate off-chip memory access and reduce latency. We

present a novel pipelined model which uses on chip memory access. This was important

considering the high memory bandwidth requirements of the convolutional neural network layers

We use Vivado High Level Synthesis tool [8] for coding our design. This is an excellent tool which

enables C++ level code to map on to hardware keeping a few Verilog constraints in mind. We will

also explain a few of these limitations and guidelines in this report.

 3

We also design the fully connected layer for binarized weights. Binary weights by virtue of their

limited size eliminate the need for large multipliers greatly reducing resource and power

consumption.

We also design a full precision convolution layer based on the well-known line buffer [9] for the

first layer of our network as well as to benchmark differences between full precision and reduced

precision layers.

It is important to note here that the training phase is always carried out offline using Graphical

Processing Units and machine learning libraries and only the inference phase is mapped on to the

FPGA fabric. This is because training is a one time or a periodic process and can be done offline.

Inference is the more frequent process, and this is where lies the greatest potential for resource and

power saving.

We will also explore the design space within the time constraints for this thesis. Different coding

styles have different outcomes when it comes to hardware mapping and we will describe a few of

these.

 4

CHAPTER 2

BACKGROUND

We now introduce some important concepts necessary to understand the selection and

implementation of binary weighted neural networks on FPGAs. We will also introduce some

popular architectures of CNN, binarized networks and work from some previous researchers that

influenced the work done in this research.

2.1 Network Components

We intend to explain the workings and principles of binary weighted convolutional networks. For

this reason, we will start off from the very basics and try and explain the building blocks. In the

following sections, we will explain the concept of perceptron. We will see how perceptrons join

together into a web like structure to form an artificial neural network. We will then explain the

need for a better structure and why we move towards convolutional neural networks. We will

explain the additional components of the convolutional layers as well as give a brief account of

some of the work done by researchers in this domain. We will look at binary weighted deep

networks, component layers and each one of its benefits to us. We will also look at recent work by

other researchers in this field.

2.1.1 Perceptron

Perceptron is inspired by a bio-computing model of a neuron in the brain. It falls in the category

of linear classifiers. It works by proposing a hypothesis h which linearly separates any given data

provided the data is linearly separable. The hypothesis divides the plane in two parts hence

classifying data in 2 categories which has been illustrated in figure 1.

Figure 1: Illustration of linear decision boundry of a perceptron

For a two dimensional data, the perceptron works by adjusting weights for the two dimensions x1

and x2 through an iterative training process. The perceptron can be defined by the equation

 5

𝑤1. 𝑥1 + 𝑤2. 𝑥2 = 𝜃

We can see from the equation that we can adjust the separating line by adjusting parameters w1,

w2 and 𝜃. From the above equation we can write our hypothesis as

𝑔(𝑥) = 𝑤1. 𝑥1 + 𝑤2. 𝑥2 − 𝜃

From this equation, we can get a simple linear classifier based on the sign of the left hand side.

This “sign” activation is called the Activation Function or the Thresholding Function for the

perceptron. This perceptron architecture including can be shown through the figure 2.

Figure 2: Perceptron Architecture

2.1.2 Perceptron Training Rule

As stated in the previous section, the perceptron equation draws a linear separation boundary using

the w1,w2 and 𝜃 parameters. These parameters are not arbitrarily decided. Rather, they are

obtained through an iterative training process. The training process determines the parameters

which would give the greatest separation between classes. Training data or labeled data is a dataset

which is taken as the input to the training algorithm. Each input has a known output or a label.

During the training process, this know label of input data is compared with the classifier output.

The difference between the desired and actual output is used to update the network parameters.

The way these parameters are updated is known as the training rule or the weight update rule.

We briefly explain the training rule for perceptron which updates the weights. This is because this

rule forms the basis for the training of our eventual design of a convolutional neural network.

Perceptron training (weight update) is done through a training data set using the following

equations.

𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖

∆𝑤𝑖 = 𝑛(𝑡 − 𝑜)𝑥𝑖

 6

Where :

t = Target output of perceptron (also known as label of input data)

o = Actual perceptron output

n = step size constant

𝑥𝑖= training input

∆𝑤𝑖 = weight update value

Due to the linear nature of the perceptron equation, there is an obvious limitation to classification

when non-linearity is introduced in data. Since most real world problems have non linear data

distribution, this calls for a better solution.

2.1.3 Neural Network

A neural network is formed by the connection of several neurons or perceptrons as illustrated in

figure 3. Through interconnections of a large number of neurons, a web is formed which creates a

highly non linear decision boundary for classification as illustrated in figure 4. The neural network

is in the form of several layers. These are classified as input layer for the input side. Hidden layers

for feature extraction. And output layer. There is one input layer, one output layer and many

number of hidden layers as per need.

Figure 3: Neural Network Schematic inspired from [10]

 7

Figure 4: Illustration of a Non Linear Decision Boundary on Random Data Points

2.1.4 Neural Network Training

Similar to a perceptron, there is also a training rule for a network of perceptrons joined together to

form a neural network. It achieves weight updates similar to a perceptron training rule. The

algorithm to update weights based on a training data set is called the Backpropagation Method.

In this method, a set of data with labels is fed to the network. The outcome of the network is

compared with the data labels and the error is determined. This error is then used to update the

weights. These new weights are then used to repeat the process. This is called supervised learning

process where the training data set has known output values which are used to train the network.

The error is determined in the first phase which is called the forward pass of data and the weight

update is performed in the second phase known as the backward pass. Hence the name

backpropagation.

We can summarize this algorithm as follows:

1) Initialize all weights (these can be any small number but not all zeros)

2) Until convergence, do the following steps

DO:

For each training example:

 DO:

a) Compute network output from the training input

b) For each output unit k, compute

𝛿𝑘 ← 𝑂𝑘(1 − 𝑂𝑘)(𝑂𝑘 − 𝑡𝑘)

c) For each hidden unit h, compute

 8

𝛿ℎ ← 𝑂ℎ(1 − 𝑂ℎ) ∈ 𝑤ℎ,𝑘𝛿𝑘

d) Update each network weight

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + ∆𝑤𝑖,𝑗

Where

∆𝑤𝑖,𝑗 = 𝑛𝛿𝑖,𝑗𝑥𝑖,𝑗

Steps a, b and c comprise the forward pass of the algorithm while step d comprises the

backward pass of the algorithm.

We limit our discussion regarding the training at this point is since neural network training will

not be a part of our research, and we will only be using the existing schemes.

We will however, include a brief note on the inference process by the neural network. As explained

above, the network is arranged in the form of layers. Input data is fed in the input layer while the

output is retrieved through the output layer. The hidden layer in between uses weight values to

extract necessary features for classification. All these layers work together to get the desired result.

What we have not explained yet is what goes into the input layer. Consider an image for

classification. What part of image are we supposed to feed in to the network to classify it. These

inputs or features are acted upon by the network weights for classification. An in depth knowledge

of the area of classification is necessary to determine which features would help in classification.

To take another example, for speech classification tasks, an area expert would know that formant

frequencies f0 and f1 (speech features) are required for some speech recognition tasks. This domain

specific knowledge greatly restricts the use of neural network as an effective classification

algorithm. Also, for data with very large feature size such as a 2D or a 3D image, this is a grave

limitation. A more generic solution to this is hence required.

2.1.5 Convolutional Neural Network

In recent years, Convolutional Neural Networks have become increasingly popular for image

classification tasks due to their exceptional ability to handle very high input feature size as in the

case of image recognition task. They have also been widely used in other applications such as

machine vision and data centers[11-13].

CNNs have a layered architecture with different layers performing different tasks. The layers are

then repeated multiple times to extract more and more information from the data as well as to

reduce the data size. These layers and their functions will be explained in more detail in the

subsequent sections.

 9

The input to each layer in the CNN is called a feature. All the features to one layer are collectively

called feature map. Each layer has its own set of input or feature map which have varying

dimensions. Except for the input feature, which is the input to the first layer, all subsequent feature

map dimensions depend upon the layer architecture producing these features. Hence the output

feature map of one layer is the input feature map of the next.

2.1.6 Working Principle

As explained above, convolutional neural networks are ideal for data with very large feature size.

Image classification is one such example of this. Consider an RGB image with dimensions 32x32

(height x width). With three layers for red, green and blue, we get a total number of 3072 input

features. A convolutional neural network needs to be able to tackle two problems associated with

this data. First is to reduce the number of input features into a more manageable number. This is

achieved through pooling layers in the convolutional neural networks that reduce the number of

features in each subsequent layer of the layered architecture. Second is linked to the first, which

requires the extraction of only relevant features for successful classification of this image. This

extraction is done by the convolutional layers of the neural network which is achieved through

training the network weights. These weights are convolved with the features to extract requisite

information i.e. most relevant data to successfully classify the image. Both these layers and others

in the architecture will be explained in the next section for more details.

2.1.7 Architecture

As explained above, CNN are made of a layered architecture. These layers take input feature map

and transform it into an output feature map. This is then processed by the next layer in the

architecture.

2.1.8 Convolutional Layer

Consider an input image of dimension 𝑖𝑚ℎ𝑒𝑖𝑔ℎ𝑡 𝑥 𝑖𝑚𝑤𝑖𝑑𝑡ℎ which is fed to the convolutional layer.

This layer is formed up from a number of filters which are also referred to as kernels in the

literature.

Each filter has dimension 𝑓ℎ𝑒𝑖𝑔ℎ𝑡 𝑥 𝑓𝑤𝑖𝑑𝑡ℎ. Suppose we have one filter in the layer. This filter is

convolved over the input image. At each point of convolution, the filter returns one pixel or value

as per the method of convolution. Hence for each input pixel, we get an output and the total output

feature map can be extracted by the following equations

 10

𝑂𝑢𝑡𝑥,𝑦 = ∑ ∑ 𝑖𝑚𝑥+𝑖,𝑦+𝑗 𝑥 𝑓𝑖𝑙𝑡𝑒𝑟𝑖,𝑗

𝑓𝑤𝑖𝑑𝑡ℎ

𝑗=1

𝑓ℎ𝑒𝑖𝑔ℎ𝑡

𝑖=1

Where x,y represent the pixel position in the output map which is obtained by a 2 dimensional

multiply accumulate operation between the input image and filter

Similarly, for high dimensional input feature map, we have a total number of N input feature maps

which are reduced to a single layer at the output by one filter of dimension height x width x N and

is given by:

𝑂𝑢𝑡𝑥,𝑦 = ∑ ∑ ∑ 𝑖𝑚𝑘,𝑥+𝑖,𝑦+𝑗 𝑥 𝑓𝑖𝑙𝑡𝑒𝑟𝑘,𝑖,𝑗

𝑓𝑤𝑖𝑑𝑡ℎ

𝑗=1

𝑓ℎ𝑒𝑖𝑔ℎ𝑡

𝑖=1

𝑁

𝑘=1

Figure 5 illustrates this multiply accumulate operation. We notice here that the output for one filter

is always expressed in a 2 dimensional plane represented by x and y.

Commonly used filter dimensions are 3x3 and 5x5. These have been obtained through empirical

testing and have been widely adopted. An important point to note here is that due to the nature of

2D convolution that has been done here, the output dimension is always less than the input

dimension. For a given input of dimensions Input Dim x Input Dim, we get an output of dimension

Output dim x Output dim where each Output dim is given by:

𝑂𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚 = 𝐼𝑛𝑝𝑢𝑡 𝐷𝑖𝑚 − 𝐹𝑖𝑙𝑡𝑒𝑟 𝐷𝑖𝑚 + 1

For example, for a symmetrical input of size 32 x 32 and filter size of 5 x 5, the output would be

reduced to 28 x 28. To keep the architecture symmetric, the output is usually zero padded to make

it 32 x 32 again. Zero padding is a process where the size of the feature map is increased by adding

zeros to it. This is done on the periphery of the feature map i.e along the outer edges. We will see

how this seemingly troublesome property would be used to our advantage in subsequent layers.

Figure 5: Convolution Layer Operation

 11

2.1.9 Activation Layer

Similar to what we discussed in perceptron and neural network, activation function is also applied

in convolutional neural networks. The layer takes convolutional layer output maps as input and

applies an activation function to it. For example, if the activation function was a simple sign

function, we would get

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 = 𝑠𝑖𝑔𝑛 (𝐼𝑛𝑝𝑢𝑡𝑥,𝑦)

There are several other activation functions used in CNN. A very commonly used function is the

Rectified linear unit (RELU) which can be shown by equation below

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 = 𝑚𝑎𝑥 (𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 , 0)

Other commonly used activation functions include:

Sigmoid:

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 =
1

1 + 𝑒−𝐼𝑛𝑝𝑢𝑡𝑥,𝑦

PReLU:

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 x 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 𝑓𝑜𝑟 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 < 0

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 = 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 𝑓𝑜𝑟 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 ≥ 0

ELU:

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑒𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 − 1) 𝑓𝑜𝑟 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 < 0

𝑂𝑢𝑡𝑝𝑢𝑡𝑥,𝑦 = 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 𝑓𝑜𝑟 𝐼𝑛𝑝𝑢𝑡𝑥,𝑦 ≥ 0

These have been shown in figure 6.

Figure 6: Different Activation Layer Curves

 12

2.1.10 Pooling Layer

As described in previous section, one of the consequences of convolving a filter over an image is

the reduction in size. This corresponds to a reduction in the number of pixels. Smaller image size

means smaller computation and memory footprint during the multiply accumulate operation. We

use this property in pooling layer. There are several ways we can do pooling. One popular method

is called the max-pool. In this method, the filters are moved over the 2D image. Instead of a MAC

operation as is the case in convolution, we take the max value of image pixels overlapped by the

filter at a given instant. We can also do an average operation instead of the max operation as is

done in average-pooling.

We can control the extent of the size reduction by controlling the stride s of the filter over the

image. A stride is the step size the filter takes while convolving over the image. For convolutional

layer, the stride s=1 is a commonly used value. We can extend the output dimension equation with

variable s in it as follows

𝑂𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑚 = (𝐼𝑛𝑝𝑢𝑡 𝐷𝑖𝑚 − 𝐹𝑖𝑙𝑡𝑒𝑟 𝐷𝑖𝑚)/𝑠 + 1

Through observation of the above equation, we can see that increasing stride would reduce the

Output dim.

2.1.11 Normalization

Normalization layer has recently gained popularity and is increasingly being used for training of

neural networks. It has been empirically shown that training convergence is achieved much faster

with applying a normalization factor to batch. Training process requires careful selection of initial

weight values. Otherwise, the training process becomes exceedingly slow. Batch normalization

shifts data to zero mean and unit variance. This drastically reduces training times and resource

utilization [14] and solves the convergence issue [15].

We will explain this more in the binarized network section since it is more commonly used in

reduced precision networks.

2.1.12 Fully Connected Layer

A fully connected (FC) layer is the artificial neural network explained in the previous sections.

This layer has usually no hidden layer since feature extraction is not really required which is done

by the convolutional layers. More than one fully connected layer is usually a part of the CNN

architecture. Since no convolution is performed in this step, data is more conveniently expressed

as an array rather than an image prior to feeding it to the fully connected layer. This has been

illustrated in figure 7.

 13

Figure 7: Conversion of data representation from image to an array

2.1.13 Softmax Layer

Softmax layer is used for classification which converts raw numerical values into probabilities of

classes. This is the final layer of the CNN architecture. Each output node from this layer represents

probability of the class value. Sum total of all outputs is equal to one. Probability of each class is

given with the below equation which is implemented in the softmax layer.

𝜎(𝑥𝑗) =
𝑒𝑥𝑗

∑ 𝑒𝑥𝑖𝑖

Where 𝑥𝑗 represents raw output from the final FC layer for each class j. 𝜎(𝑥𝑗) represents probability of

class j. ∑ 𝑒𝑥𝑖
𝑖 is summation for all classes i from 1 to j.

2.2 Popular Datasets

We will now briefly describe some image data sets which will be repeatedly referred to in

subsequent sections. These data sets are commonly used test cases to test neural network

performance.

2.2.1 MNIST

MNIST [16] is a set of labeled images of handwritten digits from 0 to 9. It has 60,000 training

samples and 10,000 test samples. The image size is 28 x 28 pixels for each of the samples. The

data set has been widely used to test smaller CNN architectures such as LeNet [17]. Figure 8 shows

some sample images of MNIST data set.

 14

Figure 8: MNIST Dataset Images

2.2.2 CIFAR-10

CIFAR-10 [18] is another popular dataset. The postscript 10 represents the total types of classes it

has. CIFAR-10 has 60,000 RGB images which are divided into 10 classes. Each class has 6000

images. The total number of images is divided into 50,000 training samples and 10,000 test

samples. Each image is of size 32 x 32 x 3 for the RGB layers. The images have the following

classes; airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. Figure 9 shows

sample images and their classes from CIFAR-10.

Figure 9: CIFAR-10 Dataset Images [18]

2.2.3 ImageNet

Imagenet [19] database is the part of the Imagenet Largescale Visual Recognition Challenge

(ILSVRC) which is held annually where designers compete to achieve the highest classification

accuracy on the an immense data set of 14 million images divided into a 1000 categories. It is the

most comprehensive set of images and has been used to gauge the performance of the best machine

learning algorithms. The samples consist of 256 x 256 RGB images. The dataset is a result of a

 15

massive crowdsourcing effort carried out by researchers from Princeton. The images however, are

not owned by the group and it only provides URL to each image which can be downloaded as a

set. More details can be obtained from [19].

2.3 CNN Architectures

We now give a brief description of some architectures which have outperformed other learning

algorithms in the ImageNet challenge and hence made CNN the go to architectures for many

machine learning applications.

2.3.1 AlexNet

AlexNet [20] was the first CNN architecture to win the ImageNet challenge in 2012. This

architecture proposed by Krizhevsky et al. Alexnet exploits the parallel computation capability of

traditional graphical processing units (GPU) and divides each leyer in the network between two

GPUs.

AlexNet consists of a total of 8 layers. Of these, 5 are convolutional layer and 3 are fully connected.

After the last layer, there is a softmax layer. After each convolutional layer, there is a ReLU

activation layer. There are two normalization layers after the first and the second convolutional

layers. There are three max pool layers after first, second and fifth convolutional layers. These

follow after the normalization layers. Their model achieved a top-5 error rate (make 5 class

predictions for each image) of 17.0%. Figure 10 has been adopted from the original work and

illustrates the architecture.

Figure 10: AlexNet Architecture from Authors Original Work [20]

2.3.2 VGG

VGG [21] is a very deep convolutional neural network exploiting extremely high computational

power of modern GPUs. It has 16 and 19 layers for VGG-16 and VGG-19 respectively.

Furthermore, it has 5 max pool layers and a softmax layer at the end of the architecture. Figure 11

 16

shows the configuration extracted from the original paper [21]. It was the winner of Imagenet

challenge in 2014. It has a very symmetric architecture with all filers of size 3 x 3 which make it

convenient to implement. The extremely deep architecture corresponds to very high computational

requirements with over a 100 million training weights and around 16 billion MAC operations.

Their most dense model gave a top-5 error of 7.5% which was substantially better than the previous

models.

In figure 11, we can see various configurations tested by the authors. For the most dense

architecture of VGG-19 (column E), we can infer the following network configuration. It has a

total of 19 weight layers. It takes a 224x224 RGB image as an input. First and second convolution

layers have 64 filters each. After two convolution layers, there is a pooling layer. This is followed

by two more convolutional layers with 128 filters each. After this there is a pooling layer. This is

then followed by 4 convolutional layers with 256 filters each and then a pooling layer. In the next

4 layers there are 512 filters each followed by a pooling layer. Finally, 4 more convolutional layers

with 512 filters each is added which is again followed by a pooling layer. After all the

convolutional steps are done, 3 FC layers are added. Hence the total number of convolutional and

fully connected layers is equal to 19.

Figure 11: VGG Layer Configurations [21]

 17

2.3.3 GoogleNet

GoogleNet [22] was a revolutionary architecture presented to overcome the drawbacks of VGG

i.e. high resource and computational requirement. It gave a top-5 error rate of only 6.7% while

only requiring 1.2 million weight values. In addition, it drastically reduced the computation

requirements with only 800 million multiply accumulate operations making it suitable for use with

low power embedded devices. The architecture achieves this by forming a network in network

architecture, small sections called the inception modules. Without going in to too much detail, we

conclude that this presented a more feasible solution than the very deep VGG.

2.3.4 SqueezNet

There have been models with an even better performance than GoogleNet such as ResNet.

However, they rely on extremely deep architectures with high resource utilization. Acting on a

different ideology of reasonable precision with reduced size, squeezenet [23] aims to achieve

performance similar to AlexNet with drastically reduced resource consumption. This model

presented by researchers from UC Berkley was created specifically for embedded domain making

them even feasible for FPGA implementation. Several researchers have been working in this field

with very promising results. The architecture relies on ‘Fire Modules’ to squeeze and expand the

layers using 1x1 and 3x3 filters. We will not go into the detail of these modules.

 18

CHAPTER 3

CNN ANALYSIS AND BINARY WEIGHTED NETWORKS

3.1 Introduction

Since the main goal of this research is the implementation of CNNs on FPGA, it is pertinent to

analyze CNN architectures with respect to their resource utilization. This includes both the

memory requirements as well as the MAC operations which constitute the major portion of power

consumption on a chip. This section is important since we will start to build our case for the use

of binarized neural networks over the traditionally used full precision CNN.

3.2 Memory Analysis

Consider the example of VGG-16 which is a very deep net with 16 layers comprising of

convolution as well as fully connected layers. The total network has over 130 million weight

values. If we were to have 16 bit values for each weight, this would translate into 260MB of

memory. Most of these weight values are concentrated in the fully connected layers of the network.

It was documented in [24] and figure 12 shows the distribution of weights in various CNN layers

of VGG 16 and VGG 19 architecture.

Figure 12: Distribution of weights in VGG 16 and VGG 19 from [24].

As evident from figure 12, the weight distribution of the network is such that the weights are

overwhelmingly concentrated in the fully connected layers. Addition of more FC layers in any

architecture would hence drastically increase memory consumption. For systems such as GPUs

W
ei

gh
t

in
 M

b

Color Coding for Layers with max weight

 19

with very high available memory resources, the network is well suited for implementation. This

weight distribution can also be shown in figure 13 adopted from [1] which elaborates the marked

difference in memory utilization between conv layers and fully connected layers.

Figure 13: Memory analysis of AlexNet from [1].

To better understand the memory consumption of weight values, we perform a little analysis to

see the relation between increasing weights and memory utilization.

Suppose we have a fully connected neural network layer. We have 2 neurons in the input and 1

neuron in the output. We have a total of 2 weight values. Increasing neurons in the input layer by

one would add one more weight to our memory bank. Now we take a network with 2 output

neurons. Increasing input layer neurons by a factor of x would increase our weight values by a

factor of 2 . We can form a more general relationship between our input and output neuron weights

as:

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝐼𝑛𝑝𝑢𝑡 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 𝑥 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑒𝑢𝑟𝑜𝑛𝑠

From above relation, we can easily see that the storage elements explode with even a fairly small

number of neuron values. For large data sets such as Imagenet with a large number of output

classes, even one fully connected layer would have a multiplying factor of a 1000 and hence an

exceedingly large number of weights.

Now let us consider the hardware storage requirements of such a network. Each storage element

or weight in the network has an associated precision with it. This depends on the number of bits

allocated for the storage element. Considering a 32 bit floating point storage requirement for each

weight, we can modify the above equation to get bytes of memory

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑊𝑒𝑖𝑔ℎ𝑡𝑠(𝐵𝑖𝑡𝑠) = 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝐼𝑛𝑝𝑢𝑡 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 𝑥 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 𝑥 32

We take the example of VGG and see how the memory is distributed in each layer in table 1.

N
o

. o
f

W
ei

gh
ts

 x
1

0
^7

 20

Table 1: Resource Analysis of VGG Network

Input =224x224x3

Layer Inputs Filters Weights Memory(32
bits/weight)

Conv1 224x224x3 64 1728 55.2Kb

Conv2 224x224x64 64 36864 1.1Mb

Maxpool

Conv3 112x112x64 128 73728 2.3Mb

Conv4 112x112x128 128 147456 4.6Mb

Maxpool

Conv5 56x56x128 256 294912 9.4Mb

Conv6 56x56x256 256 589824 18.8Mb

Conv7 56x56x256 256 589824 18.8Mb

Maxpool

Conv8 28x28x256 512 1179648 37.7Mb

Conv9 28x28x512 512 2359296 75.4Mb

Conv10 28x28x512 512 2359296 75.4Mb

Maxpool

Conv11 14x14x512 512 2359296 75.4Mb

Conv12 14x14x512 512 2359296 75.4Mb

Conv13 14x14x512 512 2359296 75.4Mb

Maxpool

FC1 8192 4096 33554432 1073Mb

FC2 4096 4096 16777216 536Mb

FC3 4096 1000 4096000 131Mb

Softmax

From table 1, we see the immense storage requirement of a deep network such as VGG-16. We

have considered each weigh value to be a full precision 32 bit storage which would give us the

best performance.

At this point, we will conclude our discussion on deep networks and their memory requirements.

We move on to the processing requirements of such networks.

3.3 Processing Requirements

Neural network is nothing but an exceptionally large number of multiply accumulate operations

on data to separate them as per a highly non-linear boundry. As explained in previous sections,

convolutional and fully connected layers work in coherence to first extract the most relevant

features from the data and then separate them on the basis of those features.

We have seen in section 2.1.8 that convolution is a MAC operation performed in 2 dimensions in

its most simplest form on a single layer of input. Increasing the number of input layers to any given

 21

layer increases the number of MAC operations by a factor of the depth of the input layer. To get a

realization of the number of operations required, we take an example of a 4x4 image convolved

with a 2x2 filter to get a 3x3 output image. At one instant of convolution, we have a total of 4

multiplies and 4 accumulate operations. We have a total of 3 parallel strides and 3 horizontal strides

to get a 3x3 output. Hence we get a total of 3x3x4 multiplies and 3x3x4 accumulates. This is a

very large number considering the small size of our filter and input image.

We take another example of a fully connected network of 4 inputs and 3 outputs. We get a total of

4x3 multiplies and 4x3 accumulates. We will see that as we grow the network bigger, this number

does not grow as drastically as the convolutional layers. This was again documented in [1] from

where figure 14 has been adopted which depicts the distribution of MACs in a 5 convolution 3 FC

deep network.

Figure 14: Processing Requirements of CNN Layers of AlexNet [1].

We will conclude this section with the result that in any deep network, convolutional layers

comprise the greater portion of operational load on the system.

3.4 Reduced Precision Networks

As shown in previous sections, convolutional neural networks have a very large memory and

resource requirement. In order to optimize any implementation, the algorithm has to cater for the

high processing need at convolutional stage and high memory consumption at the fully connected

stage. One way to take care of these two problems is to reduce the bit width of storage type.

A growing number of researchers are looking at this approach through capitalizing on the inherent

redundancy of deep networks. Researchers have shown that reduction in data width does not

adversely impact network accuracy. Han et el. [25] demonstrate the use of efficient optimizations

such as compression paired with reduced bit width in reducing the architecture size by more than

40 times. This is a critical advantage necessary for neural network implementations in memory

 22

constrained architectures such as FPGAs. Other researchers [24, 26, 27] have argued on similar

line showing minimal loss of accuracy with bit width drastically less than 32 bits.

There have been various implementations of neural networks with reduced bit widths. These

include 16 bit, 8 bit , 2 bit as well as 1 bit implementations. The choice of data width has significant

impact on the hardware architecture the designer selects. We focus on binarized implementation

of the deep network and we will explain in this section the architectural differences in a binarized

network and how it tackles the earlier mentioned problems of full precision convolutional neural

networks.

3.5 Binary Convolutional Neural Networks

Binarized neural networks with binary weights and activations have recently shown impressive

performance almost close to a full precision network. Binary networks are somewhat similar to

their full precision counterparts in terms of layer arrangement. The two networks have been

contrasted in figure 15 which as been adapted from [1]. Each layer of the binarized network as

shown in figure 15 will be explained in the subsequent sections.

In a binarized neural network, all weight values as well as input maps have values restricted to

either 1 or a -1. In a hardware system, we can use a 1 bit data type to represent these values. A 1

would represent 1 and a 0 would represent a -1. All arithmetic operations are performed using

these one bit data types. They also determine the storage requirements of input maps and weights

in memory.We now contrast these layers with the full precision network and see how we get these

savings.

Figure 15: Comparison of CNN and Binary Networks adapted from [1].

 23

3.5.1 Binary Convolution

We stated before that most of the processing in a deep network is done in the convolutional layers.

A 32 bit multiplier can be implemented in a number of ways depending upon the underlying

hardware. On an FPGA, this operation can be performed using the limited on chip DSPs. They can

also be implemented using LUTs and FFs. We design a multiplier using Vivado HLS tool and see

the resource utilization for fully unrolled multiplication of two 3x3 array of 32 bits in table 2.

Table 2: Binary Convolution Resource Requirement

DSP FF LUT

03 15 80

These are fairly large numbers since they have to model a series of full and half adders.

Convolution whether in a full precision network or a binary network is nothing but a repeated

process of matrix multiplication and summation. If we were to add the addition overhead to the

above figures they would no doubt be even greater.

We now consider the convolution process in a binary network. In this network both the input layer

as well as the feature matrix has a binary data.

We can see that this is nothing but an XNOR followed by a bit counting operation between two

arrays. Bit count is also sometimes referred to as popcount. In this step, we count the number of

ones and subtract the number of zeros from this count. This is further elaborated below:

 24

 3.5.2 Batch Normalization

Batch normalization is used to reduce the training time by faster convergence. As explained in

previous sections, training set is used to update weights by back propagation for neural network

training. However, the choice of initial weights is critical in this process since it determines

convergence time. Batch normalization [14] is a process which eliminates this problem by

statistical mean and variance shift using batch normalization parameters calculated at training time.

The transform equation is given below:

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙 =
𝑖𝑛𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙 − 𝑢

√𝜎2 + 휀
𝛾 + 𝛽

𝑢, 𝜎2 𝑎𝑛𝑑 휀 are the mean, variance and hyper parameter respectively. Mean and variance are

statistical parameters calculated from each batch. A batch is a subset of the given training set after

which the network weights are updated. Hyper Parameter is a constant set to adjust training time.

𝛾 𝑎𝑛𝑑 𝛽 are parameters obtained during the training process. The statistical parameters shown in

equation above are applied to the output data after each batch is processed, hence the name batch

normalization. The training method is given in [14]. Each input feature map has its own

normalization parameters. This expression can be simplified to other forms offline before hardware

inference stage to make processing easier. Batch normalization has found application in reduced

precision networks more than full precision since convergence problem is much more amplified

with reduced precision due to loss of information. This can be seen in the figure 16 from [15]. We

see that for a binarized network (figure 16 right), CNN with batch normalization converges much

faster than CNN without batch normalization with increasing number of epochs. An epoch is one

complete cycle through the entire training data set. We see that even after 200 cycles through the

training data (epochs), network without normalization has a high error. This phenomenon is also

present in a floating point CNN (figure 16 left), however, it is not as pronounced.

Figure 16: Impact of Normalization Layer on Convergence During Training

 25

3.5.3 Binarization Layer

Binarization layer is a simple activation function which reduces the bit width back to single bit

precision at the end of the convolution process. This can be expressed by a simple activation

function such as:

3.5.4 Fully Connected Binary Layer

In binarized networks, fully connected layers are also binarized. Each weight value is one bit which

is multiplied (XNOR-popcount) with a 1 bit input vector. In the fully connected layer, we get

integer values in between the input and output of the layer which needs to be binarized as shown

above. Also due to reasons explained in the batch normalization section, reduced precision FC

layers also need normalization for better performance. We can expand the FC layer to see data

widths as shown in figure 17.

Figure 17: Fully Connected Layer Operation

Now that we have explained all the fundamental concepts necessary for convolutional neural

network implementation, we will describe the training phase and network analysis.

26

CHAPTER 4

NETWORK TRAINING

4.1 CNN Training Setup

The first step for neural network training was to create the appropriate workstation for the task. In

the following sections, we will discuss the hardware platform required, various training libraries

and systems tried out for different types of networks, detailed analysis of network and its impact

on classification of CIFAR-10 dataset and reduced precision training set up used.

4.1.1 PC Based

We started the process by first implementing a small cnn model (LeNet) [17] for MNIST dataset.

This was done using Tensorflow from google. Tensorflow is a very powerful machine learning

library which can be used with a Keras [2] front end for easy implementation of CNN architectures.

The entire setup included: Anaconda [28] was installed which is an excellent tool to handle python

libraries and environments. A separate environment for different types of networks was created

along with required python version. Tensorflow with Keras front end was installed and tested on

MNIST. The network achieves accuracy of over 99% with this small dataset. One thing that

quickly became clear was the exceedingly large amount of time required for training on a CPU

based system. For this reason we moved to a larger GPU based workstation for further testing.

4.1.2 GPU Based Workstation

GEFORCE GTX 1080 GPU from NVIDIA was subsequently used for the remainder of training

sessions. The workstation consisted of Intel Xeon processor with two NVIDIA GPUs. Each GPU

has 8GB of RAM available on board and a large number of processing cores for extremely high

throughput. The workstation had two PCI slots enabling simultaneous use of two GPUs by using

CUDA aware MPI [28]. However, We decided to use the two GPUs independently for training

two separate networks in parallel as a large number of networks had to be trained to study impact

of parameter tweaking. Specifications for the GPUs used have been shown in figure 18.

 27

Figure 18: Specifications of GPU Used for Network Training [29].

4.1.3 Software Setup

As part of the research, we wanted to study the impact of different network parameters on

classification accuracy (this will be explained in more detail in subsequent section). This mean

training a large number of network combination. Different software environments were analyzed

for network training. DIGITS from NVIDIA [4] was finally selected which is an excellent tool for

network training and analysis. It is an open source tool and uses Caffe. It can create training

validation and test sets as per the user need. It also has prebuilt sets for Imagenet, Cifar-10, MNIST

and various others. It also has pre built popular CNN networks such as Lenet and VGG.

It also creates a model file called .prototxt and a .caffemodel file. These files can directly be

ported to Xilinx Vivado tool for full precision CNN mapping which has taken abstraction to a very

high level. Caffe model weights can also be modified to 16 bit precision file [30]. However, they

cannot be modified to 1 or 2 bit for which a separate training scheme was used. In any case, for

network study, this tool proved to be sufficient. The web based GUI environment is shown in

figure 19.

 28

Figure 19: Image Showing Interface of Training Tool

4.2 Architectural Implications on CIFAR-10

As explained in the previous sections, CIFAR-10 is a mid sized data set with 10 classes of real life

subjects like animals, vehicles etc. There are a number of convolutional neural networks proposed

for classification of different types of data sets. The possible combinations of neural network

architectures are infinite and hence present a huge design space challenge. Combined with the

possible options for hardware implementation, this starts to become an even bigger problem. There

have been efforts from both software and hardware end to understand the optimal solution to

proposed design space problems. Roofline model is one such technique used by Zhang et el. [9] to

understand memory vs compute management.

One popular FPGA implementation of CIFAR classification architecture was presented by [1]

which presented a network called Binarized Neural Network. It was a combination of conv-conv-

pool layers repeated three times followed by three FC layers. This is shown in table 3 adopted

from the original work. Input Fmaps defines the number of input layers going in to each layer. For

example, in Conv1, number of input layers is 3 since the it is colored image (r,g,b layers). Output

Fmaps show the number of outputs from each layer. This also means the number of filters in each

layer since number of outputs is equal to the number of filters. In case of Conv1, the architecture

has 128 filters. Output Dim shows the size of the output. In case of Conv1, the output image is

 29

32x32. For a fully connected layer (FC1-3) in table 3, Input Fmaps means the total number of

neurons in the input layer of the FC component. Similarly Output Fmaps would mean number of

neurons in output layer. Output Dim of 1 indicates it has one dimensional output of Output Fmap

number of neurons.

Table 3: Network Architecture Proposed in [1]

As evident from table 3, the combination of convolution, pooling and FC layers could be of any

number. It is difficult to find a systematic approach to the problem of optimal design for dataset

classification in literature. Hence, this work presents a brief study of convolutional neural network

architecture and its implementation on classification performance.

4.3 Problem Statement

We formalize our problem statement in the form of following possible optimization points.

1) Impact of depth of network (number of convolutional layers)

2) Output feature map dimensions

3) Output feature map layers (number of kernels)

4) Filter Size

5) Impact of fully connected layers

6) Pooling layers

7) Other factors.

 30

We shall now see how some of these factors impact classification of CIFAR-10 data set and explain

the reason behind it.

4.3.1 Filter/Kernel Size

We have explained a few CNN architectures in the preceding sections. We see that different kernel

sizes have been used by different architectures to get the maximum classification scores. The exact

impact of varying the filter size on classification was hypothesized but not substantiated before.

We explore the impact of different filter sizes on CIFAR-10 data set.

We take the following possible sizes of filter:

1) 3x3

2) 5x5

3) 7x7

We take the following approach to study impact of filter size on classification.

1) We take the number of outputs (filters) in the layer as 8

2) We fix number of input layers as 3

3) We fix number of convolutional layers as 1

4) We fix number of fully connected layers as 1.

It is also important to mention here that the filter size has a direct impact on the output map size.

We pad the output maps with required number of zeros to make the size of output equal in each

case. This is done to ensure equal size of the fully connected layer later on in the network.

The network architecture is shown in figure 20.

Figure 20: Architecture of Network Under Test

 31

In Digits, we select CIFAR-10 dataset, input our architecture given in figure 20, set the number

of epochs to 50 and run the model for 3x3, 5x5 and 7x7 filter size. Figure 21 shows training

output and table 4 summarizes the data.

Figure 21: CNN Performance with various Filter/Kernel Size

In figure 21, x axis shows the number of epochs. Left y axis shows the loss value which is the sum

of all errors in the training set. Right y axis shows the accuracy of the trained model. Accuracy

shows the performance of the trained model. After 50 epochs, classification accuracy of 5x5 filter

(22.43%) is greater than 3x3 filter (20.83%). Similarly, 7x7 filter performs better than 5x5 filter.

We changed the number of filters to see impact of increasing filter size. We take a note here that

increasing number of outputs will also be explained separately in the next section. Continuing our

discussion on filter size, we see trend in classification accuracy with increasing filter size and

number in figure 22. From figure 21 and 22, we see a rise in classification accuracy with increasing

filter size regardless of the number of filters used.

We also observe a more substantial increase in accuracy for a filter size of 7x7. This would suggest

a choice of a large filter to get better results for CIFAR-10. We hold on to this point until later

sections where we will see the impact on hardware memory and finalize the architecture based on

performance/memory tradeoff.

 32

Figure 22: Comparison of Classification Accuracy with Filter Size and

Number of Outputs

4.3.2 Output Maps

We change the number of output maps or the number of filters in the convolution layer to see the

impact of filter numbers on classification. We tabulate the data in table 4.

Table 4: Network Performance in Relation with Network Configuration

We see from the data in table 4 that there is an increasing trend with increasing number of filters.

This is intuitive considering more data from filters should mean better results. Figure 23 helps us

visually recognize this trend and summarizes both the impact of the filter size (marked in red, blue

and green colors) as well as the impact of increasing filter numbers on the x axis.

We observe another pattern from figure 23. For filter sizes of 3x3 and 5x5, the performance curve

is relatively flat up until the number of output maps cross 100. Even at that point, there is only an

increase of around 3% in the performance of the classifier (table 4 for exact values). This is another

No. of outputs

 33

design consideration which needs to be taken into account while allocating hardware resources to

the architecture since these are much sparser for a platform like FPGA as compared to a GPU.

Figure 23: Increase in Classification Accuracy with Increasing Number of

Output Maps

4.3.3 Fully Connected Layers

We studied the effects of increasing the number of fully connected layers in our network. For this

study we again fix the number of convolution layers as well as the filter size, changing only the

number of FC layers. In this, the first FC layer generates 1024 outputs. The second layer then

generates 10 outputs for 10 classes. The filter size is fixed as 3x3 and the number of convolution

layers are fixed as one.

We verify the results by changing the number of outputs from the convolution layers and see if the

trends hold across varying number of input neurons of the fully connected layers (they depend on

the output pixels of the convolution layer). The architecture format is shown in figure 24.

Figure 24: Architecture of Network Under Test with 2 FC layers

We run training on DIGITS again. The training results are shown in figure 25 and discussed

below.

Fi
lt

er
 S

iz
e

No. of outputs

3x3

5x5

7x7

 34

Figure 25: Network Performance with Increasing Number of FC Layers for Various Filter

Size

0

1

0

 2

0

 3

0

4
0

 5
0

 6
0

7
0

0

0

.5

 1

.0

 1

.5

2
.0

 2
.5

 3
.0

3
.5

0

1
0

 2

0

 3
0

4
0

 5

0

 6
0

 7

0

 8
0

0

0
.5

 1

.0

 1
.5

2
.0

 2

.5

 3
.0

 3

.5

 4
.0

0

1

0

 2

0

 3

0

4
0

 5
0

 6
0

7
0

0

0
.5

 1

.0

 1
.5

2
.0

 2

.5

 3
.0

 3

.5

 4
.0

Epoch

20.836

41.696

21.137

42.415

21.970

44.4452999

Epoch

Epoch Epoch

Epoch Epoch

Lo
ss

Lo

ss

Lo
ss

A
cc

u
ra

cy
 %

A

cc
u

ra
cy

 %

A
cc

u
ra

cy
 %

(a)

(b)

(c)

 35

In graphs of figure 25, x axis shows the number of epochs. Left y axis shows the loss value which

is the sum of all errors in the training set. Right y axis shows the accuracy of the trained model.

Accuracy shows the performance of the trained model and we look at this in detail.

In figure 25 (a), filter size is fixed at 3x3 and number of outputs from convolution layer are 8. Left

graph has a single FC layer while graph on right has two FC layers. We can see that the

performance of model with 2 FC layers (41.69%) is better than model with single FC layer

(20.83%).

In figure 25 (b), filter size is fixed at 3x3 and number of outputs from convolution layer are 16.

Left graph has a single FC layer while graph on right has two FC layers. Again, performance of

model with 2 FC layers (42.41%) is better than model with single FC layer (21.13%) for this case

as well. We see a similar trend for figure 25 (c) as well which has 32 outputs from its convolution

layer.

 We see that performance of network with 2 FC layers is consistently better than model with a

single FC layer. If we observe the three models with a single FC layer, we see that their

performance increase is nominal with increasing number of outputs (20.83-21.97%). Similarly for

models with 2 FC layers, increasing number of outputs has a nominal impact when compared with

increasing number of FC layers. These findings are consistent with our results in the previous

section regarding impact of increasing outputs on classification.

4.3.4 Convolution Layers

We move towards the impact of increasing convolution layers. Instead of simply increasing the

number of convolution layers, which should intuitively improve performance, we wanted to study

the impact of the convolution layers in a bit more detail.

For this test, we varied the number of filters in layer 1 from 8 to 32. Filter size was fixed at 3x3.

We fix the number of fully connected layers to 1. Number of filters in conv layer 2 were changed

from 16 to 64. We start off with a single pooling layer after conv layer 1. We visualize the

architecture in figure 26 and tabulate results in table 5.

Figure 26: Architecture of Network Under Test with 2 Conv Layers

 36

Table 5: Network Performance in Relation with Increasing Neurons in FC Input

layer 1 outputs layer 2 outputs Neurons in FC %accuracy

8 16 4096 50.5

8 32 8192 34.27

8 64 16384 33.83

16 16 4096 50.86

16 32 8192 26.46

16 64 16384 31.96

32 16 4096 51.1

32 32 8192 28.18

32 64 16384 31.82

We fix the number of outputs from convolution layer 1 to 8. We vary the number of outputs from

convolution layer 2 (16-64). We train the models and look at their performance accuracy. From

first three rows of table 5, we see that accuracy decreases on increasing the number of outputs

from conv layer 2.

Similarly for 16 outputs from conv layer 1, we see that on increasing the number of outputs from

conv layer 2 (16-64), we get a lower performance. This trend is consistant for 32 outputs from

conv layer 1 as well. We see in table 5 that even though increasing the convolution layer improves

accuracy, increasing number of outputs from convolution layer 2 which feeds into the fully

connected layer does not have a positive impact on the accuracy. One possible explanation for this

could be data over fitting which results from too much data going into the single convolution layer

If we compare our results in table 5 with those in figure 25, we see that increasing the number of

convolution layers has indeed had a positive impact on clasification accuracy. For model with 2

conv layers, worst case classification accuracy with 8 layer 1 outputs was 33.83%. for model with

a single conv layer (fig 25), this accuracy was 20.83%. We observe this trend for 16 and 32 outputs

from conv layer 1 and see that worst case for model with 2 conv layers is always better than model

with a single conv layer. We visualize this in figure 27.

 37

Figure 27: Comparison of Performance with Increasing Number of Convolution

Layers

We visualize the impact of increasing number of outputs from conv layer 2 on the classification

accuracy. In figure 28, x axis shows an increase in number of outputs from conv layer 2. Blue, red

and green lines show conv layer 1 outputs of 8, 16 and 32 respectively.

Figure 28: Performance Analysis with Increasing Outputs from Conv Layer 2

From figure 28, we see that for lower values of outputs from layer one and layer 2, we get the

highest classification accuracy. Increasing layer 2 outputs has almost the same impact for all values

of layer one outputs. We can see here that layer 2 is the dominant factor. This would again

substantiate the claim that high number of layer 2 outputs which result in high number of neurons

in the single fully connected layer has a negative impact on the classification.

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

% Accuracy with 1 FC Layer

1 conv 2 conv best 2 conv worst

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

% Accuracy with increasing Layer 2 Numbers

layer1-8 layer1-16 layer1-32

No. of filters in convolution layer one

A
cc

u
ra

cy

No. of filters in convolution layer two

A
cc

u
ra

cy

 38

In the above experiments, we had a single pooling layer. We now add another pooling layer after

convolution layer 2 and see if reducing data going into the fully connected layer has any impact

on the results. We can visualize the architecture from figure 29.

We see the performance of the architecture in figure 30. We plot 3 curves for 8,16 and 32 outputs

from convolution layer1. Y axis shows classification accuracy and we increase outputs from

convolution layer2 along X axis. We get the best performance now at higher filter numbers in

convolution layer 1 (16) and convolution layer 2 (32). Pooling layer after conv layer 2 reduces

data going into the fully connected layer making performance better. Comparing curves in figure

30 with those in figure 28, we see that there is a performance improvement on adding a pooling

layer. For Conv1 with 8 outputs, we have an improvement of over 10% for best case of both

architectures. Similarly for Conv1 with 16 and 32 outputs we have an improvement of 12% and

1.5% respectively. On increasing the filter numbers in Conv2 beyond 32, we see a drop in

classification accuracy which could again be explained by the large number of inputs going into

the single fully connected layer. Over fitting of model due to large number of neurons at input of

fully connected layer could explain why we get performance degradation on having too many

filters or absense of pooling layer. Over fitting is usually taken care of at training level by using a

drop out function. What this function does is that it ignores or considers each neuron of the fully

connected layer by a probability P at both the forward pass and the backward pass. During test

phase, we reduce the neurons by a factor p to account for the missing activations during training.

Since we intend to implement the architecture on a fixed hardware, we had not incorporated the

drop out part. Hence we could explain the impact on performance to too much data going in to the

network which is not being dropped.

We run one more test to observe number of neurons in input of FC layer and its impact on

classification accuracy. We vary input neurons in the fully connected layer by using pooling layer

after conv 2 layer. We plot three graphs for 8,16 and 32 outputs from convolution layer 1 shown

in figure 31. Y axis in all three graphs show the classification accuracy and the number of outputs

from convolution layer 2 are increasing along the x axis.

Figure 29: Architecture of Network Under Test with

 39

Figure 30: Performance Analysis with Increasing no. of Filters in Layer 2 and Layer 1

We take a closer look at figure 31(a). Number of outputs from convolution layer1 are 8 and outputs

from convolution layer 2 are varied from 16 to 64. With 16 outputs from Conv2, we get 4096 and

1024 pixels from output of model without and with pooling respectively. Observing the plots

(yellow line for pooling and grey for model without pooling), we get similar classification

performance at this point (~45%). On further increasing the number of outputs to 32, we get 2048

pixels for pooling and 8192 for model without pooling. At this point, we observe that the model

with pooling outperforms model without pooling (~22% difference in performance). Moving

further in the graph, we increase the number of outputs from Conv2 to 64. We get 4096 neurons

for pooling and 16384 neurons without pooling. We again observe that the yellow curve is higher

than the grey curve by a small margin. However, we can see that the yellow curve (pooling layer

model) has taken a dip while the grey curve remains constant.

Taking our experiment further, we change the number of outputs from convolution layer 1 to 16

and 32 in figure 31 (b) and figure 31 (c) respectively. We observe curves for models with and

without pooling with increasing number of outputs and neurons. We see a very similar trend in

both these graphs as well. Pooling layer has higher curves for all these cases. We also observe the

reduction in performance post 2048 neurons.

From our discussions regarding results obtained in figure 30 and figure 31, we have observed

performance increase due to reduction in input neurons in the fully connected layer by using

pooling layers in the architecture. Hence, we should incorporate pooling layers to compensate for

our lack of drop out in training and avoid over fitting in the model.

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140

A
cc

u
ra

cy

No of Filters in Layer 2

% Accuracy with Layer 2 Numbers

layer1-8

layer1-16

layer1-32

 40

Figure 31: Performance impact of increasing data generated by convolution layers

4.3.5 Concluding Remarks

We form a general idea of the nature of the CNN architecture for CIFAR-10 classification. We

conclude that any architecture designed should be deep with multiple convolution layers for better

results. The depth of the network is another design decision based on the hardware resources

available. We can also state that 2 fully connected layers outperform a single layer. Another

positive outcome of having more layers is that we can gradually reduce the number of neurons

between layers instead of directly converting to 10 neurons at output which can cause significant

performance issue as seen in the previous section on neurons and its impact on classification.

We can also state that strategic placement of pooling layer periodically in the network help to

reduce redundant data and over fitting and hence we will be doing that. It also explains the presence

of pooling layers in so many high performing architectures which have recently come up by

various research groups.

We have seen that larger filter size has better classification. However, this improvement is not

substantial considering the cost (147 weights for 7x7x3 filter compared to 27 weights for 3x3x3

filter). Hence we are inclined to use a smaller filter size in favor of memory conservation.

(a) (b)

(c)

 41

4.4 Binary weighted CNN

In the previous section, we discussed some of the design parameters required for an efficient

convolutional neural network design and how each of these impact the performance of the network.

We got a good sense of which parameters were important and are now in a more informed position

to make tradeoffs between resource allocation and performance for each layer.

We make the following decisions for our deep network for CIFAR-10 classification.

4.4.1 Convolution Layers

We want to make our network deep. As shown in the previous section, increase in convolution

layers has a marked impact on the performance of a network. We also do a quick memory

consumption analysis. For each convolution layer with 50 inputs and 50 outputs, we have 50 filters

of size ‘a’ x ‘a’ x 50 where a is length of one dimension of filter. For instance if we select filter

size as 3x3, we get memory consumption for one convolution layer in table 6.

Table 6: Resource Requirement of 3x3 Binary Filters

Filters Dimensions Depth Weights Memory

(1–bit)

1 3x3 50 3x3x50 450 bits

50 3x3 50 3x3x50x50 22.5Kb

128 3x3 128 3x3x128x128 147.5Kb

256 3x3 256 3x3x256x256 590Kb

We had already shown in previous sections that most of the memory elements are concentrated in

the fully connected layers and not in the convolution layers. Looking at table 6, we observe that

memory consumption in convolution layers is limited to a few hundred Kb even for very large

number of filters. Looking at resource requirements of convolution layers, we decide to limit the

number of convolution layers to 6 at this point. This is a judgement based on the hardware

resources available for implementation. This would be further clarified in subsequent sections.

 42

4.4.2 Convolution Layer Outputs

We look at table 6 again. We see an increase of our 300% in memory consumption when number

of outputs are increased from 128 to 256. We also get a similar ratio of increase in number of

computations as well. Hence, we limit our outputs to 128. This was done since increasing number

of outputs per layer did not show a marked increase in performance. Again this was a design

decision based on analysing the tradeoff between resource utilization and increase in classification

performance. We decide to have 6 convolution layers with the following outputs.

1) Conv Layer 1: 64 outputs

2) Conv Layer 2: 64 outputs

3) Conv Layer 3: 128 outputs

4) Conv Layer 4: 128 outputs

5) Conv Layer 5: 128 outputs

6) Conv Layer 6: 128 outputs

 4.4.3 Filter Size

We had shown that increasing the filter size had an increase on the classification performance of

the network. Let us look at the impact of increasing filter size on memory consumption as well as

the number of operations in the convolution layer in table 7.

Table 7: Comparison of Resource Requirement in with Filter Size

Filter Dimensions Memory Operations

1 3x3 9 bits 9 XNOR/count

2 5x5 25 bits 25

XNOR/count

3 7x7 49 bits 49

XNOR/count

There is more than 500% increase in going from a 3x3 filter to a 7x7 filter. We had seen that the

increase in classification accuracy by increasing the filter size is dwarfed by the increase in

performance by adding more layers. For example, with a filter size of 3x3, we get a classification

performance of 20.8%. On increasing the number of FC layers, we get an increase of over 20%

while increasing convolution layers to 2 given an improvement of around 30% as can be seen from

figure 25 and figure 27. Compare this to increasing the filter size to 7x7 which gives a performance

improvement of around 3% as shown in figure 21. Since filter size greatly adds to the number of

 43

operations in the convolution layers, we would like to limit it to a smaller size and compensate it

through greater number of convolution layers. Hence we make another design decision and pick

the filter size as 3x3 in our design.

4.4.4 Pooling Layers

We had seen the negative impact of having too many input neurons at the fully connected layers.

Hence we intend to limit the number of neurons going into the first layer. A good way of doing

this without losing out on the effectiveness of the convolution layers is to use the pooling layers.

Hence we add pooling layers in our design. We saw a degradation in performance on increasing

neurons more than 2048 in the previous section and want to limit to 2048 the input neurons in the

FC layer based on the experience from the previous training exercise. For us to achieve this number

with 128 outputs from the last convolution layer, we calculate the required number of pooling

layers. For 128 outputs coming out of the last convolution layer and going into the fully connected

layer, we need to have ‘2048/128’ outputs in each output. This number comes out to be 16. Hence

the outputs from last conv layer need to be size 4x4x128 which generate 2048 neurons on the FC

layer input. This has also been summarized in table 8.

Table 8: Relation of Input Neurons with Filter Dimensions

Input

image size

Neurons

in FC1

Output

Maps in

C6

Output Map

Pixels

Output

Map Size

32x32 2048 128 2048/128=16 4x4

Since we are considering CIFAR-10 data set which has images of size 32x32, we need to reduce

the size to 4x4 before going into the FC portion of the network.With a pooling layer of size 2x2

and step size 2, we reduce the the size of image by half after each pooling layer. Hence we have a

logarithmic relationship here. To reduce the input from 32 to 4 we have a reduction by a factor of

8. Hence we need 𝑙𝑜𝑔2(8) = 3 pooling layers in our design. We decide to place these layers after

every 2 convolution layers. This is because we want to extract the maximum information from a

given map size before dropping pixels and discarding information.

4.4.5 Fully Connected Layers

So far in the design, we have managed to save resources by using filters of smaller size in the

convolution layers. Using regular pooling operation in the design also reduces memory

consumption in each subsequent layer. We use these savings in memory to add more fully

 44

connected layers in the architecture. Figure 25 showed a drastic increase in classification

performance on adding fully connected layers to the network architecture. Also since they do not

have a lot of overhead on the number of operations as shown in figure 14, while mostly impacting

the memory consumption, we add 3 fully connected layers in the design. We look at the memory

consumption in these layers in table 9.

Table 9: Fully Connected Layer Dimensions

Layer Inputs (a) Outputs (b) Weights

(axb)

FC1 2048 1024 2097 Kb

FC2 1024 1024 1048 Kb

FC3 1024 10 10 Kb

4.4.6 Final Configuration

We have the following final configuration of our network.

1) Conv-1

2) Conv-2

3) Pool-1

4) Conv-3

5) Conv-4

6) Pool-2

7) Conv-5

8) Conv-6

9) Pool-3

10) FC-1

11) FC-2

12) FC-3

13) Softmax

Final configuration has been illustrated in figure 32. We have input of size 32x32x3. Conv1 has

64 filters and produces 64 outputs of size 32x32x64. This goes into Conv2 which also has 64

filters and produces outputs of size 32x32x64. Pool1 reduces the outputs to 16x16x64. Conv3

and Conv4 each have 128 filters. Output from Conv4 has dimensions 16x16x128. Pool2 again

reduces the size to 8x8x128. Conv5 and Conv6 also have 128 filters each and produce output of

8x8x128. Pool3 reduces size to 4x4x128. FC layer1 has 2048 neurons at input and produces

 45

1024 outputs. FC layer 2 has 1024 inputs and 1024 outputs. Final FC layer takes 1024 inputs and

gives 10 outputs for one class each. Probabilities for each class are then calculated in Softmax.

Figure 32: Final Network Architecture to be implemented.

 46

4.5 Binary CNN Training

While training the full precision network, we used DIGITS from NVIDIA. It is an excellent tool

which provided us with easy network configurations, training set preparation, real time

performance monitoring and even a configuration file to be imported on to the FPGA. However,

it does not provide us with any method to configure bit width in the system, neither are the training

weights reduce-able to a single bit width without significant loss in precision.

One of the most widely used algorithms used for single bit weight training has been proposed by

Courbariaux et al. [5, 6]. The algorithm restricts the training weights to either -1 or 1. These can

be reformatted to represent +1 by 1 and -1 by a zero.

The algorithm is available online and is available for public use [6] and we shall briefly explain it.

4.6 Binary Training Algorithm

We look at the binarization function as detailed in [6] to get the binary valued weights.

4.6.1 Deterministic vs Stochastic Binarization

Traditional backpropagation algorithm gives real valued weights for the trained network. These

need to be converted during training phase to binary values. We can do this in two different ways.

The first is to have a deterministic function given by equation:

𝑥𝑏 = 𝑆𝑖𝑔𝑛(𝑥) = {
+1 𝑖𝑓 𝑥 ≥ 0,

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑥𝑏is a binary valued variable and x has a real value. This function looks at the sign of the

input and makes it either +1 or -1 based on the sign. The second way to binarize a value is stochastic

which is given by equation:

𝑥𝑏 = {
+1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝 = 𝜎(𝑥),

−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝

Where 𝜎 represents a hard sigmoid function which is given as:

𝜎(𝑥) = max(0, min(1,
𝑥 + 1

2
))

Stochastic algorithm requires generation of random values which is harder to achieve and hence

the algorithm given in [6] use a deterministic method.

 47

4.6.2 Gradient Computation

During the training process, real valued weight updates are stored and kept track of before

applying the deterministic binarization function. During forward pass of training, error value is

calculated for each training input and is accumulated. This is the gradient which is used to update

the weight values in the backward pass. These error values are not binarized but are stored as real

valued number with sufficient precision. Once the weight has been updated using the gradient,

the weight values are binarized using the deterministic binarization function.

4.6.3 Algorithm Forward Pass

The algorithm uses mini batch of training data. A mini batch is the set of training data fed to the

network after which the weight update is applied. It goes through the following steps:

1) Initialize network weights 𝑊𝑘 where k ranges from 0 to number of weights.

2) Convert weights to binary 𝑊𝑘
𝑏 ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒 (𝑊𝑘)

3) For each input , accumulate updates by multiplying 𝑎𝑘
𝑏which is the binarized difference

of training data input and output. Update is calculated as 𝛿𝑘+1 ← 𝑎𝑘
𝑏𝑊𝑘

𝑏

4) Apply batch normalization to real valued update.

4.6.4 Algorithm Backward Pass

Once weight updates are calculated in the forward pass, update is applied during the backward

phase of the algorithm. It performs the following steps:

1) Calculate update to apply 𝑢𝑝𝑑𝑎𝑡𝑒 = 𝛿𝑘 𝑊𝑘
𝑏

2) Apply update to network weight 𝑊𝑘+1 ← 𝑢𝑝𝑑𝑎𝑡𝑒 𝑥 𝑊𝑘
𝑏

3) Apply batch normalization

4) Binarize weight 𝑊𝑘+1
𝑏 ← 𝑊𝑘

4.6.5 Results

In [6], the algorithm was used to train binarized neural network for CIFAR-10 dataset. The

network achieved an error rate of 11.4%.

4.7 Binary CNN Training Setup

The publically available library was downloaded and set up on the GPU work station. Anaconda

environment was setup with the downloaded library to run the training algorithm. The library

uses older versions of python libraries and needs the appropriate versions of the libraries to work.

 48

Use of Anaconda makes the management of libraries easy to handle. The required list of python

libraries needed to run the algorithm are shown in table 10.

Table 10: Python libraries required to train binarized convolutional neural network

Library Version

Lasagne 0.2.dev1

Libgpuarray 0.7.5

Mako 1.0.7

Mkl 2018.0.0

Nose 1.3.7

Numpy 1.13.1

pygpu 0.7.3

Pylearn2 0.1.dev0

Theano 0.8.0

Six 1.10.0

With the required envirnoment set up, network shown in figure 32 was implemented in Theano

framework. The network was trained for 400 epochs on the GPU which took around 2 days of

training time. The results are given in table 11.

Table 11: Classification error rates for trained network

Error Type Error%

Validation Error

Rate

14.66%

Test Error Rate 14.9%

Validation error is the error calculated from validation set which is a subset of the entire CIFAR-

10 dataset. Test error is the primary measure of performance and is calculated from test set which

is also a subset of the entire data set. 10000 images were used for training and test subsets each.

 49

The classification accuracy achieved for this network is around 3% less than the best performance

achieved in the original work [6].

50

CHAPTER 5

IMPLEMENTATION HARDWARE AND SOFTWARE OVERVIEW

5.1 Introduction

We will now begin to discuss the hardware platform for the implementation of the binarized

convolutional neural network. We will look at the current trends in FPGA capabilities. We will

also address FPGAs being used by other researchers in similar domain. We will discuss the

viability of FPGAs for the implementation of reduced precision networks and its advantage over

using a GPU. We will also briefly discuss the Zynq SOC architecture [31] which is used in this

work for the implementation of the network.

5.2 FPGA Capabilities

FPGAs have recently seen a remarkable increase in on chip resources and processing capabilities.

This has also driven renewed interest in implementing highly parallel architectures on FPGAs and

utilize their inherent parallel processing power and reconfigurability. This had limited scope before

due to limited memory resource available.

Table 12 summarizes the performance of some of the latest FPGA devices.

Table 12: Resource specifications of latest FPGAs.

FPGA Device CLBs DSPs Total Memory

Arria10 1150k 3046 53 Mb

Virtex 7 693k 3600 53 Mb

Stratix V 622k 256 50 Mb

Stratix V2 695k 3,926 50 Mb

We can see from table 12 the substantial on chip memory available on the FPGA fabric. This is

usually in addition to the off-chip memory which can range to several Gigabytes connected to

these chips. On chip memory is however a more critical factor since it is less affected by other

factors such as memory bandwidth available on the bus which can potentially nullify the gains of

parallel computing through FPGA.

 51

5.3 FPGA vs GPU

GPUs have a very high processing power, as high as 11 TFLOPs/sec (floating point operations per

second) [32], making them highly suitable for networks such as CNN. However, their architecture

is highly optimized for floating point arithmetic which they can perform very efficiently. When

we speak of low precision networks, GPUs have no way of dealing with them other than to treat

them as a full precision number. Recently, a tool called Ristretto [26] has been introduced which

reduces data width to 16 bit from 32 bits for networks trained on Caffe using GPUs and hence

have some potential do utilize low data width. This however, still pales in comparison to a flexible

architecture like an FPGA. FPGAs are highly customizable. They can be configured for any user

defined data width ranging from a low end of 1 bit to the high end of up to 1024 bits in some of

the larger boards.

Table 13 shows some of the implementations of CNN which have made use of the FPGA

customizability and their performance. The table shows the CNN architecture modeled in each of

the research works. It also states the dataset used for performance analysis. Implementation

platform and maximum performance (GOPS) achieved by each architecture is also given along

with operating frequency, power consumption and data width used. From table 13, we see network

data width ranging from 32 bits to 2 bits. 2 bit network [33] have shown promising results on even

very large datasets such as ImageNet.

Table 13: FPGA Implementations of CNN

Paper Architecture Dataset FPGA GOPS Frequency

(MHz)

Power

(W)

Precision

[34] VGG16 ImageNet Arria10 645.25 150 N/A 8/16 bit

[9] Alexnet ImageNet Virtex 7 61.62 100 N/A 32 bit

[24] VGG 16 ImageNet Zynq 187.8 150 9.63 16 bit

[35] Alexnet and

Lenet

ImageNet Virtex 7 222.1 100 24.8 8 bit

[36]

VGG16 ImageNet VC707

&

ZC706

316 On

Zynq

170 16 bit

 52

1250 on

V7

[1] Alexnet ImageNet VC709 565.94 156 30.2 16 bit

[33] DoReforNet ImageNet Zynq 410.22 200 2.26 2 bit

[37] Alexnet&

NIN

ImageNet Stratix

V

114.5

Alexnet

117.4

NIN

100 8/16 bit

[35] Alexnet MNIST

CIFAR-

10

Stratix v 5905.40

MNIST

9396.41

CIFAR10

150 26.2 8 bit

Another major advantage of using FPGAs in place of GPUs is the power consumption. When we

speak of embedded devices, we quickly realize the non-viability of GPUs due to their high-power

consumption which is orders of magnitude more than even the biggest FPGA boards.

Hence, for these reasons, FPGAs present an ideal platform for implementing these algorithms.

For all the above stated reasons, we selected ZCU-102 board [31] from Xilinx which incorporates

Zynq architecture [7].

5.4 Zynq-7000 Architecture

ZCU-102 development board from Xilinx incorporates Zynq-7000 system on chip (SOC)

architecture. Zynq SOC has an on-board ARM cortex A-9 processor connected with the FPGA

programmable logic via AXI bus interface [7]. The on-board ARM core can reach clock speeds of

up to 1 GHz. It has over 3 Gigabits of off chip DDR memory which can be accessed by the

programmable logic through one of five high performance AXI ports on the ARM core. The board

has over 32Mbits of on chip BRAM which can be used for high speed memory access without

going off chip for DDR memory access. The board has over 275k LUTs for combinational logic

implementation. It has more than 500k flip flops and over 2500 DSP slices for floating point

arithmetic implementation.

 53

Figure 33 shows schematic of ZCU-102 board incorporating ARM coprocessor adopted from

original datasheet from Xilinx [7].

Figure 33: ZYNQ SOC Architecture Schematic [7].

The board incorporates a 64-bit quad core ARM Cortex A-53 [38] and a ZU-9EG programmable

logic from Xilinx. The board supports several high speed interface ports such as USB 3.0,

DisplayPort 1.2a as well as PCI ports which can be used to interface the board with an external

display or computing platform as well. Figure 33 also shows Direct Memory Access (DMA) ports

which are used to transfer data to the programmable logic. These are controlled through the ARM

based processing system. It also has an on board graphical processing unit which can be used for

compute intensive operations by the ARM core. It supports several different types of data transfer

modes between the programmable logic and the processing system based on the user need. The

board also supports several other peripheral interfaces such as timers to measure performance,

 54

multiple clock support for different PS and PL operating frequencies, on board switches and

buttons for external data input as well as several LEDs for status indication.

5.5 Software Overview

FPGAs like ASICs have traditionally been designed using Verilog or VHDL in one form or

another. Verilog is a relatively low-level language and requires high level of expertise not just in

programming concepts but also hardware paradigms.

While hardware definition languages such as those mentioned above provide great control to the

designers at the gate level making very compact designs possible, it also introduces great

challenges from troubleshooting and complexity point of view. With increased size and complexity

of the design, troubleshooting becomes more and more complicated. Also, very large designs

require a lot of skill and expertise in terms of area, timing and design analysis. Hence, this design

and programming challenge has been a big hindrance when it comes to widespread adoption of

even a flexible architecture such as an FPGA by programmers especially from a software

background.

Xilinx has recently introduced a high level synthesis tool called Vivado HLS which offers great

benefits in terms of project time and complexity [39]. Vivado HLS enables the designer to code

in high level languages such as C, C++, OpenCL or SystemC. Not only does this drastically reduce

required design time but also makes the design more manageable by utilizing high level data

structures.

The tool generates a synthesizable Verilog code from the high level language code which can be

ported to the Zynq Board. It also provides resource and timing analysis of the design which is very

useful for early diagnosis of the design and can be used to make design improvement if necessary.

However, there are still certain limitations in the system since the underlying processor is still a

hardware platform and needs to be kept in mind while designing on the HLS tool. We discuss

some of the capabilities and limitations of the tool which have to be considered while designing

our CNN architecture.

5.6 VIVADO Components

The Vivado package from Xilinx is composed of the High Level Synthesis tool, Vivado design

integrator, IP configuration tool and a software development kit. These tools work in tandem to

complete all stages of the design flow.

We used C++ to code in the HLS tool. The process starts also includes writing a test bench in C++

which interacts with the HLS code for sending inputs and outputs and is used for testing and

validation of the design. This is a very powerful feature which enables the following features:

 55

1) Test of Software/algorithm

2) Synthesis Check

3) Software/Hardware co-simulation

Co-simulation feature in the HLS tool is used to compare the results of the software code and the

high level code for synthesis and check the validity of the design. The tool runs the software design

and stores outputs against given inputs. It then runs the high level code for hardware and similarly

generates the outputs. It automatically compares the two outputs and gives a pass/fail result for the

design. Hence in this way, we move systematically from checking algorithm towards checking the

hardware design all packaged into a single tool and done using a high level language.

After satisfactory performance of the design is achieved, it is packaged in the form of an IP by the

HLS tool. This IP is then used by the VIVADO block design tool to connect peripheral components

to the main IP. In our design, we need the ARM core working with the FPGA core for data transfer

as well as the implementation of Softmax. This core called the Zynq core can conveniently be

added using the graphical user interface in the block design. We can also utilize programmable

logic based MicroBlaze core which comes with the package. Similarly, instead of making a single

large design, we can divide the CNN design into a number of smaller IP blocks and connect them

together in the block design.

The graphical user interface in the block design even lets us connect memory such as block ram

and DDR and make them shareable between different IP blocks. This will be very useful for our

design which consists of convolution layers connected in series with each other, each sending the

output as an input to the next layer.

To control the overall design, we will make use of the System on Chip (SOC) architecture of the

Zynq board. The software development tool of the tool comes into play here. Vivado tool not only

generates bit stream for the PL but also exports design to the software environment with necessary

handles to send receive data and control the programmable logic.

We can make the ARM core as our main controller monitoring states of each of the IP block and

hence the processes going on in the CNN network. It can be used to send data from one layer to

the next as soon as it is done working on the inputs and hence maximize throughput of our design.

This can be done using the SDK tool which contains the required header files and libraries as part

of the package.

We now discuss a few coding guidelines and compiler strategies which we will be using in

designing our IP blocks for the CNN architecture

 56

5.7 Coding Guidelines

We extract some important coding guidelines and compiler directives which will be useful for us

for efficient implementation of our algorithm. These are all available in the extensive user guide

provided by Xilinx [8].

These guidelines are also important because we are working in a domain which is in between

software and hardware. It is easy to get carried away by the flexibility of a software environment

without considering the underlying hardware that will be running that program. We will discuss

the capabilities of the HLS tool and some important limitation which must not be violated during

the coding process.

5.7.1 HLS Stream

HLS streaming library can be used in C++ coding in Vivado HLS for data transfer to and from the

programmable logic. They can be used within a function or at the function definition to define

method of input and output. Streams are translated on the RTL logic as FIFO blocks for data

synchronization and transfer and can optionally be done using handshake signals based on user

need.

Streaming is done using AXI protocol. It has the following modes:

1) AXI4 Burst Mode

2) AXI4 Lite Mode

3) AXI4 Stream Mode

Burst and lite modes are used to transfer data blocks. Stream is used for continuous transfer of

contiguous blocks of memory. This is interfaced with the high performance port of the Zynq

processor which can then be used to transfer data from DDR to programmable logic.

It can be used in the following way:

1) Include the hls_stream.h header file in the design

2) Declare the hls::stream interface.

3) Use HLS pragma to declare input or output as hls stream (pragmas are discussed below)

HLS streams can be transferred as 32 bit wide or more data packets. This can be even used to send

smaller data width through efficient packing techniques of data into 32 bit wide registers and then

unpacking on PL.

 57

5.7.2 Pragma

Pragmas are a very powerful feature of the Vivado design suite and can be used in a number of

applications. They are used in a wide ranging way from declaring port types to pipelining the

design. We mention some important pragmas below:

5.7.3 Pragma Interface

Pragma interface is used to declare a port as a certain type of interface. This is necessary to inform

the synthesizer as to what type of port to create on the RTL along with associated logic for the

input and output ports.

We get the following syntax from Xilinx online help [40].

#pragma HLS interface <mode> port=<name> bundle=<string> \

register register_mode=<mode> depth=<int> offset=<string> \

clock=<string> name=<string> \

num_read_outstanding=<int> num_write_outstanding=<int> \

max_read_burst_length=<int> max_write_burst_length=<int>

The streaming mode we mentioned before is the “mode” section defined above. The mode can

also be used to declare a “bram’ instead of the streaming interface if we intend to use the on chip

memory. This is important for our design since we intend to use on chip memory for all operations.

Important pragma interfaces are mentioned below:

1) Ap_none

2) Ap_fifo

3) Ap_memory

4) Ap_bram

5) Ap_axis

6) Ap_axilite

 58

Details of all the ports and their usage can be found at [40]. Ap_none pragma implements a simple

data port without any protocol.

Fifo pragma implements an active low fifo with empty and full ports. It is a standard fifo design

with input and output ports. However, bidirectional read and write are not supported.

Memory pragma generates a memory block (RAM). It generates a RAM port on the block design

which can be used to connect with external ram.

Bram pragma implements a similar memory port on the block design. This can be connected to a

BRAM in the block design.

Axi stream and light interfaces are used for data streaming from off chip memory to the

programmable logic.

5.7.4 Pragma Inline

This pragma works in the same was as it works in standard c++. It eliminates a function call to the

called function and instead incorporates it into the calling function. This removes function call

overhead. Similarly, the compiler can be explicitly instructed not to inline a function even if it

seems to optimize the code by the compiler using the Inline Off directive. The syntax of using the

pragma is given below:

#pragma HLS inline <region | recursive | off>

5.7.5 Pragma Pipeline

This pragma pipeline loop instructions and enables concurrent execution of statement reducing

overall latency of the loop. The user can even define the initiation interval (II) between the

pipelined instructions. There could be cases where the compiler fails to pipeline design due to

issues such as dependencies or hardware resource constraints. In this scenario, the compiler takes

the following actions:

1) Gives warning

2) Implements pipelined design with minimum possible initiation interval

The syntax used is given below:

#pragma HLS pipeline II=<int>

 59

5.7.6 Pragma Unroll

Loop unroll pragma creates independent operations from a loop. At RTL level, it creates multiple

copies of the same instructions to increase throughput of the design. By default design, the

compiler generates rolled loops in RTL and the synthesizer generates RTL logic for loop control

with number of iterations. In case of loop unrolling, independent RTL blocks are generated to

execute each iteration. It also allows designer to specify the unrolling factor. For instance, if there

are 10 loops, we can unroll the design by a factor of 2 to execute 5 iterations each. The syntax of

using the pragma is given as:

#pragma HLS unroll factor=<N>

5.7.7 Dynamic Programming

Dynamic programming is one of the most powerful features of C++. It lets program allocate run

time memory on heap and deallocate at the end to maximize resource utilization. However, since

we are dealing with a hardware platform, this is strictly not allowed. Dynamic programming would

effectively mean changing hardware fabric at run time. Hence this is not allowed.

5.7.8 Loop Iterations

Loop iterations in any given loop must be known at compile and synthesize time by the compiler.

The program cannot change the number of iterations the loop will make at run time. This is because

the compiler optimized and allocates resources along with loop control logic at compile time.

5.7.9 Object Oriented Programming

Vivado allows a wide range of OOP concepts to be utilized during programming. These include

functions, classes, structs and even pointers. Care however must be taken as the compiler translates

these blocks on to hardware logic by various means. For instance a lot of these constructs will be

inlined in the function. Hence over usage of data structures on hardware can often lead to more

problems than solutions.

 60

CHAPTER 6

CNN HARDWARE DESIGN

6.1 Problem Formulation

In this work, we focus on the implementation of binarized convolutional neural network building

blocks on Zynq Architecture. It is important to note here that the focus is not just to fit a deep

learning algorithm on chip which can already be done more conveniently using vendor provided

libraries. These libraries provide full precision implementation so far and we will be focusing on

reduced precision binary net and its required building blocks.

We achieve the following goals:

1) Finalize design requirements for a working binarized convolutional network model

2) Model CNN building block algorithms

3) Define HLS design flow

4) Design building blocks

5) Optimize design for speed and power consumption

We also note here that the goal is not merely to design a working model but also understand the

optimizations and their impact on the performance for subsequent research and development in

this field. We will hence be focusing on optimizing our building blocks as a priority.

6.2 Design Algorithm

As shown in the software training section, we have a symmetric architecture for our network which

alleviates many of the design challenges presented by deep networks especially when it comes to

implementation on hardware platforms. Moreover, it provides design flexibility and can include

more number of layers keeping in view the hardware constraints.

Looking at the architecture, we also deduce the following points.

1) First layer is designed to handle input image of size 32x32 with three channels for red, blue

and green. This effectively reduces the requirements of the filter size to depth three for the

first layer.

2) Input data width for first layer is 8 bits to deal with the pixel values ranging from 0-255.

3) Subsequent convolution layers deal with greater number of input feature maps. The data

width however, is restricted to a single bit and we will implement the required

optimizations allowed through the implementation of single bit wide convolution.

 61

4) We have designed a normalization layer which is embedded in each of the convolution

blocks. This layer, as explained in previous section, becomes important in any reduced

precision network to enable faster convergence during the training process.

5) Pooling layers periodically reduce the feature map dimension in the network as we go

deeper. This allow us to limit the growing amount of data as we increase the filter numbers

in subsequent convolution layers.

6) In each of the convolution layers, the filter size is fixed to 3x3 which require a 0 padding

of two for all the layers. Hence we keep the feature map size constant until we want to

reduce it through a pooling layer. This controller reduction in size also makes hardware

design much simpler and easy to manage.

7) Each level of the network has a binarization layer which acts as the activation function and

converts the data back to one bit. Theoretical principles of all these layers have already

been explained in the preceding sections. We visualize design in figure 34.

Figure 34: Network Architecture to be implemented on FPGA.

 62

6.3 Hardware Convolution Techniques

Since convolution occupies most of the processing time in the network, we discuss a few

convolution techniques that have been adopted on hardware which offer a potential solution for

us. These techniques can also be extended to the fully connected layers which can be thought of

as a simpler version of convolution. We adopt the below mentioned techniques throughout our

design based on the layer requirements.

6.3.1 Matrix-Matrix Multiplication

One approach for convolution is to convert it into a matrix-matrix multiplication. This would be

more like an array multiplication from a programming perspective. It’s a relatively simple

approach which requires filter data and image data to be fetched into a single array format and then

multiply and add the data. In terms of a binary weight and image scenario, this seems even more

beneficial since all the operations are XNOR and bit count (section 3.5.1) and not even

multiplications and additions. Hence performing matrix manipulations rather than pure

convolution makes even more sense. One drawback of this approach is that data placement in

memory needs to be in a specified format for efficiently performing the matrix-matrix

multiplication. Also, since we are reading portions of the image and filters at a given time it is

harder to keep track of the convolution process. We explain the process using figure 35 where

matrix A and B are represented in memory as 2 arrays. This array representation is the formatting

that is done as part of data preprocessing or offline processing. To generate O1 of output matrix

O, we XNOR-bitcount the appropriate indices as shown in figure. Similar process is repeated to

generate O2-O9. The output is again represented in memory as an array and is illustrated as a

matrix in figure 35. Tradeoff for this simplicity is the added code complexity for correct index

access of the matrices.

Figure 35: Illustration of matrix multiplication using preformatting and indexing

 63

As mentioned above, the technique requires data preprocessing/formatting in a specific order in

memory. This is also called offline processing since it is done before running the network. Offline

data processing time is not considered during analysis of CNN architecture performance.

6.3.2 Line Buffer and Sliding Window

The most popular approach for full precision convolution on hardware platforms is using a line

buffer and a sliding window to mimic the exact behavior of the convolution process. Many of the

FPGA vendors even provide line buffer and windowing functions as part of their standard library

due to their wide use. Using this approach requires minimal data preprocessing and the 2D image

can be stored as such in memory. Figure 36 shows a schematic of sliding window.

Figure 36: Sliding Window Schematic.

In figure 36, we see 2 line buffers which are a first in first out structure. As a design principle for

correct functionality of the sliding window, (filter Dim – 1) number of line buffers are present in

the design. In case of using a filter of dimension 3x3, we would require 3-1=2 line buffers in the

window. Each line buffer will have a depth equal to the width of the input feature map or image

size minus 1. We also have additional delays represented as 𝑧−1 and can be implemented by a

simple register. These delay lines place the appropriate weight and pixel together for

multiplication. Weights of filter are represented by w1-w9. To better understand the working of

the sliding window, let us take the example of using a 3x3 filter over a 32x32 image. Image pixels

are read in and filled in buffers before start of processing. When pixel 1 reaches w1, we have pixels

2 and 3 at w2 and w3 respectively. Remaining pixels of the row are stored in buffer 1. Pixels 33,

34 and 35 are at weight lines w4, w5 and w6 respectively. Again, the remaining pixels of the row

are store in buffer 2 and pixels 64, 65 and 66 are at weights w7, w8 and w9. When more pixels are

read in, we get a sliding window effect. Hence, such a structure can imitate a sliding window effect

 64

in a convolution process. This is the closest possible approach to an actual theoretical convolution

implementation on hardware.

Another advantage of such an approach is the pipelined nature of the architecture. In hardware

platforms such as FPGAs we try and pipeline our design as much as possible to keep all the

available resources busy. This maximizes throughput even if the latency is large.

The drawback of such an approach is the complexity when we operate on high dimensional input

data. For high dimensions of input feature maps, such as 128 or greater, the design not only

becomes very complex but also utilizes large amounts of resources. Fortunately, for a binarized

convolutional network, the first layer has only three layers i.e. R,G and B and hence seems to be

suitable for such an implementation.

6.4 Scheduled Hardware Pipeline

One of the biggest advantages of using binarized networks, as mentioned before, is the exceedingly

small memory size. This enables all the required weights to be packed on the chip memory in block

RAM. It also has a 1-bit wide output feature map from each convolution layer and hence each

layer output can be stored in block RAM. We can utilize this for our advantage and pipeline the

architecture. We aim to design such an architecture that each layer has its weights store on BRAM

and output stored in another on-chip BRAM. This output RAM is then accessed by the next layer

after the previous layer has completed its operation. Hence, we maximize our throughput by

utilizing the on chip memory and scheduling layer operations by a controller in a pipelined fashion.

This schedule operation is done by a scheduler which continuously monitors the state of each layer

and controls the start point of each layer. The scheduler can be implemented in the form of a state

machine on the programmable logic itself. However, owing to the nature of our hardware platform,

which has a Zynq SOC architecture, we can utilize the on board ARM core or the PL based

Microblaze for this operation. We visualize the pipeline in figure 37.

Figure 37: Overview of Network Architecture with Zynq Core

 65

CHAPTER 7

HARDWARE IMPLEMENTATION

We now begin to explain our implementation of the binary CNN on FPGA. We have already

discussed the nature of our network and the HLS tool required for the implementation. As per the

division in our network, we discuss the layers in order of their presence in the network.

7.1 First Convolutional Layer (C-1)

The first layer we design will be the convolution layer C-1. We have the following requirements

from this layer

1) Input is an image of size 32x32 with three layers for red, green and blue.

2) The input pixel data width is 8 bit to represent values from 0-255 which cover the entire

range of the spectrum.

3) Performs convolution of 1 bit weighted filters.

4) Filter dimensions are 3x3 with depth of 3 for the three layers of the inputs.

5) A total of 64 filter comprise the convolution layer

6) Each filter produces a 32x32x1 output feature map through convolution

7) Total output size from 64 filters is 32x32x64

8) Filter weights are stored in BRAM

9) Input image is stored in DDR off chip.

10) Output feature map has data width of 1 bit wide

11) Output feature map is stored on BRAM

12) The layer generates intermediate real valued outputs

13) The layer has normalization function which is applied to the intermediate outputs from the

layer.

14) The convolution layer has binarization capability which reduces the real valued outputs to

binary weighted outputs

15) The final output feature map is binary weighted

Now that we are aware of the requirements and functionality of the first convolution layer, we can

start designing the layer. We will discuss the approach taken for the design of the layer, coding

style, optimizations applied and the final design selected.

7.2 Single Data Stream

First design created was a single data stream design. We refer to figure 38 and explain the

operation of this architecture. One of the three layers (R, G, B) of the input image is transferred

from DDR to the convolution layer on programmable logic. Filter weight values are fetched from

66

the BRAM one by one and stored in the w0-w9 as were shown in our illustration of the sliding

window (figure 36). Input image layer is streamed in the convolution block and multiplied with

the weight values to get the convolution result. This result is the intermediate output of the layer.

The intermediate output is stored in a block RAM. After this, the second layer of the R, G, B image

is streamed in and the intermediate result is saved in the block RAM. This operation is repeated

for the third layer as well. Once the convolution operation is applied to all three layers of the image,

the result is summed using a scalar addition of the image maps. This gives the total convolution

result. Next step is the pixel by pixel multiplication of the summed output with normalization

parameters in the normalization block. The final step in the process is the binarization of each pixel

using the binarization function detailed previously (section 3.5.3). Final result from the

binarization block is stored in another block RAM which will subsequently be used as an input for

the next layer. We show this architecture in figure 38. Algorithm is summarized in section 7.2.1

Figure 38: Single Data Stream Design

67

7.2.1 Algorithm (single stream)

Function firstlayer (single input stream, final output, stream number, filter weights,

normalization parameters)

 While 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑖) ← 1 𝑡𝑜 3, 𝑑𝑜

 While 𝑝𝑖𝑥𝑒𝑙𝑐𝑜𝑢𝑛𝑡 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠, 𝑑𝑜

 Read in pixel value

 Insert it in Line Buffer

 For 𝑤𝑖𝑑𝑡ℎ ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ, 𝑑𝑜 (slides window)

 Pipeline the design (HLS PRAGMA)

 For ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔𝑡ℎ, 𝑑𝑜 (slides window)

 For 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑑𝑜

 Read Weights from memory

 Push filter weight in window

 If weight==0

 Pixelval=~Pixelval

 Else

 Pixelval=Pixelval

 Sum (Pixelval)

 Push in buffers

 Sum (all windows)

 Push values in temp Bram

 Add Result (i-1) to Result (i)

 Push back in temp Bram

 Normalize temp Bram data

68

 Binarize temp Bram data

 𝐵𝑟𝑎𝑚 (𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑝) ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎

7.2.2 Results

Table 14: Single Stream Resource Requirement

We see the resource utilization of the design in table 14. We look at the block RAM consumption,

flop flops used as well as the look up tables (LUTs). The design consumes 9 out of 1824 BRAM

blocks (this number is for design consumption, filter weights would require extra 1.7Kbits of

BRAM). All the BRAM consumption goes in to memory as indicated in table 14. This memory

stores the intermediate results generated. 4138 out of 548160 FFs are used by the design. Most of

them are used up in registers. 18354 of 274080 LUTs are used. Most of the LUTs are used in

multiplexers which implement the binary multiplication operation in this design. Looking at the

resource constraints of the board and the resource utilization of the layer, we can see that with this

performance we can fit in at least 6 convolution layers on the chip (we are consuming less than

10% of the available resources). We deduce that this design satisfies the resource constraints of

the FPGA board. We also look at the performance of the designed architecture. We run the

performance analysis tool which gives us the total latency of the block as 461000 clock cycles for

a single pass of the design. We recall that our design operates three times on the three input layers

of the image. We calculate that the three passes have at least thrice the time consumption of a

single pass and hence summarize the performance of the design to process the complete image in

table 15.

We now try and improve performance of this layer as we would like to get maximum possible

throughput from our design without increasing the resource consumption.

69

Table 15: Latency for Single Stream Design

Iterations Latency (cycles)

Single Pass 461000

Three Passes ~1.5 million

7.3 Multiple Data Stream

We identify that the single stream overhead can be avoided if we transfer three streams in parallel

through the three high performance ports of the Zynq Core. It is difficult to predict the resource

consumption of such algorithms until we have a baseline and hence keep the earlier design as a

fall back to a simpler algorithm in case this is too resource intensive. The design flow is simpler

in this with the Zynq core transferring the three layers at the same time. We replicate our design

in three copies to manage the three layers at the same time and add the result at the end to get a

final output. We illustrate the architecture in figure 39. This is similar to the previous design.

Except we are now transferring all three layers of the input image to the convolution block

simultaneously. Intermediate outputs are again stored in a block RAM. These outputs are then

summed together, normalized and binarized as was done in the single data stream design. The final

output is stored in a block RAM to act as input to next layer. Design is illustrated in figure 39 and

summarized in section 7.3.1

Figure 39: Multiple Data Stream Design

70

7.3.1 Algorithm (Multiple Stream)

Function firstlayer (stream1, stream2, stream3, final output, filter weights, normalization

parameters)

 While 𝑝𝑖𝑥𝑒𝑙𝑐𝑜𝑢𝑛𝑡 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠, 𝑑𝑜

 Read in pixel value from each stream

 Insert it in Line Buffer

 For 𝑤𝑖𝑑𝑡ℎ ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ, 𝑑𝑜 (slides window)

 For ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔𝑡ℎ, 𝑑𝑜 (slides window)

 Pipeline the design (HLS PRAGMA)

 For 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑑𝑜

 Read Weights from memory

 Push filter weight in window

 If weight==0

 Pixelval=~Pixelval

 Else

 Pixelval=Pixelval

 Sum (Pixelval)

 Push in buffers

 Sum (all windows)

 Push values in temp Bram

 𝑡𝑒𝑚𝑝 𝐵𝑟𝑎𝑚 ← 𝑆𝑢𝑚(𝑡𝑒𝑚𝑝 (1) + 𝑡𝑒𝑚𝑝(2) + 𝑡𝑒𝑚𝑝(3)

 Normalize temp Bram data

 Binarize temp Bram data

 𝐵𝑟𝑎𝑚 (𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑝) ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎

71

7.3.2 Results

We do a design synthesis again and get the results for resource consumption of the design in table

16. We look at the block RAM consumption, flop flops used as well as the look up tables (LUTs).

Table 16: MultiStream Design Resource Utilization

We see in table 16 that the resource consumption has drastically increased. With 18% design

BRAM consumption and adding the filter weight data to it, we will quickly run out of memory

especially when we reach the fully connected layers which have much more memory requirements.

We again see that all the BRAM consumption goes into memory generation (331 blocks). We have

a 50% increase in FF consumption but it is still only 1% of the available FF resources. The LUT

consumption has exceeded much more sharply, consuming 34% of the available chip resources to

model different expressions and multiplexers for binary multiplication operations. We cannot fit

the required number of convolutional layers at this rate of resource consumption. Hence we can

see that if we reduce latency, we cannot get the appropriate size of our design. We rethink our

approach to the problem and reduce resource consumption without impacting latency.

7.4 Design Optimization

We can see that we are facing three problems with our design so far. These are memory

consumption, LUT consumption and high latency. We will perform two optimizations to address

these issues and see the performance of our design.

7.4.1 Temporary Memory Removal

It can be identified through looking at the flow diagram of the previous design that a temporary

block RAM has been added in the design. It can be observed that if we directly add the results

from the three streams, there would be no need for the extra BRAM. This would require some

extra on chip LUT consumption which we will try to compensate in the next section.

72

7.4.2 LUT Consumption

In the previous designs, in order to get minimum latency from our design, the design was pipelined

and unrolled for performance. While a parallel design performed better than a single stream design,

it increased the LUT consumption to intolerable levels. Hence we need to reroll the design and

sacrifice on performance to save on the valuable on chip resources. Hence we reduce the unrolling

factor in our design and sacrifice the performance. We will see in the next section, the optimization

we perform to recover on this performance loss.

7.4.3 Filter Weight Packing

So far we have been reading in filter weights from the BRAM one at a time. With even the

implementation of a dual port BRAM, we can only reduce the memory access over head so much.

Each time we read a memory location, we add latency to our design. This is because memory

access is slow and is limited by the memory access bandwidth. This might be less for on chip

BRAM then external DDR access, but it is still there. However, we realize that the filter weights

are only 1 bit wide and not 32 bit like a full precision network. With Zynq architecture, we can

access 1-1024 bits at a time. Hence we formulate the following scheme.

1) We pack filter weights together.

2) Each filter has 3x3x3=27 weights for the three input layers

3) We have a total of 64 filters.

Hence we can pack the 27 weights of each filter into a single 32 bit location of the Bram. We will

waste 15% of the memory for ease of design and pack the remaining 5 bits of the 32 bit integer

with zeros. Instead of doing 27x the number of filters, we only access the memory “no. of filter”

times and hence drastically reduce memory read overhead. In the convolution block, we unpack

the read filter data, separate and store it into internal LUTs. This does not have a substantial

resource overhead since storing 27 bits of data at a given time is a minor cost compared to the

gains we can potentially get. One drawback of this approach is the memory packing overhead.

However, this can be done offline before the operation of the layer and hence does not add to the

processing time of the design. We now formulate the new algorithm for this approach. We

summarize the optimizations as follows. We have removed the temporary memory to store three

layers of intermediate outputs. Instead, we sum the outputs of the three layers together before

storing. In this way, only a single layer of intermediate outputs needs to be stored. We also reduce

the unroll factor in our design through the use of pragmas. Finally, we make use of efficient filter

weight packing in a single location to reduce memory access by a factor of 32. This has been

summarized in the next section.

73

7.4.4 Algorithm (Optimized Design)

Function firstlayer (stream1, stream2, stream3, final output, filter weights, normalization

parameters)

 Replicate each instruction for three streams

 While 𝑝𝑖𝑥𝑒𝑙𝑐𝑜𝑢𝑛𝑡 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠, 𝑑𝑜

 Read in pixel value from each stream

 Insert it in Line Buffer

 Read Weights from memory (read weights outside the loop

 For 𝑤𝑖𝑑𝑡ℎ ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ, 𝑑𝑜 (slides window)

 For ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔𝑡ℎ, 𝑑𝑜 (slides window)

 For 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑑𝑜

 𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝐿𝑜𝑐𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 [𝑖𝑛𝑑𝑒𝑥]

 Push filter weight in window

 If weight==0

 Pixelval=~Pixelval

 Else

 Pixelval=Pixelval

 Sum (Pixelval)

 Push in buffers

 Sum (all windows)

 𝑡𝑒𝑚𝑝 𝐵𝑟𝑎𝑚 (𝑖𝑛𝑑𝑒𝑥) ← 𝑆𝑢𝑚(𝑤𝑖𝑛𝑑𝑜𝑤𝑠)

 Normalize temp Bram data

 Binarize temp Bram data

 𝐵𝑟𝑎𝑚 (𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑝) ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎

74

7.4.5 Results

We synthesize the new design again and look at the resource consumption in table 17.

Table 17: Optimized Design Resource Utilization

From table 17, we see the resource consumption of the optimized design. BRAM consumption has

decreased from 18% to 3% of available resources. This is sufficient reduction to implement 5 more

convolution layers of similar BRAM consumption. FF consumption has slightly increased but it is

still ~1% of available resources and hence should not be a problem area. LUTs had the highest

consumption level in our un-optimized design. We see a reduction in LUT consumption from 34%

to 6%. At same level of LUT consumption, this should prove to be sufficient to implement 5 more

convolutional layers.

We do a performance analysis and compare it with our previous results.

Design Latency (cycles)

Un-optimized Single Stream 1.5 million

Un-optimized Parallel Stream 460000

Optimized 510000

The design requires 510000 clock cycles to process the input image. We see that we have achieved

performance close to parallel input stream design with resource utilization matching that with a

single stream design.

75

7.5 Binary Convolution Layers (C-2 to C-6)

The next part of the network is the binary convolution layer. After the first convolution layer, our

feature maps have been binarized. Hence we can apply the binary convolution to each of the

subsequent feature maps. We finalize the design requirements of these layers as

1) Input is a feature map. This can be of dimensions 32x32, 16x16 and 8x8. Their numbers

depend on the number of filters in the previous layer and can range from 64 to 128.

2) The input pixel data width is 1 bit to represent values of either 1 with a 1 or -1 with a 0.

3) Performs convolution of 1 bit weighted filters.

4) Filter dimensions are 3x3 with depth of 64 or 128 depending on the number of output

feature maps from previous layer.

5) Each filter produces a 32x32, 16x16 or 8x8 output feature map through convolution and

pooling

6) In case pooling layer is not present, output dimensions are same as input dimensions

7) In case of presence of pooling layer, the map size is halved as explained in the pooling

layer operation theory in previous sections.

8) Filter weights are stored in Bram

9) Input feature map is read from Bram

10) Output feature map has data width of 1 bit wide

11) Output feature map is stored on Bram

12) The layer generates intermediate real valued outputs

13) The layer has normalization function which applies training parameters on the intermediate

outputs from the layer.

14) The convolution layer has binarization capability which reduces the real valued outputs to

binary weighted outputs

15) The final output feature map is binary weighted

We now design the binary convolution layer. We design the first layer and apply optimizations to

it until we can get satisfactory performance from it. After we have finalized the design, we can

change the filter number and sizes and get the rest of the layers.

7.5.1 Unoptimized Algorithm

At the binary convolution layer, we can create a true binary convolutional algorithm. As mentioned

in previous sections, this includes XNOR followed by bit count operation. Also, at this stage, since

the input feature map is now stored on the block RAM, there is no data streaming operation

required from the Zynq core. The flow map in figure 40 shows a basic binary convolution layer.

The pooling layer might or might not be present in all layers depending upon their position in the

network.

76

Figure 40: Unoptimized Binary Convolution Layer

The binary convolution layer reads in filter weights from block RAM and performs the XNOR

operation for each filter at a given position. It stores the intermediate output values in block RAM.

These stored values are the result of XNOR operation between input map and the filter weights.

After this, it sends it to the bit count block which performs the bit counting operation on the values.

This is the final result of the convolution operation. The result is again stored in the block RAM.

This is then sent to normalization layer which multiplies a normalization factor with each of the

pixels and generates a normalized output. If a pooling layer is present in the layer, a pooling

operation is performed to reduce the size of the output maps. Binarization operation is performed

at the end after normalization and pooling steps. Final binarized output is stored in the block RAM

which would act as an input to the next layer. This design is illustrated in figure 40. We formulate

the algorithm in section 7.5.2.

77

7.5.2 Algorithm (Un-Optimized Design)

Function binarylayer (inputfeaturemap, final output, filter weights, normalization parameters)

 While 𝑝𝑖𝑥𝑒𝑙𝑐𝑜𝑢𝑛𝑡 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠, 𝑑𝑜

 Read in pixel value from Block Ram

 Store value on PL

 For 𝑤𝑖𝑑𝑡ℎ ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ, 𝑑𝑜 (slides window)

 For ℎ𝑒𝑖𝑔ℎ𝑡 ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔𝑡ℎ, 𝑑𝑜 (slides window)

 For 𝑑𝑒𝑝𝑡ℎ ← 1 𝑡𝑜 𝑓𝑖𝑙𝑡𝑒𝑟𝑑𝑒𝑝𝑡ℎ, 𝑑𝑜

 #pipeline loop

 For 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 ← 1 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙𝑓𝑖𝑙𝑡𝑒𝑟𝑠, 𝑑𝑜

 𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝐵𝑙𝑜𝑐𝑘 𝑅𝑎𝑚

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝 ← 𝐵𝑙𝑜𝑐𝑘𝑅𝑎𝑚

 XNOR (weight,featuremap)

 Push value in buffer

 𝑡𝑒𝑚𝑝 𝐵𝑟𝑎𝑚 ← 𝑏𝑖𝑡 𝑐𝑜𝑢𝑛𝑡 (𝑏𝑢𝑓𝑓𝑒𝑟[𝑎𝑙𝑙 𝑓𝑖𝑙𝑡𝑒𝑟𝑠])

 Normalize temp Bram data

 Pool temp Bram

 Binarize temp Bram data

 𝐵𝑟𝑎𝑚 (𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑝) ← 𝐵𝑖𝑛𝑎𝑟𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎

We analyze the performance of the algorithm in the next section

78

7.5.2 Results

Table 18: Unoptimized Design Requirements

Design Latency (cycles)

Binary Conv (XNOR-

Bitcount)

>90 million

From table 18, we see that we have only used 3 blocks of BRAM in the design which is 0.1%

consumption. Similarly, both FF and LUT consumption numbers are very small (less than 0.1%

resource utilization). While the resource utilization is good as was expected from the usage of

binarized weights, the latency has inflated to a very large number of 90 million clock cycles. One

reason for this is the inability to completely pipeline the design since the synthesis tool fails to

generate a pipelined design for the XNOR and bit count operations.

Another reason for this is the repeated use of the bit count operation which can slow down the

entire pipeline quite a bit considering the large number of bits to be counted as well as repeated

use of the block for each pixel and each filter. Hence we will also optimize this. One more problem

area that we can identify here is the large number of weight values. Even though the weights are

only 1 bit wide, we still have to access the memory each time the weight is read on to the

programmable logic for convolution. For very deep filters such as 64 and 128 in the subsequent

layers, the number of weights increases drastically. This problem will be even more amplified

when we move on to the fully connected layers which have substantially higher number of weights

than the convolution layers. We will now see how we optimize the above stated issues in the next

algorithm.

79

7.5.3 Optimized Algorithm

To remedy the above mentioned problems, we apply the following optimizations in our algorithm

1) We reduce the number of memory accesses in a similar way we did in the first convolution

layer. We pack the filter weights in larger data types. These are then read and split up on

chip. This saves memory access time

2) We eliminate the bit count function and instead implement a look up table based approach.

Since one layer of filter has 9 weights, we can implement a look up table of depth 512 and

add all possible results of bit count in the look up table for the 9 bits. Hence we don’t have

to calculate the bit count operation repeatedly

3) An added advantage of the look up table based approach and the elimination of bit count

function is that now we can implement pipeline in the design at a higher level without

consuming too much resources.

We implement the optimizations and look at the results.

7.5.4 Results

Convolution Layer 2

Table 19: Layer 2 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer2 64 32x32 64 16x16 4.6 million

80

Table 19 summarizes convolutional layer 2 which is the first binarized convolutional layer and has

an input dimension of 64 with each input map of size 32x32. The layer applies 64 filters on the

inputs to generate 64 dimensional output. It also applies a pooling layer to reduce the output size

to 16x16. In terms of performance, we see from table 19 that the design is much slower than the

first convolutional layer since it has a much higher number of filters. The convolution block

requires 4.6 million clock cycles to complete the operation. For resource utilization, we have a 4%

utilization in block RAM and a 6% utilization of LUTs. We have so far consumed 12% LUT

resources in the network pipeline.

Convolution Layer 3

Table 20: Layer 3 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer3 64 16x16 128 16x16 2.2 million

Table 20 summarizes convolutional layer 3 which is the next binarized convolutional layer and

has an input dimension of 64 with each input map of size 16x16. The layer applies 128 filters on

the inputs to generate 128 dimensional output. It does not apply pooling and the output size is

maintained at 16x16. In terms of performance, we see from table 20 that the design takes 2.2

million clock cycles to run. This is faster than the previous convolutional layer due to a smaller

input size of 16x16. For resource utilization, we have a 2% utilization in block RAM and a 12%

utilization of LUTs. We have so far consumed 18% LUT resources in the network pipeline.

81

Convolution Layer 4

Table 21: Layer 4 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer4 128 16x16 128 8x8 4.4 million

Table 21 summarizes convolutional layer 4 which has input dimension of 128 with each input map

of size 16x16. The layer applies 128 filters on the inputs to generate 128 dimensional output. It

also applies a pooling layer to reduce the output size to 8x8. In terms of performance, we see from

table 21 that the design takes 4.4 million clock cycles to run. This is slower than the previous layer

due to more filter depth of 128. For resource utilization, we have a 2% utilization in block RAM

and a 12% utilization of LUTs. We have so far consumed 30% LUT resources in the network

pipeline.

Convolution Layer 5

Table 22 summarizes convolutional layer 5 which has input dimension of 128 with each input

map of size 8x8. The layer applies 128 filters on the inputs to generate 128 dimensional output. It

does not apply pooling and the output size is maintained at 8x8. In terms of performance, we see

from table 22 that the design takes 1.1 million clock cycles to run. This is faster than the previous

layer due to smaller input image size of 8x8. For resource utilization, we have a very small block

RAM consumption of 13 blocks and a 12% utilization of LUTs. We have so far consumed 42%

LUT resources in the network pipeline.

82

Table 22: Layer 5 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer5 128 8x8 128 8x8 1.1 million

Convolution Layer 6

Table 23: Layer 6 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer6 128 8x8 128 4x4 1.1 million

Table 23 summarizes convolutional layer 6 which is the last convolutional layer in the pipeline

and has an input dimension of 128 with each input map of size 8x8. The layer applies 128 filters

on the inputs to generate 128 dimensional output. It also applies a pooling layer to reduce the

83

output size to 4x4. In terms of performance, we see from table 23 that the design takes 1.1

million clock cycles to run. For resource utilization, we have a very small block RAM

consumption of 15 blocks and a 12% utilization of LUTs. We have so far consumed 54% LUT

resources in the network pipeline.

After this we design the fully connected layer. The output from convolutional layer 6 is stored in

block RAM and is taken as input to the fully connected layer. Our total resource utilization so far

is 54% LUT consumption. Block RAM and FF consumption is under 10% which leaves space to

add more layers as well.

7.6 Fully Connected Layer

The last layer in the convolutional neural network is the fully connected layer. In our network, we

have three fully connected layers on the programmable logic. We formulate the design

requirements of the fully connected layer.

1) Input is a single dimensional array which represent the values coming into the fc layer.

This input is equal to the number of output pixels from the previous layer.

2) The first layer will have 2048 input pixels coming in. These values are also binary weighted

and hence all fc layers only deal with binary valued inputs.

3) All weight values are binary weighted

4) Number of weight values depend on the number of input and number of outputs

5) If number of inputs are [x,1] and output dimension is [1,y], then the dimension of weight

matrix is [x,y]

6) Weights and inputs are multiplied and accumulated in a similar way as done in the

convolution layer using XNOR and bit count operation

7) The result of this operation is real valued

8) The real valued intermittent values are normalized in the FC layer

9) Normalized values are binarized before sending it to the next FC layer.

10) Values from last layer are not binarized. Softmax function is applied to outputs of the final

layer for conversion to class probability scores

Figure 42 shows operation of FC layer. We use the experience from the previous layers. We use

an LUT based approach for bit count operation. We use weight packing for efficient memory fetch

operations. We unroll the design for performance.

From figure 41, we see a pipelined approach to the design of the fully connected layers as well.

Output from last binary convolution layer is taken as input to the fully connected layers. FC1 takes

input and applies a matrix-matrix multiplication to generate the output. For our design, Conv6

generates an output of 4x4x128. Input of FC1 has 2048 nodes and output side has 1024 nodes. In

a fully connected layer architecture each node of input is connected to each node of output. This

84

means that we will perform a matrix-matrix multiplication of 1 x 2048 matrix with 1024 x 1024

matrix. The matrix with 1 x 2048 size contains the inputs coming from the convolution layer. 1024

x 1024 matrix contains the weights which will be multiplied with the inputs to generate 1 x 1024

outputs. The multiplication operation in this layer is also an XNOR and bit count operation. We

apply a look up table based bit count approach as was done in previous layers. Intermediate values

of outputs are real valued. We multiply each output with normalization parameters. Binarization

function finally converts each output to a binary value.

Figure 41: Fully Connected Layer Architecture

7.6.1 Algorithm

As mentioned in the previous sections, the fully connected layer has the bigger percentage of the

neural network weight values. This can potentially cause performance issues due to limited

bandwidth of memory fetch. Hence we aim to reduce the number of memory accesses to avoid this

bottleneck. To achieve this, we perform the following optimizations

1) Pack single bit weight and input values into a 32 bit data type. This reduces the number of

memory fetch operations.

2) For the matrix-matrix multiplication, we would need to read in the input and the weight

values multiple times to complete the operation. We can avoid this if we read the input

values once, compute the temporary results for each column of the weight matrix and store

in a buffer until all the input values have been fetched. In this way we can greatly reduce

the number of read operations and increase performance. To elaborate this further, we look

at figure 42. Suppose we are multiplying a matrix with dimensions 1x8 with a matrix of

dimensions 8x3. We should get an output of order 1x3. In order to perform the

multiplication, we read in first element of row A and multiply with first element of col B1.

85

Similarly we read in remaining elements of row A and col B1 to calculate the total sum

which would be the first entry of the final output. This process is repeated for all outputs.

Since we are dealing with binary values of inputs and weights, we perform the

optimization. We read in block ‘a’ which are the first 4 entries of row A. We read in first

4 entries of col B1 which are b1, multiply ‘a’ and ‘b1’ and store result. We similarly read

in b2 and b3, multiply with ‘a’ and store intermediate results. Once all calculations using

‘a’ are complete, we fetch in the next block a’ (a prime) and repeat the process with b1’,

b2’ and b3’. This optimized memory fetch approach greatly reduces the number of memory

accesses. Figure 42 illustrates this block based approach.

Figure 42: Illustration of efficient memory fetch scheme in FC layer

Section 7.6.2 presents pseudocode for this algorithm.

7.6.2 Algorithm (FC Layer)

Pseudocode

Depth= (number of inputs/datatype) //this packs bit values into data type

Outfc=number of outputs

for (int fil=0;fil<depth;fil++) //initialize outer loop

{

indata=featuremap[fil]; //read in first 16 bits (we consider data type as short)

for (int outs=0;outs<outfc; outs++) //inner loop

{

filread=weights[fil][outs]; //read in 16 bits of ‘outs’ column

for (int buf=0;buf<16;buf++) //loop for XNOR

{

#pragma HLS unroll //unroll loop

buffer[buf]=(indata[buf]==filread[buf]); //perform xnor

}

86

sum[outs]+=lut[buffer]; //read in xnor bit count result from LUT and store

result in temporary buffer for ‘outs’ column

}

}

We use this to synthesize the last three layers of our network which are the fully connected layers and

analyze performance and resource consumption

7.6.3 Results

Fully Connected Layer 1

Table 24: FC1 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer 1 2048 2048x1 1024 1024x1 395651

Fully connected layer FC1 has input dimension of 1 x 2048 and an output dimension of 1 x 1024.

This implies that it stores 2048 x 1024 weight values for the matrix multiplication. In terms of

performance, we see from table 24 that the design takes 395651clock cycles to run. We had

already discussed how most of the computations of the architecture are pooled in the Conv

layers. We see from the analysis in table 24 that FC1 has lowest latency so far due to the reduced

computation load. For resource utilization, we have a very small block RAM consumption of 33

blocks and a negligible utilization of LUTs and FFs. However, the RAM consumption is for the

layer design and it does not take into consideration the network weights which are of the order

87

2048 x 1024. Hence the network has a large memory and low computation footprint which is

consistent with our initial assumptions.

Fully Connected Layer 2

Table 25: FC2 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer 2 1024 1024x1 1024 1024x1 198851

Fully connected layer FC2 has input dimension of 1 x 1024 and an output dimension of 1 x 1024.

This implies that it stores 1024 x 1024 weight values for the matrix multiplication. In terms of

performance, we see from table 25 that the design takes 198851 clock cycles to run. For resource

utilization, we have a very small block RAM consumption of 33 blocks and a negligible

utilization of LUTs and FFs. However, the RAM consumption is for the layer design and it does

not take into consideration the network weights which are of the order 1024 x 1024.

Fully Connected Layer 3

Fully connected layer FC3 is the last layer and has input dimension of 1 x 1024 and an output

dimension of 1 x 10. This implies that it stores 1024 x 10 weight values for the matrix

multiplication. In terms of performance, we see from table 26 that the design takes 2500 clock

cycles to run. For resource utilization, we have a very small block RAM consumption of 33

blocks and a negligible utilization of LUTs and FFs. However, the RAM consumption is for the

layer design and it does not take into consideration the network weights which are of the order

10 x 1024.

88

Table 26: FC3 Requirements

Layer Inputs Input Size Outputs Output Size Latency

(cycles)

Layer 2 1024 1024x1 10 10x1 2500

Since the entire network is designed as a single pipeline, the maximum network performance is as

good as the worst performing component of the network. For our design, convolution layer 2 had

a latency of 4.6 million clock cycles. Since our design has block RAMs storing output from each

layer, the design can be fully pipelined. Throughput is the number of classifications the network

can perform in a second. To calculate the maximum possible throughput of the network, we have

to use the latency of the worst performing layer which is 4.6 million clock cycles. We get the

following final throughput for our design

Latency: 4.6 million cycles

Clock Frequency: 150 MHz

Images/sec: 33

Processing Time: 30 ms/image

89

 CHAPTER 8

NETWORK BLOCK DESIGN

8.1 Introduction

We summarize the design using the Vivado block design tool. Independently created CNN layers

or IP packages can be imported in the design tool to form a chain architecture which has been

thoroughly explained in the previous section.

We explain the design components which are added along with the layer IP blocks to enable the

FPGA functionality. Figure 43 shows an overview of block design.

Figure 43: Overview of Block Design Complexity

90

8.2 Zynq Ultrascale

For sequence control, we can use the Zynq ultrascale controller provided on board. It has access

to both programmable logic as well as DDR memory.

The Zynq block has a number of high performance (HP) ports which are used to transfer data from

DDR to the PL via Axi DMA controller.

8.3 IP Block Ports

The custom designed layers of the network are imported individually as IP packages. Using

appropriate pragmas in the HLS code, we declare the nature of the ports of the IP as per our

requirements. As an example, we look at the IP block of the first layer (figure 44). The IP block

contains a Control BUS (CTRL_BUS) which is used by the Zynq core to start stop and monitor

the layer operation. This bus enables the sequence control of the network.

We can also see three input stream ports in the IP block which are used for high speed data transfer

from off chip DDR to the programmable logic. These ports are used to acquire the three layers of

the input feature map which in this case is the input image.

We have two port block RAMs available on chip which we will use in our design. For the output

feature map, we declare it as a single port access since we need the second port of the BRAM to

be used by the subsequent layer IP in the network (output from one layer is input to the next). For

filter weights and normalization parameters, we can use true dual port configuration to enable

faster operation of each layer. We demonstrate a single IP block design in figure 44.

Figure 44: Expanded View for IP core Integration with ZYNQ Core in Block Design

91

8.4 Auxiliary Components

Direct Memory Access (DMA), AXI Interconnect and block memory generator are some of the

essential auxiliary components of any design. These can be seen in figure below. Interconnect

blocks form a gateway between our blocks. They imitate a slave port for a master port of an IP

block and similarly present a master for a slave. They are used to connect multiple ports together.

DMA provide the Zynq core with the capability to transfer data from off chip to programmable

logic. HP ports of the core provide memory address of the DDR to be read and transferred as

stream to the custom IP. Block memory generator block generates either single port of dual port

block RAM in the design. It is also used for other important configurations such as standalone

mode for sequential operation of layers without need for BRAM controller.

Figure 45: Expanded View for Auxiliary Components of Design

Figure 45 shows an overview of auxiliary components in block design. All the layer IP blocks are

similarly added with their required auxiliary components to form the complete network which is

then controlled through the Zynq core. This is the final stage of the development cycle. Extra

functionality can be added such as timers for performance measurement and display port for output

display on monitor for better visualization.

92

 CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this work we have tried to achieve an optimal design for our deep network both from a software

design perspective as well as the hardware implementation. We have seen an overview of the

current trends in research on convolutional neural networks, components of these networks,

variations in network designs and their performance.

We analyzed different layers of a deep network and established a relationship with the

classification performance for the CIFAR-10 dataset. The design space for a deep convolutional

network is infinitely large and requires in depth study to understand the correlation between

parameter settings and performance. Different combinations of network layers and configuration

were trained to calculate performance accuracy. Analysis of trained network performance showed

the impact of convolutional layers and fully connected layers in increased performance of the

network. We also deduced the vulnerability of network performance to extremely dense input layer

of the fully connected side of the network. Filter size proved to be less impactful on the network

performance albeit in a positive manner.

Final network implementation was carried out on hardware using Vivado HLS tool. Various design

methodologies as well as coding schemes were tried. The vulnerability of design performance to

coding style at a high level language such as C was very obvious from the results. Efficient

resource allocation to a highly pipelined design proved to be the best solution to the performance

issue of the network.

9.2 Future Work

This work provides a solid foundation of subsequent architecture development. Further exploration

of neural network architecture design can be carried out which includes larger data sets such as

ImageNet which has a lot more practical utility as compared to the smaller CIFAR-10 dataset. This

also includes experimenting with deeper networks while at the same time keeping memory

consumption at a minimum. There is also room in the betterment of layer design and architecture.

The network latency should be lowered to increase performance especially if larger dataset

classification is to be considered. Coding guidelines provided in this work can also help to achieve

those targets. Ternary weight networks are another area which merit focus. Network proposed in

this work can be extended to include ternary network with appropriate modifications.

93

REFERENCES

[1] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, et al., "Accelerating

binarized convolutional neural networks with software-programmable fpgas,"

In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays pp. 15-24.

[2] Google Brain Team, "TensorFlow," ed: Google, 2015.

[3] Y. Jia, "Caffe, Deep Learning Framework," ed: Berkeley Artificial Intelligence Research.

[4] A. Gray, "DIGITS: Deep Learning GPU Training System," in NVIDIA Developer Blog vol.

2018, ed, 2015.

[5] M. Courbariaux, Y. Bengio, and J.-P. David, "Binaryconnect: Training deep neural

networks with binary weights during propagations," In Advances in neural information

processing systems pp. 3123-3131.

[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, "Binarized neural

networks: Training deep neural networks with weights and activations constrained to+ 1

or-1," arXiv preprint arXiv:1602.02830, 2016.

[7] X. Zynq, "7000," Zynq-7000 all programmable soc overview, advance product

specification-ds190 (v1. 2) available on: http://www. xilinx. com/support/documentation-

/data sheets/-ds190-Zynq-7000-Overview. pdf,” August, 2012.

[8] V. Xilinx, "Vivado Design Suite User Guide: High-Level Synthesis (UG902 (v2012.4)),"

PDF File2012.

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing fpga-based accelerator

design for deep convolutional neural networks," In Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays pp. 161-170.

[10] R. J. Schalkoff, Artificial neural networks vol. 1: McGraw-Hill New York, 1997.

[11] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, "Cnp: An fpga-based processor for

convolutional networks," In Field Programmable Logic and Applications, 2009. FPL

2009 pp. 32-37.

[12] C. Rosenberg. (2013, 14 May). Improving Photo Search: A Step Across the Semantic Gap.

Available: https://ai.googleblog.com/2013/06/improving-photo-search-step-across.html

http://www/
https://ai.googleblog.com/2013/06/improving-photo-search-step-across.html

94

[13] S. Ji, W. Xu, M. Yang, and K. Yu, "3D convolutional neural networks for human action

recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 35, pp.

221-231, 2013.

[14] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by

reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.

[15] H. Yonekawa and H. Nakahara, "On-Chip Memory Based Binarized Convolutional Deep

Neural Network Applying Batch Normalization Free Technique on an FPGA," In Parallel

and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE International

pp. 98-105.

[16] L. Deng, "The MNIST database of handwritten digit images for machine learning research

[best of the web]," IEEE Signal Processing Magazine, vol. 29, pp. 141-142, 2012.

[17] Y. LeCun, "LeNet-5, convolutional neural networks," URL: http://yann. lecun.

com/exdb/lenet, p. 20, 2015.

[18] A. Krizhevsky. (2017, 14 May). The CIFAR-10 dataset. Available:

https://www.cs.toronto.edu/~kriz/cifar.html

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale

hierarchical image database," In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on pp. 248-255.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on pp. 1097-1105.

[21] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image

recognition," arXiv preprint arXiv:1409.1556, 2014.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., "Going deeper with

convolutions." Cvpr, 2015.

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model

size," arXiv preprint arXiv:1602.07360, 2016.

[24] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, et al., "Going deeper with embedded fpga

platform for convolutional neural network," In Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays pp. 26-35.

http://yann/
https://www.cs.toronto.edu/~kriz/cifar.html

95

[25] S. Han, H. Mao, and W. J. Dally, "Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding," arXiv preprint arXiv:1510.00149,

2015.

[26] P. Gysel, M. Motamedi, and S. Ghiasi, "Hardware-oriented approximation of convolutional

neural networks," arXiv preprint arXiv:1604.03168, 2016.

[27] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, et al., "Throughput-

optimized OpenCL-based FPGA accelerator for large-scale convolutional neural

networks," In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays pp. 16-25.

[28] J. Kraus. (2013, 13 May). An Introduction to CUDA-Aware MPI. Available:

https://devblogs.nvidia.com/introduction-cuda-aware-mpi/

[29] NVIDIA, "GEFORCE GTX 1080 User Guide," ed: NVIDIA Corporation, 2016.

[30] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, et al., "Mixed

precision training," arXiv preprint arXiv:1710.03740, 2017.

[31] Xilinx, "Zynq-7000 All Programmable SoC Data Sheet: Overview," ed: Xilinx, 2017.

[32] NVIDIA. (2018, 3rd June). NVIDIA TITAN X. Available: https://www.nvidia.com/en-

us/geforce/products/10series/titan-x-pascal/

[33] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, "Accelerating low bit-width convolutional

neural networks with embedded FPGA," In Field Programmable Logic and Applications

(FPL), 2017 27th International Conference pp. 1-4.

[34] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, "Optimizing loop operation and dataflow in

FPGA acceleration of deep convolutional neural networks," In Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays pp. 45-54.

[35] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, "FP-BNN: Binarized neural network on

FPGA," Neurocomputing, vol. 275, pp. 1072-1086, 2018.

[36] J. Wang, J. Lin, and Z. Wang, "Efficient Hardware Architectures for Deep Convolutional

Neural Network," IEEE Transactions on Circuits and Systems I: Regular Papers, 2017.

[37] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, "Scalable and modularized RTL

compilation of convolutional neural networks onto FPGA," In Field Programmable Logic

and Applications (FPL), 2016 26th International Conference on pp. 1-8.

[38] Xilinx, "Zynq UltraScale+ MPSoC Data Sheet: Overview," ed: Xilinx, 2017.

https://devblogs.nvidia.com/introduction-cuda-aware-mpi/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

96

[39] Xilinx, "UltraFast High-Level Productivity Design Methodology Guide UG1197," 2018.

[40] SDSoC Environment. (2017, 13 May). pragma HLS interface. Available:

https://china.xilinx.com/html_docs/xilinx2017_1/sdsoc_doc/topics/pragmas/ref-

pragma_HLS_interface.html

https://china.xilinx.com/html_docs/xilinx2017_1/sdsoc_doc/topics/pragmas/ref-pragma_HLS_interface.html
https://china.xilinx.com/html_docs/xilinx2017_1/sdsoc_doc/topics/pragmas/ref-pragma_HLS_interface.html

97

BIOGRAPHICAL SKETCH

Muhammad Mohid Nabil was born in Rawalpindi, Pakistan in November 1990. He completed

his high school among top 25 students of the state. He went on to obtain his Bachelor of Science

in Electrical Engineering from College of Electrical and Mechanical Engineering, NUST in

2013. He started his Master of Science from The University of Texas at Dallas in January of

2016. During the course of his Master’s degree, he did research work in the Cochlear Implant

Laboratory as well as IDEA Lab. He is passionate about research on FPGAs, Deep Learning and

Signal Processing.

98

CURRICULUM VITAE

Muhammad Mohid Nabil

EDUCATION

University of Texas at Dallas, USA Jan 2016- June 2018

Master of Science Electrical Engineering

National University of Science and Technology, Pakistan Sep 2009 – June 2013

Bachelor of Science Electrical Engineering

WORK EXPERIENCE

Instrumentation Engineer

ENGRO Corporation June 2013-Dec 2015

 Maintenance and troubleshooting for plant control systems and instrumentation

 Project proposals and execution for continuous process improvement

 Expertise with a variety of control systems including Siemens, Honeywell, ABB and

Rockwell

RESEARCH EXPERIENCE

Master’s Thesis Student

Integrated Design Engineering and Algorithms (IDEA) Lab Jul 2017 – June 2018

 Software and hardware implementation of low precision Binarized Neural Networks on

Zynq architecture (ZCU102)

 Hardware components including 2D Convolution, Normalization and Binarization being

designed using Xilinx Vivado HLS on FPGA coprocessor for high degree of parallelism

 Sequence control and data movement routines using embedded C on ARM core for optimal

performance

Graduate Student Worker

Cochlear Implant Laboratory, University of Texas at Dallas Nov 2016-Jul 2017

 Using discrete time signal processing, physiological imaging and acoustics for perception

measurements

 EEG signal acquisition and processing to establish neural correlate of audio stimuli

 FIR/IIR digital filter design using C++ to model speech enhancement in cochlear implant

embedded DSP

 Performed human subject testing for audio quality evaluations using novel test schemes on

Matlab/C++

