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The present dissertation contains several interconnected results regarding periodic solutions

to delay differential equations (DDEs).

First of all, we formulate and prove a theorem that guarantees the occurrence of the Hopf

bifurcation of relative periodic solutions from a relative equilibrium in a general Γ × S1-

equivariant system of functional differential equations (FDEs) using the method based on

twisted equivariant degree with one free parameter. This theorem also allows to classify the

symmetries of the relative periodic solutions. The theoretical result is illustrated through

the series of examples including D8- and S5-symmetric coupling of identical mode-locked

semiconductor lasers and D8-symmetric configuration of coupled electro-mechanical oscilla-

tors with hysteresis. The latter example shows the possibility to adapt the proposed method

for the settings with weakened conditions on the smoothness.

Secondly, we perform the analysis of a rather broad class of slow-fast delayed models of

population dynamics, that exhibit the behavior similar to the aforementioned mode-locked
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semiconductor lasers. In particular, we study the mechanism of formation of pulsating

periodic solutions as well as develop a nonlocal method for their asymptotic approximations.

Finally, we develop a noninvasive delay feedback (Pyragas) control to make a neutrally stable

periodic orbit of a Hamiltonian system exponentially stable. More specifically, we establish

different sufficient conditions for the stabilization of orbits with small and large amplitudes.

We also present a discussion of how these conditions agree with each other.
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CHAPTER 1

INTRODUCTION

1.1 Motivation, Background and Results

1.1.1 Delay differential equations

When modeling a certain phenomenon using ordinary differential equations (ODEs), one has

to assume that the future state of the system is determined entirely by its present and not by

its past states. However, in many applications, this assumption leads to inaccurate or even

meaningless models. Of course, the importance of hereditary effects in modeling was known

for a long time, still they were often ignored, and were not thoroughly studied until the

20th century. One of the reasons is that they are indubitably difficult to consider. Explicit

inclusion of the past states in an ODE turns it into a completely different kind of differential

equations called delay differential equations (DDEs). Even a single delayed term in the form

x(t − τ) where τ is a real constant, complicates the system immensely as in order to find

a future state of the system one has to specify initial data on the whole interval [−τ, 0]

rather than just one value x(0). Thus, similarly to partial differential equations, the phase

space of DDEs is infinitely dimensional. DDEs belong to a more general class of equations

called functional differential equations (FDEs). Along with equations with discrete delays,

this class also includes equations where delay is distributed (integro-differential equations),

time- or state-dependent, and systems with nonsmooth memory effects such as hysteresis.

In the 20th century the theory of DDEs underwent a remarkable developement. Early

results on the general theory of linear systems and stability can be found in the works by

Myshkis [108], Bellman and Danshkin [20], Bellman and Cooke [19] and Krasovskii [85].

These results laid the foundation for the profound work by Hale [58] who formulated the

modern analytic and geometric theory of FDEs. Rapid development of the theory facilitated

1



new insights in different fields of applications such as population dynamics [89], laser dy-

namics [109, 68, 93, 156], engineering [91], fluid dynamics [151, 152], economics [18, 23], road

traffic [134, 115, 114], climate science [78], etc. A good treatise of DDEs with applications

can be found in [39, 140].

Dependence on the past is essential for models of population dynamics. In his ground-

breaking works [161, 162], Volterra proposed the first predator-prey model with distributed

delay and since then DDEs have been extensively adopted for models of population dynam-

ics. In the predator-prey model, the hereditary terms are present in the form of convolution

of the state variables with functions weighting the contribution of the past predation. Other

models include discrete delays representing time of the growth to maturity of a corresponding

species or its gestation period (see [133, 89] and references therein). Delay is generally be-

lieved to be a destabilizing factor in population dynamics [102]. Increasing delay can lead to

oscillations where the system with zero or small delay exhibits a globally stable equilibrium.

Control engineering constitutes another prominent example where DDEs arise naturally.

In particular, delays almost inevitably appear in any system with feedback control because

there is always a time lag between the measurement and the signal received by the controller.

This inherent feature becomes a huge problem in systems where the immediate response is

required. For example, the delay in the control of an aircraft is responsible for causing the

so-called pilot-induced oscillations [9], i.e., sustained or uncontrollable oscillations resulting

from efforts of the pilot to control the aircraft1, which can end tragically. In contrast, for

some cases time-delayed feedback control is actually beneficial. For instance, time-delayed

control strategy in a container crane can significantly reduce the sway of a heavy cargo [61,

99, 100, 101]. Furthermore, a state-of-the-art application of DDEs for control is Pyragas

method for noninvasive stabilization of unstable periodic solutions to ordinary differential

systems [127, 44, 66]. This technique uses a delayed feedback control proportional to the

1As defined by MIL-HDBK-1797A.
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difference x(t− T )− x(t) with T close to the period of the targeted periodic solution x∗(t).

Notably, Pyragas control method can be used to suppress or enhance synchrony in ensembles

of globally coupled oscillators [132]. Another example where the time delay is an intrinsic

part of the system is a high-speed milling where, through the variation of the chip thickness,

a varying cutting force acts on the tool and this difference in the force depends on the past

vibrations of the tool [145, 53, 142, 144, 36].

1.1.2 DDE models of laser devices

DDEs are extensively used in laser dynamics. In particular, a model of a mode-locked semi-

conductor laser is directly related to the present work. Mode locking of lasers [60] is used

to produce periodic sequences of short optical pulses at high repetition rates, which are

suitable for various applications including material processing, medical imaging, telecommu-

nications [74, 76], optical sampling, microwave photonics, optical division multiplexing [35],

and two-photon imaging [90]. The optical spectrum of a mode-locked laser consists of a

set of equally spaced narrow lines corresponding to the longitudinal cavity modes character-

ized by fixed phase relationships between them2. There are two main methods to produce

mode-locked optical pulses, active and passive mode-locking, and also a combination thereof

called hybrid mode-locking. In particular, a passively mode-locked laser is a self-oscillating

system which does not require the use of an external radio frequency modulation3. In the

classical theory of a mode-locked laser due to Haus [59], a slow evolution of the shape of the

optical pulse circulating in the cavity is described by a complex parabolic master equation

of Ginzburg-Landau type. The solution describing a solitary pulse is explicit and has a hy-

perbolic secant profile. However, the Haus master equation is derived under the assumption

2Achieving such phase relationships can be, at least qualitatively, viewed as a problem of synchronization
of many nonlinear coupled oscillators with frequencies close to multiples of a fundamental frequency.

3Passive mode-locking is commonly achieved by including a saturable absorber section into the laser
cavity.
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of small gain and loss per cavity round trip. An alternative multi-rate functional differential

model, which is free from this approximation, has been obtained from the traveling wave

model in the case of a ring geometry of the laser cavity in [156]. Under further natural

assumptions, such as the Lorentzian profile of the spectral filtering element, the functional

differential model simplifies to the delay differential system

ġ(t) = g0 − γgg(t)− 1

Eg
e−q(t)(eg(t) − 1)|a(t)|2,

q̇(t) = q0 − γqq(t)−
1

Eq

(
1− e−q(t)

)
|a(t)|2,

ȧ(t) = −γa(t) + γ
√
κ exp

[
(1− iηg)g(t− T )− (1− iηq)q(t− T )

2

]
a(t− T ),

(1.1)

where the complex-valued variable a is the electric field envelope at the entrance of the

absorber section; |a|2 represents the optical power (which is proportional to the density of

photons); the real-valued variables q and g represent saturable integral losses and gain, re-

spectively (q and g are functions of the density of the electric charge carriers in the absorber

section and the active section of the laser, respectively); the constants γg and γq are the car-

rier density relaxation rates in the gain and absorbing sections; Eg and Eq are the saturation

energies in the these sections; the ratio s = Eg/Eq is important for laser dynamics. Delay

T stands for the cold cavity round-trip time, and
√
κ is the linear nonresonant attenuation

factor per pass. The parameter g0 is proportional to the pump current, which is the physical

control parameter. Finally, γ � 1 is the parameter of the Lorentzian profile of spectral

filtering. The details of the system are explained in [159, 156, 157]. This delay differential

model is suitable for describing mode-locking in a laser with large gain and losses, that is the

situation typical of semiconductor laser devices4. At the same time, the model is amenable

to analytical and numerical bifurcation analysis [155, 112, 160, 7, 8, 5, 71, 120, 56, 124].

4In the limit of small gain and losses per cavity round trip, one recovers the Haus hyperbolic secant pulse
shape in the delay differential model.
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Furthermore, this delay differential system has been extensively applied to analyze instabili-

ties [121, 113] and hysteresis [57, 123] in mode-locked lasers, optically injected lasers [131, 4],

hybrid mode locking [6], noise reduction [72], resonance to delayed feedback [3], and Fourier

domain mode locking [139].

1.1.3 Symmetries

One can easily notice that system (1.1) has an equilibrium (γg/g0, γq/q0, 0) corresponding

to the regime when the laser doesn’t emit any light. Moreover, using the ansatz

g(t) = g∗, q(t) = q∗, a(t) = eiωta∗ (1.2)

where g∗, q∗, ω and a∗ 6= 0 are some real constants, leads to the system of four algebraic

(i.e., nondifferential) equations including the following transcendental equation for ω:

− ω

γ
= tan

(
ωT +

ηgg
∗ − ηqq∗

2

)
. (1.3)

Solving these equations yields infinitely many periodic solutions to (1.1) in the form (1.2)

called relative equilibria, or, in the context of laser dynamics, continuous wave (cw) solutions.

The structure (1.2) of relative equilibria allows to study such orbits in a fashion similar to

usual steady-state solutions and, thus, simplifies the analysis.

In fact, the existence of relative equilibria (1.2) is due to the intrinsic symmetry of

system (1.1). In general, symmetries in dynamical systems manifest themselves through

the notion of equivariance, i.e., if G is a (compact Lie) group and a vector space V is G-

representation, then a vector field f : V → V is called G-equivariant if for every γ ∈ G and

x ∈ V , f (γx) = γf(x). Thus, one can easily check that the right-hand side of system (1.1)

is equivariant with respect to the circle group S1 ' {z ∈ C : |z| = 1} where S1 acts trivially

on g and q, and by complex multiplication on a. In fact, this transformation corresponds to

the phase shift of the complex valued electric field. Thus, commonly the rate equations of
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semiconductor laser systems are S1-symmetric (see, for example, [165, 46, 40]). Moreover,

they often naturally include delays associated with propagating of light through optical

fibers, the classical example being the Lang-Kabayashi model where the light is re-injected

into the laser cavity by an external mirror [93, 166].

The existence of relative equilibria is a common feature of dynamical systems that exhibit

continuous symmetries. Strictly speaking, if f : V → V is equivariant with respect to a Lie

group G and G(x) is the group orbit of some x ∈ V , such that G(x) is invariant under

the flow of f , then G(x) is called a relative equilibrium of f , i.e., relative equilibrium is an

equilibrium modulo the group action. The latter definition justifies the naming.

Similarly, a counterpart of a periodic solution is a relative periodic solution. In particular,

in S1-symmetric systems, the S1-equivariant Hopf bifurcation is responsible for branching of

relative periodic solutions from a relative equilibrium. This scenario is analogous to the

classical Hopf bifurcation of periodic solutions from an equilibrium state in generic systems

(without symmetry). Note that S1-equivariant Hopf bifurcation is essentially a torus bifur-

cation, if one disregards the S1-equivariance of the system.

An example of relative periodic solution in system (1.1) is the so-called mode-locking

regime when the laser emits a periodic sequence of light pulses with the period close to the

cold cavity round trip time T . A typical bifurcation scenario associated with formation of

this regime is the Hopf bifurcation of a relative equilibrium (1.2) from the “laser off” equilib-

rium followed by the S1-equivariant Hopf bifurcation of a relative periodic solution from the

relative equilibrium with the increase of the bifurcation parameter (pump current g0). As

the bifurcation parameter increases further, the relative periodic solution continuously trans-

forms to acquire a pulsating shape. This transformation is simultaneous with a sequence of

secondary Hopf bifurcations from the equilibrium and relative equilibrium solutions.

In recent years a lot of attention has been drawn to the dynamics of multiple identical

laser devices coupled together [122, 94, 73, 154]. Combining lasers in an array can be used to
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amplify the output power and substantially improve the characteristics of the output beam

by synchronizing the frequencies of the individual lasers [22]. In particular, an array of n

nearest-neighbor coupled systems (1.1) was recently considered in [125]. Forming a regular

n-gon, such a configuration naturally respects the dihedral symmetry Dn, i.e., the group

generated by two transformations on the indices: shifting by 1 and flipping. Combining

it with the S1 symmetry of each individual laser (1.1), one can see that the whole system

is Dn × S1-equivariant. Generally speaking, any Γ-symmetric configuration of n identical

lasers (1.1) is Γ×S1-equivariant where Γ is some subgroup of the permutation group Sn which

represents the all-to-all coupled array. This system also undergoes a bifurcation scenario

similar to the case of a single laser, however, the details are by far more intricate. First

of all, multiple branches of relative equilibria (resp. relative periodic solutions) bifurcate

simultaneously. Secondly, these solutions have an additional structure due to the symmetry

of the coupling. For example, there is a fully synchronized relative equilibrium when all

the lasers in unison repeat the same dynamics, i.e., its symmetry corresponds to Γ × S1.

However, there also can be a τ -periodic relative equilibrium with Zn × S1 symmetry such

that xi(t) = xi−1(t− τ/n) for all i ∈ Zn where xi(t) is the state of i-th laser. Therefore, each

branch of relative equilibria/relative periodic solutions is born via Hopf bifurcation with a

prescribed symmetric properties (spatio-temporal symmetries) represented by a subgroup H

of the group Γ × S1 for relative equilibria and the group Γ × S1 × S1 for relative periodic

solutions, respectively, where the second copy of S1 is associated with time periodicity.

This naturally leads to the problem of classification of relative equilibria (relative periodic

solutions) according to their spatio-temporal symmetries.

Applications of relative equilibrium states and relative periodic orbits are not limited to

equations of laser dynamics. Actually, quite the opposite, such trajectories are abundant in

a wide variety of models. Many examples are found in conservative systems related to rigid

bodies [98], deformable bodies [31], molecular vibrations [82], celestial mechanics [27, 104]
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and vortex theory [116] (see also [163, 50] and references therein). Moreover, in addition

to S1-symmetry, many of such systems also respect a finite group Γ of spatial symmetries

such as, for example, a symmetry of coupling of atoms in molecules [107]. Other examples

include dynamics of a deformable body in an ideal irrotational fluid [163], symmetric celes-

tial motions, for instance, central configurations [105, 117], etc. On the other hand, there

is a long list of applications described by nonconservative systems of ODEs admitting rela-

tive equilibria/relative periodic solutions (see, for example, [50], where the Couette-Taylor

experiment is discussed in detail).

1.1.4 Hopf bifurcation in equivariant systems

The analysis of Hopf bifurcation of periodic solutions from an equilibrium state (both in

nonequivariant and equivariant setting) has been done by many authors using different tech-

niques. Essentially, this analysis includes two main problems: (i) finding the bifurcation

points and establishing the occurrence of the bifurcation (in equivariant setting, this prob-

lem additionally requires to describe symmetric properties of the bifurcating solutions), and

(ii) analysis of stability properties of the bifurcating solutions. Assuming that the system sat-

isfies several regularity and genericity conditions, the main method to study both problems is

based on the normal form classification combined with Center Manifold Theorem/averaging

method/Lyapunov-Schmidt reduction (see, for example, [96, 51, 50] and references therein).

If a (nonequivariant) setting is not regular/generic enough and the stability of bifurcating

solutions is not questioned (only problem (i) above), then alternative methods (rooted in ho-

motopy theory) are available: Fuller index [49, 34, 33], (nonequivariant) framed bordism the-

ory [1], parameter functionalization method combined with the Leray-Schauder degree [83],

to mention a few.

During the last twenty years the equivariant degree theory emerged in nonlinear analysis

(see monographs [16, 70] and surveys [69, 12]). The equivariant degree being the main topo-

logical tool used in Chapter 2, is an instrument that allows “counting” orbits of solutions to
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symmetric equations in the same way as the usual Brouwer degree does, but according to

their symmetry properties. In particular, the equivariant degree theory has all the attributes

allowing its application in nonsmooth (differentiability at selected points versus differentia-

bility in a neighborhood) and nongeneric (multiple resonant eigenvalues of linearizations)

equivariant settings related to equivariant dynamical systems having, in general, infinite di-

mensional phase spaces with lack of linear structure (hysteretic nonlinearities). We refer

to [16, 69, 12, 70, 13, 63] and references therein for the equivariant degree treatment of the

(symmetric) Hopf bifurcation in different environments (see also [81]).

In his pioneering work [88], M. Krupa proposed a general method for analysis of the

bifurcation of relative periodic solutions from a relative equilibrium for systems of ordinary

differential equations (in general, nonhamiltonian). This elegant method reduces the prob-

lem to the analysis of a generic (nonsymmetric) Hopf bifurcation for an explicit differential

equation on the normal slice to the relative equilibrium. An extension of Krupa’s method

to the case of more complicated spatial symmetries (including Γ × S1) has been developed

in [150] (see also [32] for the moving frames method and [92] for the hierarchy of secondary

bifurcations). Krupa’s method allows one both to locate Hopf bifurcation of relative peri-

odic solution, and to establish stability of it, for S1-equivariant (or Γ× S1-equivariant, if an

additional group Γ of spatial symmetries is involved) ordinary differential systems using the

analysis of the normal forms of the bifurcation for the system on the normal slice.

Also, Krupa’s method can be adapted for analysis of smooth FDEs, for which the center

manifold reduction can be performed. To be more specific, a smooth FDE with continu-

ous symmetry G admits near a relative equilibrium a finite-dimensional G-invariant center-

unstable manifold which is at least C1-smooth. In addition, the FDE restricted to this

manifold turns out to be a G-equivariant ODE with the same spectral properties of the
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linearization at the relative equilibrium as the original FDE, so that Krupa’s result can be

applied. 5

The main goal of Chapter 2 is to adapt the equivariant degree method for analysis of

the Hopf bifurcation of relative periodic solutions (for both ODEs and FDEs). More specif-

ically, we obtain conditions for the occurrence of the Hopf bifurcation of relative periodic

solutions (together with their complete symmetric classification) from a relative equilibrium

in general Γ× S1-equivariant systems of FDEs using the method based on twisted equivari-

ant degree with one free parameter. For a systematic exposition of this method, we refer

to [16, 12, 15, 14, 70, 69, 87]. As is well-known, this method is insensitive to violations of

genericity assumptions [43, 63] (these assumptions include the simplicity of purely imaginary

eigenvalues at the bifurcation point, transversality of the eigenvalue crossing, and nonreso-

nance conditions). Our results are formulated for a general FDE system, which respects a

group Γ×S1 of spatial symmetries with an arbitrary finite group Γ, and include the method

of classification of symmetries of the relative periodic solutions based on the linearization of

the problem.

Using the example of the D8-symmetric configuration of laser systems (1.1), we demon-

strate with details how one applies the equivariant degree method in a specific setting with

a relatively large symmetry group in order to extract the information about symmetries of

solutions. Our results complement some findings obtained in [125]. In the second example

we extend the application of the same method to S5-symmetric configuration of lasers (1.1).

The laser model is smooth and as such could be alternatively treated using the center

manifold reduction method, which could also provide further information on dynamics.

In order to reveal the full potential of our result, we present the third example, where

the equivariant degree method is applied to a system of symmetrically coupled hysteretic

5This scheme is known to the author from personal communication with several colleagues. However, we
are not aware of any published work detailing this method.
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oscillators. Systems with hysteresis can be viewed as a natural class of nonsmooth FDEs [84].

In [13], the equivariant degree was applied to the analysis of symmetric Hopf bifurcations

in symmetric networks of electrical circuits with magnetic hysteresis modeled by the so-

called Preisach operator (see [103]). In the present work, we set up a model of an electro-

mechanical motor system in which the electrical component gives rise to hysteresis while

the mechanical component is a source of spacial S1-symmetry. The hysteresis operator is

differentiable with the zero derivative at the (relative) equilibrium but it is not differentiable

in any neighborhood of the (relative) equilibrium (this situation is typical to the systems

with hysteresis). To the best of our knowledge, bifurcations of relative periodic solutions in

the presence of hysteresis have not been studied until now.

1.1.5 Nonlocal asymptotic analysis of DDE population models

The method proposed in Chapter 2 can be categorized as local. More specifically, one can

employ it to determine the dynamics only locally near the bifurcation points. In particular,

the main result of Chapter 2 is used to locate those points and to predict the birth of (relative)

periodic solutions with the prescribed symmetries. However, the questions regarding the

shapes of their profiles and other properties away from the bifurcation points, are beyond

the scope of Chapter 2.

For example, the aforementioned mode-locking regime in system (1.1) is a periodic so-

lution characterized by a distinctive pulsating profile and a period close to the delay. In

general, appearence of such pulses is typical for laser dynamics, chemical kinetics [39, 48]

and population dynamics (including Lotka-Volterra, host-parasite, and susceptible-infective-

recovered models). In the context of population dynamics, periodic pulsating solutions are

characterized by the alternation of long time intervals of almost complete extinction of some

species and very short intervals of outbursts in their number. Further, similarly to (2.60)

such dynamics often include processes with different time scales.
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In many applications the period of the periodic pulsating solution and the delay time do

not correlate. Hutchinson’s delayed logistic model is a classical example of this scenario [47].

However, for certain systems, solutions with a period τ , which is close to the delay time T , can

play an important role. For instance, the prototype delayed model that was proposed in [119]

demonstrates stable periodic regimes with τ ≈ T for certain parameters of the feedback. This

model has applications in lasers [30, 118, 41] (including (1.1)), population epidemics [146,

136], and malaria infection [106]. Also, in the framework of the aforementioned Pyragas

control, the delay is chosen to be close to the period of the unstable periodic target trajectory.

The resulting stabilized periodic solution is close to x∗ and therefore has a period τ ≈ T .

The subject of Chapter 3 is a case study of a rather broad class of population models,

which have a stable periodic pulsating solution with a period close to the delay time. Our

goal is to highlight those features of the systems that can support the existence of such

periodic solutions. These features are shared by the laser dynamics model (1.1) and the

population models considered here. In particular, we are interested in (i) a bifurcation sce-

nario associated with the formation of periodic pulses, and (ii) nonlocal asymptotic analysis

of the slow-fast pulsating periodic solution far from the Hopf bifurcation point. We will

use singular perturbation analysis as a tool for identifying the conditions, which initialize

periodic pulsating dynamics, finding parameter values that can support such dynamics, and

obtaining asymptotic approximations for the periodic pulsating solution of period τ ≈ T .

More specifically, we consider models involving populations of species which evolve on

different time scales. The models include an explicit delay time T which can have different

nature and, therefore, can appear in different terms of the equations [133]; the maturity

delay is considered as the main example [52, 17, 164]. We are interested in periodic dynamics

presented by a limit cycle with the following properties:

• The period of the cycle is close to the delay time T ;
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• The time trace of one component (which we call the A-component) of the cycle is a

sequence of identical short pulses, typically one pulse per period, separated by intervals

where the A-component is close to zero;

• The oscillations are self-excited, i.e., the cycle is either globally stable or has a large

basin of attraction, while the equilibrium with the zero A-component is unstable.

These properties will be formalized and quantified in terms of the parameter γ � 1 which

measures the ratio of the slow and fast time scales of the population processes involved in

the system. In particular, the period of the cycle is T + O(1/γ), the duration of the pulse

scales as 1/γ, while the pulse amplitude is asymptotically proportional to γ, and the time

average of each population tends to a finite positive limit value as γ increases.

In the systems that we consider, periodic solutions with the above properties are formed

near a transcritical bifurcation point (threshold) separating the domain where the equilibrium

with the zero A-component is stable from the domain where it is unstable and coexists

with the positive equilibrium. The cycle branches from the positive equilibrium via a Hopf

bifurcation and continuously transforms into periodic pulsations of the amplitude O(γ) over

a short interval of the parameter values. Therefore, we look at the bifurcations that the

equilibrium points undergo near the threshold. An asymptotic analysis of the spectrum

shows that there is a sequence of eigenvalues, which have almost the same real part and the

imaginary parts close to the multiples of the fundamental frequency 2π/T . Because of this,

the positive equilibrium undergoes a cascade of almost simultaneous and almost resonant

Hopf bifurcations in an immediate vicinity of the threshold. This cascade is simultaneous

with the fast transition from a steady state to the periodic pulsating dynamics with a period

τ ≈ T .

We take advantage of the pulsating profile of the solution to derive an asymptotic ap-

proximation to the pulses and determine their parameters using the method of matched
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inner (fast) and outer (slow) expansions [79]. This method was successfully applied to de-

rive fixed-point conditions for the existence of pulsating solutions [146, 118, 55] and their

asymptotics [157, 130] for both lasers and population models (however, we do not consider

the existence problem here). Further, we obtain the law of scaling of pulses with γ and an

equation for the pulse profile by adapting the approach used in [156]. All the asymptotic

formulas are compared with numerical simulations. We also note an alternative perturbation

technique of the fixed-point analysis based on averaging, which was proposed in [29].

1.1.6 Stabilization of periodic solutions

Finally, we move our attention to the problem of stabilization of periodic solutions. In [128]

Pyragas suggested a simple method to stabilize a periodic solution of a system by introducing

feedback of the form K(x(t− T )− x(t)) where T is the period of the solution that is to be

stabilized. An important feature of this control is that it is noninvasive in the sense that it

does not change the periodic solution itself but only its stability properties. This method

has been implemented in a wide variety of applications, see, e.g., [129, 137, 143, 147, 132].

In most applications Pyragas control is used to stabilize an unstable orbit which is hy-

perbolic. That is to say that at least one of its Floquet multipliers is outside the unit circle,

and the gain matrix K must be sufficiently large to ‘move’ these unstable eigenvalues inside

the unit circle. On the other hand, since introducing feedback transforms the system to a

delay differential equation, for small K infinitely many eigenvalues appear near zero. How-

ever, with the increasing gain these additional eigenvalues may become difficult to control.

Therefore a delicate balance must be maintained: too small gain and the original unstable

eigenvalues cannot be controlled, too large gain and the the additional eigenvalues may be-

come unstable. For a discussion of sufficient conditions under which small orbits born near

a Hopf bifurcation point can be stabilized see [75]. For necessary conditions for stabilization

of generic orbits see [67]. In [45, 62, 65, 135] these results were extended to equivariant

systems.
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In Chapter 4 we extend the Pyragas control scheme to Hamiltonian systems. Due to the

additional symmetry inherited from the Hamiltonian structure, Floquet multipliers come in

pairs, µ, µ−1. For this reason, periodic solutions are either unstable or neutrally stable. In

this work we concentrate on the case of neutrally stable solutions. The multiplier µ = 1

will always have multiplicity at least 2, and it is generic for periodic orbits to foliate a

surface in the phase space. However, generically different periodic solutions lying on the

same surface have different periods and, hence, proper selection of the parameter T in the

Pyragas control scheme can select between them. For convenience we focus our attention to

Newton equations of the type ẍ + ∇V (x) = 0. Our goal is to transform a neutrally stable

periodic orbit of the uncontrolled system to the exponentially stable orbit by implementing

feedback of the form K(x(t − T ) − x(t)) where T is the period of the targeted orbit to be

stabilized and K is an arbitrarily small gain matrix. This is in contrast to the situation

which is generic in nonhamiltonian systems where control can never be arbitrarily small. We

discuss sufficient conditions from two perspectives.

First of all, we treat the case of small amplitude solutions where sufficient conditions

for exponential stability are framed in terms of the asymptotic expansion of ∇V (x) at the

equilibrium x = 0 up to the third order. The importance of the third order expansion is

motivated by the Lyapunov Center Theorem and the normal form for the Hopf bifurcation.

Secondly, we deal with arbitrary periodic solutions, but instead of being framed in terms of

the asymptotic expansion of the field ∇V (x), we use conditions on the Floquet modes of the

targeted orbit as a solution of the uncontrolled system. Each section is supplemented with

examples. Further, we briefly show how the conditions for the arbitrary periodic solutions

agree with the case of small amplitude orbits.
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1.2 Preliminaries

1.2.1 Notation

Let R (C) be the set of all real (complex) numbers, z the complex conjugate of z ∈ C,

RN (CN) the space of all real (complex) N -dimensional column vectors. When we write

y = (x1, x2, . . . , xk) for xi ∈ RN (CN), we mean that vector y ∈ RkN (CkN) is obtained

by stacking vectors x1, x2, . . . , xk vertically. This is done in order to avoid cumbersome

expressions such as y =
(
xT

1 , x
T
2 , . . . x

T
k

)T
. Below 〈·, ·〉 stands for the usual inner product, i.e.,

for any u, v ∈ CN , 〈u, v〉 = uTv, and ‖ · ‖ is the corresponding Euclidean norm.

1.2.2 Equivariant Jargon

Let G be a compact Lie group. Given (closed) subgroups H ⊂ G, and denote by N(H) the

normalizer of H in G, by W (H) = N(H)/H the Weyl group of H in G, and by (H) the

conjugacy class of H in G. The set of all conjugacy classes of subgroups in G is denoted by

Φ(G). Clearly, Φ(G) admits a partial order defined by:

(H) ≤ (K) ⇔ ∃g∈G gHg−1 ⊂ K.

Let X be a G-space and x ∈ X. We denote by Gx := {g ∈ G : gx = x} the isotropy

(or stabilizer) of x, by G(x) := {gx : g ∈ G} ' G/Gx the orbit of x. The conjugacy

class (Gx) will be called the orbit type of x. We will also adopt the following notation:

XH := {x ∈ X : Gx ⊃ H}.

For two G-spaces X and Y , a continuous map f : X → Y is said to be equivariant

if f(gx) = gf(x) for all x ∈ X and g ∈ G. If the G-action on Y is trivial, then f is

called invariant. Clearly, for any subgroup H ⊂ G and equivariant map f : X → Y , the

map fH : XH → Y H , with fH := f |XH , is well-defined. Finally, given two orthogonal

G-representations W and V and an open bounded subset Ω ⊂ W , an equivariant map

f : Ω→ V is called Ω-admissible if f(x) 6= 0 for all x ∈ ∂Ω.
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If W is a G-representation, then for any function x : S1 → W, the spatio-temporal

symmetry of x is a group H < G×S1 such that g ·x(t−θ) = x(t) for any t ∈ R/2πZ ' S1 and

any (g, eiθ) ∈ H. If x is nonconstant, then H has the structure of a graph of a homomorphism

ϕ : H → S1, where H stands some subgroup of G. To emphasize this nature of the group

H, the following notation is commonly used:

Hϕ := {(h, ϕ(h)) : h ∈ H}.

The group Hϕ is called a twisted symmetry group with twisting homomorphism ϕ.

Relative periodic solutions of our interest have symmetry groups which are subgroups

of Γ × S1 × S1. Such a subgroup can be characterized by two twisting homomorphisms

ϕ : K → S1 and ψ : Kϕ → S1 for some subgroup K < Γ. Sometimes, in order to simplify

our notations, instead of writing Kϕ,ψ, we used the bold symbol Kψ to distinguish it from

the group Kϕ used for twisted symmetries of periodic solutions.

For further details of the equivariant jargon used in this dissertation, we refer to [148,

77, 24, 16]; for the representation theory background, see [148, 25].

1.2.3 Topological Tools

Brouwer Degree

The Brouwer degree first introduced in [28] to prove the Brouwer fixed point theorem, is

a powerful tool to “count” the solutions to nonlinear equations in a given domain. It can

be viewed as a generalization of winding number and the argument principle from complex

analysis. For the continuous functions in Euclidean spaces the Brouwer degree can be defined

via axiomatic approach as follows.

Let V be a Euclidean space and M(V, V ) be the set of all admissible pairs (f,Ω) in V .

Put M :=
⋃
V M(V, V ). Then there exists a unique function deg : M → Z satisfying the

following properties (axioms):
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(P1) Existence. If deg (f, Ω) 6= 0 then there exists z ∈ Ω such that f(z) = 0.

(P2) Additivity. If Ω1,Ω2 ⊂ Ω are two disjoint sets such that pairs (f, Ω1), (f, Ω2) are

admissible and f−1(0) ∩ Ω ⊂ Ω1 ∪ Ω2, then deg (f, Ω) = deg (f, Ω1) + deg (f, Ω2).

(P3) Homotopy. If ft : Rn → Rn, t ∈ [0, 1] is an Ω-admissible homotopy, then deg (ft, Ω)

is constant for all t ∈ [0, 1].

(P4) Normalization. For some zo ∈ Rn, if (Id − zo, Ω) is admissible, then

deg (Id − zo, Ω) =


1 zo ∈ Ω,

0 zo /∈ Ω.

Moreover, one can show that the degree defined above satisfies additional useful proper-

ties, e.g.,

(P5) Multiplicativity. For any (f1, Ω1), (f2, Ω2) ∈M

deg (f1 × f2, Ω1 × Ω2) = deg (f1, Ω1) · deg (f2, Ω2) .

(P6) Suspension. If W is a Euclidean space and U is an open bounded neighborhood

of 0 ∈ W , then

deg (f × IdW , Ω× U) = deg(f, Ω).

(P7) Regular Value Property. If (f, Ω) ∈ M, f ∈ C1 and 0 is a regular value of f .

Then

deg (f, Ω) =
∑

x∈f−1(0)∩Ω

sign
(
detDf(x)

)
.

(P8) Hopf Property. If B is the unit ball in V and deg(f1, B)=deg(f2, B) then f1 and

f2 are B-admissible homotopic.
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The suspension property (P6) allows one to define the so-called Leray-Schauder degree –

an extension of the Brouwer degree to infinite dimensions. The regular value property (P7)

says that the Brouwer degree is not just a mere indicator of the existence of solutions to

equations but also an algebraic count.

In general, calculation of Brouwer degree is not an easy problem, however, the homotopy

invariance (P3) of the degree allows to compute it by deforming the complicated mapping

to a nicer one. Moreover, the multiplicativity property (P5) can be used to reduce the

dimension if the given mapping can be decomposed into a direct product of simpler ones.

Furthermore, symmetric properties of the map give restrictions on the possible values of the

degree. One of the first such restrictions is the Borsuk-Ulam theorem [21] saying that the

degree of an odd map is odd. In a wide variety of later works this result was extended to

the maps with more complex symmetry structure [141, 70].

Equivariant Degree

Equivariant degree is a counterpart of the Brouwer degree for symmetric maps which allows to

classify and count solutions with respect to their symmetries. The equivariant degree theory

is a complicated subject which lies in the intersection of algebra, topology, representation

theory and analysis.

Depending on the particular problem there are different kinds of equivariant degree one

can employ. The simplest version is the equivariant degree without free parameters which

is used in applications to boundary value problem. Trying to merely generalize the Brouwer

degree to symmetric settings, i.e. Γ-equivariant mappings where Γ is some compact Lie

group, one has to bear in mind certain subtleties that the symmetry brings.

First of all, Γ-equivariant degree should be defined only for Γ-equivariant mappings,

thus the notion of admissible pair is replaced with admissible Γ-pair, i.e, assuming V is an

orthogonal Γ-representation, (f, Ω) ∈ M(V, V ) is an admissible Γ-pair if Ω is Γ-invariant
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and f is Γ-equivariant. The set of all admissible Γ-pairs in V is denoted by MΓ(V, V ) and

MΓ :=
⋃
V MΓ(V, V ). Secondly, the solutions of the equation f(x) = 0 appear in group

orbits, i.e., if f(xo) = 0 then f(y) = 0 for every y ∈ Γ(x). Moreover, if x1, x2 ∈ Γ(x) then

(Γx1) = (Γx2) = (Γx). Thus, the symmetry of any group orbit Γ(x) such that f(x) = 0 is

completely characterized by its conjugacy class (Γx). Thirdly, the equivariant counterpart

of the additivity property (P2) should take into account independent contributions of each

group orbit in the solution set of f(x) = 0 separately. Finally, the counterpart of multi-

plicativity property (P5) should incorporate the fact that the product Γ(x1)×Γ(x2) usually

contains several orbit types.

Therefore, instead of the ring Z the equivariant degree should take values in some alge-

braic structure that takes into account the observations above. Such structure is the Burnside

ring of Γ denoted by A(Γ). More specifically, A(Γ) := Z [Φ0(Γ)] is the free Z-module gen-

erated by (H) ∈ Φ0(Γ), i.e. a ∈ A(Γ) is a = nH1(H1) + · · · + nHm(Hm) where nHi ∈ Z and

(Hi) ∈ Φ0(Γ) for all i = 1, . . . ,m, equipped with a multiplication defined as

(H) · (K) =
∑

(L)∈Φ0(Γ)

nL(H,K)(L),

where nL(H,K) is the number of orbits of type (L) in the space Γ/H × Γ/K, i.e.,

nL(H,K) :=
∣∣∣(Γ/H × Γ/K)(L)/Γ

∣∣∣ .
Thus, similarly to the Brouwer degree one can define Γ-equivariant degree Γ−deg :MΓ →

A(Γ) via the axiomatic approach. The set of axioms is parallel to the properties (P1)–(P8).

In order to apply the degree method to detect (symmetric) Hopf bifurcation, we need

to introduce the notion of twisted Γ × S1-equivariant degree with one free parameter, or

shortly twisted degree. The reason is in the fact that periodic functions naturally have S1

symmetry, i.e., the space C(S1; V ) of all continuous periodic functions is an isometric Banach

S1-representation with the S1 action defined as(
eiτ x

)
(·) = x(·+ τ), eiτ ∈ S1 and x ∈ C(S1; V ),
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and the Leray-Schauder degree totally ignores this symmetry, making itself ineffective to

locate nonconstant periodic solutions to autonomous systems. Moreover, twisted degree

provides extra information regarding the additional spatial Γ-symmetry of the system. The

set of values of twisted degree is At1(Γ×S1) = Z [Φt
1(Γ× S1)], where Φt

1(Γ×S1) stands for the

set of conjugacy classes fo all twisted subgroups H = Kθ,l such that dimW (H) = 1. Further,

the Z-module At1(Γ × S1) has an additional structure of A(Γ)-module. Thus, similarly to

the equivariant degree without free parameters, one can define twisted degree through the

set of corresponding axioms. For the detailed presentation of equivariant degree theory

see [16, 12, 15, 14, 70, 69, 87].

1.2.4 Preisach Model

In Chapter 2 we use the following fundamental model of hysteresis phenomena with nonlocal

memory.

An elementary building block of the Preisach model of hysteresis is the nonideal relay

operator also known as a rectangular hysteresis loop. This operator maps pairs (µ0, h(·)) ∈

{−1, 1}×C(t0,∞) to binary functions µ(·) : [t0,∞)→ {−1, 1}, where µ0 is called the initial

state of the relay, h(·) and µ(·) are input and output, respectively. The output, denoted by

µ(t) = (Rα,β[µ0]h)(t), t ≥ t0, (1.4)

is defined by

µ(t) =


−1 if there is a t1 ∈ [t0, t] such that h(t1) = α and h(s) < β for s ∈ (t1, t],

1 if there is a t1 ∈ [t0, t] such that h(t1) = β and h(s) > α for s ∈ (t1, t],

µ0 if α < h(s) < β for all s ∈ [t0, t],

where the parameters α and β satisfying α < β are called switching thresholds. According

to this definition, an output has at most finite number of jumps on any finite interval
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t0 ≤ t ≤ t1. In the context of modeling magnetic materials, a nonideal relay represents

dynamics of the magnetic moment of an individual domain in the domain structure created

by a one-dimensional magnetic field in the ferromagnetic sample. In this interpretation, the

equality µ(t) = 1 (resp. µ(t) = −1) means that the magnetic moment points in the direction

of the field (resp. in the opposite direction) at a moment t.

The main premise of the Preisach model is that magnetic moments of individual domains

do not affect each other. Hence, the total magnetization m(·) is the weighted sum (integral)

of the outputs of the individual relays Rα,β, which respond independently to the variations

of the input h(·):

m(t) =

∫
α<β

φ(α, β)(Rα,β[µ0(α, β)]h)(t) dα dβ, t ≥ t0. (1.5)

Here, the integrable weight function φ : R2
0 → R with the domain R2

0 = {(α, β) : α < β} is

known as the Preisach density function and the measurable function µ0 : R2
0 → {−1, 1} is the

initial state of the Preisach model. Formula (1.5), in which the initial state µ0 is treated as

a parameter, defines a continuous mapping of inputs h(·) to outputs m(·) in C(t0,∞). This

mapping known as the Preisach operator also continuously depends on µ0 with respect to a

natural metric in the functional space M of initial states. However, as pointed out above,

the Preisach operator is not differentiable except at certain points; and, its dependence on

µ0 ∈M is not smooth either.

We note that dynamics of systems with Preisach operators (2.125) should be considered

in the infinite-dimensional phase space.

1.3 Outline of the Dissertation

Chapter 2 presents the material of two publications [10, 11]. The main goal of this chapter

is to develop the Equivariant Degree method for studying relative equilibria and relative pe-

riodic solutions in the settings with lack of smoothness and/or genericity. More specifically,
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we present conditions for the equivariant Hopf bifurcation of relative periodic solutions from

relative equilibria in systems of FDEs respecting Γ×S1-spatial symmetries. The existence of

branches of relative periodic solutions together with their symmetric classification is estab-

lished using the equivariant twisted Γ×S1-degree with one free parameter. The main results

are illustrated through the case study of D8 and S5 configurations of coupled mode-locked

semiconductor lasers, and a system of electro-mechanical oscillators with hysteresis coupled

in the D8 symmetric fashion. The results of Chapter 2 were obtained in collaboration with

Zalman Balanov, Dmitrii Rachinskii, Wies law Krawcewicz and Hao-Pin Wu.

In Chapter 3 we consider slow-fast delayed systems and discuss pulsating periodic solu-

tions, which are characterized by the specific property that the period of the periodic solu-

tion is close to the delay. Such solutions were previously found in the models of mode-locked

lasers. Through a case study of population models, this work demonstrates the existence of

similar solutions for a rather wide class of delayed systems. The periodic dynamics origi-

nates from the Hopf bifurcation on the positive equilibrium. We show that the continuous

transformation of the periodic orbit to the pulsating regime is simultaneous with multiple

secondary almost resonant Hopf bifurcations, which the equilibrium undergoes over a short

interval of parameter values. We derive asymptotic approximations for the pulsating periodic

solution close to, and away from, the bifurcations point, and consider scaling of the solution

and its period with the small parameter that measures the ratio of the time scales. The role

of competition for the realization of the bifurcation scenario is highlighted. The results of

Chapter 3 were obtained in collaboration with Andrei Vladimirov and Dmitrii Rachinskii,

and first appeared in [86].

Chapter 4 presents the material which was previously published in [64]. In this chapter,

we consider a Newtonian system which has a branch (surface) of neutrally stable periodic

orbits. We discuss sufficient conditions which allow arbitrarily small delayed Pyragas control

to make one selected cycle asymptotically stable. In the case of small amplitude periodic
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solutions we give conditions in terms of the asymptotic expansion of the right hand side,

while in the case of larger cycles we frame the conditions in terms of the Floquet modes of the

target orbit as a solution of the uncontrolled system. This work was done in collaboration

with Edward Hooton, Qingwen Hu and Dmitrii Rachinskii.

Appendix A lists a few twisted subgroups, which are used in Sections 2.2 and 2.3 to

describe symmetries of solutions. Appendix B contains the derivation of the normal form

for the Hopf bifurcation in a delayed system.
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CHAPTER 2

EQUIVARIANT DEGREE METHOD FOR ANALYSIS OF HOPF

BIFURCATION OF RELATIVE PERIODIC SOLUTIONS1

The main goal of this chapter is to adapt equivariant degree method to study a Hopf bifur-

cation of relative periodic solutions from relative equilibria in Γ× S1-symmetric FDEs.

In Section 2.1, we first classify symmetries of branches of relative equilibria, which bi-

furcate from a Γ × S1-fixed equilibrium of an equivariant FDE. Then, the main theorem

on classification of symmetries of relative periodic solutions bifurcating from the branches

of relative equilibria (Theorem 2.1.14) is presented and proved. In Section 2.2, the results

of Section 2.1 are applied to delay rate equations of the D8 × S1- and S5 × S1-symmetric

laser system. In both cases, we prove the occurrence of infinitely many branches of relative

equilibria with various symmetries from the “laser off” state. Then the analytic method is

combined with numerical computations to analyze symmetric properties of relative periodic

solutions that branch from the relative equilibrium states. In Section 2.3, an example a

nonsmooth system of symmetrically coupled hysteretic oscillators is considered.

2.1 Γ× S1-Symmetric Systems of FDEs

2.1.1 Notation and statement of the problem

Assume that Γ is a finite group and let V := Rn be an orthogonal Γ × S1-representation

such that the S1-action on V is given by the homomorphism T : S1 → O(n). Assume that

J is the infinitesimal operator of the subgroup T (S1) ⊂ O(n), i.e.,

J = lim
τ→0

1

τ

[
T (eiτ )− Id

]
.

1The material of this chapter was published in Journal of Differential Equations and in Journal of
Nonlinear and Variational Analysis. Reprinted with permission.
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The action of S1 on V satisfies for all eiτ ∈ S1

∀v∈V eiτv = eτJ(v),

and we also have JeτJ = eτJJ .

We will denote G := Γ× S1 and use the notation Γ := Γ× {1} and S := {e} × S1 where

e ∈ Γ is the neutral element.

Let

V = V0 ⊕ V1 ⊕ · · · ⊕ Vm (2.1)

be the S-isotypical decomposition of V , where Vk is modeled on the S1-irreducible represen-

tation Vk ' C with the S1-action given by eiτz := eikτ · z, where ‘·’ stands for the complex

multiplication. Then, each of the components Vk, k > 0, has a natural complex structure

such that for v ∈ Vk

eiτv = eikτ · v, Jv = ik · v.

Also, for v ∈ V0, we have Jv = 0.

Let r > 0 and denote by C−r(V ) the Banach space

C([−r, 0];V ) :=
{
x : where x : [−r, 0]→ V is a continuous function

}
,

equipped with the norm ‖x‖∞ := sup{|x(θ)| : θ ∈ [−r, 0]}. Clearly, C−r(V ) is an isometric

Γ× S1-representation, with the action given by

∀θ∈[−r,0] ((γ, eiτ )x)(θ) = eτJ(γx(θ)), x ∈ C−r(V ), (γ, eiτ ) ∈ Γ× S1.

In addition, we have the following S-isotypical decomposition of C−r(V ) :

C−r(V ) =
m⊕
k=0

C−r(Vk),

where each of the components C−r(Vk) with k > 0 has a natural complex structure induced

from Vk.
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For a continuous function x : R→ V and t ∈ R, let xt : [−r, 0]→ V be a function defined

by

xt(θ) := x(t+ θ), θ ∈ [−r, 0].

We make the following assumption:

(A0) f : R× C−r(V )→ V is a continuous G-equivariant function, i.e., for (γ, eiτ ) ∈ G

f
(
α, (γ, eτi)x

)
= eτJγf(α, x) for all x ∈ C−r(V ). (2.2)

Consider the parametrized system of FDEs

ẋ(t) = f(α, xt), x(t) ∈ V. (2.3)

In what follows, we will study bifurcations of continuous branches of periodic/quasi-periodic

solutions to (2.3) of special type and describe their symmetric properties.

Remark 2.1.1. In the case the space C−r(V ) is replaced by

C([−r, a];V ) := {x : [−r, a]→ V : x is continuous and bounded}

for some a > 0, (2.3) is an FDE with deviated argument. Even under very strong differentia-

bility assumptions on f , the uniqueness of solutions for (2.3) cannot be established making

it impossible to use methods based on applications of Center Manifolds. On the other hand,

including the case of infinite delay r = ∞, the equivariant degree method can be easily

extended, using standard setting, to this type of FDEs.

2.1.2 Symmetric bifurcation of relative equilibria from an equilibrium

In this subsection, we are interested in periodic solutions to (2.3) of the type

x(t) = ewJtx for some x ∈ V and w ∈ R. (2.4)
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Relative equilibria. By substituting (2.4) into equation (2.3), we obtain

wewtJJx(t) = f(α, ew(t+·)Jx). (2.5)

Then, using the equivariance condition (2.2), we can rewrite (2.5) as

wJx = f(α, ewJ ·x), x ∈ V. (2.6)

Take the orthogonal S-invariant decomposition (2.1) of the space V , where V0 = V S, and

denote

V∗ := V ⊥0 = V1 ⊕ · · · ⊕ Vm.

For a fixed λ = u+ iw ∈ C, define the linear operator ξ(λ) : V → C−r(V ) by(
ξ(λ)x

)
(θ) = euθewJθx∗ + xo, θ ∈ [−r, 0], (2.7)

where x = x∗ + xo, x∗ ∈ V∗ and xo ∈ V0, and consider the function f̃ : R × C × V → V

defined by

f̃(α, λ, x) := f(α, ξ(λ)x). (2.8)

With this notation, equation (2.6) can be written as

wJx = f̃(α, iw, x), x ∈ V. (2.9)

Furthermore, assumption (A0) implies G-equivariance of f̃ :

f̃
(
α, λ, (γ, eτi)x

)
= eτJγf̃(α, λ, x) for all x ∈ V, λ ∈ C.

Hence, solutions to (2.9) come in S-orbits. It is clear that any S-orbit, which is a solution

to (2.9), satisfies the standard definition of relative equilibrium (see, for example, [50]). In

what follows, we refine this concept to the setting relevant to our discussion.

Assume that x ∈ V S = V0. Then, one has f̃(α, iω, x) = f̃(α, 0, x) for all ω. Hence, any

solution x ∈ V S of (2.9) is an equilibrium for equation (2.3) with S(x) = {x}. On the other

hand, solutions of (2.9) that satisfy x 6∈ V S form one-dimensional orbits.
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Definition 2.1.2. Suppose that (2.9) holds for some αo, ωo ∈ R and xo 6∈ V S. Then, the

orbit S(xo) is a one-dimensional curve in V called a relative equilibrium of equation (2.3).

(i) For ωo 6= 0, this orbit is a trajectory of time-periodic solutions x(·) = e(ωo·+τ)Jxo,

eiτ ∈ S1, to equation (2.3) called a rotating wave.

(ii) For ωo = 0, the relative equilibrium consists of equilibrium points eτJxo, e
iτ ∈ S1,

of (2.3) (the so-called frozen wave).

Characteristic quasi-polynomials. In what follows, we will require from f to satisfy

minimal differentiability properties, i.e., it will be assumed that once we use the symbols of

derivatives of f , it is well-defined on a specified set.

Let αo ∈ R be given and let xo ∈ V G be an equilibrium for (2.3). We will also call the

pair (αo, xo) an equilibrium, or a stationary solution, in this case.

Let us consider the bifurcation of relative equilibria from this equilibrium. Denote by

Dxf(α,x) : R× C−r(V )→ V (2.10)

the derivative of the functional f with respect to x ∈ C−r(V ) (provided that this derivative

exists). If xo ∈ V0, then the Jacobi matrix Dxf̃(α, λ, xo) : V → V , which is given by

Dxf̃(α, λ, xo) = Dxf(α, ξ(λ)xo)ξ(λ) (2.11)

is S-equivariant (cf. (2.7) and (2.8)). Therefore, the subspaces V0 and V∗ are S-invariant for

this matrix. Consider the restrictions Dxf̃(α, λ, xo)
∣∣∣
V0

and Dxf̃(α, λ, xo)
∣∣∣
V∗

and define the

characteristic quasi-polynomials for xo ∈ V0 and λ ∈ C:

P0(α, λ, xo) := det

(
Dxf̃(α, λ, xo)

∣∣∣
V0
− λ Id

)
,

P∗(α, λ, xo) := det

(
Dxf̃(α, λ, xo)

∣∣∣
V∗
− λ Id

)
.

(2.12)

We make the following assumption.
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(A1) (a) There exists a continuous function x : (αo− ε, αo+ ε)→ V0 (for some ε > 0) such

that: x(αo) = xo ∈ V G and {(α, x(α)) : α ∈ (αo− ε, αo + ε)} consists of equilibria

for (2.3);

(b) Dxf(α, x(α)) exists for α ∈ (αo − ε, αo + ε) and depends continuously on α;

(c) the characteristic quasi-polynomial P0(α, ·, x(α)) has no zero roots,

i.e., P0(α, 0, x(α)) 6= 0.

Remark 2.1.3. (i) By formula (2.7), ξ(λ) acts trivially on x ∈ V0, hence the restrictions

of f̃ and f on V0 coincide.

(ii) By equivariance of f̃ , and due to xo ∈ V G, it follows that x(α) ∈ V G, consequently the

set M ⊂ R2 × V G given by

M :=
{

(α,w, x(α)) : α ∈ (αo − ε, αo + ε), w ∈ R
}

(2.13)

is composed of solutions to (2.9), which can be called trivial.

Assume that:

(A2) The quasi-polynomial P∗(αo, ·, xo) has a characteristic root λ = iωo for some ωo ∈ R at

the equilibrium point (αo, xo), but for any other equilibrium (α, x) from a neighborhood

of (αo, xo) in R × V0, the corresponding characteristic polynomial has no roots of the

form λ = iω, ω ∈ R.

In order to find nontrivial solutions to (2.9) bifurcating from M , consider the equation

Φ(α, ω, x) := f̃(α, iω, x)− ωJx = 0 (2.14)

as a G-symmetric bifurcation problem with two free parameters α and ω.

By applying the standard terminology (see [16]), if Dxf̃(α, iω, x)−ωJ : V → V is not an

isomorphism for some point (α, ω, x) ∈M , we call it an M-singular point of Φ. A necessary
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condition for a point (α′, ω′, x′) ∈ M to be a bifurcation point for equation (2.9) is that it

is an M -singular point. Assumption (A2) implies that the point (αo, ωo, xo) satisfies this

necessary condition.

Remark 2.1.4. Take C−r(V ) = C−r(V0) ⊕ C−r(V∗). Assumption (A1) means that λ = 0

is not an eigenvalue for the restriction of the linearization to C−r(V0) for α close to αo.

Assumption (A2) means that the restriction of the linearization to C−r(V∗) has a pair of

eigenvalues λ = ±iωo for α = αo and has no eigenvalues of the form iω, ω ∈ R, for α 6= αo

sufficiently close to αo.

Sufficient condition for bifurcation of relative equilibria. In order to provide a

sufficient condition for the bifurcation of relative equilibria from the point (αo, ωo, xo) and

an equivariant topological classification of the bifurcating branches, we apply the twisted G-

equivariant degree with one free parameter (for more details, see [16]). To be more precise,

consider the G-isotypical decomposition of V (see (2.1)):

V = V0 ⊕ V∗ =
r⊕
i=0

V 0
i ⊕

s⊕
j=0

m⊕
k=1

Vj,k, (2.15)

where Vj,k is the isotypical component modeled on the irreducible G-representation Vj,k and

V 0
i can be identified with the Γ-representation modeled on an irreducible Γ-representation Vi.

Remark 2.1.5. Let (Ho) be a maximal twisted orbit type in V . Then, (H0) is also a

maximal twisted orbit type for some Vjo,ko in (2.15), ko > 0. In fact, if U is a direct sum of

two G-representations U1 and U2, then G(x,y) = Gx ∩ Gy for any (x, y) ∈ U , x ∈ U1, y ∈ U2.

For any j = 0, . . . , s and k = 1, . . . ,m, put

Pj,k(α, λ) := det

(
Dxf̃(α, λ, x(α))

∣∣∣
Vj,k
− λ Id

)
, λ ∈ C.

Notice that the characteristic equation at (α, x(α)) can be written as

P∗(α, λ) := P∗(α, λ, x(α)) =
∏
k>0

s∏
j=0

Pj,k(α, λ) = 0. (2.16)
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This implies that λ is a characteristic root for (α, x(α)) if it is a root of Pj,k(α, λ) = 0 for

some k > 0 and j ≥ 0.

To formulate our first bifurcation result, we need two additional concepts. Observe that

using (A2), one can choose a small neighborhood Q of the point iωo in the right half-plane

Reλ > 0 of C and a sufficiently small real δ = δ(Q) > 0 such that, as α varies over the

interval |α − αo| ≤ δ, the roots λ(α) of Pj,k(α, ·) can only leave Q through the ‘exit’ at the

point iωo and only when α = αo.

Definition 2.1.6. Define the Vj,k-isotypical crossing number at (αo, ωo) by the formula

tj,k(αo, ωo) := t−j,k(αo, ωo)− t+j,k(αo, ωo), (2.17)

where t−j,k(αo, ωo) is the number of roots λ(α) of Pj,k(α, ·) (counted according to their Vj,k-

isotypical multiplicity) in the set Q for α < αo, and t+j,k(αo, ωo) is the number of roots of

Pj,k(α, ·) in Q for α > αo.

Definition 2.1.7. A set K of solutions (α,w, x) to equation (2.9) is called a continuous

branch of relative equilibria bifurcating from the equilibrium (αo, xo) of equation (2.3) if:

(i) x 6∈ V S for all (α,w, x) ∈ K;

(ii) K contains a connected component Ko such that Ko ∩M 6= ∅ (cf. (2.13));

(iii) For any ε > 0 there is a δ > 0 such that if (α,w, x) ∈ K ∩ Ko and ‖x‖ < δ, then

|α− αo| < ε and |w − ωo| < ε.

A sufficient condition for the bifurcation of relative equilibria from the equilibrium

(αo, xo), which provides an estimate for the number of possible branches of relative equi-

libria with their symmetric properties, can be formulated as follows.
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Proposition 2.1.8. Given system (2.3), assume conditions (A0)–(A2) are satisfied. Let

(Ho) be a maximal twisted orbit type in V . Take decomposition (2.15) and denote by M the

set of all G-isotypical components in which (Ho) is an orbit type (cf. Remark 2.1.5). Assume

there exists Vjo,ko ∈M such that:

(i) (Ho) is a maximal twisted type in Vjo,ko;

(ii) tjo,ko(αo, ωo) 6= 0;

(iii) tj,k(αo, ωo) · tj′,k′(αo, ωo) ≥ 0 for all Vj,k, Vj′,k′ ∈M.

Then, there exist at least |G/Ho|S continuous branches of relative equilibria of equation (2.3)

bifurcating from the equilibrium (αo, xo) with the minimal symmetry (Ho) (here | · |S stands

for the number of S-orbits).

The proof literally follows the argument presented in [16]. For completeness, here we give

a brief sketch of the proof. Under extra transversality/genericity conditions, this statement

is well-known, see for example [50, 51].

Sketch of the proof of Proposition 2.1.8. The proof splits into three steps.

(a) Auxiliary function and admissibility. Take R2 with the trivial G-action and define a

sufficiently small G-invariant neighborhood of the point (αo, ωo, xo) in R2 ⊕ V of the form

Ω := {(α,w, x) : |α− αo| < ε, |w − ωo| < ε, ‖x̂− xo‖ < ε, ‖x∗‖ < δ},

where (α,w, x) = (α,w, x̂+x∗), (α,w, x̂) ∈M , x∗ ⊥ x̂, and a G-invariant continuous function

ζ : Ω→ R satisfying

ζ(α,w, x) < 0 if (α,w, x) ∈M ∩ Ω,

ζ(α,w, x) > 0 if (α,w, x) ∈ Ω and ‖x∗‖ = δ
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(recall that ζ is called an auxiliary function). By condition (A0), the map Φζ : R2×V → R×V

defined by

Φζ(α,w, x) = (ζ(α,w, x), Φ(α,w, x)) , (α,w, x) ∈ Ω,

is G-equivariant. Moreover, conditions (A1) and (A2) allow us to choose the parameters

ε, δ > 0 of the set Ω to be sufficiently small to ensure that the map Φζ is Ω-admissible (i.e.,

Φζ does not have zeroes on ∂Ω).

(b) Twisted degree and a sufficient condition for the bifurcation of relative equilibria. Since

Φζ is G-equivariant and Ω-admissible, the twisted degree

G-deg(Φζ ,Ω) =
∑
(H)

nH(H) (2.18)

is correctly defined (here, nH ∈ Z and the summation is going over all twisted orbit types

occurring in V ). The following statement is parallel to Theorem 9.28 from [16].

Proposition 2.1.9. Given (2.18), assume that nHo 6= 0 for some maximal twisted orbit type

(Ho) in V . Then, the conclusion of Proposition 2.1.8 holds.

(c) Twisted degree and crossing numbers. To effectively apply Proposition 2.1.9 for prov-

ing Proposition 2.1.8, one needs to link the twisted degree (2.18) to (isotypical) crossing

numbers (2.17). To this end, one can use the following standard computational formula2:

G-deg(Φζ ,Ω) =
∏
µ∈σ−

r∏
i=0

(
degVi

)mi(µ)

•
∑
j,k

tj,k(αo, ωo) degVj,k , (2.19)

where j = 0, 1, . . . , s, k = 1, . . . ,m; σ− denotes the set of all (real) negative roots µ of the

quasi-polynomial P(αo, λ) at xo; mi(µ) stands for the Vi-isotypical multiplicity of µ; degVi

(resp. degVj,k) denote the so-called basic degrees related to irreducible Γ-representations

(resp. G-representations); and, “•” stands for the multiplication in the Euler ring U(G)

2The details can be found in [16]
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(see [148] for more details). Take (Ho) and Vjo,ko satisfying (i)–(iii). Then (see conditions (i)–

(ii)), (Ho) appears with nonzero coefficient in tjo,ko(αo, ωo) degVjo,ko . Condition (iii) implies

that (Ho) “survives” in the sum given in the right hand side of (2.19). Finally, since any

degVi is an invertible element of the Burnside ring A(G) ⊂ U(G), the result follows.

2.1.3 Hopf bifurcation from a relative equilibrium

Regular relative equilibria. Suppose that for some α = α̂ and x̂ ∈ V \V S, equation (2.3)

has a relative equilibrium S(x̂) (see Definition 2.1.2). Then, equation (2.9) is satisfied for

some ω̂ ∈ R:

Φ(α̂, ω̂, x̂) = f̃(α̂, iω̂, x̂)− ω̂Jx̂ = 0, (2.20)

where x̂ = (q̂, v̂) ∈ V S ⊕ V∗ with v̂ 6= 0. Moreover,

d

dτ
Φ(α̂, ω̂, eτJ x̂)

∣∣∣∣
τ=0

= DxΦ(α̂, ω̂, eτJ x̂)JeτJ x̂
∣∣
τ=0

= DxΦ(α̂, ω̂, x̂)Jx̂, (2.21)

provided that the derivatives in (2.21) exist. Hence, relation (2.20) and the S-equivariance

of Φ imply that the directional derivative of Φ at the point x̂ in the direction of the orbit

S(x̂) is zero:

DxΦ(α̂, ω̂, x̂)Jx̂ = 0. (2.22)

That is, the map DxΦ(α̂, ω̂, x̂) has a nonzero kernel.

Definition 2.1.10. A relative equilibrium S(x̂) will be called regular if the kernel of the

map given by the following block-matrix

[
DwΦ(α̂, ω̂, x̂) | DxΦ(α̂, ω̂, x̂)

]
: R× V → V (2.23)

is one-dimensional, provided that the derivatives in (2.23) exist.

We make the following assumption parallel to (A1):
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(A3) (a) Given (α̂, ω̂, x̂) satisfying (2.20), assume that there exist a neighborhood U of α̂

in R and continuous functions ω : U → R , ω(α̂) = ω̂, and u : U → S := {x ∈

V : 〈x, Jx̂〉 = 0}, u(α̂) = 0, such that

Φ(α, ω(α), x̂+ u(α)) = 0, α ∈ U , (2.24)

i.e., formula

xα(t) := e(ω(α)t+τ)Jx(α) (2.25)

defines a branch of relative equilibria S
(
x(α)

)
parametrized by α ∈ U (here

x(α) = x̂+ u(α));

(b) Dxf(α, xα(·)) exists for α ∈ (αo − ε, αo + ε) and depends continuously on α;

(c) S
(
x(α)

)
is a regular relative equilibrium for (2.3) for all α ∈ U .

Remark 2.1.11. By condition (A3)(b), partial derivatives required in (2.23) are correctly

defined so that assumption (A3)(c) makes sense.

It will be assumed that the branch S
(
x(α)

)
has symmetric properties (cf. Proposi-

tion 2.1.8):

(A4) The regular relative equilibrium S(x̂), α ∈ U , admits a twisted group symmetry

H < G.

Remark 2.1.12. Due to the equivariance, the twisted symmetry group H is the same for

all relative equilibria S
(
x(α)

)
, α ∈ U .

For a given α ∈ U , put

Bα := Dxf(α, eω(α)J ·x(α)) = Dxf(α, ξ(iω(α))x(α)) : C−r(V )→ V. (2.26)

For α ∈ U and λ ∈ C, define the linear map Rα : V c → V c in the complexification V c

of V by the formula

Rα(λ)y := Bα
(
e(ω(α)J+λ Id )·y

)
, y ∈ V c. (2.27)
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Then,

det
(
Rα(λ)− ω(α)J − λ Id

)
= 0 (2.28)

is the characteristic equation for the linearization of system (2.3) on the relative equilibrium

S(x(α)). Since

Rα(0)− ω(α)J = DxΦ(α, ω(α), x(α)), (2.29)

conditions (A3)(a,b) imply that the characteristic equation (2.28) has a zero root λ = 0

corresponding to the eigenvector Jx(α); furthermore, due to (A3)(c), this root is simple.

Hopf bifurcation of relative periodic solutions. We are interested in finding solutions

to (2.3) of the form

x(t) = e(ω(α)+φ)tJ(x(α) + y(t)), (2.30)

where y(t) is a nonstationary p-periodic function with p = 2π/β for some β > 0, and in

symmetric properties of these solutions. Here y(t) and β, φ ∈ R are unknown. Periodic and

quasi-periodic solutions of type (2.30) are called relative periodic solutions.

To be more precise, let us define the so-called equivariant Hopf bifurcation of small am-

plitude relative periodic solutions of type (2.30) from the family of relative equilibria (2.25).

The following definition is similar to Definition 2.1.7.

Definition 2.1.13. A setK of quadruplets (α, β, φ, x), where x is a solution to equation (2.3)

of the form (2.30), is called a continuous branch of relative periodic solutions bifurcating (via

the equivariant Hopf bifurcation) from the relative equilibrium (α̂, ω̂,S(x̂)) if there exists a

βo > 0 such that:

(i) K contains a connected component Ko such that (α̂, βo, 0, x̂) ∈ Ko;

(ii) For any ε > 0 there is a δ > 0 such that if (α, β, φ, x) ∈ K ∩ Ko and ‖y‖ < δ, then

|α− α̂| < ε, |φ| < δ, and |β − βo| < ε.
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A necessary condition for the Hopf bifurcation is that characteristic equation (2.28) has a

pair of purely imaginary roots λ = ±iβo, βo > 0, for α = α̂. We make a stronger assumption:

(A5) Characteristic equation (2.28) has a pair of purely imaginary roots λ = ±iβo, βo > 0,

for α = α̂, and has no roots of the form λ = iβ, β ≥ 0, for α 6= α̂, α ∈ U .

Put K := H× S1 and consider the K-isotypical decomposition of V c:

V c = U0,1 ⊕ U1,1 ⊕ · · · ⊕ Up,1, (2.31)

where S1-action is given by complex multiplication. Due to the equivariance, each isotypical

component Uj,1 is invariant for the map Rα(λ) and for J . Therefore, we can introduce the

characteristic polynomial

P̂j,1(α, λ) := det
(

(Rα(λ)− ω(α)J − λ Id )|Uj,1
)
, λ ∈ C, (2.32)

associated with each isotypical component Uj,1, and define the Uj,1-isotypical crossing num-

bers

t̂j,1(α̂, βo) = t̂−j,1(α̂, βo)− t̂+j,1(α̂, βo) (2.33)

at the point (α̂, βo) in the same way as we did in Subsection 2.1.2 (cf. (2.17)).

Theorem 2.1.14. Given system (2.3), assume conditions (A0) and (A3)–(A5) are satisfied.

Take decomposition (2.31) and let (Lo) be a maximal twisted orbit type in V c. Denote by N

the set of all K-isotypical components in (2.31) in which (Lo) is an orbit type. Assume there

exists Ujo,1 ∈ N such that:

(i) (Lo) is a maximal twisted orbit type in Ujo,1 (cf. Remark 2.1.5);

(ii) t̂jo,1(α̂, βo) 6= 0;

(iii) t̂j,1(α̂, βo) · t̂j′,1(α̂, βo) ≥ 0 for all Uj,1, Uj′,1 ∈ N.

Then, there exist at least |H/Lo|S1 continuous branches of relative periodic solutions (2.30)

bifurcating via the Hopf bifurcation from the relative equilibrium (α̂, ω̂,S(x̂))and having the

minimal symmetry (Lo).
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2.1.4 Proof of Theorem 2.1.14

For the proof, which splits into several steps, we modify the twisted equivariant degree

approach described in Sections 10.1-2 of [16] (see also the sketch of the proof of Proposi-

tion 2.1.8).

(a) Rescaling time. Substituting (2.30) in (2.3) (see also (2.24) and (2.25)) leads to equations

ẏ(t) = f(α, x̃+ ỹt)− (ω(α) + φ)J(x(α) + y(t)),

y(t) = y(t+ p),

(2.34)

where p > 0 is an unknown period of y and

x̃(θ) := e(ω(α)+φ)θJx(α), ỹt(θ) := e(ω(α)+φ)θJy(t+ θ). (2.35)

By normalizing the period p = 2π/β of y, we obtain the system

ẏ(t) =
1

β

(
f(α, x̃+ ỹβt )− (ω(α) + φ)J(x(α) + y(t))

)
,

y(t) = y(t+ 2π)

(2.36)

with

ỹβt (θ) := e(ω(α)+φ)θJy(t+ βθ). (2.37)

(b) Constraint. This step reflects the specifics of the Hopf bifurcation of relative periodic

solutions from a relative equilibrium. Namely, in order to ensure that the unknown func-

tion y(t) is determined uniquely (up to shifting the argument), we will assume that this

function satisfies an additional constraint. From assumption (A3) and (2.22)–(2.24), it fol-

lows that for any α ∈ U , the map given by the matrix DxΦ(α, ω(α), x(α)) has the one-

dimensional kernel span {Jx(α)}. Denote by g†(α) the adjoint eigenvector of the transpose

matrix DxΦ(α, ω(α), x(α))T corresponding to the zero eigenvalue:

DxΦ(α, ω(α), x(α))Tg†(α) = 0,
〈
g†(α), Jx(α)

〉
= 1, α ∈ U .

39



We will look for a solution to (2.36) with the y-component satisfying the constraint

Jα(y) :=

〈
g†(α),

∫ 2π

0

y(t) dt

〉
= 0. (2.38)

(c) Setting system (2.36) in functional spaces. Using the standard identification of a 2π-

periodic V -valued function with the V -valued function on S1, we reformulate system (2.36)

with constraint (2.38) as a K-equivariant operator equation in the space R2
+ × W , where

K acts trivially on R2
+ := R × R+ and W := H1(S1;V ) stands for the first Sobolev space

equipped with the K-action given by

(h, eiτ )(u)(t) := hu(t+ τ) ((h, eiτ ) ∈ H × S1 =: K, u ∈ W ). (2.39)

To this end, denote

vα := DωΦ(α, ω(α), x(α)) ∈ V (2.40)

and observe that

vα ∈ V H. (2.41)

Indeed, the H-action on V induces the H-action on R × V , where H acts trivially on R.

Since the map Φ(α, ·, ·) : R × V → V is H-equivariant and (ω(α), x(α)) ∈ (R ⊕ V )H, one

has that DΦ(α, ω(α), x(α)) : R× V → V is H-equivariant as well, which implies (2.41).

Next, given an α ∈ U , we identify a function z ∈ W with the pair (y, φ), where y ∈ W

satisfies (2.38) and φ ∈ R, by the relationships

z = φ vα + y, Jα(y) = 0, (2.42)

and define the corresponding projections

φ = π̂α(z), y = z − π̂α(z)vα. (2.43)
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Let us introduce the following operators:

L : W → L2(S1; V ), L(z) = ż,

j : W → C(S1; V ), j(z) = z,

where C(S1;V ) is the space of continuous periodic functions equipped with the usual sup-

norm. Furthermore, define F : R2
+ × C(S1;V )→ V by

F (α, β, z(t)) :=
1

β

(
f(α, x̃+ ỹβt )− (ω(α) + φ)J(x(α) + y(t))

)
, t ∈ R, (2.44)

with (α, β, z) ∈ R2
+, z ∈ C(S1;V ), where the function y ∈ C(S1;V ) and the scalar φ are

defined by (2.42) and (2.43); x̃, ỹβt are defined in (2.35), (2.37). Next, denote by NF :

R2
+ × C(S1, V )→ L2(S1;V ) the Nemytsky operator associated with the map F , i.e.,(

NF (α, β, z)
)

(t) := F (α, β, z(t)), z ∈ C(S1;V ). (2.45)

Since Lz = Ly, system (2.36) with constraint (2.38) is equivalent to the following operator

equation:

Lz = NF (α, β, j(z)), (α, β) ∈ R2
+, z ∈ W . (2.46)

Using the formulas similar to (2.39), one can define the H-actions on an C(S1, V ) and

L2(S1;V ). Clearly, all the operators involved in formula (2.46) are K-equivariant, therefore

equation (2.46) can be transformed to a K-equivariant fixed-point problem in R2
+ × W as

follows. Define the operator K : W → L2(S1;V ) by

K(z) :=
1

2π

∫ 2π

0

z(t) dt, (2.47)

which is simply a projection on the subspace V of constant functions. Then, the operator

L+K : W → L2(S1;V ) is an isomorphism. Put

F(α, β, z) := (L+K)−1 [NF (α, β, j(z)) +K(z)] , (2.48)

F(α, β, z) := z −F(α, β, z). (2.49)
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In this way, the following equation is equivalent to (2.46):

F(α, β, z) = 0, (α, β, z) ∈ R2
+ ×W . (2.50)

(d) Reduction to twisted degree. Take α̂,U and S(x(α)) provided by condition (A3) (see

also (2.24)) and βo provided by (A5). Put

M :=
{

(α, β, z) : α ∈ U , β ∈ R+, z ∈ S(x(α))
}
⊂ R2

+ ×W ,

where

W = V ⊕
∞⊕
l=1

Wl, Wl = {eilt · yl : yl ∈ V c}, (2.51)

and the subspace of constant functions is identified with the space V . For any small ε > 0,

define a three-dimensional K-invariant submanifold

Mε :=
{

(α, β, z) ∈M : |α− α̂| < ε, |β − βo| < ε
}
⊂ R2

+ × V ⊂ R2
+ ×W

of M . Take a small r > 0, define a normal K-invariant neighborhood of Mε by

Nε,r := {u+ v ∈ R2
+ ×W : u ∈Mε, v ⊥ τu(Mε), ‖v‖ < r}

and denote

∂N
M := ∂(Nε,r) ∩M, ∂N

r := {u+ v ∈ Nε,r : ‖v‖ = r}.

By condition (A5), one can choose ε and r to be so small that

F−1(0) ∩ ∂(Nε,r) ⊂ ∂N
M ∪ ∂N

r .

Let ξ : Nε,r → R be a K-invariant Urysohn function which is positive on ∂N
r and negative

on ∂N
M . Then, the map Fξ : Nε,r ⊂ R2

+ ×W → R×W given by

Fξ(α, β, z) :=
(
ξ(α, β, z), F(α, β, z)

)
is K-equivariant and Nε, r-admissible, therefore the K-equivariant twisted degree

K−deg
(
Fξ,Nε, r

)
=
∑
(L)

nL(L) (2.52)

is correctly defined.
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Proposition 2.1.15. Let (Lo) and (α̂, ω̂,S(x̂)) be as in Theorem 2.1.14 and assume that

nLo 6= 0 in (2.52). Then, the conclusion of Theorem 2.1.14 holds.

Proof. Following the same argument as in the proof of Theorem 9.28 from [16], one can

establish the existence of a continuous branch of solutions (α, β, z) to equation (2.50) bi-

furcating from (α̂, βo, x̂) with symmetry (Lo). For any solution (α, β, z) belonging to this

branch, take vα given by (2.40) and identify φ and y using (2.42) and (2.43). Then, the

quadruplets (α, β, φ, y) constitute a continuous branch required in the conclusion of The-

orem 2.1.14. Symmetric properties of this branch are guaranteed by condition (2.41) and

assumption nLo 6= 0.

(e) Computation of twisted degree. To effectively apply Proposition 2.1.15 to proving The-

orem 2.1.14, one needs to prove that the hypotheses of Theorem 2.1.14 indeed guarantee

a nonzero summand nLo(Lo) in twisted degree (2.52). To estimate (2.52), one can use a

computational product formula similar to (2.19) (cf. [16]). To this end, one needs:

(i) to show that the restriction of DzF(α, β, x̂) to V is invertible;

(ii) to link the restriction of DzF(α, β, x̂) to
⊕∞

l=1 Wl to crossing numbers.

Both problems require to evaluate the linearization of F (cf. (2.34)–(2.37) and (2.44)–

(2.49)). Assuming in (2.44) φ and y to be small, one obtains for the first summand (up to

the higher order terms):

f(α, x̃+ ỹβt ) = f
(
e(ω(α)+φ)θJ(x(α) + y(t+ βθ)

)
= f

(
e(ω(α)θJx(α)

)
+Dxf(eω(α)Jθx(α))

[
e(ω(α)+φ)θJ(x(α) + y(t+ βθ))− eω(α)θJx(α)

]
+ h.o.t.

(2.53)
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The expression in square brackets reads:

eω(α)θJeφθJx(α) + e(ω(α)+φ)θJy(t+ βθ)− eω(α)θJx(α)

= eω(α)θJ
(
eφθJ − Id

)
x(α) + e(ω(α)+φ)θJy(t+ βθ)

= φθJeω(α)θJx(α) + eω(α)θJ(Id + φθJ)y(t+ βθ)

= φθJeω(α)θJx(α) + eω(α)θJy(t+ βθ).

(2.54)

Combining (2.53) and (2.54) yields

f(α, x̃+ ỹβt ) = f
(
e(ω(α)θJx(α)

)
+Dxf(eω(α)Jθx(α))

(
φθJeω(α)θJx(α) + eω(α)θJy(t+ βθ)

)
+ h.o.t.

(2.55)

The linearization of other summands in (2.44) gives:

− (ω(α) + φ)J(x(α) + y(t)) = −ω(α)Jy − φJx(α) + h.o.t. (2.56)

Combining now (2.55), (2.56), (2.44) with (2.40) and (2.14) yields the following formula for

the linearization of F :

DzF (α, β, eω(α)θJx(α)) =
1

β

(
φ vα +Dxf(α, eω(α)θJx(α)) eω(α)θJy(t+ βθ)− ω(α)Jy(t)

)
,

(2.57)

where y and φ are defined by (2.43). Therefore, DzF(α, β, x̂)|V has the form

DzF(α, β, x̂)z = φDwΦ(α, ω(α), x(α)) +DxΦ(α, ω(α), x(α))y0, (2.58)

where φ = π̂α(z) ∈ R and y0 = K(z) ∈ V satisfies
〈
g†(α), y0

〉
= 0. Due to (2.58), from

assumption (A3) (see (2.23)), one obtains that DzF(α, β, x̂)|V is invertible in a neighborhood

of the point α = α̂. Therefore (cf. Step (c) of the proof of Proposition 2.1.8), DzF(α, β, x̂)|V
does not affect the existence of maximal twisted orbit types in (2.52) and, therefore, is of no

consequence for the analysis of maximal twisted orbit types of relative periodic solutions.

On the other hand, DzF(α, β, x̂)|Wl acts as follows (cf. (2.51)):

DzF(α, β, x̂)yl = Dxf(α, eω(α)θJx(α)) e(ω(α)J+iβl Id)θyl − (ω(α)J + iβl Id) yl. (2.59)
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Also, since DzF(α, β, x̂) is K-equivariant, it preserves K-isotypical decompositions of Wl for

all l. Take l = 1 and consider decomposition (2.31). For the restriction DzF(α, β, x̂)|Uj,1 , one

has:

∆j(α, β) := det
(
DzF(α, β, x̂)|Uj,1

)
= P̂j,1(α, iβ).

Therefore, the degree of the planar vector field ∆j equals the crossing number (2.33).

Applying the same argument as in Step (c) of the proof of Proposition 2.1.8 completes

the proof of Theorem 2.1.14.

2.2 DDE Model of a Symmetric Configuration of Passively Mode-Locked Semi-

conductor Lasers

2.2.1 Mathematical model

In [158], a model for a mode-locked semiconductor laser with gain and absorber sections was

introduced as a system of the following delay differential equations:

ġ(t) = g0 − γgg(t)− 1

Eg
e−q(t)(eg(t) − 1)|a(t)|2,

q̇(t) = q0 − γqq(t)−
1

Eq

(
1− e−q(t)

)
|a(t)|2,

ȧ(t) = −γa(t) + γ
√
κ exp

[
(1− iηg)g(t− T )− (1− iηq)q(t− T )

2

]
a(t− T ).

(2.60)

The complex-valued function a(t) is the field amplitude at the entrance of the absorber

section with |a(t)|2 representing the optical power. The real-valued functions g(t) and q(t)

represent saturable gain and losses, respectively, and ηg, ηq are the linewidth enhancement

factors corresponding to self-phase modulation. The constants g0 and q0 stand for unsatu-

rated gain and absorption. The constants γg and γq are the carrier density relaxation rates

in the gain and absorbing sections; Eg and Eq are the saturation energies in the these sec-

tions; the ratio s = Eg/Eq is important for laser dynamics. Finally, T stands for the cold
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cavity round-trip time, and
√
κ is the linear nonresonant attenuation factor per pass. The

parameter g0 is proportional to the pump current, which is the physical control parameter.

Assume (g(t), q(t), a(t))T ∈ R ⊕ R ⊕ C ' R4 =: V and equip V with the natural S1-

representation (trivial on (g, q)-components and complex multiplication on a-component).

Clearly, system (2.60) is S1-equivariant. In what follows, assuming the value α := g0 to be

the bifurcation parameter, we will show how Proposition 2.1.8 (resp. Theorem 2.1.14) can

be used to study bifurcations of relative equilibria (resp. relative periodic solutions) for the

network of identical oscillators (2.60) coupled in a symmetric fashion.

Let f : R × C−T (V ) → V be the map induced by the right-hand side of system (2.60).

Put V := V n and define the map fo : R× C−T (V )→ V by

fo(α, xt) =
(
f(α, x1

t ), f(α, x
2
t ), . . . , f(α, x

n
t )
)
, (2.61)

where x = (x1, x2, . . . , xn) ∈ V . In general, the network dynamics of x is given by the

following equation:

ẋ = fo(α, xt) + g(xt), x ∈ V, (2.62)

where function g : C−T (V ) → V describes the interaction between components xj for j =

1, . . . , n. For our considerations, we assume that

(i) g is linear,

(ii) g depends only on x(t), i.e., the delayed terms are not present in the coupling,

(iii) coupling is symmetric with respect to some finite group Γ,

(iv) coupling terms appear only in the equation for the a-component of each xj, j = 1, . . . , n.

The latter assumption corresponds to the physically meaningful situation when the lasers

are coupled via evanescent fields. We note that the form of coupling terms depends on
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the system configuration as well as on the model setting and simplifying assumptions. For

example, delayed coupling of the same equations (2.60) was considered in [138].

Let C : V → V be a linear operator with the matrix

C :=


0 0 0

0 0 0

0 0 eiψ

 . (2.63)

Then, using the assumptions above, one can rewrite equation (2.62) as follows:

ẋ = f(α, x, xt) := fo(α, xt) + ηC x, x ∈ V. (2.64)

Here C is the coupling matrix given by

C := K ⊗ C, (2.65)

where K is a symmetric {0, 1}-valued adjacency matrix of the network and “⊗” stands for

the Kronecker product of the matrices. Parameters η, ψ ∈ R correspond to the strength and

the phase of coupling, respectively.

Remark 2.2.1. Recall, if S(x̂) is a relative equilibrium for system (2.64), then symmetries

of S(x̂) are completely determined by a (twisted) isotropy subgroup Gx̂ with respect to the

G := Γ× S1-action.

Note that xo(α) := (α/γg, q0/γq, 0)T ∈ V is an equilibrium of system (2.60) for any α,

hence

O(α) :=
(
xo(α), xo(α), . . . , xo(α)

)
∈ V

is an equilibrium of system (2.64) for any α. Also

Dxf(α, xo(α))|V =


−γg 0 0

0 −γq 0

0 0

(
√
κ exp

[
(1−iηg) α

γg
−(1−iηq) q0γq
2

]
− 1

)
γ

 . (2.66)
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2.2.2 Dn-configuration of identical semiconductor lasers

In this subsection, we consider equation (2.64) for the Dn-symmetric network, i.e., the adja-

cency matrix K in (2.65) is

K :=



0 1 0 . . . 0 1

1 0 1 . . . 0 0

0 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

1 0 0 . . . 1 0


.

This system was recently studied in [125] as a model of an array of mode-locked lasers coupled

via evanescent fields in a ring geometry.

Clearly, the space V is an orthogonal Dn × S1-representation, where Dn-action on V is

defined by permutation of the coordinates of the vector x ∈ V . More precisely, Dn stands for

the dihedral group being the group of symmetries of a regular n-gon, i.e., one can consider it

to be a subgroup of the symmetric group Sn on the set {1, 2, . . . , n} labeling the vertices of

a regular n-gon. This group is generated by the “rotation” ξξξ := (1, n, n− 1, . . . , 2) and the

“reflection” κκκ := (2, n)(3, n−1) . . . (m, n−m), where m = bn/2c. Then, the Dn×S1-action

on V is given by

(h, eiτ )x =
(
eiτxh(1), eiτxh(2), . . . , eiτxh(n)

)
, h ∈ Dn, eiτ ∈ S1, (2.67)

where x = (x1, x2, . . . , xn) ∈ V and eiτ acts on xj ∈ V ' R ⊕ R ⊕ C trivially on the first

two components and by complex multiplication on the C-component for all j = 1, . . . , n.

Obviously, system (2.64) satisfies condition (A0).

2.2.3 D8-configuration: bifurcation of symmetric relative equilibria

Hereafter, we will restrict ourselves to the case n = 8.
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Isotypical decomposition and maximal twisted orbit types. To apply Proposi-

tion 2.1.8 for studying relative equilibria bifurcating from the equilibrium O(α), observe

that V admits the isotypical D8-decomposition:

V =
4⊕
j=0

Wj, (2.68)

where Wj is modeled on Vj, V1 is a one-dimensional trivial representation, V4 is a one-

dimensional D8/D4-representation and
{
Vj
}3

j=1
are three two-dimensional nonequivalent ir-

reducible representations with different actions of the rotational generator (for more details,

see [16]). Observe also (see (2.15)) that decomposition (2.68) can be refined to the D8×S1-

decomposition: Wj = V 0
j ⊕ Vj,1, j = 0, . . . , 4, where V 0

j is modeled on Vj ' R2 and S1 acts

trivially, while Vj,1 is modeled on Vj,1 ' C2 and S1 acts by complex multiplication (see [16]).

Clearly, dimW0 = dimW4 = 4, while dimW1 = dimW2 = dimW3 = 8.

Table 2.1: Maximal twisted orbit types in each isotypical component of the D8-representation
V .

Isotypical
component

Maximal twisted
orbit types

V0,1 (D8 × {1}) ' (D8)

V1,1 (Zt18 ), (Dd
2), (D̃d

2)

V2,1 (Zt28 ), (Dd
4), (D̃d

4)

V3,1 (Zt38 ), (Dd
2), (D̃d

2)

V4,1 (Dd
8)

Let us now describe maximal twisted orbit types in V . By inspection, for any j =

0, 1, 2, 3, 4, if (Ho) is a maximal orbit type in Vj,1, then (Ho) is a maximal twisted type in

V (see Proposition 2.1.8, assumption (i)). In turn, the list of maximal twisted orbit types

in any Vj,1 is given in Table 2.1. We refer to Appendix A.1 for the explicit description of all

these subgroups, see also Remark 2.2.1.
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Equivariant spectral reduction and condition (A1). The linearization Dxfo(α,x) :

R × C−r (V ) → V of system (2.64) at O(α) respects isotypical decomposition (2.68). To

describe its action on isotypical components, define a (real) 4× 4-matrix ξ by

ξ :=


1 0 0

0 1 0

0 0 ei
2π
8

 (2.69)

and put

Aj := Dxf(α, xo(α))|V + ηC(ξj + ξ−j), j = 0, 1, 2, 3, 4 (2.70)

Then,

Dxfo(α,O(α))|Wj
=


Aj if j = 0, 4,Aj 0

0 Aj

 if j = 1, 2, 3.
(2.71)

Since the action of S1 on (g, q)-components of (2.60) is trivial, it follows from (2.66) and (2.69)–

(2.71) that det
(
Dxfo(α,O(α))|V S1

)
= (γgγq)

8 6= 0, hence (see (2.12)), P0(α, 0,O(α)) 6= 0 so

that system (2.64) satisfies condition (A1).

Characteristic quasi-polynomial. Next, let us consider the characteristic quasi-polynomial

P∗(α, λ,O(α)) (see (2.12)). For any j = 0, 1, 2, 3, 4, put

P̃j := λ+ γ − γ
√
κ exp

[(
α

2γg
− q0

2γq

)
+ i

(
ηqq0

2γq
− ηgα

2γg

)]
e−λT + 2η cos

(
2πj

8

)
eiψ. (2.72)

Then, the restriction of the characteristic quasi-polynomial to Vj,1 reads

Pj,1(α, λ,O(α)) =


P̃j if j = 0, 4,

(P̃j)2 if j = 1, 2, 3,

(2.73)

so that

P∗(α, λ,O(α)) =
4∏
j=0

Pj,1(α, λ,O(α)). (2.74)
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Condition (A2): existence of centers. In order to simplify the notations, put

x(α) :=
α

2γg
− qo

2γq
, y(α) :=

ηqqo
2γq
− ηgα

2γg
, (2.75)

and

aj + ibj := 2ηeiψ cos

(
2πj

8

)
. (2.76)

Let us identify the values of α for which O(α) is a center, i.e., we are looking for those values

of α for which there exists ω > 0 such that P∗(α, iw,O(α)) = 0. Equivalently,

iw = −γ + γ
√
κ exp(x(α) + i(y(α)− wT )) + aj + ibj, j = 0, 1, 2, 3, 4.

This complex equation can be reduced to the real equation

tan(y(α)− ω(α)T ) =
ω(α)− bj
γ − aj

, j = 0, 1, 2, 3, 4, (2.77)

with

ω(α) := γ
√
κex(α)

√
1− (γ − aj)2

γ2κe2x(α)
+ bj. (2.78)

From (2.75) and (2.78), it follows that for α large enough, the right-hand side of (2.77)

is close to

γ
√
κ

γ − aj
exp

(
α

2γg
− qo

2γq

)
.

Combining this with periodicity of the tangent function, one concludes that (2.77) has in-

finitely many solutions α together with the corresponding limit frequencies ω(α).

Proposition 2.2.2. Suppose α = αjo is a root of (2.77), (2.78) for some j = 0, 1, 2, 3, 4 and

γ > 2η cos(ψ) cos

(
2πj

8

)
and ω(αjo) > 2η cos(ψ) sin

(
2πj

8

)
. (2.79)

Then, the following continuous branches of relative equilibria bifurcate from the equilibrium

(αjo,O(αjo)) of equation (2.64):

• for j = 0, a branch with symmetry (D8);
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• for j = 1, two branches with symmetry (Zt18 ), four branches with symmetry (Dd
2) and

four branches with symmetry (D̃d
2);

• for j = 2, two branches with symmetry (Zt28 ), two branches with symmetry (Dd
4) and

two branches with symmetry (D̃d
4);

• for j = 3, two branches with symmetry (Zt38 ), four branches with symmetry (Dd
2) and

four branches with symmetry (D̃d
2);

• for j = 4, a branch with symmetry (Dd
8).

Proof. Let us show that the center O(αjo) is isolated (cf. condition (A2)). Put λ(α) :=

rrr(α) + iω(α) and rewrite the characteristic equation as follows (cf. (2.72)–(2.76)):

rrr(α) = −γ + γ
√
κ ex(α)−rrr(α)T cos(y(α)− ω(α)T ) + aj,

ω(α) = γ
√
κ ex(α)−rrr(α)T sin(y(α)− ω(α)T ) + bj,

(2.80)

where j = 0, . . . , 4. Assume that for α = αo, the equilibrium O(αo) is a center with the limit

frequency ω(αo) = ωo and put

xo := x(αjo), yo := y(αjo), x′o := x′(αjo) =
1

2γg
, y′o := y′(αjo) = − ηg

2γq
. (2.81)

Differentiating (2.80) with respect to α, one obtains

rrr′(αjo) = (γ − aj)(x′o − rrr′(αjo)T )− (ωo − bj)(y′o − ω′(αjo)T ),

ω′(αjo) = (ωo − bj)(x′o − rrr′(αjo)T ) + (γ − aj)(y′o − ω′(αjo)T ),

which leads to

rrr′(αjo) =
[(γ − aj)2x′o + (ωo − bj)2y′o]T + (γ − aj)x′o − (ωo − bj)y′o

(1 + (γ − aj)T )2 + (ωo − bj)2T 2
. (2.82)

Formulas (2.81), (2.82) show that rrr′(αjo) > 0 provided that relations (2.79) are satisfied.

Hence, relations (2.79) guarantee that the transversality condition for λ(αj) is satisfied at
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α = αjo, in which case the center O(αjo) is isolated. Moreover, relations (2.79) imply that

condition (iii) from Proposition 2.1.8 is satisfied. Since the other conditions have been

verified, the result follows.

Recall that η stands for the coupling strength. In particular, conditions (2.79) are satisfied

for all j for any relatively weak coupling.

Table 2.2 illustrates Proposition 2.2.2. Assume that η = 2, αg = 1, αq = 1, γg = 10−2,

γq = 1, γ = 15, κ =
√

0.2, q0 = 2, Eg = 1, Eq = 0.1, T = 2.5. For this set of parameters

conditions (2.79) are fulfilled for all (α, ω(α)) satisfying equations (2.77), (2.78). For α <

0.036, the equilibrium O(α) is stable. In Table 2.2, we localize Hopf bifurcation points along

the horizontal direction, and specify isotypical components Vj,1 along the vertical direction.

In each cell, we indicate the number of unstable roots of the corresponding characteristic

polynomial Pj,1 defined by (2.73). One can easily see a change of stability as α increases. An

entry of the table is circled to indicate a “jump” in the number of unstable roots and hence

a Hopf bifurcation point. In particular, Proposition 2.2.2 guarantees Hopf bifurcations of

branches of relative equilibria as follows:

(i) with symmetry (D8) for α ≈ 0.03606;

(ii) with symmetries (Zt18 ), (Dd
2) and (D̃d

2) for α ≈ 0.03607;

(iii) with symmetries (Zt28 ), (Dd
4) and (D̃d

4) for α ≈ 0.0361;

(iv) with symmetries (Zt38 ), (Dd
2) and (D̃d

2) for α ≈ 0.03613;

(v) with symmetry (D8) for α ≈ 0.03617;

(vi) with symmetries (Dd
8) and (Zt18 ) for α ≈ 0.0362,

to mention a few (see Proposition 2.2.2 for the number of branches of each type).
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2.2.4 D8-configuration: bifurcation of relative periodic solutions

Application of Theorem 2.1.14 to the laser system

In this subsection, we show how Theorem 2.1.14 can be applied to classify symmetries of rel-

ative periodic solutions, which bifurcate from branches of relative equilibria of system (2.64)

with n = 8. We restrict the presentation to bifurcations from relative equilibria that have

3 particular types of symmetry, (D8), (Zt18 ), and (Dd
8). These branches are listed under

the items (i), (ii), and (vi), respectively, on page 53. Further, an infinite number of Hopf

bifurcations of relative periodic solutions occurs along each branch of relative equilibria. To

be specific, we consider a few successive Hopf bifurcations at the beginning of each branch

of our choice. In contrast to the application of Proposition 2.1.8 to studying bifurcation of

relative equilibria (in which case, all the necessary symbolic computations were explicitly

presented), we have to resort to numerical computations for verifying conditions (A3), (A5)

and (ii), (iii) of Theorem 2.1.14.

Based on the numerical evidence, Theorem 2.1.14 allows us to predict the following

bifurcations of branches of relative periodic solutions.

Consider the (D8)-symmetric branch of relative equilibria, which is denoted by (i) on

page 53. The following branches of relative periodic solutions bifurcate from this branch (we

refer to Appendix A for the notation):

(i) with symmetries (Zt18Z
t1
8Zt18 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2) for α ≈ 0.0386;

(ii) with symmetries (Zt28Z
t2
8Zt28 ), (Dd

4D
d
4D
d
4), (D̃d

4D̃
d
4D̃
d
4) for α ≈ 0.0533;

(iii) with symmetry (D8D8D8) for α ≈ 0.0602.

Consider the (Zt1n )-symmetric branch of relative equilibria, which is denoted by (ii) on

page 53. The following branches of relative periodic solutions bifurcate from this branch:

(i) with symmetries (Zt18Z
t1
8Zt18 ) and (Zt28Z

t2
8Zt28 ) for α ≈ 0.0366;
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(ii) with symmetry (Zt38Z
t3
8Zt38 ) for α ≈ 0.0399;

(iii) with symmetries (Zt18Z
t1
8Zt18 ) and (Zt38Z

t3
8Zt38 ) for α ≈ 0.0416;

(iv) with symmetry (Zc8Zc8Zc8) for α ≈ 0.064;

(v) with symmetry (Zt28Z
t2
8Zt28 ) for α ≈ 0.0641;

(vi) with symmetry (Z8Z8Z8) for α ≈ 0.0788.

Consider the (Dd
8)-symmetric branch of relative equilibria, which is denoted by (vi) on

page 53. The following branches of relative periodic solutions bifurcate from this branch:

(i) with symmetries (Zt28Z
t2
8Zt28 ), (Dd

4D
d
4D
d
4), (D̃d

4D̃
d
4D̃
d
4) for α ≈ 0.0384;

(ii) with symmetry (D8D8D8) for α ≈ 0.0405;

(iii) with symmetries (Zt38Z
t3
8Zt38 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2) for α ≈ 0.0539;

(iv) with symmetry (Dd
8D
d
8D
d
8) for α ≈ 0.066;

(v) with symmetry (Dd
8D
d
8D
d
8) for α ≈ 0.0731;

(vi) with symmetries (Zt18Z
t1
8Zt18 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2) for α ≈ 0.0757.

Further bifurcations along these and other branches of relative equilibria can be classified

in a similar manner. Note that branches of relative periodic solutions with symmetries

(Ztj8Z
tj
8Z
tj
8 ), (Dd

4D
d
4D
d
4), (D̃d

4D̃
d
4D̃
d
4) come in pairs, while the branches with symmetries (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2) appear in

quadruples.

In the rest of this subsection, we show how the above bifurcations can be deduced from

Theorem 2.1.14. Given a relative equilibrium with symmetry group H, the verification of as-

sumptions of Theorem 2.1.14 splits into the following steps: (a) finding the isotypical decom-

position of H× S1-representation (2.31) and providing a list of maximal orbit types in each

56



component (see Subsections 2.2.4 and 2.2.4); (b) obtaining characteristic quasi-polynomials

associated with each isotypical component (see Subsection 2.2.4); and, (c) analyzing roots

of the quasi-polynomials and verifying conditions (A3), (A5), (i) and (ii) of Theorem 2.1.14

(see Subsections 2.2.4). The last step relies on numerical computations. Condition (A3) is

reduced to an explicit inequality in Subsection 2.2.4.

Symmetries of relative equilibria

To begin with, below we will describe some of the relative equilibria identified in the previous

subsection more explicitly.

Observe first that the group Dn described in Subsection 2.2.2 can be identified (for

convenience) with Dn = {1, ξ, . . . , ξn−1, κ, ξκ, . . . , ξn−1κ}, where

ξ := e
2πi
n =

cos(2π
n

) − sin(2π
n

)

sin(2π
n

) cos(2π
n

)

 and κ =

1 0

0 −1

 . (2.83)

Also, recall that the action of ξ, κ ∈ Dn on x = (g, q, a)T ∈ R⊕ R⊕ C ' V is defined as:

ξ(g, q, a)T = (g, q, ξa)T, κ(g, q, a)T = (g, q, a)T.

Let S(x̂) be a relative equilibrium of system (2.64) (see Remark 2.2.1). Fix an integer l

satisfying 0 ≤ l < n, put ζ := ξl and assume that

x̂ =
(
x̂o, ζx̂o, ζ2x̂o, . . . , ζn−1x̂o

)
, x̂o = (g, q, a) ∈ V , a 6= 0. (2.84)

One can easily verify that in this case, under the G := Dn × S1-action, the isotropy of x̂ is

completely determined by the relations

(ζk, z) ∈ Gx̂ ⇔ zζ−k = 1 ⇔ z = ξ−lk,

where 0 ≤ k ≤ n− 1, and

(κ, z) ∈ Gx̂ ⇔ l = 0 and z = 1.
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By direct verification, x̂ is of the form (2.84) if and only if

(Gx̂) =


(Dn × {1}) ' (Dn) if l = 0,

Dd
n if l = n

2
,

Ztln :=
{

(ξk, ξkl) ∈ Dn × S1 : k = 0, 1, . . . , n− 1
}

otherwise.

(2.85)

Remark 2.2.3. In what follows, as in Subsection 2.2.3, we will restrict ourselves to the case

n = 8. As it was established in Table 2.1, twisted subgroups listed in (2.85) do not exhaust

possible symmetries of relative equilibria of system (2.64). For example, one can easily check

that if

x̂ =
(
x̂1, x̂2, x̂3, x̂4, ξ

n
2 x̂1, ξ

n
2 x̂2, ξ

n
2 x̂3, ξ

n
2 x̂4
)
, x̂i ∈ V ,

then (Gx̂) = (Dd
2), and if

x̂ =
(
x̂1, ξ

n
2 x̂1, x̂2, ξ

n
2 x̂2, x̂3, ξ

n
2 x̂3, x̂4, ξ

n
2 x̂4
)
, x̂i ∈ V ,

then (Gx̂) = (D̃d
2). However, in order to keep this chapter reasonably simple and of appro-

priate size, we omit these cases.

Gx̂-isotypical decomposition of V c and maximal twisted orbit types

(a) Identification. In this subsubsection, we describe the H-isotypical decomposition of

the space V c, where H = Gx̂ for each isotropy group Gx̂ defined in (2.85). We will assume

that n > 2 is an even integer and put r := n/2. Notice that Dn × {1} and Dd
n can be

identified with Dn while Ztln can be identified with Zn.

Complex irreducible Zn-representations U ′j can be easily described: (a) the trivial repre-

sentation U ′0 = C, (b) U ′r = C with the natural antipodal action of Z2 := Zn/Zr, and (c)

U ′±j = C, where the Zn-action is given by

ξz = ξ±j · z, z ∈ C.
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In the case of the group Dn, we have the following irreducible Dn-representations: (a) the

trivial representation U0 = C, (b) the representation Ur = C with the natural antipodal

action of Z2 := Dn/Dr, and (c) the representations Uj = C ⊕ C for 0 < j < r with the

Dn-action given by

ξ(z1, z2) =
(
ξj · z1, ξ

−j · z2

)
, κ(z1, z2) = (z2, z1) (z1, z2 ∈ C).

Notice that Zn ⊂ Dn, therefore, for 0 < j < r, we have the decomposition

Uj = U ′j ⊕ U ′−j.

We do not consider other (one-dimensional) irreducible Dn-representations since they are

irrelevant for the decomposition of the substitutional Dn-representation we are dealing with

in what follows.

If H ' Zn, then the complex H-representation V c admits the following Zn-isotypical

decomposition

V c = U0 ⊕ U+
1 ⊕ U−1 ⊕ · · · ⊕ U+

r−1 ⊕ U−r−1 ⊕ Ur, (2.86)

where the components U±j (resp. U0 and Ur) are modeled on the complex irreducible Zn-

representation U ′±j (resp. U ′0 and U ′r). Furthermore, if H ' Dn, then

V c = U0 ⊕ U1 ⊕ · · · ⊕ Ur−1 ⊕ Ur, (2.87)

where Uj = U+
j ⊕ U−j for 0 < j < r and the isotypical component Uj is modeled on the

irreducible Dn-representation Uj. Also, U0 and Ur are modeled on U0 and Ur, respectively.

Remark 2.2.4. (i) The complexification V c of the space V := R2 ⊕ C = R2 ⊕ (R ⊕ R)

can be represented as

V c = C2 ⊕
(
C⊕ C

)
= C4, (2.88)

thus V c = (V c)n = (C4)n for which decomposition (2.86) takes place.
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(ii) Any complex H-equivariant linear operator A : V c → V c is also Zn-equivariant, thus

it preserves isotypical decomposition (2.86).

(iii) Clearly, the space V c admits a natural S1-action induced by the complex multiplication.

Put K := H×S1. Then (cf. (2.31)), the S1-action converts the (complex) H-isotypical

decomposition (2.87) into a (real) K-isotypical decomposition

V c = U0,1 ⊕ U1,1 ⊕ · · · ⊕ Ur−1,1 ⊕ Ur,1. (2.89)

(iv) By inspection, for n = 8 (our case study), if (H) is a maximal twisted orbit type in an

isotypical component of V c, then (H) is a maximal twisted orbit type in V c itself.

(b) H := Dn × {1}-isotypical decomposition of V c. One can explicitly describe the

H-isotypical components of (2.87) as follows:

U0 =
{

(z, z, . . . , z) : z ∈ C4
}
,

Uj = U+
j ⊕ U−j , U±j :=

{
(z, ξ±jz, . . . , ξ±j(n−1)z) : z ∈ C4

}
(0 < j < r),

Ur = {(z,−z, z,−z, . . . , z,−z) : z ∈ C4}.

Further, one can easily verify that the coupling matrix C : V c → V c given by (2.65) preserves

the H-isotypical components. Put

C ±j := C |U±j , C0 := C |U0
, Cr := C |Ur (0 < j < r). (2.90)

Then,

C ±j =

0 0

0 2aj

⊗Ψ, C0 = −Cr =

0 0

0 2

⊗Ψ

where aj = Re (ξj) = cos (2πj/n) for 0 < j < r, and

Ψ :=

cosψ − sinψ

sinψ cosψ

 . (2.91)
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Finally, for n = 8, the list of maximal twisted types in each isotypical component of

the H := D8 × {1}-representation V c is given in Table 2.3 (see Appendix A.2 for the exact

definition of the related twisted subgroups).

Table 2.3: Maximal twisted orbit types in the isotypical components of the D8 × {1}-
representation V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (D8D8D8)

U1,1 (Zt18Z
t1
8Zt18 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2)

U2,1 (Zt28Z
t2
8Zt28 ), (Dd

4D
d
4D
d
4), (D̃d

4D̃
d
4D̃
d
4)

U3,1 (Zt38Z
t3
8Zt38 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2)

U4,1 (Dd
8D
d
8D
d
8)

(c) H := Ztln-isotypical decomposition of V c. For this group H, the H-isotypical com-

ponents of (2.87) can be described as follows (cf. (2.88)):

U0 = U0 ⊕W0,

where

U0 := {(z, z, . . . , z) : z ∈ C2}

and

W0 :=



 z1

z2


T

,

 ξlz1

ξ−lz2


T

, . . . ,

 ξ(n−1)lz1

ξ−(n−1)lz2


T

T

:

 z1

z2

 ∈ C⊕ C

 ;

U±j := U ±
j ⊕W ±

j (0 < j < r),

where

U ±
j =

{(
z, ξ±jz, ξ±2jz, . . . , ξ±(n−1)jz

)
: z ∈ C2

}
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and

W ±
j :=



 z1

z2


T

,

 ξ∓j+lz1

ξ∓j−lz2


T

, . . . ,

 ξ(n−1)(∓j+l)z1

ξ(n−1)(∓j−l)z2


T

T

:

 z1

z2

 ∈ C⊕ C

 ;

Ur := Ur ⊕Wr,

where

Ur := {(z,−z, z,−z, . . . , z,−z) : z ∈ C2}

and

Wr :=



 z1

z2


T

,

 −ξlz1

−ξ−lz2


T

,

 ξ2lz1

ξ2lz2


T

, . . . ,

 −ξl(n−1)z1

−ξ−l(n−1)z2


T

T

:

 z1

z2

 ∈ C⊕ C

 .

Under the same notations as in (2.90), one has

C ±j :=

0 0

0 2a±j

⊗Ψ, a±j = cos
2π(±j − 1)l

n
, 0 < j < r,

C0 :=

0 0

0 2a0

⊗Ψ, Cr :=

0 0

0 2ar

⊗Ψ,

where a0 := cos 2πl
n

and ar := − cos 2πl
n

.

For n = 8, one obtains the list of maximal twisted types in the isotypical components of

the H := Ztl8 × {1}-representation V c, l = 1, 2, 3, given in Table 2.4 (see Appendix A.3 for

the definition of the related twisted subgroups).

(d) H := Dd
n-isotypical decomposition of V c. In this case, one can explicitly describe

the H-isotypical components of (2.87) as follows:

U0 = U0 ⊕W0,
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Table 2.4: Maximal twisted orbit types in the isotypical components of the Ztl8 × {1}-
representation V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (Z8Z8Z8)

U1,1 (Zt18Z
t1
8Zt18 )

U2,1 (Zt28Z
t2
8Zt28 )

U3,1 (Zt38Z
t3
8Zt38 )

U4,1 (Zc8Zc8Zc8)

where

U0 := {(z, z, . . . , z) : z ∈ C2}

and

W0 :=



 z1

z2


T

,

 −z1

−z2


T

,

 z1

z2


T

, . . . ,

 −z1

−z2


T

T

:

 z1

z2

 ∈ C⊕ C

 ;

U±j := U ±
j ⊕W ±

j (0 < j < r),

where

U ±
j =

{(
z, ξ±jz, ξ±2jz, . . . , ξ±(n−1)jz

)
: z ∈ C2

}
and

W ±
j :=



 z1

z2


T

,

 −ξ∓jz1

−ξ∓jz2


T

, . . . ,

 (−ξ∓j)n−1z1

(−ξ∓j)n−1z2


T

T

:

 z1

z2

 ∈ C⊕ C

 ;

Ur := Ur ⊕Wr, (2.92)

where

Ur := {(z,−z, z,−z, . . . , z,−z) : z ∈ C2}
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and

Wr :=



 z1

z2


T

,

 z1

z2


T

, . . . ,

 z1

z2


T

T

:

 z1

z2

 ∈ C⊕ C

 .

Also,

C ±j :=

0 0

0 2a±j

⊗Ψ, a±j = − cos
2πj

n
(0 < j < r),

Cr := −C0 :=

0 0

0 2

⊗Ψ.

Hence, for n = 8, the list of maximal twisted types in the isotypical components of the

H := Dd
n-representation V c. is given in Table 2.5 (cf. Table 2.3). See Appendix A.4 for the

definitions of the related twisted subgroups.

Table 2.5: Maximal twisted orbit types in the isotypical components of the Dd
8-representation

V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (D8D8D8)

U1,1 (Zt18Z
t1
8Zt18 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2)

U2,1 (Zt28Z
t2
8Zt28 ), (Dd

4D
d
4D
d
4), (D̃d

4D̃
d
4D̃
d
4)

U3,1 (Zt38Z
t3
8Zt38 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2)

U4,1 (Dd
8D
d
8D
d
8)

Linearization on a relative equilibrium and characteristic quasi-polynomials

For any x̂o = (g, q, a) ∈ R⊕ R⊕ C ' V , one has (cf. (2.7)–(2.8) and (2.60)):

f̃(α, iω, x̂o) =


α− γgg − 1

Eg
e−q(eg − 1)|a|2

q0 − γqq − 1
Eq

(1− e−q) |a|2

−γa+ γ
√
κ exp

[
(1−iηg)g−(1−iηq)q

2

]
ae−iωT

 . (2.93)
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Take λ ∈ C. Combining (2.93) with (2.26), (2.27) and (2.29) allows us to define a “lineariza-

tion operator” RV
α (λ) : V c → V c by

RV
α (λ) :=


−γg − 1

Eg
e−qeg|a|2 1

Eg
e−q(eg − 1)|a|2 − 2

Eg
e−q(eg − 1)a

0 −γq − 1
Eq
e−q|a|2 − 2

Eq
(1− e−q)a

B31(λ) B32(λ) B33(λ)

 , (2.94)

where

B31(λ) =
γ
√
κ(1− iηg)

2
exp

[
(1− iηg)g − (1− iηq)q

2

]
ae−iωT−λT ;

B32(λ) = −γ
√
κ(1− iηq)

2
exp

[
(1− iηg)g − (1− iηq)q

2

]
ae−iωT−λT ;

B33(λ) = −γ + γ
√
κ exp

[
(1− iηg)g − (1− iηq)q

2

]
ae−iωT−λT .

For any x̂ = (x̂1, . . . , x̂n) ∈ V , put

f̃o(α, iω, x̂) :=
(̃
f(α, iω, x̂1), . . . , f̃(α, iω, x̂n)

)
. (2.95)

For a given α, S(x̂(α)) is a relative equilibrium for system (2.64) corresponding to the

frequency ω(α) if and only if

Φ(α, ω(α), x̂(α)) := f̃o(α, iω(α), x̂(α)) + ηC x̂(α)− ω(α)Jx̂(α) = 0 (2.96)

Assume that S(x̂(α)) is a relative equilibrium with H := Gx̂(α) of the form (2.85). Take

Rα(λ) determined by (2.96) and (2.26)–(2.27) and consider decompositions (2.86)–(2.87).

Then, one has:

Rα(λ)|U =


RV
α (λ) + ηC0 if U = U0;

RV
α (λ) + ηC ±j if U = U±j , 0 < j < r,

RV
α (λ) + ηCr if U = Ur.

(2.97)

We refer to Subsection 2.2.4, where explicit formulas for C0, C ±j and Cr are given according

to three possible values of H. Combining (2.97) with (2.28) and (2.32), one can define

the characteristic quasi-polynomials P̂j(α, λ), j = 0,±1, . . . ,±(r − 1), r and study Hopf

bifurcation of relative periodic solutions for different values of H = Dn × {1}, Dd
n, Ztln .
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Condition (A3)

Suppose that equation (2.64) with n = 8 has a relative equilibrium S(x̂), x̂ = (g, q, a),

for some α̂ and ω̂. Without loss of generality, assume that a ∈ C is real. Take decomposi-

tion (2.68) and let us describe the restriction of matrix (2.23) to R×Wj. For any j = 0, . . . , 4,

define the operator Bj = Bj(α̂, ω̂, x̂) : V → V by

Bj := RV
α̂ (0) + η(ξj + ξ−j)C − ω̂JV . (2.98)

Here RV
α̂ (0) is considered as a real linear operator in V ' R2 ⊕ C (see (2.94)) and JV :

V → V is given by JV(g̃, q̃, ã)T = (0, 0, iã)T; see also (2.63) and (2.69). Define a vector

B = B(α̂, ω̂, x̂) ∈ V ' R2 ⊕ C by

B :=
(

0, 0, −iTγ
√
κ exp

[
(1− iηg)g − (1− iηq)q

2

]
ae−iωT − ia

)T

. (2.99)

Then (see (2.23), (2.93), (2.98) and (2.99)),

[
DωΦ(α̂, ω̂, x̂) | DxΦ(α̂, ω̂, x̂)

]
R×Wj

=


[B | Bj] if j = 0, 4[B | Bj] 0

0 [B | Bj]

 if j = 1, 2, 3.
(2.100)

Put B := [B | Bj]. It follows from (2.100) that condition (A3) is satisfied if rank(B) = 4.

Note that (0, 0, i)T ∈ R2 ⊕ C is an eigenvector of Bj corresponding to the zero eigenvalue.

Denote by E the direct sum of generalized eigenspaces corresponding to nonzero eigenvalues

of Bj. Clearly, rank(B) = 4 if

(a) rank(Bj) = 3 (i.e., zero is a simple eigenvalue of Bj), and

(b) Be 6∈ E , where e := (1, 0, 0, 0, 0) ∈ R5 ' R⊕ R2 ⊕ C ' R⊕ V .

Remark 2.2.5. Condition (a) can be effectively expressed in terms of the derivative of the

characteristic polynomial associated with Bj. Condition (b) is satisfied if

(b)′ Im
(
−iTγ

√
κ exp

[
(1−iηg)g−(1−iηq)q

2

]
ae−iωT

)
− a 6= 0, where a ∈ R.
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Isotypical crossing

In order to apply Theorem 2.1.14 to classify symmetries of relative periodic solutions bifur-

cating from relative equilibria S(x̂) with (Gx̂) given by (2.85), it remains to analyze the iso-

typical crossing of the roots of characteristic quasi-polynomials P̂j(α, λ), j = 0,±1, . . . ,±3, 4

(cf. (2.97), (2.28) and (2.32)), as α crosses some critical value αo. Numerical results illus-

trating isotypical crossing of characteristic roots through the imaginary axis are described in

Table 2.6 for (Gx̂) = Dn×{1}, in Tables 2.7, 2.8, 2.9 for (Gx̂) = Zt18 ,Z
t2
8 ,Z

t3
8 , respectively, and

in Table 2.10 for (Gx̂) = Dd
8. All the parameters except α are the same as in Section 2.2.3.

In these tables, we follow the same agreement as in Table 2.2 except that we use a circle to

indicate a Hopf bifurcation point and a rectangle to indicate a steady-state bifurcation. In

particular, an entry in a given cell indicates the number of unstable roots for the charac-

teristic quasi-polynomial P̂j(α, λ) associated with the isotypical component Uj,1 (shown in

the left column) for the corresponding interval of α-values (shown in the upper row). The

results presented in Subsection 2.2.4 follow from these tables.

2.2.5 Sn-configuration of identical semiconductor lasers

In this subsection, we apply Proposition 2.1.8 and Theorem 2.1.14 to a network of n all-to-

all coupled identical laser devices (2.60). The adjacency matrix K for this configuration is

given by

K :=



0 1 1 . . . 1 1

1 0 1 . . . 1 1

1 1 0 . . . 1 1

...
...

...
. . .

...
...

1 1 1 . . . 0 1

1 1 1 . . . 1 0


.
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Thus, we are interested in solutions to the equation

ẋ = f(α, x, xt) := fo(α, xt) + ηC x, x ∈ V, (2.101)

where

C = K ⊗ C =



0 C C . . . C C

C 0 C . . . C C

C C 0 . . . C C

...
...

...
. . .

...
...

C C C . . . 0 C

C C C . . . C 0


with C =


0 0 0

0 0 0

0 0 eiψ

 . (2.102)

The space V = R⊕R⊕C ' R4 is equipped with the natural S1-representation (S1 acts

trivially on the first two components and by complex multiplication on the C-component),

and V = V n. The group Sn acts naturally on V by permutation of the coordinates of the

vector x ∈ V . This action suggests the orthogonal Sn × S1-representation on V given by

(h, eiτ )x =
(
eiτxh(1), eiτxh(2), . . . , eiτxh(n)

)
, eiτ ∈ S1, h ∈ Sn, (2.103)

where x = (x1, x2, . . . , xn) ∈ V . Thus, system (2.101) satisfies condition (A0).

2.2.6 S5-configuration: bifurcation of symmetric relative equilibria

Hereafter, we assume that n = 5.

Isotypical decomposition and maximal twisted orbit types.

To apply Proposition 2.1.8 for studying relative equilibria bifurcating from the equilib-

rium O(α), observe that V admits the isotypical S5-decomposition:

V = W0 ⊕W1, (2.104)
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where

W0 =
{

(x1, . . . , x5) ∈ V : x1 = · · · = x5
}

(2.105)

is modeled on the one-dimensional trivial S5-representation V0, while

W1 =
{

(x1, . . . , x5) ∈ V : x1 + · · ·+ x5 = 0
}

(2.106)

is modeled on the standard four-dimensional irreducible representation V4 (sometimes called

augmentation submodule [54]). Clearly, dimW0 = 4 and dimW1 = 16. Observe also that

decomposition (2.104) can be refined to the S5 × S1-decomposition

Wj = Vj,0 ⊕ Vj,1, j = 0, 1, (2.107)

where Vj,0 (resp. Vj,1) corresponds to the trivial (resp. nontrivial) S1-action. Clearly, dimV0,0 =

dimV0,1 = 2 while dimV1,0 = dimV1,1 = 8. Also, V1,0 is reducible of multiplicity two (essen-

tially modeled on the augmented module), while V1,1 is irreducible.

In order to study relative equilibria in system (2.101), one needs to identify their twisted

isotropy subgroups with respect to the S5×S1-action, see Remark 2.2.1. The list of maximal

twisted types in Vj,1, j = 0, 1, is in given in Table 2.11. The explicit description of all these

subgroups can be found in A.5.

Table 2.11: Maximal twisted orbit types in each isotypical component of the S5-
representation V .

Isotypical
component

Maximal twisted
orbit types

V0,1 (S5 × {1}) ' (S5)

V1,1 (D6), (S4), (Dd
6), (Dd

4), (Zt4), (Zt5), (Zc6)

Equivariant spectral reduction and condition (A1).

The linearization

Dxfo(α,x) : R× C−T (V )→ V
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of system (2.101) at O(α) respects isotypical decomposition (2.107) (see also (2.104)). Then,

setting

A :=

(
√
κ exp

[
(1− iηg) αγg − (1− iηq) q0γq

2

]
− 1

)
γ (2.108)

(cf. (2.66)), and combining (2.105)–(2.106) with (2.61)–(2.101), one obtains the following

formulas for the restrictions Aj,k := Dxfo(α,x)|Vj,k , j, k = 0, 1, to the isotypical components:

Aj,k =



−γg 0

0 −γq

 if j = 0, k = 0;

A+ 4ηeiψ if j = 0, k = 1;−γgId 4 0

0 −γqId 4

 if j = 1, k = 0;

(
A− ηeiψ

)
⊗ Id 4 if j = 1, k = 1,

(2.109)

where A+4ηeiψ and A−ηeiψ are considered as real 2×2-matrices. Since the action of S1 on

(g, q)-components of (2.60) is trivial, it follows from (2.109) that det
(
Dxfo(α,O(α))|V S1

)
=

(γgγq)
5 6= 0, hence (see (2.12)), P0(α, 0,O(α)) 6= 0 so that system (2.101) satisfies condi-

tion (A1).

Characteristic quasi-polynomial and condition (A2)

Next, let us consider the characteristic quasi-polynomial P∗(α, λ,O(α)) (see (2.12)). Put

P := λ+ γ − γ
√
κ exp

[(
α

2γg
− q0

2γq

)
+ i

(
ηqq0

2γq
− ηgα

2γg

)]
e−λT . (2.110)

Then, the restriction of the characteristic quasi-polynomial to Vj,1 reads

Pj,1(α, λ,O(α)) =


P + 4ηeiψ if j = 0

(P − ηeiψ)4 if j = 1

(2.111)
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so that

P∗(α, λ,O(α)) = P0,1(α, λ,O(α)) · P1,1(α, λ,O(α)) (2.112)

To study condition (A2), we need identify the values of α for which O(α) is a center, i.e.,

we are looking for those values of α for which there exists ω > 0 such that

Pj,1(α, iω, O(α)) = 0, j = 0, 1. (2.113)

Proposition 2.2.6. Assume that α = αjo is a root of (2.113) for j = 0 (resp. j = 1) with a

corresponding ω = ω(αjo), and

γ > 4η cos(ψ) and ω(αjo) > 4η sin(ψ) (2.114)(
resp. γ > −η cos(ψ) and ω(αjo) > −η sin(ψ)

)
, (2.115)

then, the center O(αjo) is isolated and condition (iii) from Proposition 2.1.8 is satisfied.

Furthermore, the following continuous branches of relative equilibria bifurcate from the equi-

librium (αjo, O(αjo)) of equation (2.101):

• for j = 0, a branch with symmetry (S5);

• for j = 1, ten branches with symmetry (D6), five branches with symmetry (S4), ten

branches with symmetry (Dd
6), fifteen branches with symmetry (Dd

4), thirty branches

with symmetry (Zt14 ), twenty four branches with symmetry (Zt15 ), and twenty branches

with symmetry (Zt26 ).

Recall that η stands for the coupling strength. Thus, conditions (2.114)–(2.115) are

satisfied for any relatively weak coupling.

The proof of Proposition 2.2.6 follows the same argument as in the proof of Proposi-

tion 2.2.2.

Proposition 2.2.6 is illustrated in Table 2.12. We use the same set of parameters as in

Subsection 2.2.2, i.e., η = 2, ηg = 1, ηq = 1, γg = 10−2, γq = 1, γ = 15, κ =
√

0.2, q0 = 2,
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Eg = 1, Eq = 0.1, T = 2.5. Note that for these parameters, conditions (2.114) and (2.115)

are fulfilled for all (α, ω(α)) satisfying equation (2.113). The equilibrium O(α) is stable for

α < 0.036. Table 2.12 uses the same agreement as in Table 2.2. Proposition 2.2.6 guarantees

Hopf bifurcations of branches of relative equilibria

(i) with symmetry (S5) for α ≈ 0.036018, α ≈ 0.0361215, α ≈ 0.0364415;

(ii) with symmetries (D6), (Dd
6), (S4), (Dd

4), (Zt15 ), (Zt14 ) and (Zt26 ) for α ≈ 0.0361515,

α ≈ 0.0362365, α ≈ 0.0365865,

to mention a few (see Proposition 2.2.6 for the number of branches of each type and Ap-

pendix A.5 for the explicit description of the subgroups).

2.2.7 S5-configuration: bifurcation of relative periodic solutions

Application of Theorem 2.1.14 to the laser system

In this subsection, we use Theorem 2.1.14 to classify symmetries of relative periodic solu-

tions bifurcating from branches of relative equilibria of system (2.101). In order to avoid

repetitions, we omit sections regarding finding linearization on a relative equilibrium and

characteristic quasi-polynomials as well as checking condition (A3), because they are almost

verbatim copies of the corresponding segments in Subsection 2.2.4.

Gx̂-isotypical decomposition of V c and maximal twisted orbit types

In order to use Theorem 2.1.14, first, we need to identify isotypical decompositions, maximal

twisted orbit types and restrictions of the matrix C to isotypical components relevant to the

symmetry groups listed in Table 2.11.

Recall from Remark 2.2.4 that the complexification V c of the space V := R2 ⊕ C =

R2 ⊕ (R⊕ R) can be represented as

V c = C2 ⊕
(
C⊕ C

)
= C4, (2.116)

75



T
ab

le
2.

12
:

N
u
m

b
er

of
u
n
st

ab
le

ei
ge

n
va

lu
es

in
ea

ch
is

ot
y
p
ic

al
co

m
p

on
en

t
fo

r
th

e
eq

u
il
ib

ri
u
m
O

(α
)

Is
o
ty

p
ic

a
l

co
m

p
o
n
e
n
t

In
te

rv
a
ls

fo
r

v
a
lu

e
s

o
f

p
a
ra

m
e
te

r
α
·1

02

[3
.6

00
0,

3.
60

16
]

[3
.6

02
0,

3.
61

19
]

[3
.6

12
4,

3.
61

49
]

[3
.6

15
4,

3.
62

34
]

[3
.6

23
9,

3.
64

39
]

[3
.6

44
4,

3.
65

84
]

[3
.6

58
9,

3.
67

44
]

[3
.6

74
9,

3.
68

29
]

[3
.6

83
4,

3.
69

59
]

V
0
,1

0
2

4
4

4
6

6
8

8

V
1
,1

0
0

0
8

16
16

24
24

32

4 ⊕ j=
0

V
j,

1
0

2
4

12
20

22
30

32
40

76



therefore, V c = (V c)5 = (C4)5.

(a) We consider the case H := S5 × {1}. First, we consider the subgroup Z5 ' Z5 × {1}

and describe the Z5-isotypical decomposition of V c. Namely, we have

V c = U0 ⊕ U1 ⊕ U2,

where

U0 = {(z, z, z, z, z) : z ∈ C4}, Uj = U+
j ⊕ U−j , j = 1, 2,

U±j =
{

(z, ξ±jz, ξ±2jz, ξ±3jz, ξ±4jz) : z ∈ C4
}

j = 1, 2, ξ = e
2πi
5 .

Here, the action of any ζ ∈ S on (z1, z2, z3, z4)T ∈ C4 is given by

ζ(z1, z2, z3, z4)T = (z1, z2, ζz3, ζz4)T.

One can easily notice that the coupling matrix C : V c → V c given by (2.102) preserves the

Z5-isotypical components. Indeed, for any z ∈ C4

C (z, z, z, z, z) = 4 (Cz,Cz, Cz, Cz, Cz) ∈ U0

C
(
z, ξ±jz, ξ±2jz, ξ±3jz, ξ±4jz

)
= −

(
Cz, ξ±jCz, ξ±2jCz, ξ±3jCz, ξ±4jCz

)
∈ U±j , j = 1, 2.

Using the above Z5-isotypical decomposition, we obtain for H := S5 × {1} the following

S5-isotypical decomposition of V c:

V c = U0 ⊕ U1 (2.117)

where U1 = U+
1 ⊕ U−1 ⊕ U+

2 ⊕ U−2 . Moreover

C |U0
=

0 0

0 4

⊗Ψ, C |U±j =

0 0

0 −1

⊗Ψ, j = 1, 2. (2.118)

where

Ψ :=

cosψ − sinψ

sinψ cosψ

 . (2.119)
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Hence, for the H := S5-representation V c, we have the list of maximal twisted types in

the isotypical components given in Table 2.13 (see Appendix A.5 for the definitions of the

subgroups).

Table 2.13: Maximal twisted orbit types in the isotypical components of the S5 × {1}-
representation V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (S5)

U1,1 (D6), (S4), (Dddd
6), (Dddd

4), (Zt1t1t14 ), (Zt1t1t15 ), (Zt2t2t26 )

(b) We consider now the group H := Zt15 := {(1, 1), (ξ, ξ), (ξ2, ξ2), (ξ3, ξ3), (ξ4, ξ4)}. Put

W := {(z1, z2, 0, 0)T : z1, z2 ∈ C} (2.120)

V := {(0, 0, z1, z2)T : z1, z2 ∈ C}, (2.121)

and define

W0 := {(z, z, z, z, z) : z ∈ W},

V0 := {(z, z, z, z, z) : z ∈ V},

W±
j := {(z, ξ±jz, ξ±2jz, ξ±3jz, ξ±4jz) : z ∈ W},

V ±j := {(z, ξ±jz, ξ±2jz, ξ±3jz, ξ±4jz) : z ∈ V}, j = 1, 2, ξ = e
2πi
5 .

Then, one can easily verify that we have the following H-isotypical decomposition of V c:

V c = U0 ⊕ U1 ⊕ U2,

where U0 = W0 ⊕ V −1 , U1 = V0 ⊕ V −2 and U2 = V +
1 ⊕ V +

2 . Moreover, C |W0
= C |W±j = 0,

C |V0 = 4Ψ, C |V ±j = −Ψ.

Table 2.14 shows the list of maximal twisted types in the isotypical components for the

H := Zt15 -representation V c, (see Appendix A.6 for the definitions of the subgroups).
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Table 2.14: Maximal twisted orbit types in the isotypical components of the Zt15 -
representation V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (Zt15 )

U1,1 (Zt1,t1t1t15 )

U2,1 (Zt1,t1t1t15 )

(c) Next, we consider H := Dd
6. Using (2.120) and (2.121), define

W0 := {(z1, z1, z2, z2, z1) : z1, z2 ∈ W},

W2 := W+
2 ⊕W−

2 ,

W±
2 := {(z, ρ±2z, 0, 0, ρ±4z) : z ∈ W}, ρ := e

2πi
6 ,

W3 := {(0, 0, z,−z, 0) : z ∈ W},

V0 := {(z1, z1, z2, z2, z1) : z1, z
2 ∈ V},

V2 := V +
2 ⊕ V −2 ,

V ±2 := {(z, ρ±2z, 0, 0, ρ±4z) : z ∈ V}, ρ := e
2πi
6 ,

V3 := {(0, 0, z,−z, 0) : z ∈ V}.

Then by inspection, we have the following H-isotypical decomposition of V c:

V c = U0 ⊕ U1 ⊕ U2 ⊕ U3

where

U0 = W0 ⊕ V3, U1 = V2, U2 = W2, U3 = W3 ⊕ V0.
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The restrictions of C to the subspaces Uj are given by

C |Uj =



06×6 if j = 0,

−Id 2 ⊗Ψ if j = 1,

04×4 if j = 2,

diag
(
0, 4, −1

)
⊗Ψ if j = 3.

Table 2.15 shows the list of maximal twisted types in the isotypical components for the

H := Dd
6-representation V c, (see Appendix A.7 for the definitions of the subgroups).

Table 2.15: Maximal twisted orbit types in the isotypical components of the Dd
6-

representation V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (Dd
6)

U1,1 (Zt3,t1t1t16 ), (Dd,ddd
2 ), (Dd,d̂̂d̂d

2 )

U2,1 (Zt3,t2t2t26 ), (Dd
2), (Dd,zzz

2 )

U3,1 (Dd,ddd
6 )

(d) Finally, we consider isotropy group H := S4. One can easily verify that the H-isotypical

decomposition of V c is given by

V c = U0 ⊕ U4,

where the component U4 is modeled on the irreducible S4-representation which is equivalent

to the augmentation submodule of S4. These components are exactly:

U0 =
{

(z1, z2, z2, z2, z2) : z1, z2 ∈ C4
}

U4 =
{

(0, z1, z2, z3, z4) : z1 + z2 + z3 + z4 = 0, zi ∈ C
}
.
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Put U1
0 := {(z, z, z, z, z) : z ∈ C4} and U2

0 := {(−4z, z, z, z, z) : z ∈ C4}. Then, we can

represent the restriction of C to each component as follows:

C |U1
0

=

0 0

0 4

⊗Ψ, C |U2
0

= C |U4
=

0 0

0 −1

⊗Ψ.

Table 2.16 shows the list of maximal twisted types in the isotypical components for the

H := S4-representation V c, (see Appendix A.8 for the definitions of the subgroups). Observe

that, although the isotypical component U4,1 contains a maximal twisted orbit type (D3),

we cannot guarantee the existence of a branch with this symmetry since U0,1 contains (S4)

as a maximal twisted orbit type.

Table 2.16: Maximal twisted orbit types in the isotypical components of the S4-representation
V c.

Isotypical
component

Maximal twisted
orbit types

U0,1 (S4)

U4,1 (Zt2t2t24 ), (Dddd
4), (Dddd

2), (Zt1t1t13 )

Isotypical crossing

In order to apply Theorem 2.1.14 to classify symmetries of relative periodic solutions bifur-

cating from relative equilibria S(x̂) with (Gx̂) listed above, it remains to analyze the isotypical

crossing of the roots of characteristic quasi-polynomials P̂j,1(α, λ), as α crosses some critical

value αo. Numerical results illustrating isotypical crossing of characteristic roots through the

imaginary axis are described in Table 2.17 for (Gx̂) = (S5), in Table 2.18 for (Gx̂) = (Zt15 ),

in Table 2.19 for (Gx̂) = (Dd
6), and in Table 2.20 for (Gx̂) = (S4). All the parameters except

α are the same as in Subsection 2.2.6. In these tables, we follow the same agreement as in

Table 2.2.
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Based on the numerical evidence, Theorem 2.1.14 allows us to predict the following

bifurcations of branches of relative periodic solutions.

(a) The following branches of relative periodic solutions bifurcate from (S5)-symmetric

branch of relative equilibria:

(i) with symmetry (S5) for α ≈ 0.0744915, α ≈ 0.612203;

(ii) with symmetries (D6), (S4), (Dddd
6), (Dddd

4), (Zttt14 ), (Zttt5), (Zt2t2t26 ) for α ≈ 0.054159,

α ≈ 0.190194, α ≈ 0.2253355.

(b) The following branches of relative periodic solutions bifurcate from (Zt15 )-symmetric

branch of relative equilibria:

(i) with symmetry (Zt15 ) for α ≈ 0.072873;

(ii) with symmetries (Zt1,t1t1t15 ) for α ≈ 0.0367485, α ≈ 0.072873.

(c) The following branches of relative periodic solutions bifurcate from (Dd
6)-symmetric

branch of relative equilibria:

(i) with symmetries (Zt3,t1t1t16 ), (Dd,ddd
2 ) and (Dd,d̂̂d̂d

2 ) for α ≈ 0.0362275, α ≈ 0.036575,

α ≈ 0.036825, α ≈ 0.037475, α ≈ 0.037825;

(ii) with symmetry (Dd,ddd
6 ) for α ≈ 0.0363745, α ≈ 0.036675, α ≈ 0.037125, α ≈

0.037175, α ≈ 0.037525, α ≈ 0.037625.

Remark 2.2.7. Note that branches of relative periodic solutions with symmetries (Zt3,t2t2t26 ),

(Dd
2) and (Dd,zzz

2 ) do not bifurcate from (Dd
6) symmetric relative equilibrium because S1 acts

trivially in isotypical component U2 (see case (c) in Subsubsection 2.2.4).

(d) The following branches of relative periodic solutions bifurcate from (S4)-symmetric

branch of relative equilibria:
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(i) with symmetry (S4) for α ≈ 0.0365895;

(ii) with symmetries (Zt2t2t24 ), (Dddd
4), (Dddd

2) and (Zt1t1t13 ) for α ≈ 0.0362445, α ≈ 0.0366295;

2.3 System with Hysteresis Operators

In this section, we consider an example of nonsmooth FDEs, in which nonsmoothness is

introduced by a hysteresis operator [84]. To this end, we set up a model of an electric motor

system with magnetic hysteresis losses in the inductor.

First, let us consider equations of an electric motor system without hysteresis, which is

shown in Figure 2.1:

Cv̇ + w + βv3 − αv = j0,

Lẇ + κθ̇ = v,

mρ2θ̈ + 2mρρ̇θ̇ = κw − γθ̇,

mρ̈−mρθ̇2 = −σ(ρ− ρ0)− γ̂ρ̇.

(2.122)

Here v is the voltage across the capacitor with the capacitance C; w denotes the current

through the motor and the inductor with the inductance L; the active circuit element com-

posed of the battery and the tunnel diode has the cubic current-voltage characteristics

i = βv3 − αv with β > 0; j0 is the constant current from the DC current source. The

motor’s rotor is modeled by a point mass m which has polar coordinates θ, ρ; the term

−σ(ρ − ρ0) is the elastic force; γθ̇ and γ̂ρ̇ are the radial component and the torque of the

friction force, respectively. Further, for simplicity, it is assumed that all losses are due to

friction, while the losses associated with electrical resistance and conversion of the electrical

energy into the mechanical energy are negligible. Hence, vmw = τ θ̇, where vm is the voltage

applied to the motor and τ is the torque which is proportional to the current, τ = κw, where

κ is the motor torque constant.

We note that if the mechanical component is disconnected, i.e., κ = 0, then the electrical

circuit is the Van der Pol oscillator which sustains self-oscillations for α > 0. In other words,
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j0 Cv

L

w

θ̇

Figure 2.1: S1-equivariant electro-mechanical oscillator.

considering α as a bifurcation parameter with the other parameters fixed, the supercritical

Hopf bifurcation occurs at α0 = 0. On the other hand, the electro-mechanical system (2.122)

with κ > 0 admits the relative equilibrium solutions defined by the equations θ̇ = const,

ρ = const, w = const, v = const, which imply

mρθ̇2 = σ(ρ− ρ0), v = κθ̇, κw = γθ̇, w + βv3 − αv = j0. (2.123)

Oscillators (2.122) can be coupled into a symmetric configuration using mechanical or

electrical coupling. For example, we consider the Dn-symmetric configuration with mechan-

ical coupling as shown in Figure 2.2. of the rotors. Assuming that the connections of the

rotors are elastic, this system is described by the equations

Cv̇k + wk + βv3
k − αvk = j0,

Lẇk + κθ̇k = vk,

mρ2
kθ̈k + 2mρkρ̇kθ̇k = κwk − γθ̇k + δ(θk+1 − 2θk + θk−1),

mρ̈k −mρkθ̇2
k = −σ(ρk − ρ0)− γ̂ρ̇k,

(2.124)

where k ∈ Zn. If equation (2.122) admits a relative equilibrium θ̇ = ω∗, ρ = ρ∗, w = w∗, v =

v∗, then system (2.124) has a fully synchronized (fully symmetric) relative equilibrium with

θ̇1 = · · · = θ̇n = ω∗, ρ1 = · · · = ρn = ρ∗, w1 = · · · = wn = w∗, v1 = · · · = vn = v∗.
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Figure 2.2: D8-symmetric mechanical coupling of 8 identical oscillators (2.122).

In addition to linear energy losses (which are present in (2.122) in the form of mechanical

friction and could additionally include electrical energy losses due to resistance), further

losses can be introduced by hysteresis nonlinearities. Possible sources of hysteresis in the

mechanical components include dry friction and plasticity in the stress-strain relationship

of the materials. The electrical component can be affected by the ferromagnetic hysteresis.

Any form of hysteresis introduces nonsmoothness into the model.

As an example, let us consider the oscillator shown in Figure 2.1 in which the inductor

has a ferromagnetic core exhibiting hysteresis. Due to hysteresis, an instantaneous value of

the magnetization m(t) of the ferromagnetic material depends not only on the value h(t)

of the magnetic field at the same moment, but also on previous values of h. Hence the

constitutive relationship between m and h is an operator relationship. A widely used model

for such an operator is the so-called Preisach operator [103],

m(t) = (P [φ0]h)(t), (2.125)
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which maps the variable magnetic field h to the variable magnetization m in the space

C(t0,∞) of continuous functions; here φ0 is an infinite-dimensional parameter (called the

initial state of the Preisach model) describing the physical state of the ferromagnetic material

at the initial moment; see Section 1.2.4 for the definition of the Preisach operator; further

details can be found in [26, 103].

Assuming the relationship (2.125) between h and m and taking into account that the

magnetic field h is proportional to the current w, the second equation of system (2.122)

transforms to

L
d

dt

(
w + P [φ0]w + κθ

)
= v, (2.126)

where the parameters of the Preisach operator are properly rescaled when passing from (2.125)

to (2.126). Coupled system (2.124) changes accordingly to

Cv̇k + wk + βv3
k − αvk = j0,

L d
dt

(
wk + P [φ0]wk + κθk

)
= vk,

mρ2
kθ̈k + 2mρkρ̇kθ̇k = κwk − γθ̇k + δ(θk+1 − 2θk + θk−1),

mρ̈k −mρkθ̇2
k = −σ(ρk − ρ0)− γ̂ρ̇k, k ∈ Zn.

(2.127)

This system possesses the same relative equilibria as system (2.124) because w = const

implies P [φ0]w = const.

The Preisach operator is not differentiable on a dense subset of its domain (this is a com-

mon feature of hysteresis operators [153, 26]). In particular, the operator-differential systems

such as (2.127) do not possess smooth integral manifolds. However, as it was shown in [13, 2],

the Preisach operator P [φ0] is differentiable and has zero derivative at any point w = const

(for admissible values of the initial state parameter φ0). As a consequence, the operator

equation of the periodic problem for system (2.127) (which can be constructed in the same

way as in Section 2.1, see [13] for details) is differentiable at the relative equilibrium. Hence

the theorems of Section 2.1 apply. Moreover, the linearization of the operator equation at
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the relative equilibrium point is the same for system (2.124) without hysteresis and sys-

tem (2.127) with hysteresis because the Preisach operator is asymptotically small compared

to the linear terms near this point [13]. This simplifies the application of Theorem 2.1.143.

Table 2.21 illustrates the application of Theorem 2.1.14 to the fully symmetric relative

equilibrium state of system (2.127) with n = 8. We use α as a bifurcation parameter. All

other parameters are unit except for the motor torque constant κ which is set to 0.3. When

α varies from 0.02 to 0.1705 Hopf bifurcations occur in different isotypical components giving

rise to relative periodic solutions with corresponding symmetries. In particular, the following

branches are born:

(i) with symmetry (D8D8D8) at α ≈ 0.06325;

(ii) with symmetries (Zt18Z
t1
8Zt18 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2) at α ≈ 0.07925;

(iii) with symmetries (Zt28Z
t2
8Zt28 ), (Dd

4D
d
4D
d
4), (D̃d

4D̃
d
4D̃
d
4) at α ≈ 0.06925;

(iv) with symmetries (Zt38Z
t3
8Zt38 ), (Dd

2D
d
2D
d
2), (D̃d

2D̃
d
2D̃
d
2) at α ≈ 0.04175;

(v) with symmetry (Dd
8D
d
8D
d
8) at α ≈ 0.03675.

Plasticity effects in the rotor can also produce hysteresis with the associated energy

losses. These can be taken into account, for example, by introducing the Prandtl-Ishlinskii

operator into the last equation of system (2.127) as a model of the stress-strain relation of

an elastoplastic material. This operator is a particular case of the Preisach operator [26].

Systems involving both hysteresis nonlinearities and delays can be analyzed in a similar

fashion. As an example, one can consider a counterpart of system (2.127) with a delay in

the coupling.

3However, one can show that hysteresis affects the asymptotics and stability properties of cycles born via
the Hopf bifurcation.
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CHAPTER 3

PERIODIC PULSATING DYNAMICS OF SLOW-FAST DELAYED

SYSTEMS WITH A PERIOD CLOSE TO THE DELAY1

The main goal of this chapter is to study a class of singularly perturbed delayed models of

population dynamics, which exhibit periodic pulsating solutions with a period close to the

delay. Such models show an apparent resemblance to the model of mode-locked semiconduc-

tor laser (1.1) both in the mechanism of the formation of the pulses and in their properties.

We employ asymptotic techniques to establish the behavior of pulsating solutions and the

form of spectra of the equilibria they bifurcate from.

In Section 3.2, we introduce a population model, perform a linear stability analysis of

both the zero and positive steady states near the threshold, and discuss the bifurcations that

initiate the pulsating dynamics. Further, the role of the competition for the realization of the

bifurcation scenario is highlighted. In Section 3.3, we derive asymptotic approximations for

the pulsating periodic solutions. The last section contains further discussion and conclusions.

3.1 Main prototype model

We consider the system

γ−1A′ = −A+ κG(t− T )A(t− T )− µQA, (3.1)

γ−1
q Q′ = q0 − βQ− sAQ, (3.2)

G′ = g0 − αG− kAG, (3.3)

1The material of this chapter was published in European Journal of Applied Mathematics. Copyright:
c©Cambridge University Press 2017. Reprinted with permission.
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where the real variables A,Q,G are population densities of three species; T is the maturity

delay of the species A, see [133]; and, all the parameters are positive2. The species A is a

predator for the prey G; the species Q competes with A.

The rate of population processes for the three species is assumed to be different with A

being the fastest species (with faster metabolism, higher reproductive rate etc.), G being the

slowest species, and Q changing at an intermediate rate, that is 1 ≤ γq ≤ γ. Further, the

species A is assumed to be much faster than the species G, thus γ � 1. The species G and

Q can have comparable rates (γq ≈ 1) or Q can be much faster than G (1� γq). However,

it is important to stress that the parameters γ and γq play different roles in the following

asymptotic analysis. Namely, our asymptotic formulas are obtained in the limit of γ → ∞

while we keep γq fixed. In numerical simulations, we use γq ranging from 1 to γ.

The species Q plays an important role which will be clarified in further sections. In

particular, we will see that the system of the two equations (3.1) (with zero Q) and (3.3)

does not demonstrate pulsating dynamics near the threshold.

The species Q and G are assumed to be recruited through constant immigration in (3.1)–

(3.3). In further sections, we will show that similar systems with different recruitment

terms, including recruitment with constant birth rate, show similar pulsating dynamics near

the threshold. Also, delaying different terms has little effect on solutions in our examples; for

instance, replacing the delayed term G(t − T ) by G(t) in (3.1)–(3.3) preserves the periodic

pulsating dynamics.

We will discuss nonnegative solutions only. Note that system (3.1)–(3.3) is positively

invariant.

We associate the pulsating regime of system (3.1)–(3.3) near the point of the transcrit-

ical bifurcation of equilibria with the Hopf bifurcations from the positive equilibrium. The

recruitment rate g0 of the prey G will be used as the bifurcation parameter.

2The death rate of the species A is scaled to 1. The number of parameters can be further reduced in a
standard way by rescaling the phase variables and time.
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3.2 Bifurcation analysis

3.2.1 Bifurcations at the equilibrium with A = 0

System (3.1)–(3.3) has an equilibrium with zero A,

Ao = 0, Qo =
q0

β
, Go =

g0

α
, (3.4)

for all positive g0, and a positive equilibrium either for g0 > g∗0 or for g0 < g∗0, where the

threshold value g∗0 is defined by

κg∗0
α
− µq0

β
= 1. (3.5)

These two equilibria collide in a transcritical bifurcation for g0 = g∗0. The positive equilibrium

near the threshold is defined by the asymptotic formulas

A∗ = ãδ +O(δ2), Q∗ =
q0

β
+ q̃δ +O(δ2), G∗ =

g∗0
α

+ g̃δ +O(δ2) (3.6)

where δ = g0 − g∗0 and the coefficients of the first order correction are given by

ã =
1

kg∗0
α
− αµsq0

κβ2

, q̃ =
1

αµ
κ
− kg∗0β

2

αsq0

, g̃ =
µ

κ
q̃.

We will assume that

kg∗0
α2

>
µsq0

κβ2
. (3.7)

In this case, the positive equilibrium exists for g0 > g∗0 and is stable near the threshold. (If

the opposite inequality holds, then the positive equilibrium exists for g0 < g∗0 and is unstable

near the threshold.)

The eigenvalues of the linearization of system (3.1)–(3.3) at the equilibrium (3.4) with

zero A are defined by the relations λ = −γβ < 0, λ = −α < 0 and

1 +
λ

γ
=
κg0

α
e−λT − µq0

β
. (3.8)

The solutions of (3.8) satisfy Reλ < 0 in a left neighbourhood of the threshold, more

precisely, for g0 < g∗0 = α(1 + µq0/β)/κ. Hence, the equilibrium (3.4) is stable below the
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threshold, i.e., for g0 < g∗0. Consequently, the positive equilibrium (3.6) is stable in a small

right neighborhood of the threshold, i.e., for small δ = g0 − g∗0 > 0.

The equilibrium (3.4) undergoes a sequence of Hopf bifurcations in a small right neigh-

borhood of the threshold g0 = g∗0 for large γ. To see this, first note that in the limit γ =∞

the solutions of the characteristic equation (3.8) have the form

λ = iωn, ωn =
2πn

T
, n = 1, 2, . . . ,

i.e., the equilibrium satisfies the necessary condition for infinitely many simultaneous Hopf

bifurcations at the threshold point g0 = g∗0. Moreover, these bifurcations are in resonance

with each other as the frequencies ωn are all multiples of 2π/T . For finite γ, setting λ = iω

in (3.8) in order to satisfy the Hopf bifurcation condition, and rearranging, we obtain the

equations

ω

γ
= −κg

∗
0

α
tanωT , (3.9)

δ = g∗0

(
1

cosωT
− 1

)
> 0, (3.10)

which define the frequency of the cycle and the bifurcation value of the parameter g0 = g∗0 +δ

for each Hopf bifurcation from the equilibrium (3.4). Figure 3.1 illustrates solutions of the

transcendental equation (3.9). For γ � 1, the solutions of (3.9), (3.10) are approximated by

the asymptotic formulas

ωn =
2πn

T

(
1− α

κg∗0γT
+

α2

(κg∗0γT )2

)
+O

(
γ−3
)
, (3.11)

δn =
α2

2κ2g∗0

(
2πn

γT

)2

+O
(
γ−3
)

(3.12)

with n = 1, 2, . . . Hence, the n-th Hopf bifurcation after the threshold has a frequency close

to 2πn/T and O(
√
γ) Hopf bifurcations occur within the distance of order 1/γ from the

threshold on the parameter g0 axis.
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Following [95, 168], the spectrum of the zero equilibrium defined by (3.8) can be called

weak or pseudocontinuous spectrum. It is characterized by a specific scaling of the real and

imaginary parts of the eigenvalues λ = x + iγω with γ � 1, where x and ω are of order 1.

Using this scaling, we obtain from (3.8) an approximate relationship between the real and

imaginary parts of the eigenvalues:

x(ω) =
1

2T

(
2 ln

(
g0

g∗0

)
− ln

(
1 +

(
αω

g∗0κ

)2
))

+O(γ−1), (3.13)

which is dual to formulas (3.11), (3.12). The curve (3.13) carrying the eigenvalues simply

moves to the right with increasing g0, see Figure 3.2a.

0 2 4 6 8 10
Ω

0.5

1.0

1.5

2.0

2.5
Η

Figure 3.1: Solution of (3.9). The horizontal axis is ω. Every second intersection of the straight
line η = ω/γ and the function η = −κg∗0 tan(ωT )/α satisfies the condition (3.10). Here γ = 100,
T = 1.

3.2.2 Bifurcations at the positive equilibrium

As the bifurcation parameter g0 increases across the threshold, the positive equilibrium (3.6)

also undergoes a sequence of Hopf bifurcations, which we deem responsible for the creation

and formation of the periodic pulsating solution. The first Hopf bifurcation with the fre-

quency close to 2π/T destabilizes the positive equilibrium and creates a stable cycle (see

branch H1 in Figure 3.3). As the parameter g0 increases further, this cycle changes its shape
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continuously into a pulsating periodic solution, see Figure 3.4. The amplitudes of harmonics

of the A-component A(t/τ) =
∑∞

n=1An cos (2πnt/τ + φn) of the periodic solution, where

τ is the period of A, grow with g0, while the phase differences φk − φ1 almost vanish, see

Figure 3.5. At the same time the positive equilibrium undergoes a cascade of secondary Hopf

bifurcations with the frequencies of the higher harmonics. The whole cascade of the Hopf

bifurcations and the transformation of the cycle to a pulsating solution happen in a small

right neighbourhood of the threshold g0 = g∗0, see Figure 3.5.
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Figure 3.2: Panel (a): Spectra of the zero equilibrium for g0 = 3.7497 and g0 = 3.7528. Numerical
values of the eigenvalues are shown by circles; lines are obtained from (3.13). Filled circles corre-
spond to unstable eigenvalues. Panel (b): Spectrum of the positive equilibrium of system (3.1)–(3.3)
after the first Hopf bifurcation (g0 = 3.75003), i.e., exactly one pair of complex conjugate eigen-
values cross the imaginary axis from left to right. Solid line defined by (3.19) carries the weak
spectrum; dashed line (3.18) carries the strong spectrum. Parameters are as follows: γ = 1000,
γq = 10, κ = 0.6, µ = 0.5, α = 1, q0 = 2.5, β = 1, s = 1, k = 0.7, T = 1.

The characteristic equation for the positive equilibrium is

eTλ =
G∗κ (α + λ) (A∗sγq + βγq + λ)

(A∗k + α + λ)
(
A∗sγq

(
1 + λ

γ

)
+ (βγq + λ)

(
1 + λ

γ
+Q∗µ

)) . (3.14)

Using asymptotic formulas (3.6) and the ansatz λ = iω for the eigenvalues of the linearization,

we obtain the following asymptotic formulas for the frequency and the bifurcation value of
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Figure 3.3: Bifurcation diagrams obtained with numerical package DDE-BIFTOOL for sys-
tem (3.1)–(3.3) for two parameter sets. The vertical axis shows the maximum of the A-component
of a periodic solution. The PE line corresponds to the positive equilibrium. Branches H1–H7 (H1–
H5 on panel (b)) correspond to the periodic solutions born via Hopf bifurcations on the positive
equilibrium. Stable branches are shown by solid lines and unstable branches are shown by dashed
lines. The branch H1 on panel (b) exhibits slight hysteresis near the threshold g∗0. All the branches
connect to the branch of the positive equilibrium at Hopf bifurcation points at both ends.

the parameter at each Hopf bifurcation point3:

ωn =
2πn

T

(
1− α

κg∗0γT

)
+O

(
γ−2
)
, (3.15)

δn =

(
2πn

γT

)2 (β2g∗0κk − α2µq0s)

(
β2 +

(
2πn
Tγq

)2
)

2κ2g∗0β
2

(
µq0s− g∗0κk

(
β2+

(
2πn
Tγq

)2
α2+( 2πn

T )
2

)) +O
(
γ−3
)
. (3.16)

We assume that, along with the relation (3.7), the conditions

µq0s > g∗0κk

β2 +
(

2π
Tγq

)2

α2 +
(

2π
T

)2

 and γq >
α

β
(3.17)

are satisfied. Under these conditions, relation (3.16) implies δ = g0 − g∗0 > 0 for n = 1, 2, . . .

That is, according to (3.7), (3.16), conditions (3.17) ensure that the positive equilibrium

3The term of order γ−2 in the expansion (3.15) is different from the corresponding term in the expan-
sion (3.11).
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Figure 3.4: Time trace of the periodic solution of system (3.1)–(3.3). Panel (a): the A-component;
Panel (b): the G-component (solid) and the Q-component (dashed). The A-component is almost
zero between the pulses. The Q-component almost reaches the equilibrium value q0/β = 2.5
between the pulses of the A-component and drops almost to zero during the pulse because γq = 10
is relatively large. The G-component drops fast during the pulse and then recovers slowly between
the pulses. The period of the solution is close to the delay T = 1. The following parameters were
used: γ = 400, γq = 10, κ = 0.6, g0 = 4, q0 = 2.5, α = 1, β = 1, s = 1, k = 0.7, T = 1. The
threshold value is g∗0 = 3.75.
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Figure 3.5: The phase and amplitude of the Fourier coefficients for the A-component
A(t/τ) =

∑∞
n=1An cos (2πnt/τ + φn) of the periodic solution along the branch H1 shown

in Figure 3.3a where τ is the period of solution.

undergoes the Hopf bifurcations with the frequencies close to the multiples 2πn/T of 2π/T

for n = 1, 2, . . . as g0 increases across the threshold.
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Figure 3.6: Spectrum of the positive equilibrium and curves (3.19), (3.18) for g0 = 3.7509 (panel
(a)) and g0 = 3.7648 (panel(b)). Notation and other parameters are the same as in Figure 3.2b.

The spectrum of the positive equilibrium can be divided into two parts, which have

different asymptotic properties with respect to the large parameter γ, cf. [95]. The strong

spectrum consists of the eigenvalues λ = x + iω + O(γ−1), which originate from the limit

γ =∞. Equation (3.14) implies the following approximate implicit relationship between the

real and imaginary parts for these eigenvalues:

G2
∗κ

2 ((α + x)2 + ω2) ((γq (A∗s+ β) + x) 2 + ω2)

((α + A∗k + x) 2 + ω2) ((γq (A∗s+ β + βµQ∗) + µQ∗x+ x) 2 + (µQ∗ω + ω) 2)
= e2Tx.

(3.18)

The weak spectrum is characterized by the asymptotic relationship λ = x+ iγω and satisfies

the approximate relationship

x (ω) =
1

2T
ln

(
G2
∗κ

2

G2
∗κ

2 + ω2

)
. (3.19)

With increasing g0, branches of the curve (3.19) “open”. Simultaneously, weak eigenval-

ues with smaller imaginary part leave this curve, cross imaginary axis producing the Hopf
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Table 3.1: Comparison of the asymptotic and numerical values of δn, ωn for the following set
of parameters: γ = 600, γq = 40, κ = 0.6, µ = 0.5, α = 1, q0 = 2.5, β = 1, s = 1, k = 0.7,
T = 1

δn = g0 − g∗0 ωn

n Asymptotic Numerical Error (%) Asymptotic Numerical Error (%)

1 1.1177 · 10−5 1.1170 · 10−5 0.06 6.2785 6.2785 < 10−4

2 4.6817 · 10−5 4.6896 · 10−5 0.17 12.5571 12.5571 < 10−4

3 1.1665 · 10−4 1.1731 · 10−4 0.56 18.8356 18.8356 1.60 · 10−4

4 2.3632 · 10−4 2.3903 · 10−4 1.13 25.1141 25.1140 3.57 · 10−4

5 4.2773 · 10−4 4.3593 · 10−4 1.88 31.3927 31.3925 6.18 · 10−4

6 7.1905 · 10−4 7.3993 · 10−4 2.82 37.6712 37.6708 9.45 · 10−4

bifurcations described by (3.15), (3.16), and become a part of the strong spectrum (3.18),

see Figures 3.2b and 3.6.

In Table 3.1, the asymptotic values of ωn and δn given by formulas (3.15) and (3.16) are

compared with the numerical values obtained for γ = 600, γq = 40, κ = 0.6, µ = 0.5, α = 1,

q0 = 2.5, β = 1, s = 1, k = 0.7, T = 1. Using these parameters for numerical continuation

we observe 24 branches of periodic solutions. Table 3.1 features the first six branches. The

accuracy of the asymptotic formulas decreases with increasing n.

We have conducted a number of further numerical simulations with different parameter

sets satisfying conditions (3.7) and (3.17) and observed bifurcation diagrams and oscillating

periodic solutions similar to those presented in Figures 3.3 and 3.4.

3.2.3 The role of competition

Here we briefly discuss the critical role of the species Q, which competes with the fast species

A, in creating the pulsating periodic dynamics via the bifurcation scenario described above.
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In order to highlight the role of the Q-species, we compare the dynamics of system (3.1)–

(3.3) with that of the dynamics of the system

γ−1A′ = −A+ κG(t− T )A(t− T ), (3.20)

G′ = g0 − αG− kAG, (3.21)

which is obtained by settingQ = 0 in (3.1) and dropping (3.2). Dynamics of system (3.20), (3.21)

is essentially the same as dynamics of system (3.1)–(3.3) with zero immigration rate q0 = 0

of the Q-species.

System (3.20), (3.21) has two equilibrium points

A = 0, G =
g0

α
; A =

κ(g0 − g∗0)

k
=
κδ

k
, G =

1

κ
,

which collide in the transcritical bifurcation at the threshold value

g∗0 =
α

κ
(3.22)

of the bifurcation parameter g0. Like in the case of the three-dimensional systems (3.1)–(3.3),

the equilibrium with zero A is stable below the threshold and unstable above the threshold,

while the equilibrium with nonzero A is positive and stable above the threshold, i.e., for

g0 > g∗0 (without any additional assumptions about the parameters of (3.20), (3.21)). The

unstable equilibrium undergoes the cascade of Hopf bifurcations at the bifurcation points,

and with the frequencies, defined by relations (3.9), (3.10) and satisfying the asymptotic

formulas (3.11), (3.12). However, the positive equilibrium remains stable for all g0 > g∗0

and the system exhibits the equilibrium dynamics rather than a periodic dynamics above

the threshold. The reason is that the equilibrium with nonzero A undergoes the cascade of

Hopf bifurcations below the threshold, that is in the parameter domain g0 < g∗0 where this

equilibrium has a negative A-component and is unstable, rather than above the threshold
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where the equilibrium is positive and stable. Indeed, substituting the ansatz λ = iω in the

characteristic equation

γ−1(λ+ κg0)λ+ (1− e−λT )λ+ κg0 − αe−λT = 0 (3.23)

of the linearization of the system at the equilibrium with nonzero A, we obtain the asymptotic

formula

δ = − α

2κ

(
2πn

γT

)2
(

1 +

(
2πn

αT

)2
)

+O(γ−3),

where the negative sign of δ = g0 − g∗0 indicates that the Hopf bifurcation occurs below the

threshold. Equation (3.23) implies

(ω2 + κ2g2
0)(1 + ω2γ−2) = ω2 + α2

for λ = iω, which is only possible for g0 ≤ g∗0 = α/κ, that is below the threshold, thus proving

stability of the positive equilibrium. Clearly (3.23) cannot have real positive eigenvalues for

g0 > g∗0 either.

3.3 Scaling with γ. Approximate solution

3.3.1 Separation of slow and fast stages

In order to analyze and approximate the asymptotic behavior of the pulsating periodic

solution for large γ, we adapt the approach proposed by New and Haus for modeling optical

systems in [111, 59] by partial differential equations and an extension of this approach to

delay differential models of mode-locked semiconductor lasers developed in [156].

Consider a pulsating periodic solution of (3.1)–(3.3). We divide the period into two stages,

the short fast stage tb ≤ t ≤ te containing the pulse and the slow stage te ≤ t ≤ tb+τ , during

which A is close to zero. Here τ ≈ T is the period of the solution, tb is the moment when a

pulse begins, te is the moment when the pulse ends, te − tb � 1. We then further introduce
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a partition tb < t′b < t′e < te of the fast stage into three subintervals. During the interval

[tb, t
′
b] the variable A grows from a small value ε to a large value ε−1, it stays larger than

ε−1 over the interval [t′b, t
′
e], and decreases back to the small value ε over the interval [t′e, te]

(to be specific, ε = ε(γ) scales with γ in such a way that ε(γ) → 0 and −γ−1 ln ε(γ) → 0

as γ → ∞). We assume that A grows exponentially on [tb, t
′
b] as eγλ1t and exponentially

decreases as eγλ2t on [t′e, te] with λ1 > 0 > λ2. These assumptions will be shown to lead to

a self-consistent answer for the pulse (in particular the values of λ1 and λ2 are evaluated

below). Further, they imply that

G(tb) ≈ G(t′b), Q(tb) ≈ Q(t′b),

∫ te

tb

A(θ) dθ ≈
∫ t′e

t′b

A(θ) dθ (3.24)

for large γ (that is, the left and right sides of of each relation in (3.24) have the same limit as

γ →∞). This allows us to identify tb with t′b and te with t′e in the asymptotic approximations

below.

Finally, we assume that the period of the periodic solution scales with γ as

τ = T

(
1 +

c

γT

)
+O(γ−2), (3.25)

which again proves to lead to consistent asymptotic approximations.

3.3.2 Area of the pulse

During the phase [t′b, t
′
e] of the pulse of A, the terms AQ and AG in the Q and G equations

are large compared to the other terms, which therefore can be neglected. Hence, during this

phase (3.2), (3.3) can be approximated by the equations

γ−1
q Q′ = −sAQ,

G′ = −kAG.
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Integrating these equations and using the approximations (3.24), we obtain for the full fast

stage [tb, te]:

Q(t) = Q(t′b)e
−γqs

∫ t
t′
b
A(θ) dθ ≈ Qbe

−γqsP (t), G(t) = e
−k
∫ t
t′
b
A(θ) dθ ≈ Gbe

−kP (t), (3.26)

where Qb = Q(tb), Gb = G(tb) and

P (t) =

∫ t

tb

A(θ) dθ. (3.27)

In particular, for the values G(te) = Ge, Qe = Q(te) at the moment t = te, we have

Ge = Gbe
−kp, Qe = Qbe

−γqsp, (3.28)

where

p =

∫ te

tb

A(θ) dθ.

On the other hand, integrating (3.1) over the fast stage and using the fact that A is close

to zero at the moments tb and te, we obtain the approximate equation

p = κ

∫ te−T

tb−T
G(θ)A(θ) dθ − µ

∫ te

tb

Q(θ)A(θ) dθ. (3.29)

The exponential form of the pulse that we assumed on the subintervals [tb, t
′
b] and [t′e, te] of

the fast stage and the estimate τ − T = O(γ−1) for the small difference between the period

and the delay, which follows from (3.25), imply that
∫ te−T
tb−T

G(θ)A(θ) dθ ≈
∫ te−τ
tb−τ

G(θ)A(θ) dθ.

Hence, the integrals in the right hand side of (3.29) are essentially integrals over the fast stage

for two successive pulses. Therefore, using the periodicity of the solution and relations (3.26),

we can rewrite (3.29) approximately as

p = κ

∫ te−τ

tb−τ
G(θ)A(θ) dθ − µ

∫ te

tb

Q(θ)A(θ) dθ =∫ tb

te

(
κGbe

−kP (θ) − µQbe
−γqsP (θ)

)
A(θ) dθ.
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Further, using (3.27), A(θ) dθ = dP (θ), hence

p =
κGb

k
(1− e−kp)− µQb

γqs
(1− e−γqsp). (3.30)

During the slow stage, the terms AQ and AG are small compared to the other terms in

the Q and G equations. Neglecting these terms results in the linear equations

γ−1
q Q′ = q0 − βQ,

G′ = g0 − αG.

Integrating these equations over the slow stage [te, tb + τ ] and combining the integrals

g0 − αGb = (g0 − αGe)e
−α(tb+τ−te) ≈ (g0 − αGe)e

−αT ,

q0 − βQb = (q0 − βQe)e
−γqβ(tb+τ−te) ≈ (q0 − βQe)e

−γqβT

with (3.28), we obtain

Gb =
g0(1− e−αT )

α(1− e−αT−kp)
, Qb =

q0(1− e−γqβT )

β(1− e−γqβT−γqsp)
. (3.31)

Hence, (3.30) implies the fixed-point condition

p =
κg0(1− e−αT )(1− e−kp)

kα(1− e−αT−kp)
− µq0(1− e−γqβT )(1− e−γqsp)

γqsβ(1− e−γqβT−γqsp)
=: η(p). (3.32)

The right hand side η(p) is zero at zero, has the derivative κg0/α − µq0/β > 1 at zero,

and converges to a constant as p → ∞, see Figure 3.7a. Therefore, (3.32) has a positive

root. Under further assumptions, the positive root is unique. For instance, the uniqueness is

guaranteed whenever we increase the parameter γq keeping all the other parameters in (3.32)

fixed. In particular, the positive root is unique in all the examples below. The conclusion is

that the integral of the A-component over a period converges to a positive root p∗ of (3.32)

as γ →∞ (with other parameters fixed).
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Figure 3.7b compares the value p(γ) of this integral with its limit value p∗. The integral

has been evaluated numerically for 40 values of γ from the interval 100 ≤ γ ≤ 4000 by direct

simulation of equations (3.1)–(3.3). The power law fit

φ(γ) = p̂∗ + bγ−ν ,

was used to obtain the estimate p̂∗ of the limit value p∗ of the integral. For the parameter

set in Figure 3.7b, the error between the numerical estimate p̂∗ and the analytic value of

p∗ = 0.492 obtained from (3.32) satisfies |p∗ − p̂∗| < 10−3.

p*=0.492
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Figure 3.7: Panel (a) shows the solution of (3.32). Panel (b) shows the dependence of the
integral of A-component of system (3.1)–(3.3) over one period on γ. The power law fit is
shown by the solid line. The horizontal asymptote p = p̂∗ coincides with analytic value p∗
shown on panel (a). Here κ = 0.6, µ = 0.5, α = 1, q0 = 1, β = 1, s = 2, k = 1, T = 1,
γq = 100, g0 = 2.6.

We conclude that in the limit of γ tending to infinity, the component A of the periodic

solution converges to the periodic sequence of delta functions (Dirac comb),

A→ p∗

∞∑
n=−∞

δ(t− nT ), (3.33)
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which has the period T equal to the delay. The components G grows according to the

equation G′ = g0 − αG from the value Ge = Gbe
−kp∗ to the value Gb defined by (3.31), i.e.,

G(t) =
g0

α
−
(g0

α
−Ge

)
e−α(t−nT ), nT < t < (n+ 1)T,

between the pulses of A, and drops back to the value Ge during the pulse. Similarly, the

component Q is as approximated between the pulses as

Q(t) =
q0

β
−
(
q0

β
−Qe

)
e−γqβ(t−nT ), nT < t < (n+ 1)T.

The interval g∗0 < g0 < g∗0 + ε of the parameter values, over which the cycle born via Hopf

bifurcation on the positive equilibrium transforms to the pulsating solution, collapses to the

threshold, that is ε → 0, as γ grows to infinity. In other words, the pulsating solution

described by (3.33) can be found “immediately” beyond the threshold for large γ.

3.3.3 Pulse shape

The above approximation does not provide information about the fast stage of the solution

such as the profile of the pulse or the deviation of the period from the delay T . In order

to obtain such information, one can adapt the approach of Haus and its modifications,

see [59, 156]. We briefly outline a possible approach without going into much detail. This

approach gives us the law of scaling of the pulse shape and the period with γ.

Using the periodicity of the solution and the asymptotic formula (3.25) for the period,

we can rewrite (3.1) as

γ−1A′(t) + A(t) + µQ(t)A(t) = κG(t+ cγ−1)A(t+ cγ−1).

Integrating this equation from tb over a part of the fast stage tb ≤ t ≤ te, using the approxi-

mations (3.24) and P (tb + cγ−1) ≈ 0, and taking into account that A(tb) ≈ 0, we obtain an

approximate equation

γ−1A(t) +

∫ t

tb

A(θ) dθ + µQb

∫ t

tb

e−γqsP (θ)A(θ) dθ = κGb

∫ t+cγ−1

tb+cγ−1

e−kP (θ)A(θ) dθ.
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As A = P ′, we obtain, similarly to (3.30),

γ−1P ′(t) + P (t) +
µQb

γqs
(1− e−γqsP (t)) =

κGb

k
(1− e−kP (t+cγ−1)), (3.34)

where Gb, Qb are defined by (3.31) with p = p∗ being a positive root of (3.32). Introducing

the fast and reversed time scale θ = −γt, and changing the variable P̄ (θ) = P (t− cγ−1) we

rewrite (3.34) as

− P̄ ′(θ) + P̄ (θ) +
µQb

γqs
(1− e−γqsP̄ (θ)) =

κGb

k
(1− e−kP̄ (θ−c)), (3.35)

where Gb, Qb are defined from (3.30), (3.31). A single pulse of the pulsating periodic solution

is, therefore, described by a solution of (3.35) satisfying the boundary conditions

P̄ (−∞) = p∗, P̄ (∞) = 0. (3.36)

Note that both 0 and p∗ are equilibrium points of (3.35). Therefore conditions (3.36) define

a heteroclinic orbit of this equation. More precisely, if P̃ denotes the heteroclinic solution

of (3.35) satisfying (3.36), and Ã = P̃ ′, then a pulse of the periodic solution of system (3.1)–

(3.3) is approximated by the formula

A(t) = γÃ(−γt) = γP̃ ′(−γt) (3.37)

for large γ. Hence, according to this approximation, the amplitude of the pulse scales linearly

with γ, the width of the pulse is inverse proportional to γ, and the period is approximated

by (3.25).

Linearizing system (3.35) at 0 and p∗, we obtain

− P ′(θ) + (1 + µQb)P (θ) = κGb P (θ − c) (3.38)

and

− P ′(θ) + (1 + µQe)P (θ) = κGeP (θ − c), (3.39)
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respectively, where Qe, Ge are defined by (3.28) with p = p∗. The characteristic equation of

linearization (3.38) is

− λ+ 1 + µQb = κGb e
−λc. (3.40)

The characteristic equation of (3.39) has a similar form

− λ+ 1 + µQe = κGe e
−λc. (3.41)

We will assume that

κGb − µQb − 1 < 0, κGe − µQe − 1 < 0. (3.42)

These conditions can be associated with New’s stability criterion [111], which ensures sta-

bility of the background of the pulses, that is, in our context, stability with respect to small

perturbations of the A-component at the beginning and at the end of the slow stage when

A is close to zero. Relations (3.42) imply that each of (3.40), (3.41) has two real roots of

different signs. A typical spectrum of these equations is shown in Figure 3.8. Here, all the
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Figure 3.8: A typical spectrum of equations (3.40) and (3.41) when condition (3.42) is
satisfied. The notation is the same as in Figure 3.2.
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complex eigenvalues have a negative real part, which is less than the real negative eigenvalue.

In such a case, both equilibrium points P̄ = 0 and P̄ = p∗ of (3.35) are saddles with a one-

dimensional unstable manifold and a codimension 1 stable manifold. Therefore, for a specific

value of the parameter c, which can be considered as a bifurcation parameter in (3.35), the

unstable manifold of the equilibrium point p∗ can connect to the stable manifold of the zero

equilibrium forming a heteroclinic orbit. The value of c, for which the heteroclinic orbit

is formed, defines the period of the solution of system (3.1)–(3.3) according to the asymp-

totic formula (3.25), and the heteroclinic orbit P̃ defines the profile of the pulse according

to (3.37). Figure 3.9 illustrates how the heteroclinic orbit and the corresponding c can be

found by the shooting method. Further, the heteroclinic solution P̃ (θ) converges to the

equilibrium p∗ exponentially as eλ
e
+θ in the limit θ → −∞, where λe+ is the positive real root

of (3.41); and, to the zero equilibrium as eλ
b
−θ in the limit θ →∞, where λb− is the negative

real root of (3.40). Hence, (3.37) implies that the pulse of A has similar exponential tails.

Specifically, A grows exponentially as e−γλ
b
−t at the beginning of the fast stage and decays

as e−γλ
e
+t at the end of the fast stage. This result is consistent with the exponential growth

assumptions that we made earlier about the pulse. In particular the assumed exponential

asymptotics of the pulse tails hold with λ1 ≈ −λb− and λ2 ≈ −λe+ (cf. page 103).

The above exponential asymptotics of the pulse tails have been derived for the phase

when G and Q change fast. The same asymptotics can be obtained directly from (3.1)

for the beginning and the end of the slow stage when G and Q change slowly. Indeed,

replacing A(t − T ) with A(t + cγ−1) according to (3.25), setting G = Ge, Q = Qe for the

beginning of the slow stage and G = Gb, Q = Qb for the end of the slow stage, and using

the exponential ansatz A = A0e
−γλt corresponding to the fast evolution of A results in the

same characteristic equations (3.40), (3.41). Thus, the exponential asymptotics at the slow

and fast stages match.

Figure 3.10 compares a pulse of the periodic solution of system (3.1)–(3.3) with the

approximation obtained from the heteroclinic orbit of (3.35).
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Figure 3.9: We adopt the shooting method in order to find parameter c in equation (3.35).
The three curves correspond to three trajectories starting near the equilibrium p∗ = 1.486
with different values of c. Other parameters are Gb = 2.906, Qb = 2.5, k = 0.7, γq = 10,
s = 1, µ = 0.5, κ = 0.6. Note that with this set of parameters equation (3.35) has an
additional positive equilibrium p† = 0.146 which is an asymptotically stable focus. For one
exact value c = c∗ (0.537 < c∗ < 0.538) there exists a heteroclinic orbit of (3.35) connecting
the equilibria p∗ and 0. This orbit describes the shape of the pulse, and the value c∗ defines
the period of the pulsating solution. For c < c∗, trajectories starting near p∗ belong to
the basin of attraction of the positive equilibrium p†; for c > c∗, such trajectories become
negative and go to negative infinity.

3.3.4 Approximation for γq � 1

The parameter γq controls the rate of the population processes for the species Q. Denote by

p̃ the unique positive root of the equation

p =
κg0(1− e−αT )(1− e−kp)

kα(1− e−αT−kp)

(cf. (3.32)). If we increase the value of γq keeping the parameters in the right hand side

of (3.1)–(3.3) fixed, then p∗, Gb,e, Qb,e approach the following values:

p∗ ≈ p̃, Gb ≈
g0(1− e−αT )

α(1− e−αT−kp̃)
, Ge ≈ Gbe

−kp̃, Qb ≈ q0/β, Qe ≈ 0.
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Figure 3.10: Black solid curve represents a single pulse of the A-component of the periodic
pulsating solution of system (3.1)–(3.3) with the following parameters: g0 = 4, k = 0.7,
q0 = 2.5, s = 1, T = 1, α = 1, β = 1, γ = 400, κ = 0.6, µ = 0.5, γq = 100. Dashed curve is
the derivative of the heteroclinic solution of (3.35) satisfying the boundary conditions (3.36).
This solution exists for c = 0.3736 which was found using the shooting method, see Figure 3.9.
gray solid curve is the derivative of the heteroclinic solution of the approximating (3.43)
connecting the saddle equilibrium point p̃ = 1.6968 and the stable focus at zero. This curve
oscillates near the focus and fails to approximate the leading edge of the pulse (left tail).

Further, (3.35) for the pulse profile can be approximated by the equation

− P̄ ′(θ) + P̄ (θ) =
κGb

k
(1− e−kP̄ (θ−c)), (3.43)

which has the equilibrium points P̄ = 0 and P̄ = p̃. Since Qe ≈ 0, the characteristic equation

of the linearization of (3.43) at the equilibrium P̄ = p̃ approximates (3.41). However, the

characteristic equation −λ+1 = κGb e
−λc of the linearization at zero is different from (3.40).

For example, one can show that if κGbc < 1, then the zero equilibrium of (3.43) is stable;

at the same time, the first relation in (3.42) ensures that zero is a saddle for (3.35). This

situation is illustrated in Figure 3.10. The heteroclinic orbit, which connects the saddle point

p̃ with the stable zero equilibrium of (3.43) approximates the pulse well for the main part of
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the fast stage, but fails to approximate the pulse tails. The heteroclinic orbit of (3.35) gives

a better approximation.

3.3.5 Pulses with unstable background

Pulsating periodic solutions with a period close to T can be obtained also when one of the

conditions (3.42), or both of them, are violated. According to the classification of New [111],

such pulses have unstable background. For example, consider the case when

κGb − µQb − 1 > 0, κGe − µQe − 1 < 0. (3.44)

Here, the main role is played by the characteristic equation

− λ+ 1 + µQ̂(t̂) = κĜ(t̂) e−λc, 0 ≤ t̂ ≤ T (3.45)

with t = tb − t̂ varying over the slow stage, where

Ĝ(t̂) =
g0

α
+ eαt̂

(
Gb −

g0

α

)
, Q̂(t̂) =

q0

β
+ eγqβt̂

(
Qb −

q0

β

)
and c is considered as a parameter again. To be definite, assume that for each t̂, equa-

tion (3.44) has two real roots λ−(t̂) < λ+(t̂) that depend continuously on t̂ and satisfy the

relations

λ−(t̂) < λ+(t̂) < 0 for 0 ≤ t̂ < to; λ−(t̂) < 0 < λ+(t̂) for to < t̂ ≤ T, (3.46)

which are compatible with (3.44). Further, suppose that Reλ < λ−(t̂) for all the complex

roots. Then the zero equilibrium P̄ = 0 of (3.35) is stable, while the equilibrium P̄ = p∗ has

a one-dimensional unstable manifold. Assuming that this unstable manifold belongs to the

basin of attraction of zero, it contains a heteroclinic orbit that defines the pulse profile during

the fast stage. This orbit is robust with respect to variations of the parameter c. Therefore,

c (and the period (3.25)) cannot be identified as an isolated value for which the heteroclinic
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solution is formed (as it was the case for pulses with stable background satisfying (3.42)

where the heteroclinic orbit connected saddle equilibria). Instead, c is determined by the

evolution of A during the slow stage, when A is small, and the periodic solution satisfies the

approximate equation

−γ−1A

dt̂
= −A+ κĜ(t̂)A(t̂− γ−1c)− µQ̂(t̂)A.

The zero equilibrium of this equation exhibits the delayed loss of stability so that A ≈

A(0)eγλ+(t̂) approaches zero very closely over an interval of time [0, to] when λ+(t̂) < 0

(see (3.46)) and then returns to its initial value A(T ) = A(0) over the interval [to, T ]. This

allows us to predict that for the pulsating periodic solution of (3.1)–(3.3), in the limit γ →∞,

one has ∫ T

0

λ+(t̂) dt̂ = 0. (3.47)

Since λ+ = λ+(t; c) depends on c, condition (3.47) selects c and defines the period (3.25).

It should be noted that condition (3.47) was not satisfied in the numerical simulations

that we performed. The reason is that A gets extremely close to zero and becomes affected

by numerical noise between the pulses. The effect can be understood if we replace (3.1) with

the equation

γ−1A′ = −A+ κG(t− T )A(t− T )− µQA+ η

containing a small immigration term η > 0. This modification makes sense from the modeling

perspective too because it precludes A from becoming as small as e−γ between the pulses.

For this equation (coupled with (3.2), (3.3)), the period depends on both γ and η as we

confirmed numerically. However, one can predict that the pulsating periodic solution with

a period τ ≈ T should disappear in the limit γ → ∞ with a fixed η. On the other hand, if

η decreases with γ as fast as e−γ, pulses with the period defined by (3.25), (3.47) can exist.
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3.4 Conclusion

We have explored a class of pulsating periodic regimes, which can evolve due to the delay, the

nonlinearity, and the slow-fast structure in delay differential systems. These solutions have

a period close to the delay and are characterized by a specific scaling of the pulse width and

hight with the parameter γ � 1 measuring the ratio of the fast and slow time scales. Further,

the periodic pulses are formed close to some threshold value of the bifurcation parameter, at

which a zero equilibrium undergoes the transcritical bifurcation and a positive equilibrium

appears. Through a case study of a population model, which involves a fast predator and a

slow prey, we have shown that the formation of periodic pulses is simultaneous with a cascade

of multiple, almost simultaneous resonant Hopf bifurcations that occur in the immediate

vicinity of the threshold on the positive equilibrium. Using the asymptotic analysis at zero,

we have obtained explicit relationships between the parameters, which ensure this scenario

(such as (3.7) and (3.17)). In particular, we have highlighted the role of competition and

shown that the pulses with the associated Hopf bifurcations appear when the fast species

competes with another species; in the absence of competition, pulses do not form near the

threshold4.

The same analysis can be applied to a wider class of population models. In particular,

we obtained counterparts of relationships (3.7), (3.16) and (3.17) for several variants of

model (3.1)–(3.3) with different growth terms. We then confirmed numerically the same

bifurcation scenario leading to the formation of pulses near the threshold. In one variation

of the model, the constant immigration and linear death terms q0 − βQ and g0 − αG in

equations (3.2), (3.3) have been replaced with the logistic terms, Q(q0−βQ) and G(g0−αG),

4It is worth noting that the model in [119] also has a predator-prey structure. The pulses in this model,
or in the models considered in this work, are not related to switching between stable branches of a critical
manifold of a singularly perturbed system.
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respectively. In another variant of the model,

γ−1A′ = κG(t− T )A(t− T )− τA− µQA− fA2,

γ−1
q Q′ = νGQ− βQ− sAQ− rQ2,

G′ = g0 − αG− kAG−mQG,

the A and Q species both predate on G, and the intraspecific competition is included.

Interestingly, the counterpart of condition (3.7) for this system requires µs > fr in order

to guarantee that the positive equilibrium undergoes the cascade of Hopf bifurcations in

a small neighborhood of the threshold. The relation µs > fr means that interspecific

competition between the species A and Q is stronger than intraspecific competition. In the

classical competing species model, this condition ensures the competitive exclusion scenario;

the opposite inequality µs < fr implies the coexistence scenario.

Using the method of matched asymptotic expansions at the slow and fast stages of the

dynamics, we have obtained an approximation to the pulsating solution, which provides an

accurate prediction of the area of the pulse. Furthermore, a modification of the method of

Haus has allowed us to obtain asymptotics of the period and the pulse shape as γ → ∞.

This shape is described by a heteroclinic solution of a scalar delay equation that depends

only on three parameters. The heteroclinic orbit connects two saddle equilibrium points,

each having a one-dimensional unstable manifold.

Similar periodic pulsating solutions have been previously found in the laser model (1.1)

and its variations [156, 155]. The main advance of this work is a detailed asymptotic analysis

of the pulses and linear stability analysis near the bifurcation point. This analyses can

be extended to lasers. Some differences between population and laser models arise from

the fact that population systems are positively invariant, and the pulsating regime in this

setting is positive. On the other hand, the pulsating variable A in the laser model (1.1) is
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complex-valued. Also, different types of nonlinearities in population and laser models result

in different power laws for the scaling of pulses with γ.

Due to positive invariance, the transcritical bifurcation with the associated zero eigen-

value is an important ingredient of the bifurcation scenario described in this work. It is

interesting to compare this scenario with the Eckhaus and modulational instabilities, which

are well known in the context of spatially distributed systems and have been recently studied

for systems containing large delays [167, 126]. The evolution of the pseudocontinuous spec-

trum of the zero equilibrium shown in Figure 3.2a is similar to the picture associated with

the Eckhaus instability. The “parabola” carrying the pseudocontinuous spectrum moves as

a whole to the unstable half-plane as the bifurcation parameter increases. Furthermore,

as in the Eckhaus scenario [149], we observe the appearance of multiple unstable periodic

solutions, which then stabilize via secondary bifurcations leading to co-existence of multiple

periodic attractors, see Figure 3.3. On the other hand, the evolution of the spectrum of

the positive equilibrium that intersects the zero equilibrium in the transcritical bifurcation

reminds the modulation instability scenario, in which the “parabola” carrying the pseudo-

continuous spectrum develops two humps that cross the imaginary axis, while the vertex of

the parabola at zero is not moving [126]. Interestingly, although similar humps are observed

in Figure 3.6, they are formed through a different mechanism. Namely, eigenvalues with

smaller imaginary part that belong to the pseudocontinuous spectrum get absorbed by the

strongly stable spectrum as the bifurcation parameter increases. This interaction of the pseu-

docontinuous and strongly stable spectra results in the formation of humps and, further, in

stabilization of the positive equilibrium for higher values of the bifurcation parameter. How-

ever, a common feature of all the above scenarios is that eigenvalues with smaller imaginary

part cross the imaginary axis from the stable to the unstable domain before eigenvalues

with larger imaginary part do. Hence, all these scenarios can be viewed as long-wavelength

instabilities.
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CHAPTER 4

SELECTIVE PYRAGAS CONTROL OF HAMILTONIAN SYSTEMS1

In this chapter we consider a Newtonian equation in the form

ẍ+∇V (x) = 0,

which has a surface of neutrally stable periodic solutions. The goal is to select a particular

orbit from this surface and to transform it to the exponentially stable orbit using Pyragas

delay-feedback control in the formK((x−T )−x(t)) where T is the period of the targeted orbit

to be stabilized and K is an arbitrarily small gain matrix. We discuss sufficient conditions

from two perspectives.

In Section 4.1 we treat the case of small amplitude solutions where sufficient conditions

for exponential stability are framed in terms of the asymptotic expansion of ∇V (x) at the

equilibrium x = 0 up to the third order. The importance of the third order expansion is

motivated by the Lyapunov Center Theorem and the normal form for the Hopf bifurcation.

Section 4.2 deals with arbitrary periodic solutions, but instead of being framed in terms

of the asymptotic expansion of the field ∇V (x), we use conditions on the Floquet modes of

the targeted orbit as a solution of the uncontrolled system.

Each section is supplemented with examples.

In a brief Section 4.3 we show how the conditions in Section 4.2 agree with those from

Section 4.1 in the case of small amplitude cycles. Finally we present conclusions. An Ap-

pendix B containing the derivation of the normal form for the Hopf bifurcation in a delayed

system is included at the end of the dissertation for convenience of the reader.

1The material of this chapter was published in Discrete & Continuous Dynamical Systems – S. Reprinted
with permission.
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4.1 Stabilization of small periodic orbits

4.1.1 Main statement

Consider the system

ẍ+∇V (x) = K (xτ − x) , x ∈ RN . (4.1)

with a sufficiently smooth potential V , where xτ = x(t− τ). Let x∗ be an equilibrium of the

uncontrolled system

ẍ+∇V (x) = 0. (4.2)

Without loss of generality, assume that x∗ = 0, i.e., ∇V (0) = 0. Denote by H = D2V the

Hessian of V and by H0 the value of the Hessian at zero, H0 = D2V (0). We will use the

third order expansion of ∇V at zero:

∇V (x) = H0x+
1

2
L(x, x) +

1

6
Q(x, x, x) + o(‖x‖3) as x→ 0 (4.3)

with a bilinear map L : RN ×RN → RN and a trilinear map Q : RN ×RN ×RN → RN . Here

and henceforth, 〈·, ·〉 is the usual scalar product and ‖ · ‖ is the corresponding Euclidean

norm in RN .

Denote by Sp(H0) the spectrum of the symmetric matrix H0. We make the following

assumptions about the uncontrolled system (4.2).

• Stability of the zero equilibrium: The Hessian H0 is positive definite.

Hence, the spectrum of H0 is positive:

Sp(H0) = {ω2
1, . . . , ω

2
N}.

with ωn > 0.

• Nonresonance condition: For some k and all n 6= k, 1 ≤ n ≤ N , the ratio ωn/ωk is

not an integer number. Further ωn 6= ωm for n 6= m.
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Denote by en a unit eigenvector of the Hessian H0 corresponding to the eigenvalue ω2
n and

set

ak =
1

2

(
4ω2

k Id −H0

)−1
L(ek, ek), bk = −H−1

0 L(ek, ek), (4.4)

where Id denotes the identity matrix.

• Nonzero Lyapunov quantity:

ξk :=

〈
ek, L(ek, ak + bk) +

1

2
Q(ek, ek, ek)

〉
6= 0. (4.5)

By the Lyapunov Center Theorem, the nonresonance condition ensures that the uncon-

trolled system (4.2) has a continuous branch (one-parameter family) Γk of small periodic

orbits with the (minimal) periods satisfying T → 2π/ωk as ‖x‖∞ → 0 (e.g. [97]). We note

that if the nonresonance condition is satisfied for several ωk, then there are several branches

of small periodic orbits near zero. In particular, if no frequency is a multiple of any other fre-

quency, then there are n branches of small periodic orbits with pairwise different asymptotic

periods.

Theorem 4.1.1. Let a matrix D satisfy

sin(2πωn/ωk) 〈en, Den〉 > 0, 1 ≤ n ≤ N, n 6= k, (4.6)

and

ξk 〈ek, Dek〉 > 0. (4.7)

Then, for every sufficiently small ε > 0 there is a δ0 = δ0(ε) > 0 such that if K = εD

and τ = 2π/ωk − ξkδ with δ ∈ (0, δ0), then the small τ -periodic orbit of the uncontrolled

system (4.2) is orbitally asymptotically stable for the controlled system (4.1).

The proof of the theorem uses the following simple statement.
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Lemma 4.1.2. Let A and B be two N × N matrices and 0 < ε � 1. Assume that A is

diagonal. Then,

det (A+ εB) = detA+ ε
N∑
i=1

 N∏
k=1
k 6=i

Akk

Bii +O(ε2). (4.8)

Proof. Consider the function g(ε) = det (A+ εB). By Taylor’s formula,

g(ε) = detA+ εg′(0) +O(ε2), (4.9)

where by the chain rule

g′(0) =
N∑
i=1

N∑
j=1

∂(detC)

∂Cij

∣∣∣∣
C=A

· dCij
dε

∣∣∣∣
ε=0

(4.10)

with C(ε) := A+ εB. Here

∂(detC)

∂Cij

∣∣∣∣
C=A

=
d det(A+ hEij)

dh

∣∣∣∣
h=0

,

where Eij is the N × N matrix with 1 at the i-th row and the j-th column, and zero

everywhere else. Recall that A is diagonal, therefore

det(A+ hEij) =


detA, i 6= j,

detA+ h
N∏
k=1
k 6=i

Akk, i = j.

Hence,

∂ det(C)

∂Cij

∣∣∣∣
C=A

=


0, i 6= j,

N∏
k=1
k 6=i

Akk, i = j.

Combining this with (4.9) and (4.10) gives (4.8).

Proof of Theorem 4.1.1. Denote by S an orthogonal matrix that diagonalizes H0:

Ω := diag {ω2
1, . . . , ω

2
N} = STH0S.
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The characteristic equation of the linearization of the controlled system (4.1) with K = εD

at zero can be written as

det
(
λ2Id + Ω + ε(1− e−λτ )D̃

)
= 0, (4.11)

where D̃ = STDS. For ε = 0, the roots of this equation are ±iωn, n = 1, . . . , N . Let us set

τ = 2π/ωk, take n 6= k, and consider a small perturbation λ = iωn + ρn of the root iωn for

0 < ε� 1. Substituting the expression λn = iωn + ρn in (4.11) and using Lemma 4.1.2, we

see that the zero order terms vanish, and keeping the first correction terms, we obtain

2iωnρn + ε(1− e−2πiωn/ωk)D̃nn + o(ε+ |ρn|) = 0,

where D̃nn =
〈
en, D̃en

〉
is the corresponding diagonal entry of the matrix D̃. This implies

Reλn = Re ρn =
− sin(2πωn/ωk) 〈en, Den〉

2ωn
ε+ o(ε), n 6= k. (4.12)

Now, we fix an ε > 0 and note that the characteristic equation (4.11) has the roots ±iωk

for τ = 2π/ωk. Considering a small perturbation τ = 2π/ωk − ξkδ of the delay, for the

perturbed root λk = iωk + ρk of (4.11) we obtain

2iωkρk + ε(−iωkξkδ + 2πρk/ωk)D̃kk + o(|δ|+ ρk) = 0,

where δ is considered as a small parameter and ε is fixed. Hence,

Reλk = Re ρk =
ξkω

2
k 〈ek, Dek〉

2ω2
k + 2(πD̃kkε/ωk)2

εδ + o(δ). (4.13)

Relations (4.6), (4.7) combined with (4.12), (4.13) ensure that the controlled system (4.1)

with the delay τ considered as the bifurcation parameter and K = εD satisfies the conditions

of the Hopf Bifurcation Theorem (e.g. [58]) for any sufficiently small fixed ε > 0. Indeed,

relations (4.7) and (4.13) imply that the complex conjugate eigenvalues λk(τ), λ̄k(τ) cross

the imaginary axis transversally at the points ±iωk for τ∗ = 2π/ωk. At the same time,
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relations (4.6) and (4.12) imply that all the eigenvalues λn(τ), λ̄n(τ) with n 6= k, 1 ≤ n ≤ N

have negative real parts for any τ close to τ∗, while the smallness of ε ensures the same

property for all the other eigenvalues. Hence, equation (4.1) has a continuous branch (one-

parameter family) Γ̂ of small periodic orbits with (minimal) periods satisfying T → 2π/ωk

and τ → 2π/ωk as ‖x‖∞ → 0. Further, stability of these small periodic orbits is determined

by the Lyapunov quantity [42]. A computation of this quantity is included in the Appendix

for convenience of the reader. In particular, it is shown that condition (4.7) ensures that the

Hopf bifurcation is supercritical, i.e., all the small orbits of the branch Γ̂ are asymptotically

stable. Finally, the Hopf Bifurcation Theorem implies that all the small periodic orbits

of (4.1) that exist for τ close to τ∗ and have periods close to τ∗ belong to Γ̂ (e.g. [58]), in

particular the branch Γk of small periodic orbits of the uncontrolled system (4.2) is included

in Γ̂.2 This completes the proof.

Remark 4.1.3. An asymptotic analysis presented in Appendix B shows that the period of

a small periodic orbit of the uncontrolled system (4.2) scales with the amplitude of the orbit

as

T = τ∗ −
ξkπ

4ω3
k

‖x‖2
∞ + o

(
‖x‖2

∞
)
. (4.14)

Combining this with (4.7) and assuming that (4.6) holds, we see that if |T − τ∗| scales

quadratically with the amplitude of the orbit and T decreases with ‖x‖∞, then the stabi-

lization of small periodic orbits is achieved when 〈ek, Kek〉 > 0. On the other hand, if T

increases with ‖x‖∞, then the stabilization is achieved when 〈ek, Kek〉 < 0.

4.1.2 Example: Duffing oscillator

Consider the scalar equation

ẍ+ x+ x3 = κ(xτ − x).

2As a matter of fact, Γ̂ = Γk because system (4.1) has at most one small periodic orbit for every τ close
to τ∗.

123



Without the control (κ = 0), the scaling of the period of the periodic orbit near the origin

can be found, for example, by the Poincaré–Lindstedt method [80]:

ω2x′′ + x+ x3 = 0,

where prime denotes the derivative with respect to the rescaled time t̃ = ωt and

x = r cos t̃+ r3x̃, ω = 1 + Ar2,

where r measures the amplitude of the small periodic solution. The first correction of order r3

has no secular terms for A = 3/8. Hence, the frequency increases and the period T decreases

with the amplitude r of the periodic orbit:

T = 2π

(
1− 3

8
r2

)
+ o(r2).

According to Remark 4.1.3, the condition

κ > 0

ensures the noninvasive stabilization of small periodic orbits provided that κ is sufficiently

small and τ < 2π is close to 2π. Similarly, a sufficiently small control with κ < 0 and τ > 2π,

τ ≈ 2π stabilizes a small periodic orbit of the equation

ẍ+ x− x3 = κ(xτ − x).

4.1.3 Example: Two coupled Duffing oscillators

Now, let us consider two coupled Duffing oscillators:

ẍ+∇V (x) = K(xτ − x), x = (x1, x2)T ∈ R2

with the potential

V (x) =
1

2

(
x2

1 +
x2

2

2
+

3

5
(x1 − x2)2 +

x4
1

2
+
x4

2

2

)
. (4.15)
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Here the eigenvalues and eigenvectors of the Hessian H0 are

ω2
1 = 2, ω2

2 = 0.7, e1 =
1√
13

(3,−2)T, e2 =
1√
13

(2, 3)T. (4.16)

Using the diagonalizing coordinate transformation

x = Sy, S =
1√
13

 3 2

−2 3

 ,
we obtain

ÿ1 + 2y1 + 3
169

(3y1 + 2y2)3 − 2
169

(−2y1 + 3y2)3 = 0,

ÿ2 + 0.7y2 + 2
169

(3y1 + 2y2)3 + 3
169

(−2y1 + 3y2)3 = 0.

Two branches of periodic orbits can be obtained by the Poincaré–Lindstedt method using

the following expansions:

t̃ = ωt, ω =
√

2 + γ1r
2, y1 = r cos t̃+ r3ỹ1, y2 = r3ỹ2

and

t̃ = ωt, ω =
√

0.7 + γ2r
2, y1 = r3ỹ1, y2 = r cos t̃+ r3ỹ2

with r � 1. Elimination of the secular terms in the first correction is achieved for

γ1 =
3 · 97

8 · 169
√

2

for the first branch with ω ≈
√

2 and

γ2 =
3 · 97

8 · 169
√

0.7

for the second branch with ω ≈
√

0.7. Since γ1,2 > 0, the frequency increases and the period

of the periodic orbit decreases on each branch with the amplitude r of the orbit. According

to (4.14), it means that the Lyapunov quantity (4.5) for each branch satisfies ξ1,2 > 0.
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Let us assume a diagonal control matrix

K =

κ1 0

0 κ2

 .
Using (4.16) and ξ1 > 0, the conditions (4.6), (4.7) for the branch of small periodic orbits

with ω ≈
√

2 have the form

0.9κ1 + 0.4κ2 > 0,

0.4κ1 + 0.9κ2 < 0.
(4.17)

According to Theorem 4.1.1, these conditions ensure that the branch with ω ≈
√

2 stabilizes

provided that κ1, κ2 are sufficiently small in absolute value.

Similarly, the branch of small periodic orbits with ω ≈
√

0.7 stabilizes if the opposite

inequalities hold:

0.9κ1 + 0.4κ2 < 0,

0.4κ1 + 0.9κ2 > 0.
(4.18)

On the other hand, if

V (x) =
1

2

(
x2

1 +
x2

2

2
+

3

5
(x1 − x2)2 − x4

1

2
− x4

2

2

)
,

then each of the branches will be stabilized if

0.9κ1 + 0.4κ2 < 0,

0.4κ1 + 0.9κ2 < 0.

4.2 Stabilization of large periodic orbits

4.2.1 Main statement

We consider now a branch of periodic orbits of the uncontrolled system (4.2) further away

from zero. Consider a particular periodic orbit x∗ = x∗(t) of period T∗. Since the orbit

is included in the branch, it has a characteristic multiplier µ = 1 of algebraic multiplicity

greater than 1. We make the following assumption.
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• Genericity assumption: The characteristic multiplier µ = 1 of the periodic orbit x∗

has geometric multiplicity 1 and algebraic multiplicity 2.

This is the generic situation for a periodic orbit embedded into a surface of such orbits. More

precisely, we write the uncontrolled system in the phase space:

ẋ = −p, ṗ = ∇V (x), x, p ∈ RN , (4.19)

consider the periodic solution (x∗(t), p∗(t)) = (x∗(t), −ẋ∗(t)), and consider the linearization

of system (4.19) on the periodic solution:

ẏ = B(t)y, y ∈ R2N , (4.20)

with y = (x, p) and

B(t) =

 0 −Id

H(x∗(t)) 0

 , (4.21)

where H(x∗(t)) = H(x∗(t))
T. Hence, B(t) ≡ B(t+T∗). Floquet modes are solutions of (4.20)

of the form

yn(t) = (un(t), −u̇n(t)) = µt/T∗n qn(t), qn(t) ≡ qn(t+ T∗), (4.22)

where µn is a (complex) characteristic multiplier. In particular, denote u0(t) = ẋ∗(t), then

y0(t) = (u0(t), −u̇0(t)) is the periodic Floquet mode, which satisfies

u0(t) ≡ u0(t+ T∗)

and has the characteristic multiplier µ0 = 1. Also, according to the genericity assumption

above, equation (4.20) has a solution (v0(t), −v̇0(t)) satisfying

v0(t+ T∗) ≡ v0(t) + u0(t),

which can be called the generalized Floquet mode.

Further, assume that
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• Stability assumption: All the characteristic multipliers µn 6= 1 of (4.20) are simple

and satisfy |µn| = 1.

In other words, the periodic solution x∗(t) of the uncontrolled system is stable.

Theorem 4.2.1. Suppose that a matrix D satisfies

(
〈u0(t), v̇0(t)〉 − 〈u̇0(t), v0(t)〉

)∫ T∗

0

〈u0(s), Du0(s)〉 ds > 0, (4.23)

where (u0(t), −u̇0(t)) and (v0(t), −v̇0(t)) are a Floquet mode and the generalized Floquet

mode of (4.20) corresponding to the characteristic multiplier µ0 = 1. Suppose that

Im
(
〈u̇n(t), un(t)〉

)
Im

(
(µn − 1)

∫ T∗

0

〈un(s), Dun(s)〉 ds
)
> 0 (4.24)

for all the Floquet modes (4.22) corresponding to the characteristic multipliers µn 6= 1. Then,

for every sufficiently small ε > 0, the periodic solution x∗(t) of the controlled system (4.1)

with τ = T∗ and K = εD is orbitally asymptotically stable.

Note that in (4.23), (4.24),

〈u0(t), v̇0(t)〉 − 〈u̇0(t), v0(t)〉 ≡ const, 〈u̇n(t), un(t)〉 ≡ const

(see the proof below).

Proof. Let

ẏ = B(t)y + εG(y(t− T∗)− y), y ∈ R2N , (4.25)

be the linearization of the controlled system (4.1) with the delay τ = T∗ and the gain matrix

εG near x∗. Suppose that µ is a characteristic Floquet multiplier of system (4.25), hence

this system has a solution (Floquet mode)

yµ(t) = µt/T∗q(t) (4.26)
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with a periodic q(t) ≡ q(t+T∗). Since the delay in (4.25) equals the period of q, we see that

yµ satisfies the ordinary differential system

ẏ =
(
B(t) + ε(µ−1 − 1)G

)
y. (4.27)

Denoting by Ψε,µ(t) the fundamental matrix of (4.27), we conclude that the monodromy

matrix Ψε,µ(T∗) of (4.27) also has the characteristic multiplier µ. Hence, this multiplier µ is

a root of the characteristic equation

det(Ψε,µ(T∗)− µId ) = 0. (4.28)

Denote by Φ(t) the fundamental matrix of system (4.20). Clearly, Φ(t) = Ψ0,µ(t). Sup-

pose that the monodromy matrix Φ(T∗) of system (4.20) has a simple eigenvalue µ∗ 6= 1

on the unit circle, hence µ∗ is a root of (4.28) for ε = 0. Let us consider the perturbation

µ = µ∗+ ρ of this root for small ε. Note that the fundamental matrices Φ(t) and Ψε,µ(t) are

related by the identity

Ψε,µ(t) = Φ(t)

(
Id + ε(µ−1 − 1)

∫ t

0

Φ−1(s)GΨε,µ(s) ds

)
,

which implies

Ψε,µ(T∗) ≈ Φ(T∗)

(
Id + ε(µ−1 − 1)

∫ T∗

0

Φ−1(t)GΦ(t) dt

)
, (4.29)

where we omit the terms of order o(ε). In the following, the approximate equality also means

that o(ε) terms are omitted. Let us denote by S the transition matrix to a basis in which

the matrix Φ(T∗) assumes the Jordan form Λ; for convenience, we also agree that S−1 maps

the eigenvector e∗ corresponding to the simple eigenvalue µ∗ to the vector S−1e∗ = e1 :=

(1, 0, . . . , 0)T ∈ R2N . In this new basis, using (4.29), we can rewrite (4.28) as

det

(
Λ− µId + ε(µ−1 − 1)Λ

∫ T∗

0

S−1Φ−1(t)GΦ(t)S dt

)
≈ 0 (4.30)

129



with µ = µ∗ + ρ. Since Λ11 = µ∗, this implies

ρ ≈ ε(1− µ∗)M11 with M :=

∫ T∗

0

S−1Φ−1(t)GΦ(t)S dt.

Taking into account that y∗(t) = Φ(t)e∗ = Φ(t)Se1 is the Floquet mode of (4.20) corre-

sponding to the characteristic multiplier µ∗ and ϕ†∗(t) = [Φ−1(t)]Te†∗ = [S
−1

Φ−1(t)]Te1 is

the adjoint Floquet mode corresponding to the multiplier 1/µ∗ = µ∗ and normalized by the

condition
〈
ϕ†∗(t), y∗(t)

〉
≡ 1, we see that

M11 = eT
1Me1 =

∫ T∗

0

eT
1 S
−1Φ−1(t)GΦ(t)Se1 dt =

∫ T∗

0

〈
ϕ†∗(t), Gy∗(t)

〉
dt,

hence

ρ ≈ ε(1− µ∗)
∫ T∗

0

〈
ϕ†∗(t), Gy∗(t)

〉
dt.

Therefore, the stabilization condition |µ∗ + ρ| < 1, which is equivalent to Re (ρ µ∗) < 0 for

small ρ, is

Re

(
(µ∗ − 1)

∫ T∗

0

〈
ϕ†∗(t), Gy∗(t)

〉
dt

)
< 0. (4.31)

Now we consider the perturbation µ = 1 + ρ of the eigenvalue 1. By assumption, the

Jordan form Λ of the matrix Φ(T∗) has the Jordan block1 1

0 1

 ;

again, without loss of generality, we can assume that this block is in the first and second

rows and columns of Λ. Then, (4.30) implies

det

 −ρ 1

−ερM21 −ρ

 ≈ 0,

hence

ρ ≈ −εM21,
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which gives the stabilization condition

ReM21 > 0.

Here

M21 = eT
2Me1 =

∫ T∗

0

eT
2 S
−1Φ−1(t)GΦ(t)Se1 dt

with e1 = (1, 0, . . . , 0)T, e2 = (0, 1, . . . , 0)T, and we can think that the transition matrix S

is real. This matrix maps the vector e1 to the eigenvector e∗ of Φ(T∗) corresponding to the

eigenvalue 1 and the vector e2 to a generalized eigenvector g∗ corresponding to the same

eigenvalue, i.e.,

Φ(T∗)e∗ = e∗, Φ(T∗)g∗ = g∗ + e∗, S−1e∗ = e1, S−1g∗ = e2, (4.32)

which implies

[Φ−1(T∗)]
Te†∗ = e†∗, [Φ−1(T∗)]

Tg†∗ = g†∗ − e†∗ for ST e†∗ = e2, STg†∗ = e1. (4.33)

Further, y∗(t) = Φ(t)e∗ = Φ(t)Se1 is the Floquet mode of (4.20) corresponding to the mul-

tiplier 1 and ϕ†∗(t) = [Φ−1(t)]Te†∗ = [S−1Φ−1(t)]Te2 is the adjoint Floquet mode. Therefore

M21 =

∫ T∗

0

〈
ϕ†∗(t), Gy∗(t)

〉
dt

and the stabilization condition reads

Re

∫ T∗

0

〈
ϕ†∗(t), Gy∗(t)

〉
dt > 0. (4.34)

Notice that
〈
ϕ†∗(t), y∗(t)

〉
≡ 0 automatically, and relations (4.32), (4.33) imply the following

normalization condition in terms of z∗ = Φ(t)g∗:

〈
ϕ†∗(t), z∗(t)

〉
=
〈
[Φ−1(t)]Te†∗, Φ(t)g∗

〉
≡ eT

2 S
−1Se2 = 1. (4.35)

Thus, conditions (4.31) and (4.34) ensure the stabilization.
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Finally, let us rewrite this conditions using the specific structure of our system and the

specific structure of the control matrix G. First, note that due to the block structure of the

matrix (4.21), each eigenfunction has the form y∗(t) = (u∗(t), −u̇∗(t)) where u∗ has values

in RN . Further, we see that if an eigenfunction y∗(t) = (u∗(t), −u̇∗(t)) corresponds to an

eigenvalue µ, then ϕ†∗(t) = α(u̇∗(t), u∗(t)) is an adjoint eigenfunction corresponding to the

same eigenvalue for any α 6= 0. For µ = µ∗ 6= 1, these eigenfunctions should satisfy the

normalizing condition
〈
ϕ†∗(t), y∗(t)

〉
≡ 1, i.e.,

α(u̇
T

∗ (t)u∗(t)− uT
∗ (t)u̇∗(t)) = 1,

which gives

α =
−i

2 Im
(
u̇

T

∗ (t)u∗(t)
) =

−i
2 Im (〈u̇∗(t), u∗(t)〉)

.

On the other hand,

G =

 0 0

−D 0

 ,
hence (4.31) is equivalent to

Im
(
〈u̇∗(t), u∗(t)〉

)
Im

(
(µ∗ − 1)

∫ T∗

0

〈u∗(s), Du∗(s)〉 ds
)
> 0 (4.36)

(cf. (4.24)).

Now, consider µ∗ = 1. Using the formulas y∗(t) = (u∗(t), −u̇∗(t)), ϕ†∗(t) = α(u̇∗(t), u∗(t)),

and z∗(t) = (v∗(t), −v̇∗(t)), where all the functions are real-valued, and the block structure

of G, we can rewrite conditions (4.34) and (4.35) as

α

∫ T∗

0

〈u∗(t), Du∗(t)〉 dt < 0, α
(
〈u̇∗(t), v∗(t)〉 − 〈u∗(t), v̇∗(t)〉

)
≡ 1.

Combining these two relations, we obtain(
〈u∗(t), v̇∗(t)〉 − 〈u̇∗(t), v∗(t)〉

)∫ T∗

0

〈u∗(s), Du∗(s)〉 ds > 0

(cf. (4.23)). This completes the proof.
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4.2.2 Example

Again, we consider two coupled Duffing oscillators with the potential (4.15). We have

already established that there are two branches of periodic solutions emanating from the

origin. Close to the origin the frequencies of these branches are ω ≈
√

2 and ω ≈
√

0.7.

Moreover we have shown that small periodic orbits can be stabilized by the diagonal control

matrix K = diag (κ1, κ2) satisfying conditions (4.17) and (4.18) for ω =
√

2 and ω =
√

0.7,

respectively. Using numerical continuation with the delay τ as a continuation parameter we

can “travel” along the branch of interest and study the stability of the periodic solutions

away from the origin. The period of the orbit equals the delay, T = τ .

Figure 4.1 presents the branch of periodic orbits starting from the zero equilibrium at τ =

2π/
√

0.7. The period decreases and the amplitude increases along the branch. Depending

on the value of κ = (κ1, κ2), different parts of the branch are stable/unstable. Panels (A)

and (B) present the stability of the solutions along the branch for κ̃ = (−0.02, 0.012) and

κ̂ = (−0.02, 0.02), respectively. Both κ̃ and κ̂ satisfy conditions (4.18), therefore the small-

amplitude solutions are asymptotically stable. For κ = κ̃ the orbit destabilizes at the point

B (see Figure 4.1(A)), while for κ = κ̂ all the orbits remain stable for all the values of

τ considered (see Figure 4.1(B)). Continuation of the branch was performed using DDE-

BIFTOOL package for MATLAB R© [37, 38].

Conditions (4.23), (4.24) were evaluated numerically for three points A, B and C of the

branch, see Figure 4.1. For each point, these conditions define a sector with the vertex at the

origin in the plane of control parameters (κ1, κ2). The three corresponding sectors, A1OA2,

B1OB2, C1OC2, are shown in Figure 4.2. In particular, if κ belongs to the interior of the

sector A1OA2 and ‖κ‖ is sufficiently small, then Theorem 4.2.1 ensures that the periodic

orbit corresponding to the point A is asymptotically stable for the controlled system when

the delay is set to τ = τA. Figure 4.2 suggests that the sector becomes more narrow with

the decreasing τ . Correspondingly, since κ̂ belongs to C1OC2, the stable part of the branch

133



5 5.5 6 6.5 7 7.5

0

0.2

0.4

0.6

0.8

1
m

ax
|x

1(t
)| B

A

C

(a)

5 5.5 6 6.5 7 7.5

0

0.2

0.4

0.6

0.8

1

m
ax

|x
1(t

)| B

A

C

(b)

Figure 4.1: Panel (A): Bifurcation diagram of the controlled system for κ̃ = (−0.02, 0.012).
Points A, B and C on the branch correspond to the delays τA = 7.1857, τB = 5.9655 and
τC = 5.1761, respectively. Panel (B): The same branch of periodic solutions has different
stability properties for κ̂ = (−0.02, 0.02). Stable and unstable solutions are shown by solid
and dashed lines, respectively.

extends from its origin at least to the point C for the controlled system withK = diag(κ̂1, κ̂2).

On the other hand, for K = diag(κ̃1, κ̃2), the stable part of the branch extends only to the

point B because κ̃ lies on the boundary of the sector B1OB2. This agrees with Figure 4.1.

4.3 How do stability conditions for small and large cycles agree?

For a small cycle, the Hessian is close to its constant value at zero. Therefore the Floquet

modes are close to the eigenfunctions at zero. In particular, for n 6= k, we have u∗(t) ≈

eiωnten. Using this approximation,

〈u̇∗(t), u∗(t)〉 ≈ −iωn‖en‖2, µn ≈ e2πiωn/ωk , 〈u∗(t), Du∗(t)〉 ≈ 〈en, Den〉,

and we see that (4.24) is equivalent to (4.6).

On the other hand, the solution is approximately x∗(t) ≈ rek cos(ωkt) and for n = k, we

have u∗(t) = ẋ∗(t) ≈ −rωkek sin(ωkt). If we assume in addition to (4.5) that the period T is
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Figure 4.2: Control parameters plane. Conditions (4.18) of Theorem 4.1.1 are satisfied
within the sector O1OO2. Sectors A1OA2, B1OB2, C1OC2 are defined by conditions (4.23)
and (4.24) for the periodic solutions indicated by points A, B and C, respectively, on Fig-
ure 4.1. Point κ̃ = (−0.02, 0.012) corresponds to control parameters used in Figure 4.1(A);
parameters κ̂ = (−0.02, 0.02) are used in Figure 4.1(B).

a strictly monotone function of the amplitude ‖x‖∞ of the periodic orbit along the branch

(for small cycles), and the derivative ∂T/∂‖x‖∞ is well-defined and is nonzero, then the sign

of this derivative is opposite to the sign of ξk (cf. (4.14)). To be definite, assume that ξk > 0,

hence T decreases with ‖x‖∞ along the branch. Then, v∗(t) ≈ r̂ek cos(ωkt) where r̂r > 0.

Therefore,

〈u∗(t), v̇∗(t)〉 − 〈u̇∗(t), v∗(t)〉 ≈ ω2
krr̂‖ek‖2, 〈u∗(t), Du∗(t)〉 ≈ ω2

kr
2 sin2(ωkt) 〈ek, Dek〉,

and we see that (4.23) implies 〈ek, Dek〉 > 0, which agrees with (4.7). In the case ξk < 0,

we have v∗(t) ≈ r̂ek cos(ωkt) with r̂r < 0, which leads to (4.7) again.

4.4 Conclusions

We considered an extension of the Pyragas delayed control method from general differential

equations to Newtonian systems that possess a branch of neutrally stable periodic orbits.
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We proposed sufficient conditions which allow arbitrarily small Pyragas control to transform

the stability of one selected periodic solution from neutrally stable to exponentially stable.

In the case of small amplitude periodic solutions our conditions were given in terms of the

asymptotic expansion of the vector field, while in the case of general periodic orbits we

expressed the conditions in terms of the Floquet modes of the target orbit as a solution of

the uncontrolled system. The theorem were illustrated by analytical and numerical examples.

The results can be naturally extended to Newtonian systems with controls K(ẋτ − ẋ) and

to Hamiltonian systems ẋ = J∇H(x) with controls K(xτ − x).
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APPENDIX A

TWISTED SUBGROUPS

A.1 Notations used for the twisted subgroups of K := D8 × S1

The following symbols are used for the twisted subgroups of K:

D8 := {(ξk, 1) : k = 0, 1, . . . , 7} ∪ {(ξkκ, 1) : k = 0, 1, . . . , 7},

Dd
8 := {(ξk, (−1)k) : k = 0, 1, . . . , 7} ∪ {(ξkκ, (−1)k) : k = 0, 1, . . . , 7},

D̃d
4 := {(1, 1), (i,−1), (−1, 1), (−i,−1), (ξκ, 1), (ξiκ,−1), (−ξκ, 1), (−ξiκ,−1)},

Dd
4 := {(1, 1), (i,−1), (−1, 1), (−i,−1), (κ, 1), (iκ,−1), (−κ, 1), (−iκ,−1)},

Dd
2 := {(1, 1), (−1,−1), (κ, 1), (−κ,−1)},

D̃d
2 := {(1, 1), (−1,−1), (ξκ, 1), (−ξκ,−1)},

Zt18 := {(ξk, ξk) : k = 0, 1, . . . , 7},

Zt28 := {(ξk, ξ2k) : k = 0, 1, . . . , 7},

Zt38 := {(ξk, ξ3k) : k = 0, 1, . . . , 7}.

Here

ξ := e
πi
4 and κ :=

1 0

0 −1

 .
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A.2 Notations used for the twisted subgroups of K := D8 × {1} × S1

The following symbols are used for the twisted subgroups of K:

D8D8D8 := D8 × {1} × {1},

Zt18Z
t1
8Zt18 := {(ξk, 1, ξk) ∈ K : k = 0, 1, . . . , 7}, ξ := e

πi
4 ,

Dd
2D
d
2D
d
2 := {(1, 1, 1), (−1, 1,−1), (κ, 1, 1), (−κ, 1,−1)},

D̃d
2D̃
d
2D̃
d
2 := {(1, 1, 1), (−1, 1,−1), (ξκ, 1, 1), (−ξκ, 1,−1)},

Zt28Z
t2
8Zt28 := {(ξk, 1, ξ2k) ∈ K : k = 0, 1, . . . , 7},

Dd
4D
d
4D
d
4 := {(1, 1, 1), (i, 1,−1)(−1, 1, 1), (−i, 1,−1), (κ, 1, 1), (iκ, 1,−1),

(−κ, 1, 1), (−iκ, 1,−1)},

D̃d
4D̃
d
4D̃
d
4 := {(1, 1, 1), (i, 1,−1)(−1, 1, 1), (−i, 1,−1), (ξκ, 1, 1), (iξκ, 1,−1),

(−ξκ, 1, 1), (−iξκ, 1,−1)},

Zt38Z
t3
8Zt38 := {(ξk, 1, ξ3k) ∈ K : k = 0, 1, . . . , 7},

Dd
8D
d
8D
d
8 := {(ξk, 1, (−1)k), (ξkκ, 1, (−1)k) ∈ H : k = 0, 1, . . . , 7}.

A.3 Notations used for the twisted subgroups of K := Ztl8 × S1, l = 1, 2, 3

In this case, the following symbols are used for the twisted subgroups of K:

Z8Z8Z8 := Ztl8 × {1},

Zt18Z
t1
8Zt18 := {(ξk, ξlk, ξk) ∈ K : k = 0, 1, . . . , 7}, ξ := e

πi
4 ,

Zt28Z
t2
8Zt28 := {(ξk, ξlk, ξ2k) ∈ K : k = 0, 1, . . . , 7},

Zt38Z
t3
8Zt38 := {(ξk, ξlk, ξ3k) ∈ K : k = 0, 1, . . . , 7},

Zc8Z
c
8Zc8 := {(ξk, ξlk, (−1)k) ∈ K : k = 0, 1, . . . , 7}.
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A.4 Notations used for the twisted subgroups of K := Dd
8 × S1

For this group, the following symbols are used for the twisted subgroups of K:

D8D8D8 := Dd
8 × {1},

Zt18Z
t1
8Zt18 := {(ξk, (−1)k, ξk) ∈ K : k = 0, 1, . . . , 7}, ξ := e

πi
4 ,

Dd
2D
d
2D
d
2 := {(1, 1, 1), (−1, 1,−1), (κ, 1, 1), (−κ, 1,−1)},

D̃d
2D̃
d
2D̃
d
2 := {(1, 1, 1), (−1, 1,−1), (ξκ,−1, 1), (−ξκ,−1,−1)},

Zt28Z
t2
8Zt28 := {(ξk, (−1)k, ξ2k) ∈ K : k = 0, 1, . . . , 7},

Dd
4D
d
4D
d
4 := {(1, 1, 1), (i, 1,−1)(−1, 1, 1), (−i, 1,−1), (κ, 1, 1), (iκ, 1,−1),

(−κ, 1, 1), (−iκ, 1,−1))},

D̃d
4D̃
d
4D̃
d
4 := {(1, 1, 1), (i, 1,−1)(−1, 1, 1), (−i, 1,−1), (ξκ,−1, 1), (iξκ,−1,−1),

(−ξκ,−1, 1), (−iξκ,−1,−1))},

Zt38Z
t3
8Zt38 := {(ξk, (−1)k, ξ3k) ∈ K : k = 0, 1, . . . , 7},

Dd
8D
d
8D
d
8 := {(ξk, (−1)k, (−1)k), {(ξkκ, (−1)k, (−1)k) ∈ H : k = 0, 1, . . . , 7}.
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A.5 Notations used for selected twisted subgroups of H = S5 × S1

The following symbols are used for selected twisted subgroups of H:

S5 := S5 × {1},

Zt15 := 〈((12345), ω5)〉 ,

D6 := D6 × {1},

Dd
6 := 〈((12), 1), ((123), 1), ((45),−1)〉 = 〈((123)(45),−1), ((12), 1)〉 ,

Zt26 := 〈((45), 1), ((123), ω3)〉 = 〈((123)(45), ω3)〉 ,

S4 := S4 × {1},

Dd
4 := 〈((24), 1), ((35), 1), ((2345),−1)〉 = 〈((2345),−1), ((24), 1)〉 ,

Zt14 := 〈((2345), ω4)〉 .

Here ωk := e
2πi
k .

A.6 Notations used for selected twisted subgroups of K := Ztl5 × S1

In this case, the following symbols are used for selected twisted subgroups of K:

Zt15 := Zt15 × {1},

Zt1,t1t1t15 :=
〈
((12345), ω5, ω5)

〉
.
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A.7 Notations used for selected twisted subgroups of K := Dd
6 × S1

For this group, the following symbols are used for selected twisted subgroups of K:

Dd
6 := Dd

6 × {1},

Zt3,t1t1t16 := 〈((125)(34),−1, ω6)〉 ,

Dd,ddd
2 := 〈((12), 1, 1), ((12)(34),−1,−1)〉 ,

Dd,d̂̂d̂d
2 := 〈((34),−1, 1), ((12)(34),−1,−1)〉 ,

Zt3,t2t2t26 := 〈((125)(34),−1, ω3)〉 ,

Dd
2 := Dd

2 × {1},

Dd,zzz
2 := 〈((12)(34),−1, 1), ((12), 1,−1)〉 ,

Dd,ddd
6 := 〈((12), 1, 1), ((125), 1, 1), ((34),−1,−1)〉 = 〈((125)(34),−1,−1), ((12), 1, 1)〉 .

A.8 Notations used for selected twisted subgroups of K := S4 × S1

For this group, the following symbols are used for selected twisted subgroups of K:

S4 := S4 × {1} × {1},

Zt2t2t24 := 〈((2345), 1,−1)〉 ,

Dddd
4 := 〈((24), 1, 1), ((35), 1, 1), ((2345), 1,−1)〉 = 〈((2345), 1,−1), ((24), 1, 1)〉 ,

Dddd
2 := 〈((24), 1, 1), ((24)(35), 1,−1)〉 ,

Zt1t1t13 := 〈((234), 1, ω3)〉 .
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APPENDIX B

COMPUTATION OF THE NORMAL FORM

Let us consider the delay τ > 0 in equation (4.1) as a bifurcation parameter, which is varied

near the point τ∗ = 2π/ωk. The characteristic equation of the linearization of (4.1) at zero

reads

det
(
λ2Id +H0 +K −Ke−λτ

)
= 0. (B.1)

Assume that conditions (4.5), (4.6) hold and K = εD with a sufficiently small ε > 0. Then,

as shown in the proof of Theorem 4.1.1, a pair of complex conjugate eigenvalues λk(τ), λ̄k(τ)

crosses the imaginary axis transversally at the points ±iωk for τ∗ = 2π/ωk, while all the

other eigenvalues have negative real parts.

We now use the multiple time scale method to compute the normal form of system (4.1)

near the zero equilibrium x = 0 for τ close to τ∗. According to (4.3), we have the following

third order expansion of equation (4.1):

ẍ+H0x+ L(x, x) +Q(x, x, x) = K(x(t− τ)− x(t)) + o(‖x‖3). (B.2)

We seek a uniform second-order approximate periodic solution in the form

x(t) = s x1(T0, T2) + s2x2(T0, T2) + s3x3(T0, T2) + h.o.t. (B.3)

where T0 = t, T2 = s2t, and s is a nondimensional book keeping parameter; h.o.t. stays for

higher order terms in s. Note that it is not necessary to relate the approximate solution with

the time scale T1 = st because a second order approximation will require independence of

T1 in the solution (e.g. [110], page 166). Using the notation

d

dt
=

∂

∂T0

+ s2 ∂

∂T2

+ · · · = D0 + s2D2 + h.o.t.,

d2

dt2
=

∂2

∂T 2
0

+ 2s2 ∂2

∂T0∂T2

+ · · · = D2
0 + 2s2D0D2 + h.o.t.

(B.4)
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for the time derivatives, from (B.3) one obtains

x(t− τ) = x(T0 − τ, T2 − s2τ) =
3∑

m=1

smxm(T0 − τ, T2)− s3τD2x1(T0 − τ, T2) + h.o.t.

Further, introducing the notation τ = τ∗ + s2δ where δ is the detuning parameter,

x(t− τ) =
3∑

m=1

smxm(T0 − τ∗, T2)− s3
(
τ∗D2 − δD0

)
x1(T0 − τ∗, T2) + h.o.t. (B.5)

Now, substituting (B.3)–(B.5) into (B.2) and comparing the like powers of s up to the cubic

terms yields the following equations, where for notational simplicity we omit the time scales

of the variables except for the delayed ones:

D2
0x1 + (H0 +K)x1 −Kx1(T0 − τ∗) = 0, (B.6)

D2
0x2 + (H0 +K)x2 +

1

2
L(x1, x1)−Kx2(T0 − τ∗) = 0, (B.7)

D2
0x3 + 2D0D2x1 + (H0 +K)x3 + L(x1, x2) +

1

6
Q(x1, x1, x1)

= K
(
x3(T0 − τ∗, T2)− τ∗D2x1(T0 − τ∗, T2)− δD0x1(T0 − τ∗, T2)

)
. (B.8)

Since τ = τ∗ is a Hopf bifurcation point for (B.2), the linearization (B.6) has a periodic

solution of the form

x1 =
(
A(T2)eiwkT0 + Ā(T2)e−iwkT0

)
ek, (B.9)

where the real eigenvector ek corresponds to the eigenvalues ±iωk of (B.1) for τ = τ∗ =

2π/ωk. Substituting this expression in equation (B.7) and using eiωkτ∗ = 1, we obtain a

particular solution

x2 = ak
(
A2e2iωkT0 + Ā2e−2iwkT0

)
+ bkAĀ
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with ak, bk defined by (4.4). Further, substituting the expressions for x1 and x2 into (B.8),

we obtain

D2
0x3 + (H0 +K)x3 −Kx3(T0 − τ∗, T2) + 2iωk

(
A′eiwkT0 − Ā′e−iwkT0

)
ek

+ L
(
(AeiwkT0 + Āe−iwkT0)ek, ak(A

2e2iωkT0 + Ā2e−2iwkT0) + bkAĀ
)

+
1

6
Q(ek, ek, ek)

(
A3e3iωkT0 + Ā3e−3iωkT0 + 3A2ĀeiωkT0 + 3AĀ2e−iωkT0

)
= −

(
τ∗A

′eiwkT0 + τ∗Ā
′e−iwkT0 + iωkδAe

iwkT0 − iωkδĀe−iwkT0
)
Kek.

(B.10)

Note that the nonhomogeneous equation (B.10) has terms proportional to eiwkT0 , which sum

to χ(T2)eiwkT0 with

χ = 2iωkA
′ek +

(
L(ek, ak + bk) +

1

2
Q(ek, ek, ek)

)
A2Ā+ τ∗A

′Kek + iωkδAKek.

At the same time, iwk is an eigenvalue of the associated homogeneous equation. Since x3 is

a periodic solution of (B.10), it does not contain secular terms, which is only possible if the

equation (
−ωk2Id +H0 +K −Ke−iωkτ∗

)
φ =

(
−ωk2Id +H0

)
φ = χ

is solvable with respect to φ = φ(T2), where φ(T2)eiwkT0 is the first harmonic in the Fourier

expansion of x3. The solvability requires the orthogonality of χ with the eigenvector ek of

H0 corresponding to the eigenvalue ω2
k:

〈ek, Reχ〉 = 〈ek, Imχ〉 = 0.

Substituting the above expression for χ in these relations leads to the following equation

A′ +
iωkδ〈ek, Kek〉

2iωk + τ∗〈ek, Kek〉
A+

〈
ek, L(ek, ak + bk) + 1

2
Q(ek, ek, ek)

〉
2iωk + τ∗〈ek, Kek〉

A2Ā = 0,

which is the normal form of the Hopf bifurcation for equation (4.1) with the parameter τ .

Using the notation (4.5), this is equivalent to

A′ +
iωkδ〈ek, Kek〉

2iωk + τ∗〈ek, Kek〉
A+

ξk
2iωk + τ∗〈ek, Kek〉

A2Ā = 0. (B.11)
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The normal form (B.11) has a periodic orbit if and only if δξk < 0. This orbit has the

simple form A = A0e
iω0t (a relative equilibrium). Computing A0, ω0 from (B.11) and using

the relations (B.3) and (B.9), one obtains the asymptotic relationship between the amplitude

‖x‖∞ of a small periodic orbit of (4.1) and its period T , which is equal to the delay:

T = τ = τ∗ −
ξkπ

4ω3
k

‖x‖2
∞ + o(‖x‖2

∞). (B.12)

Furthermore, if δ〈ek, Kek〉 < 0, then the periodic orbit of the normal form (B.11) is asymp-

totically stable and so is the periodic orbit x(t) of (4.1). Due to δξk < 0, this asymptotic

stability condition is equivalent to (4.7) yielding the conclusion of Theorem 4.1.1.

Finally, equation (B.11) with K = 0 provides asymptotics of small periodic solutions of

the uncontrolled system (4.2). In particular, the relationship (B.12) between the period and

the amplitude holds, which justifies Remark 4.1.3.
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[76] Kaiser, R. and B. Hüttl (2007). Monolithic 40-ghz mode-locked mqw dbr lasers for high-
speed optical communication systems. IEEE Journal of Selected Topics in Quantum
Electronics 13 (1), 125–135.

[77] Kawakubo, K. (1991). The theory of transformation groups. Oxford University Press.

[78] Keane, A., B. Krauskopf, and C. M. Postlethwaite (2017). Climate models with
delay differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence 27 (11), 114309.

151



[79] Kevorkian, J. and J. D. Cole (1980). Perturbation Methods in Applied Mathematics.
Springer.

[80] Kevorkian, J. and J. D. Cole (1996). Multiple scale and singular perturbation methods,
Volume 114 of Applied Mathematical Sciences. Springer-Verlag, New York.
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