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Proof of |C| ≤ 2 for TDPs of Linear Hamiltonians

In this section, we unveil the geometric meaning of the topological invariant defined in Eq. (1) of the main text and
give an intuitive yet rigorous proof for |C| ≤ 2 in a more general setting. To this end, we introduce a powerful tool—
Majorana stellar representation [1], which maps quantum states in a high-dimensional Hilbert space onto several points
(i.e., Majorana stars) on the Bloch sphere—the state space of a quantum spin-1/2 system. In this representation, any
spin-1 state can be mapped to two Majorana stars on the Bloch sphere. For convenience, the integral surface S in
Eq. (1) is chosen as the unit sphere.

We start with the well-known spin-1/2 system. In a chosen basis (denoted as | ↑〉, | ↓〉), an arbitrary state can
be written as |u〉 = cos θ2 | ↑〉 + eiφ sin θ

2 | ↓〉 (0 ≤ θ ≤ π, 0 ≤ φ < 2π). The state |u〉 is represented by a point
u = (sin θ cosφ, sin θ sinφ, cos θ) on the Bloch sphere, with θ and φ denoting the colatitude and longitude in the

spherical coordinate. For a Weyl point H(k) = −k ·σ, |u〉 is the lower state at k̂ = (sin θ cosφ, sin θ sinφ, cos θ), that

is, the Majorana star u on the Bloch sphere coincides with k̂ on the integral surface S. The Chern number (monopole
charge) of the Weyl point is then

C =
1

2π

∮
S

Ω(k) · dS = − 1

4π

∮
S

dθdφ u · ∂θu× ∂φu = −1. (S1)

Clearly, C counts how many times the Majorana star covers the Bloch sphere by varying k̂ on S.
For a spin-1 system, any quantum state can be formulated as |ψ〉 = f−1|1,−1〉+ f0|1, 0〉+ f1|1, 1〉 in a given basis

|1,m〉 (m = ±1, 0). The basis state can be rewritten using the creation and annihilation operators a†, a, and b†, b of

Schwinger bosons [2]: |1,m〉 = (a†)1+m(b†)1−m

(1+m)!(1−m)! |∅〉 (|∅〉 is a vacuum state). The Schwinger bosons satisfy the standard

bosonic commutation relations: [a, a†] = [b, b†] = 1 and all others are zero. The spin-1 operators are represented by
two types of Schwinger bosons as:

F+ = Fx + iFy = a†b, F− = Fx − iFy = b†a, Fz =
1

2
(a†a− b†b), (S2)

along with the constraint na + nb ≡ a†a + b†b = 2F . Here na and nb are the occupation numbers of Schwinger
bosons. The spin-1 basis state |1,m〉 is then equivalent to the state |na, nb〉 = |1 +m, 1−m〉. It is easy to verify the
commutation relations for spin operators: [Fi, Fj ] = iεijkFk. Now the spin-1 state |ψ〉 can be factorized as [1–6]

|ψ〉 =
1

N1

2∏
j=1

(cos
θj
2
a† + sin

θj
2
eiφj b†)|∅〉, (S3)

where N1 is the normalization factor, and the parameters θj and φj can be determined by
∑2
j=0

(−1)jf1−j√
(2−j)!j!

y2−j = 0

with yj = tan
θj
2 e

iφj . By denoting a†|∅〉 = | ↑〉, b†|∅〉 = | ↓〉, it follows from Eq. (S3) that |ψ〉 is represented by the two
Majorana stars located at uj = (sin θj cosφj , sin θj sinφj , cos θj) (j = 1, 2) on the Bloch sphere. Within the Majorana
stellar representation, now we are ready to prove |C| ≤ 2 for a spin-1 TDP.

Because the Chern number is defined on a closed two-dimensional surface S with no boundary, a nonzero Chern
number indicates that we cannot choose a gauge that is continuous and single valued on the whole surface S (which
yields C = 0 by Stokes’ theorem). S is then separated into different regions as sketched in Fig. S1(a). Inside each
region, we can choose a smooth gauge and use the Stokes’ theorem:

2πC =

∮
S

Ω(k) · dS =

∫∫
Sa

Ω(k) · dS +

∫∫
Sb

Ω(k) · dS

=

∫
Γ

Aa · dl−
∫

Γ

Ab · dl = γa − γb. (S4)
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FIG. S1: (a) The integral surface S in momentum space is split into two pieces. In each piece, we can choose a smooth gauge.
Γ is the boundary between the two pieces. (b) A spin-1 state is represented by two Majorana stars u1 and u2 on the Bloch
sphere. The Berry phase is determined by the trajectories of two Majorana stars.

Here Aa and Ab are the gauge potentials associated with Berry curvature Ω(k) in each region: ∇×Aa,b = Ω(k). γa

and γb are the accumulated Berry phases along the path Γ (i.e., the boundary of Sa and Sb) under different gauges.
Although Aa,b and γa,b are gauge-dependent, Ω(k) is not. From the Majorana stellar representation, the Berry phase
for a spin-1 system in a chosen gauge can be elegantly formulated as [3–5]

γ = γS + γC ≡ −
2∑
j=1

1

2

∮
(1− cos θj)dφj −

1

2

∮
(du1 − du2) · (u1 ∧ u2)

3 + u1 · u2
. (S5)

The first term γS =
∑2
j=1

∫
Γ
〈uj |i∇|uj〉 · dl describes the contributions from the solid angles subtended by the

trajectories of two Majorana stars, as shown in Fig. S1(b). While the second term, which is gauge invariant [6], comes
from their correlations. It is clear from Eq. (S5) that a nonzero Chern number solely comes from the gauge mismatch
of the two Majorana stars. Using Stokes’ theorem,

C =
1

2π
(γaS − γbS) = − 1

2π

2∑
j=1

Im[

∫∫
Sa

〈∇uaj | × |∇uaj 〉+

∫∫
Sb

〈∇ubj | × |∇ubj〉] · dS

= − 1

2π

2∑
j=1

Im

∮
S

(〈∇uj | × |∇uj〉) · dS = − 1

4π

2∑
j=1

∮
S

dθdφ uj · ∂θuj × ∂φuj . (S6)

Geometrically, C is the sum of the covering numbers of the two Majorana stars on the Bloch sphere. To prove |C| ≤ 2,
we only need to show, each Majorana star covers Bloch sphere at most once for our system. In another words, given
two Majorana stars u1 and u2 on the Bloch sphere, we can find at most one k̂ on S, with u1 and u2 being the
projection of the lowest state of H(k̂) in the Majorana stellar representation.

This is done by reductio ad absurdum. We can construct a unique spin-1 state |ψ〉 (up to an irrelevant phase) using

u1 and u2. Suppose both k̂1 and k̂2 satisfy the condition: H(k̂1)|ψ〉 = e1|ψ〉 and H(k̂2)|ψ〉 = e2|ψ〉, with e1 and e2

the lowest-state energies. Because our Hamiltonian is traceless, the sum of all the three eigenvalues must be 0. It
follows that e1,2 < 0 (which cannot be 0 due to the gapped spectrum on S). From k̂1 and k̂2, we can find a point

k̂∗ = e2k̂1−e1k̂2

|e2k̂1−e1k̂2|
on S. The linearity of Hamiltonian yields H(k̂∗)|ψ〉 = 1

|e2k̂1−e1k̂2|
[e2H(k̂1)|ψ〉 − e1H(k̂2)|ψ〉] = 0, in

contradiction to the traceless nature of the Hamiltonian. Therefore, there is at most one k̂ on S for any two given
Majorana stars u1 and u2 on the Bloch sphere. This concludes that |C| ≤ 2 in Eq. (S6).

For a linear Hamiltonian with H(k) = −H(−k), we have C+1 = −C−1 for the upper and lower bands and C0 = 0
for the middle band. |Cn| ≤ 2 determines that there are only three types of TDPs, classified by C = ±2,±1, 0,
as discussed in the main text. We note that in the above proof, only the k-linear and traceless properties of the
Hamiltonians are used. Therefore, our classification of TDPs is quite general and can be used for all spin-vector and
spin-tensor momentum coupling cases, given the fact that all the spin-vectors and spin-tensors are traceless. Finally,
although we consider the traceless Hamiltonians in the above proof, any additional spin-independent linear term such
as ηkz in the Hamiltonian only rotates the eigenspectrum in the momentum space without changing the eigenstates,
and therefore all topological invariances and topological phase transitions do not change.
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An extended model for TDPs

Besides the simple model with one spin-tensor momentum coupling term in the main text, the above general
classification of TDPs also applies to more complicated models with two spin-tensors coupled to momenta, that is,

H(k) = k · F + γ1kyNij + γ2kzNi′j′ . (S7)

The first term is the standard spin-vector-momentum coupling. Without loss of generality, the two spin-tensors Nij
and Ni′j′ are respectively coupled to ky and kz. γ1 and γ2 are the coupling strengths. In Table I, we have listed all
the possible new types of TDPs.

Nij

Ni′j′ Nxx Nxy Nyy Nxz Nyz Nzz

Nxx × × × III III II
Nxy III III III III III II,III
Nyy II II II II,III II,III II,III
Nxz × × × III III II
Nyz III III III III II,III II,III
Nzz × × × III III II

TABLE I: Type-II and type-III TDPs induced by two spin-tensor-momentum coupling terms via tuning their strengths γ1 and
γ2. “×” means the corresponding spin-tensor-momentum couplings cannot change the type of the original TDP at γ1 = γ2 = 0,
which is always type-I.

It is clear from Table I that all induced TDPs still belong to the three types, classified by different Chern numbers:
C = ±2, ±1, 0. The inclusion of more spin-tensor-momentum couplings can trigger more topological phase transitions,
due to the level crossings induced by these terms. Similarly, we can discuss these level crossings, Zeeman splittings,
etc. Moreover, we have checked all 6× 6× 6 = 216 cases with three spin-tensors coupled into the Hamiltonian. These
results are in consistent with our classification and general discussions.

Calculation of the topological invariant C

For a given Hamiltonian H(k), we can calculate its three eigenstates |ψn (k)〉, from which we can determine the
Berry curvature Ωn(k). The Chern number of each band is defined as Cn = 1

2π

∮
S

Ωn(k) · dS, where the integral

surface S is chosen as a sphere of radius k around the TDP, and the surface element dS = k2 sin θdθdφk
k .

For the standard Hamiltonian k · F , the eigenvalues are −k, 0, k; by taking k = k(sin θ cosφ, sin θ sinφ, cos θ),

the corresponding eigenstates are | − 1〉 =
(

sin2 θ
2e
−iφ,− sin θ√

2
, cos2 θ

2e
iφ
)T

, |0〉 =
(
− sin θ√

2
e−iφ, cos θ, sin θ√

2
eiφ
)T

, |1〉 =(
cos2 θ

2e
−iφ, sin θ√

2
, sin2 θ

2e
iφ
)T

. The resulting Berry curvature for each band is found to be Ωn(k) = −nk/k3, yielding

Cn = 1
2π

∫ π
0
k2 sin θdθ

∫ 2π

0
dφ(−n k

k3 ) = −n
∫ π

0
sin θdθ = −2n. For comparison, the Berry curvature of a spin-1/2 is

Ωn(k) = −n k
2k3 [7], which gives Cn = −n. As n = ∓1, Cn = ±1.

For a general Hamiltonian with spin-tensors, the eigenstates and Berry curvatures cannot be determined analytically,
therefore all calculations are done numerically.

Determination of phase transition points

The inclusion of spin-tensors Nij can induce a series of topological phase transitions, accompanied by level-crossings
in k space. To determine these phase transition points and level-crossing lines analytically, we utilize the traceless
property of the Hamiltonian (all the spin-vectors Fi and spin-tensors Nij are traceless), which dictates that the sum
of the three eigenvalues is zero. For our model (2) with α 6= 0, H(k) = kxFx + kyFy +αkz(Fz + γNij), here γ = β/α.
The topological properties would not change by rescaling kz. For simplicity, we directly set α = 1 and the integral
surface S is chosen as the unit sphere with k = 1. Suppose two bands touch at some specific k, at which the three
eigenenergies are given by Ea, Ea, and −2Ea, then

det(xI −H(k)) = (x− Ea)(x− Ea)(x+ 2Ea) = x3 − 3E2
ax+ 2E3

a ≡ x3 + d1x+ d0, (S8)
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where d1 and d0 satisfy P (k) ≡ −d3
1/27 − d2

0/4 = 0. In the following, we determine the phase transition conditions
using P (k). If P (k) cannot be zero, then there is no phase transitions as no level crossings are allowed by tuning
parameters. For the 6 spin-tensors, we find the following results (by setting y = k2

zγ
2).

(A) Nxx, Nyy, and Nxy would not induce any band crossing. Consider Nxx as an example. P (k) = k2
xy

2/27 +
(−k4

x/4 + k2
x/6 + 1/108)y + 1/27. As k = 1, P (k) ≥ k2

xy
2/27 + (−k2

x/4 + k2
x/6 + k2

x/108)y + 1/27 = k2
x(y − 1)2/27.

Here “=” is exact for |kx| = 1, hence y 6= 1 on the unit sphere S and we have P (k) > 0. Similarly, we have

Nyy : P (k) = k2
yy

2/27 + (−k4
y/4 + k2

y/6 + 1/108)y + 1/27 ≥ k2
y(y − 1)2/27 > 0;

Nxy : P (k) = y3/1728 + y2/144− k2
xk

2
yy/4 + y/36 + 1/27 ≥ y3/1728 + y2/144− 5y/144 + 1/27 > 0.

For all the above three cases, the TDP is still type-I.
(B) For Nzz, P (k) = k2

zy
2/27 + (−k4

z/4 + k2
z/6 + 1/108)y + 1/27 ≥ k2

z(y − 1)2/27 ≥ 0. “=” is valid only when
k2
z = 1 and γ2 = 1, which is the level-crossing point. Specifically, for γ = 1, the lower (upper) band and middle band

touch at kz = 1(−1); for γ = −1, the upper (lower) band and middle band touch at kz = 1(−1).
(C) For Nxz, P (k) = y3/1728 + y2/144 − k2

xk
2
zy/4 + y/36 + 1/27 ≥ y3/1728 + y2/144 − 5y/144 + 1/27 ≥ 0. “=”

is valid when γ = ±2 and k2
x = k2

z = 1/2. At γ = 2, the lower band and middle band touch at ±kz = kx = 1/
√

2.
The upper band and middle band touch at ±kz = −kx = 1/

√
2. Similar analysis can be applied to another transition

point γ = −2. Note that for Nyz the results would be the same, by considering ky → kx and Fy → Fx.
(D) α = 0. In this case, H(k) = kxFx + kyFy + βkzNij . For Nxx, Nxy, Nyy, and Nzz, there exist nodal lines where

two bands touch in the band structure (the triply-degenerate node is not the only degenerate point). Thus the Chern

number is ill-defined. For Nxz and Nyz, the eigenenergies of H(k) are given by 0, and ±
√
k2
x + k2

y + k2
zβ

2/4. The

band structure is adiabatically connected to the case (C) with |γ| > 2.
As a final remark, the function P (k) can also be used to determine the splitting of TDPs.

Splitting of TDPs by a Zeeman term

A small Zeeman term εFz breaks the triple degeneracy at k = 0 for type-I and type-II TDPs described by the
Hamiltonian (2). As a result, TDPs break into three doubly degenerate Weyl points located at W± = (0, 0,−ε/(α±β))
and W3 = (0, 0,−ε/α). Near these three nodes with |δk| � 1, the Hamiltonian reduces to

HW+ (δk) =

 (α+ β)δkz (δkx − iδky)/
√

2 0

(δkx + iδky)/
√

2 0 (δkx − iδky)/
√

2

0 (δkx + iδky)/
√

2 2αε
α+β

 , (S9)

HW− (δk) =

 − 2βε
α−β (δkx − iδky)/

√
2 0

(δkx + iδky)/
√

2 0 (δkx − iδky)/
√

2

0 (δkx + iδky)/
√

2 (−α+ β)δkz

 , (S10)

HW3 (δk) =

 −βεα + (α+ β)δkz (δkx − iδky)/
√

2 0

(δkx + iδky)/
√

2 0 (δkx − iδky)/
√

2

0 (δkx + iδky)/
√

2 −βεα + (−α+ β)δkz

 . (S11)

Therefore the effective two-band Hamiltonians can be expressed as

HW+
(δk) =

1√
2
δkxσx +

1√
2
δkyσy +

α+ β

2
δkzσz +

α+ β

2
δkzI2 +O(δk2), (S12)

HW−(δk) =
1√
2
δkxσx +

1√
2
δkyσy +

α− β
2

δkzσz +
β − α

2
δkzI2 +O(δk2), (S13)

up to the linear order of δk and

HW3(δk) = αδkzσz −
α

2βε
[(δk2

x − δk2
y)σx + 2δkxδkyσy] + (βδkz −

βε

α
)I2 +O(δk3), (S14)

up to second order of δk. The first two are Weyl points with linear dispersions along all three directions, whereas
the third one is a multi-Weyl point which has a linear dispersion in the kz direction but quadratic dispersion along
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the other two directions. The Chern numbers for this multi-Weyl point is C = 2. The quadratic dispersion originates
from the non-direct (second-order) couplings in Fx and Fy between the degenerate energy levels (| + 1〉 and | − 1〉).
For |β| < |α|, the linear Weyl points W± have the same charge C = 1 (α > 0), i.e., the case for type-I TDPs. For
|β| > |α|, the linear Weyl points W± have opposite charges C = ±1, i.e., the case for type-II TDPs.

In the lattice model described by Eq. (3), two TDPs appear at (0, 0,± arccos(−γ)). By adding a Zeeman term
εFz, the TDP at (0, 0, arccos(−γ)) is split into three nodes at k1 = arccos[− ε

t0(1+β) − γ], k2 = arccos[− ε
t0(1−β) − γ],

and k3 = arccos(− ε
t0
− γ) along the kx = ky = 0 line. Around the first two degenerate nodes, the effective two-band

Hamiltonians can be written as

Hk1,2 =
1√
2

(δkxσx + δkyσy)− t0 sin k1,2

2
(1± β)δkzσz +O(δk2), (S15)

which describe two linear Weyl points. For γ = −0.5, both Weyl points have C = −1 for 0 < β < 1 (type-I) and
C = ±1 for β > 1 (type-II), which are consistent with our numerical results. The third multi-Weyl point has C = −2
and can be described by Hk3 = −t0 sin k3δkzσz + O(δk2), whose energy dispersion is linear in the kz direction and
quadratic in the other two directions. A similar analysis can be applied to the other TDP.

Under the same perturbation, a type-III TDP is broken into four linear Weyl points located at (kx, kz) = (±βε/(β−
2α), 2ε/(β−2α)), (±βε/(β+2α),−2ε/(β+2α)) in the ky = 0 plane. By neglecting those constant terms, the effective
two-band Hamiltonians around these Weyl points are given by

H1(δk) =
1√
3

(δkx −
β

2
δkz)σx +

1√
3
δkyσy − [

1

3
δkx + (

β

6
− 2α

3
)δkz]σz +O(δk2), (S16)

H2(δk) =
1√
3

(−δkx −
β

2
δkz)σx −

1√
3
δkyσy + [

1

3
δkx − (

β

6
− 2α

3
)δkz]σz +O(δk2), (S17)

H3(δk) =
1√
3

(δkx +
β

2
δkz)σx +

1√
3
δkyσy − [

1

3
δkx − (

β

6
+

2α

3
)δkz]σz +O(δk2), (S18)

H4(δk) =
1√
3

(δkx −
β

2
δkz)σx −

1√
3
δkyσy − [

1

3
δkx + (

β

6
+

2α

3
)δkz]σz +O(δk2). (S19)

These four nodal points can be regarded as deformed Weyl points rotated by a spin-tensor Nxz in the ky = 0 plane.
Although not in the standard form, the four Weyl points are still characterized by the Chern numbers defined in

Eq. (1). In principle, the topological invariants can be determined numerically, as we have done. Here, we show that
several symmetry arguments can be used for determining their Chern numbers relatively. As the first two Weyl points
are related by H1(δkx, δky, δkz) = H2(−δkx,−δky, δkz), they must have the same Chern number. As the last two
Weyl points are related by H3(δkx, δky, δkz) = H4(δkx,−δky,−δkz), they must have the same Chern number, too.
Note that the four Weyl points always exist even at α = 0 for a finite Zeeman splitting. By tuning α to 0, they move
in the ky = 0 plane without merging. The entire process is adiabatic because no level touching or crossing occurs.

At α = 0, as the first and third Weyl points are related by H1(δkx, δky, δkz) = H3(δkx, δky,−δkz), and the first
and fourth Weyl points are related by H1(δkx, δky, δkz) = H4(δkx,−δky, δkz), the first two and the last two Weyl
points must have opposite Chern numbers. Therefore, a type-III TDP can be split into two pairs of Weyl points with
opposite charges, as verified by our numerical results.

Experimental scheme

Here we discuss how to experimentally realize spin-vector- and spin-tensor-momentum couplings, which are crucial
for engineering different types of TDPs. Consider the following three Raman beams

ER1,R3
= ER1,R3

e∓ikmz[x̂ cos(2k0y)∓ ŷ cos(2k0x)] , ER2
= ER2

eik1z(ix̂+ ŷ).

The ER1 and ER3 fields can be formed by multiple reflections of a beam in a 3D space that is initially polarized along
x̂ and incident in the y-z plane with an incident angle determined by k2

1 = k2
m + 4k2

0. The ER2
beam is a traveling

wave in the z direction with a wavevector k1. A magnetic field B is applied in the x-y plane with a π/4-angle with
respect to x̂. The Raman couplings between the hyperfine states are contributed from both D1(62S1/2 → 72P1/2)
and D2(62S1/2 → 72P3/2) lines with detunings ∆1/2 and ∆3/2, respectively. The detunings are much larger than the
hyperfine structure. The resulting Raman couplings can be obtained by summing over all the transitions allowed by



6

the selection rules. For the purpose of calculations, we need to decompose the electric field as follows:

ER1,R3 =
ER1,R3

e∓ikmz√
2

{[cos(2k0y)∓ cos(2k0x)]B̂‖ − [cos(2k0y)± cos(2k0x)]B̂⊥},

ER2
=

ER2
eik1z√
2

[(1 + i)B̂‖ + (1− i)B̂⊥]. (S20)

The component parallel to (perpendicular to) B is used to induce the π (σ) transition, as illustrated in Fig. S2.

⟩| ,−4 ⟩| ,−3 ⟩| ,−2

⟩|4,−4

⟩|3,−3

⟩|4,−2

∆ /

∆ /

62
/

72
/

72
/

⟩|+1 , ⟩|−1 ⟩|0

(a) (b)

FIG. S2: (a) Optical transitions to generate Raman couplings between three hyperfine states. (b) Schematic of the tight-binding
model, in which g±1 stay in one sublattice while g0 in the other sublattice, N1 to N4 denote the nearest-neighbor bonding
between different components, and S1 to S4 denote the next-nearest-neighbor bonding between the same components.

The Raman coupling between g+1 and g0 comes from the following two parts by summing over all possible F :

M1
+1,0 =

F∑
J= 1

2 ,
3
2

ΩJ∗g+1,F,1‖Ω
J
g0,F,2−

∆J
=

√
7ER1ER2α

2
D1

12
√

2
(

1

∆3/2
− 1

∆1/2
)(1− i)ei(k1+km)z[cos(2k0x)− cos(2k0y)],

M2
+1,0 =

F∑
J= 1

2 ,
3
2

ΩJ∗g+1,F,1+ΩJg0,F,2‖

∆J
=

√
7ER1

ER2
α2
D1

12
√

2
(

1

∆3/2
− 1

∆1/2
)(1 + i)ei(k1+km)z[cos(2k0x) + cos(2k0y)].

Here ΩJgs,F,‖ = e〈gs|z|F, 0, J〉êz · E and ΩJgs,F,± = e〈gs|e±|F,±1, J〉ê± · E are the transition matrix elements in the
basis of the circularly polarized light in the plane perpendicular to B.

Similarly, the Raman coupling between g−1 and g0 can be written as

M1
−1,0 =

F∑
J= 1

2 ,
3
2

ΩJ∗g−1,F,3‖Ω
J
g0,F,2+

∆J
=
ER2ER3α

2
D1

24
√

2
(

1

∆3/2
− 1

∆1/2
)(1− i)ei(k1−km)z[cos(2k0x) + cos(2k0y)], (S21)

M2
−1,0 =

F∑
J= 1

2 ,
3
2

ΩJ∗g−1,F,3−ΩJg0,F,2‖

∆J
=
ER2

ER3
α2
D1

24
√

2
(

1

∆3/2
− 1

∆1/2
)(1 + i)ei(k1−km)z[cos(2k0x)− cos(2k0y)]. (S22)

If follows that the total Raman couplings between g±1 and g0 are respectively

M+1,0 = M1
+1,0 +M2

+1,0 = M0e
i(k1+km)z[cos(2k0x) + i cos(2k0y)], (S23)

M−1,0 = M1
−1,0 +M2

−1,0 = M ′0e
i(k1−km)z[cos(2k0x)− i cos(2k0y)], (S24)

where M0 =
√

7α2
D1
ER1

ER2

6
√

2∆2
, M ′0 =

α2
D1
ER2

ER3

12
√

2∆2
, and 1

∆2
= 1

∆3/2
− 1

∆1/2
.

To remove the spatially dependent phase factor in the Raman coupling, we can use the gauge transformation
U = ei(k1F

2
z +kmFz)z, which would not affect other terms. In the rotated frame, the Raman coupling then becomes

HR = λkz(k1F
2
z + kmFz) + [cos(2k0x) + i cos(2k0y)](M0|g+1〉〈g0|+M ′0|g0〉〈g−1|) + h.c. (S25)

with λ = ~2/m by neglecting those constant term. Since the spin-dependent lattice potentials have the same sign
for g+1 and g−1 components, we can write the tight-binding model on a square lattice in the x-y plane as shown in
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Fig. S2(b), in which g±1 stay in one sublattice while g0 in the other sublattice. We consider the nearest-neighbor and
next-nearest-neighbor hopping terms with only s-orbital of each site. The hopping between the nearest-neighbor sites
are between different components induced by the Raman couplings. The hopping between the next-nearest-neighbor
sites are between the same component. The effective tight-binding Hamiltonian reads

Htb =
λk2

z

2
+HR −

s=±1,0∑
i,j

tsc
†
s(ri)cs(ri + Sj)−

s=±1,0∑
i

δsc
†
s(ri)cs(ri) (S26)

+
∑
i,j

tijso1c
†
+1(ri)c0(ri +Nj) +

∑
i,j

tijso2c
†
−1(ri)c0(ri +Nj) + h.c., (S27)

where the Zeeman term has been incorporated into the detunings in the ground state manifold. The coupling
coefficients are

ts =

∫
d2rφi∗s

[
λ

2
(k2
x + k2

y) + V (r)

]
φjs(r), tijso1 =

∫
d2rφi∗+1M+1,0φ

j
0(r), tijso2 =

∫
d2rφi∗−1M−1,0φ

j
0(r). (S28)

The spin-flipped hopping coefficients satisfy tjx,jx±1
so1 = ±tso1, tjy,jy±1

so1 = ±itso1, tjx,jx±1
so2 = ±tso2, and tjy,jy±1

so2 =
∓itso2, as constrained by the lattice symmetry. For the spin-dependent lattice, each unit cell contains two lattice sites
with primitive vectors along the two diagonal directions (lattice constant b = π/k0). Using Fourier transformation
and setting tso1 = tso2 = tso

2
√

2
, which can be achieved by adjusting the relative strengths of Raman beams, we obtain

the following momentum-space Hamiltonian

H3D(k) =
λk2

z

2
− 4Ts cos(kxa) cos(kya)− Λs + λkz(k1F

2
z + kmFz) + tsoFx sin(kxa) + tsoFy sin(kya). (S29)

Here a = π√
2k0

, and kx = (k+ + k−)/
√

2, ky = (k+ − k−)/
√

2 are lattice momenta along x and y directions. Ts =

diag (t+1, t0, t−1) and Λs = diag (δ+1, δ0, δ−1) are diagonal matrices for tunneling and detuning. When t+1 = t0 = t−1

and δ+1 = δ0 = δ−1, i.e., no Zeeman term, there exist two TDPs in the 2D Brillouin zone spanned by (kx, ky). They
are located at (0, 0) and (π, 0). (Note that (0, 0) and (π, π) ( (π, 0) and (0, π)) are the same momenta by folding back
to the first Brillouin zone spanned by (k+, k−)). By expanding the above Hamiltonian around the two points, we
obtain the following low-energy Hamiltonians (setting a = 1)

H1(δk) = λδkz(k1F
2
z + kmFz) + tsoδkxFx + tsoδkyFy, (S30)

H2(δk) = λδkz(k1F
2
z + kmFz)− tsoδkxFx + tsoδkyFy, (S31)

which are similar to the Hamiltonian (2). The two TDPs have the opposite Chern numbers. When ts are not equal,
the resulting Zeeman field at the two points may be compensated by choosing suitable detuning δs. In this case, one
of two TDPs will survive, whereas the other one will be broken into two Weyl points with opposite Chern numbers.
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