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Despite significant efforts over the last few years to build a robust automatic speech recognition

(ASR) systems for different acoustic settings, the performance of the current state-of-the-art

technologies significantly degrades in noisy reverberant environments.

Convolutional Neural Networks (CNNs) have been successfully used to achieve substantial

improvements in many speech processing applications including distant speech recognition

(DSR). However, standard CNN architectures were not efficient in capturing long-term speech

dynamics, which are essential in the design of a robust DSR system. In this thesis, we

address this issue by investigating variants of large receptive field CNNs (LRF-CNNs) which

include deeply recursive networks, dilated convolutional neural networks, and stacked hourglass

networks. To compare the efficacy of the aforementioned architectures with the standard CNN

for Wall Street Journal (WSJ) corpus, we use a hybrid DNN-HMM based speech recognition

system. Then in order to evaluate the system performances in reverberated environments (the

case for distant speech recognition) we evaluated the system in both simulated and realistic

reverberated environments. For the former, we used realistic room impulse responses (RIRs)

to simulate the reverberated versions from a clean channel. Finally, for realistic reverberation

settings, we used UTD-Distance corpus to evaluate our system. Our experiments show that
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with fixed number of parameters across all architectures, the large receptive field networks

show consistent improvements over the standard CNNs for both clean and distant speech.

Amongst the explored LRF-CNNs, stacked hourglass network has shown improvements with

a 8.9% relative reduction in word error rate (WER) and 10.7 % relative improvement in

frame accuracy compared to the standard CNNs for distant simulation setups. Stack of

hourglass also gave a 13.68 % and 12.90 % relative reduction for 1 m and 3 m distanced

microphones respectively. For 6 m far microphones recursive networks were the one with

the most WER gain of 7.46 %. This thesis is a study on a set of unsupervised techniques

achieved by modifications on acoustic modeling component of the HMM-based ASR engine for

robustness in reverberate environments. These techniques showed a consistent improvements

in both simulated and realistic settings and demonstrates a track of research in the field of

alternative acoustic modeling structures.

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Approaches in Capturing Long-term Dynamics . . . . . . . . . . . . . . . . 4

2.2 Feature Extraction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Acoustic Model Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Long-term Dynamics in End2End . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Long-term Dynamics in HMM-based . . . . . . . . . . . . . . . . . . 7

2.4 Attempts to Capture Long-term Dynamics in CNN-based Acoustic Models . 8

CHAPTER 3 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Standard CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Dilated Networks (DIL-Net) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Time Delayed Neural Network (TDNN) . . . . . . . . . . . . . . . . . 13

3.3 Stacked Hourglass Network (HG-Net) . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Deeply Recursive Network (REC-Net) . . . . . . . . . . . . . . . . . . . . . . 16

CHAPTER 4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Simulated Reverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Realistic Reverberation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 ASR Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Empirical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Frame Accuracy Performance . . . . . . . . . . . . . . . . . . . . . . 29

4.4.3 WER Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

viii



CHAPTER 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



LIST OF FIGURES

2.1 End to End system architecture. This is a simplified version of a RNN-based e2e
speech recognition system where the features are directly mapped to the desired
text through a couple of consecutive recurrent neural networks. CTC is a loss
function that yields to a comparingly accurate transcription with the cost of high
computation complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 HMM-based automatic speech recognition . . . . . . . . . . . . . . . . . . . . . 8

3.1 Convolution architecture. The figure layer illustrates one layer of standard con-
volution kernel, while the right one regards to the whole network made of these
convolution layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Dilated architecture. The left figure illustrates one layer of dilated convolution
kernel. In this special form of convolution some values are being skipped and
number of these skipped values are determined by the dilation value. The right
figure regards to the whole network made of these dilated convolution layers. . 12

3.3 Time-delayed architecture. The figure layer illustrates one layer of time-delayed
convolution kernel. In this type of convolution, we skip some values in the input
layer and only pass certain values. In this type of convolution the number of
skipping values could be asymmetric between passing ones. . . . . . . . . . . . . 14

3.4 Hourglass architecture. The top figure illustrates the Down and Up components
that are made with convolution layer and down-sampling or up-sampling layers.
The figure in the middle shows an hourglass structure made of combining these up
and down components in parallel. the lower figure is the final stack of hourglass
network architecture which is constructed by a stack of hourglass components. 16

3.5 Hourglass architecture. The top figure illustrates the Down and Up components
that are made with convolution layer and down-sampling or up-sampling layers.
The figure in the middle shows an hourglass structure made of combining these up
and down components in parallel. the lower figure is the final stack of hourglass
network architecture which is constructed by a stack of hourglass components. 17

4.1 UTD-Distant Reverb Data Collection - Room Setup Diagram (Classroom) . . . 23

4.2 UTD-Distant Reverb Data Collection - Microphone and Speaker arrangement
(Classroom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Spectrogram of close-talk and distanced microphones recordings of an utterance
in Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Spectrogram of close-talk and distanced microphones recordings of an utterance
in Racquetball Court . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Optimal Kernel Size for capturing long-term dynamics in simulated distant speech 28

4.6 WER of Different Acoustic Models to the Distance from Speaker . . . . . . . . . 33

x



LIST OF TABLES

4.1 Objective Quality Measures for simulated distant speech signals w.r.t. clean
speech signals from WSJ corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Performance of Standard CNN and large receptive field networks for different
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 WER and frame accuracies of LRF networks for clean and simulated distant
speech versions of Eval93 (with fixed number of parameters ≈ 25600). . . . . . . 31

4.4 WER of LRF networks for UTD-Distance - Classroom (with fixed number of
parameters ≈ 25600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 WER of LRF networks for UTD-Distance - Racquetball (with fixed number of
parameters ≈ 25600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Words with the highest substitution errors. First and Second columns are distri-
bution over close talk microphone and distance microphone and the last column
is the top high-frequency words of Wikipedia . . . . . . . . . . . . . . . . . . . . 33

xi



CHAPTER 1

INTRODUCTION

Distant Speech Recognition (DSR) is a technology that uses distant microphone(s) to

accomplish natural human-machine interfaces. Recent years have seen the application of

DSR in consumer devices, such as Amazon Echo, Google Home, smart TVs, etc. Due to

the existence of background noise, multiple overlapping speakers and reverberation, building

a robust DSR system has become a challenging task for present speech systems. Broadly

speaking, a DSR system can be split into two sub-tasks: (i) a front-end speech enhancement

system, and (ii) a back-end automatic speech recognition (ASR) system modification which

can be designed to operate on speech recordings from either a single distant microphone or

multiple distant microphones. A DSR system, engineered using multiple distant microphones,

use advanced front-end microphone array processing techniques that yield in a substantially

reduced word error rate (WER) compared to systems engineered using a single distant

microphone. In a considerable portion of real life applications a fixed length array of

microphones is not practical, especially considering the fact that quality of array-based

preprocessings are dependent on the distance of microphones from each other. These

kind of limitations in front-end enhancements makes back-end systems a better choice for

some applications. Most back-end state-of-the-art ASR systems used in a DSR system

typically divide the recognition task into three sub-tasks: (i) feature extraction, (ii) acoustic

modeling, and (iii) language modeling, which are optimized independently to achieve the best

performance.

Over the years, steady attempts by speech community researchers have helped in optimizing

the aforementioned building blocks of the ASR system. Feature extraction, a process of

extracting discriminative characteristics from speech signals to accurately classify linguistic

content has been extensively studied, leading in features such as Mel-filterbank cepstral

coefficients (MFCCs) and perceptual linear prediction coefficients (PLPs) providing optimum
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efficiency for many speech-related systems. Similarly, extensive studies in natural language

processing (NLP) have shown that recurrent neural network-based language models (RNN-

LMs) generate accurate probability distributions over word sequences, helping an ASR system

to decrease prediction errors. For acoustic modeling, researchers have used Hidden Markov

Models (HMMs) and Gaussian Mixture Models (GMMs) for more than a decade. Later, studies

in this area have shown that acoustic models based on fully connected deep neural network

(FC-DNNs) outperformed the conventional GMM-HMM systems. In addition, significant

improvements were also made by replacing fully connected DNNs with convolutional neural

networks (CNNs) because of their effectiveness in capturing local (short-term) dependencies

of speech signals. This leads to significant improvements in WER for speech recordings from

a close-talk microphone. Consequently, CNNs do not efficiently capture global (long-term)

dependencies which make them less effective in designing a DSR system.

CNN is a multi-layer stacked neural network which includes convolutional layers, non-

linearities, and pooling layers(in some frameworks) Krizhevsky, Sutskever, and G. E. Hinton

2012. Convolutions in different layers of the standard CNN consider current and few

neighboring inputs from a previous layer to produce a single output. As the number of layers

in this network increases the region of the input space (the first layer of the network) that

affects a neuron in a particular layer of the neural network also increases. This region is well

recognized in CNN architecture as the receptive field. In general, any neuron of any layer can

be investigated for its receptive field. Nonetheless, this term is commonly used to describe

the region of an input that impacts a specific network output. Therefore, we can say that

the receptive field of a CNN is a measure of its temporary learning capacity that increases

linearly with the number of layers and the size of a convolution kernel used in a CNN. In

CNNs, it is evident that the receptive field size can be increased in the following ways: (i)

stacking more layers (increasing the depth of the network), (ii) sub-sampling (introducing

pooling after convolutions, having a lower stride), and (iii) increasing kernel size (dilating the
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convolutional kernel). Although the expansion of the receptive field significantly increases

the number of parameters, it is beneficial in capturing global and local dependencies which

are crucial for building a DSR system.

The goal of this paper is to explore the efficiency of DSR systems built using hybrid

DNN-HMM and large receptive field networks for acoustic models. We perform a thorough

analysis on the design of these networks and on the relationship between receptive field size

and the number of parameters of the networks.
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CHAPTER 2

BACKGROUND

2.1 Approaches in Capturing Long-term Dynamics

In this section, we discuss the past and present research work relevant to capturing

long-term dependencies in speech. There are two distinct approaches to address long-term

dependencies in a speech signal: (i) in feature extraction component by modifying this

component in a way that the output features are dependent on a large portion of input signal,

or (ii) using acoustic models that can learn the long-term dependencies given a short-term

speech features Peddinti, Povey, and Khudanpur 2015a.

2.2 Feature Extraction Approach

Initial efforts from researchers in speech and audio processing were exclusive to explore

feature extraction strategies to address this issue. For instance, (i) TRAPs, a feature extraction

technique which replaced standard spectral patterns with long-term temporal patterns of

spectral energies Hermansky and Sharma 1999, (ii) A wavelet-based multi-scale spectro-

temporal feature extraction technique which consider multiple time and spectral resolutions

tuned to capture fast and slow changes in modulation patterns Mesgarani, Shamma, and

Slaney 2004, and more recently (iii) Features from deep scattering spectrum, which extend

standard MFCCs by calculating multiple-orders of modulation spectrum coefficients with the

use of wavelet cascades Andén and Mallat 2014; Yousefi, Khorram, and Hansen 2019. These

long-term speech dynamics capturing features showed reasonable performance improvements

when tailored to a specific task (or) speech from a particular acoustic environment. These

feature extraction techniques can not be generalized for all acoustic conditions because it

needs the expertise to tune parameters in the extraction process to compensate for the

distortions induced by an acoustic condition on speech which are inconsistent and change
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swiftly. It was therefore found that the best approach to address long-term speech dynamics

capturing problem may be to seek for alternative strategies for acoustic modeling rather than

the feature extraction. Later, acoustic modeling strategies were researched in great detail to

deal with this problem.

2.3 Acoustic Model Approach

With advances in machine learning, FC-DNNs learning strategies were adapted to build

robust state-of-the-art acoustic models that can statistically map an acoustic sound precisely

to its corresponding transcript. Although FC-DNNs have shown significant improvements

over GMM-HMM-based acoustic modeling, their temporal modeling capabilities were limited

as they operate on the information from a fixed-size sliding window of acoustic frames. This

made them unsuitable for handling long-term dependencies. Subsequently, recurrent neural

networks (RNNs), a progression to FC-DNNs with cyclic connections over time, were able

to collect and store information for an arbitrary number of neighboring acoustic frames,

showing their capacity to capture long-term dependencies Greff et al. 2017. Several RNN

architectures have since been explored for acoustic modeling (e.g., GRUs Wu and King

2016, LSTMs Graves, Mohamed, and G. Hinton 2013; Ghorbani, Bulut, and Hansen 2018,

BLSTMs Graves, Jaitly, and Mohamed 2013, RNMs Baskar et al. 2017). Training RNN

is usually performed through a time-expansion operation where the input at time ‘t + 1’

relies on the output at time ‘t’. Due to this time-expansion operation, parallelization of

training routines for these networks becomes quite challenging even with techniques such as

sequence batching and distributed optimization. In addition to the challenges in training

phase, these architectures generally are difficult to run in inference mode too because of

the state (memory) they need to build from the beginning of the input; yielding to a larger

memory requirements on device.
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2.3.1 Long-term Dynamics in End2End

End to End systems have recently gained a lot of attention especially in the academic

community. These systems are essentially built of a consecutive deep layers which are designed

to transfer the acoustic features directly to words/characters sequences. There are a huge

variety of different architectures like RNN-based Encoder-Decoder Chorowski et al. 2014 , to

Transformers Dong, S. Xu, and B. Xu 2018 and also different training criteria like CTC S.

Kim, Hori, and Watanabe 2017 and many other examples. Figure 2.1 demonstrates structure

Figure 2.1. End to End system architecture. This is a simplified version of a RNN-based
e2e speech recognition system where the features are directly mapped to the desired text
through a couple of consecutive recurrent neural networks. CTC is a loss function that yields
to a comparingly accurate transcription with the cost of high computation complexity.

of a simple RNN-based ASR model trianed with CTC loss. This system leverages a couple

of forward and backward RNNs (LSTM in particular) which take the acoustic features and

output the final words/characters. In these architectures (and also Encoder-Decoders) the

temporal dependencies are being captured and modeled in the recurrent units. The recurrent

layers take acoustic inputs and through a set of weightings, update their hidden states and go
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on to the next time step. Theoretically these models are capable of capturing any length of

temporal dynamics in input signal. This modeling capacity makes these models perform even

better sometimes compared to their older alternatives. At the same time more robustness

toward different errors especially in reverberation. One of the key aspects of RNN-based

systems yielding this performance is the maximum possible receptive field they have, which

in fact is the total length of utterance. It means that these models are consuming the hidden

state to output every prediction label. Despite of their performance, the drawbacks that

these models are suffering from, are the lack of scalability, their huge dependency on the

GPU-based calculations and difficulty of online decoding. These factors are resistances in

leveraging them in industry as dominant as their alternative HMM-based models.

2.3.2 Long-term Dynamics in HMM-based

End to end systems have a well-established and more industrially dominant alternatives:

HMM-based systems. These systems approach to the automatic speech recognition with a

less data driven way, meaning different components are trained separately to do specific task,

then combine them to make a final decoding graph. In the heart of their decode, there is an

Hidden Markov Model (HMM) assumed and trained which are in charge of modeling acoustic

behaviour of each uttered phoneme.

While decoding the acoustic model will be trained in a way to predict the states of this

HMM given the input features. Early versions of these systems were GMM-HMM where a

Guasian Mixture Model (GMM) (a generative model) was trained with a separate GMM for

each phoneme in the vocabulary. As introduction of deep learning the researcher started

to change the decoding problem to a discriminate version in order to use the modeling

capabilities of Deep Neural Networks, resulting in what is now known as DNN-HMM systems

2.2. Historically, these systems proposed by a Convolutional Neural Networks (CNN) as the

DNN component due to their compatibility to the problem. But the mentioned modeling
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Figure 2.2. HMM-based automatic speech recognition

capabilities enhancement came with a cost; these models by structure were limited to a

certain observation length of the input to generate the every output instance. This length

are named receptive field and is going to be introduced in more details in the methods but

it must be mentioned the larger this receptive field gets, the more context our classifier

has. Gradually scientists realized that one of the key components in the performance and

robustness of these systems is the receptive field and tried to enhance it in different ways.

2.4 Attempts to Capture Long-term Dynamics in CNN-based Acoustic Models

Convolutional neural networks are one of many other machine learning strategies adapted

for acoustic modeling to handle the long-term dependencies in ASR. Similar to RNNs, CNNs

have also shown significant improvements in ASR performance over FC-DNNs Hau and K.

Chen 2011; Abdel-Hamid, L. Deng, and D. Yu 2013; Ghorbani, Khorram, and Hansen 2019;

Ghorbani and Hansen 2018. Recent research also shows that the use of residual connections

can train deeper CNN architectures in a more efficient way compared to RNNs He et al. 2016.
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Thus, deep CNNs with restricted local connectivity and weight sharing were successfully

used in document recognition LeCun et al. 1998. Researchers have studied various variants

of CNNs that use the concept of large receptive field to build robust systems in the areas

of human pose recognition Newell, K. Yang, and J. Deng 2016, face expression recognition

J. Yang, Liu, and K. Zhang 2017, human speech emotion recognition Khorram, Aldeneh,

et al. 2017; Khorram, McInnis, and Provost 2019, signature verification Al-Jarrah and Arafat

2014 and also in many machine learning applications associated with super-resolution image

processing. Tiled-CNNs that learns rotational and scale-invariant features over time has

proven to perform better than traditional CNN for small time-series data Ngiam et al. 2010.

CNNs have also been used for speech dereverberation applications in multiple configurations

and have successfully demonstrated their ability to learn the long-term effects of reverberation

on speech Ernst et al. 2018; Yousefi, Shokouhi, and Hansen 2018. In addition, Dilated CNNs

have also proven their abilities to learn relevant information from a bigger context F. Yu and

Koltun 2015a. Therefore, we focus on studying the large-receptive field networks for acoustic

modeling, especially for distant speech recognition.
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CHAPTER 3

METHODS

In this section, we discuss the working principles of standard CNN, dilated CNNs, and

stacked hourglass network. We compute and compare the receptive field size of the mentioned

networks to better understand the increase/decrease in the performance of each network.

3.1 Standard CNN

As mentioned in the previous sections, CNNs can be considered as a variation of regular

feed-forward networks. In CNNs, weight sharing is normally achieved by sliding a linear filter

throughout the output of the previous layer. In these architectures, every layer’s output is

generated by sliding a convolving window over the output of previous layer. Normally in

many signal processing tasks, between every two convolution layer we put a pooling layer as

well, which basically reduces the resolution of the output of layers before delivering to the

next layer. Although in some cases, including acoustic modeling of HMM-based ASR, we

need the output resolution to be equal to the input resolution.

Assuming each convolutional layer uses a linear filter of kernel width ‘W ’, we can compute

the receptive field of a CNN network with ‘L’ layers as follows:

RFstandard = L(W − 1) + 1 (3.1)

where RFCNN is the RF size of the standard CNN. This equation is showing how much of

the input layer is involved in generating one prediction of the final output. It is evident from

this equation that the RF size increases linearly with respect to both W and L. As a quick

forward to Table 4.2 in standard 10 layers of CNN with each window length of 8 yields a

receptive field of 71 on the output. Although, as we are going to see, in some architectures it

is not this straightforward to calculate the receptive fields and we can only track the growth

of it with respect to different parameters of architecture.
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As the RF size increases, the number of learning parameters also increases linearly, making

the network not effective for tasks where large receptive fields are required. This is while we

always prefer smaller networks over larger ones for different reasons including generalization,

training/inference speed and efficiency. The linear growth of output receptive field to the

number of parameters (W and L) makes standard CNNs inefficient for our purpose.

Also, due to the linear relationship between RF size and network complexity, it is difficult

to find an optimal point in these architectures. This is our main motivation to investigate

further architectures to find a better trade-off of RF and network complexity.

Figure 3.1. Convolution architecture. The figure layer illustrates one layer of standard
convolution kernel, while the right one regards to the whole network made of these convolution
layers.

3.2 Dilated Networks (DIL-Net)

Networks that use dilated convolutions have shown to be effective in many tasks, including

image segmentation F. Yu and Koltun 2015b, speech synthesis Oord et al. 2016 and ASR Sercu

and V. Goel 2016. Dilated networks, provide an effective technique for increasing the RF size

without causing a significant rise in the number of learning parameters. In a dilated network,

the convolutional filter (kernel) is obtained by inserting (fix) zeros between the regular filter

samples. This method expands the filter in time at the expense of lower resolution; making

the filter sparse when compared to a standard CNN convolutional filter. Inserting zeros
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and sparse filters all basically mean skipping some values of the input in each layer. This

technique somehow resembles the pooling technique with the difference that in this version

the input resolution conserves until the final output.

Figure 3.2 (top) shows an example of the dilated convolution filter with the dilation

factor of d = 3. A dilated convolutional filter is simply obtained by inserting (d− 1) zeros

symmetrically between successive filter coefficients. With this definition, a dilated network is

generally constructed by stacking N dilated convolutional layers with a 2n (for n’th layer)

dilation factor for each layer. Considering the pooling metaphor for dilation, it is like

increasing the pooling window and stride both exponentially. We usually put a couple of

standard convolution layers as preprocessing subnet at the beginning. This preprocessing

subnet is a feature processing block with the highest resolution as shown in Figure 3.2(middle

and bottom). The receptive field of this dilated network can be computed as follows:

RFdilated = (L+ (2L−1 − 1))(W − 1) + 1 (3.2)

Figure 3.2. Dilated architecture. The left figure illustrates one layer of dilated convolution
kernel. In this special form of convolution some values are being skipped and number of these
skipped values are determined by the dilation value. The right figure regards to the whole
network made of these dilated convolution layers.

L is the number of layers and W is the width of the convolutional layers. The RF size

grows exponentially, while the number of parameters grows linear to the number of layers.
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For instance, the dilated network shown in 4.2 with 7 layers of dilated layers and window

width of 5 and dilation of 4 yields to a receptive field of 421 which is considerably more than

even deeper standard CNN network (71). This is a big advantage in terms of receptive field

to model complexity. This means by adding one layer we achieve a much bigger receptive

field growth in comparison of linearity of normal convolution. Of course this is done with the

cost of losing high-resolution information especially as we move to the deeper layers, but as

we will see in the results, this is a better trade off for acoustic modeling task.

3.2.1 Time Delayed Neural Network (TDNN)

A variant of dilated networks is achieved by inserting zeros asymmetrically between

successive filter coefficients Peddinti, Povey, and Khudanpur 2015b. This network is

commonly known as time-delay neural network (TDNN). Figure 3.3(c) shows a single layer of

TDNN with asymmetric dilations. Each layer in a TDNN can have different dilation values

dl,1 and dl,2. The asymmetric dilation characteristic of TDNN makes it more flexible and

gives the network a better learning capacity compared to dilated networks. On the contrary,

(dl,1, dl,2) hyper-parameters are extremely data-dependent and can only be tuned by empirical

studies to optimize the efficiency of the networks. The RF size of a TDNN can be computed

as follows:

RFtdnn = 1 +
L∑
l=1

(dl,1 + dl,2) (3.3)
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Figure 3.3. Time-delayed architecture. The figure layer illustrates one layer of time-delayed
convolution kernel. In this type of convolution, we skip some values in the input layer and
only pass certain values. In this type of convolution the number of skipping values could be
asymmetric between passing ones.

3.3 Stacked Hourglass Network (HG-Net)

Stacked hourglass structure (HG-Net) was initially designed to solve facial landmark

localization J. Yang, Liu, and K. Zhang 2017 and human pose estimation Newell, K. Yang,

and J. Deng 2016 which required parallel process of both high-resolution (local view) and

low-resolution (global view) versions of an image in Oliva and Torralba 2006. This property

is equivalent to processing short-term and long-term temporal dynamics of the speech signal.

HG-Net is built using a stack of hourglass networks to processes both short-term and

long-term temporal dependencies in parallel, see Figure 3.4(bottom). As shown in Figure

3.4(center), each hourglass unit in an HG-net contains ‘L’-layers with two sub-networks: (1)

a down-sampling network; (2) an up-sampling network in each layer. Figure 3.4(top) shows

the convolutions involved in the down/up sampling networks. The down-sampling network

generates low-resolution representations of the input, and the up-sampling network converts

the representations learned from low-resolution to high-resolution signals.

The down-sampling network consists of a series of convolutions and max-pooling layers.

The max-pooling layer reduces the resolution of the signal and increases the RF of the

network. Various pooling operations can be used instead of max-pooling. The up-sampling

network consists of a series of up-pooling and convolutional layers. This network combines
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all the representations learned from different resolutions of input. In addition, the hourglass

network exploits a specific skip connection mechanism that connects representations that

can allow us to leverage many layers for down-sampling and up-sampling networks without

having the vanishing gradient problem. Therefore, we can down-sample the input signal to a

low resolution to achieve a large RF.

Assuming Wd, Pd, Ld to be the filter size of convolutions, pooling and number of layers in

a down-sampling network1, the RF size of a down-sampling network can be computed as:

RFdown = Ld(Wd + Pd − 1)− 1 (3.4)

RF size of the stacked hourglass network (HG-Net), RFstacked−hg, can be approximately

calculated as:

RFstacked−hg ≈ S × (RFdown ∗ 2L) (3.5)

where S, L denotes the number of hourglass units in an HG-Net and number of layers in each

hourglass unit. This shows that RFstacked−hg exponentially increases with L. RF size can be

efficiently increased by using more layers in the down-sampling and up-sampling networks as

well.

1The number of layers in the down-sampling and up-sampling networks must be equal in the hourglass
network
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Figure 3.4. Hourglass architecture. The top figure illustrates the Down and Up components
that are made with convolution layer and down-sampling or up-sampling layers. The figure in
the middle shows an hourglass structure made of combining these up and down components
in parallel. the lower figure is the final stack of hourglass network architecture which is
constructed by a stack of hourglass components.

3.4 Deeply Recursive Network (REC-Net)

Deeply recursive neural network (REC-Net) is first proposed by Kim et al. as an image

super-resolution method J. Kim, Kwon Lee, and Mu Lee 2016. The idea is to use a big

network with a large number of layers and allow different layers to share their learnable

parameters. REC-Net is a stack of recursive subnetworks, as it is shown in 3.5 (left) . Each

recursive network contains a series of convolutional layers that all of them share the same

weights. In the recursive subnetwork, increasing the number of layers will increase the RF

size without increasing the number of parameters. REC-Net can provide a large RF with a

small number of parameters.
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Figure 3.5. Hourglass architecture. The top figure illustrates the Down and Up components
that are made with convolution layer and down-sampling or up-sampling layers. The figure in
the middle shows an hourglass structure made of combining these up and down components
in parallel. the lower figure is the final stack of hourglass network architecture which is
constructed by a stack of hourglass components.

REC-Net has a number of problems: (1) to capture a large RF, we must use a large

stack of identical layers in the recursive subnetwork. Training this structure is difficult and

may lead to a vanishing/exploding gradient problem. To solve this problem, authors in

J. Kim, Kwon Lee, and Mu Lee 2016 proposed a skip-connection strategy shown in Figure

3.5 where the output of the recursive subnetwork is obtained through a weighted average of

the output of all layers in the recursive subnetwork; (2) training REC-Net is computationally

expensive (in both time and memory requirements) since this network requires a large number

of identical layers to capture long-term dependencies.

Unlike the conventional network, all these big receptive field networks provide an efficient

way to increase the size of the receptive field without causing a significant rise in the number of

learning parameters. Thus, we compare the efficiency of these networks with the conventional

network by setting the number of learning parameters to be the same across all networks.
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CHAPTER 4

EXPERIMENTS

4.1 Simulated Reverberation

Reverberation in distant speech recordings can be simulated by convolution of the audio

signals with a room impulse response from a point source to a receiver location in a room.

These RIRs are in charge of modeling acoustic behaviour of the room. The environment’s

shape, the microphone’s position and the reflection ratio of different sound frequencies,

defined by the textures and so on are all modelled in the final RIR. One common method

of synthesising natural audio is by applying the RIR over the source clean sound. RIRs

are highly sensitive to changes in receiver position, speaker position or positions of different

obstacles in the room Kuttruff 2016.

Assuming the RIRs do not change over a small instances of time corresponding to a

particular source and receiver positions, We use a set of 325 real RIRs composed of three

databases: the RWCP sound scene database Nakamura et al. 2000, the REVERB challenge

database Kinoshita et al. 2013 and the Aachen impulse response database Jeub, Schafer,

and Vary 2009 and clean speech signals from WSJ corpus to simulate the distant speech

recordings. All these RIR datasets are collected from real environments.

We have reverberated the clean data in order to measure our proposed methods’ robustness

against this particular types of error. While standard CNNs trained to have a limited receptive

field in comparison to large receptive field networks we expect modified architectures to be

more robust. A model with a larger receptive field is trained observing a larger portion of

input so it could be more robust toward the repetitions of the same signal.

4.1.1 Analysis

In this section, we study perceptual and objective speech quality measures such as signal-

to-noise (SNR), perceptual evaluation speech quality (PESQ), Itakura-Saito (IS) and cepstral
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distance (CD) that can quantify the degradation in the speech caused due to the reverberation.

Cepstral Distance (CD)

The Cepstral Distance is a measure of the log-spectral based distance between a clean

speech sample and a degraded/test speech sample. The Cepstrum is a time-domain version

of the log-spectrum of a speech sample. The process of inverting the logarithmic fourier

transform of the speech signal segregates the speech excitation source and the spectral

transformation experienced during speech production from the vocal tract and lip radiation

effects. The Cepstrum is computed for the clean and degraded speech signals using the

Levison-Durbin recursion and the cepstral distance between the two signals is calculated as

follows and normalized to limit the output range:

Itakura-Saito (IS)

As noted earlier, LPC is a well known all-pole filter based speech model and can be

used to model a given speech signal as shown in Eq-4.1, where p is the order of the all-pole

filter, ax(k) are the LPC coefficients and Gx is a filter gain used for the excitation signal.

The Itakura Saito measure is a speech metric which is similar to LLR but also includes the

gain differences (Gc & Gd) between all-pole models of the clean and degraded speech signals.

Itakura-Saito is defined by Eq-4.2,

x(n) =

p∑
k=1

ax(k)x(n− k) +Gxe(n) (4.1)

dIS(ac, ad) =
Gc

Gd

(
aTdRaad
aTc Raac

)
+ log

Gd

Gc

− 1. (4.2)

Here e(n) is the modeling error residual used as the excitation signal, which is usually

considered to be modeled as a zero-mean and unit variance white noise.
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Perceptual Evaluation of Speech Quality (PESQ)

While there are many objective speech quality measures, perceptual evaluation of speech

quality (PESQ) has most recently been used extensively by researchers in speech processing to

validate speech enhancement algorithms versus other LPC-based measures Barnwell III 1979.

PESQ compares a clean speech signal with either a degraded or an enhanced version of an

input degraded signal processed by speech enhancement and attempts to predict the perceived

quality that would be assigned by humans in a subjective listening testRix et al. 2001. PESQ

creates numerous delayed versions of the clean speech and processes the transformation

of the clean signals to test signals which is analogous to the psychophysical visualization

of speech signals by humans. PESQ takes into account time-alignment, level alignment,

loudness scaling, and other factors to suppress minor time, amplitude or frequency changes

between the clean and degraded/enhanced signals. However, drastic or abrupt changes in

degraded/enhanced signals with respect to time-delayed versions of the clean signal are shown

to reduce the output PESQ quality score. Thus, a higher PESQ score represents greater

speech quality, with a range in values from -0.5 to 4.5.

Although SNR measure is an objective measure mostly designed to measure level of

additive noise, we can still leverage it in our case. Cepstrum-based comparisons are equivalent

to comparisons of the smoothed log spectra of the signals. Table 4.1 shows the simulated

distant speech signals generated using real recordings of RIRs in various acoustic environments

are heavily distorted w.r.t clean speech signals from WSJ corpus. This is not the case for

the IS and PESQ since they are designed as a more subjective metrics. We calculated these

measures to have an intuition toward how distorted makes the signal each environment

(room). We also observe the SNR value does not efficiently represent the distortion added

by reverberation. Among these measures CD is more efficiently modeling the reverberation.

It also fits to our subjective understanding of the environments, for instance we expect the
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Table 4.1. Objective Quality Measures for simulated distant speech signals w.r.t. clean speech
signals from WSJ corpus.

Data SNR(dB) PESQ IS CD
Lecture Hall -3.18 1.52 8.11 6.22
Office Room -3.09 1.62 3.5 5.3
Meeting Room -2.58 2.33 7.98 4.84
Stairway -2.69 1.87 12.06 5.59
Average -2.88 1.83 7.912 5.48

recording would be highly distorted in the stairway comparing to meeting room. While CD

discriminates these two environments, their SNR values are way close to eachother.
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4.2 Realistic Reverberation

The UTD-Distant Reverb corpus consists of two environments; (i) a highly reverberant

space (Racquetball court), and (ii) classroom. For this study, we consider only environment-

#2 (Classroom). We collected this portion of the corpus in a mildly reverberant space with

an average reverberation time (RT60) of approximately 400 ms. The Figure 4.1 demonstrates

recording setup for Racquetball environment which is identical to classroom setup. The

corpus includes a total of 6 hours of recordings from three different native-English speakers,

two male, and one female. In this work we only used one male and one female speakers. All

speakers had no prior history of speech or hearing limitations. The recordings were made

using a combination of (i) close-talk microphone (CTM) - the subject wears a headset, (ii)

single distant microphones on a stand placed at 1m, 3m, and 6m away in tandem from the

subject, and (iii) a four-microphone linear array placed at 6m away from the subject 4.2.

Each subject/speaker also wore a portable naturalistic audio capturing device (LENA) which

is capable of recording and storing up to 16 hours of recordings.

These LENA based wearable audio acquisition devices help us capture and analyze

naturalistic variabilities in the audio stream from a speech/signal processing standpoint. This

corpus also incorporates recordings from four volunteers wearing LENA devices standing

stationary at fixed locations from the subject. These volunteers at designated times move

collectively either clockwise/counter-clockwise around the subject allowing the LENA devices

to capture distant-speech based on their location. UBI-sense, placed at four corners of the

reverberant space tracks the volunteers, equipped with RFID tags, in the reverberant space.

The speech in all microphones was captured at a 44.1kHz sampling rate using an 8-channel

multi-channel TASCAM system, to ensure all the audio is synchronized. It is noted that

the recordings from wearable devices are time-aligned afterward, to all other stationary

microphones.
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Figure 4.1. UTD-Distant Reverb Data Collection - Room Setup Diagram (Classroom)

The UTD-Distant Reverb corpus can be broadly classified into four major categories: (i)

clean prompted (IEEE sentences) & spontaneous speech with all volunteers stationary at

their locations, (ii) clean prompted & spontaneous speech with volunteers moving around

the target/speaker in the reverberant space, (iii) noisy prompted & spontaneous speech with

all volunteers stationary at their locations, and (iv) noisy prompted & spontaneous speech

with volunteers moving around the speaker. In this work we are focused on the first category

which is the clean prompted utterance of IEEE sentences. All speech samples used in our

experiment are naturalistic recordings with reverb/noise with no simulated signals. Therefore,

in our experiments, since the close-talk microphone contains limited reverberation effects,

an additional speech dereverberation algorithm dereverb is used to suppress any remaining

early reflections. This enhanced version of the close-talk recordings is used as the clean

reference speech to validate/test against degraded speech signals. A robust speech activity

detector, combo-SAD ComboSAD is applied to the close-talk microphone signal in order to
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Figure 4.2. UTD-Distant Reverb Data Collection - Microphone and Speaker arrangement
(Classroom)

distinguish speech frames from silent/reverberant frames. Each of two speakers speak 712

utterances consisting 1 hour of speech data.

Figures 4.3 and 4.4 demonstrate spectrogram of the same utterance over different micro-

phones. We can see how speech frequencies are preserved even in distanced microphones of

the classroom setup while the tend to get much fuzzier in the Racquetball court environment.

As the distance of the microphone from the speaker increases, we see more degrade in the

discriminative frequencies of the audio. The spectrogram of 6m microphone shows a better

frequency lines because of the higher power microphone it is (the array mic) but because of

it’s closer to noise source as we will see we have lowest WER performance over it. We can
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Figure 4.3. Spectrogram of close-talk and distanced microphones recordings of an utterance
in Classroom

also clearly see the reverberation effect in Racquetball as horizontal stretch of the frequencies

over the spectrogram.
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Figure 4.4. Spectrogram of close-talk and distanced microphones recordings of an utterance
in Racquetball Court

4.3 ASR Engine

We used Wall Street Journal (WSJ) dataset to evaluate the performance of the large RF

convolutional networks explained in the previous section. The training data consists of 80

hours of speech both telephone and microphone speech, the bulk of which is in English. All

wideband audio is downsampled to 8kHz. The evaluation is performed on the Eval93 subset

of the WSJ. The Dev93 subset of the WSJ is used to tune the parameters across all networks.

We used 40-dimensional Mel-filterbank (MFB) features normalized with Cepstral Mean and

Variance Normalization (CMVN) as the input features of the networks Khorram, Jaiswal,

et al. 2018; B. Zhang, Khorram, and Provost 2019. We also implemented Feature space

Maximum Likelihood Linear Regression (FMLLR) transformation in our initial experiments,

but it did not yield performance improvements. Since the main focus of this paper is on the

effect of large RF covering, we did not explore the effect of speaker normalization methods
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(e.g., i-vectors) in our experiments. We trained our models up to 20 epochs using the

Adam optimizer (α = 0.001). Our initial experiments showed that ReLu activation function

outperforms other activations and therefore we applied ReLu in the intermediate layers of the

networks. We employed softmax for the output layer. We also implemented a discriminative

softmax (AMSoftmax) Wang et al. 2018 that did not improve the results.

We trained a triphone model with 3392 states in four iterations and used it as the HMM

component of the DNN-HMM pipeline ASR. No language model refinement was applied

in the decoding phase. We used Kaldi Povey et al. 2011 implementation of HMM and we

implemented all the networks using the TensorFlow Abadi et al. 2016 open-source library. We

performed hyper-parameter tuning by leveraging two well-known measures: frame accuracy

(Acc) and cross-entropy (CE). In addition to these measures, we also report word error rate

(WER) of all networks.

For the standard CNN, we evaluated all the networks with the kernel size of w = 3 and

5, and the number of layers ranging from L = 3 to 10. W = 5 and L = 10 performed the

best in both validation accuracy and WER. As we used raw MFB features, we considered a

stack of standard convolutional layers (with 3 layers) as the preprocessing sub-network in

DIL-Net and REC-Net (Figure 1(g), (h)). We implemented DIL-Net as shown in Figure 1(e).

Our DIL-Net contained 3 and 4 dilation layers, with the dilation factor ranging exponentially

from 2 to 8 (i.e., d = (2, 4, 8)). Skip connections were applied to this structure, but they did

not lead to better performance. For REC-Net, we used 5 layers of inner convolutions and

5 recursive sub-networks. For HG-Net, we validated for the number of stacks S = 1 to 5,

convolutional kernel size W = 3 and 5 and number of layers L = 3 and 5. Parameters of

S = 5,W = 5, and L = 3 achieved the best performance in terms of WER. For consistency

of comparisons, we used the same number of kernels (512 kernels) for all the convolutional

layers.
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4.4 Results

After understanding of each proposed architecture and ASR experiment setup, in this

section we are going to present the results and discuss what attributes were effecting.

4.4.1 Empirical Experiment

Next, we run an elementary empirical experiment using a standard CNN with one layer

of convolution to comprehend ”how long?” is actually long enough to capture the long-term

dynamics in distant simulated speech signals, We train this single layer standard CNN for

various receptive field sizes1 using the simulated speech signals, see Figure 4.5. It is evident

from this experiment that the accuracy increases with an increase in RF size. However,

having a greater RF size than required neither hurts nor improves the system’s performance.

Thus, for our experiments, we fix the number of parameters across all the networks based on

the optimal RF size determined from this experiment.

Figure 4.5. Optimal Kernel Size for capturing long-term dynamics in simulated distant speech

1For a single layer standard CNN, kernel size will be the same as the receptive field size
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4.4.2 Frame Accuracy Performance

Furthermore, for better understanding of LRF networks, we test the frame accuracies

obtained by all the networks on Dev93 for various architectures, see Table 4.2. It shows the

performance of all LRF networks. We observe a linearly growth trend in standard CNN’s

efficiency (in terms of validation frame accuracy) with increased kernel size and number of

layers, in other words, RF size. There is also one important observation that in standard

CNN the accuracy of prediction is still increasing by training a bigger network i.e. the highest

accuracy of network is achieved by the largest one. This indicates that to achieve the better

accuracy we still need to increase our model parameters.

Table 4.2. Performance of Standard CNN and large receptive field networks for different
configurations.

Network Architecture Acc(%)

Standard CNN

W:5 L:6 55.09
W:5 L:8 57.92
W:5 L:10 60.52
W:6 L:10 60.47
W:7 L:10 61.80

Dilated Net

W:5 d:2 L:5 56.59
W:5 d:2 L:7 58.41
W:5 D:4 L:7 64.17
W:5 D:4 L:9 63.65
W:5 D:8 L:7 61.42

Recursive Net
EMBD Layer:1 60.23
EMBD Layer:2 61.45

(RIN/ROUT:3) EMBD layer:3 60.55

Hourglass CNN

HG:1 W:5 L:3 63.21
HG:3 W:3 L:3 65.98
HG:3 W:3 L:5 67.25
HG:3 W:5 L:5 67.55
HG:5 W:3 L:5 67.48
HG:5 W:5 L:5 67.01
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Unlike the standard CNNs, the LRF networks showed optimal performance over all the

variations tested in their architectures for a specific RF size. It can, therefore, be expressed

that having a large receptive field customized to distortion levels in speech can enhance the

efficiency of a system; LRF networks can achieve this at a reduced computational expense

than standard CNNs. As we pointed out earlier, the later three architectures all achieve their

best performances in the middle sized versions indicating that these models achieve receptive

field saturation sooner than the other architectures.

4.4.3 WER Performance

We observe that all LRF networks have minor relative improvements in performance

compared to the standard CNNs for clean speech signals. However, for distant speech signals,

where the reverberation introduces smearing effects in both time and frequency, we see higher

relative improvements using the LRF networks compared to a standard CNN for a fixed

number of parameters in order to reduce the architectural complexity, see Table 4.3. The

reason this architectures are performing better is all related their coverage of the input. We

know that reverberation affect is a result of multiple repetition of the signal through out

time. These repetitions are due to the reflections of the environment. In fact architectures

with larger receptive field brings robustness by covering all of these variants of the actual

signal into account by covering a larger portion. In these architectures, network has access to

a wide added versions of the signal while predicting the output label. Even in the clean test

data, large receptive fields naturally bring a more context in classifying the senone. This is

the same idea of tying monophones constructing triphones in order to bring context to phone

classification. Now with these modified networks this context is brought directly from the

input.

This indicates the importance of capturing the long-term dynamics for distant speech

recognition. Although the dilated networks have the best WER for clean speech, it can
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Table 4.3. WER and frame accuracies of LRF networks for clean and simulated distant
speech versions of Eval93 (with fixed number of parameters ≈ 25600).

Network
Frame Acc. (%) WER(%)
Clean Reverb Clean Reverb

Standard CNN 71.39 60.48 8.13 18.31
Dilated Net 74.16 64.17 7.25 17.52
Recursive Net 73.61 65.17 7.54 17.13
Hourglass Net 75.43 67.00 7.98 16.68

be argued that the architectures chosen in this comparison study were forced to have the

same number of learning parameters instead of being the best in their respective category.

Nonetheless, the best WER performance for simulated the distant speech was achieved by

Hourglass network.

Next, we test our system in real recorded data of UTD Distance corpus. We trained our

model with the WSJ train set without any simulated reverberation included so the method is

totally unsupervised. Table 4.5 and 4.4 shows the mean of Word Error Rates (WER) across

two speakers for racquetball court and classroom respectively. As we can see in Table 4.5 the

reverberation level for the distance microphones in the court is so high (T60 ≈ 9000) that the

ASR engine is not capable of transcribing anything. For the close-talk microphone though,

we can see generally better performance on the LRF networks comapring to standard CNNs.

Table 4.4. WER of LRF networks for UTD-Distance - Classroom (with fixed number of
parameters ≈ 25600).

Mic. Distance Standard CNN Dilated Recursive Hourglass
Close-talk 12.39 11.92 12.52 12.01
Mic 1m 20.75 18.63 18.12 17.91
Mic 3m 21.80 19.89 19.74 19.08
Mic 6m 40.98 38.31 37.92 39.59

In contrast to racquetball court, the reverberation level in the classroom is more reasonable

(T60 ≈ 425) that makes the trade-off in alternative ASR network solutions possible. For close
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Table 4.5. WER of LRF networks for UTD-Distance - Racquetball (with fixed number of
parameters ≈ 25600).

Mic. Distance Standard CNN Dilated Recursive Hourglass
Close-talk 13.21 12.99 13.05 13.51
Mic 1m 110.04 99.63 120.02 115.63
Mic 3m 99.82 121.09 99.74 118.78
Mic 6m 99.82 121.09 99.74 118.78

talk microphones in both datasets, dilated network is performing the best. Although as we

move away from the source of speech the Hourglass and Recursive networks are performing

better as for microphone 1m and 3m, Hourglass network has 13.68 % and 12.90 % relative

reduction in WER. While for the further 6 m microphone the best performance is achieved

by Recursive network with 7.46 % relative reduction. we can also see that in all of these

DNN-based ASR engines the WER generally is growing non-linear to the distance from the

speaker. This trend suggests reprocessing dereverberation and feature engineering modules

for applications with a distance more than a certain value more.

As we mentioned earlier we avoided most of the prepossessing and language modeling

expansion in this section, in order to solely analyse the role that suggested LRF networks in

reverberation environments.

Another observation from the results is the overall growth of WER for these architectures

and in general for HMM-based engines 5. The growth rate to the WER to the distance from

the speaker is not a linear relationship. This means for first few meters have the largest effect

in the performance.

Table 4.6 shows the top 10 words with highest number of substitution errors. We selected

the 1m microphone and hourglass network as distance microphone in this case. As we can

see almost all of these words convey no important information and the main reason of their

highest frequency in errors is their exponentially high number of appearances in the ground

truth data. Although these words are easier to distinguish by the lexicon and language model
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Figure 4.6. WER of Different Acoustic Models to the Distance from Speaker

they tend to mix up with the next words and in our evaluation metric it is considered as a

substitution error.

Table 4.6. Words with the highest substitution errors. First and Second columns are
distribution over close talk microphone and distance microphone and the last column is the
top high-frequency words of Wikipedia

Close Talk Mic Distance Microphone Wikipedia
Word Errors # Word Errors # Word

was 10 and 9 the
and 10 is 8 be
with 9 inc 8 to
on 9 was 6 of
is 8 on 6 and
in 8 they 4 a
by 5 when 4 in

when 5 with 4 that
its 5 are 3 have
inc 5 s 3 I
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CHAPTER 5

CONCLUSION

This work highlights the importance of capturing long-term temporal dependencies of

the speech signal in distant speech recognition systems. We begin by understanding the

importance of the receptive field and its role in convolutional neural networks. Although

previously there were architectures proposed to capture these long-term dependencies there

were many other variations that had not been investigated. In this work we proposed different

solutions addressing capturing long-term dependency problem and used them as acoustic

modeling component of HMM-based ASR systems.

Avoiding recurrent or attention-based architectures, DNN-HMM systems are highly

effective in terms of scaling and decoding speed. It makes these architectures highly dominant

over their recent alternatives. Although they are very prone to be over trained on a specific

domain and perform poor in others. One of these domain mismatch is the reverberation. A

solid way to robust these architectures against reverberation is large receptive field networks

as acoustic models. By having a LRF network in acoustic model, we are basically providing

large context for generating the output labels. Having larger context have proven to be

effective in many different aspects among which is triphone modeling which is the larger

context in generating the final labels. In order to study the effect of these LRF networks, we

compared performance of a conventional CNN with dilated and variants of large receptive

field networks.

We used clean speech signals from WSJ corpus to simulate distant speech signals with real

recordings of RIRs. We observed that these architectures are modeling acoustic behaviour of

the clean signals even better than standard CNNs. We also did a empirical study on different

configurations of each architecture and their performance in predicting desired labels. It was

shown how standard CNNs require larger number of parameters to meet the performance of

their alternative architectures.
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Later, we did analyze the impacts of reverberation on speech using quality measures such

as SNR, PESQ, Itakura-Saito and cepstral distance. We also studied convolutional CNNs

with various receptive field size to better understand its impact on distant speech. This was

another contribution of this thesis is to investigate the robustness effect of these architectures

against reverberation.

Using the optimal RF size, we then compared the LRF networks constraining the param-

eters to find that hourglass network performs ≈ 2 % and ≈ 9 % relatively better compared

to standard CNNs for clean and simulated distant speech signals. We also observed constant

improvement in the performance of all distanced microphones in the realistic UTD-Distance

corpus environment. It worth mentioning all of the best performances of clean tests are

achievable by standard CNNs but with more number of parameters and considering the

drawbacks of training a large network, the LRF networks are preferable. On the other

hand the robustness these LRFs are providing make them completely better alternatives for

standard CNNs. We conclude from this study that we can improve our ASR model and robust

it against reverberation by having a better acoustic modeling component of HMM-based

architectures. The next step in this study track would investigate the performance of each

architecture in different level of reverberation. Then we could look for dynamically selecting

better model for decode an audio given the type/level of reverberation it has.
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