
Erik Jonsson School of Engineering and Computer Science

Controlling the Signal: Practical Privacy Protection
of Genomic Data Sharing through Beacon Services

UT Dallas Author(s):

Murat Kantarcioglu

Rights:

CC BY 4.0 (Attribution)
©2017 The Authors

Citation:

Wan, Zhiyu, Yevgeniy Vorobeychik, Murat Kantarcioglu, and Bradley
Malin. 2017. "Controlling the signal: Practical privacy protection of
genomic data sharing through Beacon services." 10 (Suppl. 2), doi:10.1186/
s12920-017-0282-1

This document is being made freely available by the Eugene McDermott Library
of the University of Texas at Dallas with permission of the copyright owner. All
rights are reserved under United States copyright law unless specified otherwise.



RESEARCH Open Access

Controlling the signal: Practical privacy
protection of genomic data sharing
through Beacon services
Zhiyu Wan1*, Yevgeniy Vorobeychik1,2, Murat Kantarcioglu3 and Bradley Malin1,2,4

From iDASH Privacy and Security Workshop 2016
Chicago, IL, USA. 11/11/2016

Abstract

Background: Genomic data is increasingly collected by a wide array of organizations. As such, there is a growing
demand to make summary information about such collections available more widely. However, over the past
decade, a series of investigations have shown that attacks, rooted in statistical inference methods, can be applied
to discern the presence of a known individual’s DNA sequence in the pool of subjects. Recently, it was
shown that the Beacon Project of the Global Alliance for Genomics and Health, a web service for querying
about the presence (or absence) of a specific allele, was vulnerable. The Integrating Data for Analysis,
Anonymization, and Sharing (iDASH) Center modeled a track in their third Privacy Protection Challenge
on how to mitigate the Beacon vulnerability. We developed the winning solution for this track.

Methods: This paper describes our computational method to optimize the tradeoff between the utility and
the privacy of the Beacon service. We generalize the genomic data sharing problem beyond that which was
introduced in the iDASH Challenge to be more representative of real world scenarios to allow for a more
comprehensive evaluation. We then conduct a sensitivity analysis of our method with respect to several
state-of-the-art methods using a dataset of 400,000 positions in Chromosome 10 for 500 individuals from
Phase 3 of the 1000 Genomes Project. All methods are evaluated for utility, privacy and efficiency.

Results: Our method achieves better performance than all state-of-the-art methods, irrespective of how key
factors (e.g., the allele frequency in the population, the size of the pool and utility weights) change from the
original parameters of the problem. We further illustrate that it is possible for our method to exhibit subpar
performance under special cases of allele query sequences. However, we show our method can be extended
to address this issue when the query sequence is fixed and known a priori to the data custodian, so that
they may plan stage their responses accordingly.

Conclusions: This research shows that it is possible to thwart the attack on Beacon services, without
substantially altering the utility of the system, using computational methods. The method we initially
developed is limited by the design of the scenario and evaluation protocol for the iDASH Challenge;
however, it can be improved by allowing the data custodian to act in a staged manner.
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Background
Genomic data is increasingly collected by a wide array of
organizations [1], ranging from direct-to-consumer gen-
omics companies [2] to clinical institutions [3, 4]. This
data serves as the basis of discovery-driven research
[5, 6] and, more recently, for personalized medicine
programs [7, 8]. However, as the quantity and cover-
age of genomic data grow, so too does the chance for
the discovery and reporting of rare alleles [9, 10].
This is challenging for researchers and clinicians who
aim to discern if such an allele (or combination of
alleles across the genome) is meaningful with respect
to an individual’s phenotypic status or should influ-
ence the design of a personalized treatment regimen.
To mitigate uncertainty, there is a desire to open data
held by one organization to those who may need it
elsewhere [11, 12]. While there are some initiatives,
like the Personal Genome Project [13], that freely and
publicly share genomic data linked to phenomic data,
the existence of such systems does not necessarily
translate into a large number of participants [14].
There are numerous reasons why individuals may not
contribute their data to such programs, one of which
is a privacy concern that the data would be misused
or abused in some way [15, 16]. To mitigate privacy
risks, data custodians have turned towards sharing
summary level data about the pool of individuals who
were in a study or were treated in a clinical setting.
The practice of summary data sharing began on a large

scale in the mid-2000’s, with programs like the Database
of Genotypes and Phenotypes (dbGaP) at the National
Institutes of Health [17], which aimed to standardize
and centralize genomic data, making it easier to access.
Summary statistics about the allele rates were made pub-
licly accessible over the Internet because it was assumed
that the privacy risks for such data were minimal. Yet in
2008, Homer and colleagues [18] demonstrated that an
adversary could apply a statistical inference attack to dis-
cern the presence of a known individual’s DNA sequence
in the pool of subjects. This was specifically accom-
plished by measuring the distance between an individ-
ual’s sequence to the allele rates exhibited by the pool
versus some reference population, such as the Inter-
national Haplotype Mapping Program [19] or 1000
Genomes [20]. When the target was deemed to be suffi-
ciently biased towards the pool, the adversary could
assign the hallmarks of the pool, such as membership in
a specific group for case-control study (e.g., individuals
positively-diagnosed with a sexually transmitted disease).
As an artifact of this demonstration, the NIH, Wellcome
Trust, and other genomic data custodians restricted ac-
cess to summary-level genomic data [21, 22]. Since the
initial attack, there have been a number of advance-
ments in pool detection methodology (e.g., [23–27]).

As such inference methods evolved, the Global
Alliance for Genomics and Health (GA4GH) formed to
facilitate the sharing of genomic and health data in a
federated manner [28]. In light of the known attacks,
GA4GH created the Beacon Project, which enables data
custodians to respond to queries through a web service
(i.e., a beacon) about the presence/absence of a specific
allele [29]. For instance, the Beacon service could re-
spond yes/no to a question like, “Do you have any ge-
nomes with nucleotide A at position 121,212,028 on
chromosome 10?” When the answer was affirmative, the
requesting system user would learn that the variant in
question may not be unique (i.e., because it was ob-
served in a genome collected elsewhere) and that it
might be worth pursuing further investigation into its
meaning (possibly with the assistance of the answering
data custodian).
Though it obscures allele rates, in late 2015, the

Beacon service was also shown to be vulnerable to a
statistical inference attack. Specifically, Shringarpure and
Bustamante (SB) described the statistical theory behind
the attack and illustrated how it might require no more
than 5,000 responses to infer an individual’s, or their rel-
atives’, membership in the pool [30].
Given the increasing adoption of Beacon, the Integrat-

ing Data for Analysis, Anonymization, and Sharing
(iDASH) National Center for Biomedical Computing al-
located one of the three tracks of their 2016 Genomic
Privacy Protection Challenge to explicitly focus on this
vulnerability. The organizers formulated the problem as,
“Given a sample Beacon database, we will ask [the] par-
ticipating team to develop solutions to mitigate the Bus-
tamante attack. We will evaluate each algorithm based
on the maximum number of correct queries that it can
respond [to] before any individual can be re-identified
by the Bustamante attack.” [31] A subset of the authors
of this paper developed the winning solution to this
challenge. While this paper provides the details behind
this solution, we have further extended our initial ana-
lysis to illustrate its limits as well as introduce alterna-
tive formulations of the problem to evolve the
investigation into a setting closer to the real world.
The specific contributions of this paper include:

(1)We introduce a method that simultaneously
optimizes the privacy (based on the SB attack as
augmented by the iDASH Challenge organizers)
and the utility of the system;

(2)We generalize the genomic data sharing problem
to be more representative of scenarios in which
beacons will actually be deployed; and

(3)We provide a sensitivity and robustness analysis of
our method under various parameterizations of the
variables relied upon by the iDASH Challenge.
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Methods
The iDASH challenge
The goal of the first track of the 2016 iDASH
Challenge was to mitigate an augmented version of
the SB attack. The problem was how to find such a
strategy for the genomic data custodian. This section
begins with a description of the attack model and
then models the data custodian’s strategy as an
optimization problem. In this setting, the attacker is
defined as a malicious user launching the SB attack.
The defender, by contrast, is defined as the data cus-
todian sharing the genomic data while mitigating the
SB attack.

iDASH variation of the SB attack
Given the binary genomic summary statistics of a pool
of genomes (i.e., the beacon), the attacker relies upon a
likelihood ratio test (LRT) to infer whether a targeted
genome is in the pool or not. The null hypothesis, H0, is
that the targeted genome is not in the beacon, While the
alternative hypothesis, H1, is that the targeted genome is
in the beacon. The attack model used in the iDASH
Challenge is based on the SB attack, but it is amended
to allow the attacker to know the alternative allele fre-
quency (AAF) of all single nucleotide variants (SNVs) in
the underlying population of the beacon. Here, AAF is
the frequency at which the alternative allele occurs in a
given population. The alternative allele is defined as the
second most common allele in a commonly recognized
global population (e.g., 1000 Genomes Project). We refer
to this scenario as the augmented SB attack (ASBA).
Formally, the log-likelihood of a set of beacon

responses x = {x1,⋯, xm} and a set of SNVs di = {di,1,⋯,
di,m} for target i is:

L di; xð Þ ¼
Xm

j¼1
dij

�
xj log P xj ¼ 1

� �

þ 1−xj
� �

log P xj ¼ 0
� ��

ð1Þ

where dij and xj are binary variables. Specifically, dij =
1 when SNV j of target i has at least one alternative
allele and dij = 0 when SNV j of target i has no alter-
native alleles. Additionally, xj = 1 when SNV j has at
least one alternative allele in the beacon; xj = 0 if
SNV j has no alternative alleles in the beacon.
The null hypothesis can be formulated as:

LH0 di; xð Þ ¼
Xm
j¼1

dij
�
xj log 1−D j

n

� �

þ 1−xj
� �

log D j
n

� ��
ð2Þ

And the alternative hypothesis can be formulated as:

LH1 di; xð Þ ¼
Xm

j¼1
dij

�
xj log 1−δD j

n−1

� �

þ 1−xj
� �

log δD j
n−1

� ��
ð3Þ

where δ is the sequencing error rate, Dn
j represents the

probability that none of the n genomes in the beacon
have an alternative allele at SNV j:

D j
n ¼ 1−f j

� �2n
ð4Þ

Here, fj is the AAF of SNV j in the population.
The LRT statistic for target i can thus be stated as:

Λ di; xð Þ ¼ LH0 di; xð Þ−LH1 di; xð Þ

¼
Xm
j¼1

dij xj log
1−D j

n

1−δDn−1
j þ 1−xj

� �
log

D j
n

δDn−1
j

� �

ð5Þ
Given this statistic, a threshold is selected, such that

only targeted genomes with a test statistic below the
threshold are regarded as being in the beacon. We as-
sume that the attacker will always select the threshold
according to a maximal allowable false positive rate
(FPR).
To illustrate the ASBA, we present an example of the

entire attack and defense process of the iDASH chal-
lenge in Fig. 1. For this example, we selected eight SNVs
from chromosome 10 and populated a pool of 100
records in a beacon repository according to their global
AAFs. Now, let us say the attacker has access to a set of
genomes with known identities, which we refer to as a
target set. The target set can be divided into two mutu-
ally exclusive subsets: i) a set of targets that are actually
in the pool and ii) a set of other targets. The attacker
will query the Beacon service about whether each alter-
native allele is in the pool behind the beacon and make
their attack decision based on all of the returned
answers. If the defender in control of the beacon server
answers truthfully, the attacker is likely to achieve a high
detection rate. However, if the defender invokes some
data protection method (as we introduce later on), then
the risk will be mitigated. A flipping action of “T” and
“F” for a particular SNV position represents answering
the query regarding this position truthfully and untruth-
fully, respectively. In this example, as shown in the
bottom right corner of Fig. 1, it can be seen that the risk
has been mitigated substantially.

Optimization problem
Strategies available to the defender
The above problem description implies that the only
action the defender can take is to lie in their answers to
the attacker’s queries.
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In practice, the answer to a query from the attacker
for a particular allele in the beacon can be 1, 0 and null,
the latter of which means that the answer to the query is
not applicable (e.g., when the defender does not have
any records that cover the SNV of interest to the at-
tacker). Henceforth, for simplicity, and alignment with
the data analyzed in the iDASH Challenge, we assume
that all data accessible through the beacon is a single
nucleotide variant (SNV). In the attack model, the zero
and null answers can be treated differently. The contri-
butions from the SNV j to the final LRT statistics
according to Equation (5) for answers 1, 0 and null are

log 1−D j
n

1−δDn−1
j , log

D j
n

δDn−1
j , and zero, respectively. Lying about the

answer to a query means two alternatives: 1) flipping or
2) masking. We define flipping as changing the answer
from 1 → 0 or 0 → 1. We define masking as changing
the answer from 1 → null, or from 0 → null. It
should be recognized that we only consider the
former type of lies for simplicity in presentation. In
other words, we choose to flip each SNV or not.
Now, let us say that Sd = {sd} is the set of the strat-
egies available to the defender, where each strategy
represents a set of SNVs. Then, the number of all
available strategies is |Sd| = 2m.

Query sequences available to the attacker
The effectiveness of the defender’s strategy is influenced
by the attacker’s query sequence. We further assume the
attacker has a pre-determined query sequence and has
the potential to query all SNVs. Let us say that Sa = {sa}
is the set of query sequences over all of the SNVs avail-
able to the attacker. Then the number of all possible
query sequences is |Sa| =m !.

We also assume that the only uncertain action raised
by the attacker for the defender is the SNV query
sequence. All of the other parameters are fixed and
known to the defender before he chooses the best
strategy.

Objective function
Given this formulation, the iDASH Challenge scenario
can be modeled as an optimization problem for the
defender. Specifically, we wish to find a set of SNVs to
flip that maximizes the utility and the privacy of the data
simultaneously.
The effectiveness of a defender’s strategy, Y(sd, sa), con-

sidering both the utility and the privacy, is a function of
both the defender’s strategies and the attacker’s query
sequences, which is defined below. This creates a de-
pendency on the definitions of the utility and privacy
measures, the manner by which utility and privacy are
combined, and the attack model.
As the attacker proceeds through the ordered set of

SNVs, he runs a hypothesis test based on the responses
for the subset of SNVs queried so far. Now, we assume
the defender does not know the ground truth of the
attacker’s query sequence. As a consequence, the de-
fender’s best strategy is the one that maximizes his or
her own expected effectiveness:

s�d ¼ argmaxsdE
�
Y ðsdÞ

�

¼ argmaxsd
1
jSaj Σ

sa∈Sa

Y ðsd; saÞ ð6Þ

This implies that the attacker will choose any of the
query sequences with equal probability. So long as this
effectiveness function is defined and known to the

Fig. 1 An illustration of the ASBA attack and defense process of the iDASH challenge
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defender, the simplest solution for the defender is to
examine all available strategies. However, such a brute
force approach is computationally challenging because
the size of the defender’s strategy space, |Sd|, increases
exponentially with the number of SNVs.
Similarly, calculating the exact valuation of a de-

fender’s strategy, E(Y(sd)), is difficult because of the large
number of query sequences available to the attacker,
|Sa|. However, the valuation of a defender’s strategy can
be estimated based on a subset of the attacker’s strat-
egies Sa

' , under a random selection model.

Evaluation criteria
There are many alternative definitions of effectiveness
that could be invoked to evaluate the defender’s strat-
egies. Here, we first introduce the approach that was re-
lied upon in the iDASH Challenge and then consider
several alternatives. As will become evident, this is im-
portant because it influences how the defender will
search for their best strategy.
In the description of the iDASH Challenge task, the ef-

fectiveness of a strategy was defined as the number of
answers that can be served correctly before any targeted
individual’s presence is successfully detected. However,
no matter what the defender’s strategy may be, the de-
tection power of the LLR test is always larger than 0 for
the first several SNVs unless queries for these SNVs are
not answered truthfully. This implies that at least one in-
dividual will be successfully detected if the first several
SNVs are answered truthfully, which is highly likely be-
cause we assume the defender does not know the pos-
ition of a specific query in the entire query sequence.
However, such a definition dictates towards a worst-

case privacy scenario. Specifically, it assumes that a sys-
tem is considered vulnerable if any one record can be
breached. As noted earlier, there are alternative defini-
tions that could be applied. For instance, a more prag-
matic definition of the effectiveness of a protection
model may be the proportion of correct answers that are
returned before the presence of a certain number of in-
dividuals is detected. Under this formulation, when a
method is evaluated, the iDASH Challenge organizers
stated that 60%, instead of 0%, would be applied as the
threshold for the detection power.
To define several alternative evaluation criteria, let us

limit the utility and privacy measures in the [0, 1] range.
For the purposes of the iDASH Challenge, utility can be
regarded as the proportion of queries that are answered
truthfully. By contrast, privacy is defined as a binary
variable that is one if, and only if, a certain portion of
the targeted individuals are never detected in the bea-
con, and 0 otherwise. Now, there are numerous ways to
combine the utility and privacy measures into an effect-
iveness measure. In the iDASH Challenge, the

effectiveness of the defense was defined as the utility for
the proportion of SNVs shared before a certain portion
of targeted individuals are re-identified.
Alternatively, the utility can be defined as a weighted

sum of correct answers. In this scenario, each SNV can
be weighted according to its importance (e.g., correlation
with some phenotype). On the other hand, privacy can
be defined as the expected false negative rate when the
number of used SNVs is uncertain. The effectiveness of
the defense can thus be defined as a weighted sum of
the utility and the privacy.

Protection method
In this section, we start with a description of the solu-
tion we submitted to the iDASH Challenge. To perform
a comprehensive empirical analysis, we then provide a
description of alternative methods that could be applied
to this problem.

Our iDASH submission
The solution we submitted to the iDASH Challenge en-
tails searching through a collection of possible strategies
that the defender can invoke to protect the system. Each
of these strategies utilizes the same method, in the form
of flipping some SNV query answers. In this section, we
illustrate the principles by which such answers are
flipped and how the strategy space is prioritized and
searched.

Flipping responses
In the iDASH Challenge, it was assumed that the de-
fender is not aware of the attacker’s query sequence a
priori and does not keep track of the queries. As a result,
we need to find a defender’s strategy that is independent
of the attacker’s query sequence. Since utility is basically
measured as the number of queries that the defender re-
sponds to truthfully, we introduce the notion of discrim-
inative power for each SNV in the pool. The
discriminative power represents an SNV’s ability to dis-
tinguish the records in the pool of individuals behind
the beacon from a reference dataset. We define a differ-
ential discriminative power for each SNV in the pool,
which represents the difference between its discrimina-
tive power before and after a flip. The top k percent of
the SNVs in the pool, ranked by their differential dis-
criminative power, will have their query responses
flipped.
Here, we take a moment to formally define the dis-

criminative power. We assume that the defender knows
the attacker’s target set (because, otherwise, the de-
fender’s strategy could not be directly measured). If this
is not the case, then there are various ways for the de-
fender to estimate the target set (the details of which are
deferred to below). Let us say that the targeted pool with
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n individuals and m SNVs is represented as a binary
matrix with n rows and m columns Dn ×m = {dij} in
which dij is one when individual i in the pool has the
alternative allele for SNV j and zero otherwise. Let us
further say that the targeted reference dataset with n' in-
dividuals and m SNVs (the same as the SNVs in the
pool) is represented by a binary matrix with n' rows and
m columns Rn0 �m ¼ rij

� 	
in which rij is one when indi-

vidual i in the reference has the alternative allele in SNV
j and zero otherwise.
Given the truthful answer xj for the query regarding

SNV j, the ability for SNV j to indicate if an individual is
behind the beacon, according to the pool data, is defined
as the average LLR for all the individuals in the pool if
only SNV j is queried:

Aj xj
� � ¼ 1

n

Xn
i¼1

dij L
0
H1 xj
� �

−L
0
H0 xj
� �� �

ð7Þ

where

L
0
H0 xj
� � ¼ xj log 1−D j

n

� � þ 1−xj
� �

log D j
n

� � ð8Þ

L
0
H1 xj
� � ¼ xj log 1−δD j

n−1

� �
þ 1−xj

� �
log δD j

n−1

� �
ð9Þ

Similarly, the ability for an SNV to indicate if an indi-
vidual is behind the beacon, according to the reference
dataset, is defined as the average LLR for all the individ-
uals in the reference if only SNV j is queried:

A
0
j xj
� � ¼ 1

n0

Xn0

i¼1

rij L
0
H1 xj
� �

−L
0
H0 xj
� �� �

ð10Þ

The more similar these two values, the less powerful
the LLR test will be. Based on this formulation, the dis-
criminative power for SNV j becomes:

Dj xj
� � ¼ Aj xj

� �
−A

0
j xj
� �

¼ 1
n

Xn
i¼1

dij −
1
n0

Xn0

i¼1

rij

0
@

1
A L

0
H1 xj
� �

−L
0
H0 xj
� �� �

ð11Þ
The difference of the discriminative powers before and

after flipping the SNV is:

ΔDj xj
� � ¼ Dj xj

� �
−Dj 1−xj

� � ð12Þ

As a result, the first step of our Strategic Flipping
method will flip the top k percent of the SNVs sorted ac-
cording to the differential discriminative power. Note
that, when a set of SNVs have the same differential dis-
criminative power, the SNVs with the highest discrim-
inative powers are selected first. When a set of SNVs
have the same discriminative power, the SNVs with the

lowest AAFs are selected first. A random selection is
applied to break AAF ties.

Searching the strategy space
We use a greedy algorithm to search the defender’s
strategy space for a local optimum. To do so, we begin
by randomly selecting q query sequences. Next, we
traverse the l nearest neighbors of the current best strat-
egy and find the neighbor with the best average measure
of effectiveness, which is averaged across the q query se-
quences. Two strategies are regarded as neighbors if they
only have one answer that is different. The distance be-
tween two neighbors is calculated as the absolute differ-
ence of the average number of answers provided
truthfully by the two strategies and the rank of the dif-
ferent SNVs of these two strategies, in descending order,
sorted by the differential discriminative power. In other
words, if the number of the answers provided truthfully
by these two strategy is t and t' and the rank of the dif-
ferent SNV is τ, then the distance between two neigh-
bors is |τ − (t + t')/2|. When l equals to two, only the top
SNVs, in terms of differential discriminative power, are
flipped.
We start from the result of the aforementioned

Top-K Flipping step and keep searching until no
strategy with better effectiveness can be found. In the
case where two measures need to be optimized simul-
taneously (such as utility and privacy measures), we
search the neighborhoods for a Pareto-optimal strat-
egy. In a multiple-objective optimization problem, a
strategy is Pareto optimal if no other strategies dom-
inate it (i.e., is better than it in terms of both mea-
sures in consideration).

Alternative methods
We selected five alternative methods beyond the one we
proposed above. The first three are baseline methods
that set the upper and lower bounds on the measures.
The last two are state-of-the-art methods in the litera-
ture that address the beacon detection problem. For
reference purposes, we name our iDASH solution as the
Strategic Flipping Method or MSF.

(1)Truthful Method (marked as MT). The defender
simply responds to all queries truthfully. This sets
the lower bound for the privacy measure and the
upper bound for the utility measure.

(2)Baseline Method (marked as MB). The defender
flips the k percent of the SNVs with the lowest AAF
in the underlying population from which the pool is
sampled. This method was used by the organizers
of the iDASH Challenge to establish a lower bound
for the effectiveness measure.
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(3)Greedy Accountable Method (marked as MGA).
We assume the users’ queries are accountable,
whereby each user has an account such that the
defender documents the attacker’s queries and
results as they are processed. Upon submission of
the next SNV query, the defender will flip the
answer for this SNV if, and only if, the power of
the resulting LLR test would be smaller than when
no flip is applied.

(4)Random Flips (marked as MRF). This method was
recently proposed by Raisaro et al. [32]. In this
method, the defender flips ε portion of SNVs that
exhibit unique alleles in the beacon.

(5)Query Budget (marked as MQB). This method was
also proposed by Raisaro et al. [32]. In this method,
a privacy budget is assigned to each individual in
the beacon. Each time a record contains the
queried allele, the budget for that user is reduced
by a certain amount. Once a record’s budget is
exhausted, their genome will no longer contribute
to responses provided by the beacon. Similar to
MR, this method requires the users’ queries to be
documented.

Results
In this section, we introduce the evaluation measures,
the experimental setup, and the results of the empirical
analysis.

Evaluation measures
In addition to the measure of effectiveness provided by
the organizers of the iDASH Challenge, we propose sev-
eral alternatives to assess the effectiveness of each
method in a more comprehensive manner.

Utility
We measure utility according to the proportion of quer-
ies responded to truthfully (U).

Privacy
We measure privacy according to two different criteria,
which we refer to as P1 and P2. First, we measure P1 as a
binary variable that is set to one if, and only if, a certain
portion of the targeted individuals were never detected
in the beacon, and 0 otherwise. We select 60% as the
threshold because this is the definition used in the
iDASH Challenge. It should be noted that our method
generalizes to any threshold, but the results we present
are limited to this parameterization. Second, we measure
P2 as the expected false negative rate when the number
of SNVs to be queried is uncertain. We assume that the
total number of SNVs about which the attacker has
already queried, when they stop, is a random integer
number uniformly distributed in the range [0, m].

Effectiveness
The effectiveness, which considers both utility and priv-
acy, is measured according to two criteria. First, we
measure E1 as the proportion (in terms of all SNVs) of
queries that are responded to truthfully before 60% of
the individuals are successfully detected. Second, we
measure E2 as the proportion of truthful answers plus
the expected false negative rate.

Computational efficiency
Computational efficiency is an important factor to be
considered for deployment of solutions in a working sys-
tem of beacons. As such, we also present the running
time of each method. To measure the running time, we
use a machine with Intel Core i7 quad-core 3.00GHz
CPU and 8 GB memory.

Experimental design
To evaluate the effectiveness of the methods, we cre-
ated a pool based on the first 400,000 SNVs in
Chromosome 10. The pool is composed of 250 indi-
viduals randomly selected from the 2,504 individuals
in Phase 3 of the 1000 Genomes Project [12]. The
reference includes 250 individuals randomly selected
from the remaining individuals in Phase 3 of the pro-
ject. Note that the higher the association between the
allele frequencies in the pool and the allele frequen-
cies estimated by the attacker (as demonstrated by a
sensitivity analysis), the higher the detection power.
In our experiments, we assume a scenario where the
allele frequency estimates available to the attacker are
the allele frequencies in the entire population of 1000
Genomes. All of the other parameters are set as
shown in Table 1. The maximal allowable false posi-
tive rate (α) is set to 0.05 and the sequencing error
rate (δ or the mismatch rate) is set to 0.000001 ac-
cording to Shringarpure and Bustamante [30]. The
number of sampled query sequences is set to 10, and
the number of examined neighbors is set to two for

Table 1 Parameter settings for the experiments

Parameter Notation Setting

Size of pool n 250

Number of SNVs m 400,000

Maximal allowable false positive rate α 0.05

Sequencing error rate δ 0.000001

Number of sampled query sequences q 5

Number of examined neighbors l 2

Percentage of flipped answers k 5

Noise level in the Random Flip method ε 0.75

Maximal allowable power in the query
budget method

β 0.9
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simplicity. The percentage of flipped answers is set to
five, but this setting will be discussed further in the
section of sensitivity analysis. The noise level in the
Random Flip method is set to 0.75, and the maximal
allowable power in the Query Budget method is set
to 0.9 according to Raisaro et al. [32].

Findings
We compare all methods using the average results
across 10 randomly generated query sequences. Fig. 2
shows how the detection power and the proportion of
flipped answers (i.e., lies to the attacker) every 1000
queries change as a function of the number of queried
SNVs for one of the query sequences.
By inspecting Fig. 2(a) and (b), it can be seen that

the detection power does not increase monotonically
when the defender is flipping answers. From Fig. 2(a),
it can be seen that the three methods with the lowest
(on average) detection power are MGA, MSF, and MQB.
Notably, none of these methods exceed the threshold
of 60%. From Fig. 2(b), it can be seen that the three
methods with fewest (on average) induced lies are
MGA, MB, and MT. Considering the intersection of
these results, it appears that MRF and MGA are likely
the best options.
Inspecting the result of only one query sequence pro-

vides some intuition into the trends of the utility and
privacy measures, but it may be biased by a single run of
the experiment. Fig. 3 summarizes the mean and +/-1
standard deviation for each of the performance measures
across 10 query sequences.
Figure 3 reveals several notable findings. First, it can

be seen that, according to the evaluation measures de-
fined in the iDASH Challenge (E1), our proposed
method (MSF) is the second best. However, since the
best method (MGA) assumes the users are accountable -

which does not exist in the current system - it cannot be
regarded as a practical solution for the iDASH
Challenge.
With respect to effectiveness, we find that the two

measures ( E1 and E2) are in complete agreement re-
garding the rank order of the best methods. With re-
spect to privacy, the second measure (P2) does a better
job of distinguishing between the methods than the first
measure.
With respect to running time, we find that the solu-

tion we proposed ( MSF) exhibited the longest running
time - about 56% longer than the quickest method.
However, we assume that such a difference efficiency
may not be critical because the defender’s strategy for
each beacon is determined once the beacon is published
rather than calculated on-the-fly.
While there is no perfect way to combine the utility

and privacy measures, we can compare the methods dir-
ectly on these dimensions. In Fig. 4, for each method,
utility ( U) is shown by the x-axis, privacy ( P2) is shown
by the y-axis, and effectiveness (E1) is shown in text. It
can be seen that, after dismissing the two impractical
methods (MTandMGA), the method we proposed for the
iDASH Challenge dominates all other solutions.

Sensitivity Analysis
To gain a deeper appreciation for the stability of the re-
sults of the iDASH Challenge, we assessed the perform-
ance of the proposed methods when certain key
parameters are varied.

Tunable parameters
All of the protection methods, except MT and MGA, in-
clude a tunable parameter. Here, we systematically in-
vestigate how changes to the value of this parameter
influences their performance. For brevity in presentation,

Fig. 2 How the number of SNVs queried influences the (a) detection power and (b) proportion of lies
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we designed four cases: two with values smaller and two
with values larger than the value applied in the scenario
investigated above. The specific values for the sensitivity
analysis are detailed in Table 2. Only the most represen-
tative values are chosen for each parameter. The value
of each parameter in Case three (Mid) is the default
value as we used in the above experiment that simulated
the iDASH Challenge. The values for each parameter in
Case one (Low) and Case five (High) are the smallest

and largest values, respectively, while Case two (Low-
Mid) and Case four (Mid-High) provide gradations be-
tween these case to provide a more complete view.
Figure 5(b) displays the results of the sensitivity

analysis with respect to the utility, privacy and effect-
iveness measures. The series of numbers near the
series of circles represent the effectiveness (E1) of the
methods in different cases (from the Low Case to the
High Case). There are several notable findings from

Fig. 3 The performance of the genomic data protection methods across 10 runs

Fig. 4 A comparison of the genomic data protection methods with respect to utility and privacy
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this analysis to highlight. First, it should be recog-
nized that utility is negatively correlated with the par-
ameter in methods MB, MSF and MRF and positively
correlated with the parameter in the method MQB.
Second, privacy (P2) is positively correlated with the
parameter in MB, MSF and MRF and negatively corre-
lated with the parameter in MQB. Third, effectiveness
(E1) is positively correlated with the parameter in MB,
MRF and MQB and negatively correlated with the par-
ameter in the MSF. The effectiveness of our proposed
MSF method is larger than all of the alternative
methods, including MGA, when the value for the k

parameter is smaller than five. Most importantly, we
found that the method we proposed for the iDASH
Challenge dominates all of the alternative methods -
except MT and MGA when the value for the k param-
eter is two.

Allele frequency in the population
In the iDASH Challenge, it was assumed that the at-
tacker’s estimate of the allele frequencies is similar to
those in the 1000 Genomes population of around 2500
individuals. However, in the real world, the attacker is
likely to have a stronger capability. For instance, the at-
tacker may know the allele frequencies are from a
smaller population.
Thus, we investigated how an enhancement of the at-

tacker’s capability influences the performance of the
methods. Specifically, we assess the performance of the
protection methods when the attacker has a more accur-
ate estimate of the allele frequencies by gaining access to
a smaller population of only 500 individuals. We further
examine the scenario where the attacker relies on allele

Table 2 Parameterizations for the sensitivity analysis of the
genomic data protection methods
Method Parameter Case 1

(Low)
Case 2
(Low-Mid)

Case 3
(Mid)

Case 4
(Mid-High)

Case 5
(High)

MB Percentage of
flipped answers (k)

1 2 5 10 20

MSF

MRF Noise level (ε) 0.1 0.5 0.75 0.9 1

MQB Maximal allowable
power (β)

0.1 0.5 0.9 0.95 1

Fig. 5 Influence of the key parameters and factors on the utility and privacy measures. a Original Results. b Tunable parameters. c Attacker’s
knowledge about allele frequencies in the population. d The utility measure. e Query sequence. f Size of the Pool
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frequencies that are exactly the same as the pool behind
the beacon.
Figure 5(c) depicts the utility, privacy and effectiveness

measures of different methods. The series of numbers
near the series of circles (from larger to smaller circles)
represent the effectiveness (E1) of the methods in differ-
ent cases (from larger to smaller populations). There are
several important take-away messages from this analysis.
First, both the effectiveness of protection (in terms of
both E1 and E2) increases for MB, MSF, MGA, MRF and
decreases for MQB when the attacker’s allele frequency
estimate becomes more accurate. Second, the solution
we proposed for the iDASH Challenge remains the best
method for current application (noting that MGA still
remains the best overall).

Utility measure
In the iDASH Challenge, we assumed the utility for each
SNV was equivalent. Here, we assume the utility is mea-
sured as a weighted sum of the truthful answers. The
weight for each SNV can be (1) the absolute difference
between the allele frequency in the pool and population
or (2) a worst-case scenario for our proposed method,
where the utility is equal to the absolute differential dis-
criminative power the defender used for each SNV.
The results of this analysis are shown in Fig. 5(d). The

series of numbers near the series of circles (from larger
to smaller circles) represent the effectiveness (E1) of
methods in different cases (from the original setting to
the Low Case, and from the Low Case to the Low-Mid
Case). In these scenarios, we find that our proposed MSF

for the iDASH Challenge performs substantially worse
than it did in the challenge because utility is measured
differently. Nonetheless, even in such an extreme case,
our method is never dominated by others, except MGA,
and dominates MQB. However, it should be recognized
when method A fails to dominate method B, it does not
imply that method B dominates method A.

Query sequence
Different sequences of the queries have the potential to
yield different detection results. As such, we need to
consider how well the attacker can perform if he
chooses the sequence with the highest possible detection
power. Let us consider two scenarios: (1) the attacker
always queries the most discriminative set of SNVs first;
(2) the attacker always queries the rarest SNVs first.
The performance of the protection methods with re-

spect to these two scenarios are depicted in Fig. 5(e).
The series of numbers near the series of circles (from
larger to smaller circles) represent effectiveness (E1) of
the methods in different cases (from the original setting
to case 1, and from case 1 to case 2). As anticipated, it
can be seen that the defender tends to lose privacy no

matter what protection method is invoked in the first
scenario. This is because the SNVs queried first have
very strong discriminative power. However, in the sec-
ond scenario, the defender loses privacy only when our
proposed method is invoked and gains privacy when
other methods are invoked.
These results primarily stem from three reasons. First,

the SNVs with high differential discriminative power are
not the same as the SNVs with high discriminative
power or the SNVs with low alternative allele frequency.
As a result, in the face of these two query sequences, the
defender does not flip any SNVs until the very end of
the query sequence. This leads to a high detection power
quickly. Second, a flipping strategy works best in the
scenario where all SNVs that need to be flipped are also
queried first. In other words, our proposed method
works best when the top k percent SNVs with highest
differential discriminative power are queried first. By
contrast, the baseline method works best when the top k
percent SNVs with lowest alternative allele frequency are
queried first. Third, Raisaro et al. [32] assumed that the
rarest SNVs are queried first. Thus, the Random Flips
method (MRF) and the Query Budget method (MQB) per-
form well in the scenario where this assumption holds
true. Still, the solution we proposed for the iDASH
Challenge is not dominated by any of the other methods
except for the Greedy Accountable method (MGA) and
dominates the baseline method (MB). Still, if the
attacker’s query sequence is fixed and known by the de-
fender, the Greedy Accountable method (MGA) becomes
practical and the defender will end up with nearly per-
fect scores.

Size of the pool
In the iDASH Challenge, we used a dataset where there
were 250 individuals in the pool behind the beacon.
Here, we consider scenarios where there are fewer indi-
viduals in the beacon. Specifically, we assess the per-
formance of the methods when there are only 1) 100
individuals and 2) 50 individuals in the pool. The results
are shown in Fig. 5(f ). The series of numbers near the
series of circles (from larger to smaller circles) represent
the effectiveness (E1) of the protection methods in differ-
ent cases (from larger to smaller sized pools).
It can be seen that the effectiveness of protection is

positively correlated with the pool size in methods MT,
MB and MRF. And, once again, the method we submitted
to the iDASH Challenge remains the best practical
method in terms of all evaluation measures.

Discussion
The findings illustrate that the ASBA attack against a
Beacon service can be sufficiently mitigated through a
strategy that intelligently prioritizes which genomic
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variants to provide truthful answers about. However, we
wish to point out that addressing the iDASH Challenge
task is only the first step to solving the more general
problem of mitigating the SB attack against the Beacon
service in the real world. To create a more realistic solu-
tion, we wish to highlight two sets of limitations. The
first set is an artifact of the design of the iDASH Chal-
lenge, while the second set is an artifact of the design of
our model.

Limitations of the iDASH Challenge
There are, at least, three key limitations to the design of
the iDASH challenge that hinder its practicality: 1) the
evaluation measure, 2) the available strategy space, and
3) the construction of the attack model.
First, the iDASH Challenge regarded each SNV as hav-

ing the same utility. This is critical to recognize because
all of the defender’s strategies trade between utility and
privacy. In our proposed method, we first flip answers
for the SNVs that will lead to the greatest loss of privacy.
Yet, if these SNVs happen to have a more severe influ-
ence on utility than other SNVs, the best strategy for the
defender will likely change.
Second, the Beacon service in the iDASH Challenge

allows the defender to flip an answer from zero to one
or from one to zero when answering the queries from a
user. However, in the real world, the defender could
have access to either a smaller or a larger strategy space.
For instance, a smaller strategy space might be realized
if a data custodian only allows for flipping from one
(presence of a variant) to zero (absence of a variant) - in
other words, the data custodian chooses to never lie
about presence. By contrast, a larger strategy space
might be created if an data custodian can play out their
actions over a series of stages to query response. For ex-
ample, as Raisaro et al. mentioned [24], if each user
must create an account to query the beacons, the data
custodian can distinguish between them and document
their query history. As a consequence, the Query Budget
(MQB) and Greedy Accountable (MGA) and methods will
become practical, while the latter could become the op-
timal solution.
Still, the strategy space for the defender is likely to be

much larger than what we have alluded to because they
may have access to more than technical methods to lean
on for protection. For instance, the defender may insti-
tute legal and/or economic methods to change the utility
of the system for the attacker. For example, if each user
must sign a data use agreement before querying a Bea-
con service, the malicious users might be detected as
attempting to re-identify records and could be pursued
as violators of a contract and penalized for liquidated
damages (e.g., sued for a monetary loss). Note that such
approaches will add minimal burden on typical law

abiding users, but could come at a substantial cost for
the defender. Still, in this scenario, a cost-benefit analysis
becomes necessary for an economically-motivated de-
fender, such that the defender will need to choose the
strategy that optimizes his monetary payoff while satisfy-
ing the privacy requirements. And, when the attacker
makes a decision based upon the defender’s strategy, a
game theoretic analysis should be invoked to solve this
problem as shown by Wan et al. [33].
Third, both the original and augmented SB attack in

the iDASH Challenge consider an adversarial model that
tends to overestimate the privacy risk. This happens for
several reasons. First, the attacker does not know the
ground truth about who is in the pool. As such, he does
not know the exact false positive rate. When he overesti-
mates the false positive rate, fewer individuals will be
attacked. Second, as pointed out by Craig and colleagues
[25] the prior probability that a targeted individual is ac-
tually in the pool is likely to be much smaller than 50%
as was the case for the iDASH Challenge, which can
substantially influence the statistical inference power
[33]. Third, it should be recognized that a possible attack
is not the same as a probable attack. When an attacker
is economically-motivated, he is unlikely to attack when
the cost exceeds the benefit of an attack.

Limitations of the protection method
There are three primary aspects of our protection
method that should be addressed before it is instituted
in practice: 1) the deterministic approach to flips, 2) an
estimation of the attacker’s target set, and 3) a grounded
approach to select k (i.e., the percentage of SNVs to flip).
First, our solution invokes a deterministic approach to

selecting which SNVs to flip. This is potentially prob-
lematic because, if the attacker was able to ascertain
some of the allele frequencies in the pool behind the
beacon, then they could mimic the strategy of the de-
fender. In other words, the attacker would be able to de-
termine which SNVs the defender would choose to lie
about. As a consequence, each query response for such
SNVs could then be flipped back to the correct answer
about the underlying pool, thus rescinding all of the pro-
tection. Therefore, in the event that there is a concern
about such exposure, our model could incorporate a
randomization component, where the answers provided
to the adversary are non-deterministic. If such a feature
were to be incorporated, it is critical to minimize the
level of randomization to achieve the desired level of
security.
Second, in the iDASH Challenge, the target set (i.e.,

the set of genomic records for presence/absence testing)
was provided to the competition teams. However, in the
real world, there may be multiple attackers, each of
which may harbor a different target set. In such a
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scenario, the computation of the discriminative power
for each SNV in the pool should be dependent on the
underlying population of the beacon instead of a particu-
lar target set. In other words, when the defender is un-
certain about the number of attackers and their targets,
the entire population from which the beacon is sampled
from should be used as the target set in our model.
However, the mismatch in target sets may affect the per-
formance of our method.
Finally, the parameter k in our method determines the

starting point of the search for local optimal strategy. A
well-specified value of k increases the probability that
the local optimal strategy is also globally optimal. The
best choice for k is dependent upon a number of factors,
including 1) the size of the pool, 2) the number of SNVs,
3) the maximal allowable false-positive rate, 4) the spe-
cific data in the pool, and 5) the target set. In practice,
when the defender needs to determine k, he could simu-
late an attacker with an estimated maximal allowable
false-positive rate (which is often set to 5%), as well as a
target set, and then select the best choice empirically.
For example, according to the results in Fig. 4, the best
choice of k is five in terms of maximizing the effective-
ness (E2).

Conclusions
This paper introduced a technical solution for miti-
gating the Shringapure and Bustamante (SB) attack
on the Beacon service of the Global Alliance for Gen-
omics and Health. This solution was specifically tai-
lored to address an augmented version of this attack
as posed in the 2016 iDASH Challenge. This solution
was the winning entry and in this paper, we provided
a formalization of the iDASH Challenge problem, a
general design of the protection model, and an empir-
ical evaluation of our solution to demonstrate its
potential for protecting privacy with minimal influ-
ence on the utility of the system within a practical
computational runtime.
We further showed, via an extensive experimental

evaluation, that our proposed method outperforms all
posited baseline and state-of-the-art methods (that
were applicable to real world scenarios) regardless of
how key parameters that drive the attack (e.g., the ef-
fectiveness measure, the number of records behind
the beacon, and the attacker’s estimate of allele fre-
quency) vary. In most scenarios, the advantages of
our method over other alternative methods are sub-
stantial. Still, it should be recognized that our method
is limited by the design of the iDASH Challenge sce-
nario (e.g., a strategy space limited to changing query
answers) and the evaluation protocol (e.g., adversarial
knowledge of minor allele frequencies).
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