FPGA IMPLEMENTATION OF REDUCED PRECISION CONVOLUTIONAL

NEURAL NETWORKS

by

Muhammad Mohid Nabil

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Dinesh Bhatia, Chair

Dr. Poras T. Balsara

Dr. Mehrdad Nourani

Copyright 2018
Muhammad Mohid Nabil

All Rights Reserved

To Mom, Dad and Tooba

FPGA IMPLEMENTATION OF REDUCED PRECISION CONVOLUTIONAL

NEURAL NETWORKS

MUHAMMAD MOHID NABIL, BS

THESIS
Presented to the Faculty of
The University of Texas at Dallas
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

August 2018

ACKNOWLEDGMENTS

This research is the culmination of a lot of hard work and support from a number of people. |
would like to start by thanking Dr. Dinesh K. Bhatia for agreeing to be my supervisor and
guiding me throughout the course of this research. I am grateful to him for not only being a
teacher and advisor but also my mentor. Working at IDEA lab under his guidance has been the
most fulfilling part of my academic journey at The University of Texas at Dallas. | would also
like to thank him for meticulously going through my thesis, making valuable suggestions for
improvement.

I am also thankful to Dr. Poras Balsara and Dr. Mehrdad Nourani for their guidance and being a
part of my committee. | am thankful to Ritchie Zhao and M. Courbariaux for answering my
queries on emails and helping to develop a better understanding of concepts during the early
stages of my literature review.

I would like to thank all my lab mates for their words of encouragement during the course of this
work. Their company made the long hours in the lab much more enjoyable.

In the end | would thank my entire family for their tireless support and prayers during the last 2.5

years. It would not have been possible without them by my side every step of the way.

June 2018

FPGA IMPLEMENTATION OF REDUCED PRECISION CONVOLUTIONAL
NEURAL NETWORKS

Muhammad Mohid Nabil, MSEE
The University of Texas at Dallas, 2018

Supervising Professor: Dr. Dinesh Bhatia

With the improvement in processing systems, machine learning applications are finding
widespread use in almost all sectors of technology. Image recognition is one application of
machine learning which has become widely popular with various architectures and systems aimed
at improving recognition performance. With classification accuracy now approaching saturation
point, many researchers are now focusing on resource and energy efficiency. With the increased
demand for learning applications in embedded devices, it is of paramount importance to optimize
power and energy consumption to increase utility in these low power embedded systems.

In recent months, reduced precision neural networks have caught the attention of some researchers.
Reduced data width deep nets offer the potential of saving valuable resources on hardware
platforms. In turn, these hardware platforms such as Field Programmable Gate Arrays (FPGAS)
offer the potential of a low power system with massive parallelism increasing throughput and

performance.

Vi

In this research, we explore the implementations of a deep learning architecture on FPGA in the
presence of resource and energy constraints. We study reduced precision neural networks and
implement one such architecture as a proof of concept.

We focus on binarized convolutional neural network and its implementation on FPGAs. Binarized
convolutional nets have displayed a classification accuracy of up to 88% with some smaller image
sets such as CIFAR-10. This number is on the rise with some of the new architectures.

We study the tradeoff between architecture depth and its impact on accuracy to get a better
understanding of the convolutional layers and their impact on the overall performance. This is
done from a hardware perspective giving us better insight enabling better resource allocation on
FPGA fabric.

Zyng ZCU-102 has been used for accelerator implementation. High level synthesis tool (Vivado

HLS) from Xilinx is used for CNN definition on FPGA fabric.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ...ttt b ettt nae bbb ane e %
ABSTRACT .ottt ettt et be e bt e st e s et et et et e e Rt Ee e Rt e Rt e Rt e e tentenbeeRenreeneeneenes Vi
LIST OF TABLESccoi ottt s ettt te s aenbesneanaeneeneens xiii
LIST OF FIGURES ...ttt sttt st te s e e e testenneane e XV
CHAPTER 1: INTRODUCTION ..ottt sttt et e et ae e ssaenaeaneessaenaesnee e 1
Y o] AV (o] o ISP 1
1.2 CONLFIDULION OF TNESIS.....viuiiiiiiiieic ettt 2
CHAPTER 2: BACKGROUNDcttiiiitieie ettt nne e nnee e 4
2.1 NEtWOIrK COMPONENTS.cuiiiiirieiieeie ettt re et esbe e e s aeesteeneesteeeesseesraeneenee e 4
0 I R =T o= 11 0] o PP 4
2.1.2 Perceptron Training RUIE..........oiiiiiiieee e 5

2. 1.3 NEUIAL NEIWOTKeeiieii ettt e e e naeeneesraeneenree e 6
2.1.4 Neural Network TraINING.......ccooviieiiiiieesie e 7
2.1.5 Convolutional Neural NEtWOIKcccooieiieiiiie e 8
2.1.6 WOIKING PrINCIPIE.....c.oieiie e 9
N AN (o 0 (=Tt D SRR 9
2.1.8 CONVOIULIONEAL LAYEToviiiieiiiiiiee e 9
2.1.9 ACHIVALION LAYET ...ttt bbbttt bbb 11
2.1.10 POOKNG LAYET ...ttt 12
2.1.11 NOIMAHZALION ..ottt sbe et e ene e sreeteeneesneeneas 12
2.1.12 FUlly CONNECIEA LAYETeciieiiie ettt ettt ettt nna e 12
2.1.13 SOFIMAX LAYEL ...eeiiiiiieitie ettt et e e ae et e e e e ae e e nb e e sbeeenneenraeanes 13

2.2 POPUIAN DALASELS ... ecviieiieitie ettt ettt et e s e e e e st e e asb e e areeanbe e beeenreenraeenes 13
A A O | AN OSSR 14
2.2.3 IMAGENEL ...ttt e e e st e e s e e e e e e e are e erreean 14

viii

2.3 CININ AT CNIEECTUIES ..ottt e e e e e e e ettt e e e e e e e e e et eeeeeeeea e eeeeeeeeeaaaes 15

2.3 L ALBXINEL. ...t bbbttt bbb 15
2.3.2 VGG ittt E bR R bRttt ettt re e n et e 15
2.3.3 GOOGIENEL. ..ottt bbbttt 17
2.3.4 SQUEBZINEL ...ttt b et b e n b 17
CHAPTER 3: CNN ANALYSIS AND BINARY WEIGHTED NETWORKS..........ccccooveviieee 18
T8 A 011 0o o4 o PR 18
3.2 MEMOTY ANAIYSIS ...ttt bbbttt b bbbt nre s 18
3.3 Processing REGUITEMENTScciiiiieieiirie ettt sttt nre s 20
3.4 Reduced PreCiSion NEIWOIKScoveiiiieieerir e seesie e seesis et snee e sae e sneenee e sneeneas 21
3.5 Binary Convolutional Neural NEetWOrKsS...........ccoiiiiiiiiieseseseee e 22
3.5.1 BINAry CONVOIULIONcoviiiiciieiieeie ettt sttt sne s 23
3.5.2 Batch NOIrMAZAtION.coiiiieiecie ettt et 24
3.5.3 BINANZAION LAYET ...ttt 25
3.5.4 Fully Connected BINArY LAYETcoiiiiriiiriiiisieieeeee e 25
CHAPTER 4: NETWORK TRAINING ..ottt 26
4.1 CNN TraiNiNg SEIUP. ...c.veitetiitiiteiti ettt bbbttt nb b 26
I I o O =TT TSR PRR 26
4.1.2 GPU Based WOIKSTATION.ciieiiiiiieeie et 26
4.1.3 SOTIWAIE SEUUD. ... eeieie ettt e e et e eaeesreeanes 27
4.2 Architectural Implications 0N CIFAR-L10.......c.coiiiiiiiiic e 28
4.3 ProbIlem SEAIEMENTc.eiiiiiieieeie ettt ettt re e b sre e 29
4.3.1 FIIEITKEINEI SIZ.....oiiiieeee e 30
O T @ 111011 1Y/ -0 LSRR 32
4.3.3 FUIlY CONNECLEA LAYEIS.....c.viivieivieie ettt ettt ettt sra e ene e 33
4.3.4 CONVOIULION LAYEISveeieeeie ettt ettt et et e e s e sraennenne e 35
4.4 Binary Weighted CNINooiiie et e e eeere e 41
4.4.1 CONVOIULION LAYEIS ...c.vveveeeie sttt ettt ettt ettt e et e te et e sneesraennenne e 41
4.4.2 Convolution Layer QULPULScviiieieeie ettt ra e 42

B 3 BT SUZE..eeeeeeeeeeeeeee et e e ettt e e e et e e ettt e e e e e e e e e aaees 42

e o To] [gl I I V=T TS SST 43
4.4.5 FUIlY CONNECLEA LAYEIS....c.viitieivieie ettt ettt ste et e e neennee e 43
4.4.6 FINAl CONTIGUIATTION. ..ottt bbbt 44
4.5 BINAry CNIN TFRININGcouiiiitiiiiiieiieieiee ettt e e bbb b e 46
4.6 Binary Training AlIGOrTtNM.........coiiiiiie s 46
4.6.1 Deterministic vS StochastiC BINarization.............cccccvvivereeienieeneeeseese e e 46
4.6.2 Gradient COMPULATIONooviiiiiiiiiiiieieee e 47
4.6.3 AlGOrithm FOrWAIT PaSS..........coiiiiiiiieieieie st 47
4.6.4 Algorithm BaCKWAard PaSScccuiiiiiiiiieiisis e 47
A.6.5 RESUILS ...ttt 47
4.7 Binary CNIN TrainiNg SEIUP.oiiiiiieieieie et 47
CHAPTER 5: IMPLEMENTATION HARDWARE AND SOFTWARE OVERVIEW............. 50
ST A [1 oo 0 od o] o PSP PR 50
5.2 FPGA CapabilitIes.c.oiiiiiiiieieee e 50
5.3 FPGA VS GPU .ottt sttt e et e e et e e aa e e e ne e e e s e e enee e e 51
5.4 ZYNQ-7000 AFCNITECIUIEvveiiieiiie ettt e e e e e baeerbeenreeenes 52
5.5 SOTIWAIE OVEIVIBW.....couiiiiiiiiieie ettt sttt s ettt e b et st beebeaneesneeneas 54
5.6 VIV ADO COMPONENTS......uiieiiiieiiiiesiiiesietesieeesieeesieeessaeeessbeessssesassseessssesanssessnseessssessnses 54
5.7 CoUING GUIABTINESoiiiie ittt e e e b e e e reeenes 56
O. 7.1 HLS SIIAIM ...ttt b et e e ae e e bt e s nb e e b e e enneenbe e e 56
I A o - To | 1 - PSPPSRI 57
5.7.3 Pragma INTErfaCE.........ciiiieiic ittt et sre e 57
5.7. 4 Pragma INHINE.......ccuiiieie et sr et nra e 58
5.7.5 Pragma PIPEIINEccie ettt ettt e te e nna e 58
5.7.6 Pragma UNFOIL..........ooieiiieiie ettt te e sra s 59
5.7.7 DYNamiC Programming.........cccoeeiueiiieieeiresieseesieseesseessesseesseessesssesseessesssesseessessessseeseas 59
5.7.8 LOOP ITEIALIONS.cuieiiiiiite ittt bbbttt bbb 59
5.7.9 Object Oriented Programming.........cccccueoeeieiieeiesieesieseeeeseesie e ssee e sseesseessesseesseeses 59

CHAPTER 6: CNN HARDWARE DESIGNcoiiiiiiieiiiieiec e 60

6.1 Problem FOrmUIALION.cooiiiicee e 60
(I et o 1N [o] 1 o ST SSPR 60
6.3 Hardware Convolution TEChNIQUES..........ccveiuiiieieeie e 62
6.3.1 Matrix-Matrix MUIIPHCAtIONccviiiec e 62
6.3.2 Line Buffer and SHAiNg WINAOWcccooiiiiiiiiccecce et 63
6.4 Scheduled Hardware PIPEIINEooiiiiiiiiiiie e 64
CHAPTER 7: HARDWARE IMPLEMENTATION ..ot 65
7.1 First Convolutional Layer (C-1)......ooiiiririiiriesisee ettt 65
7.2 SINQIE DALA SIrEAMcviitiitiiieiieie ettt bbbt e bbb bbb 65
7.2.1 Algorithm (SINGIe STreaM).........oiiiiiiiiee s 67
A (= | | SO 68
7.3 MUILIPIE DAtA STIEAIM ..ottt bbb bbb 69
7.3.1 Algorithm (MUItiple STream)coviiiiieieies s 70
732 RESUILS ..ttt ettt s et e et n et et nne e 71
7.4 DeSIgN OPLIMIZALIONiviiiiieiiieiiei ettt bbbt se b bt snenre s 71
7.4.1 Temporary Memory REMOValccooiiiiiiiiie s 71
T.4.2 LUT CONSUMPTION ..ottt bbbttt ab s 72
7.4.3 Filter Weight PACKINGcoeiiiiiiiiieee s 72
7.4.4 Algorithm (Optimized DEeSIGN).....c..ciiiiiieiie et 73
TAS RESUILS ..ottt b et bbb e 74
7.5 Binary Convolution Layers (C-2 10 C-6)cccccveiiiiiiieiie et 75
7.5.2 Unoptimized AlGOrithM.........cooiiiice e 75
7.5.2 Algorithm (Un-Optimized DeSign)cccveiiiiiieiieciie et 77
T.5.2 RESUIES ...ttt bttt nre s 78
7.5.3 Optimized AlGOItM.......cooiiie e 79
T.5.4 RESUIES ...ttt bbb re s 79
7.6 FUIlY CONNECLEA LAYETooiieiecic ettt ettt et sneenas 83
LTSN o T €1 o] o TSR RTOS 84

Xi

7.6.2 AIGOItNM (FC LAYEI) ..cuiiiiiiieiie ettt et ste e ste e e nneennas 85

78,3 RESUILS .ot ettt e e e e e e ettt e e e e e e e ettt e e e e e e e e ———aaaaaaaaan 86
CHAPTER 8: NETWORK BLOCK DESIGN ...ooeiiiiii ittt eeeeiee e e e e e e e aseseeeeeeessnnsesnnnees 89
8L INETOAUCTION ettt e e e e e e e e e ettt e e e e e e ee e eeeeeeeeeeeereeeeeeeeeaaaes 89
8.2 ZYNQ ULTRASCALEc.oe ettt ettt et s ae e s be e ba e nre e erae s 90
8.3 TP BIOCK POIES. ...ttt e e ettt e e e et e e e et e e e e e e e e e e et eeeeeeeeeaaaes 90
8.4 AUXIITIArY COMPONENTS ..ottt bbbttt e bbb bbb 91
CHAPTER 9: CONCLUSIONS AND FUTURE WORK ...t 92
0.1 CONCIUSIONS ..., 92
0.2 FULUIE WOTK e 92
REFERENCES ... e ettt ettt e e e e e e eeaeaa e 93
BIOGRAPHICAL SKKETCH ..ottt ettt e e e e e 97
CURRICULUM VITAE

xii

LIST OF TABLES

Table 1: Resource Analysis 0f VGG NEIWOIKcceccueiieiiiieiieiecie e 20
Table 2: Binary Convolution Resource REQUIFEMENT..........ccuiiiiiieieie e 23
Table 3: Network Architecture Proposed iN [L]......cceeiieriiiiiiiniesesesc s 29
Table 4: Network Performance in Relation with Network Configuration............c.cccccevevininene. 32
Table 5: Network Performance in Relation with Increasing Neurons in FC Input 36
Table 6: Resource Requirement of 3x3 Binary FITErsccooviiiiininineniseseee e 41
Table 7: Comparison of Resource Requirement in with Filter Size...........ccocovvviiiiiniininen, 42
Table 8: Relation of Input Neurons with Filter DIMensions...........ccocvveiverenieneene e esee e 43
Table 9: Fully Connected Layer DIMENSIONScccooiieiiiiiiiieiesiesie e 44
Table 10:PYtNON LIDIAITES.c.ciiiiiieieisie ettt 48
Table 11:Classification Error RALESccoiiiiiiieieieie e 48
Table 12: Resource specifications of 1ateSt FPGAS.ccovveiriiereeie e 50
Table 13: FPGA Implementations 0f CNN ... 51
Table 14: Single Stream Resource REQUITEMENTccoiiiiiiiieieresie e 68
Table 15: Latency for Single Stream DESIgNcoeiiieiireiieeeie e e 69
Table 16: MultiStream Design Resource Utilization.............cccooovvvveiiieiiieie e 71
Table 17: Optimized Design Resource UtHHZationccccooviieriiiieiieinee e 74
Table 18: Unoptimized Design REQUITEMENTSccuiiiiiiiiiiiieieie et 78
Table 19: Layer 2 REQUITEMENTScc.iiiiiiiiieieieie sttt sttt 79
Table 20: Layer 3 REQUITEIMENTScc.oiiiiiiiiiieieieie ettt b 80
Table 21: Layer 4 REQUITEIMENTS........coiiieiieieeieseesieeiesteesteeaestee e eeesseesseesaesraesseeseesseesaeeneesneees 81

Table 22: Layer 5 REQUITEMENTS........cc.oiiiiiiiiiieieie ettt 82

Table 23: Layer 6 REQUITEMENTS........c..oiiiiiiiiiieee ettt 82
Table 24: FCL REQUITEIMENTSouviiiieitiiiesiieieee ettt bttt et 86
Table 25: FC2 REQUITEIMENTScviiiieieisieiieiiee ettt 87
Table 26: FC3 REQUITEIMENTSoviiiieitiiieiisieeee ettt 88

Xiv

LIST FIGURES

Figure 1: Hlustration of linear decision boundry of a perceptroncccccvevevieevv i siecce e, 4
Figure 2: Perceptron ArChITECIUIE.cviiiee ettt e e e 5
Figure 3: Neural Network Schematic inspired from [10]cccoooveiiiiiiiienicie e 6
Figure 4: Illustration of a Non Linear Decision Boundary on Random Data Points...................... 7
Figure 5: Convolution Layer OPeration..........ccceiieiiereiieeieeseeieseesieeeessaessesseessaesssssesseesseaneens 10
Figure 6: Different Activation LaYer CUIVES.........c.civeiiiieieeie e e e sa et 11
Figure 7: Conversion of data representation from image t0 an arrayccceceevvevvveveeveesieesnennens 13
Figure 8: MINIST Dataset IMAGESccverveiieiieeieiie sttt te e e e ste e e e nre e 14
Figure 9: CIFAR-10 Dataset IMages [18].....cciveruiiieiieriiieieesieeie s e e seese e et sae e 14
Figure 10: Alexnet Architecture from Authors Original Work [20].......ccccccevveveiieiiiieieeseens 15
Figure 11: VGG Layer Configurations [21]ceccveiveieiieeiieie e se e 16
Figure 12: Distribution of weights in VGG 16 and VGG 19 from [24].ccovevvviviiiiieeceee 18
Figure 13: Memory analysis of AlexXNet from [L]. ..o 19
Figure 14: Processing Requirements of CNN Layers of AlexXNet [1].ccccovviiiniininiiiiennn 21
Figure 15: Comparison of CNN and Binary Networks Adopted from [1].cccoovvviiiiicnnnnnn 22
Figure 16: Impact of Normalization Layer on Convergence During Training.........cccccoceveevenneee 24
Figure 17: Fully Connected Layer OPErationcooeiirereninierienie et 25
Figure 18: Specifications of GPU Used for Network Training [29]........cccccvvvviviniinenencnennn 27
Figure 19: Image Showing Interface of Training TOOIcccceiiiiiiiiiinieee 28
Figure 20: Architecture of Network UNder TeSE.........ooiiiiiiiiiiieieiene e 30

XV

Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

CNN Performance with various Filter/Kernel Size..........cccocoiiininiiiiiiice 31
Comparison of Classification Accuracy with Filter Size and Number of Outputs 32
Increase in Classification Accuracy with Increasing Number of Output Maps........... 33
Architecture of Network Under Test with 2 FC layersc.ccoovvviviiieieienencnee 33
Network Performance with Increasing Number of FC Layers for Various Filter Size34
Architecture of Network Under Test with 2 Conv Layers.........cccccoovveieieienencnenn, 35
Comparison of Performance with Increasing Number of Convolution Layers........... 37
Performance Analysis with Increasing Outputs from Conv Layer 2ccccocevenee. 37
Architecture of Network Under TeSt With...........ccooveieiiiiiiniiiiceeee e 38
Performance Analysis with Increasing no. of Filters in Layer 2 and Layer 1............. 39
Performance impact of increasing data generated by convolution layers................... 40
Final Network Architecture to be implemented. ... 45
ZYNQ SOC Architecture SChematiC [7]......coovvieieriieie i 53
Network Architecture to be implemented on FPGA. ... 61
[llustration of Matrix Multiplication Using Preformatting and Indexing.................... 62
SHiding WINAOW SCREMALIC.oouiiiiiiiieieie e 63
Overview of Network Architecture with Zyngq COre...........cccovriiiniinieiene e 64
Single Data Stream DESION.........ciiiiiiiieere e 66
Multiple Data Stream DESIONccvoiiiririiiiieeeee s 69
Unoptimized Binary Convolution LAYer...........coceiiiiiniienesieeeeeeeee e 76
Fully Connected Layer ArChItECIUIEcuiiiieiiieee s 84
[llustration of Efficient Memory Fetch in Fully Connected Layercccccccevvneenee. 85

XVi

Figure 43: Overview of Block Design COmMPIEXItYcooiiiriiiiiiicicreses e
Figure 44: Expanded View for IP core Integration with ZYNQ Core in Block Design...............

Figure 45: Expanded View for Auxiliary Components of DeSignccoovvevirieienenenenienienns

XVii

CHAPTER 1
INTRODUCTION

1.1 Motivation

Image recognition tasks have gained immense popularity in the past few years. From the complex
task of autonomous vehicles to simply unlocking a mobile device, recognition tasks are now
considered essential to any embedded system. They also have other potential uses such as medical
diagnosis and aerial vehicle control which require high levels of reliability in their performance.
For all these applications, there is a need for high performance machine learning architecture which
is highly accurate. Due to the mobile nature of a lot of these applications and their implementation
on embedded platforms, they are also required to have excellent performance in terms of energy
consumption.

In recent years, success with image recognition using convolutional neural networks (CNN) has
made them exceedingly popular. CNNs became popular after the success of Alexnet in the 2012
ImageNet competition. This was the first time that CNNs had shown a promising accuracy. In the
subsequent competitions, improved architectures of CNN were proposed each improving on the
accuracy of the previously proposed scheme. In 2015, top-5 classification had achieved
performance at par with human scores using GoogleNet with an error of 6.7%. These CNN
architectures will be explained in later chapters for more clarity.

The basic building blocks of all these convolutional neural networks are the same. They consist of
a layered architecture of convolutional, pooling, activation and fully connected layers. Together,
multiple iterations of these layers form a dense structure of filters and neurons which work together
to extract critical information for successful classification of input data. However, this dense
architecture implies a large memory size along with a large computational complexity.

Graphical processing units (GPUs) have traditionally been used for neural network
implementations. They are first used for the training phase and subsequently for inference (these
concepts will be introduced in later sections). GPUs present an ideal platform for this process due
to their highly parallel architectures. Extremely high throughput is achieved due to large number
of processing elements (PE) available on chip. As evident, these systems have very high-power
requirements which power these processing elements.

Field Programmable Gate Arrays (FPGA) present an ideal alternative to the above stated systems
for CNN implementation. They provide a large number of programmable logic blocks which can
be reconfigured on the fly. Massive parallelism can be achieved by efficient design on the FPGA

fabric while keeping power consumption at a minimum. This however, is not without its own set
of challenges.

As explained above, deep networks have a large memory size and computational complexity.
While FPGAs present an opportunity for high performance low power platform, their limited on-
chip resources and memory limit the size of the convolutional neural networks. Owing to this,
researchers are now focusing on low precision implementation for such platforms. This work
addresses the problem of FPGA based CNN design for low precision networks.

Binarized neural network is one such low precision network which has recently been explored [1].
All data size is one-bit wide which limit the memory consumption as well as alter the way results
are computed than traditional 16 or 32 bit precision networks on FPGAs.

1.2 Contribution of Thesis

This research has focused on various binarized network architectures and their implementation on
FPGAs. In this regard, different structural combinations of the deep nets were studied to form a
correlation between layers and prediction accuracy on a 32 bit precision network.

Due to the exploratory nature of this research work, we experiment with different machine learning
libraries to get a better understanding of coding deep learning algorithms. In this regard,
Tensorflow [2] and Caffe [3] were used for full precision network implementation. DIGITS from
NVIDIA [4] is an excellent tool with Caffe backend which has been used for the results presented
later in this thesis.

For binarized neural networks, we used a Theano based library from Courbariaux et al [5] which
has been used widely by researchers working with low precision networks. Using this work, the
trained weights are limited to -1 and 1 as per requirements of our binary model [6].

For hardware implementation of the network, zcu102 board from Xilinx has been used [7]. The
board has over 32Mb of on chip memory which is sufficient to store trained neural network model.
The large memory size was needed to eliminate off-chip memory access and reduce latency. We
present a novel pipelined model which uses on chip memory access. This was important
considering the high memory bandwidth requirements of the convolutional neural network layers

We use Vivado High Level Synthesis tool [8] for coding our design. This is an excellent tool which
enables C++ level code to map on to hardware keeping a few Verilog constraints in mind. We will
also explain a few of these limitations and guidelines in this report.

We also design the fully connected layer for binarized weights. Binary weights by virtue of their
limited size eliminate the need for large multipliers greatly reducing resource and power
consumption.

We also design a full precision convolution layer based on the well-known line buffer [9] for the
first layer of our network as well as to benchmark differences between full precision and reduced
precision layers.

It is important to note here that the training phase is always carried out offline using Graphical
Processing Units and machine learning libraries and only the inference phase is mapped on to the
FPGA fabric. This is because training is a one time or a periodic process and can be done offline.
Inference is the more frequent process, and this is where lies the greatest potential for resource and
power saving.

We will also explore the design space within the time constraints for this thesis. Different coding
styles have different outcomes when it comes to hardware mapping and we will describe a few of
these.

CHAPTER 2
BACKGROUND

We now introduce some important concepts necessary to understand the selection and
implementation of binary weighted neural networks on FPGAs. We will also introduce some
popular architectures of CNN, binarized networks and work from some previous researchers that
influenced the work done in this research.

2.1 Network Components

We intend to explain the workings and principles of binary weighted convolutional networks. For
this reason, we will start off from the very basics and try and explain the building blocks. In the
following sections, we will explain the concept of perceptron. We will see how perceptrons join
together into a web like structure to form an artificial neural network. We will then explain the
need for a better structure and why we move towards convolutional neural networks. We will
explain the additional components of the convolutional layers as well as give a brief account of
some of the work done by researchers in this domain. We will look at binary weighted deep
networks, component layers and each one of its benefits to us. We will also look at recent work by
other researchers in this field.

2.1.1 Perceptron

Perceptron is inspired by a bio-computing model of a neuron in the brain. It falls in the category
of linear classifiers. It works by proposing a hypothesis h which linearly separates any given data
provided the data is linearly separable. The hypothesis divides the plane in two parts hence
classifying data in 2 categories which has been illustrated in figure 1.

Perceptron boundry

Figure 1: lustration of linear decision boundry of a perceptron

For a two dimensional data, the perceptron works by adjusting weights for the two dimensions x1
and x2 through an iterative training process. The perceptron can be defined by the equation

wl.x1+w2.x2= 06

We can see from the equation that we can adjust the separating line by adjusting parameters wil,
w2 and 6. From the above equation we can write our hypothesis as

gx)=wl.xl1+w2.x2— 6

From this equation, we can get a simple linear classifier based on the sign of the left hand side.
This “sign” activation is called the Activation Function or the Thresholding Function for the
perceptron. This perceptron architecture including can be shown through the figure 2.

Summation Threshold

(—F) o
@

Figure 2: Perceptron Architecture

2.1.2 Perceptron Training Rule

As stated in the previous section, the perceptron equation draws a linear separation boundary using
the wl,w2 and 6 parameters. These parameters are not arbitrarily decided. Rather, they are
obtained through an iterative training process. The training process determines the parameters
which would give the greatest separation between classes. Training data or labeled data is a dataset
which is taken as the input to the training algorithm. Each input has a known output or a label.
During the training process, this know label of input data is compared with the classifier output.
The difference between the desired and actual output is used to update the network parameters.
The way these parameters are updated is known as the training rule or the weight update rule.

We briefly explain the training rule for perceptron which updates the weights. This is because this
rule forms the basis for the training of our eventual design of a convolutional neural network.
Perceptron training (weight update) is done through a training data set using the following
equations.

wi « wi + Awi

Awi = n(t — o)xi

Where :

t = Target output of perceptron (also known as label of input data)
0 = Actual perceptron output

n = step size constant

xi= training input

Awi = weight update value

Due to the linear nature of the perceptron equation, there is an obvious limitation to classification
when non-linearity is introduced in data. Since most real world problems have non linear data
distribution, this calls for a better solution.

2.1.3 Neural Network

A neural network is formed by the connection of several neurons or perceptrons as illustrated in
figure 3. Through interconnections of a large number of neurons, a web is formed which creates a
highly non linear decision boundary for classification as illustrated in figure 4. The neural network
is in the form of several layers. These are classified as input layer for the input side. Hidden layers
for feature extraction. And output layer. There is one input layer, one output layer and many
number of hidden layers as per need.

»

TEA X D
LA
N

N

AL
RIESRN
LHZ RN

Figure 3: Neural Network Schematic inspired from [10]

Feature 2

Feature 1

Figure 4: lllustration of a Non Linear Decision Boundary on Random Data Points

2.1.4 Neural Network Training

Similar to a perceptron, there is also a training rule for a network of perceptrons joined together to
form a neural network. It achieves weight updates similar to a perceptron training rule. The
algorithm to update weights based on a training data set is called the Backpropagation Method.

In this method, a set of data with labels is fed to the network. The outcome of the network is
compared with the data labels and the error is determined. This error is then used to update the
weights. These new weights are then used to repeat the process. This is called supervised learning
process where the training data set has known output values which are used to train the network.

The error is determined in the first phase which is called the forward pass of data and the weight
update is performed in the second phase known as the backward pass. Hence the name
backpropagation.

We can summarize this algorithm as follows:

1) Initialize all weights (these can be any small number but not all zeros)
2) Until convergence, do the following steps

DO:

For each training example:

DO:
a) Compute network output from the training input
b) For each output unit k, compute
8 < Ox(1 = 0p)(Ox — ty)
c) For each hidden unit h, compute

Op < 0p(1—0p) € wp by

d) Update each network weight
Wi,j — Wi,j + AWi,j

Where
AWi,j = n6i,jxi,j

Steps a, b and ¢ comprise the forward pass of the algorithm while step d comprises the
backward pass of the algorithm.

We limit our discussion regarding the training at this point is since neural network training will
not be a part of our research, and we will only be using the existing schemes.

We will however, include a brief note on the inference process by the neural network. As explained
above, the network is arranged in the form of layers. Input data is fed in the input layer while the
output is retrieved through the output layer. The hidden layer in between uses weight values to
extract necessary features for classification. All these layers work together to get the desired result.

What we have not explained yet is what goes into the input layer. Consider an image for
classification. What part of image are we supposed to feed in to the network to classify it. These
inputs or features are acted upon by the network weights for classification. An in depth knowledge
of the area of classification is necessary to determine which features would help in classification.

To take another example, for speech classification tasks, an area expert would know that formant
frequencies fO and f1 (speech features) are required for some speech recognition tasks. This domain
specific knowledge greatly restricts the use of neural network as an effective classification
algorithm. Also, for data with very large feature size such as a 2D or a 3D image, this is a grave
limitation. A more generic solution to this is hence required.

2.1.5 Convolutional Neural Network

In recent years, Convolutional Neural Networks have become increasingly popular for image
classification tasks due to their exceptional ability to handle very high input feature size as in the
case of image recognition task. They have also been widely used in other applications such as
machine vision and data centers[11-13].

CNNs have a layered architecture with different layers performing different tasks. The layers are
then repeated multiple times to extract more and more information from the data as well as to
reduce the data size. These layers and their functions will be explained in more detail in the
subsequent sections.

The input to each layer in the CNN is called a feature. All the features to one layer are collectively
called feature map. Each layer has its own set of input or feature map which have varying
dimensions. Except for the input feature, which is the input to the first layer, all subsequent feature
map dimensions depend upon the layer architecture producing these features. Hence the output
feature map of one layer is the input feature map of the next.

2.1.6 Working Principle

As explained above, convolutional neural networks are ideal for data with very large feature size.
Image classification is one such example of this. Consider an RGB image with dimensions 32x32
(height x width). With three layers for red, green and blue, we get a total number of 3072 input
features. A convolutional neural network needs to be able to tackle two problems associated with
this data. First is to reduce the number of input features into a more manageable number. This is
achieved through pooling layers in the convolutional neural networks that reduce the number of
features in each subsequent layer of the layered architecture. Second is linked to the first, which
requires the extraction of only relevant features for successful classification of this image. This
extraction is done by the convolutional layers of the neural network which is achieved through
training the network weights. These weights are convolved with the features to extract requisite
information i.e. most relevant data to successfully classify the image. Both these layers and others
in the architecture will be explained in the next section for more details.

2.1.7 Architecture

As explained above, CNN are made of a layered architecture. These layers take input feature map
and transform it into an output feature map. This is then processed by the next layer in the
architecture.

2.1.8 Convolutional Layer

Consider an input image of dimension imy,e;gne x im,,;q., Which is fed to the convolutional layer.

This layer is formed up from a number of filters which are also referred to as kernels in the
literature.

Each filter has dimension freigne X fwiaen- SUPPOSe we have one filter in the layer. This filter is
convolved over the input image. At each point of convolution, the filter returns one pixel or value
as per the method of convolution. Hence for each input pixel, we get an output and the total output
feature map can be extracted by the following equations

Fheight fwiaen

Outy, = Z Z iMyyiyej X filter;;
i=1 j=1

Where x,y represent the pixel position in the output map which is obtained by a 2 dimensional
multiply accumulate operation between the input image and filter

Similarly, for high dimensional input feature map, we have a total number of N input feature maps
which are reduced to a single layer at the output by one filter of dimension height x width x N and
is given by:

N Sheight fwiden

Outxyy = Z z Z i‘mk_x_,_l-lyﬂ Xfl.lterk'i'j
k=1 i=1 j=1

Figure 5 illustrates this multiply accumulate operation. We notice here that the output for one filter
is always expressed in a 2 dimensional plane represented by x and y.

Commonly used filter dimensions are 3x3 and 5x5. These have been obtained through empirical
testing and have been widely adopted. An important point to note here is that due to the nature of
2D convolution that has been done here, the output dimension is always less than the input
dimension. For a given input of dimensions Input Dim x Input Dim, we get an output of dimension
Output dim x Output dim where each Output dim is given by:

Output dim = Input Dim — Filter Dim + 1

For example, for a symmetrical input of size 32 x 32 and filter size of 5 x 5, the output would be
reduced to 28 x 28. To keep the architecture symmetric, the output is usually zero padded to make
it 32 x 32 again. Zero padding is a process where the size of the feature map is increased by adding
zeros to it. This is done on the periphery of the feature map i.e along the outer edges. We will see
how this seemingly troublesome property would be used to our advantage in subsequent layers.

Activation map

32x32x3 image

3> 5x5x3 filter

ﬁ>® Convolve (slide) over all

spatial locations

A 28

3 a1

28

Figure 5: Convolution Layer Operation

10

2.1.9 Activation Layer

Similar to what we discussed in perceptron and neural network, activation function is also applied
in convolutional neural networks. The layer takes convolutional layer output maps as input and
applies an activation function to it. For example, if the activation function was a simple sign
function, we would get

Output, , = sign (Input,,,)

There are several other activation functions used in CNN. A very commonly used function is the
Rectified linear unit (RELU) which can be shown by equation below

Output, , = max (Input,, ,0)

Other commonly used activation functions include:

Sigmoid:
1
Output,, = 1o o Tty T
PReLU:
Output, , = constant x Input,,, for Input,, <0
Output,, = Input,, for Input,, = 0
ELU:

Output,, = constant (e™Putxy — 1) for Input,, <0

Output, , = Input,, for Input,, =0
These have been shown in figure 6.
Sigmoid tanh RelU PRelU ELU

/

Figure 6: Different Activation Layer Curves

11

2.1.10 Pooling Layer

As described in previous section, one of the consequences of convolving a filter over an image is
the reduction in size. This corresponds to a reduction in the number of pixels. Smaller image size
means smaller computation and memory footprint during the multiply accumulate operation. We
use this property in pooling layer. There are several ways we can do pooling. One popular method
is called the max-pool. In this method, the filters are moved over the 2D image. Instead of a MAC
operation as is the case in convolution, we take the max value of image pixels overlapped by the
filter at a given instant. We can also do an average operation instead of the max operation as is
done in average-pooling.

We can control the extent of the size reduction by controlling the stride s of the filter over the
image. A stride is the step size the filter takes while convolving over the image. For convolutional
layer, the stride s=1 is a commonly used value. We can extend the output dimension equation with
variable s in it as follows

Output dim = (Input Dim — Filter Dim)/s + 1

Through observation of the above equation, we can see that increasing stride would reduce the
Output dim.

2.1.11 Normalization

Normalization layer has recently gained popularity and is increasingly being used for training of
neural networks. It has been empirically shown that training convergence is achieved much faster
with applying a normalization factor to batch. Training process requires careful selection of initial
weight values. Otherwise, the training process becomes exceedingly slow. Batch normalization
shifts data to zero mean and unit variance. This drastically reduces training times and resource
utilization [14] and solves the convergence issue [15].

We will explain this more in the binarized network section since it is more commonly used in
reduced precision networks.

2.1.12 Fully Connected Layer

A fully connected (FC) layer is the artificial neural network explained in the previous sections.
This layer has usually no hidden layer since feature extraction is not really required which is done
by the convolutional layers. More than one fully connected layer is usually a part of the CNN
architecture. Since no convolution is performed in this step, data is more conveniently expressed
as an array rather than an image prior to feeding it to the fully connected layer. This has been
illustrated in figure 7.

12

Conv Layer
Output

FC Layer
Input

Figure 7: Conversion of data representation from image to an array

2.1.13 Softmax Layer

Softmax layer is used for classification which converts raw numerical values into probabilities of
classes. This is the final layer of the CNN architecture. Each output node from this layer represents
probability of the class value. Sum total of all outputs is equal to one. Probability of each class is
given with the below equation which is implemented in the softmax layer.

e”i

o(x;) = Y e*i

. pXi
et

Where x; represents raw output from the final FC layer for each class j. a(xj) represents probability of
classj. Y; e*i is summation for all classes i from 1 to j.

2.2 Popular Datasets

We will now briefly describe some image data sets which will be repeatedly referred to in
subsequent sections. These data sets are commonly used test cases to test neural network
performance.

2.2.1 MNIST

MNIST [16] is a set of labeled images of handwritten digits from 0 to 9. It has 60,000 training
samples and 10,000 test samples. The image size is 28 x 28 pixels for each of the samples. The
data set has been widely used to test smaller CNN architectures such as LeNet [17]. Figure 8 shows
some sample images of MNIST data set.

13

Slol/

Figure 8: MNIST Dataset Images

2.2.2 CIFAR-10

CIFAR-10 [18] is another popular dataset. The postscript 10 represents the total types of classes it
has. CIFAR-10 has 60,000 RGB images which are divided into 10 classes. Each class has 6000
images. The total number of images is divided into 50,000 training samples and 10,000 test
samples. Each image is of size 32 x 32 x 3 for the RGB layers. The images have the following
classes; airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. Figure 9 shows
sample images and their classes from CIFAR-10.

airplane 3&.‘-..9 » ...2&_
automobile n,"_'_“ .ah..$
bid Eu RES §F R
2 ﬁﬁ@. * ,.E.G‘ &
o .'lﬂ‘.i&‘mﬂﬂ
wo [S BN i EAPNEY 0
oo 0 N R I O O W B
e BRI P DA B TR
o s Bl e PR -
oo T A D S

Figure 9: CIFAR-10 Dataset Images [18]

2.2.3 ImageNet

Imagenet [19] database is the part of the Imagenet Largescale Visual Recognition Challenge
(ILSVRC) which is held annually where designers compete to achieve the highest classification
accuracy on the an immense data set of 14 million images divided into a 1000 categories. It is the
most comprehensive set of images and has been used to gauge the performance of the best machine
learning algorithms. The samples consist of 256 x 256 RGB images. The dataset is a result of a

14

massive crowdsourcing effort carried out by researchers from Princeton. The images however, are
not owned by the group and it only provides URL to each image which can be downloaded as a
set. More details can be obtained from [19].

2.3 CNN Architectures

We now give a brief description of some architectures which have outperformed other learning
algorithms in the ImageNet challenge and hence made CNN the go to architectures for many
machine learning applications.

2.3.1 AlexNet

AlexNet [20] was the first CNN architecture to win the ImageNet challenge in 2012. This
architecture proposed by Krizhevsky et al. Alexnet exploits the parallel computation capability of
traditional graphical processing units (GPU) and divides each leyer in the network between two
GPUs.

AlexNet consists of a total of 8 layers. Of these, 5 are convolutional layer and 3 are fully connected.
After the last layer, there is a softmax layer. After each convolutional layer, there is a ReLU
activation layer. There are two normalization layers after the first and the second convolutional
layers. There are three max pool layers after first, second and fifth convolutional layers. These
follow after the normalization layers. Their model achieved a top-5 error rate (make 5 class
predictions for each image) of 17.0%. Figure 10 has been adopted from the original work and
illustrates the architecture.

3 ' EA 13 dense densel
192 120 Max | L

2048 048
Max 128 Max poaling 2048
poaling paoling

45

Figure 10: AlexNet Architecture from Authors Original Work [20]
2.3.2VGG
VGG [21] is a very deep convolutional neural network exploiting extremely high computational

power of modern GPUs. It has 16 and 19 layers for VGG-16 and VGG-19 respectively.
Furthermore, it has 5 max pool layers and a softmax layer at the end of the architecture. Figure 11

15

shows the configuration extracted from the original paper [21]. It was the winner of Imagenet
challenge in 2014. It has a very symmetric architecture with all filers of size 3 x 3 which make it
convenient to implement. The extremely deep architecture corresponds to very high computational
requirements with over a 100 million training weights and around 16 billion MAC operations.
Their most dense model gave a top-5 error of 7.5% which was substantially better than the previous
models.

In figure 11, we can see various configurations tested by the authors. For the most dense
architecture of VGG-19 (column E), we can infer the following network configuration. It has a
total of 19 weight layers. It takes a 224x224 RGB image as an input. First and second convolution
layers have 64 filters each. After two convolution layers, there is a pooling layer. This is followed
by two more convolutional layers with 128 filters each. After this there is a pooling layer. This is
then followed by 4 convolutional layers with 256 filters each and then a pooling layer. In the next
4 layers there are 512 filters each followed by a pooling layer. Finally, 4 more convolutional layers
with 512 filters each is added which is again followed by a pooling layer. After all the
convolutional steps are done, 3 FC layers are added. Hence the total number of convolutional and
fully connected layers is equal to 19.

ConvNet Conﬁémation

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Figure 11: VGG Layer Configurations [21]

16

2.3.3 GoogleNet

GoogleNet [22] was a revolutionary architecture presented to overcome the drawbacks of VGG
i.e. high resource and computational requirement. It gave a top-5 error rate of only 6.7% while
only requiring 1.2 million weight values. In addition, it drastically reduced the computation
requirements with only 800 million multiply accumulate operations making it suitable for use with
low power embedded devices. The architecture achieves this by forming a network in network
architecture, small sections called the inception modules. Without going in to too much detail, we
conclude that this presented a more feasible solution than the very deep VGG.

2.3.4 SqueezNet

There have been models with an even better performance than GoogleNet such as ResNet.
However, they rely on extremely deep architectures with high resource utilization. Acting on a
different ideology of reasonable precision with reduced size, squeezenet [23] aims to achieve
performance similar to AlexNet with drastically reduced resource consumption. This model
presented by researchers from UC Berkley was created specifically for embedded domain making
them even feasible for FPGA implementation. Several researchers have been working in this field
with very promising results. The architecture relies on ‘Fire Modules’ to squeeze and expand the
layers using 1x1 and 3x3 filters. We will not go into the detail of these modules.

17

CHAPTER 3
CNN ANALYSIS AND BINARY WEIGHTED NETWORKS

3.1 Introduction

Since the main goal of this research is the implementation of CNNs on FPGA, it is pertinent to
analyze CNN architectures with respect to their resource utilization. This includes both the
memory requirements as well as the MAC operations which constitute the major portion of power
consumption on a chip. This section is important since we will start to build our case for the use
of binarized neural networks over the traditionally used full precision CNN.

3.2 Memory Analysis

Consider the example of VGG-16 which is a very deep net with 16 layers comprising of
convolution as well as fully connected layers. The total network has over 130 million weight
values. If we were to have 16 bit values for each weight, this would translate