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Engineering of many-body 
Majorana states in a topological 
insulator/s-wave superconductor 
heterostructure
Hsiang-Hsuan Hung2, Jiansheng Wu1, Kuei Sun  3 & Ching-Kai Chiu4,5,6

We study a vortex chain in a thin film of a topological insulator with proximity-induced 
superconductivity—a promising platform to realize Majorana zero modes (MZMs)—by modeling it as 
a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby 
show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external 
magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by 
controlling the direction of magnetic field and the thickness of the sample. We reveal many-body 
Majorana states and interaction-induced topological phase transitions and also identify trivial-
superconducting and commensurate/incommensurate charge-density-wave states in the phase 
diagram.

The exploration of various symmetry-protected topological states in quantum systems has become an inten-
sively focused field in condensed-matter and AMO physics1–3. Quantum matter hosting Majorana zero mode 
(MZM), a particle being its own antiparticle, is of particular interest in the research forefront for its capability 
of revealing the intriguing nature of quantum entanglement and performing fault-tolerant quantum computa-
tion4–12. Recently, a pair of Majorana fermions in a one-dimensional (1D) system has been theoretically proposed 
and experimentally implemented in a semiconductor nanowire or a magnetic-atom chain on a superconducting 
substrate, producing an ideal quantum qubit6, 10, 13. However, efficient quantum information processing requires 
multiple qubits that can be practically manipulated. For this purpose, a more attractive candidate is the hetero-
structure of a three-dimensional (3D) topological insulator (TI) film and an s-wave superconductor, which can 
carry a vortex array with a pair of MZMs embedding in each vortex and localizing around the top and bottom 
surfaces of the film, respectively5. The proximity effect of superconductivity has been confirmed that the super-
conductivity on the naked surface of the TI film is induced from the other side of the TI surface14–17, in contact 
with the superconductor as illustrated in Fig. 1(a). In experiments, MZMs can be observed only on the naked 
surface since the interface between TI and the superconductor has been buried. Currently, the observation of 
zero-bias conductance peak and spin selective Andreev reflection in the vortices shows the tentative evidence of 
MZMs14, 18.

Although the zero bias peak has been observed in the vortex cores of the naked TI surface, existence of the 
MZMs remains debatable in current heterostructure experiments due to two major issues. First, MZM and the 
low-energy Caroli-de-Gennes-Matricon mode19 (~0.01 meV) embedding in the vortex are indistinguishable due 
to the current energy resolution (~0.01 meV) in scanning tunneling spectroscope. Second, the TI should be thin 
enough such that the superconductivity can be proximity-induced on the naked TI surface20 but should be thick 
enough to suppress the Majorana hybridization on the top and bottom TI surfaces. In the recent experiment14, 
the thickness (~5 nm) of TI causes the order of 1 meV of the Majorana hybridization. By comparing with the 
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superconducting gap (1 meV), this hybridization completely destroys MZMs. To save MZMs in this experimental 
setup, first we consider a 1D dense vortex array in the thin TI film and tune the chemical potential right at the 
Dirac point of the surface modes so that additional chiral symmetry is preserved. The symmetry suppresses the 
hybridization of MZMs on the same surface to zero. Hence, the interaction of four Majoranas becomes leading 
order21–23, so many-body Majorana wavefunctions have to be considered for the full characterization of the sys-
tem’s quantum phases. Furthermore, when the vortex array is tilted by a magnetic field, the Majorana interaction 
assists a MZM to appear on the end of the vortex array. Such a many-body effect, though it was less investigated 
previously, not only provides additional degrees of freedom to engineer MZMs but also open an avenue to study 
interacting topological physics.

In this report, we propose a possible realization of a one-dimensional vortex array in a superconducting TI 
film device that can be represented by a tilted ladder model of many Majorana fermions associated with the 
Fu-Kane model5, as shown in Fig. 1(b). In this system, various intravotex and intervortex couplings between 
Majorana fermions are tunable with the control of the chemical potential and the vortex’s incline angle by an 
external magnetic field. Performing the density-matrix-renormalizaion-group (DMRG) calculations24–27, we 
obtain the many-body ground state of the system and present interacting phase diagrams as a function of these 
Majorana couplings. The presence of Majorana interaction enlarges the topological region of the Majorana ladder 
in the phase diagram; it leads to a MZM localized on the end of the ladder even in the presence of the Majorana 
hybridization.

Results
Experimental setup of a two-leg Majorana ladder. We start from the Fu-Kane heterostructure5, which 
is a 3D strong TI thin film on the top of an s-wave type-II superconductor. In this thin film, both top and bottom 
TI surfaces exhibit effective time-reversal-symmetric p ± ip superconductivity, via the superconducting proximity 
effect. Experimentally this setup has been demonstrated in Bi2Te3 thin films grown on a NbSe2 substrate14, 17, as 
shown in Fig. 1(a). With an external magnetic field turned on, vortices are generated on the TI surfaces and each 
end of the vortices hosts a MZM28–30. However, the induced superconducting gap on the naked (top) surface is 
much smaller than the bottom surface in contact with the superconductor15, 17, 20. Furthermore, the MZMs at the 
two ends of the vortex can tunnel through the vortex line and then hybridize, such that they do not possess zero 
energy. For this purpose, we consider a tilted magnetic field, which can effectively enlarge the distance between 
the MZM on the top and bottom surfaces, and weaken the hybridization.

Inspired by the one-dimensional vortex chain with a tilted magnetic field in the copper oxide thin films31, we 
consider a strongly anisotropic vortex array, which turns out to be a one-dimensional stripe along a certain direc-
tion determined by an external magnetic field, as shown in Fig. 1(b). With the tilted fields, the MZMs (red dots) 
at the top and bottom surfaces oppositely shift and form a tilted two-leg ladder, as shown in Fig. 1(c). On the same 
surface, the wavefunction of the MZM may overlap with its nearest neighbors and contribute to intra-leg hopping 
γ γ +t j j1 1 and λ λ +t j j2 1 for the top and bottom surfaces, respectively. The thickness of the TI determines the coupling 

between the top and bottom Majoranas along the same vortex line, γ λts j j. As the magnetic field is titled, the 
hybridization between γj+1 and λj becomes non-negligible, resulting in γ λ+td j j1 . In addition to the single-particle 
hopping, there exists interaction among the MZMs. Assuming that the tilted angle θ is small enough such that the 
distance between γj and λj is less than that between γj+1 and λj, at the leading order we can have interaction 

Figure 1. Experimental setup for a Majorana ladder. (a) Illustration of a pair of Majorana fermions (red dots) 
embedding respectively in the top and bottom of a vortex line (green tube) in a strong-topological-insulator 
thin film (STI, light-blue region) on an s-wave superconductor (S, dark-blue regions). (b) An array of vortices 
in the heterostructure, forming a two-leg Majorana ladder. An applied magnetic field B (dashed arrow) lines 
up vortices with angle θ and hence tilts the ladder system. (c) The tight-biding model for the Majorana ladder, 
describing top-chain (γ) and bottom-chain (λ) Majorana fermions coupled by intra-leg tunnelings t1γiγi+1 and 
t2λiλi+1, inter-leg tunnelings tsγjλj and tdλjγj+1, and four-Majorana interaction Uγjλjλj+1γj+1.
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stemming from four neighboring Majoranas in a closed loop γ λ λ γ+ +j j j j1 1. Thus, the whole Hamiltonian in the 
Majorana representation reads

∑

∑ ∑

γ γ λ λ γ λ

γ λ γ λ λ γ

= + +

+ +

=

−

+ + +

= =

−

+ +
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where L − 1 in the first summation indicates the open boundary condition. One feasible way to control t1,2 is to 
adjust the spatial distance between vortices, which can be artificially tuned via the magnitudes of magnetic fields; 
at the same time, however, the four-Majorana interaction is weaken. To keep the interaction strength, one needs 
to tune the chemical potential at the surface Dirac point to preserve additional chiral symmetry. The Majorana 
hybridization on the surface, which is forbidden by the symmetry, vanishes, and the Majorana interaction, which 
preserves the symmetry, survives21–23.

On the other hand, in the noninteracting limit, U = 0, the topology of the Majorana ladder is determined by 
td/ts. The topological region where MZM reside on the vortex cores can be exactly determined at >t t/ 1d s  (See 
Method: Noninteracting Majorana ladder). To solve the finite-U cases, one can transform the Majorana 
Hamiltonian Eq. (1) in terms of conventional fermionic operators γ = + †c cj j j  and λ = − †( )i c cj j j  as
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where = = − + + ∆ = − + −†n c c t t i t t t i t t, ( ), and ( )j j j d d1 2 1 2 . Here we drop the constant energy shift after the 
basis transformation. We also consider a grand canonical ensemble such that the filling of fermions changes with 
the on-site term − + ∑t U n(2 4 )s j j.

The spinless fermionic Hamiltonian (2) has a similar structure to an interacting Kitaev chain10, 32, 33. However, 
we should emphasize that the realistic system (a Majorana ladder in a vortex chain) described by our model is 
fundamentally different from that in the previous study. Our proposed heterostructure provides a very different 
mechanism of tuning the model parameters, enabling the exploration of a wider phase diagram. For example, the 
last term, which has the form of nearest-neighbor electronic interaction, is actually determined by the overlap 
between four Majorana fermions in a plaquette γ λ λ γ+ +j j j j1 1. Therefore the strength U is related to the sample 
thickness and distance between two vortices on the same surfaces and can hence be fine tuned (compared with 
the hardly tunable electronic interaction in solid). To capture the salient physics, below we consider non-negative 
tight-binding parameters and interaction strength, i.e. ≥t 0s d1,2, ,  and U ≥ 0, the same intra-leg tunnelings on the 
top and bottom surfaces t1 = t2, and the inter-leg hopping ts = 1 as the energy unit. Moreover, we are interested in 
the phases of the entire ladder, which should not be sensitive to the boundary condition, so we neglect the bound-
ary term +U n n2 ( )L1  in Eq. (2) in following calculations.

Before getting into the details of the system’s phase diagram, we briefly point out that the original Hamiltonian 
o f  E q .  ( 1 )  h a s  a n o t h e r  e q u i v a l e n t  f o r m  i n  t e r m s  o f  P a u l i  m a t r i c e s  σ x ,  y,  z  a s 
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y1 1 . This Hamiltonian describes a spin chain with trans-

verse Zeeman field (ts), anisotropic Dzyaloshinskii-Moriya interaction (t1, 2)34, 35, and anisotropic exchange inter-
action (td and U). Our proposed heterostructure may thus find applications as a test bed to such interesting spin 
systems.

Phase diagram. The Hamiltonian Eq. (2) is effectively an 1D fermion chain. To study the many-body phys-
ics, we implement the DMRG method to perform numerical simulation, and investigate the ground state phase 
diagram. We compute the energy gap defined as the difference of the ground state energy in the even parity 
(P = 1) and odd parity (P = −1) sectors ∆ = = + − = −E E P E P( 1) ( 1)0 0 , the difference in paired entangle-
ment spectra δε (δε = 0 indicates two-fold degeneracy of entanglement spectrum), charge structure factor S(q) 
(which indicate the strength of charge density wave with momentum q) and filling n of fermions (see Method: 
Physical Quantities for the details). There are several distinct phases such as trivial superconducting phase 
(TvSC), topological Majorana zero mode (MZM), incommensurate charge-density-wave liquid (IDW) and com-
mensurate charge-density-wave insulators (CDWI) depending on the system parameters. We summarize the 
phase diagram as a function of td and U and at a variety of t1, 2 in Fig. 2.

First let us simply consider the t1,2 = 0 case as the chemical potential is adjusted at the surface Dirac node, i.e. 
the intra-leg hopping vanish, in Fig. 2(a)21. In this case, the vortices on the same TI surfaces far separate in space. 
The noninteracting MZMs exist as td > ts. As the interaction is slightly turned on, we found that the ladder is still 
in the topological phase. Since the bulk-boundary correspondence still holds in interacting class D, a many-body 
MZM is localized on each end of the ladder for non-zero U23. This many-body MZM is adiabatically connected 
to the single-particle MZM without the interaction. In Fig. 3(a–d), we show details of four physical quantities vs 
U at fixed td = 1.2ts to identify the topological phase. The ground state energy in the even parity (P = +1) and odd 
parity (P = −1) sectors are doubly degenerate, so ΔE = 0 in Fig. 3(a). Furthermore, in Fig. 3(b) δε = 0, which 
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indicates double degeneracy in the entanglement spectra, leads to the topological phase extended from U = 0. 
Upon increasing U, on the other hand, the smoothly decreasing filling n and the absence of featured peaks in S(q) 
show no indication of other physical phases.

The MZM phase region is extended as interaction U increases until the phase transition U c
2  [red circles in 

Fig. 2(a)] to the incommensurate charge-density-wave liquid (IDW). To show the IDW region, we can see the 
double degeneracy between the even- and odd-parity ground states is clearly lifted32 (even if the energy gap is 
quite small) in Fig. 3(a). Meanwhile, as shown in Fig. 3(b) the double degeneracy of entanglement spectrum dis-
appears, i.e. δε > 0. The charge structure factor S(q) shows peaks at the incommensurate wave vector at ≅q k2 F, 
where kF is the Fermi vector. An example can be seen Fig. 4(a) that the charge structure factors S(q) at different 
interaction strength as t1,2 = 0 and td = 1.2ts. In this regime, filling n still decreases smoothly upon increasing U, 
and the Fermi vector kF as well as the peak locations of S(q) move towards to a larger q. This charge 2kF instability 
of IDW state is also reminiscent of a similar feature of a Luttinger liquid36, 37. In Fig. 2(a), the red circles describe 
the phase boundary between MZM and IDW.

As U increases across the other phase boundary [blue triangles in Fig. 2(a) or blue line in Fig. 3(c)], the system 
opens a gap and a CDWI is detected. The dominant peak occurs at q = π and the CDW order parameter survives 
in the thermodynamic limit. At this moment, the filling approaches .n 0 5 or half-filling. The ground state is 
parity odd (P = −1) and ΔE ≠ 0. In a classical analogy, electrons are loaded on every other lattice site. The blue 
triangles (UCDW) depict the phase boundary between IDW and CDWI. By DMRG, we can distinguish the distinct 
phases and pin out the phase boundary by observing variations in ΔE, δε and S(π). The phase transition between 

Figure 2. Phase diagram for various t1,2 values. The td vs U phase diagram of the interacting Majorana ladder at 
(a) t1,2 = 0 (b) t1,2 = 0.1ts and (c) t1,2 = 0.3ts. The dot line locates the noninteracting topological phase boundary 
td =ts. TvSC, MZM, IDW and CDWI separately represent the trivial superconducting states, Majorana zero 
modes, incommensurate charge-density-wave liquids and commensurate charge-density-wave insulators. Phase 
boundaries between TvSC and MZM, MZM and IDW, TvSC and IDW, and IDW and CDWI, are described by 
black squares (corresponding to critical interaction U c

1 ), red circles (U c
2 ), green stars (U c

SL), and blue triangles 
(U c

CDW), respectively.

Figure 3. Key physical quantities vs U. From top to bottom rows: energy gap ΔE, quantity characterizing 
entanglement-spectrum degeneracy δε, charge structure factor at q = π (per length) S(π)/L, and filling of 
fermions n, respectively. From left to right columns: (a–d) t1,2 = 0 and td = 1.2ts, (e–h) t1,2 = 0 and td = 0.8ts, and 
(i–l) t1,2 = 0.1ts and td = 0.4ts, respectively.
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IDW and CDW was also discovered theoretically by bond entropy method38. Experimentally, the appearance of 
CDWI can be measured by Coulomb drag39 or by thermodynamics method40.

Next we turn to the td < ts regime, which physically corresponds to small tilted angle θ in Fig. 1(b). We used 
td = 0.8ts as demonstration presented in Fig. 3(e–h). In the noninteracting limit (U = 0), the system is a trivial 
superconductor (TvSC) with a finite gap, because the Majorana hybridization ts between the top and bottom TI 
surfaces destroys the topological phase. The ground state is parity even (P = 1) and the entanglement spectrum 
shows no paired degeneracy, so both δε∆ ≠E, 0 at small U in Fig. 3(e,f). However, at a sufficiently strong (but 
not too strong) interaction strength, the ladder undergoes the topological phase transition at U c

1 , and MZMs 
emerge at each end of the ladder. The ground state has double degeneracy and the entanglement spectrum appears 
in pair, i.e. δε∆ = =E 0. Back to the phase diagram Fig. 2(a), we can clearly see that the topological state is adi-
abatically connected to the MZM in the td > ts regime. This MZM is driven by finite interactions, as an 
interaction-induced topological state. The black squares in Fig. 2(a) describe the phase boundary between TvSC 
to MZM (our DMRG calculation shows a weak finite-size effect on the phase boundary). Upon increasing inter-
action strength, the MZM region is enlarged, implying that a moderate interaction stabilizes the topological 
MZM, even with less tilted magnetic fields. In the large-U side, the ground states are still characterized as the 
IDW and CDWI, similar to the observation in the td > ts regime.

Next we move to consider ≠t 01,2  as the chemical potential is not located at the surface Dirac node. In reality, 
TI materials with chemical potential exactly at the Dirac node have not been discovered, so the intra-leg tunne-
ling between the MZMs is inevitable. Therefore it is important to investigate how MZM responds to finite t1,2. The 
phase diagrams in Fig. 2(b) and (c) consider finite values of t1,2. The influence of t1,2 is remarkable in the interact-
ing Majorana ladder. In Fig. 2(b) using t1,2 = 0.1ts, it is obvious to see that, compared to (a), where t1,2 = 0, the 
MZM regime shrinks. However, this phase still extends to a finite range whereas the IDW regime is enlarged. 
There exists a critical td to harbor the interaction-driven MZM, which is ∼ .t t0 5d

c
s. Below this point, the TvSC 

phase directly turns to the IDW state, and the MZM disappears. Both TvSC and IDW show trivial behavior in the 
entanglement spectra. To pin out the boundary, indicated by green stars in Fig. 2(b), we examine the gap magni-
tudes and observe S(q). At TvSC, ∆ ≠E 0 and no featured peak in S(q), whereas at IDW, ∆ E 0 and S(q) has a 
peak located at q = 2kF, as shown in Fig. 4(b). We summarize the variation of the physics observables at td = 0.4ts 
and t1,2 = 0.1ts and at variety of U in Fig. 3(i–l). At U = 0, there is an energy gap. The gap ΔE decreases to a small 
but finite value as U increases to USL

c  and remains small in ≤ ≤U U USL
c

CDW
c . At >U UCDW

c , ΔE rapidly increases 
and S(π) jumps to a finite value. In the whole range δε ≠ 0, so no MZM exists.

For further stronger intra-leg tunneling, the region of many-body MZMs becomes even smaller. Figure 2(c) 
shows the case of = .t t0 3 s1,2 . The critical td is estimated at ∼ .t t0 8d

c
s. Therefore, the presence of intra-leg tunne-

ling t1, 2 will corrupt the stability of the many-body MZM. We have numerically estimated that, as = .⪆t t t0 5 s1 2 , 
the system no longer supports the interaction-driven MZM. This implies that the chemical potential has to be 
tuned to close to the surface Dirac node to suppress the intra-leg tunnelings. In experiment, the magnitudes of 
magnetic fields are required to be appropriately tuned, such that the vortices are away from each other to lower 
the intra-leg hybridization but close enough to strengthen the four-Majorana interaction.

Figure 4. Charge structure factor S(q) of the Majorana ladder. The structure factor of the charge-charge 
correlation on the interacting Majorana ladder at (a) t1,2 = 0, td = 0.2ts and (b) t1,2 = 001ts, td = 0.4 and various 
interaction strength (data are vertically shifted in arbitrary units for a clear view). The size is L = 400. The arrows 
point out the location of peaks.
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Discussion
With proper strength of the Majorana interaction, the topological region is tremendously enlarged; by tilting a 
small angle of magnetic field MZMs appear on the ladder ends, even in the presence of the Majorana hybridiza-
tion between the top and bottom surfaces. As shown in Fig. 2 the intra-leg tunneling t1,2 of Majorana Fermions on 
the same surface shrinks the topological region. To enlarge the region, t1,2 can be tuned to zero by adjusting the 
chemical potential right at the surface Dirac node. For the recent experiment of the heterostructure on Bi2Se3 thin 
films15, we estimate the hybridization strength ∼t 2d s,  meV and the interaction strength U ~ 0.56 meV so the ratio 

∼ .U t/ 0 28s  (see Method: Estimation of Majorana coupling and interaction). Hence, as shown in Fig. 2(a), we 
can simply tilt the magnetic field such that > .t t/ 0 6d s  to expect the MZM on the end of vortex array of the naked 
surface. Our current proposal directly solves one of the major difficulties of the Fu-Kane model: usually the TI 
film has to be thin enough to induce the superconductivity gap on the naked surface, but such a thin film can lead 
to the Majorana hybridization, which destroys MZMs. Tilting the magnetic fields can both reduce the hybridiza-
tion and enhance the interaction and hence rescue MZMs.

To explore other many-body phases, such as IDW and CDWI, one needs other TI materials to provide larger 
values of U/ts. It is interesting to see the transition between IDW and MZM, which only occurs with Majorana 
interactions. Such a topological phase transition is beyond the single-particle picture. The IDW state sharing 
similarities with a Luttinger liquid could be identified using the Coulomb drag measurement39.

Although the physics of many-body MZM and its topology has been discussed extensively41–46, promising 
platforms for such systems are barely found in the literature. In this report, we have designed a realizable experi-
mental setup to investigate interaction effects on topological states.

Method
Noninteracting Majorana ladder. To determine the topological phase, we solve the ladder Hamiltonian 
HM (1) as the interaction is off (U = 0) in the periodic boundary condition by extending the first summation to L 
an d  l e t t i ng  s i t e  L  =  1  c o i n c i d e  w i t h  s i t e  1 .  By  p e r for m i ng  Fou r i e r  t r ans for m at i on 
γ γ λ λ= ∑ = ∑e e,j L k k

ijk
j L k k

ijk1 1 , the noninteracting Majorana Hamiltonian in momentum basis is given by

∑ γ λ
γ
λ=
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− −
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The topology of the Majorana ladder can be characterized by the Pfaffian of the Hamiltonian at k = 0 and π

π− = = + −ν( 1) sgn(pfB(0)pfB( )) sgn((t t )(t t )),s d s d

where = +B k t t e( ) s d
ik. Hence, the topological region is located at >t td s  in this non-interacting system, irre-

spective of values of t1 and t2. We also expect t1 and t2 small enough to keep the system insulating. In the topolog-
ical phase, the MZMs reside in the vortex cores whereas they vanish in the trivial phase as the magnetic field goes 
through the TI without tilting. By changing the tilted angle of the magnetic fields, one can manipulate the ratio of 
td/ts to trigger a topological transition between trivial and topological phases.

Computational Methods. With a finite interaction in Eq. (2), exact characterization of the ground state is 
beyond the single-particle picture. Although one can still perform the Hartree-Fock approximation to decouple 
the interaction term as

χ χ χ

∼ + −

− + −

+ + + +

+ +
† † ⁎

n n n n n n n n

c c c c( ),

j j j j j j j j

j j j j j j j

1 1 1 1

1 1
2

with χ = +
†c cj j j 1 , the mean-field approach neglects the quantum fluctuations and may not accurately capture 

the ground state properties in one dimension. To study the many-body physics, we implement the density matrix 
renormalization groups method (DMRG) to the Hamiltonian of Eq. (2). The DMRG method has been shown to 
be an efficient numerical algorithm to describe one-dimensional correlated systems24–27 and has also been suc-
cessfully applied on interacting systems with Majorana fermions32, 33, 47, 48. The approximated ground-state wave 
function as well as the entanglement spectrum can be easily obtained via iterative numerical renormalization. We 
set the number of states kept per block up to m = 120 and compare three different sizes L = 200, 400 and 600 to 
examine finite-size effects. Furthermore, we keep the truncation errors less than 10−8. Although the particle num-
ber is not conserved here, in the DMRG calculations, we can still employ parity = − ∑P ( 1) nj j as a good quantum 
number to label the quantum state. Thus, the ground state energies E0(P) and the wave functions ψ P( )0  associ-
ated with the specific parity sector P are accessible.

Physical Quantities. The first signature we use to identify the MZMs is a zero energy gap between the lowest 
even-parity and odd-parity states, ∆ ≡ = − = − =E E P E P( 1) ( 1) 00 0 . It reflects Majorana modes occupying 
two zero-energy levels, also causing double degeneracy in the ground state. The IDW phase has non-zero but 
small ΔE32, while the other trivial phases have relatively large ΔE. Another signature to characterize the topolog-
ical property is to compute the entanglement spectrum. The entanglement spectra {ε} are simply the eigenvalues 
of reduced density matrices
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ρ ψ ψ= Tr ,l r 0 0

where the subscript l represents partially tracing out the degrees of freedom of the right block. The topological 
phase has two-fold degeneracies of the entire entanglement spectrum. Rather than observing the entanglement 
spectrum, throughout the main context, we compute the unitless δε defined as

∑ ∑δε ε ε= −
=±

+( ) ,
(4)P n

n
P

n
P

1
1

2

to distinguish the topological from trivial phases49. The first summation is over the ground states in two parity 
sectors. In the topological phase, both the ground state and the entanglement spectra are doubly degenerate, so all 
the paired entanglement spectrum difference ε ε− +( )n

P
n
P

1  vanish and δε = 0. This property is robust even in the 
presence of interaction33 and easily implemented with numerical simulation.

In the large-U limit, the system is a commensurate charge-density-wave (CDW) insulator, which is topologi-
cally trivial since neither the entanglement spectrum nor the ground-state energy shows double degeneracy. A 
CDW state has electrons residing on every other lattice sites (in a classical picture) to lower the interaction energy 

+Un n4 j j 1, and can hence be characterized by the structure factor of charge-charge correlations

∑=
′

.′
′

−S q
L

n n e( ) 1

(5)j j
j j

iq x x

,

( )j j

The CDW order parameter can be defined as = →∞O S q Llim ( )/LCDW . In the thermodynamic limit, a finite 
OCDW implies the existence of the long-range CDW ordering. At q = π, the CDW ordering is commensurate, 
labeled as CDWI in the phase diagrams in Fig. 2. For other values of q, it is incommensurate; in the main context, 
we have q = 2kF instability in the incommensurate charge-density-wave liquid state, where kF is the Fermi wave 
vector. In the spinless chain, half-filling = .n 0 5 corresponds to π=k /2F . For . < <n0 5 1, π= −k n(1 )F .

Figure 4(a) and (b) show the (unnormalized) charge structure factor S(q) for (a) t1,2 = 0, td = 1.2ts (b) t1,2 = 0.1ts, 
td = 0.4ts. In both figures, at relative weak interaction strength, labeled by the black squares, no peaks are observed. 
They are located in the MZM and TvSC states in (a) and (b), respectively. At moderate interaction, S(q) develops 
peaks located roughly at q = 2kF. Upon increasing U, the filling n decreases and approaches to 0.5, and kF moves 
toward to π/2. This feature reveals the 2kF charge instability and characterizes the IDW state. At q = π, for (a) 
U = 1.7ts and for (b) U = ts, the ground state is a CDWI, and consistently, .n 0 5 at this moment.

Estimation of Majorana coupling and interaction. To estimate the strengths of the physical parame-
ters, we consider the thin film of topological insulator Bi2Se3 on the top of the superconductor NbSe2, which is an 
experimental realization15 of the Fu-Kane model. First, the strengths of ts and td stemming from the coupling of 
the top and bottom TI surface states are given by

∼ ∼λ−t t G e, 2meV, (6)s d
h

bulk
/TI TI

where the bulk gap Gbulk of Bi2Se3 is about 0.3 eV. The thickness of TI on the superconductor in the recent experi-
ment is 5 quintuple layers14, which is about hTI~5 nm. The decay length in the vertical direction is given by the 
Fermi velocity (vF = 2.2 eV.Å) divided by the bulk gap ν λ= ∼G/ 1F bulk TI  nm50. This hybridization leads to 
non-zero energy Majorana fermions residing on the vortices.

We can estimate the values of t1 and t2 based on the parameters of the superconductivity, since in the absence 
of the superconductivity the Majoranas are delocalized on the top and bottom layers, regardless of superconduc-
tor proximity effect20, we use the NbSe2 superconducting gap GSC ~ 1 meV. The estimated values of the intra-leg 
tunnelings are given by

∼ ∼ .λ−t t G e, 0 3 meV, (7)d
1 2 SC

/ Mv

where the distance between two Majoranas dv on the same surface is about 50 nm and the decay length of 
Majorana hybridization strength on the topological insulator λM is close to the London penetration depth of the 
superconductor (40 nm) when the depth is smaller than ν G/F SC

28. By comparing with td and ts, t1 and t2 can be 
neglected.

The interaction U for two Majoranas on the top and two Majoranas on the bottom comes from the Coulomb 
interaction of two electrons (holes), each of which is the overlap between two Majorana wavefunctions; hence, 
the strength of the interaction U of four Majorana α1,2,3,4 has been written in the density function ρ of electron 
(hole)21

= − + −U g g g8( ), (8)1234 4123 1234

where

∫ ∫ ρ ρ= ′ − ′ ′g dr dr r V r r r1
2

( ) ( ) ( ),ijkl ij kl
2 2

where V(r − r′) indicates the effective Coulomb potential. Since the overlap ( λ−e h /TI TI) between the top and bottom 
TI surface Majoranas is less than on the same surface ( λ−e d / Mv ), the overlap of Majoranas on the surface is consid-
ered as major contribution to the interaction, or ρ ∼ λ−e d / Mv . The reason is that λ λ>h d/ / MTI TI v , The Coulomb 
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potential, which can be estimated by the ionization energy of hydrogen EH, is given by =
ε

V E a
h

HH

TI
, where aH is the 

Bohr radius and the dielectric constant ε is about 20 due the screening of the Coulomb interaction. The value of 
the effective interaction energy is roughly

ρ
ε

∼ = ∼ . .λ−U V E a
h

e 0 56 meV
(9)

H d2 H

TI

2 / Mv

This estimation is in agreement with ref. 21 which adopted another method for the estimation. Therefore, 
comparing the strengths of the interaction and hopping, we obtain the ratio U/ts ~ 0.28.
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