
VARIATIONAL VOLUMETRIC MESHING

by

Saifeng Ni

APPROVED BY SUPERVISORY COMMITTEE:

Xiaohu Guo, Chair

Ovidiu Daescu

B. Prabhakaran

Sergey Bereg

Copyright © 2018

Saifeng Ni

All rights reserved

To my family.

VARIATIONAL VOLUMETRIC MESHING

by

SAIFENG NI, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2018

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my adviser, Dr. Xiaohu Guo,

for his great guidance and support during my Ph.D. study. I really appreciate his time,

knowledge and also his serious attitude on research yet easy-going personality.

Secondly, I would like to thank Dr. Wenping Wang at the University of Hong Kong, Dr.

Yang Liu at Microsoft Research Asia, Dr. Jin Huang at Zhejiang University, Dr. Bruno

Levy at Inria, Dr. Zhonggui Chen at Xiamen University, Dr. Zichun Zhong at Wayne State

University for the professional opinions and assistance on my research.

Thirdly, I would like to show appreciation to all the other members of the supervisory

committee: Dr. Balakrishman Prabhakaran, Dr. Ovidiu Daescu, Dr. Sergey Bereg, for your

help on this dissertation.

Fourthly, I would like to give thanks to all my friends in Dallas, particularly my labmates

in the UTD Computer Graphics & Animation (CGA) Lab: Yin Yang, Zichun Zhong, Liang

Shuai, Yuan Tian, Yiqi Cai, Chao Wang, Chao Li, Baorong Yang, Yeqi Wang, Zheheng

Zhao, Steven Hougue and Xiao Dong.

Last but not least, I am grateful to my family, for their love and support all the time. I

want to say thank you to my husband, Xuming Zhai. Without his spiritual and technical

support, it would be hard for me to accomplish this dissertation.

July 2018

v

VARIATIONAL VOLUMETRIC MESHING

Saifeng Ni, PhD
The University of Texas at Dallas, 2018

Supervising Professor: Xiaohu Guo, Chair

Domain discretization, also referred to as mesh generation, is one of the fundamental steps of

many computation based applications. Although mesh generation techniques have evolved

rapidly over the years, some volumetric meshing problems like sliver suppressing in tetrahe-

dral meshing, field-aligned tetrahedral meshing, and hexahedral meshing are still not fully

resolved. In this dissertation, we bring some insights to those problems.

This dissertation discusses variational-based methods to tackle mesh generation problems,

i.e., we model these problems in the energy optimization framework. An energy which

inhibits small heights is proposed to suppress almost all the badly-shaped elements in tetra-

hedral meshing. By iteratively optimizing vertex positions and mesh connectivity, slivers are

harshly suppressed even in anisotropic tetrahedral meshing. Besides that, a particle-based

field alignment framework is introduced. Specifically, a Gaussian Hole Kernel is constructed

associated with each particle to constrain the formation of the desired one ring structure

aligned with the frame field. The minimization of the sum of Gaussian hole kernels induces

an inter-particle potential energy whose minimization encourages particles to have the de-

sired layout. A cubic one ring structure leads to high quality hexahedral-dominant meshing.

The one ring structures of the Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC)

lattice leads to high quality field-aligned tetrahedral meshing. This is the first time both

Riemannian distance alignment and direction alignment problems have been considered in

vi

tetrahedral meshing. Also, field-aligned tetrahedral meshing better preserves the rotation

geometry and also creates better anisotropic meshes.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xv

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND AND RELATED WORK 4

2.1 Backgrounds . 4

2.1.1 BCC and FCC Lattices . 4

2.1.2 Frame Field and Imagined Space . 5

2.2 Related Work on Tetrahedral Meshing . 6

2.2.1 Silver by Variational-method . 8

2.3 Hexahedral Meshing and Hexahedral-dominant Meshing 9

CHAPTER 3 SLIVER-SUPPRESSING TETRAHEDRAL MESHING 13

3.1 Overview . 13

3.2 Shape Matching Triangulation Energy . 14

3.2.1 Edge-Based Shape Matching (ESM) 15

3.2.2 Gradient-Based Shape Matching (GSM) 17

3.2.3 The Importance of GSM Energy in Tetrahedral Meshing 20

3.3 GSM Energy Optimization . 21

3.3.1 Vertex Smoothing . 21

3.3.2 Connectivity Update . 23

3.3.3 Boundary and Feature . 24

3.4 Experiment and Comparisons . 26

3.4.1 Quality Measurement . 27

3.4.2 Isotropic Tetrahedral Meshing . 27

3.4.3 With Sharp Features . 28

3.4.4 Adaptive and Anisotropic Tetrahedral Meshing 28

3.4.5 Running Time and Convergence Analysis 32

viii

3.4.6 Robustness . 34

3.5 Conclusion . 35

CHAPTER 4 FIELD ALIGNED FRAMEWORK 36

4.1 Overview . 36

4.2 Particle-Based Optimization Method . 36

4.2.1 Gaussian Hole Kernel . 37

4.2.2 Lattice Optimization . 39

4.3 Field Aligned Tetrahedral Meshing . 46

4.3.1 Overview . 46

4.3.2 Tetrahedral Mesh Generation . 48

4.3.3 Experiments of Field Aligned Tetrahedral Meshing 48

4.3.4 Discussion and Future Work . 61

4.4 Hexahedral-Dominant Meshing . 62

4.4.1 Overview . 62

4.4.2 Mesh Generation . 65

4.4.3 Experiment and Comparison . 70

4.4.4 Limitation and Future Work . 82

CHAPTER 5 CONCLUSION AND FUTURE WORK 89

REFERENCES . 90

BIOGRAPHICAL SKETCH . 96

CURRICULUM VITAE

ix

LIST OF FIGURES

2.1 BCC and FCC lattice . 5

3.1 The illustration of edge-based shape matching for a 2-simplex. 16

3.2 The illustration of gradient-based shape matching for a 2-simplex. 18

3.3 Several typical badly-shaped tetrahedrons (Freitag and Knupp, 2002). 19

3.4 Comparison of ESM and GSM on the Bumpycube volume. The red ones are
tetrahedrons with the smallest dihedral angles less than 18°, while the blue ones
are tetrahedrons with the smallest dihedral angles less than 36°. 28

3.5 Duck volume meshing with 10,000 vertices. The red ones are tetrahedrons with
the smallest dihedral angles less than 20, while the blue ones are tetrahedrons
with smallest dihedral angles less than 40. 29

3.6 Fandisk volume meshing with 18,000 vertices. The red ones are tetrahedrons with
the smallest dihedral angles less than 20, while the blue ones are tetrahedrons
with the smallest dihedral angles less than 40. 30

3.7 Sphere volume meshing(10,000 vertices) with scaling field. The red ones are
tetrahedrons with the smallest dihedral angles less than 15, while the blue ones
are tetrahedrons with the smallest dihedral angles less than 30. 31

3.8 Sphere volume meshing (10,000 vertices) with sinusoidal variation of anisotropy.
The red tetrahedrons are the ones with smallest dihedral angles less than 15,
while the blue tetrahedrons are the ones with smallest dihedral angles less than 30. 31

3.9 Sphere volume meshing (10,000 vertices) with sinusoidal variation of anisotropy.
The red tetrahedrons are the ones with smallest dihedral angles less than 15,
while the blue tetrahedrons are the ones with smallest dihedral angles less than 30. 32

3.10 (a), (b), (c), (d) Dihedral angle and radius ratio quality changing along with
computational time of the Duck model. (e) GSM energies changing along with
the round numbers in different initializations. 34

3.11 Teddy volume meshes with different vertex numbers. The blue ones are tetrahe-
drons with the smallest dihedral angle less than 40°. Note: there’s no tetrahedron
with the smallest dihedral angle less than 20°. 35

4.1 Initial particle distribution, and particles before and after insertion and deletion.
The gray ones are particles on the boundary. The red ones are particles inside
the boundary. 40

4.2 The energy curve of Kitten Model about BCC optimization with 20 rounds of
LBFGS optimization. The purple and green numbers are the number of being
deleted and inserted at the end of each round respectively. The zoom-in view of
the last 10 rounds is also provided. 46

x

4.3 Comparison with the traditional Gaussian kernel method proposed in Parti-

cle2013 (Zhong et al., 2013). The first row is the result on surface. The second

shows the tetrahedra with θmin < 40°. The third row shows the clipping views.

The following rows are histograms of dihedral angles, edge radius ratio, condition,

and alignment error. 50

4.4 Comparisons with CVT and ODT on Fandisk model. The first row shows the

clipping views. The second row shows the tetrahedra with θmin < 40°. The

following rows are histograms of dihedral angles, edge radius ratio, condition,

and alignment error. 53

4.5 Comparisons with CVT and ODT on Bimba model. The red tetrahedra shown

in the second row have θmin < 40°. 54

4.6 BCC and FCC experiments on Torus with I and Ry rotation fields. The yellow

ones are the clipping views. 56

4.7 BCC and FCC experiments on Fancyring with different rotation fields. The red

ones are the tetrahedra with θmin < 40°. 57

4.8 Anisotropy variation along a single direction on Cube [0.1, 1.1]3. The inverse

of frame field is defined as B = diag
((

1.0125− e−|x−0.6|)−1
, 1, 1

)
. The second

row shows the clipping views of the result tetrahedral meshes. The last four rows

show the histograms of dihedral angle, edge radius ratio, condition, and alignment

error. 59

4.9 Cylindrical anisotropy on Cube [1, 11]3. The inverse of frame field is defined

as B = S ∗R, where S = diag

((
1.05− e−0.01|x2+y2−49|

)−1

, 1, 1

)
, and the three

columns of R are
(
−x/

√
x2 + y2, y/

√
x2 + y2, 0

)
,
(
−y/

√
x2 + y2, x/

√
x2 + y2, 0

)
,

and (0, 0, 1), respectively. The second row is the clipping view of the result tetra-

hedral meshes. The last four rows show the histograms of dihedral angle, edge

radius ratio, condition, and alignment error. 60

4.10 The first two rows shows BCC and FCC results in different vertex numbers. The

next two rows show the quality statistics and time consumption with different

numbers of vertices on Teddy. 61

4.11 Field-aligned anisotropic triangular meshing on Cyclide, compared with Parti-

cle2013 (Zhong et al., 2013) and LCT (Fu et al., 2014). The three columns are

the results of Particle2013 method, LCT method, and our method, respectively.

The first two rows show the resulting surface meshes and the zoom-in views of

the narrow part. r6 shown in the first row is the ratio of vertices with degree 6

in the result mesh. The last two rows are the histograms of θmin and ξ. 63

xi

4.12 The particles and mesh results on Front Upright ASM005 Model. The three
images on the left show the particle results in zoom-in views. The gray particles
are on the domain boundary surface and the red ones inside the domain. The
three images on the right show the corresponding hexahedral-dominant mesh in
cut-out views. 64

4.13 The 20 rounds of L-BFGS optimization on the Fertility model. The optimization
starts from a random initialization of 10,000 particles. The purple numbers are
the numbers of particles being deleted after each round. The green numbers are
the numbers of particles being inserted after each round. The blue numbers are
the computation time in seconds. The second curve shows the zoom-in view of
the last 10 rounds. The energy raise at the beginning of each round is caused
by two reasons: one is particle insertion and deletion; the other one is particle
projection. 65

4.14 Optimization of particles on a 2D plane with different weights w. 72

4.15 Hexahedral meshing with different frame fields on Cube and Warped Cube mod-
els. (a) T = I ; (b) stretch along x-axis; (c) linear scale along x axis, first linearly
decreasing then linearly increasing; (d) scale linearly increasing along x axis; (e)
shear along y; (f) shear along both y and z. 74

4.16 Three different frame fields are tried on the Cylinder model. The first and sec-
ond rows show our results with closed-form frame fields, with and without scale
correction along the radius, respectively. The third and fourth rows show our
Particle and Gao et al.’s results with a discrete frame field generated by their
method. The last column shows the corresponding non-hex elements. Non-hex
elements including prisms, pyramids, and tetrahedra are shown in green, blue,
and red, respectively. In Gao et al.’s results, non-hex polyhedra with different
number of faces are rendered in different colors, including 6-face polyhedra with
triangle faces shown in green color. Our result in the first row does not have
non-hex element. 75

4.17 A comparison of our particle (left) and Lp-CVT (right) methods on Anc101 model.
The first row is the result mesh on domain boundary. The second row shows the
non-hex elements including prisms, pyramids, and tetrahedra in green, blue, and
red, respectively. The third rows is the clipping view. The fourth row shows the
histograms of alignment errors measured in degrees. 77

4.18 Comparison between our method (left) and PGP3D (right) methods on Bunny
model. The non-hex elements are shown in the second row, including prisms,
pyramids, and tetrahedra rendered in green, blue, and red, respectively. The
third row is the clipping view. The bar graphs in the fourth row shows the ratio
of numbers of all elements including hexahedra (H), prisms (Pr), pyramids (Py)
and tetrahedra (T). Note that the views of non-hex elements in the second row
may give you the wrong impression of more non-hex elements in our result, which
is caused by 3D projection. Non-hex elements in different depth are overlaid
together. The following two rows are good proof of the better quality of our results. 78

xii

4.19 Comparison between our method and PGP3D method on Cubo model. The non-
hex elements including prisms, pyramids, and tetrahedra are rendered in green,
blue, and red, respectively. The bar graph shows the ratio of numbers of all
elements including hexahedra (H), prisms (Pr), pyramids (Py) and tetrahedra (T). 78

4.20 Comparison between our method and PGP3D method on Switchmec model. The
non-hex elements shown in the second row including prisms, pyramids, and tetra-
hedra are rendered in green, blue, and red, respectively. 79

4.21 Comparison of computation time to generate point set between our method and
PGP3D method on Venus model. Three input tetrahedral meshes of different
densities are used. Their vertex numbers are given in the legend. For each input
tetrahedral mesh, point sets of different sizes are generated. The experiments
of PGP3D are done by two machines: Intel(R) Core(TM) i7-6820HQ CPU @
2.70GHz (the experiments with the two smaller tetrahedral meshes) and Intel(R)
Core(TM) i7-6800K CPU @ 3.40GHz (the experiments with the largest tetrehe-
dral mesh). 79

4.22 A comparison between our method and Gao et al.’s method on ASM Diff027,
a CAD model with thin features. The first row shows the result on domain
boundary. The second row shows the non-hex elements. In our result, non-hex
elements including prisms, pyramids, and tetrahedra are shown in green, blue, and
red, respectively. In Gao et al.’s results, non-hex polyhedra with different number
of faces are rendered in different colors, including 6-face polyhedra with triangle
faces shown in green color. The third row shows the histogram of alignment
error measured in degrees. (a) and (b) are comparisons with the same QSJ . The
relationship between QSJ and Hvol% is shown in (c). 84

4.23 A comparison of our method and Gao et al.’s method on the Elephant Model.
The first and second row are the results of our particle method and Gao et al.’s
method. The first column shows the result mesh on domain boundary. The
second column shows the non-hex elements. In our result, non-hex elements
including prisms, pyramids, and tetrahedra are shown in green, blue, and red,
respectively. In Gao et al.’s results, non-hex polyhedra with same number of
faces are rendered in one color, including 6-face polyhedra with triangle faces
shown in green color. The clipping view is shown in the third column. The
fourth column shows the histogram of alignment error measured in degrees. The
first two rows are comparisons under the same QSJ . The relationship between
QSJ andHvol% is shown in the last row. 85

4.24 Comparison of our result (left) and Gao et al.’s result (right) on Front Upright
Model. In our result, non-hex elements including prisms, pyramids, and tetra-
hedra are shown in green, blue, and red, respectively. In Gao et al.’s results,
non-hex polyhedra with different number of faces are rendered in different colors,
including 6-face polyhedra with triangle faces shown in green color. 87

xiii

4.25 The meshing results before and after mesh refinement on the Skull model. The
vertex number is changing from 12837 to 27597 after mesh refinement in the
first column. The vertex number is changing from 96504 to 104741 after mesh
refinement in the second column. The first row shows the results before mesh
refinement. The second row shows the results after mesh refinement. The third
row shows the clipping view after mesh refinement. 88

xiv

LIST OF TABLES

3.1 Quality statistics of all volume meshing models. Note: best results of each model

are in bold font. 33

3.2 Quality statistics of Teddy volume meshes with different vertex numbers. 34

4.1 The mesh quality in comparison with Particle2013 (Zhong et al., 2013). #V and

#T are the numbers of vertices and tetrahedra in the result meshes. #T<20°

and #T<40° are the numbers of tetrahedra with θmin < 20° and θmin < 40°,
respectively. The minimum/maximum, mean, and standard deviation of smallest

dihedral angle θmin, largest dihedral angle θmax, edge radius ratio ρ, condition

κ are provided. The mean and standard deviation of alignment error ε are also

listed. Note that the best values are highlighted in bold for each group. 52

4.2 Comparison with CVT and ODT. #V and #T are the numbers of vertices and

tetrahedra in the output meshes. The mean value of smallest dihedral angle

θmin, largest dihedral angle θmax, edge radius ratio ρ, condition κ, and alignment

error ε are provided. The computation time is provided, which is the total time

including particle optimization and mesh generation. Note that the best values

are highlighted in bold for each group. 55

4.3 The quality statistics of rotation alignment experiments on Torus and Fancyring.

#V and #T are the numbers of vertices and tetrahedra of the result meshes.

#T<20° and #T<40° are the numbers of tetrahedra with θmin < 20° and θmin < 40°,
respectively. The minimum, mean, and standard deviation of smallest dihedral

angle θmin, edge radius ratio ρ, condition κ are provided. The mean and standard

deviation of ε are also listed. Dist is the Hausdorff distance between the boundary

surfaces of the result and input meshes. Note that the best values are highlighted

in bold for each group. 56

4.4 Statistics of mesh quality and time consumption compared with LCT (Fu et al.,

2014). #V and #T are the numbers of vertices and tetrahedra of the result

meshes. #T<20° and #T<40° are the numbers of tetrahedra with θmin < 20° and

θmin < 40°, respectively. The mean of smallest dihedral angle θmin, edge radius

ratio ρ, condition κ, and computation time are provided. Note that the best

values are highlighted in bold for each group. 58

4.5 Experimental parameters . 73

xv

4.6 Statistics and time consumption of models with our particle method and PGP3D
method. #Vert is the number of particles in the resulting mesh. #Hex% and
Hvol% are used to measure the proportion of the hexahedral elements. Non-hex
element proportions are measured by #Pri%, #Pyr% and #Tet%. The shape
quality of the hex element is measured by Scaled Jacobian QSJ in Eq. (4.5). The
Hausdorff distance before and after refinement are listed in column dist1 and dist2
respectively. The number before “|” is the Hausdorff distance of the result mesh
to the input boundary mesh. The number after “|” is the Hausdorff distance
of the input boundary mesh to the result mesh. The time consumption for the
particle optimization (Pointset), mesh refinement (Refine) and Tet. to Hex. mesh
construction (Tet2Hex) are given. The total time is provided. The time items
with * are the total time given in PGP3D paper, which include all the steps. All
the times are measured in seconds. Note: n/a denotes that we do not have their
results. 83

4.7 Statistics and time consumption of models with our particle method and Gao et
al.’s method. Our results are in the gray rows, and Gao et al.’s results are in the
white rows. #Vert is the number of particles in the resulting mesh. Hvol% is the
volume percentage of hex elements. The quality of hex element is measured by
Scaled Jacobian QSJ . To show the advantage of our method, we adjust Qbound to
get the same QSJ as Gao et al.’s result, while obtaining higher Hvol%. H∗vol% and
Q∗SJ are the hex quality of our method when setting Qbound = 0. θa is the mean
alignment error. #p is the max number of faces in the result hexahedral-dominant
mesh. The total computation time is provided in seconds. 86

4.8 The quality statistics and time consumption of meshing before and after mesh
refinement on the Skull model. The gray and white rows are the results before and
after mesh refinement respectively. dist is the Hausdorff distance. The number
before |is the Hausdorff distance from the resulting mesh to the input boundary,
the number after |is the Hausdorff distance in the reverse way. 87

xvi

CHAPTER 1

INTRODUCTION

Mesh Generation is the process of discretizing a physical domain into a set of connected but

non-overlapped elements, in order to solve a numerical solutions for a particle differential

or integral equation. Decomposing a geometric domain into high quality subregions, or ele-

ments, is one of the biggest challenges in scientific computing. The surface domain can be

decomposed to triangles and quads. The volume domain can be subdivided into tetrahe-

drons, prisms, pyramids, and hexahdrons. Mesh quality is important for particle differential

equation (PDE) based simulations. A poor quality element will cause ill-conditioned prob-

lems in numerical simulation which may destroy the efficiency and accuracy of the solution.

To utilize meshes in numerical applications, some of the following requirements are usually

expected.

• The number of the elements are less than a certain number to maintain the scale of

the problem.

• The mesh is fine enough in some important regions to gain best approximation in

numerical simulation.

• The qualities of the elements are above some threshold to avoid ill-conditioned matrices.

• The mesh well represents the boundary of the geometry.

In some applications, a triangular mesh / tetrahedral mesh may have lower performance

than quadrilateral / hexahedral mesh. The later ones usually have less elements with the

same number of vertices. Besides that, element alignment is important for some applications.

Based on the current status and requirement in volumetric meshing, this dissertation

tackles some remaining issues (e.g., sliver exudation in tetrahedral meshing), raises the di-

rectional alignment problem in tetrahedral meshing (i.e. field-aligned tetrahedral meshing),

1

and proposes a new method to optimize the vertices for hexahedral-dominant meshing. All

mesh generation methods discussed in this dissertation are variational-based methods, which

model the problem in energy optimization framework. The main contributions of this dis-

sertation include the following:

• A novel shape matching energy is proposed to suppress slivers for tetrahedral mesh gen-

eration. Given a volumetric domain with a user-specified template (regular) simplex,

the tetrahedral meshing problem is transformed into a shape matching formulation

with a gradient-based energy, i.e., the gradient of a linear shape function. It effectively

inhibits small heights and suppresses all the badly-shaped tetrahedrons in tetrahedral

meshes. The proposed approach iteratively optimizes vertex positions and mesh con-

nectivity, and makes the simplices in the computed mesh as close as possible to the

template simplex.

• A particle-based frame field alignment framework is proposed to optimize a set of

vertices displaying the desired pattern guided by frame field. A Gaussian Hole Kernel

associated with each particle is constructed. Minimizing the sum of kernels of all

particles encourages the particles to form the desired layout.

– Based on above framework, we raise the frame field alignment problem in tetra-

hedral meshing and generate field-aligned tetrahedral meshes, guided by cubic

lattices, including BCC (Body-Centered Cubic) and FCC (Face-Centered Cubic)

lattices. Given a volumetric domain with an input frame field and a user-specified

edge length for the cubic lattice, we optimize a set of particles to form the desired

lattice pattern, e.g., field-aligned BCC and FCC. The resulting set of particles

are connected to yield a high quality field-aligned tetrahedral mesh. As demon-

strated by experiments and comparisons, the field-aligned and lattice-guided ap-

proach can produce higher quality isotropic and anisotropic tetrahedral meshes

than state-of-the-art meshing methods.

2

– Besides that, we also apply the particle-based variational approach to the gen-

eration of hexahedral-dominant meshes. Given a volume domain with an input

frame field and user-specified target edge lengths of hexahedral elements, our

method generates a hexahedral-dominant mesh aligned with the input frame field.

Specifically, the sum of Gaussian hole kernels induces an inter-particle potential

energy whose minimization encourages the neighboring particles of each kernel

to have a desired hexahedral layout. The definition of the Gaussian hole kernel

also allows anisotropic meshing. Upon convergence, the particles form a distinct

hexahedral pattern to yield a hexahedral-dominant mesh. Our method is more

efficient and produces better-quality meshes than the state-of-the-art hexahedral-

dominant meshing algorithms, as demonstrated by extensive experiments and

comparisons.

3

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Backgrounds

2.1.1 BCC and FCC Lattices

A Body-Centered Cubic (BCC) lattice is formed by vertices of cubic cells along with cell

centers as shown in Figure 2.1a. Their Voronoi cells are truncated octahedra, and each dual

Delaunay tetrahedral element has dihedral angles [60°(4), 90°(2)], called BCC tetrahedron.

BCC lattice is the optimal lattice quantizer in terms of the mean squared error (Barnes and

Sloane, 1983). Every point in the BCC lattice has identical one-ring neighbor structures,

consisting of 8 nearest neighbors and 6 second-nearest neighbors. For a regular cubic lattice

with unit edge length, the 14 one-ring neighbors of each vertex consist of the set:

OneringBCC ={±0.5,±0.5,±0.5}∪

{{±1, 0, 0}, {0,±1, 0}, {0, 0,±1}}.
(2.1)

A Face-Centered Cubic (FCC) lattice consists of vertices of cubic cells and their face

centers as shown in Figure 2.1b. Their Voronoi cells are rhombic dodecahedra, and the

dual Delaunay tetrahedral elements include two kinds of tetrahedra with dihedral angles

[54.735°(4), 90°, 109.47°] and [70.528°(6)]. Comparing to BCC, FCC is preferred as a finite-

element mesh generation in terms of better approximation error bounds (Radovitzky and

Ortiz, 2000). Each inner vertex in FCC lattice has the same one-ring neighbor structures,

denoted as:

OneringFCC ={{±0.5,±0.5, 0}, {±0.5, 0,±0.5}, {0,±0.5,±0.5}}

∪ {{±1, 0, 0}, {0,±1, 0}, {0, 0,±1}}.
(2.2)

The number of one-ring neighbors Nor for each vertex is: Nor = 14 for BCC and Nor = 18

for FCC.

4

reference particle
8 nearest neighbors
6 second-nearest neighbors

(a) BCC lattice

reference particle
12 nearest neighbors
6 second-nearest neighbors

(b) FCC lattice

Figure 2.1: BCC and FCC lattice

2.1.2 Frame Field and Imagined Space

A frame field specifies the anisotropic behavior of a certain surface or volume domain. In

3D volume meshing, a discrete frame field is defined on a tetrahedral mesh by a smoothly-

varying set of three vectors, i.e., Ti = [ti1 , ti2 , ti3] at each vertex i or each tetrahedron i

. These vectors can be non-orthogonal to each other and each vector can have non-unit

length. If ti1 , ti2 , ti3 are orthonormal for every i, the frame field reduces to a cross field. The

formation of matrix Ti from these three vectors is not unique since the order of these three

vectors can be different and the sign of each vector can be flipped.

The vectors of Ti define the relative length and alignment of edges starting from point i

to form a hexahedral mesh. Suppose ei1, ei2, ei3 are the three edges of a hexahedron incident

to vertex i. If the hexahedron is perfectly aligned with frame field Ti, then [ei1, ei2, ei3] = Ti.

For each matrix Ti, there is a corresponding 3×3 matrix Bi called anisotropic metric, defined

by Bi = T−1
i . If we transform edges eij with Bi, then we get Bi[ei1, ei2, ei3] = I, i.e., the

hexahedron aligned with frame field Ti is transformed to a hexahedron aligned with the axes

of a 3D Cartesian coordinate system. Matrix Bi maps a vector from the original space into a

new imagined space, in which the hexahedral elements are aligned with the three coordinate

axes.

We suppose that the frame field is given as an input. Several existing state-of-the-art

algorithms can be used to generate a high-quality cross field for a volumetric domain (Huang

5

et al., 2011; Ray et al., 2016; Gao et al., 2017; Solomon et al., 2017). There are also user-

designed frame fields for specific applications. We will present meshes using both user-

designed frame fields and discrete cross fields. The smoothness and the number of singu-

larities of the input frame field do affect the final output mesh quality, e.g. the quality of

alignment to BCC and FCC lattice and the percentage of hexahedral elements. We focus

on generating a particle pattern that locally aligns with the given frame field. Even if the

input frame field is not sufficiently smooth, our method still robustly generates particles with

desired pattern, which lead to high-quality meshes.

2.2 Related Work on Tetrahedral Meshing

Tetrahedral mesh generation has been studied for several decades (Owen, 1998) in both

engineering and computer sciences fields.The algorithms can be categorized into four types

including advancing front methods (Ito et al., 2004; Schöberl, 1997; Li et al., 2000), octree-

based and lattice-based methods (Labelle and Shewchuk, 2007; Neil Molino and Fedkiw,

2003), Delaunay-based tetrahedral methods (Cheng et al., 2012), Poisson-disk sampling

methods (Guo et al., 2016) and particle-based methods.

Advancing Front Methods (Möller and Hansbo, 1995) start from the domain bound-

ary and gradually add vertices and tetrahedra until the domain is completely meshed. They

preserve the domain boundary explicitly. However, the difficulty of this type of method is

to resolve the intersected tetrahedra inside the domain.

Octree and Lattice Methods: Quadtree/Octree is a Cartesian grid structure in

2D/3D. Quadtree encoding an input curve in 2D was first introduced by Yerry and Shep-

hard (Yerry and Shephard, 1983), then generalized to 3D (Yerry and Shephard, 1984) and

refined by Shephard and Georges (Shephard and Georges, 1991). These methods start from

encoding the surface as an adaptive grid structure, i.e., an octree, which converts the surface

6

to a volumetric representation. The tetrahedral meshes are then constructed by local tetra-

hedralization of each octree cell, with special treatment for the cells intersecting the input

surface (Shephard and Georges, 1991; Mitchell and Vavasis, 1992).

Similar to octree methods, lattice methods utilize a space-filling tetrahedral lattice instead

of Cartesian grid as volume representation, which omits the local tetrahedralization for the

interior cells. The boundary tetrahedra are deformed to preserve smooth boundary. For a

better quality, finer cells are generated by Fredenthal subdivision of a grid (Velho et al., 1997)

or adaptive BCC lattice (Molino et al., 2003) along the surface boundary. The isosurface

stuffing method (Labelle and Shewchuk, 2007) proposed an option to cut the boundary

tetrahedra to resolve the input surface. The cutting rules yield theoretical bounds for the

smallest/largest dihedral angles. Doran et al. (Doran et al., 2013) extended the method

with A15 lattice. However, these stuffing-based methods cannot generate either field-aligned

isotropic tetrahedral meshes, or anisotropic tetrahedral meshes.

Delaunay-Based Methods (Cheng et al., 2012) can be further categorized into two

groups: (1) Delaunay refinement-based methods (Chew, 1997; Jamin et al., 2015; Si, 2015)

improve the mesh quality by inserting new vertices until certain user-specified conditions

are met, e.g., the minimal dihedral angle. (2) Variational methods iteratively minimize an

energy, e.g., CVT (Du and Wang, 2003; Alliez et al., 2005; Liu et al., 2009), ODT (Chen and

Holst, 2011; Chen et al., 2014), by optimizing positions of vertices and their connectivities.

Particle-Based Methods use repulsive particles to resample surfaces or volumes. It was

first introduced by Turk (Turk, 1992), and later extended by Witkin and Heckbert (Witkin

and Heckbert, 2005) for implicit surface meshing. They introduced Gaussian kernel to model

the interaction between particles which sample an implicit surface. Researchers have tried

different choices of kernels, such as a modified cotangent function with finite support (Meyer

et al., 2005), or a bounded cubic function (Yamakawa and Shimada, 2000), and packing

ellipsoidal bubbles instead of spherical bubbles to get anisotropic tetrahedral meshes. Zhong

7

et al. (Zhong et al., 2013) used the Gaussian kernel to model the inter-particle energy in

an embedding space to solve anisotropic surface meshing. Note that the traditional Gaus-

sian kernel is radially-symmetric. Even though it can be distorted to elliptically-symmetric

under Riemannian metric, the interaction between particles still resembles packing of cir-

cles/spheres isotropically, or ellipses/ellipsoids anisotropically. This makes it impossible to

explicitly control field-alignment of particles. We propose Gaussian Hole Kernel as potential

energy between particles to guide their distribution into either BCC or FCC pattern, which

will be introduced in the next section.

2.2.1 Silver by Variational-method

CVT-based methods (Du and Wang, 2003, 2005a) calculate the dual meshes of Voronoi

cells, instead of computing the shape of tetrahedrons, which may generate a large number of

slivers in 3D tetrahedral mesh (Yan et al., 2010). ODT-based methods (Alliez et al., 2005;

Chen et al., 2014) perform better in terms of suppressing slivers comparing to CVT-based

methods, However, it still cannot completely avoid slivers. Comparing to CVT and ODT

methods, the recent Particle-based mesh optimization method (Zhong et al., 2013) does not

require to optimize the mesh connectivity during the optimization. This property makes it

easy and fast to converge, but the lack of considering mesh structure leads to many slivers

in the final tetrahedral mesh. It is noted that all of three variational-based optimization

methods cannot eliminate badly-shaped elements (e.g., slivers) completely, so a post process

for improving the mesh quality is necessary, such as sliver exudation (Cheng et al., 2000),

aggressive improvement (Klingner and Shewchuk, 2007), vertex perturbation (Tournois et al.,

2009).

8

2.3 Hexahedral Meshing and Hexahedral-dominant Meshing

Hexahedral volume meshing has been studied for several decades and there are some sur-

veys (Owen, 1998; Shimada, 2006; Shepherd and Johnson, 2008).

All-hex Remeshing Several semi-automatic strategies were proposed, such as multiple

sweeping (Shepherd et al., 2000), paving and plastering (Staten et al., 2005), requiring the

user to decompose the model for suitable mappings. There are some automatic methods,

such as decomposition of the volume by Voronoi graph (Sheffer et al., 1999), constrained

hexahedral meshing by using Geode-Template (Carbonera and Shepherd, 2010). Gener-

ally, these methods are very time-consuming, and complicated to generate high-quality and

boundary-conforming hexahedral meshes for complex shapes, since the partition and sizing

are crucial to the mesh quality.

Inspired by recent development of quadrangulation techniques, a lot of all-hex remeshing

approaches (Nieser et al., 2011) are proposed using multi-chart parameterization. The chart

layout of the manifold are derived from an automatically generated frame field (Huang et al.,

2011; Sokolov et al., 2016). Unfortunately, such frame fields have singularities in most of

the cases, which makes the parameterization degenerate and leads to missing elements even

using a specially-designed robust hex element extractor (Lyon et al., 2016). Although the

local conflicts can be resolved (Li et al., 2012; Jiang et al., 2014), addressing the global ones

remains a big challenge.

As a remedy, one can simplify the topological structure by restricting the hex mesh to be

grid-like (Maréchal, 2009). Methods using polycube structure is indeed a warped grid (Tarini

et al., 2004; Han et al., 2010; Gregson et al., 2011; Xu et al., 2017), but still lacks enough

flexibility to handle complex models. Although recent closed-form polycube method (Fang

et al., 2016) extends such a topology into internal singularity-free structure, these methods

may still introduce large distortion and mis-matched features on boundary surfaces.

9

Hex-dominant Remeshing Considering the difficulty of automatically generating high

quality all-hex mesh, hex-dominant remeshing methods have been proposed (Yamakawa and

Shimada, 2003). Recent techniques tried to utilize the development of parameterization-

based methods. PGP3D (Sokolov et al., 2016) extends Periodic Global Parameterization (Ray

et al., 2006) to generate the point set. The Eulerian style discretization just encodes the

fractional parts of the parametrization coordinates at the vertices of the input tetrahedral

mesh, which has weaker topological constraints between the hex nodes. The blindness of

the integer part in PGP3D may introduce many inproper hex nodes according to the frame

field. PGP3D follows the three-step pipeline as mentioned before, and adds two extra steps

to further improve the mesh results. One step is curl-correction which is used to add some

corrections to edge vector map which indirectly improves the cross field by reducing the

number of singularities. The other step is mesh refinement, which inserts extra points to

the surface to reduce the Hausdorff distance between the resulting domain and the input

domain. PGP3D method may fail due to the singularities in the frame field (Li et al., 2012;

Jiang et al., 2014). The major difference between PGP3D and our method is that we de-

velop a different method to optimize vertex positions to locally align with the given frame

field. Gao et al’s method (Gao et al., 2017) is another state-of-the-art method in generating

hexahedral-dominant meshing with high amount of isotropy. It proposes a robust and au-

tomatic field-guided polyhedral agglomeration algorithm to generate hexahedral dominant

mesh with a few irregular polyhedra from the input tetrahedral mesh. Quaternion represen-

tation is introduced in the field generation phase, which leads to a more efficient orientation

field optimization. Besides that, it proposes a robust extraction algorithm which works with

both local parameterization and global parameterization. The non-hex elements in their

result meshes are any polyhedra with k faces of either triangle or quadrilateral. We show in

Sec. 4.4.3 that our new particle-based method produces better quality hexahedral-dominant

meshes than both PGP3D method and Gao et al.’s method.

10

Another group of hexahedral-dominate meshing is the front-propagation-based approaches (Owen

and Saigal, 2000; Baudouin et al., 2014; Botella et al., 2016). The H-Morph method (Owen

and Saigal, 2000) starts with an initial tetrahedral mesh and systematically transforms and

combines tetrahedra into hexahedra. It uses an advancing front technique where the initial

front consists of a set of prescribed quadrilateral surface facets. (Baudouin et al., 2014) is

similar to the advancing front method. The vertices are created layer-by-layer toward the

center of the geometry, and the hexahedra are built at the very end. However, the limita-

tion of the front-propagation-based methods is that they do not globally optimize the mesh

vertex positions altogether.

Variational and Particle-based Method Variational methods define an objective func-

tion of vertex positions as well as connectivities to optimize the mesh. Variational methods

usually perform effectively and robustly in mesh generation, since they optimize the mesh ele-

ments (vertex positions or connectivities) globally. Variational methods in both isotropic and

anisotropic triangular / tetrahedral mesh generation were well investigated, e.g., Centroidal

Voronoi Tessellation (CVT) (Du et al., 1999), Optimal Delaunay Triangulation (ODT) (Chen

and Xu, 2004), and particle-based method (Zhong et al., 2013). All of them can effectively

optimize the mesh through different objective functions. However, variational methods in

hexahedral meshing are much more difficult to design. For instance, Lp-CVT (Lévy and Liu,

2010) is a variational method to generate hexahedral-dominant meshes based on the higher-

order moment of the vertex coordinates on Voronoi cells. Particle-based variational method

works well in both triangular and tetrahedral meshing (Zhong et al., 2013). Compared with

Lp-CVT and other variational methods, one of the main advantages of particle-based method

is that it only needs to iteratively update the vertex positions based on the defined inter-

particle energy and force in their local neighborhoods, instead of computing Voronoi cells

or connectivities, which is more efficient especially in anisotropic cases. The inter-particle

11

energy function plays a vital role in particle-based method. Gaussian kernel has nice perfor-

mance in triangular and tetrahedral meshing (Zhong et al., 2013). However, it is not suitable

for the hexahedral meshing problem. We propose a new Gaussian hole kernel to simulate

the inter-particle energy and force for the hexahedral meshing, and we show in Sec. 4.4.3

that our new method produces better quality hexahedral-dominant meshes than Lp-CVT.

12

CHAPTER 3

SLIVER-SUPPRESSING TETRAHEDRAL MESHING1

3.1 Overview

In mesh generation, mesh quality highly depends on the size and shape of each element.

There are several measurements for tetrahedral mesh quality, and dihedral angle is one of the

most important criteria (Alliez et al., 2005; Guo et al., 2016), since badly-shaped tetrahedrons

with tiny dihedral angles (i.e., sliver) can severely affect numerical simulation (Shewchuk,

2002b).

Essentially, simplex meshes are used to form a piecewise linear approximation of function

u(x) to represent the given shapes. There are several ways to describe the approximation

error. Optimal Delaunay Triangulation (ODT) (Chen and Xu, 2004) was proposed to min-

imize the Lp norm of the difference over the domain Ω between the target function û(x)

and the interpolated function u(x): E(x) =
∫

Ω
‖û(x)− u(x)‖Lp dx. Interpolation error is

an important mesh quality measurement. However, the definition of ODT determines that

it cannot avoid sliver in tetrahedral mesh. A sliver with close to zero volume still has small

interpolation error. So minimizing interpolation error cannot avoid sliver.

Consider the Lp norm of the difference between the gradient of the target function5û(x)

and the gradient of the interpolated function 5u(x): E(x) =
∫

Ω
‖5û(x)−5u(x)‖Lp dx,

the gradient error can be strongly affected by the shape of the elements as well as their sizes.

Once one dihedral angle approaches either 0◦ or 180◦ in the tetrahedral mesh, the gradient

error will grow dramatically large. We propose a shape matching framework and design

a gradient-based energy (i.e., the gradient of linear shape function), which heavily punish

slivers in tetrahedral meshes. By specifying a template simplex, e.g. a regular simplex, the

1©2017 Elsevier, Reprinted, with permission, from Saifeng Ni, Zichun Zhong, Yang Liu, Wenping Wang,
Zhonggui Chen, “Sliver-suppressing Tetrahedral Mesh Optimization with Gradient-Based Shape Matching
Energy”, in Computer Aided Geometric Design (Proceedings of GMP 2017), Vol.52-53, pp. 247-261, 2017.

13

idea of the proposed method is to make the shape of the to-be-optimized simplex as close

as possible to the shape of the template simplex. The experiment results show that our

proposed energy has high effectiveness in sliver suppression compared with state-of-the-art

methods in the tetrahedral meshing.

3.2 Shape Matching Triangulation Energy

Our mesh optimization is illustrated in an algebraic framework, and we call it shape matching.

Given a template d-simplex τ̂d, our target is to make any d-simplex τd in the mesh as similar

as possible to τ̂d. Here “similar” means the same shape as well as the same sizing factor

comparing with the template simplex. If the template is set as a regular d-simplex, any

d-simplex in the mesh is expected to be a regular simplex with a constant sizing factor

conforming to the defined template simplex, i.e., all simplices in the mesh are endowed with

the same shape and the same size.

The shape matching idea is straightforward, but the tricky part is how to well represent

the difference between the to-be-optimized simplex τd and the template simplex τ̂d. As the

difference is being minimized, the to-be-optimized simplex will become closer and closer to

the template simplex. A good difference representation should be scale-sensitive, orientation-

free, and also well encoding the shape information. Mathematically, a d-simplex embedded

in d-dimension can be defined by a d × d matrix. Once the template simplex and the to-

be-optimized simplex are both represented by d × d matrices, an affine mapping can be

utilized to build the relationship between those two simplices with another d × d matrix,

i.e., the Jacobian between those two simplices. If the affine mapping is an identity matrix,

the to-be-optimized simplex is exactly equal to the template simplex. If the affine mapping

is a rotation matrix, the to-be-optimized simplex is also equal to the template simplex.

In this paper, the squared Frobenius norm of the affine transformation matrix is used to

measure the difference between the to-be-optimized simplex and the template simplex, since

14

Frobenius norm is invariant under rotations and also it keeps the sizing information. Then

by minimizing the summation of all differences over the entire mesh, the optimal solution

of isotropic mesh will be reached when all to-be-optimized simplices are regular and of the

same size.

The shape matching framework can be generalized for any d-simplex mesh. A 0-simplex

is a vertex vi; a 1-simplex is an edge eij = vj − vi, 0 ≤ i < j ≤ d; a 2-simplex is a

triangle; and a 3-simplex is a tetrahedron, etc. In addition, the shape matching framework

can be easily extended to solve adaptive and anisotropic meshing problems. By mapping

the to-be-optimized simplex from Riemannian metric space to Euclidean space, then we

still use the regular simplex as template. The computations after that are the same as the

uniform isotropic case. The shape matching framework is extendable and flexible, and it

provides freedom to design different mesh element shapes based on different applications.

Both isotropic and anisotropic meshing are demonstrated in the experiment section.

In this paper, our target is to remove badly-shaped elements, e.g., slivers, in the isotropic

tetrahedral mesh. We will interpret our energy under the proposed shape matching frame-

work. Compared with the traditional Edge-based Shape Matching (ESM) in Sec. 3.2.1, the

gradient of the linear shape function is used as basis to represent a simplex, and we called

it Gradient-based Shape Matching (GSM) in Sec. 3.2.2.

3.2.1 Edge-Based Shape Matching (ESM)

The traditional methods (Knupp, 2001) used d edge vectors from one vertex as column

vectors which form a d × d matrix Td to represent a d-simplex τd. Given a matrix Td, the

corresponding d-simplex is uniquely defined. Suppose T̂d represents the template d-simplex

τ̂d, then the affine transformation Jd satisfies Jd = TdT̂
−1
d . Squared Frobenius norm of this

affine transformation ‖Jd‖2
F is utilized to measure the difference between τ̂d and τd. This

difference measurement is called shape matching energy Eτd . Summing up shape matching

15

energies of all simplices, we obtain the energy for the entire d-simplex mesh Ed =
∑

τd∈T Eτd ,

where T is the set of d-simplices in the mesh.

The shape matching framework works for any d-simplex. For the simplicity of illustration,

we demonstrate the basic idea using a 2-simplex (i.e., a triangle) in Figure 3.1.

Figure 3.1: The illustration of edge-based shape matching for a 2-simplex.

Any 2-simplex τ2 is represented as a matrix formed by two edge vectors T2 =

[
e01 e02

]
,

where e01 = v1−v0 and e02 = v2−v0. The determinant of T2 is proportional to the triangle

area |τ2|. So matrix T2 encodes the shape as well as the size of the triangle.

The affine transformation J2 between τ̂2 and τ2 is expressed as:

J2

[
ê01 ê02

]
=

[
e01 e02

]
. (3.1)

If the template τ̂2 is a regular triangle with edge length â, the shape matching energy

Eesm
τ2

of a simplex τ2 can be simplified as

Eesm
τ2

= ‖J2‖2
F = trace(JT2 J2) =

2

3â2

∑
0≤i<j≤2

eTijeij. (3.2)

When d = 3, the shape matching energy Eesm
τ3

from a simplex τ3 to a regular tetrahedron

τ̂3 is represented by the affine transformation J3 as

Eesm
τ3

= trace
(
JT3 J3

)
=

1

2â2

∑
0≤i<j≤3

eTijeij, (3.3)

16

where â is the edge length of τ̂3.

The above definitions (2-simplex and 3-simplex) are based on edge vectors, so we call

them Edge-based Shape Matching (ESM). The main disadvantage of ESM is that it cannot

avoid slivers in tetrahedral mesh. The key reason is that slivers may have large edge lengths

but close-to-zero heights. Based on this observation, Gradient-based Shape Matching (GSM)

energy is proposed, which can be used to effectively suppress slivers.

3.2.2 Gradient-Based Shape Matching (GSM)

For a d-simplex τd, barycentric coordinate ωi corresponding to each vertex i is used as

the linear shape function. Any point v inside the simplex satisfies v =
∑d

i=0 ωivi, where∑d
i=0 ωi = 1. If we use the mesh to approximate certain data function u(x), then the data

function value at the vertex is given. Suppose the data value at vertex vi of τd is u(vi), which

is a constant. Then the data function value at v is u(v) =
∑d

i=0 ωiu(vi). The gradient of

the data function can be written as 5u(v) =
∑d

i=05ωiu(vi). 5ωi corresponding to vertex

vi of a d-simplex is a constant vector. The direction of 5ωi is pointing perpendicularly from

the opposite (d − 1)-simplex Si (as the base) to the vertex vi. The length of 5ωi is equal

to the inverse of height hi, i.e., |5ωi| = 1
|hi| in 2-simplex case, and |5ωi| = |Si|

|τd|
in 3-simplex

case, where |τd| is the volume of the simplex τd and |Si| is the area of face Si. Both its

direction and length encode the shape information. Besides that 5ωi, 0 ≤ i < d are linearly

independent for any non-degenerate simplex. So using the gradients of linear shape functions

as the bases to represent simplex well describe the shape as well as size difference bewteen

a badly-shaped simplex and a regular simplex.

For the simplicity of illustration, we still use a 2-simplex in Figure 3.2 to demonstrate

the basic idea of GSM.

Any 2-simplex τ2 is represented by its gradient matrix

[
5ω0 5ω1

]
. Once5ω0 and5ω1

are given, e20, e21 is uniquely defined, so triangle is uniquely determined by 5ω0 and 5ω1.

17

Figure 3.2: The illustration of gradient-based shape matching for a 2-simplex.

Affine transformation D2 between τ̂2 and τ2 can be expressed as:

D2

[
5ω̂0 5ω̂1

]
=

[
5ω0 5ω1

]
. (3.4)

Then, GSM energy between the template τ̂2 and any 2-simplex τ2 is defined as

Egsm
τ2

= trace(DT
2 D2). (3.5)

Inherited from Frobenius norm properties, GSM energy is also scale-sensitive and orientation-

free. By expanding Eq. (3.5) with the height definition and Eq. (3.4), GSM energy is sim-

plified as:

Egsm
τ2

=
â2

8

∑
0≤i<j≤2 eTijeij

|τ2|2
=
â2

2

2∑
i=0

1

|hi|2
, (3.6)

where â is the edge length of the regular template τ̂2, |τ2| is the area of simplex τ2. For

each 2-simplex, GSM energy is the summation of inverse of squared heights. When there

is one internal dihedral angle approaching 0°or 180°, one or more heights will be also close

to 0. Thus minimizing GSM energy inhibits small heights and also uneven height. So it

suppresses all badly-shaped simplices. The minimal energy is reached when all heights are

equal to each other, i.e., an equilateral 2-simplex. Besides that, the energy for each simplex

also encodes its size information (height hi). So when minimizing the total energy, the result

mesh will converge to the optimal solution.

18

Tetrahedralization d = 3

Tetrahedral mesh optimization is more challenging than triangular mesh optimization, es-

pecially to remove slivers completely. Figure 3.3 shows several typical badly-shaped tetra-

hedrons (Freitag and Knupp, 2002). Most of them either have one or more dihedral angles

approaching 0◦ / 180◦ or have uneven heights. Traditional ESM energy cannot avoid slivers

as discussed in Sec. 3.2.1, while the proposed GSM energy significantly suppress all of them.

Spear

Spindle

SpikeSplinter

Wedge SliverSpade Cap

Spire

Figure 3.3: Several typical badly-shaped tetrahedrons (Freitag and Knupp, 2002).

Affine transformation D3 between τ̂3 and τ3 is represented as:

D3

[
5ω̂0 5ω̂1 5ω̂2

]
=

[
5ω0 5ω1 5ω2

]
. (3.7)

For any 3-simplex, 5ωi has the same direction as the normal of face Si, where Si is the

face opposite to vertex vi. If the template tetrahedron is regular and with edge length â,

then GSM energy Egsm
τ3

between τ̂3 and τ3 can be simplified as:

Egsm
τ3

= trace
(
DT

3 D3

)
=
â2

18

∑3
i=0 |Si|

2

|τ3|2
=
â2

2

3∑
i=0

1

|hi|2
, (3.8)

where |Si| is the area of face Si, |τ3| is the volume of simplex τ3.

GSM energy of a tetrahedron is the summation of the inverse of the squared heights.

The optimal solution is to have the same heights, i.e. regular tetrahedron. The total GSM

energy for the entire tetrahedral mesh is:

Egsm
total =

â2

18

1

|T |
∑
τ3∈T

∑3
i=0 |Si|

2

|τ3|2
, (3.9)

19

where T is the set of tetrahedrons in the volume mesh and |T | is the total number of

tetrahedrons in the volume mesh. When minimizing the GSM energy, the optimal solution

is to have all the heights to be the same. GSM energy has great punishment on a small

height. So minimizing the energy effectively suppressing all the badly-shaped tetrahedrons.

Curve Discretization d = 1

A curve can be discretized to be a set of 1-simplices. Inheriting from the idea of GSM,

the mapping between the template τ̂1 and the to-be-optimized τ1 is the ratio between their

lengths D1 = |τ̂1|
|τ1| . So GSM energy function of the line segment τ1 is:

Egsm
τ1

=
|τ̂1|2

|τ1|2
. (3.10)

GSM energy of the entire curve is:

Eτ1 =
|τ̂1|2

|L |
∑
τ1∈L

1

|τ1|2
, (3.11)

where L is the set of 1-simplices and |L | is the total number of 1-simplices in the corre-

sponding curve L .

3.2.3 The Importance of GSM Energy in Tetrahedral Meshing

The difference between ESM and GSM lies in the representation of a simplex. ESM uses

edge vectors, while GSM utilizes the gradients of linear shape functions. When d = 3, we

have 5ω0 = e12×e13

6|τ3| ,5ω1 = e02×e03

6|τ3| , 5ω2 = e03×e01

6|τ3| , and 5ω1 × 5ω2 = e01

6|τ3| . Via the cross

product property in matrix transformation, the affine transformation J3 in ESM satisfies:

(J3eij)× (J3eik) = |J3|J−T3 eij × eik, (3.12)

where |J3| is the determinant of matrix J3.

20

Then the relation between affine transformations of ESM and GSM can be expressed as

D3 =

[
5ω0 5ω1 5ω2

] [
5ω̂0 5ω̂1 5ω̂2

]−1

=
|J3|J−T3 |τ̂3|
|τ3|

[
ê12 × ê13 ê02 × ê03 ê03 × ê01

]
[
ê12 × ê13 ê02 × ê03 ê03 × ê01

]−1

=J−T3 .

(3.13)

Suppose the eigenvalues of J3 are λ1, λ2, λ3, then ESM energy of one tetrahedron is

Eesm
τ3

= trace
(
JT3 J3

)
= λ2

1 + λ2
2 + λ2

3, (3.14)

while GSM energy of the tetrahedron is

Egsm
τ3

= trace
(
J−1

3 J−T3

)
=

1

λ2
1

+
1

λ2
2

+
1

λ2
3

. (3.15)

Although both ESM and GSM reach their minimums when λ1 = λ2 = λ3, GSM is more

sensitive to a small λi.

3.3 GSM Energy Optimization

The proposed GSM energy optimization is to build a high-quality regular d-simplex mesh in

a domain Ωd based on a given regular template and the user-specified number of vertices N .

Both the positions of N vertices and their connectivities are required to be optimized. Our

mesh optimization process involves two operations: the numerical nonlinear optimization for

vertex smoothing and the combinatorial optimization for connectivity update. These two

operations are carried out iteratively to minimize the proposed GSM energy.

3.3.1 Vertex Smoothing

With fixed mesh connectivity, the optimization computation reduces to a nonlinear numerical

optimization problem. The connectivity is fixed and inverted simplices should be avoided

21

during the vertex smoothing, so the possible solution of a vertex should be inside its one-ring

domain. Newton’s method converges quickly in the local region, so it is choosen to do vertex

smoothing.

The vertex updating rule of Newton’s method is:

v∗ = v −∆v = v − αh−1g, (3.16)

where h and g are the Hessian and gradient at vertex position v, v∗ is the updated position

of vertex v, and α is the step size. The backtracking line search is utilized to determine the

step size.

In the following, we will discuss how to calculate the gradient and Hessian of GSM energy.

GSM energy in any d-simplex has the similar formulation, which can be written as:

Egsm
τd

= cd
p(v)

q(v)
, (3.17)

where cd is a constant. When d = 1, p(v) is 1, q(v) is the squared length of the simplex τ1;

when d = 2, p(v) is the summation of the squared edge lengths, q(v) is the squared area

of the simplex τ2; when d = 3, p(v) is the summation of the squared face areas, q(v) is the

squared volume of the simplex τ3.

The gradient and Hessian of GSM energy in d-simplex are:

gτd = cd
p′(v)q(v)− p(v)q′(v)

q(v)2
, (3.18)

hτd = cd
hpq(v) + p′(v)q′(v)T − q′(v)p′(v)T − hqp(v)− 2q(v)gτdq

′(v)T

q(v)2
, (3.19)

where p′(v),q′(v),hp and hq are the first order and second order derivatives of p(v), q(v).

For arbitrary vertex v, its one-ring simplices set Tv are used for gradient and Hessian com-

putations.

22

Based on the gradient and Hessian of GSM energy at any vertex, the search direction

Ψ = h−1g is obtained. Since GSM is not convex in the one-ring domain, the backtracking

line search is used in both Ψ and −Ψ directions to obtain the optimal step size α. The

initial value of α is set as the maximal possible movement inside its one-ring domain, i.e.,

αinit =
maxvi∈Nv |v−vi|

|h−1g| , where the set of vertices in Tv is Nv.

It is noted that Newton’s method is defined for each vertex. The vertices are updated one

by one following the descending order of the norm of vertex update vector, i.e., ‖αh−1g‖.

The worst positioned vertex is optimized first. The backtracking line search and vertex

update avoid the increase of GSM energy as well as inverted simplex.

3.3.2 Connectivity Update

Traditional CVT and ODT energy functions for meshing are based on Delaunay triangula-

tion, while our GSM energy is not congruent with Delaunay triangulation. Given an initial

connectivity, a set of flip operations are employed to optimize the connectivity. The details

of connectivity updating in triangular and tetrahedral meshes are different.

For a 3D triangular mesh, the initial mesh is obtained using surface constrained mesh

generation (Yan et al., 2009). The 2-2 edge-flipping operation is used to decrease the energy.

A flip operation is performed if the energy will be decreased after the flip operation. Besides

that, we also need to make sure the new triangles are still restricted to the original surface and

avoid to generate non-manifold edges, i.e. one edge shared by more than two triangles. The

edges along the sharp features and boundary edges are never flipped. During the connectivity

optimization, we traverse through all the edges until the energy does not decrease anymore.

For a 3D tetrahedral volume mesh, the initial mesh is built by TetGen (Si, 2015). There

are several flip operations available in tetrahedral meshing, including 2-3 flip, 3-2 flip, 4-4

flip. Besides that, edge removal and multi-face removal proposed in (Shewchuk, 2002a) are

utilized to further improve the connectivity. Comparing to edge flip in triangle mesh, flip

23

operation in tetrahedral mesh may change the number of tetrahedrons. The flip operation

will be performed if average GSM energy to each simplex decreases after the operation.

During the connectivity optimization, we will traverse through all the edge and faces until

the energy cannot decrease anymore.

3.3.3 Boundary and Feature

Sharp features and boundary edges of 2-simplex meshes are usually defined by a set of curves

(1-simplex meshes). The boundary of a 3-simplex mesh is a 2-simplex mesh.

In 2-simplex mesh optimization, we first extract the boundary and feature curves and

estimate vertex numbers on those curves. Then the vertices along those curves are optimized.

After that, we randomly sample the remaining vertices on surface domain and optimize them

by fixing those boundary and feature points. The vertex numbers on one surface boundary

curves or sharp features are estimated in the following way. Suppose AΩ is surface area and

LΩ is the length of boundary curves, according to Euler’s polyhedron formula, we have:

Ns −
F

2
− LΩ

2
√

4AΩ/
√

3F
= 2− 2g, (3.20)

where Ns is vertex number on boundary, F is face number of boundary, g is the genus of

surface. Only F is unknown in Eq. (3.20), so we can compute F . Then edge length lest is

estimated by lest =
√

4AΩ/
√

3F . Finally, the vertex number on each curve is obtained by

dividing its length by lest.

In tetrahedral meshing, the vertex number on boundary is estimated at the beginning

based on the domain boundary area AΩ and the domain volume VΩ. Body-Centered Cubic

(BCC) lattice is used for the estimation. Voronoi cell of each vertex in BCC lattice is a

truncated octahedron. By using truncated octahedron as Voronoi cell, the edge length lest

of an equilateral tetrahedron satisfies

VΩ =
N√

2
l3est −

AΩ√
6
lest + 2− 2g, (3.21)

24

where N is total vertex number. lest can be calculated from Eq. (3.21). Then the boundary

vertex number is Nb = 2AΩ√
3l2est

+ 2 − 2g. The 2-simplex mesh optimization is applied to the

surface boundary with Nb vertices. After that, we randomly sample the remaining vertices

inside the volume and optimize them with fixed boundary surface vertices.

In the following subsections, the vertex update rules for 1-simplex curves and 2-simplex

surfaces are introduced.

Feature Curve

1-simplex GSM optimizations are performed on the corresponding curves, which has been

discussed in Sec. 3.2.2. During 1-simplex mesh optimizations, all the vertices are restricted

on the corresponding curves. The update vector is projected along the tangent direction of

the curve at v. Suppose the normalized tangent direction of the curve l at vertex v is dlv ,

then the vertex update rule of Newton’s method based on Eq. (3.16) is:

v? = v −
(
α
(
hv
−1gv

)T
dlv

)
dlv . (3.22)

After that, v? is projected to the closest point on the corresponding curve.

Boundary Surface

2-simplex GSM optimization is performed on the corresponding 3D surface, which has been

discussed at the beginning of Sec. 3.2.2. During 3D surface optimization, vertices should

be restricted to the given surface. When updating the vertex positions, vertex movement is

only allowed on its tangent plane. Suppose the normal of vertex v is nv, then:

v∗ = v −
(
αhvgv −

(
(αhvgv)T nv

)
nv

)
. (3.23)

After that, v? is projected to the closest point on the given surface.

The GSM optimization framework is given in Alg. 1.

25

Algorithm 1: GSM Optimization

Input: vertex number N , boundary domain Ω, anisotropic metric M
Output: tetrahedral mesh (V, T) with N vertices

1 estimate boundary vertex number Nb and edge length lest;
2 if Ω contains sharp features then
3 estimate vertex number Ns for sharp features;
4 optimize vertices on sharp features Vs ;

5 end
6 optimize vertices Vb by fix Vs ;
7 randomly sample N −Nb −Ns vertices inside Ω as Vf ;
8 build tetrahedral mesh T of all N vertices;
9 for k ← 0 to 50 do

10 calculate update vector ∆v of all vertices;
11 for i← 0 to (N −Nb −Ns)/4 do
12 vt ← arg maxv∈Vf ‖∆v‖ with Newton’s Method ;

13 update position of vt;

14 end
15 optimize connectivity T ;

16 end

3.4 Experiment and Comparisons

We implement the algorithms using C++. The experiments are done on a workstation with

Intel(R) Xeon E5645 CPU 2.40GHz, and 32G DDR3 RAM. To demonstrate the performance

of the proposed GSM method, we compare it with four mesh optimization approaches pro-

vided by The Computational Geometry Algorithms Library (CGAL) (Jamin et al., 2015).

The optimizations of CGAL mesher have two categories. One is the local optimization, in-

cluding vertex perturbation (Tournois et al., 2009) and sliver exudation (Cheng et al., 2000).

The other one is the global optimization, including Lloyd smoother (Du et al., 1999; Du and

Wang, 2003) and ODT smoother (Alliez et al., 2005; Chen and Xu, 2004). In the following,

the tetrahedral mesh quality criteria are introduced in Sec. 3.4.1. The experimental results

on isotropic meshing are presented in Sec. 3.4.2 (smooth surface) and Sec. 3.4.3 (surface with

sharp features), and the experimental results of adaptive and anisotropic meshings are pro-

vided in Sec. 3.4.4. Finally, the running time and robustness analysis are given in Sec. 3.4.5

26

and 3.4.6. Due to the page limit, we only present seven models in the following, more mesh-

ing results are given in a supplementary document. Table 3.1 gives detailed quality statistics

of all volume meshing models in the experiment. The best result in each model is shown in

bold font.

3.4.1 Quality Measurement

The quality criteria used in all our experiments for the isotropic meshing are dihedral angle

θ and radius ratio γ = 3 rin
rcirc

, where rin is inradius and rcirc is circumradius. θmin is the

smallest dihedral angle. θmax is the largest dihedral angles. θ̄min is the average value of

the smallest dihedral angle of each tetrahedron. γmin is the smallest radius ratios among

all tetrahedrons. γmean is the average radius ratios of all tetrahedrons. The distribution

of dihedral angles and radius ratios of all tetrahedrons are provided. Since the sliver is

measured by the dihedral angles, we evaluate our experiments extensively by the number

of tetrahedrons with different degrees of smallest dihedral angles 10◦, 20◦, 30◦, and 40◦

as thresholds. For anisotropic tetrahedral meshes, each tetrahedron is transformed to the

isotropic space, then its quality is measured based on the above isotropic criteria.

3.4.2 Isotropic Tetrahedral Meshing

Figure 3.4 shows the isotropic tetrahedral meshing results on the Bumpycube volume for

comparison between GSM and ESM. GSM produces better θmin and θmax comparing to

ESM. It is also observed that GSM has better performance on sizing control. The tetrahedral

meshing result of ESM optimization has larger variance on tetrahedral volumes.

Figure 3.5 shows the isotropic tetrahedral meshing results on the Duck volume. With

random initialization, GSM method produces meshes with better θmin, θmax, as well as radius

ratios, which outperforms all other methods provided by CGAL (i.e., both local and global

optimizations) as shown in Table 3.1. In order to generate high-quality tetrahedral meshes,

27

(a) Model (b) ESM (c) GSM
(d) ESM
Clipping

(e) GSM
Clipping

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

GSM GSM
ESM ESM

Fr
e
q
u
e
nc
y

All Dihedral Angle

GSM
ESM

(f) Dihedral
Angle

Figure 3.4: Comparison of ESM and GSM on the Bumpycube volume. The red ones are
tetrahedrons with the smallest dihedral angles less than 18°, while the blue ones are tetra-
hedrons with the smallest dihedral angles less than 36°.

we use Particle, Lloyd, and ODT results as the initializations, respectively, and then apply

the proposed GSM, vertex perturbation, and sliver exudation to further suppress slivers.

The results demonstrate that GSM method is an effective sliver remover. Figure 3.5 also

provides the distributions of dihedral angles and radius ratios in Duck volume meshes of

different methods.

3.4.3 With Sharp Features

Figure 3.6 shows the isotropic tetrahedral meshing results as well as distributions of dihedral

angles and radius ratios on the Fandisk volume with sharp features in different methods. We

reach the same conclusion as the previous example that no matter with random initialization

or initialized by Particle, Lloyd, and ODT results, our proposed GSM method obtains better

θmin, θmax, as well as radius ratios, outperforming all other methods provided by CGAL. More

detailed quality statistics comparison is given in Table 3.1.

3.4.4 Adaptive and Anisotropic Tetrahedral Meshing

In order to show the generalization of the proposed GSM method, we also work on tetrahedral

meshes in adaptive and anisotropic cases.

Figure 3.7 shows the adaptive tetrahedral meshing results on Sphere volume with scaling

field, i.e. M(x) = Λ2, where s =
(

0.025 + 0.2
∣∣∣√x2 + y2 + z2 − 0.5

∣∣∣)−1

, Λ = diag{s, s, s}, .

28

(a) Model

(b) Particle

(c) Lloyd

(d) ODT

(e) GSM

(f) Particle+GSM

(g) Lloyd+GSM

(h) ODT+GSM

(i) Particle+GSM Clipping

(j) Particle+Perturb

(k) Lloyd+Perturb

(l) ODT+Perturb

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

GSM
Particle + GSM

Lloyd+GSM
ODT+GSM

Fr
e
q

u
e
nc

y

Radius ratio

GSM
Particle + GSM

Lloyd+GSM
ODT+GSM

(m) Radius Ratio

(n) Particle+Exude

(o) Lloyd+Exude

(p) ODT+Exude

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100120140160180

GSM GSMFr
e
q
u
e
nc
y

All Dihedral Angle

GSM

(q) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100120140160180

Particle Particle
Particle + GSM Particle + GSM

Particle + Perturb Particle + Perturb
Particle + Exude Particle + Exude

Fr
e
q

u
e
nc

y

All Dihedral Angle

Particle
Particle + GSM

Particle + Perturb
Particle + Exude

(r) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100120140160180

Lloyd Lloyd
Lloyd+GSM Lloyd+GSM

Lloyd+Perturb Lloyd+Perturb
Lloyd+Exude Lloyd+Exude

Fr
e
q
u
e
nc
y

All Dihedral Angle

Lloyd
Lloyd+GSM

Lloyd+Perturb
Lloyd+Exude

(s) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100120140160180

ODT ODT
ODT+GSM ODT+GSM

ODT+Perturb ODT+Perturb
ODT+Exude ODT+Exude

Fr
e
q
u
e
nc
y

All Dihedral Angle

ODT
ODT+GSM

ODT+Perturb
ODT+Exude

(t) Dihedral Angle

Figure 3.5: Duck volume meshing with 10,000 vertices. The red ones are tetrahedrons with
the smallest dihedral angles less than 20, while the blue ones are tetrahedrons with smallest
dihedral angles less than 40.

It is noted that the proposed GSM method leads to better dihedral angles and radius ratios

among other methods provided by CGAL.

Figure 3.8 shows the anisotropic tetrahedral meshing results on the Sphere volume with

metric field M(x) = QT (x)ΛQ(x), where Λ = diag(100, 10, 10), and Q’s three columns

are (2 cos 6x, 1, 0)T and two orthogonal unit vectors. Table 3.1 provides quality statistics

of Sphere volume meshes in the specified anisotropic field with both random and Particle

initializations. Here, only GSM and GSM with Particle initialization are compared, since

29

(a) Model

(b) Particle

(c) Lloyd

(d) ODT

(e) GSM

(f) Particle+GSM

(g) Lloyd+GSM

(h) ODT+GSM

(i) Particle+GSM Clipping

(j) Particle+Perturb

(k) Lloyd+Perturb

(l) ODT+Perturb

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

GSM
Particle + GSM

Lloyd+GSM
ODT+GSM

Fr
e
q
u
e
nc

y

Radius ratio

GSM
Particle + GSM

Lloyd+GSM
ODT+GSM

(m) Radius Ratio

(n) Particle+Exude

(o) Lloyd+Exude

(p) ODT+Exude

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

GSM GSMFr
e
q
u
e
nc
y

All Dihedral Angle

GSM

(q) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 20 40 60 80 100 120 140 160 180

Particle Particle
Particle + GSM Particle + GSM

Particle + Perturb Particle + Perturb
Particle + Exude Particle + Exude

Fr
e
q

u
e
nc

y

All Dihedral Angle

Particle
Particle + GSM

Particle + Perturb
Particle + Exude

(r) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

Lloyd Lloyd
Lloyd+GSM Lloyd+GSM

Lloyd+Perturb Lloyd+Perturb
Lloyd+Exude Lloyd+Exude

Fr
e
q
u
e
nc
y

All Dihedral Angle

Lloyd
Lloyd+GSM

Lloyd+Perturb
Lloyd+Exude

(s) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

ODT ODT
ODT+GSM ODT+GSM

ODT+Perturb ODT+Perturb
ODT+Exude ODT+Exude

Fr
e
q
u
e
nc
y

All Dihedral Angle

ODT
ODT+GSM

ODT+Perturb
ODT+Exude

(t) Dihedral Angle

Figure 3.6: Fandisk volume meshing with 18,000 vertices. The red ones are tetrahedrons
with the smallest dihedral angles less than 20, while the blue ones are tetrahedrons with the
smallest dihedral angles less than 40.

according to our observations, the approach in GSM with Particle initialization can obtain

best mesh quality among all other methods.

Figure 3.9 shows anisotropic tetrahedral meshing results inside a Cube with metric field

defined as M(x) = Λ2, where Λ = diag ((0.025 + 0.2(1− e−x))−1, 5, 5). The proposed GSM

method works well with both random and Particle initializations as shown in Table 3.1.

30

(a) Model

(b) Particle

(c) Lloyd

(d) ODT

(e) GSM

(f) Particle+GSM

(g) Lloyd+GSM

(h) ODT+GSM

(i) Particle+GSM Clipping

(j) Particle+Perturb

(k) Lloyd+Perturb

(l) ODT+Perturb

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

GSM
Particle + GSM
Lloyd+GSM

ODT+GSM

Fr
e
q
u
e
nc

y

Radius ratio

GSM
Particle + GSM

Lloyd+GSM
ODT+GSM

(m) Radius Ratio

(n) Particle+Exude

(o) Lloyd+Exude

(p) ODT+Exude

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

GSM GSM

Fr
e
q
u
e
nc
y

All Dihedral Angle

GSM

(q) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

Particle Particle
Particle + GSM Particle + GSM

Particle + Perturb Particle + Perturb
Particle + Exude Particle + Exude

Fr
e
q
u
e
nc

y

All Dihedral Angle

Particle
Particle + GSM

Particle + Perturb
Particle + Exude

(r) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

Lloyd Lloyd
Lloyd+GSM Lloyd+GSM

Lloyd+Perturb Lloyd+Perturb
Lloyd+Exude Lloyd+Exude

Fr
e
q
u
e
nc
y

All Dihedral Angle

Lloyd
Lloyd+GSM

Lloyd+Perturb
Lloyd+Exude

(s) Dihedral Angle

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

ODT ODT
ODT+GSM ODT+GSM

ODT+Perturb ODT+Perturb
ODT+Exude ODT+Exude

Fr
e
q
u
e
nc
y

All Dihedral Angle

ODT
ODT+GSM

ODT+Perturb
ODT+Exude

(t) Dihedral Angle

Figure 3.7: Sphere volume meshing(10,000 vertices) with scaling field. The red ones are
tetrahedrons with the smallest dihedral angles less than 15, while the blue ones are tetrahe-
drons with the smallest dihedral angles less than 30.

(a) Model (b) Particle+GSM Clipping (c) GSM (d) Particle + GSM

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160 180

GSM GSM

Particle + GSM Particle + GSM

Fr
e
q
u
e
nc

y

All Dihedral Angle

GSM
Particle + GSM

(e) Dihedral Angle

Figure 3.8: Sphere volume meshing (10,000 vertices) with sinusoidal variation of anisotropy.
The red tetrahedrons are the ones with smallest dihedral angles less than 15, while the blue
tetrahedrons are the ones with smallest dihedral angles less than 30.

31

(a) Model (b) Particle+GSM Clipping (c) GSM (d) Particle + GSM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 20 40 60 80 100120140160180

GSM GSM
Particle + GSM Particle + GSM

Fr
e
q
u
e
nc

y

All Dihedral Angle

GSM
Particle + GSM

(e) Dihedral Angle

Figure 3.9: Sphere volume meshing (10,000 vertices) with sinusoidal variation of anisotropy.
The red tetrahedrons are the ones with smallest dihedral angles less than 15, while the blue
tetrahedrons are the ones with smallest dihedral angles less than 30.

3.4.5 Running Time and Convergence Analysis

GSM is defined as a global optimization energy. Our GSM optimization iteratively updates

vertex positions and vertex connectivities. There are several options to set the stop con-

dition, i.e., maximum round number, energy decrease threshold, or any other mesh quality

criteria. In our implementation, we set maximum round number as the criterion. In all of

our experiments, maximum round number is set to be 50, which is large enough for all our

experiments to converge. The time consumption is given in Table 3.1.

Duck volume is utilized as an example to show the relationship between θmin, θmax, θ̄min,

γmean, and computational time in Figure 3.10. The figure draws the first 40 rounds. The

result shows that the optimizations converge fast so it provides good enough result after the

first few rounds. θmin is not strictly increasing along with the computational time and θmax

is not strictly decreasing along with the computational time, because we are not directly

optimizing the minimal dihedral angle and the maximal dihedral angle. However, θ̄min and

γmean keep increasing along with the computational time until reaching some local optimal

solutions. Comparing to Perturb and Exude methods provided by CGAl, our implementation

is not as efficient currently, but could be improved. For instance, if we compute vertex and

connectivity updates smarter instead of a global strategy or use some parallel strategies, the

implementation will be much more efficient. This will be one of our future work.

32

Table 3.1: Quality statistics of all volume meshing models. Note: best results of each model
are in bold font.

Model Method θmin/θmax γmin/γmean # < 10◦ # < 20◦ # < 30◦ # < 40◦ #tet time (sec.)

Init 0.222/179 0.008/0.588 3422 12,830 25,445 38,473 57,898 n/a
GSM 25.93/137.6 0.357/0.852 0 0 33 2211 49,782 1768.76

Particle 1/179 0.02/0.898 190 413 737 1580 52,322 82.89
Particle+GSM 32/123.8 0.632/0.919 0 0 0 99 51,522 1830.03

Particle+Perturb 27.4/142 0.469/0.907 0 0 77 747 51,750 5.99
Particle+Exude 16.3/156 0.305/0.906 0 3 85 625 51,736 3.66

Duck Lloyd 0.164/180 0.003/0.846 226 996 2592 6867 53,620 26.16
(Iso.) Lloyd+GSM 30.05/132.7 0.411/0.893 0 0 0 923 50,800 1876.72

Lloyd+Perturb 19.3/151 0.349/0.859 0 1 1480 5413 52,697 33.09
Lloyd+Exude 14.1/158 0.273/0.866 0 52 704 4116 52,093 28.16

ODT 4.18/174 0.084/0.875 36 325 1192 5036 52,571 17.28
ODT+GSM 26.75/134.6 0.456/0.894 0 0 2 981 50,837 1089.84

ODT+Perturb 23.6/146 0.413/0.881 0 0 603 4281 52,107 20.21
ODT+Exude 11.1/159 0.26/0.883 0 41 470 3903 51,978 17.85

Init 0.09656/179 0.0035/0.589 6039 21934 44258 67,110 102,135 n/a
GSM 20.36/142.8 0.275/0.845 0 0 91 4550 88,015 4158.5

Particle 0.6863/179 0.013/0.898 272 701 1324 3038 92,620 301.71
Particle+GSM 29.6/132.2 0.423/0.916 0 0 1 471 91,241 4458.5

Particle+Perturb 15.73/157.1 0.266/0.903 0 192 783 2379 91,545 6.79
Particle+Exude 15.5/156.1 0.303/0.906 0 14 185 1290 90,442 6.59

Fandisk Lloyd 0.486/179.2 0.01/0.842 409 1865 4869 12,850 93,683 51.24
(Feature) Lloyd+GSM 27.51/136.9 0.413/0.889 0 0 6 1927 89,790 4315.6

Lloyd+Perturb 16.15/156.3 0.292/0.852 0 535 3355 10,903 92,420 55.53
Lloyd+Exude 12.56/160.5 0.219/0.863 0 84 1353 7802 90,329 52.4

ODT 3.724/173.5 0.081/0.873 70 626 2218 9079 91,633 34.00
ODT+GSM 25.06/138.4 0.386/0.889 0 0 12 2174 90,082 4345.86

ODT+Perturb 19.59/151.2 0.369/0.877 0 3 1454 8209 90,705 35.71
ODT+Exude 14/156.4 0.278/0.881 0 62 833 6899 89,663 32.32

Init 0.23/179 0.005/0.558 7903 29,612 58,635 87,717 121,650 n/a
GSM 21.1/138 0.355/0.837 0 0 118 5887 103,485 7840.78

Particle 1.03/178 0.0203/0.856 372 1718 4655 12,282 111,505 410.37
Particle+GSM 30.2/130 0.531/0.900 0 0 0 1092 106,106 8787.22

Particle+Perturb 23.7/147 0.384/0.872 0 0 1801 8444 109,445 21.16
Particle+Exude 12.3/162 0.210/0.874 0 53 1127 6794 108,789 6.79

Sphere Lloyd 0.292/180 0.006/0.852 547 2234 6349 17,809 147,734 81.18
(Adap.) Lloyd+GSM 28.9/128 0.496/0.895 0 0 4 2134 140,757 9636.53

Lloyd+Perturb 23.2/147 0.368/0.867 0 0 2563 13,051 144,745 81.46
Lloyd+Exude 12.8/161 0.245/0.869 0 108 1775 11,106 144,018 73.28

ODT 1.47/178 0.0297/0.874 86 742 3284 15,068 144,176 54.9
ODT+GSM 26.1/129 0.439/0.893 0 0 6 2854 140,776 8888.4

ODT+Perturb 19.9/151 0.343/0.877 0 1 2484 14,134 143,547 47.29
ODT+Exude 9.45/161 0.216/0.879 1 136 1755 12,616 142,922 47.19

Sphere GSM 16.5/150.5 0.147/0.812 0 7 500 6359 51,405 4659.15
(Aniso.) Particle+GSM 21.5/142.5 0.289/0.864 0 0 174 3398 52,206 4464.69

Cube GSM 17.2/146 0.271/0.832 0 2 33 737 8783 404.55
(Aniso.) Particle+GSM 26.5/136 0.373/0.903 0 0 4 155 25,253 453.9

The right figure in the second row in Figure 3.10 shows GSM energy changing along with

the increasing of optimization round number in different initializations. In our GSM opti-

mization, monotonic decrease of energy is guaranteed, so our optimization always converge

with different initializations, including random, Particle, Lloyd, and ODT initializations. Al-

though different initializations may lead to different final energies, Particle + GSM scheme

33

0

5

10

15

20

25

30

35

-200 0 200 400 600 800 1000120014001600

S
m

a
lle

st
 D

ih
e
d
ra

l
A

n
g
le

Time Consumed (second)

GSM
Particle + GSM

Lloyd + GSM
ODT + GSM

120

130

140

150

160

170

180

190

-200 0 200 400 600 800 1000120014001600

La
rg

e
st

 D
ih

e
d
ra

l
A

n
g
le

Time Consumed (second)

GSM
Particle + GSM

Lloyd + GSM
ODT + GSM

90

95

100

105

110

115

-200 0 200 400 600 800 1000120014001600

M
e
a
n
 o

f
La

rg
e
st

 D
ih

e
d
ra

l
A

n
g
le

Time Consumed (second)

GSM
Particle + GSM

Lloyd + GSM
ODT + GSM

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

-200 0 200 400 600 800 1000120014001600

M
e
a
n
 R

a
d
iu

s
R

a
ti

o

Time Consumed (second)

GSM
Particle + GSM

Lloyd + GSM
ODT + GSM 128

 256

 512

 1024

 2048

 4096

-10 0 10 20 30 40 50 60

M
e
a
n
 G

S
M

 E
n
e
rg

y
 p

e
r

Te
t

Round Number

GSM
Particle + GSM

Lloyd + GSM
ODT + GSM

Figure 3.10: (a), (b), (c), (d) Dihedral angle and radius ratio quality changing along with
computational time of the Duck model. (e) GSM energies changing along with the round
numbers in different initializations.

reaches the lowest convergence energy comparing to other initializations in this example (i.e.,

Duck volume model).

3.4.6 Robustness

To show the robustness of our GSM energy, different vertex numbers on the Teddy volume

are demonstrated. The volume clipping results are shown in Figure 3.11 and quality statistics

e.g. θmin, θmax, γmin, γmean of GSM and Particle+GSM methods are shown in Table 3.2. The

result shows that GSM has stable performance under different vertex numbers both as a

standalone optimization method and as post-processing after Particle optimization.

Table 3.2: Quality statistics of Teddy volume meshes with different vertex numbers.

Method Vertex Number 2000 5000 10,000 20,000 30,000
GSM θmin/θmax 25.6/138.9 24.09/139.1 23/136.9 23.74/136.6 23.39/140.2

Particle+GSM θmin/θmax 32.9/126.4 30.88/132.4 34.28/124 33.63/128.9 34.54/127.1
GSM γmin/γmean 0.309/0.842 0.347/0.848 0.402/0.853 0.36/0.853 0.353/0.853

Particle+GSM γmin/γmean 0.623/0.907 0.595/0.914 0.581/0.918 0.556/0.92 0.571/0.921

34

(a) GSM 2000 (b) GSM 5000 (c) GSM 10000 (d) GSM 20000 (e) GSM 30000

(f) Particle+GSM 2000 (g) Particle+GSM 5000 (h) Particle+GSM 10000 (i) Particle+GSM 20000 (j) Particle+GSM 30000

Figure 3.11: Teddy volume meshes with different vertex numbers. The blue ones are tetra-
hedrons with the smallest dihedral angle less than 40°. Note: there’s no tetrahedron with
the smallest dihedral angle less than 20°.

3.5 Conclusion

In this chapter, we introduce an effective sliver suppression method based on shape matching

idea. It generates high-quality tetrahedral meshes in isotropic, adaptive, and anisotropic

cases. The proposed GSM method is evaluated on extensive volume models and compared

with state-of-the-art approaches. The results of proposed GSM method show much better

performance than all other current methods. In the future, we would like to improve the

computation speed by using GPU parallel techniques.

35

CHAPTER 4

FIELD ALIGNED FRAMEWORK1

4.1 Overview

Meshes are composed of a set of connected and non-overlapped simplex, e.g., triangles for

the triangular meshes, quads for the quadrilateral meshes, tetrahedrons for the tetrahedral

meshes, and hexahedrons for the hexahedral meshes. The main tasks of mesh generation

include vertex positions optimization and vertex connectivity optimization. The field align-

ment framework focuses on the vertex positions. The idea of the framework comes from the

symmetric one-ring structures of those meshes. In triangular mesh, the one-ring structure

forms a hexagon. In quadrilateral mesh, the one-ring structure is in the form of a cross. The

meaning of field alignment is to align the one-ring structure with a given frame field, so that

the one-ring structure is uniquely determined according to the given frame field. Our field

alignment problem is modeled as particle optimization problem.

4.2 Particle-Based Optimization Method

In the particle-based framework, each vertex is modeled as a particle with certain inter-

particle potential energy, the derivative of which determines the inter-particle forces. The

position of particles are optimized according to the forces from their neighbors until they

reach the equilibrium. In the following subsection, we introduce how to design the potential

energy which can guide particles to form the desired one ring structure, when they reach the

equilibrium.

1©2018 Eurographics Association, Revised, with permission, from Saifeng Ni, Zichun Zhong, Jin Huang,
Wenping Wang, Xiaohu Guo,“Field-Aligned and Lattice-Guided Tetrahedral meshing”, in Computer Graph-
ics Forum (Proceeding of SGP), Vol.35, pp. 161-172, 2018.

36

4.2.1 Gaussian Hole Kernel

In the particle framework, in order to form the expected pattern at equilibrium state, it is

important to define a suitable inter-particle force derived from potential energy that leads

to the expected pattern. The entire particle system’s equilibrium is got by minimizing the

sum of potential energies. Gaussian kernel is radially-symmetric, thus defining the inter-

particle energy using it resembles packing of circles/spheres in 2D/3D, as demonstrated for

anisotropic triangular meshing of surfaces (Zhong et al., 2013). Suppose two neighboring

particles i and j are located at pi and pj, respectively, their radially-symmetric energy

can be defined as: e−
‖vij‖

2

2σ2 , where vij = pi − pj, and σ is the standard deviation of the

Gaussian kernel. However, such radial-symmetry means that this potential energy does not

have directional alignment property. In other words, given two different cross fields (with

rotation only), their particle optimization results will be the same. The desired pattern

may also equilibrium states for the Gaussian kernel, for example quadrilateral / hexahedral

patterns are equilibrium states for the Gaussian kernel in 2D / 3D cases, but they are not

stable. Any small perturbation from the regular quadrilateral / hexahedral grid will break

the equilibrium. So they are unreachable states when minimizing the energy.

We need to construct a more specific potential energy to get the desired one-ring structure.

Once the frame field and the target edge length are given, the one-ring neighbors of a

particle are fixed accordingly. Radial-symmetry is not enough to form the particular one-

ring structures locally. Our goal is to force neighbor particles to fall into each others’ desired

one-ring neighbor positions exactly, by minimizing the potential energy. To achieve such

property, we place negative Gaussian kernels right at the desired one-ring neighbor positions,

which is like digging a hole at those positions in the energy field: −e−
‖vij−Onering(k)‖2

2σ2 , where

Onering(k) is the k-th one-ring neighbor position, e.g. BCC in Eq. (2.1) and FCC in

Eq. (2.2), k = 1...Nor. When we minimize such a potential energy, the neighboring particles

will be pushed exactly to those holes. Besides that, we also include a positive Gaussian kernel

37

at the position of the particle itself which will push its neighbors away to avoid particles

being optimized to the same positions. We call this potential energy as Gaussian Hole Kernel

(GHK):

Eij = e−
‖vij‖

2

2σ2 − 1

Nor

Nor∑
k=1

e−
‖vij−Onering(k)‖2

2σ2 . (4.1)

To generate anisotropic field-aligned pattern, we will transform the anisotropic alignment

problem to an isotropic one locally based on the given frame field. When particles form

a regular pattern aligned with the axes of Cartesian coordinate system, particles in the

anisotropic space will exhibit the desired one-ring pattern aligned with the desired frame

field. Each particle i is associated with a matrix Ti expanded by three vectors {ti1, ti2, ti3}.

Those three vectors define the local alignment of cubic lattice. Suppose there is no degenerate

case, i.e., |Ti| 6= 0, then the corresponding matrix Bi = T−1
i transforms the anisotropic space

to an isotropic one locally: BiTi = Bi{ti1, ti2, ti3} = I. In other words, Bi transforms an

anisotropic structure to an isotropic one locally. If we take {ti1, ti2, ti3} as basis of the

anisotropic space, then any vector v = k1ti1 + k2ti2 + k3ti3 in the anisotropic space has a

corresponding vector v′ = Biv = diag (k1, k2, k3) I in the mapped isotropic space, where

the one-ring neighbors of each vertex are well defined, e.g., BCC in Eq. (2.1) and FCC in

Eq. (2.2).

Suppose there are N particles V = {pi|i = 1...N}. For two neighboring particles i and j,

we use Tij as the frame field evaluated at the middle of two particles, i.e., Tij = T
(pi+pj

2

)
,

and correspondingly the matrix Bij = T−1
ij for transforming vij from its anisotropic space

to the isotropic one. The energy of Eq. (4.1) between two neighboring particles i and j can

be modified as:

E ′ij = e−
‖Bijvij‖

2

2σ2 − 1

Nor

Nor∑
k=1

e−
‖Bijvij−Onering(k)‖2

2σ2 . (4.2)

Here σ should be proportional to the expected edge length l∗. We discuss the choice of a

proper value for σ in Sec. 4.3.3.

38

Note that we denote all the symbols in the isotropic space with a prime symbol (′).

The energy E ′ij is defined in the isotropic space. The negative of first-order derivative of

E ′ij with respect to p′i is the force defined in the isotropic space: f ′ij = −∂E′ij
∂p′i

. Since the

particle positions pi are optimized in the anisotropic space, we transform the force back to

the anisotropic space: fij = Tijf
′
ij, which is:

fij =
vij
σ2
e−
‖Bijvij‖

2

2σ2 − Tij

Nor

Nor∑
k=1

Bijvij −Onering(k)

σ2
e−
‖Bijvij−Onering(k)‖2

2σ2 . (4.3)

Our energy definition in Eq. (4.2) satisfies Eij = Eji, and the force definition in Eq. (4.3)

satisfies fij = −fji.

4.2.2 Lattice Optimization

Once the inter-particle energy is defined, the particle optimization problem is modeled as an

energy minimization problem. The variables are the particle positions V = {pi|i = 1...N},

which are constrained in domain Ω. The problem is formulated as follows:

min E(V) =
∑
i

∑
j 6=i

Eij ≈
∑
i

∑
j∈N(i)

Eij (4.4)

s.t. pi ∈ Ω, ∀i = 1...N

where N(i) is the set of neighbors of particle i within distance R. Instead of considering

the inter-particle energy between every pair of particles, we only consider the energy of two

particles within distance R. We call R the neighbor radius. Gaussian energy is close to 0

when R >= 5σ. This approximation affect very little to the total energy while significantly

reducing the number of items in the energy summation from O(N2) to O(N). We use k-d

tree to query the neighbors for each particle. When the frame field has large stretching ratio,

it is also necessary to adjust the query radius accordingly since k-d tree is built based on

Euclidean distance. The energy and force related to particle i is Ei and fi, which is the sum

of inter-particle energies and forces from its neighbors N(i).

39

It is not easy to add the constraint condition in Eq. (4.4) to the energy explicitly. When

L-BFGS (Liu and Nocedal, 1989) is used to solve the energy minimization, we loosen

the constraint condition a little bit. To preserve the domain boundary as well as sharp

features of the domain, particles are classified into four types: fixed particles, sharp edge

particles, boundary particles, and free particles. Fixed particles are corner points of the

domain boundary. In our implementation, we simply calculate the dihedral angles between

neighboring triangles to detect all the sharp edges in the input surface mesh. A corner

is identified if it is shared by more than two sharp edges. During the optimization, the

gradient of the sharp edge particle will be projected onto the direction of its underlying

sharp edge, and the gradient of boundary particles will be projected onto the tangent plane

of its boundary surface. After each round of L-BFGS optimization, we will project particles

to the domain boundary if it is either outside the domain or inside but close to the boundary.

If a boundary particle is close to a sharp edge, then it is projected to the sharp edge and

labeled as a sharp edge particle. This is used to maintain the constraint in Eq.(4.4).

The details of our L-BFGS particle optimization algorithm are illustrated in Alg. 2.

Stopping criteria are discussed in the end of Sec. 4.2.2.

(a) Initial Particles (b) Before Ins and Del (c) After Ins and Del

Figure 4.1: Initial particle distribution, and particles before and after insertion and deletion.
The gray ones are particles on the boundary. The red ones are particles inside the boundary.

40

Algorithm 2: L-BFGS Particle Optimization Algorithm

Input: l∗, Ω, T, V
Output: Optimized V

1 while stopping criteria not satisfied do
2 Build k-d tree for V ;
3 E ← 0;
4 foreach pi ∈ {V− fixedparticles} do
5 Query the neighbors N(i) from k-d tree;
6 Calculate Ei and fi;
7 if pi is a sharp edge particle or a boundary particle then
8 Update fi ;
9 end

10 E ← E + Ei;

11 end
12 Run L-BFGS with E and {fi|i = 1...N} to update V;

13 end
14 foreach pi ∈ V do
15 if pi is outside of domain or its distance to boundary ≤ 0.3l∗ then
16 Project and mark it as a boundary particle;
17 end
18 if pi is a boundary particle and its distance to sharp edge is ≤ 0.3l∗ then
19 Project and mark it as a sharp edge particle;
20 end

21 end

Particle Insertion and Deletion

Minimizing the GHK energy encourages each particle to fall into a nearby hole. If there is no

initial particles near a hole, then that hole will be left empty. If more than one particles are

close to a hole, then those particles will compete for that hole. So the random initialization

of particles (Figure 4.1a) results in some regions missing particles and some regions packing

with extra particles as shown in Figure 4.1b. Hence we need a particle insertion and deletion

algorithm to overcome this problem and obtain the desired patterns, e.g., Figure 4.1c.

The existing mesh refinement schemes are designed based on the mesh structure, e.g.,

inserting a vertex at the center of an edge or the centroid of a face. In the particle opti-

mization stage, we do not build the mesh, which provides efficency especially for anisotropic

41

cases. Inspired by the existing mesh refinement scheme, we design the following “mesh-free”

insertion and deletion schemes.

Particle Deletion Scheme: Without connectivity, each particle does not have a well-

defined one-ring neighbor. But we can query the neighbors N(i) using k-d tree for any

particle i. After that we calculate the anisotropic distance to its neighbors and sort the

distance in ascending order. Suppose we store the sorted distance in array Di, the particle

i is deleted if any of the following condition holds:

• Di[0] < 0.5 ∗ lclosest;

• 1
2

∑1
k=0Di[k] < 0.75lclosest;

• 1
4

∑3
k=0Di[k] < 0.85lclosest;

• 1
6

∑5
k=0Di[k] < 0.9lclosest;

• 1
8

∑7
k=0Di[k] < 0.95lclosest;

where lcloest is the closest one-ring neighbor distance, e.g., lclosest = l∗ for hexahedral struc-

ture, lclosest =
√

3/2l∗ for BCC, and lclosest =
√

2/2l∗ for FCC. We denote the set of particles

to be deleted as SD. The general rule of setting the coefficients is stricter constrain for the

average distance of more neighbors. The coefficients given above are based on our obser-

vation in the experiments. All of our experiments are conducted with the same empirical

values.

Particle Insertion Scheme: Unlike the particle deletion scheme, the first step of parti-

cle insertion is to get the insertion candidates. Inspired by one-ring structure of the desired

lattice, we collect the candidate set by going through each particle and add all expected po-

sitions of its one-ring neighbors to the candidate set SI = ∪Ni=1 ∪Nork=1 {pi + Ti ∗Onering(k)},

where Ti is the frame field at particle i. If a candidate is outside the domain, we will project

it to the domain boundary. The coinciding duplicates will be removed from the set SI and

42

Algorithm 3: Particle Deletion Scheme

Input: input vertex set V , neighbor radius R
Output: a set of vertices to delete SD

1 initialize an empty set SD;
2 foreach v ∈ V do
3 initialize an empty array D;
4 foreach vertex vn within distance R of v do
5 if vn /∈ SD then
6 append distance between v and vn to array D;
7 end

8 end
9 sort D in ascending order;

10 if D[0] < 0.5lclosest or
∑1

i=0D[i]/2 < 0.75lclosest or
∑3

i=0 D[i]/4 < 0.85lclosest or∑5
i=0D[i]/6 < 0.9lclosest or

∑7
i=0 D[i]/8 < 0.95lclosest then

11 SD ← SD ∪ {v};
12 end

13 end

also candidates coinciding with any particle will also be removed. We define two positions

as coincidence if their distance is less than 0.1l∗. After filtering the candidate set based on

coincidence, we will calculate GHK energy for each remaining candidate and sort them in

ascending order. Then we examine candidates one by one and pick a candidate if the nearest

particle, including previously picked candidates, is at least 0.75lcloest away. Too small inser-

tion threshold will cause unnecessary vertices being inserted and may slow the convergence.

Too large insertion threshold will insert less vertices than required. The coefficient 0.75 is

set according to our observation in the experiments.

The particle deletion and insertion schemes are performed after each round of L-BFGS

optimization. In an L-BFGS optimization round, the particle number is fixed. After particle

deletion and insertion, another round of L-BFGS optimization is performed. As the opti-

mization processed, less particles are deleted and inserted. The overall lattice optimization

process is given in Alg. 5.

43

Algorithm 4: Particle Insertion Scheme

Input: input vertex set V and two thresholds dins, eins
Output: a set of vertices to insert SI

1 initialize an empty candidate set C;
2 foreach v ∈ V do
3 get the frame field of v as

[
t1 t2 t3

]
;

4 initialize an empty set P ;
5 for i← 1 to 3 do
6 P ← P ∪ {v + l∗ · ti,v − l∗ · ti};
7 end
8 foreach p ∈ P do
9 if p is outside of the domain then

10 project it onto domain boundary;
11 end
12 dv ← the closest distance of p to V ;
13 if dv > dins then
14 C ← C ∪ {p};
15 end

16 end

17 end
18 initialize an empty set SI ;
19 foreach c ∈ C in ascending order of their Gaussian hole energy ec do
20 if ec < eins then
21 dh ← closest distance of c to SI ;
22 if dh > dins then
23 SI ← SI ∪ {c};
24 end

25 end

26 end

The complexity of our particle optimization algorithm is related to the number of parti-

cles. A small target edge length indicates large number of particles, which is time-consuming.

To speed up the optimization, we can start with the particle optimization (Alg. 5) by setting

the target edge length as 2l∗. After the optimization is completed, we get a particle set V

with edge length 2l∗. Using a similar strategy as the particle insertion scheme, we collect

the candidates to refine the particle set. For each particle, the point which is l∗ distance

away along the frame field vectors is added to the refined candidates Vr. After removing

44

Algorithm 5: Particle-Based Lattice Optimization Algorithm

Input: l∗, Ω, T
Output: particle set V

1 Estimate vertex number N ;
2 Randomly initialize V; Optimize V by Alg. 2;
3 for i← 0 to MaxRoundNum do
4 Apply particle deletion scheme, SD ← deleted particles;
5 V← V \ SD;
6 Apply particle insertion scheme, SI ← inserted particles;
7 V← V ∪ SI ;
8 if |SD|+ |SI | == 0 then
9 break;

10 end
11 Optimize V by Alg. 2;

12 end
13 Optimize V by Alg. 2;

the coincidence candidates in Vr, we take the particles in V and Vr as initial particles, and

start another round of optimization by setting the target edge length as l∗. With a better

initialization, the optimization converges much faster. If l∗ is too small, we can start with

2kl∗ and do the above trick for k iterations. Such refinement strategy not only accelerates

the optimization, but also helps converge to a better result. Both gradient norm EpsG and

max iteration number MaxIts are set as the stopping criteria in Alg. 2. EpsG is set to 1e−2

for each round, except the last round, where EpsG = 1e−4. If k = 0, MaxRoundNum is set

to 16. If k = 1, MaxRoundNum = 8. If round number is less than 5, MaxIts is set tp 13,

otherwise it is set to 8. The last round is without the MaxIts as stopping criteria. We use

the kitten Model as an example to show the energy decreasing with respect to computation

time as shown in Fig. 4.2 with 20 rounds of LBFGS optimization. The energy decreases the

most at the first few rounds. The increase of energy at the beginning of the round is due

to the particle deletion and insertion scheme. The number of vertices being inserted and

deleted are given in Fig. 4.2. At the end of each round, the energy is optimized to be smaller

than the previous round.

45

0

4000

8000

12000

16000

20000

24000

1.29 2.86 4.43 6.01 7.59 8.79 9.99 11.19 12.5813.7915.03 17.6118.7219.8620.9822.12 23.4024.52 26.85

-2436
+3598

-1143
+1070

-803
+835

-721
+723

-667
+667

-633
+633

-614
+613

-600
+605

-597
+604

-590
+587

-589
+590

-581
+586

-591
+599

-589
+595

-590
+593

-596
+601

-597
+601

-579
+581

-593
+591

To
ta

l
e
n
e
rg

y

Time/s

3800
3820
3840
3860
3880
3900

15.03 17.61 18.72 19.86 20.98 22.12 23.40 24.52 26.85

To
ta

l
e
n
e
rg

y

Time/s

Figure 4.2: The energy curve of Kitten Model about BCC optimization with 20 rounds of
LBFGS optimization. The purple and green numbers are the number of being deleted and
inserted at the end of each round respectively. The zoom-in view of the last 10 rounds is
also provided.

4.3 Field Aligned Tetrahedral Meshing

4.3.1 Overview

Field-aligned quadrilateral and hexahedral meshing are active research topics in recent years

(Panozzo et al., 2014; Sokolov et al., 2016; Gao et al., 2017). For quadrilateral and hexahedral

meshes, field alignment is very natural because the edges of those meshes are expected to

agree with the vectors defining the underlying frame fields. Field-alignment includes the

alignments of both Riemannian distances and directions. In triangular meshing, there has

been researches focusing on the alignments of either Riemannian distances only (Zhong et al.,

2013; Fu et al., 2014; Nieser et al., 2012), or rotational directions only (Jakob et al., 2015;

Du et al., 2018). However, there is no consideration of both factors. Similarly, for field-

aligned tetrahedral meshing, only the Riemannian distance has been considered (Labelle

and Shewchuk, 2003; Du and Wang, 2005a; Fu et al., 2014; Boissonnat et al., 2015). So far

we have not found any tetrahedral meshing work that takes alignments of both Riemannian

distance and direction into consideration.

46

The triangle and the tetrahedron are the simplest elements in 2D and 3D, respectively.

The dihedral angle of a regular tetrahedron is 70.53°. Unlike tiling regular triangles for 2D

Euclidean space, it is impossible to tile regular tetrahedra for 3D Euclidean space. For most

of the existing variational tetrahedral meshing algorithms, e.g., either Centroidal Voronoi

Tessellation (CVT) based (Du and Wang, 2003; Alliez et al., 2005; Liu et al., 2009), or

Optimal Delaunay Triangulation (ODT) based methods (Chen and Holst, 2011; Chen et al.,

2014), the majority of their outputs are close to regular tetrahedra, accompanied by some

badly shaped tetrahedra. This is one of the reasons that slivers are notoriously hard to

remove in tetrahedral meshing (Klingner and Shewchuk, 2007; Tournois et al., 2009), and

also one of the reasons that direction-aligned tetrahedral meshing has not been discussed.

Our motivation is to generate tetrahedral meshes with high quality elements, instead of

regular tetrahedra, which can pack the 3D Euclidean space. Body-Centered Cubic (BCC)

and Face-Centered Cubic (FCC) lattices are two close packing scheme of spheres in 3D. The

corresponding tetrahedra formed by BCC and FCC lattices have high quality (Du and Wang,

2005b), which has been confirmed and used in mesh generation (Labelle and Shewchuk, 2007)

and applications (Ando et al., 2013). Besides that, the symmetric cubic structures of BCC

and FCC also allow us to build field-aligned anisotropic tetrahedral meshes.

We propose a particle-based variational method to generate field-aligned cubic lattice,

which leads to anisotropic tetrahedral meshes. We design a Gaussian Hole Kernel as poten-

tial energy of the particle system, which effectively and efficiently optimize a set of particles to

display the desired lattice patterns in their equilibrium status. To the best of our knowledge,

this is the first approach that can generate field-aligned isotropic and anisotropic tetrahedral

meshes, achieved by our particle-based cubic lattice (BCC and FCC) optimization method.

As illustrated by our experiments, the field-aligned and lattice-guided tetrahedral meshing

provides two benefits: (1) for isotropic tetrahedral meshing, having a direction field to guide

the mesh could potentially improve mesh quality, especially for models with rotational fea-

47

tures; (2) for anisotropic tetrahedral meshing, having BCC/FCC to guide the mesh can

generate higher quality meshes as compared to other state-of-the-art methods.

4.3.2 Tetrahedral Mesh Generation

After particle optimization, we will connect the particles to build a tetrahedral mesh. Re-

stricted Voronoi Diagram (RVD) (Yan et al., 2009) is used to build the surface boundary

using the boundary particles. We use the RVD class provided by GEOGRAM (Lévy, 2015).

Once we get the boundary triangle mesh, we perform the restricted Delaunay tetrahedral-

ization by TetGen(Si, 2015), which does not consider the anisotropic frame field. To get a

tetrahedral mesh with respect to the frame field, we perform a set of topological operations

(Shewchuk, 2002a), by using the Gradient-Based Shape Matching Energy (Ni et al., 2017)

as guidance to flip the tetrahedral mesh.

4.3.3 Experiments of Field Aligned Tetrahedral Meshing

We compare our methods with the state-of-the-art methods (Jamin et al., 2015; Fu et al.,

2014; Zhong et al., 2013). The implementation of our algorithms are based in C++. The

experiments are conducted on a workstation with Intel(R) Xeon E5645 2.40GHz CPU, and

32GB DDR3 RAM. The input of our program includes a volume domain, its associated

frame field, and also the target edge length l∗ of the cubic lattice defined in the isotropic

space.

Frame Field: Frame fields are given as an input. Several existing state-of-the-art

algorithms can be used to generate a high-quality cross field for any arbitrary volumetric

domain (Huang et al., 2011; Ray et al., 2016; Gao et al., 2017; Solomon et al., 2017). For the

convenience, we denote the discrete cross field as D. We also test our methods with some

user-designed frame fields, e.g., rotation along y-axis on torus and highly anisotropic frame

fields on cubes.

48

Quality Metrics: To calculate the quality of anisotropic tetrahedral meshes, we first

transform the elements τ from anisotropic space to isotropic space τ ′. Many anisotropic mesh

quality metrics are discussed in (Shewchuk, 2002b). We measure the quality by dihedral

angles θ, edge-radius ratio ρ =
√

6emin/4rcirc, and condition κ = 3
√

6vτ ′/ (2lrms ∗ Arms),

where rcirc is the circumradius, emin is the shortest edge length, vτ ′ is the volume, lrms and

Arms are the root mean square of edge lengths and face areas of a tetrahedron. When τ ′ is

a regular tetrahedron, ρopt = 1, κopt = 1. We report histograms and minimum, average and

standard deviation for θmin, ρ and κ, denoted as θmin, θmin, σ(θmin), ρmin, ρ, σ(ρ), κmin, κ,

and σ(κ). θmin and θmax are the smallest and the largest dihedral angles of a tetrahedron,

respectively.

Alignment Error: The alignment quality ε is evaluated on the resulting meshes. For

each edge vij of the resulting tetrahedral mesh, we first transform it to the isotropic space

v′ij = Bijvij, then the smallest angle between v′ij and vectors in Onering is used to measure

the alignment error of edge vij, i.e., ε = minNork=1 arccos
(

v′>ij ·Onering(k)

‖v′ij‖·‖Onering(k)‖

)
. Histograms, mean

ε and σ(ε) are reported for the result meshes.

Experiment Parameters: From the experiments, we find that setting σ in the range

[0.25lclosest, 0.35lclosest] has the similar performance, so we use 0.3lclosest for all the experi-

ments. The neighbor radius R is set as 1.3l∗, which includes all the one-ring neighbors. The

Gaussian Hole Kernel definition in Eq. (4.2) takes the inverse of Nor as the weight for the

negative Gaussian kernels. This is to balance the force used to push particles away and the

forces to drag particles to holes. Larger weight will result in more coinciding particles, while

with smaller weight, particles are more evenly pushed away but may be more off the desired

one-ring structure. However, after a few rounds of optimization with deletion and insertion

scheme, the performance of different weights are similar. The other parameters for deletion,

insertion and projection of particles are given in the Sec. 4.2.2. All the experiments are

conducted with the same parameters.

49

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(a) Particle2013

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(b) BCC T = I

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(c) FCC T = I

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(d) BCC T = D

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(e) FCC T = D

Figure 4.3: Comparison with the traditional Gaussian kernel method proposed in Parti-
cle2013 (Zhong et al., 2013). The first row is the result on surface. The second shows the
tetrahedra with θmin < 40°. The third row shows the clipping views. The following rows are
histograms of dihedral angles, edge radius ratio, condition, and alignment error.

50

Comparison with Particle2013 (Zhong et al., 2013): Zhong et al.’s method (Zhong

et al., 2013) used the traditional Gaussian kernel for generating anisotropic triangular mesh,

and can be trivially extended for tetrahedral mesh generation. We compare our Gaussian

hole kernel methods, named BCC and FCC, with their method, named Particle2013, on

three models as shown in Figure 4.3 and Table 4.1. Particle2013 cannot achieve field-aligned

meshing results for discrete cross fields. The experiments of our method use both T = I

and T = D (discrete cross fields). Under either rotation field, our method achieves higher

quality, e.g., about 3°to 5°growth on θmin, 0.05 to 0.11 gain on rho and thousands less of

tetrahedra in #T<40°. Those gains are coming from the lattice-guided alignment, producing

high quality BCC and FCC tetrahedra.

BCC alignment provides higher ρ and κ than FCC alignment. FCC alignment creates

higher θmin but also higher θmax than BCC alignment. FCC alignment has smaller #T<40°

and it also has smaller alignment error. Unlike identity field I, a discrete cross field usually

contains singularities inside the volume domain. The upper right corner of Figure 4.3 shows

the singularities of D inside the Fertility model. Alignment to D is harder than alignment

to I, which explains the slight decline in quality. The advantage of rotation alignment will

be illustrated in the later part.

Comparisons with CVT and ODT: We also compare with the CVT and ODT meth-

ods to see whether BCC and FCC alignment will improve the mesh qualities. We use their

implementations in CGAL (CGAL, 2017; Jamin et al., 2015) for the comparison. Since both

CVT and ODT energies do not support field-alignment in tetrahedral meshing, we set the

frame field as I for our method. Our particle-based optimization well generates the BCC

and FCC patterns as shown in Figure 4.4 and Figure 4.5. The dihedral angle histograms of

BCC results have two peeks around 60°and 90°, and one peak in the histograms of ρ and

κ. In FCC results, the histograms of ρ and κ have two peeks: the right ones are caused by

regular tetrahedra in the meshes and the left ones are the other tetrahedra with dihedral

51

h
tb

p

T
ab

le
4.

1:
T

h
e

m
es

h
q
u
al

it
y

in
co

m
p
ar

is
on

w
it

h
P

ar
ti

cl
e2

01
3

(Z
h
on

g
et

al
.,

20
13

).
#

V
an

d
#

T
ar

e
th

e
n
u
m

b
er

s
of

ve
rt

ic
es

an
d

te
tr

ah
ed

ra
in

th
e

re
su

lt
m

es
h
es

.
#
T
<

2
0
°

an
d

#
T
<

4
0
°

ar
e

th
e

n
u
m

b
er

s
of

te
tr

ah
ed

ra
w

it
h
θ m

in
<

20
°

an
d

θ m
in
<

40
°,

re
sp

ec
ti

ve
ly

.
T

h
e

m
in

im
u
m

/m
ax

im
u
m

,
m

ea
n
,

an
d

st
an

d
ar

d
d
ev

ia
ti

on
of

sm
al

le
st

d
ih

ed
ra

l
an

gl
e
θ m

in
,

la
rg

es
t

d
ih

ed
ra

l
an

gl
e
θ m

a
x
,

ed
ge

ra
d
iu

s
ra

ti
o
ρ
,

co
n
d
it

io
n
κ

ar
e

p
ro

v
id

ed
.

T
h
e

m
ea

n
an

d
st

an
d
ar

d
d
ev

ia
ti

on
of

al
ig

n
m

en
t

er
ro

r
ε

ar
e

al
so

li
st

ed
.

N
ot

e
th

at
th

e
b

es
t

va
lu

es
ar

e
h
ig

h
li
gh

te
d

in
b

ol
d

fo
r

ea
ch

gr
ou

p
.

M
o
d
e
l

T
A

lg
.

#
V

θ
m

i
n

/
θ
m

i
n

/
σ

(θ
m

i
n

)
θ
m

a
x

/
θ
m

a
x

/
σ

(θ
m

a
x

)
ρ
m

i
n

/
ρ
/
σ

(ρ
)

κ
m

i
n

/
κ

/
σ

(κ
)

ε
/
σ

(ε
)

#
T
<

2
0
°

#
T
<

4
0
°

#
T

T
im

e
(s

)
B
u
n
n
y

n
/
a

P
a
rt

ic
le

2
0
1
3

6
0
,0

0
0

1
5
.7

3
/
5
2
.9

3
/
7
.0

0
1
5
6
.6

2
/
9
4
.9

0
/
1
1
.6

5
0
.3

9
/
0
.8

2
/
0
.0

7
0
.3

1
/
0
.8

9
/
0
.0

7
2
0
.8

8
/
7
.7

7
3

1
3
,3

5
9

3
1
9
,5

6
2

1
4
3
.6

0
B
u
n
n
y

I
B

C
C

5
9
,5

0
4

1
6
.2

9
/
5
7
.5

5
/
4
.6

1
1
5
9
.5

0
/
9
1
.9

3
/
6
.3

5
0
.3

0
/
0
.9

1
/
0
.0

7
0
.3

0
/
0
.9

4
/
0
.0

5
2
.6

1
/
4
.8

6
1
8

5
,9

4
4

3
3
1
,8

4
5

5
5
.5

2
B
u
n
n
y

I
F

C
C

5
7
,5

3
3

1
7
.9

8
/
5
8
.0

6
/
7
.8

3
1
5
7
.4

5
/
9
6
.6

4
/
1
6
.6

8
0
.3

5
/
0
.8

9
/
0
.0

8
0
.3

3
/
0
.9

0
/
0
.0

7
2
.2

5
/
4
.3

5
2

5
,1

4
3

3
1
8
,4

7
0

9
4
.8

4
B
u
n
n
y

D
B

C
C

6
1
,8

3
6

1
8
.7

2
/
5
5
.8

3
/
5
.2

1
1
4
8
.0

7
/
9
3
.3

2
/
7
.7

9
0
.3

3
/
0
.8

8
/
0
.0

8
0
.4

2
/
0
.9

2
/
0
.0

6
5
.0

4
/
6
.4

5
1

7
,9

3
3

3
4
8
,5

2
2

6
5
.7

0
B
u
n
n
y

D
F

C
C

6
0
,3

2
4

1
7
.5

0
/
5
6
.3

6
/
7
.1

9
1
5
3
.1

6
/
9
6
.2

7
/
1
4
.7

5
0
.3

1
/
0
.8

7
/
0
.0

7
0
.3

5
/
0
.9

1
/
0
.0

6
4
.2

0
/
4
.4

3
2

4
,5

1
0

3
3
6
,7

5
3

1
3
7
.7

9
F
e
r
t
i
l
i
t
y

n
/
a

P
a
rt

ic
le

2
0
1
3

4
0
,0

0
2

1
8
.8

8
/
5
2
.5

8
/
7
.1

2
1
5
2
.6

2
/
9
5
.2

0
/
1
1
.7

1
0
.3

1
/
0
.8

1
/
0
.0

8
0
.3

8
/
0
.8

9
/
0
.0

7
2
0
.9

4
/
7
.7

1
1

1
0
,0

2
0

2
0
2
,1

7
3

3
3
.7

7
F
e
r
t
i
l
i
t
y

I
B

C
C

4
1
,1

8
8

1
6
.8

6
/
5
6
.5

9
/
5
.8

8
1
5
8
.4

4
/
9
3
.0

2
/
8
.2

5
0
.3

5
/
0
.8

9
/
0
.0

9
0
.3

2
/
0
.9

3
/
0
.0

7
3
.7

0
/
6
.0

7
2
6

7
,2

8
6

2
1
8
,3

1
9

4
0
.6

0
F
e
r
t
i
l
i
t
y

I
F

C
C

3
9
,5

9
4

1
5
.3

0
/
5
7
.0

9
/
8
.2

4
1
5
7
.7

5
/
9
6
.9

4
/
1
6
.3

7
0
.3

7
/
0
.8

7
/
0
.0

8
0
.3

2
/
0
.9

0
/
0
.0

8
3
.2

9
/
5
.2

5
5

6
,2

4
1

2
0
7
,6

3
8

6
1
.0

2
F
e
r
t
i
l
i
t
y

D
B

C
C

4
2
,5

9
4

1
7
.9

1
/
5
5
.2

3
/
5
.9

7
1
5
4
.9

2
/
9
4
.3

0
/
9
.1

8
0
.3

0
/
0
.8

7
/
0
.0

9
0
.3

5
/
0
.9

2
/
0
.0

7
6
.0

5
/
7
.5

2
6

7
,6

6
4

2
2
9
,9

0
2

5
1
.8

8
F
e
r
t
i
l
i
t
y

D
F

C
C

4
2
,0

1
5

2
2
.1

7
/
5
6
.1

3
/
7
.2

8
1
4
4
.1

7
/
9
6
.2

7
/
1
4
.5

2
0
.3

8
/
0
.8

6
/
0
.0

8
0
.4

5
/
0
.9

0
/
0
.0

7
4
.7

2
/
4
.9

5
0

3
,6

9
7

2
2
3
,2

9
8

7
5
.1

6
K
i
t
t
e
n

n
/
a

P
a
rt

ic
le

2
0
1
3

6
0
,0

0
0

1
5
.6

3
/
5
2
.4

7
/
7
.9

0
1
5
8
.2

5
/
9
5
.1

5
/
1
1
.6

5
0
.3

2
/
0
.8

0
/
0
.1

0
0
.3

1
/
0
.8

8
/
0
.0

8
2
0
.8

3
/
7
.7

8
2
8

2
3
,9

8
8

3
0
5
,2

8
6

9
2
.6

5
K
i
t
t
e
n

I
B

C
C

5
9
,9

1
3

1
4
.5

3
/
5
7
.3

1
/
4
.7

5
1
6
4
.5

9
/
9
2
.0

2
/
6
.5

5
0
.2

7
/
0
.9

1
/
0
.0

7
0
.2

4
/
0
.9

3
/
0
.0

5
2
.8

2
/
4
.8

3
4
0

6
,3

3
5

3
3
5
,2

3
7

7
1
.2

8
K
i
t
t
e
n

I
F

C
C

5
6
,4

9
9

1
6
.4

6
/
5
8
.3

0
/
8
.1

3
1
5
6
.8

1
/
9
6
.8

4
/
1
7
.3

7
0
.3

5
/
0
.8

9
/
0
.0

8
0
.3

2
/
0
.9

0
/
0
.0

7
1
.9

0
/
4
.3

7
8

5
,4

3
0

3
1
3
,7

7
9

9
3
.2

7
K
i
t
t
e
n

D
B

C
C

6
2
,1

2
4

2
0
.8

6
/
5
5
.6

5
/
5
.2

1
1
5
0
.0

6
/
9
3
.3

8
/
7
.8

5
0
.3

1
/
0
.8

8
/
0
.0

7
0
.4

1
/
0
.9

2
/
0
.0

6
5
.0

8
/
6
.4

0
0

7
,8

1
5

3
5
1
,8

4
9

7
1
.8

0
K
i
t
t
e
n

D
F

C
C

5
9
,9

9
8

2
2
.4

7
/
5
6
.3

1
/
7
.2

4
1
4
7
.4

3
/
9
6
.3

3
/
1
4
.7

6
0
.3

0
/
0
.8

7
/
0
.0

7
0
.4

3
/
0
.9

1
/
0
.0

6
4
.2

1
/
4
.4

0
0

4
,4

9
1

3
3
6
,3

8
2

1
3
5
.4

6

52

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(a) CVT

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(b) ODT

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(c) BCC

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1
Fr

eq
ue

nc
y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(d) FCC

Figure 4.4: Comparisons with CVT and ODT on Fandisk model. The first row shows the
clipping views. The second row shows the tetrahedra with θmin < 40°. The following rows
are histograms of dihedral angles, edge radius ratio, condition, and alignment error.

53

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(a) CVT

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(b) ODT

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(c) BCC

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1
Fr

eq
ue

nc
y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(d) FCC

Figure 4.5: Comparisons with CVT and ODT on Bimba model. The red tetrahedra shown
in the second row have θmin < 40°.

54

Table 4.2: Comparison with CVT and ODT. #V and #T are the numbers of vertices and
tetrahedra in the output meshes. The mean value of smallest dihedral angle θmin, largest
dihedral angle θmax, edge radius ratio ρ, condition κ, and alignment error ε are provided.
The computation time is provided, which is the total time including particle optimization
and mesh generation. Note that the best values are highlighted in bold for each group.

Model Alg. #V θmin/θmin θmax/θmax ρ κ ε #T<20° #T<40° #T Time(s)

Bimba CVT 20,000 0.41/50.20 179.34/98.12 0.81 0.86 20.75 2,002 14,273 109,806 58.67
Bimba ODT 20,000 2.69/51.36 175.47/93.97 0.81 0.89 20.78 543 9,757 107,400 39.34
Bimba BCC 20,042 16.48/57.22 159.03/92.39 0.90 0.93 3.10 15 2,789 108,168 20.66
Bimba FCC 19,477 18.02/57.56 153.06/96.94 0.88 0.90 2.75 4 2,715 104,340 48.03

Cube CVT 10,000 0.50/50.05 179.22/98.32 0.81 0.86 21.01 1,037 7,311 54,221 28.34
Cube ODT 10,000 2.06/51.19 176.65/94.21 0.81 0.89 21.02 315 5,326 52,975 18.32
Cube BCC 9,009 44.48/59.01 120.61/91.86 0.93 0.94 1.00 0 0 49,152 10.06
Cube FCC 9,842 50.79/59.89 111.29/96.49 0.91 0.91 0.10 0 0 52,728 28.61

Elephant CVT 10,000 0.80/50.85 178.41/97.43 0.81 0.87 20.88 823 5,932 49,596 27.11
Elephant ODT 10,000 0.80/50.99 178.41/94.53 0.80 0.88 20.85 359 5,003 48,801 16.24
Elephant BCC 10,389 16.27/55.87 158.97/93.46 0.88 0.92 4.45 14 2,209 51,579 11.23
Elephant FCC 10,050 16.88/56.30 158.46/97.31 0.86 0.89 4.17 5 1,929 49,299 21.86

Fandisk CVT 18,000 0.49/49.92 179.22/98.54 0.81 0.86 20.92 1,876 12,939 94,977 51.24
Fandisk ODT 18,000 3.72/50.99 173.48/94.60 0.81 0.88 20.89 639 9,172 92,939 34.00
Fandisk BCC 18,518 18.09/57.25 155.71/92.80 0.90 0.93 3.20 2 1,809 99,005 16.39
Fandisk FCC 17,920 18.08/57.47 151.07/96.70 0.88 0.90 2.59 3 2,077 94,509 25.50

angle [54.735°(4), 90°, 109.47°], which also explains the peeks in the dihedral angle histogram.

The tetrahedra with θmin < 40° are on boundary surfaces. The more detailed quality statis-

tics are given in Table 4.2. Our methods have about 6°to 10°growth on θmin, 0.05 to 0.12

increment on ρ and much less elements with θmin < 40°. Besides that, our optimization is

faster since there is no computation of Voronoi diagram or connectivity in each iteration.

Rotation Field Alignment for Improving Mesh Quality: After showing our better

mesh quality results as compared to Particle2013, CVT, and ODT methods, we would like

to show that for some models with rotational features, the alignment with its rotation field

can produce meshes with better quality. We use two models for such illustration: Torus

(Figure 4.6) and Fancyring (Figure 4.7). The frame field we tried on Torus is the rotation

along y-axis Ry, and the frame field for Fancyring is a discrete cross field generated by (Huang

et al., 2011), denoted as D. We compare them with the results generated by identity field

55

Table 4.3: The quality statistics of rotation alignment experiments on Torus and Fancyring.
#V and #T are the numbers of vertices and tetrahedra of the result meshes. #T<20° and
#T<40° are the numbers of tetrahedra with θmin < 20° and θmin < 40°, respectively. The
minimum, mean, and standard deviation of smallest dihedral angle θmin, edge radius ratio
ρ, condition κ are provided. The mean and standard deviation of ε are also listed. Dist is
the Hausdorff distance between the boundary surfaces of the result and input meshes. Note
that the best values are highlighted in bold for each group.

Model T Alg. #V θmin/θmin/σ(θmin) ρmin/ρ/σ(ρ) κmin/κ/σ(κ) ε/σ(ε) #T<20° #T<40° #T Dist Time(s)
Torus I BCC 2,274 18.70/54.06/7.78 0.37/0.85/0.11 0.34/0.90/0.09 6.02/7.65 5 798 10,605 0.500 6.98
Torus I FCC 2,299 15.62/55.37/8.70 0.34/0.85/0.09 0.30/0.89/0.08 4.98/6.37 1 541 10,486 0.341 6.66
Torus Ry BCC 2,440 28.10/55.05/6.55 0.43/0.86/0.09 0.55/0.91/0.07 5.69/6.97 0 520 11,389 0.377 7.91
Torus Ry FCC 2,347 20.87/54.38/8.34 0.35/0.85/0.10 0.42/0.89/0.09 5.60/6.19 0 677 11,106 0.318 11.76

Fancyring I BCC 4,775 17.22/51.76/8.68 0.23/0.81/0.13 0.37/0.88/0.10 9.66/9.72 14 2,587 21,420 0.542 8.42
Fancyring I FCC 4,810 13.79/52.05/9.56 0.19/0.80/0.12 0.29/0.87/0.10 8.15/7.70 15 2,493 21,094 0.480 14.44
Fancyring D BCC 4,187 22.93/53.98/6.40 0.29/0.85/0.08 0.37/0.90/0.07 8.55/8.84 0 417 18,992 0.195 21.56
Fancyring D FCC 3,979 22.14/53.57/6.96 0.33/0.84/0.08 0.48/0.90/0.07 6.76/5.76 0 527 17,256 0.203 14.93

(a) BCC (B = I) (b) BCC (B = Ry) (c) FCC (B = I) (d) FCC (B = Ry)

Figure 4.6: BCC and FCC experiments on Torus with I and Ry rotation fields. The yellow
ones are the clipping views.

56

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(a) BCC (T = I)

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(b) BCC (T = D)

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(c) FCC (T = I)

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(d) FCC (T = D)

Figure 4.7: BCC and FCC experiments on Fancyring with different rotation fields. The red
ones are the tetrahedra with θmin < 40°.

57

Table 4.4: Statistics of mesh quality and time consumption compared with LCT (Fu et al.,
2014). #V and #T are the numbers of vertices and tetrahedra of the result meshes. #T<20°

and #T<40° are the numbers of tetrahedra with θmin < 20° and θmin < 40°, respectively. The
mean of smallest dihedral angle θmin, edge radius ratio ρ, condition κ, and computation time
are provided. Note that the best values are highlighted in bold for each group.

Model Alg. #V θmin θmin ρ κ ε #T<20° #T<40° #T Time(s)

LCT 1,869 24.84 51.71 0.81 0.89 21.59 0 585 8,117 8.3
Figure 4.8 BCC 2,476 36.88 56.95 0.90 0.92 3.09 0 0 11,988 16.28

FCC 2,471 52.85 58.75 0.90 0.91 0.78 0 0 11,520 31.13

LCT 6,338 15.51 49.87 0.78 0.88 20.94 88 4,220 31,840 72.6
Figure 4.9 BCC 6,410 14.26 53.73 0.85 0.89 5.37 8 2,297 33,099 56.05

FCC 6,498 23.44 55.27 0.85 0.90 3.84 0 632 32,993 87.59

I. It can be seen from these two experiments: if the rotation field aligns very well with the

shape or the features of the geometry, we can get better shape approximation as well as

higher tetrahedral qualities as shown in Table 4.3.

Field Alignment for Anisotropic Tetrahedral Meshing: To further explore the

performance of our field-aligned and lattice-guided methods, we conduct experiments using

the highly anisotropic fields on Cube, and compare with LCT method (Fu et al., 2014) as

shown in Figure 4.8 and Figure 4.9. Compared with LCT, our BCC and FCC results show

higher quality due to the strong directional control and the advantage of lattice-alignment.

The detailed quality statistics are given in Table 4.4.

Robustness: We demonstrate the robustness of our method by experiments on Teddy

with different numbers of vertices on the same discrete frame field. The minimal dihedral

angle θmin, edge radius ratio ρ, condition κ, alignment error ε of the resulting meshes, and

their optimization time along with the different vertex numbers are shown in Figure 4.10. The

results of BCC and FCC are shown in red and blue curves, respectively. The convergence

of our particle optimization scheme is tested on Kitten Model with 20 rounds of LBFGS

optimization as shown in 4.2. The energy decreases the most at the first few rounds. Due to

particle deletion and insertion scheme, the increase of energy at the beginning of the round

is due to the particle deletion and insertion scheme. The number of vertices being inserted

58

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(a) BCC

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(b) FCC

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1
Fr

eq
ue

nc
y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(c) LCT

Figure 4.8: Anisotropy variation along a single direction on Cube [0.1, 1.1]3. The inverse of

frame field is defined as B = diag
((

1.0125− e−|x−0.6|)−1
, 1, 1

)
. The second row shows the

clipping views of the result tetrahedral meshes. The last four rows show the histograms of
dihedral angle, edge radius ratio, condition, and alignment error.

59

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(a) BCC

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Edge Radius Ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(b) FCC

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y

Dihedral Angle

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y
Edge Radius Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

Condition

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y

Alignment Error

(c) LCT

Figure 4.9: Cylindrical anisotropy on Cube [1, 11]3. The inverse of frame field is defined

as B = S ∗ R, where S = diag

((
1.05− e−0.01|x2+y2−49|

)−1

, 1, 1

)
, and the three columns

of R are
(
−x/

√
x2 + y2, y/

√
x2 + y2, 0

)
,
(
−y/

√
x2 + y2, x/

√
x2 + y2, 0

)
, and (0, 0, 1), re-

spectively. The second row is the clipping view of the result tetrahedral meshes. The last
four rows show the histograms of dihedral angle, edge radius ratio, condition, and alignment
error.

60

#V = 5269

#V = 5342

#V = 39827

#V = 39026

#V = 98853

#V = 95909

 54

 54.5

 55

 55.5

 56

 56.5

 57

 0 20000 40000 60000 80000 100000

M
e
a
n
 θ

m
in

Vertex Number

BCC θmin
FCC θmin

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0 20000 40000 60000 80000 100000

ρ
 a

n
d

 κ

Vertex Number

BCC ρ
BCC κ
FCC ρ
FCC κ

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 20000 40000 60000 80000 100000

M
e
a
n
 ε

Vertex Number

BCC
FCC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20000 40000 60000 80000 100000

Ti
m

e
(s

)

Vertex Number

BCC
FCC

Figure 4.10: The first two rows shows BCC and FCC results in different vertex numbers.
The next two rows show the quality statistics and time consumption with different numbers
of vertices on Teddy.

and deleted are given. At the end of each round, the energy is optimized to be smaller than

the previous round.

4.3.4 Discussion and Future Work

It should be noted that our method can be easily extended to solve field-aligned anisotropic

triangular meshing for surfaces. This can be achieved by defining six holes in the GHK of

Eq. (4.1) on the tangent plane of surface. As shown in Figure 4.11, our method can obtain

better mesh quality of anisotropic triangular meshes compared to Particle2013 (Zhong et al.,

61

2013) and LCT (Fu et al., 2014). Here r6 is the ratio of vertices with degree-6. The quality

of a triangle is measured by ξ = 4
√

3ap/h, where a is its area, p is its perimeter and h is its

longest edge length in its mapped isotropic space.

Figure 4.6 and Figure 4.7 show two examples that our rotation-field-aligned BCC and

FCC methods might improve mesh quality for models having rotational shapes and features.

In the future we would like to investigate in depth the relationship between the generation of

frame-fields and the quality of field-aligned BCC and FCC meshes, in order to come up with

some better field generation methods that are specifically tailored for such lattice meshes. In

addition, we would like to investigate the possibility of other lattices (Du and Wang, 2005b),

such as A15 and Z-type configurations, etc.

The lattice structure is only used to guide the particle optimization in this work. Building

a tetrahedral mesh based on the one ring structure for a field-aligned particle set will be one

of our future work. Unlike the isosurface stuffing work (Labelle and Shewchuk, 2007),

which only need to cut BCC tetrahedra along the domain boundary, our situation is more

complicated and undetermined. The incomplete lattice structure mays appear any place and

in any form.

4.4 Hexahedral-Dominant Meshing

4.4.1 Overview

The state-of-the-art hexahedral-dominant meshing methods (Lévy and Liu, 2010; Botella

et al., 2016; Baudouin et al., 2014; Sokolov et al., 2016; Gao et al., 2017), follow a three-

step pipeline: (1) generating a frame field; (2) optimizing a set of vertices locally aligned

with the frame field; (3) building a hexahedral-dominant mesh from the optimized vertices.

High-quality frame field can be generated by some existing methods (Huang et al., 2011;

Ray et al., 2016; Gao et al., 2017). Then, it is crucial to determine a set of optimized vertex

positions. The quality of resulting point set directly affects the final mesh quality.

62

r6 = 0.78

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60

Fr
eq

ue
nc

y

θmin

θmin = 52.4°

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

ξ

ξ = 0.91

(a) Particle2013

r6 = 0.87

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60

Fr
eq

ue
nc

y

θmin

θmin = 52.6°

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

ξ

ξ = 0.92

(b) LCT

r6 = 0.94

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60

Fr
eq

ue
nc

y

θmin

θmin = 53.8°

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 0.2 0.4 0.6 0.8 1
Fr

eq
ue

nc
y

ξ

ξ = 0.93

(c) Our Method

Figure 4.11: Field-aligned anisotropic triangular meshing on Cyclide, compared with Parti-
cle2013 (Zhong et al., 2013) and LCT (Fu et al., 2014). The three columns are the results of
Particle2013 method, LCT method, and our method, respectively. The first two rows show
the resulting surface meshes and the zoom-in views of the narrow part. r6 shown in the
first row is the ratio of vertices with degree 6 in the result mesh. The last two rows are the
histograms of θmin and ξ.

63

(a) Particles (b) Hexahedral-dominant mesh

Figure 4.12: The particles and mesh results on Front Upright ASM005 Model. The three
images on the left show the particle results in zoom-in views. The gray particles are on the
domain boundary surface and the red ones inside the domain. The three images on the right
show the corresponding hexahedral-dominant mesh in cut-out views.

We propose a novel particle-based variational method to achieve the vertex optimization

in the second step. Our variational method is capable of handling complicated CAD models

of large sizes, as well as volume domains bounded by freeform surfaces. It is fully automatic,

robust to domain shape, and also supports various frame fields, which can be either highly-

warped or having large stretching ratios. Finally, we apply the same connectivity method

as used by PGP3D (Sokolov et al., 2016; Meshkat and Talmor, 2000) for the third step of

generating hex elements from the optimized vertices. Figure 4.12 shows an example of our

optimized particles and constructed hexahedral-dominant mesh for Front Upright ASM005

model. Our particle optimization is simple to understand and easy to implement. The re-

sulting hexahedral-dominant meshes usually have higher percentage of hexahedra and better

quality. The speed is also competitive.

To design a particle system, the main challenge is to define a potential energy whose

minimization drives the particles to be aligned with the given frame field to form a desired

hexahedral pattern. We design a special kernel to define the inter-particle energy, called

Gaussian hole kernel, which is a summation of seven Gaussian kernels. For each particle, we

place one positive Gaussian kernel exactly at its position and six negative Gaussian kernels

at its six expected neighborhood positions. We call the six negative Gaussian kernels as

“holes”, which are placed along the three vectors of the local frame field. Then we define

64

the inter-particle energy as the sum of these Gaussian hole kernels for all the particles. We

use a quasi-Newton L-BFGS algorithm to efficiently minimize this energy function to make

the neighboring particles of each particle to fall into the positions of the specified holes

which are aligned with the given frame field, thus forming a hexahedral pattern. The energy

minimization curve on fertility model is given in Figure 4.13. We also proposed effective

particle deletion and insertion schemes to further improve the regularity of the particle

arrangement by reducing the number of non-hex elements.

Initial Particles
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

18 34 50 66 82 93 104 115 126 137 148 159 170 181 192 203 212 223 234

-1809
+2235

-271
+776

-144
+278

-91
+140

-69
+95

-61
+71

-54
+70

-50
+49

-44
+71

-39
+39

-34
+41

-38
+33

-33
+38

-30
+39

-43
+34

-33
+40

-36
+39

-37
+35

-31
+33

-0
+0

1.1 2.8 4.4 6.0 8.6 9.7 10.8 12.6 13.8 17.1 19.7 22.2 28.1 32.8 38.2 40.045.4 51.7 57.9 69.1

E

Iteration number

Particles with
10 Rounds of
L-BFGS Opti-
mization

1885

1890

1895

1900

1905

1910

137 148 159 170 181 192 203 212 223 234

E

Iteration number

Particles with
20 Rounds of
L-BFGS Opti-
mization

Figure 4.13: The 20 rounds of L-BFGS optimization on the Fertility model. The optimization
starts from a random initialization of 10,000 particles. The purple numbers are the numbers
of particles being deleted after each round. The green numbers are the numbers of particles
being inserted after each round. The blue numbers are the computation time in seconds.
The second curve shows the zoom-in view of the last 10 rounds. The energy raise at the
beginning of each round is caused by two reasons: one is particle insertion and deletion; the
other one is particle projection.

4.4.2 Mesh Generation

The final output hexahedral-dominant mesh is generated by the same method as in PGP3D

(Sokolov et al., 2016). The mesh generation has three steps: 1) remesh the boundary using

65

the resulting point set; 2) build the tetrahedral mesh; 3) merge the tetrahedral mesh into a

hexahedral-dominant mesh.

In the first step, Restricted Voronoi Diagram (RVD) (Yan et al., 2009) is utilized to

extract the boundary of the domain from the resulting point set. We use the RVD imple-

mentation in GEOGRAM (Lévy, 2015). Sometimes the remeshed boundary is not dense

enough to capture all the geometric features. A mesh refinement step is performed by insert-

ing more vertices to the remeshed boundary until the Hausdorff distance between the refined

mesh boundary and input domain boundary is less than a certain threshold. We follow the

algorithm and use the same parameters introduced in PGP3D to do the mesh refinement.

Once we get the refined boundary, restricted Delaunay tetrahedral mesh is built by adding

the remaining domain-internal particles using TetGen (Si, 2015). TetGen constructs the

tetrahedral mesh without considering the frame field. When the frame field has scale vari-

ance, the output tetrahedral mesh may not be a Delaunay tetrahedral mesh with respect to

the frame field. It can be transformed to a Delaunay tetrahedral mesh by performing a set

of topological flipping operations (Shewchuk, 2002a). In all of our experiments shown in

this paper, we did not find any improvements by such topological operations. The last step

is to merge the tetrahedral mesh to a hexahedral-dominant mesh. It is carried out in the

following two steps.

The first step is to find out all the possible combinations of tetrahedra that form hex-

ahedron, prisms and pyramids. There are 6 ways to merge 5 or 6 tetrahedra to a hexahe-

dron (Meshkat and Talmor, 2000). Sokolov et al. (Sokolov et al., 2016) proved that these

are all possible ways of combining 5 or 6 tetrahedra to a hexahedron. Besides that, they also

provided 4 ways to merge 7 tetrahedra to a hexahedron, where one of the 7 tetrahedra is a

sliver that prevents merging into two prisms. The implementation details of finding all hex-

ahedron candidates are given in the Supplementary Appendix, which follows the algorithm

introduced in (Meshkat and Talmor, 2000).

66

If we denote all possible combinations found in previous step as C = {c1, c2, . . . , cn},

where ci = {t1, t2, . . . , tm} is a combination of m tetrahedra that forms a hexahedron, prism,

or pyramid, then the goal of the second step is to find a subset C ′ of C such that
⋃
c∈C′ c

covers the whole tetrahedral mesh, and there is no conflict among elements of C ′. The most

obvious example of conflicts is that ci ∩ cj 6= ∅, i.e., they share a tetrahedron, then they are

conflicting with each other. There are also some other conflicting conditions elaborated in

Sokolov et al.’s work (Sokolov et al., 2016), which are all considered in our implementation.

Since this optimization problem is similar to a weighted set cover problem, which has no

efficient optimal solution, we use a greedy algorithm to find a good solution by considering

firstly the hexahedron element with better quality. All possible hexahedral combinations in

C are checked with descending order of their quality Qhex, and add them to C ′ if they are

not conflicting with combinations already in C ′. After traversing through all hexahedron

candidates, we work on the prisms and pyramids. Finally, the remaining tetrahedra are

added to conclude the construction of hexahedral-dominant mesh.

The quality of hexahedral element Qhex is combined by two parts, i.e., the planar quality

Qp of its six quad faces and the orthogonality Qo of its eight corners. Qhex(h) = Qp ∗

mincQo(c). Every two connected edges of a quad face form a normal vector ni. The planar

quality is defined as Qp = 1.0− 2/π arccos(min0≤i<j<4 ni · nj). Qo is measured by the shape

quality of the tetrahedron constructed by three edge vectors from a corner. Qo = 12(3Vt)
2
3∑

0≤i<j<4 l
2
ij

,

where Vt is the volume of the tetrahedron and lij is the edge length of vertices i and j. Vt

and lij are calculated in the imagined space. Higher Qhex denotes higher quality of the

hexahedron. In mesh generation, there is one more parameter Qbound, which is set to avoid

generating hexahedra with bad quality. Higher Qbound leads to higher hex quality but lower

hex volume ratio. It balances the hex quality and hex volume ratio of the resulting mesh. In

the experiments, we show the relationship between those two qualities by setting different

values of Qbound.

67

The implementation details about finding all hexahedron candidates from the given tetra-

hedral mesh are shown in Alg. 8, which consider all 10 combinations discussed in PGP3D

paper (Sokolov et al., 2016). We use N(v) to indicate the set of direct neighboring vertices

of v.

Algorithm 6: NextVertex: Find the vertex on the opposite side of a face.

Input: vertices i, j, k, l of a tetrahedron
Output: vertex that forms a tetrahedron with i, j, k, and on the opposite side with

l
1 S ← N(i) ∩N(j) ∩N(k) \ {l};
2 if ‖S‖ = 0 then // S may have 0 or 1 element

3 return NONE;
4 else
5 return S[0];
6 end

Algorithm 7: FindRing: Find the ring of vertices around an edge.

Input: vertices i, j, k, l of a tetrahedron, target number of vertices in the ring n
Output: n vertices forming a ring around edge i, j

1 V [0]← k;
2 V [1]← l;
3 for m← 2 to n do
4 t← NextV ertex(i, j, V [m− 1], V [m− 2]);
5 if t = NONE then
6 return ∅;
7 else if m = n and t = V [0] then
8 return V ;
9 else if t = V [0] then

10 return ∅;
11 else
12 V [m]← t;
13 end

14 end

68

Algorithm 8: FindHexahedrons: Find all hexahedron candidates.

Input: tetrahedral mesh
Output: set of all candidate hexahedrons

1 S ← ∅;
2 for every tetrahedron (a, b, c, d) do
3 for every face (i, j, k) of tetrahedron (a, b, c, d) do
4 for every vertex p in N(i) ∩N(j) \ {a, b, c, d} do
5 for every vertex q in N(i) ∩N(k) \ {a, b, c, d} do
6 for every vertex r in N(j) ∩N(k) \ {a, b, c, d} do
7 for every vertex s in N(p) ∩N(q) ∩N(r) \ {a, b, c, d} do
8 S ← S ∪ {(a, b, c, d, p, q, r, s)};
9 end

10 end

11 end

12 end

13 end

14 end
15 for every tetrahedron (a, b, c, d) do
16 for every edge (i, j) of tetrahedron (a, b, c, d) do
17 suppose {k, l} ← {a, b, c, d} \ {i, j};
18 V ← FindRing(i, j, k, l, 6);
19 if V 6= ∅ then
20 S ← S ∪ {(i, j, V [0], V [1], . . . , V [5])};
21 end

22 end

23 end
24 for every tetrahedron (a, b, c, d) do
25 for every edge (i, j) of tetrahedron (a, b, c, d) do
26 suppose {k, l} ← {a, b, c, d} \ {i, j};
27 V ← FindRing(i, j, k, l, 4);
28 if V = ∅ then
29 break;
30 end
31 U ← FindRing(k, l, i, j, 4);
32 if V = ∅ then
33 break;
34 end
35 S ← S ∪ {(i, j, V [0], . . . , V [3], U [0], . . . , U [3])};
36 end

37 end

69

4.4.3 Experiment and Comparison

In this section, we present some implementation details and also compare our method with

state-of-the-art methods. The experiments are conducted on a workstation with Intel(R)

Xeon E5645 2.40GHz CPU, and 32GB DDR3 RAM.

The input of our algorithm includes: 1) a volume domain, defined by a closed surface or

a tetrahedral mesh, 2) a frame field of the volume domain, and 3) an expected edge length

l∗ of output hexahedron element. Note that l∗ is the edge length of a regular hexahedron in

the imagined space if the frame field is defined by non-orthogonal or non-unit-length vectors

based on l∗, the initial number of particles can be estimated by N = Vd/(l
∗)3, where Vd is

the volume of domain in the imagined space.

Alignment error: Our particle-based optimization method is designed to align particles

with the input frame field. A perfect alignment means the edges between each particle and

its one ring neighbors align with the six vectors formed by the local frame field. To define

a frame field independent metric, we first transform the edge vector between two neighbor

particles by the local frame field, then we use the smallest angle θa between the edge vector

to the six directions (−1, 0, 0), (1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1) to measure the

alignment error of an edge vector. The average alignment error θa is used to measure the

overall error of all edges.

Mesh quality: The quality of the resulting hexahedral-dominant meshes is measured in

two aspects. One is the proportion of hexahedron elements includingHvol%, the percentage of

domain volume covered by hexahedral elements, and #Hex%, the percentage of hexahedral

elements in number. We also provide the percentage of prisms, pyramids, and tetrahedra,

denoted as #Prism%,#Pyr%, and #Tet% respectively. Another one is the geometric

quality of a hexahedral element, which is measured by Scaled Jacobian:

QSJ = min
i=1...8

∣∣∣∣ v′i1 · (v′i2 × v′i3)

‖v′i1‖‖v′i2‖‖v′i3‖

∣∣∣∣ , (4.5)

70

where v′ij, 1 ≤ j ≤ 3 are three edge vectors vij transformed to imagined space, that is

v′ij = Bijvij. Front propagation-based method (Baudouin et al., 2014), PGP3D (Sokolov

et al., 2016) and Gao et al.’s method (Gao et al., 2017) use the same metric for evaluation.

Furthermore, the Hausdorff distance between the result mesh and the domain boundary is

used to measure the geometric approximation.

Input frame field: In our experiments, the input frame field is either defined analyt-

ically on some simple geometry shapes, or generated by methods of (Huang et al., 2011),

(Ray et al., 2016) and (Gao et al., 2017), which are essentially cross fields. The analytically

defined ones have closed-form definition in the whole domain. The other generated cross

field is defined on a tetrahedral mesh. A cross field either defines a local frame field for each

vertex (Ray et al., 2016) or for each tetrahedron (Huang et al., 2011). If the frame field is

defined on vertices, we use the local frame field of the closest vertex to assign to a particle.

If the frame field is defined on tetrahedra, we will find the tetrahedron that contains the

particle and assign its corresponding frame field to the particle. During the particle opti-

mization, the particle positions keep updating. To speed up the frame field query, the frame

field is stored in a regular grid, with each cell small enough to cover less than k tetrahedra,

where k is a small number. Thus for each particle, the frame field query can be performed

in a constant time.

Kernel width and neighbor radius: Kernel width σ is an important parameter in our

proposed Gaussian hole kernel. The largest slope of a single Gaussian kernel happens at
√

2σ

from its center. We have tested different σ and found that the performance is similar when

σ is in the range of [0.25l∗, 0.35l∗]. In all of our experiments, we use σ = 0.3l∗. Neighbor

radius R is used to cut off the Gaussian kernel supporting region to make the computation

faster. Both the value and the slope of Gaussian kernel are almost zero at 5
√

2σ away from

its center. It is unnecessary to consider the neighboring particles more than 5
√

2σ away. We

set R = 1.5l∗, which includes all its one-ring neighbors while leaving some buffers to attract

potential neighboring particles right outside its one-ring domain.

71

Our Gaussian hole kernel is the summation of one positive Gaussian kernel and six

negative ones as shown in Eq(4.6). The positive Gaussian kernel pushes particles away and

the negative ones attract neighboring particles into holes. Here we use the weight w to

illustrate the balance of these two effects.

Eij = we−
‖vij‖2

2σ2 − 1

6

6∑
k=1

e−
‖vij−h6(k)‖2

2σ2 , (4.6)

w = 0.05 w = 0.5 w = 1

w = 2 w = 20 w = 200

Figure 4.14: Optimization of particles on a 2D plane with different weights w.

If w >> 1, our energy will perform like a single Gaussian kernel where particles are

evenly pushed away without hexahedral/quadrilateral pattern. If w << 1, particles fall into

holes in coincidence without spreading out. Figure 4.14 shows the effect of different w on

particle optimization in a 2D plane, after one round of L-BFGS optimization. We find out

that setting w = 1 achieves a good balance between these two effects. Thus we use it for all

of our experiments in this paper.

72

Our algorithm has no restriction on the size or the topology of the volume domain. It is

capable of handling all kinds of frame fields, including strongly stretched or highly warped

ones. Our method is tested on a large data set with both CAD models and non-CAD

models. It always generates high-quality hexahedral-dominant meshes that follow the given

frame field. All the experiments are conducted without any user-interaction or parameter

tweaking. The main parameters are summarized in Table 4.5.

Table 4.5: Experimental parameters

dparticle dedge dquad dhex eins dins σ R
0.5l∗ 0.75l∗ 0.9l∗ 0.9l∗ -0.1 0.8l∗ 0.3l∗ 1.5l∗

Meshing with analytic frame field: To verify the performance of our method, we test

different frame fields on simple geometry volumes, e.g., Cubes, Deformed Cubes, and Cylin-

der at first. We have tried the following metrics: an identity metric T = I (Figure 4.15a),

a constant scaling metric T = diag{4, 1, 1} (Figure 4.15b), two varying scaling metrics

T = diag{8x, 1, 1} (on cube [−1, 1]3 Figure 4.15c), T = diag
{(

1.0125− e−|x−0.6|)−1
, 0, 0

}
(on cube [0.1, 1.1]3 (Figure 4.15d), and two non-orthogonal warping metrics: shear on y

axis T = {{1, 0, 0}T , {1, 2, 0}T , {0, 0, 1}T} (Figure 4.15e), and shear on y axis and z axis

T = {{1, 0, 0}T , {1, 2, 0}T , {1, 1, 1}T} (Figure 4.15f). All the optimizations start from a ran-

domized initialization. The resulting particles are perfectly aligned with the given frame

field. Based on the particle results, all-hex meshes are generated.

Importance of scale correction: We use the Cylinder model to show the importance

of scale correction in frame fields. Different frame fields may leads to different mesh results,

which also happens for PGP3D, LpCVT and Gao et al.’s method. Generating frame fields

for arbitrary domain, which leads to all-hex meshes, is still an open problems and also one

of the most difficult problems in all-hex meshing. The existing methods generate only cross

fields for arbitrary domain. How to robustly and effectively generate hex-dominant meshes

from those fields is the point of hex-dominant meshing. In Figure 4.16, we test three different

73

(a) Identity (b) Stretch (c) Density1

(d) Density2 (e) Shear y (f) Shear yz

Figure 4.15: Hexahedral meshing with different frame fields on Cube and Warped Cube
models. (a) T = I ; (b) stretch along x-axis; (c) linear scale along x axis, first linearly
decreasing then linearly increasing; (d) scale linearly increasing along x axis; (e) shear along
y; (f) shear along both y and z.

74

cos θ −9 sin θ
5πr 0

sin θ 9 cos θ
5πr 0

0 0 1

 #V ert = 12298

Hvol = 100%

#Hex% = 100%

All Hex

(a) Particle method

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

#V ert = 12117

Hvol = 94.49%

#Hex% = 87.90%

QSJ = 0.98

Tet
Pyramid
Prism(b) Particle method

Discrete
frame
field

by (Gao et al., 2017)

#V ert = 12187

Hvol = 93.64%

#Hex% = 86.16%

QSJ = 0.98

(c) Particle method

Discrete
frame
field

by (Gao et al., 2017)

#V ert = 12619

Hvol = 85.20%

#Hex% = 84.52%

QSJ = 0.98

4

6
5

7
8
9
9+

(d) Gao et al.’s method

Figure 4.16: Three different frame fields are tried on the Cylinder model. The first and
second rows show our results with closed-form frame fields, with and without scale correction
along the radius, respectively. The third and fourth rows show our Particle and Gao et
al.’s results with a discrete frame field generated by their method. The last column shows
the corresponding non-hex elements. Non-hex elements including prisms, pyramids, and
tetrahedra are shown in green, blue, and red, respectively. In Gao et al.’s results, non-hex
polyhedra with different number of faces are rendered in different colors, including 6-face
polyhedra with triangle faces shown in green color. Our result in the first row does not have
non-hex element.

75

frame fields on a cylinder to show the following two aspects: (1) the robust performance of

our method on different frame fields and the reason why prism appears most in our results

due to cross files; (2) with the same frame field, our result has higher quality than that of

(Gao et al., 2017) method. The three different frame fields are closed-form cross fields with

and without scale correction, and a discrete cross field generated by (Gao et al., 2017). We

obtain an all-hex result with the scale-corrected frame field as shown in Figure 4.16a. The

frame field used in Figure 4.16b does not have any singularity as compare to the discrete

frame field used in Figure 4.16c and Figure 4.16d. And we observe higher hex volume ratio

in the result of Figure 4.16b. This example tells us that even if the frame field is smoothly

defined everywhere, the result mesh may still contain non-hex elements. Among the non-

hex elements, prisms appear most often to fill the gap of scale-changing along the radius

direction. The pyramids appear consecutively along an axis, which indicates the particles

are well distributed. Once we add a scale correction on the frame field, we got an all-hex

result shown in Figure4.16a.

Hexahedral-dominant meshing with discrete cross fields: In the following ex-

periments and comparisons, all the frame fields are generated by either Huang et al.’s

method (Huang et al., 2011) or Gao et al.’s method (Gao et al., 2017).

Comparison with Lp-CVT (Lévy and Liu, 2010): According to our knowledge,

Lp-CVT is the only variational method in hexahedral meshing. Our particle optimization

does not need to calculate the Voronoi cells. It is much faster than Lp-CVT method and

the optimization converges to much better results due to the nice property of our energy.

The result of Lp-CVT method on Anc101 model has 52676 hexahedra, 3035 tetrahedra, 6098

prisms and 1889 pyramids. The Lp-CVT optimization takes 921 seconds. Our result has

55422 hexes, 704 tets, 2755 prisms and 472 pyramids. The optimization takes 147 seconds.

The comparison is shown in Figure 4.17. The result of our method has less non-hex elements

and better alignment with the input frame field.

76

QSJ = 0.98

Hvol% = 97.5%

#Hex% = 93.5%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50

R
a
ti

o

Alignment Error

(a) Particle method

QSJ = 0.93

Hvol% = 92.84%

#Hex% = 82.96%

Tet
Pyramid
Prism

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50

R
a
ti

o

Alignment Error

(b) Lp-CVT method

Figure 4.17: A comparison of our particle (left) and Lp-CVT (right) methods on Anc101
model. The first row is the result mesh on domain boundary. The second row shows the non-
hex elements including prisms, pyramids, and tetrahedra in green, blue, and red, respectively.
The third rows is the clipping view. The fourth row shows the histograms of alignment errors
measured in degrees. .

77

Hvol% = 94.92%

Hvol% = 88.61%

0.0
0.2
0.4
0.6
0.8
1.0

H Pr Py T

El
em

 R
at

io

0.0
0.2
0.4
0.6
0.8
1.0

H Pr Py T

El
em

 R
at

io

Figure 4.18: Comparison between our method (left) and PGP3D (right) methods on Bunny
model. The non-hex elements are shown in the second row, including prisms, pyramids,
and tetrahedra rendered in green, blue, and red, respectively. The third row is the clipping
view. The bar graphs in the fourth row shows the ratio of numbers of all elements including
hexahedra (H), prisms (Pr), pyramids (Py) and tetrahedra (T). Note that the views of
non-hex elements in the second row may give you the wrong impression of more non-hex
elements in our result, which is caused by 3D projection. Non-hex elements in different
depth are overlaid together. The following two rows are good proof of the better quality of
our results.

(a) Particle method

Hvol% = 96.52%

0.0
0.2
0.4
0.6
0.8
1.0

H Pr Py T

El
em

 R
at

io

(b) Particle method

Hvol% = 89.01%

Tet
Pyramid
Prism

0.0
0.2
0.4
0.6
0.8
1.0

H Pr Py T

El
em

 R
at

io

(c) PGP3D method

Figure 4.19: Comparison between our method and PGP3D method on Cubo model. The
non-hex elements including prisms, pyramids, and tetrahedra are rendered in green, blue,
and red, respectively. The bar graph shows the ratio of numbers of all elements including
hexahedra (H), prisms (Pr), pyramids (Py) and tetrahedra (T).

78

Tet
Pyramid
Prism

Hvol% = 93.00%

(a) Particle method

Hvol% = 84.32%

(b) PGP3D method

Figure 4.20: Comparison between our method and PGP3D method on Switchmec model.
The non-hex elements shown in the second row including prisms, pyramids, and tetrahedra
are rendered in green, blue, and red, respectively.

 0

 50

 100

 150

 200

 250

 300

 350

 5000 10000 20000 40000 80000 160000

T
im

e
 C

o
n

su
m

p
tio

n
 f
o

r
P

o
in

ts
e
t

(S
e

c
o

n
d

s)

Output Vertex Number

Particle, with 17638 vertices in Tin
PGP, with 17638 vertices in Tin

Particle, with 952474 vertices in Tin
PGP, with 952474 vertices in Tin

Particle, with 2731087 vertices in Tin
PGP, with 2731087 vertices in Tin

Figure 4.21: Comparison of computation time to generate point set between our method and
PGP3D method on Venus model. Three input tetrahedral meshes of different densities are
used. Their vertex numbers are given in the legend. For each input tetrahedral mesh, point
sets of different sizes are generated. The experiments of PGP3D are done by two machines:
Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz (the experiments with the two smaller tetra-
hedral meshes) and Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz (the experiments with the
largest tetrehedral mesh).

79

Comparison with PGP3D (Sokolov et al., 2016): In this subsection, the compari-

son is with the PGP3D method which outperforms Lp-CVT method and front propagation-

based method. Figure 4.18 and Figure 4.19 show the detailed comparison between our

particle method and PGP3D method on two models. Note that the non-hex elements shown

in the figures is 3D projections. The non-hex elements on different depth planes are overlaid

together. The Hvol% is more convincing. The pipeline of PGP3D has six steps: frame field

generation, curl correction, global parameterization, point set extraction, mesh refinement,

and tet-to-hex conversion. PGP3D method has excellent performance on most CAD mod-

els. Nonetheless, the authors pointed out that PGP3D may fail on small parts of models,

e.g., the three cylinders of Switchmec model as shown in Figure 4.20. Our particle method

successfully generates hexahedral-dominant meshes, while PGP3D only generates tetrahedra

in those small parts. To generate the point set, PGP3D method first calculates the global

parametrization, and then extracts points with integer valued coordinates in the map. Based

on fancy periodic variables and transition functions, the problem is formulated as an overde-

termined linear system. The solution to an overdetermined system may have larger errors

on small parts of the model. That is why PGP3D method may fail at the small parts of a

model. Our particle method directly optimizes the positions of vertices. So we have more

controls on the vertex position to preserve the sharp feature and mesh boundary. Besides

that our Gaussian hole kernel provides some space to accept small difference of edge length.

When the targeting edge length is not suitable for the small parts, our optimization will

allow a little smaller / larger distance between particles. The statistic of quality results are

shown in Table 4.6. For both CAD and non-CAD models, our results demonstrate better

#Hex% and Hvol%, especially in non-CAD models. We notice that the non-hex parts of

the resulting meshes in PGP3D and our methods are different. PGP3D uses curl correction,

so prism is the least common non-hex element and tetrahedron is the dominant non-hex

element. However, in our meshing result, prism is the dominant non-hex element. Note that

80

our pipeline does not include the curl correction. The prisms usually appear to fill the scale

gap, and they usually appear consecutively in lines, which demonstrates that our particle

positions are well optimized.

The complexity of our particle method scales with the particle number of the output

mesh. On the contrary, point set optimization of PGP3D scales with input size, because

it models the problem as a large scale linear system whose dimension is proportional to

edge number of the input tetrahedral mesh. When the output hex-dominant mesh has a

very large vertex number, our method may be slower than PGP3D. When the domain is

complicated and a dense tetrahedral mesh is used as input, PGP3D would take longer time.

The comparison of time consumption of point set generation on the Venus model is shown

in Figure 4.21.

Comparison with Gao et al.’s method (Gao et al., 2017): Their method automat-

ically and robustly converts any tetrahedral meshes into an isotropic hexahedral-dominant

meshes. Our particle method not only can generate isotropic but also anisotropic hexahedral-

dominant meshes as shown in Figure 4.15 and Figure 4.16a. Mesh extraction of Gao et al.’s

method relies on a set of local topological operations to collapse and split edges, faces and

polyhedra. The input tetrahedral mesh requires to be denser than the output hexahedral-

dominant mesh. The polyhedral agglomeration complexity is proportional to the size of

input tetrahedral mesh. To construct a dense hexahedral-dominant mesh, their method

needs a much denser input tetrahedral mesh, which means more extraction time. Their

resulting meshes may contain inverted, self-intersecting or collapsed elements. And the non-

hex elements in Gao et al.’s results are very complicated and undetermined, which are p-face

polyhedra with k triangle faces and p − k quad faces, where 0 ≤ k ≤ p. The comparison

between our method and Gao et al.’s method are shown in Figure 4.22, Figure 4.23, and

Figure 4.24. The non-hex polyhedra with the same number of faces are rendered with the

same colors. The max p of the result meshes is given in the #p column in Table 4.7. Our

81

results only contain tetrahedron, pyramid and prism as non-hex elements. More comparisons

are given in Table 4.7. Our results have better hex quality. By setting a higher Qbound in

the mesh generation stage, our result mesh will have a higher QSJ but lower Hvol%. In the

comparisons, we adjust the Qbound to make sure that QSJ are the same in both methods,

then compare the Hvol%. The results show that our method has larger Hvol%. We also draw

the relationship between QSJ and Hvol% in Figure 4.22c and Figure 4.23 by setting Qbound

from 0 to 0.9, which shows that our results have better quality. In Table 4.7, the H∗vol% and

Q∗SJ columns list the hex quality of our results when setting Qbound = 0.

Discussion on mesh refinement: Mesh refinement is performed by inserting more

vertices to the surface to guarantee the boundary geometry being well preserved as shown

in Figure 4.25. We use Skull model as an example to show the effect of mesh refinement on

a model with fine details. Table 4.8 shows the statistics before and after mesh refinement.

We can see the Hausdorff distances are reduced dramatically by about 90 percent with mesh

refinement. However, this step also causes more non-hex elements along the boundary. To

make a fair comparison, we include this refinement step when we compare with PGP3D, and

remove this step when we compare with Gao et al.’s method.

4.4.4 Limitation and Future Work

The extensive experimental results show that our method obtains higher quality hexahedral-

dominant meshes than other state-of-the-art algorithms. However, there are still some limi-

tations of our proposed work: (1) If the object has thin voids or thin concave regions (e.g.,

thinner than 1 element size), there may be a problem because we use the Euclidean distance

for the computation. The thin parts may only hold one layer of particles, in which case

the mesh generation stage would fail. (2) For arbitrary models, generating a smooth frame

field with correct scale to reduce the number of non-hex elements is still an open problem.

Our particle method produces perfect results on frame fields with correct scales, as shown

82

T
ab

le
4.

6:
S
ta

ti
st

ic
s

an
d

ti
m

e
co

n
su

m
p
ti

on
of

m
o
d
el

s
w

it
h

ou
r

p
ar

ti
cl

e
m

et
h
o
d

an
d

P
G

P
3D

m
et

h
o
d
.

#
V

er
t

is
th

e
n
u
m

b
er

of
p
ar

ti
cl

es
in

th
e

re
su

lt
in

g
m

es
h
.

#
H
ex

%
an

d
H
v
o
l%

ar
e

u
se

d
to

m
ea

su
re

th
e

p
ro

p
or

ti
on

of
th

e
h
ex

ah
ed

ra
l

el
em

en
ts

.
N

on
-h

ex
el

em
en

t
p
ro

p
or

ti
on

s
ar

e
m

ea
su

re
d

b
y

#
P
ri

%
,

#
P
y
r%

an
d

#
T
et

%
.

T
h
e

sh
ap

e
q
u
al

it
y

of
th

e
h
ex

el
em

en
t

is
m

ea
su

re
d

b
y

S
ca

le
d

J
ac

ob
ia

n
Q
S
J

in
E

q
.

(4
.5

).
T

h
e

H
au

sd
or

ff
d
is

ta
n
ce

b
ef

or
e

an
d

af
te

r
re

fi
n
em

en
t

ar
e

li
st

ed
in

co
lu

m
n

d
is

t1
an

d
d
is

t2
re

sp
ec

ti
ve

ly
.

T
h
e

n
u
m

b
er

b
ef

or
e

“|
”

is
th

e
H

au
sd

or
ff

d
is

ta
n
ce

of
th

e
re

su
lt

m
es

h
to

th
e

in
p
u
t

b
ou

n
d
ar

y
m

es
h
.

T
h
e

n
u
m

b
er

af
te

r
“|

”
is

th
e

H
au

sd
or

ff
d
is

ta
n
ce

of
th

e
in

p
u
t

b
ou

n
d
ar

y
m

es
h

to
th

e
re

su
lt

m
es

h
.

T
h
e

ti
m

e
co

n
su

m
p
ti

on
fo

r
th

e
p
ar

ti
cl

e
op

ti
m

iz
at

io
n

(P
oi

n
ts

et
),

m
es

h
re

fi
n
em

en
t

(R
efi

n
e)

an
d

T
et

.
to

H
ex

.
m

es
h

co
n
st

ru
ct

io
n

(T
et

2H
ex

)
ar

e
gi

ve
n
.

T
h
e

to
ta

l
ti

m
e

is
p
ro

v
id

ed
.

T
h
e

ti
m

e
it

em
s

w
it

h
*

ar
e

th
e

to
ta

l
ti

m
e

gi
ve

n
in

P
G

P
3D

p
ap

er
,

w
h
ic

h
in

cl
u
d
e

al
l

th
e

st
ep

s.
A

ll
th

e
ti

m
es

ar
e

m
ea

su
re

d
in

se
co

n
d
s.

N
ot

e:
n
/a

d
en

ot
es

th
at

w
e

d
o

n
ot

h
av

e
th

ei
r

re
su

lt
s.

M
o
d
e
l

M
e
th

o
d

#
V

e
rt

H
v
o
l
%

#
H
e
x
%

#
P
r
i%

#
P
y
r
%

#
T
e
t%

Q
S
J

d
is

t1
d
is

t2
P

o
in

ts
e
t(

s)
R

e
fi

n
e
(s

)
T

e
t2

H
e
x
(s

)
T

o
ta

l(
s)

c
u
b
o

P
a
rt

ic
le

1
1
3
,4

5
7

9
6
.5

2
9
1
.7

7
6
.2

4
0
.8

3
1
.1

7
0
.9

8
0
.5

6
0
|0

.4
4
1

0
.4

6
9
|0

.1
4
7

3
0
5
.5

0
2
3
.7

0
9
5
.4

6
4
2
4
.6

6
P

G
P

3
D

1
0
9
,1

8
2

8
9
.0

1
7
2
.8

7
3
.3

5
4
.0

6
1
9
.7

2
0
.9

8
0
.7

8
2
|0

.6
7
1

0
.7

0
5
|0

.2
5
7

1
2
.8

8
6
9
.5

4
9
8
.0

1
1
8
0
.4

3
p
r
o
p
e
l
l
e
r

P
a
rt

ic
le

1
4
2
,2

8
7

9
5
.4

3
8
7
.2

4
8
.1

5
1
.9

4
2
.6

7
0
.9

7
0
.2

6
1
|0

.2
1
2

0
.0

3
1
|0

.0
3
9

5
0
6
.6

3
5
1
.6

2
1
1
6
.0

9
6
7
4
.3

4
P

G
P

3
D

1
3
2
,4

6
9

9
1
.1

0
7
1
.2

7
4
.3

3
2
.4

3
2
1
.9

7
0
.9

7
0
.3

5
5
|0

.3
2
7

0
.0

3
5
|0

.0
6
2

8
0
.2

3
1
1
9
.8

2
1
2
3
.2

8
3
2
3
.3

3
b
u
n
n
y

P
a
rt

ic
le

1
2
2
,9

6
9

9
4
.9

2
8
6
.9

8
8
.8

1
1
.5

8
2
.6

2
0
.9

7
0
.5

1
1
|0

.3
7
6

0
.0

7
9
|0

.0
8
1

3
2
7
.9

9
1
7
.7

0
1
2
4
.1

6
4
6
9
.8

5
P

G
P

3
D

1
1
6
,1

4
9

8
8
.6

1
6
0
.5

7
5
.0

5
3
.1

1
3
1
.2

7
0
.9

5
0
.7

9
1
|0

.7
7
9

0
.1

2
3
|0

.1
2
9

4
9
.2

8
4
2
.6

1
3
6
.4

3
2
2
8
.3

1
d
a
v
i
d

P
a
rt

ic
le

3
7
,1

3
0

8
8
.2

6
6
9
.7

6
1
7
.4

3
6
.8

0
9
.0

0
0
.9

3
0
.5

6
0
|0

.4
8
7

0
.0

8
0
|0

.2
8
8

8
5
.9

3
5
3
.1

0
2
9
.8

3
1
6
8
.8

6
P

G
P

3
D

3
2
,0

2
1

7
6
.0

3
3
5
.3

8
n
/
a

n
/
a

n
/
a

0
.9

3
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

6
5
1
.8

6
*

fe
rt

il
it

y
P

a
rt

ic
le

2
6
,8

5
5

8
6
.7

1
5
6
.8

7
2
0
.7

6
8
.8

2
1
3
.5

5
0
.9

3
0
.8

4
9
|0

.5
8
3

0
.0

4
4
|0

.0
4
4

1
5
8
.6

0
2
8
.3

4
1
8
.9

9
2
0
5
.9

3
P

G
P

3
D

2
0
,0

6
8

7
8
.4

0
3
3
.6

3
9
.0

9
8
.0

3
4
9
.2

4
0
.9

3
1
.2

9
2
|0

.9
0
4

0
.0

6
9
|0

.0
7
1

1
4
9
.2

1
1
4
5
.7

1
1
6
.5

1
3
1
1
.4

3
g
a
r
g
o

P
a
rt

ic
le

4
5
,6

8
4

8
3
.8

9
4
7
.6

1
2
1
.1

6
1
2
.8

6
1
8
.3

7
0
.9

0
0
.8

7
5
|0

.6
1
5

0
.0

7
3
|0

.2
3
7

1
7
9
.9

4
9
7
.7

5
3
3
.3

2
3
1
1
.0

1
P

G
P

3
D

2
9
,9

3
6

6
8
.9

1
2
5
.8

1
n
/
a

n
/
a

n
/
a

0
.9

1
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

7
0
7
.5

2
*

i
m
p
e
l
l
e
r

P
a
rt

ic
le

1
5
,2

8
7

8
9
.0

6
7
3
.6

7
1
8
.2

6
3
.3

8
4
.6

7
0
.9

4
1
.1

5
4
|1

.0
2
7

0
.1

2
1
|0

.1
4
3

7
5
.4

4
5
.8

9
9
.7

0
9
1
.0

3
P

G
P

3
D

1
3
,8

9
6

8
1
.1

1
5
3
.3

1
7
.1

3
4
.5

8
3
4
.9

7
0
.9

5
1
.4

0
8
|0

.8
4
8

0
.3

3
3
|0

.2
1
9

5
.8

5
1
1
.9

1
0
.7

2
8
.4

5
s
k
u
l
l

P
a
rt

ic
le

3
9
,6

8
2

8
8
.3

1
4
9
.4

5
1
8
.3

4
1
2
.6

2
1
9
.5

9
0
.9

3
1
.1

7
0
|0

.8
4
9

0
.0

6
3
|0

.0
4
0

1
6
8
.8

8
4
2
.8

9
3
0
.7

5
2
4
2
.5

1
P

G
P

3
D

3
3
5
0
3

8
2
.9

3
3
8
.0

3
n
/
a

n
/
a

n
/
a

0
.9

3
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

2
4
2
9
.8

6
*

v
e
n
u
s

P
a
rt

ic
le

4
4
,4

5
0

8
4
.6

0
3
7
.3

4
2
1
.9

0
1
6
.6

0
2
4
.1

6
0
.9

1
1
.0

2
0
|0

.6
6
6

0
.0

5
0
|0

.0
3
3

1
1
6
.4

7
5
3
.3

7
2
9
.5

4
1
9
9
.3

8
P

G
P

3
D

3
7
2
5
8

7
9
.1

1
2
9
.5

9
n
/
a

n
/
a

n
/
a

0
.9

3
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

5
4
0
4
.3

5
*

s
w
i
t
c
h
m
e
c

P
a
rt

ic
le

4
0
,9

9
5

9
3
.0

0
8
5
.6

6
1
2
.4

2
0
.9

1
1
.0

0
0
.9

9
0
.0

0
7
|0

.1
7
0

0
.0

0
7

—
0
.1

7
0

1
7
3
.1

1
0

2
3
.3

1
1
9
4
.4

2
P

G
P

3
D

4
1
,3

1
8

8
4
.3

2
4
8
.9

5
0

0
5
1
.0

5
0
.9

9
n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

83

Hvol% = 80.89%

Tet
Pyramid
Prism

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 10 20 30 40 50

R
at

io

Alignment Error

(a) Particle method

Hvol% = 75.32%

4

6
5

7
8
9
9+

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 10 20 30 40 50
R

at
io

Alignment Error

(b) Gao et al.’s method

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

H
v
o
l %

QSJ

Particle
Gao et al's method

(c) Hex shape quality V.S. hex ratio

Figure 4.22: A comparison between our method and Gao et al.’s method on ASM Diff027,
a CAD model with thin features. The first row shows the result on domain boundary. The
second row shows the non-hex elements. In our result, non-hex elements including prisms,
pyramids, and tetrahedra are shown in green, blue, and red, respectively. In Gao et al.’s
results, non-hex polyhedra with different number of faces are rendered in different colors,
including 6-face polyhedra with triangle faces shown in green color. The third row shows
the histogram of alignment error measured in degrees. (a) and (b) are comparisons with the
same QSJ . The relationship between QSJ and Hvol% is shown in (c).

84

Hvol% = 79.87%

Tet
Pyramid
Prism

Hvol% = 71.26%

4

6
5

7
8
9
9+

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50

R
at

io

Alignment Error

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50

R
at

io

Alignment Error

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

H
v
o
l %

QSJ

Particle
Gao et al's method

Figure 4.23: A comparison of our method and Gao et al.’s method on the Elephant Model.
The first and second row are the results of our particle method and Gao et al.’s method.
The first column shows the result mesh on domain boundary. The second column shows
the non-hex elements. In our result, non-hex elements including prisms, pyramids, and
tetrahedra are shown in green, blue, and red, respectively. In Gao et al.’s results, non-hex
polyhedra with same number of faces are rendered in one color, including 6-face polyhedra
with triangle faces shown in green color. The clipping view is shown in the third column.
The fourth column shows the histogram of alignment error measured in degrees. The first
two rows are comparisons under the same QSJ . The relationship between QSJ andHvol% is
shown in the last row.

85

Table 4.7: Statistics and time consumption of models with our particle method and Gao et
al.’s method. Our results are in the gray rows, and Gao et al.’s results are in the white rows.
#Vert is the number of particles in the resulting mesh. Hvol% is the volume percentage of
hex elements. The quality of hex element is measured by Scaled Jacobian QSJ . To show the
advantage of our method, we adjust Qbound to get the same QSJ as Gao et al.’s result, while
obtaining higher Hvol%. H∗vol% and Q∗SJ are the hex quality of our method when setting
Qbound = 0. θa is the mean alignment error. #p is the max number of faces in the result
hexahedral-dominant mesh. The total computation time is provided in seconds.

Model #Vert Hvol% QSJ H∗vol% Q∗SJ θa #p Time (s)
ASM Diff027 27398 80.89 0.97 91.98 0.93 4.89 6 199.69
(Figure 4.22) 29,813 75.32 0.97 n/a n/a 4.78 44 389.67
Boeing part 29,883 95.35 0.99 96.94 0.98 2.00 6 176.31

29,011 92.63 0.99 n/a n/a 2.17 40 170.32
Cylinder 12,187 93.64 0.98 94.69 0.97 3.73 6 70.55

(Figure 4.16) 12,619 85.20 0.98 n/a n/a 3.41 20 347.65
Daratech 27,084 91.73 0.98 95.99 0.96 3.17 6 141.05

27,129 86.54 0.98 n/a n/a 2.62 22 627.70
Elephant 28,498 79.87 0.97 90.70 0.93 5.39 6 177.95

(Figure 4.23) 28,796 71.26 0.97 n/a n/a 4.78 42 378.41
Fertility 16,422 82.56 0.97 90.16 0.94 5.06 6 112.22

16,381 77.50 0.97 n/a n/a 4.28 27 772.84
Front Upright 33,428 91.12 0.98 95.51 0.96 3.35 6 164.60

(Figure 4.12 and Figure 4.24) 33,119 86.69 0.98 n/a n/a 3.32 32 217.79
Mazewheel 27,253 89.34 0.98 94.75 0.96 3.35 6 155.93

27,145 84.78 0.98 n/a n/a 2.78 19 494.17
Upright 6 3 31,567 89.34 0.98 95.27 0.96 3.48 6 179.53

31,558 86.14 0.98 n/a n/a 3.21 19 1565.74
Venus 23,640 85.07 0.98 93.55 0.96 4.43 6 147.98

23,844 81.81 0.98 n/a n/a 4.14 30 403.29
Rockerarm 15,704 84.25 0.98 92.71 0.95 3.86 6 127.02

15,345 82.08 0.98 n/a n/a 3.21 26 641.10

86

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50

R
at

io

Alignment Error

Tet
Pyramid
Prism

Hvol = 91.12%

(a) Particle method: alignment error and non-hex elements

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 10 20 30 40 50

R
at

io

Alignment Error

4

6
5

7
8
9
 9+

Hvol = 86.69%

(b) Gao et al.’s method: alignment error and non-hex elements

Figure 4.24: Comparison of our result (left) and Gao et al.’s result (right) on Front Upright
Model. In our result, non-hex elements including prisms, pyramids, and tetrahedra are
shown in green, blue, and red, respectively. In Gao et al.’s results, non-hex polyhedra with
different number of faces are rendered in different colors, including 6-face polyhedra with
triangle faces shown in green color.

Table 4.8: The quality statistics and time consumption of meshing before and after mesh
refinement on the Skull model. The gray and white rows are the results before and after
mesh refinement respectively. dist is the Hausdorff distance. The number before |is the
Hausdorff distance from the resulting mesh to the input boundary, the number after |is the
Hausdorff distance in the reverse way.

#vert Hvol% #Hex% #Prism% #Pyr% #Tet% dist QSJ Time (s)
12837 0.90 77.27 15.49 2.76 4.47 0.0398 |0.0266 0.94 116.61
28190 0.81 26.44 21.11 20.26 32.19 0.0220 |0.0009 0.90 159.78
96504 0.94 86.26 9.45 1.62 2.67 0.0210 |0.0134 0.96 432.74
104741 0.93 76.28 11.86 4.63 7.22 0.0018 |0.0009 0.95 477.64

in Figure 4.15 and Figure 4.16a. We would like to investigate scale correction methods for

arbitrary frame fields, so that we can further reduce the number of non-hex elements and

improve the quality of output meshes. (3) The non-hex elements we generated are only tetra-

hedra, prisms, and pyramids, which is fundamentally different from Gao et al.’s 2017 results

where their non-hex elements may include polyhedra with some undetermined number of

triangle faces and quad faces. Our non-hex elements can be transformed to all-hex mesh

with one more subdivision step, although the mesh qualities, including scaled Jacobian and

alignment error, may not be guaranteed after such subdivision. We would like to investigate

such possibility for all-hex meshing in our future work.

87

(a) Before mesh refine.

(b) After mesh refine.

Tet
Pyramid
Prism

(c) Clipping view

Figure 4.25: The meshing results before and after mesh refinement on the Skull model. The
vertex number is changing from 12837 to 27597 after mesh refinement in the first column.
The vertex number is changing from 96504 to 104741 after mesh refinement in the second
column. The first row shows the results before mesh refinement. The second row shows the
results after mesh refinement. The third row shows the clipping view after mesh refinement.

88

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this dissertation, we first introduce a sliver suppression energy based on shape matching

idea. Iteratively minimizing the energy by updating the vertex positions and connectivity

generates high-quality isotropic, adaptive, or anisotropic tetrahedral meshes. However, the

computation speed of the current implementation is slow. In the future, we would like to

improve the computation speed with GPU parallelization.

In the next part of this dissertation, we propose frame field-aligned framework that

generates high quality tetrahedral meshes and hexahedral-dominant meshes. This is the

first field-aligned tetrahedral meshing method ever proposed. Besides that, our Gaussian

Hole Kernel can be easily extended to field-aligned triangular meshing and quadrilateral

meshing. Actually, it can be extended to any mesh applications with well-defined one ring

structure. In the future, we would explore more applications of our Gaussian Hole Kernel,

e.g., other lattices such as A15 and Z-type configurations, etc..

Currently, one ring structure is only used to guide the particle optimization. Mesh

generation based on the one ring structure for the resulting particle set will be one of our

future work, which avoids the complex computation of anisotropic Voronoi Diagram or the

mesh flip operations. Its main task will be to tackle all the possible non-perfect one ring

structures in the result particle sets.

Last but not least, the relationship between the input frame field and the output mesh

quality is also worthwhile to explore. We also want to find out more field aligned meshes

applications.

89

REFERENCES

Alliez, P., D. Cohen-Steiner, M. Yvinec, and M. Desbrun (2005). Variational tetrahedral
meshing. ACM Transactions on Graphics 24 (3), 617–625.

Ando, R., N. Thürey, and C. Wojtan (2013). Highly adaptive liquid simulations on tetrahe-
dral meshes. ACM Transactions on Graphics 32 (4), 103.

Barnes, E. and N. Sloane (1983). The optimal lattice quantizer in three dimensions. SIAM
Journal on Algebraic Discrete Methods 4 (1), 30–41.

Baudouin, T. C., J.-F. Remacle, E. Marchandise, F. Henrotte, and C. Geuzaine (2014). A
frontal approach to hex-dominant mesh generation. Advanced Modeling and Simulation
in Engineering Sciences 1 (1), 1.

Boissonnat, J.-D., K.-L. Shi, J. Tournois, and M. Yvinec (2015, March). Anisotropic Delau-
nay Meshes of Surfaces. ACM Transactions on Graphics 34 (2), 1–11.

Botella, A., B. Lévy, and G. Caumon (2016). Indirect unstructured hex-dominant mesh
generation using tetrahedra recombination. Computational Geosciences 20 (3), 437–451.

Carbonera, C. D. and J. F. Shepherd (2010). A constructive approach to constrained hexa-
hedral mesh generation. Engineering with Computers 26 (4), 341–350.

CGAL (2017). Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

Chen, L. and M. Holst (2011). Efficient mesh optimization schemes based on Optimal Delau-
nay Triangulations. Computer Methods in Applied Mechanics and Engineering 200 (9-12),
967–984.

Chen, L. and J.-c. Xu (2004). Optimal delaunay triangulations. Journal of Computational
Mathematics , 299–308.

Chen, Z., W. Wang, B. Lévy, L. Liu, and F. Sun (2014). Revisiting optimal delaunay trian-
gulation for 3D graded mesh generation. SIAM Journal on Scientific Computing 36 (3),
A930–A954.

Cheng, S.-W., T. Dey, H. Edelsbrunner, M. Facello, and S.-H. Teng (2000). Sliver exudation.
Journal of the ACM 47 (5), 883–904.

Cheng, S.-W., T. Dey, and J. Shewchuk (2012). Delaunay Mesh Generation. Chapman and
Hall/CRC.

Chew, L. P. (1997). Guaranteed-quality Delaunay meshing in 3D. In Proceedings of the 13th
Annual Symposium on Computational Geometry, pp. 391–393.

90

Doran, C., A. Chang, and R. Bridson (2013). Isosurface stuffing improved: acute lattices
and feature matching. In ACM SIGGRAPH 2013 Talks, pp. 38.

Du, Q., V. Faber, and M. Gunzburger (1999). Centroidal voronoi tessellations: applications
and algorithms. SIAM review 41 (4), 637–676.

Du, Q. and D. Wang (2003). Tetrahedral mesh generation and optimization based on cen-
troidal voronoi tessellations. International Journal for Numerical Methods in Engineer-
ing 56 (9), 1355–1373.

Du, Q. and D. Wang (2005a). Anisotropic centroidal Voronoi tessellations and their appli-
cations. SIAM Journal on Scientific Computing 26 (3), 737–761.

Du, Q. and D. Wang (2005b). The optimal Centroidal Voronoi Tessellations and the Ger-
sho’s conjecture in the three-dimensional space. Computers & Mathematics with Applica-
tions 49 (9-10), 1355–1373.

Du, X., X. Liu, D.-M. Yan, C. Jiang, J. Ye, and H. Zhang (2018). Field-aligned isotropic
surface remeshing. Computer Graphics Forum.

Fang, X., W. Xu, H. Bao, and J. Huang (2016). All-hex meshing using closed-form induced
polycube. ACM Transactions on Graphics (TOG) 35 (4), 124.

Freitag, L. and P. Knupp (2002). Tetrahedral Mesh Improvement via Optimization of the
Element Condition Number. International Journal for Numerical Methods in Engineer-
ing 53 (6), 1377–1391.

Fu, X.-M., Y. Liu, J. Snyder, and B. Guo (2014). Anisotropic simplicial meshing using local
convex functions. ACM Transactions on Graphics 33 (6), 182.

Gao, X., W. Jakob, M. Tarini, and D. Panozzo (2017). Robust hex-dominant mesh generation
using field-guided polyhedral agglomeration. ACM Transactions on Graphics 36 (4), 114.

Gregson, J., A. Sheffer, and E. Zhang (2011). All-hex mesh generation via volumetric poly-
cube deformation. Computer Graphics Forum 30 (5), 1407–1416.

Guo, J., D.-M. Yan, L. Chen, X. Zhang, O. Deussen, and P. Wonka (2016). Tetrahedral
meshing via maximal Poisson-disk sampling. Computer Aided Geometric Design 43, 186–
199.

Han, S., J. Xia, and Y. He (2010). Hexahedral shell mesh construction via volumetric poly-
cube map. In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling,
pp. 127–136. ACM.

Huang, J., Y. Tong, H. Wei, and H. Bao (2011). Boundary aligned smooth 3d cross-frame
field. In ACM transactions on graphics, Volume 30, pp. 143. ACM.

91

Ito, Y., A. Shih, and B. Soni (2004). Reliable isotropic tetrahedral mesh generation based
on an advancing front method. In Proceedings of 13th International Meshing Roundtable,
pp. 95–106.

Jakob, W., M. Tarini, D. Panozzo, and O. Sorkine-Hornung (2015). Instant field-aligned
meshes. ACM Transactions on Graphics 34 (6), 189.

Jamin, C., P. Alliez, M. Yvinec, and J.-D. Boissonnat (2015). CGALmesh: A generic frame-
work for Delaunay mesh generation. ACM Transactions on Mathematical Software 41 (4),
23:1–23:24.

Jiang, T., J. Huang, Y. Wang, Y. Tong, and H. Bao (2014). Frame field singularity cor-
rectionfor automatic hexahedralization. IEEE transactions on visualization and computer
graphics 20 (8), 1189–1199.

Klingner, B. M. and J. R. Shewchuk (2007). Agressive tetrahedral mesh improvement. In
Proceedings of 16th International Meshing Roundtable, pp. 3–23.

Knupp, P. (2001). Algebraic Mesh Quality Metrics. SIAM Journal on Scientific Comput-
ing 23 (1), 193–218.

Labelle, F. and J. R. Shewchuk (2003, June). Anisotropic voronoi diagrams and guaranteed-
quality anisotropic mesh generation. In Proceedings of the nineteenth conference on Com-
putational geometry - SCG ’03, New York, New York, USA, pp. 191. ACM Press.

Labelle, F. and J. R. Shewchuk (2007). Isosurface stuffing: Fast tetrahedral meshes with
good dihedral angles. ACM Transactions on Graphics 26 (3), 57.1–57.10.

Lévy, B. (2015). Geogram, a programing library of geometric algorithm.
http://alice.loria.fr/software/geogram/doc/html/index.html.

Lévy, B. and Y. Liu (2010). Lp centroidal voronoi tessellation and its applications. In ACM
Transactions on Graphics, Volume 29, pp. 119. ACM.

Li, X.-Y., S.-H. Teng, and A. Üngör (2000). Biting: Advancing front meets sphere packing.
International Journal for Numerical Methods in Engineering 49 (1–2), 61–81.

Li, Y., Y. Liu, W. Xu, W. Wang, and B. Guo (2012). All-hex meshing using singularity-
restricted field. ACM Transactions on Graphics 31 (6), 177.

Liu, D. C. and J. Nocedal (1989). On the limited memory BFGS method for large scale
optimization. Mathematical Programming 45 (3), 503–528.

Liu, Y., W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang (2009). On centroidal
voronoi tessellation — energy smoothness and fast computation. ACM Transactions
on Graphics (ToG) 28 (4), 101.

92

Lyon, M., D. Bommes, and L. Kobbelt (2016). Hexex: robust hexahedral mesh extraction.
ACM Transactions on Graphics 35 (4), 123.

Maréchal, L. (2009). Advances in octree-based all-hexahedral mesh generation: handling
sharp features. Proceedings of the 18th International Meshing Roundtable, 65–84.

Meshkat, S. and D. Talmor (2000). Generating a mixed mesh of hexahedra, pentahedra
and tetrahedra from an underlying tetrahedral mesh. International Journal for Numerical
Methods in Engineering 49 (1-2), 17–30.

Meyer, M. D., P. Georgel, and R. T. Whitaker (2005). Robust particle systems for curvature
dependent sampling of implicit surfaces. In International Conference on Shape Modeling
and Applications, pp. 124–133.

Mitchell, S. A. and S. A. Vavasis (1992). Quality mesh generation in three dimensions. In
Proceedings of the eighth annual symposium on Computational geometry, pp. 212–221.

Molino, N., R. Bridson, and R. Fedkiw (2003). Tetrahedral mesh generation for deformable
bodies. In Proc. Symposium on Computer Animation.

Möller, P. and P. Hansbo (1995). On advancing front mesh generation in three dimensions.
International Journal for Numerical Methods in Engineering 38 (21), 3551–3569.

Neil Molino, Robert Bridson, J. T. and R. Fedkiw (2003). A crystalline, red green strategy for
meshing highly deformable objects with tetrahedra. In Proceedings of 12th International
Meshing Roundtable, pp. 103–114.

Ni, S., Z. Zhong, Y. Liu, W. Wang, Z. Chen, and X. Guo (2017). Sliver-suppressing tetra-
hedral mesh optimization with gradient-based shape matching energy. Computer Aided
Geometric Design 52, 247–261.

Nieser, M., J. Palacios, K. Polthier, and E. Zhang (2012, June). Hexagonal global pa-
rameterization of arbitrary surfaces. IEEE Transactions on Visualization and Computer
Graphics 18 (6), 865–878.

Nieser, M., U. Reitebuch, and K. Polthier (2011). Cubecover–parameterization of 3d volumes.
In Computer Graphics Forum, Volume 30, pp. 1397–1406. Wiley Online Library.

Owen, S. J. (1998). A survey of unstructured mesh generation technology. In Proceedings of
7th International Meshing Roundtable, pp. 239–267.

Owen, S. J. and S. Saigal (2000). H-morph: an indirect approach to advancing front hex
meshing. International Journal for Numerical Methods in Engineering 49 (1-2), 289–312.

Panozzo, D., E. Puppo, M. Tarini, and O. Sorkine-Hornung (2014). Frame fields: anisotropic
and non-orthogonal cross fields. ACM Transactions on Graphics 33 (4), 134.

93

Radovitzky, R. and M. Ortiz (2000). Tetrahedral mesh generation based on node insertion

in crystal lattice arrangements and advancing-front-delaunay triangulation. Computer

Methods in Applied Mechanics and Engineering 187 (3-4), 543–569.

Ray, N., W. C. Li, B. Lévy, A. Sheffer, and P. Alliez (2006). Periodic global parameterization.

ACM Transactions on Graphics 25 (4), 1460–1485.

Ray, N., D. Sokolov, and B. Lévy (2016). Practical frame field generation. ACM Transactions

on Graphics 35 (233).

Schöberl, J. (1997). NETGEN An advancing front 2D/3D-mesh generator based on abstract

rules. Computing and visualization in science 1 (1), 41–52.

Sheffer, A., M. Etzion, A. Rappoport, and M. Bercovier (1999). Hexahedral mesh generation

using the embedded voronoi graph. Engineering with Computers 15, 248–262.

Shephard, M. S. and M. K. Georges (1991). Automatic three-dimensional mesh generation

by the finite octree technique. International Journal for Numerical methods in engineer-

ing 32 (4), 709–749.

Shepherd, J. F. and C. R. Johnson (2008). Hexahedral mesh generation constraints. Engi-

neering with Computers 24, 195–213.

Shepherd, J. F., S. A. Mitchell, P. Knupp, and D. R. White (2000). Methods for multisweep

automation. In Proceedings, 9th International Meshing Roundtable, pp. 77–87.

Shewchuk, J. R. (2002a). Two discrete optimization algorithms for the topological improve-

ment of tetrahedral meshes. Unpublished manuscript 65.

Shewchuk, J. R. (2002b, September). What Is a Good Linear Finite Element? - Interpolation,

Conditioning, Anisotropy, and Quality Measures.

Shimada, K. (2006). Current trends and issues in automatic mesh generation. Computer-

Aided Design & Applications 3, 741–750.

Si, H. (2015). Tetgen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans-

actions on Mathematical Software 41 (2), 11:1–11:36.

Sokolov, D., N. Ray, L. Untereiner, and B. Lévy (2016). Hexahedral-dominant meshing.

ACM Transactions on Graphics 35 (5), 157.

Solomon, J., A. Vaxman, and D. Bommes (2017). Boundary element octahedral fields in

volumes. ACM Transactions on Graphics 36 (3), 28.

94

Staten, M. L., S. J. Owen, and T. D. Blacker (2005). Unconstrained paving and plastering:
a new idea for all hexahedral mesh generation. In Proceedings, 14th International Meshing
Roundtable, pp. 399–416.

Tarini, M., K. Hormann, P. Cignoni, and C. Montani (2004). Polycube-maps. ACM Trans-
actions on Graphics 23 (3), 853–860.

Tournois, J., R. Srinivasan, and P. Alliez (2009). Perturbing slivers in 3D delaunay meshes.
In Proceedings of 18th International Meshing Roundtable, pp. 157–173.

Turk, G. (1992). Re-tiling polygonal surfaces. In ACM SIGGRAPH Computer Graphics,
Volume 26, pp. 55–64.

Velho, L., J. de Miranda Gomes, and D. Terzopoulos (1997). Implicit manifolds, triangula-
tions and dynamics. Neural Parallel and Scientific Computations 5, 103–120.

Witkin, A. P. and P. S. Heckbert (2005). Using particles to sample and control implicit
surfaces. In ACM SIGGRAPH 2005 Courses, pp. 260.

Xu, K., X. Gao, Z. Deng, and G. Chen (2017). Hexahedral meshing with varying element
sizes. In Computer Graphics Forum. Wiley Online Library.

Yamakawa, S. and K. Shimada (2000). High quality anisotropic tetrahedral mesh generation
via ellipsoidal bubble packing. In Proceedings of International Meshing Roundtable, pp.
263–274.

Yamakawa, S. and K. Shimada (2003). Fully-automated hex-dominant mesh generation
with directionality control via packing rectangular solid cells. International Journal for
Numerical Methods in Engineering 57 (15), 2099–2129.

Yan, D.-M., B. Lévy, Y. Liu, F. Sun, and W. Wang (2009). Isotropic remeshing with fast and
exact computation of restricted voronoi diagram. In Computer graphics forum, Volume 28,
pp. 1445–1454. Wiley Online Library.

Yan, D.-M., W. Wang, B. Lévy, and Y. Liu (2010). Efficient computation of 3D clipped
Voronoi diagram. In Proceedings of the 6th International Conference on Advances in
Geometric Modeling and Processing, pp. 269–282.

Yerry, M. A. and M. S. Shephard (1983). A modified quadtree approach to finite element
mesh generation. IEEE Computer Graphics and Applications 3 (1), 39–46.

Yerry, M. A. and M. S. Shephard (1984). Automatic three-dimensional mesh generation by
the modified-octree technique. International Journal for Numerical Methods in Engineer-
ing 20 (11), 1965–1990.

Zhong, Z., X. Guo, W. Wang, B. Lévy, F. Sun, Y. Liu, W. Mao, et al. (2013). Particle-based
anisotropic surface meshing. ACM Transactions on Graphics 32 (4), 99–1.

95

BIOGRAPHICAL SKETCH

Saifeng Ni received her Bachelor’s degree and Master’s degree from the University of Sci-

ence and Technology of China, and currently she is a PhD candidate in the Department of

Computer Science at The University of Texas at Dallas. Under the supervision of Dr. Guo,

Saifeng has been conducting research on mesh optimization. Her research interests include

computer graphics, computer vision, and 3D reconstruction, with an emphasis on geometric

modeling and processing.

96

CURRICULUM VITAE

Saifeng Ni sxn124030@utdallas.edu

Education:
Ph.D. Computer Science, The University of Texas at Dallas 2012 - 2018
M.S. E.E., University of Science and Technology of China 2009 - 2012
B.S. E.E., University of Science and Technology of China 2005 - 2009

Internships:
Research Intern Virtualbloks, LLC. Summer 2015

• Reconstructed 3D indoor environment by structure from motion and multiview stereo.

• Estimated 3D room layout based on Manhattan world assumption.

• Augmented virtual decorations onto a real room using Vuforia SDK.

• Implemented and evaluated these AR/VR systems on GearVR and Epson Movirio
glasses.

Research Intern Samsung Research America Summer 2018

• Investigate 3D face modeling.

• Implement 3 face fitting pipelines.

Projects:
• National Graduate Student Mathematical Contest in Modeling in China (2011)

– Modeled wedge absorber and microwave anechoic chamber using Matlab, Won
second prize.

• Dense stereo reconstruction algorithms comparison on ideal and real data.

Skills:
• Proficient at C/C++ and Matlab; familiar with Python, Linux.

• Graphics & Vision: OpenGL, GLSL, CGAL, VTK.

Awards:
• “Yang Ya” Scholarship (top 1 female graduate student) in USTC, 2011

• Second Prize in National Graduate Student Mathematical Contest in Modeling in
China, 2011

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related work
	Backgrounds
	BCC and FCC Lattices
	Frame Field and Imagined Space

	Related Work on Tetrahedral Meshing
	Silver by Variational-method

	Hexahedral Meshing and Hexahedral-dominant Meshing

	Sliver-Suppressing Tetrahedral Meshing
	Overview
	Shape Matching Triangulation Energy
	Edge-Based Shape Matching (ESM)
	Gradient-Based Shape Matching (GSM)
	The Importance of GSM Energy in Tetrahedral Meshing

	GSM Energy Optimization
	Vertex Smoothing
	Connectivity Update
	Boundary and Feature

	Experiment and Comparisons
	Quality Measurement
	Isotropic Tetrahedral Meshing
	With Sharp Features
	Adaptive and Anisotropic Tetrahedral Meshing
	Running Time and Convergence Analysis
	Robustness

	Conclusion

	Field Aligned Framework
	Overview
	Particle-Based Optimization Method
	Gaussian Hole Kernel
	Lattice Optimization

	Field Aligned Tetrahedral Meshing
	Overview
	Tetrahedral Mesh Generation
	Experiments of Field Aligned Tetrahedral Meshing
	Discussion and Future Work

	Hexahedral-Dominant Meshing
	Overview
	Mesh Generation
	Experiment and Comparison
	Limitation and Future Work

	Conclusion and Future Work
	References
	Biographical Sketch
	Curriculum Vitae

