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Monolayers of tin (stannanane) functionalized with halogens have been shown to be topological

insulators. Using density functional theory (DFT), we study the electronic properties and

room-temperature transport of nanoribbons of iodine-functionalized stannanane showing that

the overlap integral between the wavefunctions associated to edge-states at opposite ends of the

ribbons decreases with increasing width of the ribbons. Obtaining the phonon spectra and

the deformation potentials also from DFT, we calculate the conductivity of the ribbons using

the Kubo-Greenwood formalism and show that their mobility is limited by inter-edge phonon

backscattering. We show that wide stannanane ribbons have a mobility exceeding 106 cm2/Vs.

Contrary to ordinary semiconductors, two-dimensional topological insulators exhibit a high

conductivity at low charge density, decreasing with increasing carrier density. Furthermore, the

conductivity of iodine-functionalized stannanane ribbons can be modulated over a range of three

orders of magnitude, thus rendering this material extremely interesting for classical computing

applications. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901063]

I. INTRODUCTION

Recently, it has been shown theoretically that tin in a

monolayer buckled hexagonal lattice, which we will here-

after refer to as “stannanane” (from the Latin stannum for

tin),1–4 is a two-dimensional topological insulator (TI)5 also

known as quantum spin hall insulator.6 Stannanane has a pre-

dicted bandgap of 100 meV at the K symmetry-point, while

functionalization of stannanane with halogens results in

bandgaps up to 300 meV at the C-point,7 making stannanane

an interesting material for possible room-temperature nanoe-

lectronic applications.

Stannanane has not been experimentally demonstrated

yet but when looking at the experimental possibility of real-

izing monolayer tin, previous literature is encouraging: (i)

growth of a-tin, which has a hexagonal lattice along the 111-

direction, is stable up to high temperature for thin layers,8

(ii) binding of halogens with Sn is energetically favorable,9

(iii) tin can be grown epitaxially on CdTe and InSb sub-

strates,10 and (iv) monolayers of germanium (germanane)

have been grown.4 Finally, theoretical results show that sup-

ported stannanane retains its topological insulating properties

and functionalized stannanane is thermodynamically stable

with respect to halogen desorption up to high temperature.11

Stannanane’s topologically non-trivial bandstructure

leads to topologically protected edge states. Thanks to

time-reversal symmetry, intra-edge elastic backscattering is

prohibited, whereas inelastic backscattering is very weak

because of the spin-polarization of the edge states.12,13

The absence of backscattering leads to a quantized conduct-

ance (G)14,15 corresponding to a very high conductivity

(r1D ¼ GL, L being the length of the insulator), which makes

TIs interesting for electronic applications. Of course, in prac-

tice scattering with magnetic impurities, the hyperfine inter-

action,16 scattering with bulk or other edge states, inelastic

scattering, or scattering to the opposite edge will lead to a

finite conductivity.

In addition to quantum computing applications,17,18 TIs

could be employed as active elements in classical electronics

in two possible ways: (1) as highly conductive interconnects

and (2) as a spin-polarizing materials for spintronics.19

In this paper, we perform a theoretical study of the upper

limit of the conductivity of stannanane as limited by phonon-

mediated inter-edge scattering at room temperature. We

show that ribbons of TIs have a high conductivity and mobil-

ity when the Fermi level lies in the bulk band-gap, but the

conductivity decreases as the Fermi level moves out of the

bulk band-gap. This high conductivity and the ability to

modulate it suggest that two-dimensional TIs can also be of

high interest for classical computing even without the need

for a nonzero bandgap.20

We first calculate the electronic structure of stannanane

using density-functional theory (DFT). Then, we calculate

the overlap integral between edge states as a function of

ribbon-width and wave vector. Next, we calculate the pho-

non bandstructure and the electron-phonon deformation

potentials. We continue by calculating the conductivity and

the mobility using the Kubo-Greenwood formalism.21–23

Finally, we highlight the stark difference between mobility

in ordinary semiconductors and TIs and we discuss the

potential use of TIs as a future transistor channel-material.

II. ELECTRON AND PHONON BANDSTRUCTURE

The iodostannanane ribbons considered here are illus-

trated in Fig. 1. Since no experimental bandstructurea)wxv101020@utdallas.edu
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parameters are available, we have to rely on the bandstruc-

ture obtained from DFT. We use the Vienna ab initio simula-

tion package (VASP)24 with PBE functionals. We choose

iodine as a functionalizing element over other halogens

because of its lower cut-off energy and the resulting compu-

tational convenience. Furthermore, the atomic coordinates

are determined by replicating the iodostannanane unit-cell, a

number of times depending on the ribbon width and the

ribbon is terminated with an iodine atom at both edges. We

do not account for substrate effects nor do we relax the free-

standing ribbon: maintaining the bulk unit cell in the ribbons

enables the use of bulk phonons to calculate the scattering

due to the electron-phonon interaction in Sec. III.

The electronic structure of bulk iodostannanane and of a

ribbon with a width of 14 unit cells is shown in Fig. 2. Since

we consider zigzag ribbons, the bulk dispersion is folded

along the C- K direction and the ribbon dispersion resembles

the bulk dispersion along the C- M symmetry line apart from

the edge states that close the gap. For very narrow ribbons, a

small gap at the C-point is maintained because of the inter-

edge interaction. The Fermi velocity for the iodostannanane

ribbon shown in Fig. 1 is calculated to be vF ¼ dEedgeðkÞ=
dð�hkÞ � 2� 105 m=s, which is a little smaller than one half

of the velocity of unfunctionalized stannanane (4.5� 105 m/s)

and one quarter of the Fermi velocity of graphene (106 m/s).

To calculate the phonon dispersion, we consider a 3 by

3 bulk iodostannanane supercell using PHONOPY.25 The

force constants for the different atoms in the unit cell are

obtained from VASP and the dynamical matrix is computed

and diagonalized. The resulting phonon bandstructure is

shown in Fig. 3. It should be noted that the phonon energies

are much smaller than in graphene because of the higher

mass of the tin ions. The sound velocity in ribbons

(vS ¼ dx=dk) is calculated to be 1.4 km/s and 2.3 km/s for

the TA and the LA phonons, respectively.

In Fig. 4(a), we show the real-space left- and right-edge

(pseudo) wavefunction for k> 0. The left-edge state only has

a significant spin-down component and its wavefunction

quickly decays away from the left edge.26 In Fig. 4(b), we

show the �k wavefunctions to which the k> 0 states can

backscatter. Because of time-reversal symmetry, the wave-

functions with opposite k are related by the anti-unitary

transformation ð/k";/k#Þeikx ! ð/�k#;�/�k"Þe�ikx so that

backscattering to the state on the same edge assisted by a

perturbation with time-reversal symmetry is strictly

prohibited.

Figure 5 shows the overlap integral of the opposite

edge-states as a function of EedgeðkÞ for different ribbon

widths. Obviously, a smaller overlap integral (proportional

to the scattering matrix element) yields a smaller backscat-

tering rate and so results in a higher conductivity. As the

ribbon width increases, the overlap between the k> 0 and

k< 0 edge states localized at opposite sides decreases. Note

that the overlap integral also exhibits a strong dependence on

k. Although this dependence is likely to be broadened at

room temperature, for k¼ 0, the overlap remains the order of

unity. This stems from the inversion-symmetry requirement

that the wavefunctions at C (k¼ 0) be either fully symmetric

or fully antisymmetric, so that the left- and right-edge states

cannot be distinguished. Nevertheless, the larger k¼ 0-over-

lap does not affect the conductivity in any significant way

since the small bandgap still present at C forces the electron

velocity to vanish at k¼ 0 and remain small in the neighbor-

hood of the C point. Also note that near k¼ 0, the overlap

even exceeds unity since we are treating the projector aug-

mented wavefunctions27 as pseudopotential wavefunctions.

III. ELECTRON-PHONON INTERACTION

An estimate of the strength of the electron-phonon inter-

action can be obtained by calculating the deformation

FIG. 1. Illustration of the 14-unitcell zigzag iodostannanane ribbon under

study.

FIG. 2. Calculated bandstructure for bulk iodostannanane (top) and a 14

unit-cell iodostannanane ribbon as illustrated in Fig. 1 (bottom). The ribbon

bandstructure resembles the bulk bandstructure folded along the C-M direc-

tion apart from a 2-fold degenerate band associated with both edges closing

the bandgap.

FIG. 3. Phonon bandstructure of bulk iodostannanane.
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potentials for the conduction band of bulk iodostannanane:

The Hartree potential for all independent displacements of

each atom in the unit cell is calculated from VASP, as done

in Refs. 28–30. Using the electronic wavefunctions and the

ionic displacement vectors (e�q;i) from the phonon dispersion

calculation, where � is the phonon branch index, q is the

two-dimensional phonon wavevector, and i is the ion index,

the deformation potential is calculated from

DK�
k;q¼

X
r

s¼";#

/�kþq;s rð Þeiq� r�Rið Þ/k;s rð Þ
ffiffiffiffiffiffi
M

Mi

r
e�q;i �

@VH rð Þ
@Ri

; (1)

where Mi and M are the masses of the ions and of the unit

cell, respectively, VHðrÞ is the Hartree part of the local

potential, and the sum is performed over all positions in a

suitable real-space mesh and over both spin components.

The largest deformation potential at small momenta is due

the phonon branch corresponding to the out-of-phase vibra-

tions of the tin-iodine bond with an energy of 24.5 meV.

However, since both the magnitude of the displacement vec-

tor and the phonon occupation number are inversely propor-

tional to the phonon frequency, it is the ratio jDK�j2=ðxÞ2
that determines which phonons cause the largest scattering

rate. In the limit q! 0, this ratio is two orders of magnitude

larger for the transverse and longitudinal acoustic phonons

than for the optical phonons and for the out-of-plane acoustic

phonons. Thus, one has only to consider scattering with

transverse and longitudinal acoustic phonons and the

computed value for the deformation potentials DLA;TA

¼ dDK=dq ¼ 27 eV.

The bulk two-dimensional electron-phonon Hamiltonian

in the deformation potential approximation reads

Hep ¼
X

q

Djqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h

WL2qxq

s
eiq�rðâ qð Þ þ â† �qð ÞÞ (2)

with D the deformation potential, W and L the ribbon width

and length, q the two-dimensional mass density, xq the

phonon frequency and a(q) and a†ðqÞ phonon annihilation

and creation operators. In the elastic approximation, the tran-

sition probability due to phonon scattering is

Wkxk0x ¼
2p
�h

X
q

�hD2jqj2

WL2qxq

Inkn0k0q

� 1þ 2� xqð Þ
� �

d Enk � En0k0ð Þ (3)

with Inkn0k0q ¼ jhnkjeiq�rjn0k0ij2. For the acoustic phonons,

xq � vsjqj and the Bose-Einstein distribution �ð�hxqÞ
� kBT=�hxq � 1, which yields

Wnkxn0k0x �
2p
�h

X
q

D22kBT

WL2qv2
s

Inkn0k0qd Enk � En0k0ð Þ: (4)

The momentum relaxation rate is computed by

s�1
n kð Þ ¼

X
k0x

Wnkxn0k0x

vn kð Þ � vn0 k0ð Þ
vn kð Þ

(5)

¼
X

a

2pD2kBT

�hq1Dv2
s

dEn kxð Þ
dkx

� ��1����
nkx¼a

� vn kð Þ � vn0 k0ð Þ
vn kð Þ

�
X

qy

ð
dr3 u�aðyÞeiqyyunkx

ðyÞ
����

����
2

; (6)

where a is an index and is summed overall n0k0 6¼ nk, which

satisfy Ea¼Enk and q1D ¼ qW ¼ MNy=a with M the mass of

FIG. 4. Illustration of the magnitude of the spin components for both left and right edge states at kþ ¼ 0:0025� 2p=a > 0 in the conduction band state (E> 0)

(a) and both the left and right edge states for k� ¼ �kþ < 0 (b) for the 14-cell wide ribbon. The quantity plotted is the squared magnitude averaged along the

x direction (as indicated in Fig. 1) and only areas, where the averaged squared magnitude exceeds 2% of the maximum averaged squared magnitude are col-

ored. The center of the ribbon coincides with the center of the figure. Back-scattering between the left-edge states is prohibited because of time-reversal sym-

metry but back-scattering between opposite edge states is allowed although strongly suppressed for wide ribbons.

FIG. 5. The wavefunction overlap as a function of energy for different rib-

bon widths. For most E, the wavefunction overlap decreases exponentially

as the ribbon width increases but in a narrow region near E¼ 0 (k¼ 0),

where k � �k, there is no distinction between left- and right edge waves

and the overlap is close to unity. On the other hand, the states near k¼ 0 will

not affect the conductivity since the electron velocity / dE=dk vanishes.
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the unit cell, Ny the number of unit cells in the ribbon and a
the unit cell length along the x-direction. For our ribbons, we

sum over qy ¼ n2p=W with n going from �bðNy � 1Þ=2c to

bNy=2c; this corresponds to imposing Born-von Karmann

boundary conditions on the phonon displacement.

In our calculations, we use a¼ 4.9 Å as the ribbon lattice

constant. The momentum relaxation rate is calculated as the

sum of a LA and TA scattering rate: s�1 ¼ s�1
LA þ s�1

TA. Each

scattering rate s�1
TA;LA is calculated with its own deformation

potential, DTA;LA¼ 27 eV and its own sound velocity

vLA ¼ 1:4 km=s and vTA ¼ 2:3 km=s.

A more rigorous approach of dealing with the phonons

would either involve the calculation of the ribbon phonons

from first principles or to impose free-floating boundary

conditions as is done in Ref. 31. However, the main physics

will not be drastically affected and the use of bulk phonons

and imposing Born-von Karmann boundary conditions suffi-

ces to come to the conclusions of this paper.

IV. CALCULATION OF MOBILITY

In order to evaluate the electron conductivity, we use

the Kubo-Greenwood formula

r1D ¼
2e2

kBT

X
j

ð
dk sj kð Þvj kð Þ2f Ej kð Þ

� �
1� f Ej kð Þ

� �� �
; (7)

where f(E) is the Fermi-Dirac distribution, whose Fermi level

EF is taken as a parameter, the temperature T is taken as

300 K, j is the band index, vj(k) is the electron-velocity

computed from the bandstructure as vjðkÞ ¼ dEjðkÞ=dð�hkÞ,
and the factor 2 results from considering left- and right-edge

degeneracy.

In Fig. 6(b), we show the conductivity as a function of

the Fermi level, EF. The conductivity increases as the ribbon

width increases due to the reduced overlap between the

edge states reaching a maximum when the Fermi level is in

the bulk band-gap for all ribbons wider than 8 unit cells.

However, since the group velocity is higher near the

conduction-band minimum than near the valence-band maxi-

mum, the largest conductivity is seen when EF is closer to the

bulk conduction-band minimum than to the bulk valence-

band maximum.

A more familiar figure-of-merit for electronic perform-

ance is the mobility. This can be obtained from the conduc-

tivity and the conduction band charge density

l ¼ r1D EFð Þ
eqel;1D EFð Þ

and qel;1D ¼
ð

dk

2p
f Ec kð Þð Þ : (8)

Figure 6 shows that the phonon-limited mobility of iodostan-

nanane for the widest ribbon exceeds the graphene mobility

�106 cm2=Vs.32

With these high conductivities and mobilities, it is

important to remember that competing scattering processes

such as impurity scattering or edge-roughness scattering will

also be strongly suppressed for wide ribbons. But the current

in iodostannanane will also never exceed the ballistic limit

and for short ribbons, conductance rather conductivity will

limit the current. Nevertheless, as ribbon lengths increase,

diffusive transport will always dominate.

The physical processes that control the electron-phonon-

limited conductivity in 2D TI ribbons differ sharply from

those that control the conductivity of conventional semicon-

ductors. In ordinary semiconductors, the conductivity is

approximately linearly proportional to the density of free

carriers, n, via r ¼ nel, and the mobility is mainly deter-

mined by the electron velocity (in addition to the scattering

rates, obviously). In 2D TIs, instead, the conductivity is

determined by inter-edge scattering and so by the overlap

factor, resulting in a behavior that is extremely (exponen-

tially) sensitive to the width of the ribbon. Furthermore, as

the Fermi level increases towards the conduction-band

minimum, the free-carrier density in the conduction band

increases but, simultaneously, the carrier velocity decreases

and scattering towards bulk states becomes possible, effects

that suppress the conductivity. Therefore, in TIs, the conduc-

tivity is inversely proportional to the charge density.

When considering TIs for transistor applications, it is

important to remember the great strength of semiconductors:

the ability to modify charge density over many orders of

magnitude with a small change in bias. Ideally, for every

log(10)kT/e change in Fermi level, the charge density

changes by an order of magnitude. Since the conductivity of

semiconductors is linearly proportional to the charge concen-

tration, the conductivity can also be changed over many

orders of magnitude. Thus, viewing this from a topological

perspective, it is possible to change an ordinary semiconduc-

tor from an insulator to a metal by applying an external bias

and so moving the Fermi level into the conduction band.

This is exactly the basic working principle of the Metal-ox-

ide-semiconductor field-effect transistor (MOSFET).

Here, we have demonstrated a similar concept: The mo-

bility of TI ribbons is also strongly (exponentially) depend-

ent on the position of the Fermi level, although in the

opposite way, and it is possible to modulate the conductivity

over 3 orders of magnitude. This finding opens the idea of a

TI-based MOSFET in which a transition from a low- to

high-conductivity state can be obtained by shifting the Fermi

level towards the middle of the TI bulk band-gap via the gate

bias. A possible advantage of this alternative gating scheme

consists in the fact that only a small amount of charge needs

FIG. 6. One-dimensional conductivity and mobility as a function of Fermi

level for different ribbon widths, width is expressed in number of unit cells.

The conductivity and mobility reach a maximum when the Fermi level lies

in the bulk bandgap. For wide ribbons, the mobility is very high and exceeds

106 cm2/Vs.
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to be displaced to obtain the highly conductive state, thus

suggesting high-speed switching thanks to the high velocity

of the charge carriers.

V. CONCLUSION

Using DFT, we have computed the electronic and

phonon bandstructure for iodostannanane ribbons. While

intra-edge backscattering is prohibited because of the spin-

polarization of the edge-states, the wavefunction overlap

characterizing inter-edge backscattering was calculated and

shown to be reducing exponentially with ribbon width. The

conductivity was calculated using the Kubo-Greenwood for-

malism and was shown to be very high. Along with the con-

ductivity, the mobility was calculated as well and in wide

ribbons, the mobility even exceeded 106 cm2/Vs. At the same

time, we have shown that the conductivity is also strongly de-

pendent on the position of the Fermi level. And the ability to

modulate the conductivity opens up the possibility of using

topological insulators for transistor applications.
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