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Abstract

Parkinson’s disease is a neurological disorder that affects pa-
tient’s motor function including speech articulation. There is
no cure for Parkinson’s disease. Speech and motor function de-
clines as the disease progresses. Automatic assessment of the
disease condition may advance the treatment of Parkinson’s dis-
ease with objective, inexpensive measures. Speech acoustics,
which can be easily obtained from patients, has been used for
automatic assessment. The use of information in motor function
of articulator (e.g., jaw, tongue, or lips) has rarely been investi-
gated. In this paper, we proposed an approach of automatic as-
sessment of Parkinson’s condition using both acoustic data and
acoustically-inverted articulatory data. The quasi-articulatory
features were obtained from the Parkinson’s acoustic speech
data using acoustic-to-articulatory inverse mapping. Support
vector regression (SVR) and deep neural network (DNN) re-
gression were used in the experiment. Results indicated adding
articulatory data to acoustic data can improve the performance
of using acoustic data only, for both SVR and DNN. In addi-
tion, deep neural network outperformed support vector regres-
sion on the same data features measured with Pearson correla-
tion but not with Spearman correlation. The implications of our
approach with further improvement were discussed.

Index Terms: Parkinson’s disease, acoustic-to-articulatory in-
verse mapping, support vector regression, deep neural network

1. Introduction

Parkinson’s disease (PD) is one of the most common neu-
rodegenerative disorders that affects one’s motor function, and
therefore impairs the speech. Parkinson’s disease affects the
life of about one million in the United States and about five mil-
lions worldwide [1]. Parkinson’s disease is a result of the loss
of dopamine-producing brain cells [2]. The causes of Parkin-
son’s disease are still unknown currently and there is no cure
[1, 3]. Patient’s and their family’s lives are severely impacted
due to the disease. Treatment of Parkinson’s disease is a huge
economic burden for taxpayers and patients [4].

Current assessment techniques for Parkinson’s disease are
relying on human experts and thus expensive, subjective, and
time-consuming [4, 5]. Unified Parkinson’s Disease Rating
Scaling (UPDRS) is the most widely used measure for evalu-
ating the symptom severity [6, 7], which consists of five sec-
tions of evaluation including motor, mentation, mood, behav-
ioral, self-evaluation [8]. The rating score range is from O to
176, where O represents completely healthy and 176 is totally
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disabled [9]. Objective and automatic measures for PD symp-
tom severity assessment is highly needed.

Recent advances have been made for automatic and objec-
tive assessment of PD severity using speech signals [9, 10, 11,
12]. Speech signals can be collected conveniently in a clinical
environment or even at home through telephone or cell phone
[13]. Acoustic speech signals have also been used for change-
point detection in PD [14]. Common voice symptoms due to
PD include reduced loudness, monotone, hoarseness, breathi-
ness (noise), and vocal tremor [15]. The basic idea of these
approaches is to extract features that represent those symptoms
from acoustic data and then evaluate the severity.

Articulatory motor function decline due to PD, however,
has rarely been used for automatic symptom severity estima-
tion. There are four primary motor symptoms of PD including
1) tremor, or trembling in hands, arms, legs, jaw, and face; 2)
rigidity, or stiffness of the limbs and trunk; 3) bradykinesia, or
slowness of movement; and 4) postural instability, or impaired
balance and coordination [2]. Trembling in jaw and slowness
of articulators lead to imprecise articulation, the direct causes
of the impaired speech. These symptoms in articulation mo-
tivated a novel approach for automatic PD severity estimation
from articulatory data. For example, the movement patterns of
jaw, tongue, and lips can be used together with acoustic speech
data for automatic Parkinson’s condition estimation.

Despite the logistical difficulty for articulatory data col-
lection [16], articulatory data could be inversely mapped from
acoustic data [17]. For example, Electromagnetic Articulo-
graph (EMA) is one of the currently used techniques for col-
lecting tongue and lip movement data during speech [18]. EMA
records articulatory movement data by attaching small wired
sensors on the surface of jaw, tongue, and lips [19]. Articula-
tory and associated acoustic data that have been collected us-
ing EMA could be used to build an inverse mapping model.
This model can then be used for deriving articulatory data
from acoustic data collected from PD patients. Acoustic-to-
articulatory inverse mapping has been proven feasible with
small errors in recent studies [20, 21] and the mapping can be
speaker-independent [22].

As aparticipation in the Interspeech 2015 Computation Par-
alinguistics Challenge (Parkinson’s Condition sub-challenge)
[23], this paper investigated the use of inversely mapped artic-
ulatory data in Parkinson’s Condition estimation. To our best
knowledge, this is the first attempt of Parkinson’s Condition
(PC) estimation using articulatory data. A publicly available
articulatory and acoustic data, MOCHA-TIMIT [24], was used
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to build the inverse mapping model. Then the provided acous-
tic data set was inversely mapped to articulatory data. Artic-
ulatory features were extracted from the articulatory data and
were used together with acoustic data to test the PC estimation
performance. Our results will be compared with the baseline
results using support vector regression (also provided in [23]).
Moreover, deep neural network (DNN) has recently attracted at-
tention of researchers because it (together with hidden Markov
model, HMM) outperformed the long-standing approach Gaus-
sian mixture model-HMM in speech recognition [25] and other
domains [26]. Deep neural network was also used in this exper-
iment as compared to the performance obtained with support
vector regression (SVR).

2. Method

The core procedure of using acoustic-to-articulatory mapping
for PC estimation is in three steps: (1) to train an acoustic-
to-articulatory inverse-mapping model using an available data
set, (2) then to apply the model to inversely map Parkinson’s
speech (acoustic) data to articulatory data, (3) finally use the
combined acoustic and quasi-articulatory features for PC es-
timation. We hypothesized that PC estimation performance
would be improved with the additional quasi-articulatory fea-
tures, compared with that using acoustic features only.

2.1. Acoustic-to-Articulatory Inverse Mapping
2.1.1. Dataset for Inverse Mapping

MOCHA(Multi-CHannel Articulatory)-TIMIT, a publicly
available database with synchronously recorded acoustic and
articulatory data, was used to train the inverse mapping model.
MOCHA-TIMIT data set consists of simultaneous recordings
of speech, articulatory data from 2 British English speakers (1
male - MSAKO and 1 female - FSEWO0) [24]. There are in total
920 sentences (extracted from TIMIT database).

The articulatory data was collected using an Electromag-
netic Articulograph (EMA, Carstens Medizinelektronik GmbH,
Germany) by attaching sensors to upper lip (UL), lower lip
(LL), upper incisor (UI), lower incisor (LI or Jaw), tongue tip
(TT), tongue blade (TB), tongue dorsum (TD), and velum (V)
with 500 Hz sampling rate (downsampled to 100 Hz). Each sen-
sor has two dimensions, x (front-back) and y (vertical) trajecto-
ries, since lateral (left-right) movements are not significant in
speech production of healthy speakers [16]. The silences before
and after the utterance were removed. According to our expe-
rience, UI does not involve significant movement and therefore
was not used in this experiment. Thus, the acoustic data and
the 14-dimensional articulatory motion data obtained from LI,
V, UL, LL, TT, TB, and TD were used in this experiment.

Table 1 lists the sensors (flesh points on articulators) that
were used in both the inverse-mapping and the PC estimation.

2.1.2. Inverse Mapping

Deep neural network (DNN) regression was used as the
speaker-independent inverse mapping model [21]. The DNN
composed of 3-hidden layers which has 256 nodes at each layer.
The input of DNN is 225 concatenated MFCC feature vec-
tors: 3 consecutive (previous, current, and succeeding frames)
75-dimensional MFCC feature vectors (25 MFCC + A + AA).
The output of DNN is the estimated 14-dimensional articula-
tory (EMA) feature vectors. For training and regression, we
used KALDI speech recognition toolkit [27]. A low pass filter
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Table 1: Flesh points on articulators

Sensor  Full Name

LI Lower Incisor (Jaw)
UL Upper Lip

LL Lower Lip

TT Tongue Tip

TB Tongue Blade

TD Tongue Dorsum

v Velum

(20 Hz cutoff frequency) was used to smooth the data after the
inverse mapping [21].

The results of inverse mapping was evaluated using the
root-mean-square-error (RMSE) between the measured (origi-
nal) and the inversely mapped articulation motion paths of all
sensors. A better (accurate) performance of inverse mapping
benefits the Parkinson’s Condition estimation performance.

2.2. Quasi-Articulatory Features

The trained inverse mapping model was applied on the Parkin-
son’s speech data to generate articulatory data.  Quasi-
articulatory features were then extracted from the inversely
mapped Parkinson’s articulatory data. The quasi-articulatory
features were then used together with acoustic features for PC
estimation.

The script provided in [23] was modified (70 ms win-
dow size and 35 ms frame shift) and used to extract quasi-
articulatory features from inversely mapped articulatory motion
data. The script automatically extracts up to 6,373 pre-defined
acoustic features, including jitter, shimmer, and MFCC. How-
ever, low frequency articulatory data do not contain these infor-
mation. Thus, we disabled the features below when using the
tool to extract quasi-articulatory features:

Jitter, Shimmer, logHNR, Rfilt, Rasta, MFCC, Harmonicity,
and Spectral Rolloff.

Thus, for each dimension (y or z) of a sensor, 1,200 fea-
tures were extracted. In total, 23,173 features (6,373 acoustic
feature + 2,400 articulatory features x 7 sensors) were used to
test our Parkinson’s Condition estimation approaches. In addi-
tion, 2,400 articulatory features for selected sensors were added
to the 6,373 acoustics features for Parkinson’s Condition esti-
mation. This additional test will help to understand the contri-
bution of quasi-articulatory features from individual sensors.

2.3. Support Vector Regression

Support vector regression, a regression based on support vec-
tor machine [28], was used as the baseline approach. SVR is
a soft-margin regression technique that depends only on a sub-
set of the training data, because the cost function for building
the model does not care about training points that are beyond
the margin [29], which is the similar of SVM. Details on the
introduction of SVR can be found in [30].

We reproduced the results that are provided in [23] as a
practice for understanding the dataset. Results obtained using
our proposed approaches will be compared with these obtained
using SVR.

2.4. Deep Neural Network based Regression

Recently, DNN-HMM showed the significant performance im-
provement compared with the long-standing approach Gaussian



mixture model (GMM)-HMM [25, 31, 32, 33] in speech recog-
nition and other applications [26, 34]. In this paper, DNN train-
ing approach based on restricted Boltzmann machines (RBMs)
[35] was used for regression.

The DNN (stacked RBMs) is subsequently fine-tuned using
backpropagation algorithm. A detailed explanation and further
discussion of the DNN can be found in [31, 32, 35].

The structure of the DNN (3 hidden layers with 512 nodes
in each layer) used for Parkinson’s Condition estimation is sim-
ilar as that used for acoustic-to-articulatory mapping (Section
2.1), except the input and output layers. The input features in
the Parkinson’s Condition estimation is all extracted features
(acoustic + articulatory features). The output layer had only
one node, the estimated PC score.

3. Experimental Design

As stated previously, the goal of this project is to test if adding
quasi-articulatory features from the inversely mapped articula-
tory data can improve the Parkinson’s Condition estimation per-
formance. Thus all extracted quasi-articulatory features were
added to the acoustic feature set to test if there is a performance
improvement over that using acoustic features only.

Moreover, our inverse mapping model generated articula-
tory data in a form of 7 sensors (Table 1). Quasi-articulatory
features extracted from selected individual sensor’s data were
added to the acoustic features to identify which sensor(s) may
perform better than others. We hypothesize LI (Jaw) might ob-
tain the best performance, because trembling of jaw is one of
the symptoms in Parkinson’s disease [9].

Finally, DNN regression was tested in the Parkinson’s Con-
dition estimation and the performance was compared with that
obtained using SVR.

3.1. Parkinson’s Data Set

The data set provided in [3] was used in the experiments. The
data set consists speech data collected from a total 50 patients
with Parkinson’s disease (25 males and 25 females). Each par-
ticipant performed a total of 42 speech tasks including 24 iso-
lated words, 10 phrases, one reading task, one monologue, and
the rapid repetition of /pa-ta-ka/, /pa-ka-ta/, and /pe-ta-ka/ [23].
A set of up to 6,373 features have been extracted from and are
provided with the raw audio files. Details of the data set, includ-
ing participants’ information and UPDRS scores, are provided
in [3, 23].

3.2. Outcome Measures

Two correlations, Spearman and Pearson, were used to evalu-
ate the performance of our approaches, although only Spear-
man correlation was provided in [23]. Pearson correlation is
more sensitive than Spearman correlation for outliers. Using
both correlations may provide more detailed information for in-
terpreting our experimental results [36]. A higher correlation
between the estimated condition and the actual condition (UP-
DRS) indicates a better performance.

4. Results and Discussion

4.1. Acoustic-to-articulatory Inverse Mapping

Table 2 gives the performance of acoustic-to-articulatory in-
verse mapping using DNN with or without low pass filtering
(LPF). The root-mean-square-error (RMSE) values are an aver-
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Table 2: Inverse-mapping results on MOCHA-TIMIT data set:
Overall Root-Mean-Squared Errors (RMSE; mm) of measured
(original) and estimated motion paths.

Sensors  w/o LPF  w/LPF
LIx 0.72 0.68
UL_x 0.75 0.72
LL x 1.15 1.08
TTx 2.34 2.08
TB_x 2.16 1.92
TD_x 2.02 1.82
Vx 0.48 0.45
LLy 1.10 1.02
ULy 1.12 1.04
LLy 2.13 1.97
TT.y 2.53 2.28
TB_y 2.04 1.82
TD_y 2.15 1.90
V.y 0.76 0.71
Average 1.53 1.39
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Figure 1: Example of reconstructed articulatory motion paths
of LI (Jaw) with and without low-pass filtering (LPF).

age of the RMSE:s in 5-fold cross validation, for each dimension
of each sensor.

Different RMSEs were obtained from different sensors. LI
(Jaw) and velum (V) obtained smaller RMSEs than other sen-
sors. Tongue, including TT, TB, and TD obtained largest RM-
SEs. This finding may indicate that jaw and velum contains less
variation and tongue movements have more variation in speech
production.

Figure 1 illustrates three articulatory motion paths of Jaw
producing a sentence. The black solid curve is the original; the
blue dashed is the inversely mapped motion path before apply-
ing LPF; the red dashed is inversely mapped motion path after
LPF was applied. Although the three curves are not perfectly
overlapped, the inversely mapped articulatory paths generally
follow the original path, which visually verified the effective-
ness of the inverse mapping model.

4.2. Parkinson’s Condition Estimation

Although inverse-mapping with LPF outperformed that with-
out LPF (Table 2), our preliminary tests indicated that using
LPF causes slightly worse performance in Parkinson’s Condi-
tion estimation. It is possibly because LPF removed some use-
ful information that impacts the quasi-articulatory feature ex-
traction. Thus, LPF was not used when converting the Parkin-



Table 3: Parkinson’s Condition estimation using SVR and DNN
with acoustic and articulatory features from individual sensors.

Correlation Coefficient

Method Feature Set
Pearson ~ Spearman
Acoustic (Baseline)  0.3457 0.4916
Acoustic + UL 0.3730 0.4924
SVR Acoustic + LL 0.4112 0.4941
Acoustic + LI (Jaw)  0.3913 0.5027
Acoustic + ALL 0.4457 0.4625
Acoustic 0.4721 0.4632
Acoustic + UL 0.4714 0.4580
DNN Acoustic + LL 0.4724 0.4567
Acoustic + LI Jaw)  0.5010 0.4895
Acoustic + ALL 0.5113 0.4854
* SVR DNN Linear (SVR) Linear (DNN)
70
* 4
60 . § 4
$ : s ¢ fRrR=002
g 50 ; s l
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Figure 2: Scatter plot of actual UPDRS score and estimated
scores using SVR and DNN (better viewed in color).

son’s speech (acoustic) data to articulatory data.

Table 3 gives the Parkinson’s Condition estimation perfor-
mance (Spearman and Pearson correlations) in a combination
of features and classifiers. Feature combinations include (1)
acoustic only (baseline), (2) acoustic + UL, (3) acoustic + LL,
(4) acoustic + LI (Jaw), and (5) acoustic + ALL features (7
sensors) using the development data set [23]. All Pearson and
Spearman correlations in Table 3 using SVR were obtained with
complex parameter C' = 1072, the best out of other C' values.

One important finding based on Table 3 is adding quasi-
articulatory features improved the performance (as measured
either with Pearson or Spearman correlations) than that using
acoustic features only, for both SVR and DNN regression.

In addition, Table 3 indicates adding even articulatory fea-
tures from a single visible sensor (e.g., UL, LL, or Jaw) can im-
prove Parkinson’s condition estimation performance. LI (Jaw)
obtained the best performance among other single sensors.

This finding may have great potential for the development
of a portable visual-speech Parkinson’s Condition estimator,
since jaw movement can be easily tracked using a webcam. For
example, a smart phone can be used to record speech sounds
and track the jaw movement to evaluate the Parkinson’s condi-
tion.

When comparing the performances of SVR and DNN re-
gression, different results were obtained with Pearson and
Spearman correlations (Table 3). DNN regression outperformed
SVR when using Pearson correlation, while SVR outperformed
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Figure 3: Parkinson’s Condition estimation performance using
different features on Test dataset (for the PC Challenge). The
performance was measured using Spearman correlation.

DNN regression when using Spearman correlation. This is
mainly because Spearman correlation is less sensitive for out-
liers [23], thus gave higher values for SVR. In this experiment
using the development dataset, SVR produced at least two out-
liers, while DNN produced no outliers.

Figure 2 shows the scatter plot of the actual UPDRS score
and the estimated scores using SVR and DNN regression (out-
liers not displayed). A linear regression suggested DNN regres-
sion (R? = 0.25) outperformed SVR (R? = 0.12).

Figure 3 provides the results using the Test set, which is for
the competition in the Interspeech 2015 PC Challenge. Our pro-
posed approach (DNN + acoustic features + quasi-articulatory
features) obtain results that are worse than the baseline results
provided in [23]. However, based on previous discussion, we
still think our proposed approach is better than the baseline ap-
proach (SVR with acoustic features) [23].

Although the inverse mapping model trained using healthy
data was used, encouraging results were obtained. We believe
that the PC estimation performance can be further improved
when the model is built from real Parkinson’s data. This find-
ing motivated an articulatory data collection from patients with
Parkinson’s disease.

Our approaches using quasi-articulatory features in this ex-
periment are data-driven (rely on SVR or DNN regression), al-
though we mentioned trembling of jaw is one of the primary
symptom in Parkinson’s. Interpretable model (e.g., with a de-
rived feature for jaw trembling) may further improve the perfor-
mance and advance the understanding of Parkinson’s symptom.

5. Conclusions and Future Work

In this paper, we proposed a novel approach for automatic
Parkinson’s condition estimation (using acoustic speech data
and inverted articulatory data). The approach was tested using
the data sets provided in [23]. Experimental results indicated
the performance improvement of adding quasi-articulatory fea-
tures, particularly from jaw.

Future directions include (1) Parkinson’s condition esti-
mation using the quasi-articulatory feature only, (2) collect-
ing real articulatory data from patients with Parkinson’s disease
for severity estimation, and (3) tuning the structure of DNN to
improve the performance of inverse-mapping and Parkinson’s
Condition estimation.
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