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In recent years, there has been a significant increase in the popularity of voice-enabled tech-

nologies which use human speech as the primary interface with machines. Recent advance-

ments in acoustic modeling and feature design have increased the accuracy of Automatic

Speech Recognition (ASR) to levels that enable voice interfaces to be used in many appli-

cations. However, much of the current performance is dependent on the use of close-talking

microphones, (i.e., scenarios in which the user speaks directly into a hand-held or body-worn

microphone). There is still a rather large performance gap experienced in distant-talking

scenarios in which speech is recorded by far-field microphones that are placed at a dis-

tance from the speaker. In such scenarios, the distorting effects of distance (such as room

reverberation and environment noise) make the recognition task significantly more challeng-

ing. In this dissertation, we propose novel approaches for designing a distant-talking ASR

front-end as well as training robust acoustic models to reduce the existing gap between far-

field and close-talking ASR performance. Specifically, we i) propose a novel multi-channel

front-end enhancement algorithm for improved ASR in reverberant rooms using distributed

non-uniform microphone arrays with random unknown locations; ii) propose a novel neural

network model training approach using adversarial training to improve the robustness of

multi-condition acoustic models that are trained directly on far-field data; iii) study alter-
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nate neural network adaptation strategies for far-field adaptation to the acoustic properties

of specific target environments. Experimental results are provided based on far-field bench-

mark tasks and datasets which demonstrate the effectiveness of the proposed approaches for

increasing far-field robustness in ASR. Based on experiments using reverberated TIMIT sen-

tences, the proposed multi-channel front-end provides WER improvements of +21.5% and

+37.7% in two-channel and four-channel scenarios over a single-channel scenario in which

the channel with best signal quality is selected. On the acoustic modeling side and based

on results of experiments on AMI corpus, the proposed multi-domain training approach

provides a relative charachter error rate reduction of +3.3% with respect to a conventional

multi-condition trained baseline, and +25.4% with respect to a clean-trained baseline.
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CHAPTER 1

INTRODUCTION

The increasing popularity of voice-enabled devices and digital assistants in recent years has

caused Automatic Speech Recognition (ASR) technology to leave the research labs and play

a central role as the dominant human-machine interface. Combined with Natural Language

Processing (NLP), speech recognition is reshaping the way we interact with machines. To-

day, almost all our mobile devices (phones, tablets, laptops, etc.) have one or more built-in

microphones. With ongoing advancements in the development of Internet of Things (IoT),

more and more elements will be added to this network of voice-enabled devices. As a re-

sult, many technological companies are redefining their services and products to use speech

recognition (and synthesis) as the primary way of interacting with the user. The accuracy

of speech recognition is a key factor in the usability of such systems, because the operation

of the rest of the dialog system is critically dependentent on the recognized content.

Research on speech recognition has a history of a few decades [2]. It started in 1950s with

limited-vocabulary systems aimed at recognizing a small set of words in rather ideal acoustic

conditions. Since then, decades of research in both Digital Signal Processing (DSP) and

Machine Learning (ML) has brought about a drastic improvement in ASR performance. The

recognition accuracy has continuosly improved, with periods of slow gradual improvements

as well as occasional leaps in performance resulting from breakthroughs in modeling or

representation techniques. As the performance improves, the test conditions and application

scopes are constantly redefined to include more realistic conditions.

Figure 1.1 shows a summary of the improvements in Word Error Rate (WER) on a

few popular speech corpora. These datasets were each designed to address a new prob-

lem and take the application scenario into a more realistic level. Focus has shifted from

small-vocabulary systems to Large Vocabulary Continuous Speech Recognition (LVCSR),

from read speech to conversational speech, and from clean close-talking speech to noisy and

1



Figure 1.1. Accuracy improvement of ASR systems on increasingly challenging and realistic
scenarios. Resource Management (RM) is a small-vocabulary read-speech dataset with lim-
ited lexicon and fixed grammar [3]. Wall Street Journal (WSJ) read-speech corpus [4] is one
of the first corpora aimed at benchmarking LVCSR. Broadcast News is a collection of radio
and television material speech (mixed read and spontaneous). Switchboard (SWB) [5] is a
corpus of conversational telephone speech. The Augmented Multi-party Interaction (AMI)
corpus [6] is a dataset of conversational speech in meetings recorded both using headset
(IHM) and distant (SDM) microphones. This illustration is based on data from [7–10]

reverberant speech. The adoption of Hidden Markov Models (HMM) for statistical mod-

eling of speech significantly imporved ASR accuracy on read speech. However, recognizing

conversational speech in natural interactions (e.g., the Switchboard corpus [5]) remained a

challenge. The nest breakthrough was the adoption of Deep Neural Network (DNN) acous-

tic models which were found capable of vastly outperforming conventional Gaussian Mixture

Models (GMM) [11]. Further advancements in DNN based acoustic modeling such as the use

of convolutional and recurrent layers, improved optimization algorithms and i-vector based

speaker adaptive training [12], have now made it possible to achieve significantly improved

accuracy on conversational speech. Error rates as low as 5.5% have recently been reported

on the Switchboard corpus [9, 13], which is very close to human performance on transcribing

convesational speech.
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Given the improvements provided by DNN-based acoustic models, the availability of

large speech datasets, and the possibility of training large neural networks on such datasets

using efficient hardware such as Graphical Processing Units (GPU), the problem of close-

talking single-speaker ASR in reasonably matched acoustic conditions is largely considered

to be solved today. However, there are still significant hurdles in widespread deployment

of speech recognition technology in day-to-day lives, because it requires relaxing many of

the constraints assumed for the task. Among the remaining challenges, the problem of

distant (far-field) speech recognition is one of the most significant hurdles which currently

limits practical applications of ASR. The goal of this dissertation is to provide solutions for

reducing the gap between distant-talking and close-talking ASR performance.

1.1 Motivation

Despite the advancements in acoustic modeling which brough the recent improvements in

ASR accuracy, it is still necessary to use close-talking microphones (headset, lapel, or hand-

held microphones) to achieve satisfactory performance. In situations where a distant (far-

field) microphone is to be used, the distortions in the received signal lead to considerable

performance degradation. Typical WERs on distant microphones are twice as high as the

close-talking counterparts. For conversational speech and even with state-of-the-art DNN-

based acoustic models, the error rates on distant microphones are usually high enough to

render the ASR system unusable. This is a major limitation because in many applications,

wearing a headset microphone or speaking directly into a microphone at a fixed position is

impossible or too limiting. It is desirable to let users talk to machines while freely moving

within the environment, without having to wear cumbersome recording or transmitting de-

vices. There are numerous applications that can enormously benefit from the availability of

an accurate distant-talking ASR, including

3



• Automatic annotation of user-generated videos (e.g. YouTube videos), often recorded

from a distance using a mobile device.

• Meeting transcription which enables archiving and searching of meeting contents.

• Remotely operating robots or other consumer products (TV, mobile devices, etc.)

• Voice-operated technologies in cars (e.g., sound or navigation systems), which let the

driver focus on the road while operating these devices at the same time.

As a result, the focus in research is now shifting to distant-talking (or far-field) ASR,

which can potentially bring in a whole new set of applications. Figure 1.1 shows the accu-

racies obtained from both close-talking and distant microphones in a meeting transcription

task on the AMI corpus [6] (which has become a fairly standard and popular dataset for

distant ASR). The best results reported on the Single Distant Microphone (SDM) task on

this dataset have a WER of around 45% [14, 15], which shows the significant challenge that

far-field conversational speech still poses to today’s ASR systems.

There are various factors leading to degraded performance in distant speech recognition:

• Room reverberation is by far the most serious challenge in distant ASR. The reflec-

tions of the sound wave from the walls or other surfaces in an enclosed environment

causes the microphone to capture multiple attenuated replicas of the original speech

signal with different time delays and power levels. These replicas serve as non-sationary

and non-Gaussian noise which is correlated with the direct-path speech component.

• Environment noise leads to lower Signal to Noise Ratio (SNR) on distant micro-

phones, becuase the intensity of the captured sound is inversely proportional to the

distance it travels (while the level of ambient noise remains constant regardless of mi-

crophone location, and the level of non-stationary interferences depend on the relative

location of the noise source and the microphone).
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• Simultanous speech from multiple speakers is another important challenge in

ASR. Again, this is usually not an issue with close-talking microphones because the

energy of the primary speaker is dominant on the microphone. Despite the currently

active research on co-channel speech [16, 17] and blind source separation [18], speech

recognition in the presence of competing speakers remains a largely unsolved problem

today.

• Speaker’s head orientation can introduce additional channel distortions in rever-

berant rooms. The human speech is a directional sound source which emits more

energy in the forward direction. When a speaker is facing a direction other than the

microphone’s location, the direct path component is further attenuated relative to the

reverberation components.

• Speaker movements can introduce time-varying components to the acoustic transfer

function between the speaker and the microphone. The transfer function can signifi-

cantly change even with small movements of the speaker. Similarly, the microphone’s

location may change (e.g., in the case of a moving robot), which will create a similar

time-varying effect.

• The perception of distance can also influence the way humans talk. Two different

application scenarios can be distinguished in far-field ASR. If the goal is to recognize

a conversation between humans (e.g., in meeting transcription), the uttered speech

characteristics are independent of the microphone distance. However, in applications

where a human user is talking directly to a distant machine (e.g., communicating with

robots), users often try to raise their voice if they are aware of the distance. This will

change the speech production characteristics, resulting in further mismatch with an

acoustic model that is trained on neutral speech.
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To achieve robust distant speech recognition, solutions are needed to address the above

problems in the different stages of recognition. On the feature extraction front-end, multi-

channel or single-channel feature enhancement techniques are needed to compensate for the

non-stationary and context-dependent distortion caused by reverberation. On the acoustic

model side, modeling techniques are needed which present better robustness to the types of

distortion in far-field speech. Finally, adaptation mechanisms are needed to tailor general-

purpose acoustic models to specific rooms and environment properties.

1.2 Dissertation Contributions

In this dissertation, we aim to reduce the gap between close-talking and distant-talking

ASR performance by providing multiple solutions to improve far-field robustness at different

stages of the recognition pipeline. The main proposed solutions are as follows.

• A multichannel front-end for effective integration of acoustic information

from multiple independent recording devices (CNTF algorithm): A major

area of research to achieve robustness in far-field ASR is multichannel front-end pro-

cessing to obtain estimates of the clean speech features. The majority of existing

research in this area focuses on uniform microphone arrays (i.e. closely spaced mi-

crophones that are designed and calibrated in advance for beamforming, localization,

noise cancellation, etc.). In contrast, our focus will be on independent recording de-

vices that can be distributed across a room, relaxing the constraint of having compact

unifrom arrays. The signals recorded by these distributed microphones do not have any

synchrony or meaningful phase information among them, and thus they require fun-

damentally different approaches to combine their signals into a single set of features

for ASR. We propose a mutichannel dereverberation method based on Convolutive

Nonnegative Tensor Factorization (CNTF) suitable for such distributed scenarios.
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• Multi-domain adversarial training of neural network acoustic models for

increased robustness in far-field ASR: If a large corpus of far-field speech record-

ings from different rooms with different acoustic properties is available (referred to as

multi-domain or multi-condition data), it is possible to train DNN acoustic models

directly on such data without any front-end processing. Most existing studies in this

area compile data from all different recording environments into a single train set,

ignoring the environment labels during training. We propose a novel training strat-

egy for end-to-end RNN acoustic models which uses the available meta-data regarding

the recording environment of each utterance in order to obtain increased robustness.

This is achieved by enforcing increased invariance between the different environments

(domains) by tuning a subset of network parameters adversarially with respect to a

domain classifier.

• Deep Neural Network (DNN) acoustic model adaptation for increased ro-

bustness in specific target environments: Model adaptation is very useful for

improving the performance of acoustic models for specific target environments. How-

ever, most existing studies on adaptation focus on conventional GMM-HMM models,

and also on the task of speaker adaptation. We provide a thorough study on possible

DNN adaptation startegies for far-field ASR. Focusing on the linear transformation ap-

proach (which provides best results in practice), we demonstrate how to choose specific

parameter subsets in a network which result in best adaptation performance.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows.

• Chapter 2 provides a brief review on state-of-the-art ASR and its different compo-

nents including feature extraction, acoustic modeling, language modeling and decod-

ing. It highlights the differences between traditional HMM-based acoustic models and
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the more recent RNN-based end-to-end models. Moreover, we provide some relevant

background specifically for the task of distant speech recognition, including the far-

field speech model, reasons why conventional robustness techniques are not useful for

far-field distortion, and existing approaches to address the far-field problem.

• Chapter 3 presents CNTF algorithm, which is our proposed multichannel solution

for improving far-field ASR through integration of acoustic information from multiple

independent microphones. It explains the motivations of using distributed recording

devices instead of unifrom microphone arrays and the challenges involved. It then

presents the tensor model for the time-frequency representations of reverberant speech,

and formulates a dereverberation algorithm based on Convolutive Nonnegative Tensor

Factorization. Finally, results of speech recognition experiments are provided which

show the effectiveness of the proposed approach in highly reverberant environments.

• Chapter 4 presents our proposed RNN training strategy to improve environmental

robustness with multi-domain training data. We propose a novel training method for

RNN-CTC models based on tuning a subset of RNN parameters adversarially with

respect to a domain classifier built on top of hidden features. The proposed approach

can use available information about the recording environment of each utterance in

order to enforce increased domain invariance in the RNN hidden layers. We provide

results on a meeting trasncription task which demonstrate the effectiveness of the

proposed approach.

• Chapter 5 provides adaptation strategies for DNN-based acoustic models to improve

performance in specific target environments. Most existing adaptation strategies in the

literature are specifically designed for GMM-HMMs and cannot be applied to DNN-

based models. Moreover, they are usually designed for the task of speaker adaptation

and do not consider the types of distortion in far-field ASR. We present different
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adaptation approaches for DNN-based acoustic models that are appropriate for the

task of environment adaptation. We peovide recognition results both with DNN-HMM

hybrids and with end-to-end RNNs which show the effectiveness of far-field adaptation

for both models.

• Chapter 6 concludes this dissertation and provides a summary of the proposed con-

tributions. It also discusses some open research problems and provides future research

directions.
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CHAPTER 2

BACKGROUND

This chapter provides a brief overview of automatic speech recognition, and reviews the

role and functionality of its different components. Design choices and recent advancements

in different components are briefly discussed, with a focus on recent developments in deep

learning research which has fundamentally changed the speech recognition pipeline. Note

that this is by no means a comprehensive review on ASR technology. The intention here is

to familiarize the reader with those concepts that are directly related to far-field robustness,

and which are needed in subsequent chapters in order to formulate the proposed solutions.

For more details on ASR basics, the reader is encouraged to refer to [19–21].

2.1 Speech recognition fundamentals

The goal in speech recognition is to map a sequence of acoustic observations x = [x1,x2,

· · · ,xT ] to a corresponding sequence of words w = [w1, w2, · · · , wN ] which maximize the

posterior probability

p(w|x) =
p(x|w)p(w)

p(x)
. (2.1)

The denominator in Eq. (2.1) is a constant term based only on the fixed acoustic observation,

and thus our task in ASR is to find the sequence of words which maximize p(x|w)p(w). The

term p(w) encodes our knowledege on which sequences of words are more probable than

others (independent of the acoustic observation), which is referred to as the Language Model

(LM). The term p(x|w) is the likelihood of the observed acoustic features assuming a certain

sequence of words w. This is determined by the acoustic model (AM), which specifies how

each word (or sub-word unit) is represented in the feature space. If sub-word units are used

(which is necessary in LVCSR), a separate component is required to determine the sequence

of sub-word units for each word (referred to as the lexicon or dictionary). Throughout this
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Figure 2.1. An overview of the different components in ASR

dissertation, we collectively refer to these sub-word units as labels. For HMM-based acoustic

models, these labels are often context-dependent HMM states, better known as senones. For

RNN-based acoustic models, the labels can be monophones or text characters.

Figure 2.1 shows a block diagram of a typical speech recognition system. The system is

developed using a training database of transcribed utterances which is supposed to cover the

diversity of the intended test scenario as much as possible (in terms of speaker, gender, age,

environment, etc.). The ASR front-end is responsible for converting speech waveforms into

a sequence of feature vectors. These features are designed to encode phoneme information

while rejecting other sources of variability. Some popular choices of features are Mel filter-

bank (MFB) features, Mel Frequency Cepstral Coefficients (MFCC), and Perceptual Linear

Prediction (PLP) coefficients. The front-end can optionally include enhancement algorithms

to compensate for different types of distortion such as reverberation, noise, etc. The result-

ing feature vectors are used to construct models for each word or sub-word unit. For large

vocabulary tasks, it is not feasible to use word models. Therefore, a lexicon is needed to

map each word in the transcripts to a corresponding sequence of sub-word units. Models

are built for these sub-word units which can be phonemes, context-dependent phones (e.g.,

triphones), or more recently, text characters corresponding to each word. There are three
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possible choices for the acoustic model architecture, namely GMM-HMM, DNN-HMM, and

RNN models. The task of these models is to provide the likelihood of an acoustic observation

given each of the sub-word units. During training, model parameters are tuned such that

this likelihood is maximized for the correct label sequence (given by the transcription). At

test time, the model provides scores for each label given the feature sequence from the test

utterance. A beam-search decode procedure is then followed to determine the best sequence

of labels l = [l1, l2, · · · , lL] using the acoustic scores provided by the model. A lexicon can

be used to constrain the beam search to only those label sequences which correspond to

valid words. Furthermore, a language model can be used to rescore the different candidate

label sequences according to their language probability. The contribution from the lexicon

and the language model can be represented by a separate score p(l) assigned to each label

sequence which adjusts the original scores given by the acoustic model. The final output of

the decoder can thus be expressed as,

l∗ = arg max
l

p(l|x)p(l). (2.2)

It should be noted that the training data for ASR is almost always in the form of

(waveform, transcription) pairs, and the time alignment information for the labels in a tran-

scription is not available. Thus, the training procedure should have some form of internal

alignment in addition to parameter tuning. In Section 2.3, we discuss how this alignment is

done in different acoustic models.

2.2 The ASR front-end

The front-end is responsible for converting raw waveforms into feature vectors that are

representative of the sound class, while rejecting other sources of variability as much as

possible. Until recently, MFCCs were the standard feature type used in most ASR systems.

However, the final Discrete Cosine Transform (DCT) in MFCC features was only intended

12



to accomodate the use of diagonal-covariance GMMs as acoustic models by decorrelating the

different feature dimensions. Such decorrelation is no longer necessary with DNN acoustic

models. In fact, DNNs are known to make use of such correlations in order to achieve better

classification. As a result, Mel Filter-Bank (MFB) features are now the standard feature for

ASR. The front-end can optionally include different enhancement strategies incorporated at

different stages of the feature extraction pipeline. We review such enhancement strategies

in Section 2.6.

2.3 Acoustic modeling

At the core of a speech recognition system is the statistical models assigned to different

speech sounds which provide the likelihoods p(l|x) in Eq. (2.2) for recognition. Here we

review three acoustic modeling techniques used in ASR.

2.3.1 GMM-HMM models

GMM-HMM models were a dominant acoustic modeling choice in ASR for many years before

they were replaced with DNN-based alternatives. For smaller training datasets, they are still

a useful choice. In GMM-HMM models for LVCSR, often a 3-state HMM is used to model the

temporal evolution of different speech sounds, with a GMM characterizing the distribution

of data at each hidden state. To be able to reliably train all GMM parameters, GMMs with

diagnoal covariances are often used, which requires features with decorrelated dimensions

(e.g., MFCCs). All GMM parameters are trained based on available training data using the

well-known Baum-Welch algorithm [22].

To consider the context dependency of phonemes in speech, each HMM models a triphone

(context-dependent phone with left and right contexts). The problem with using triphones

is that there are a large number of possible triphones given a fixed set of monophones, and so

the amount of training data for each triphone model will inevitably be small. To overcome
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this problem, the parameters of different HMM states are often tied together using a decision

tree clustering approach [23].

A limitation of HMM-based models is the simplifying dependency assumptions that are

made about the data, which are not accurate about speech signals. The conditional in-

dependence assumption states that given the HMM internal state, the observation at each

time step is independent of all past observations. Moreover, the first-order Markovian chain

assumption implies that state occupancies are only determined based on the previous state.

Another difficulty with HMM-based models is due to the lack of aligned labels for the acous-

tic features. The training data in ASR is pairs of speech signals with the corresponding

label sequence, without any available alignment between them1. As a result, the training

procedure should implicitly also align the labels with the features. There are two popular

approaches to achieve this with GMM-HMM models. The first is to concatenate the HMMs

of all labels in a certain training example, and train the resulting composite HMM as a

whole using Baum-Welch algorithm [24]. Another approach is to initially assume a uniform

alignment (where each label consumes a fixed number of features), and iteratively retrain

and refine the alignment boundaries [25].

2.3.2 Hybrid DNN-HMM models

The first structure which made use of deep neural networks within the acoustic model was

DNN-HMM hybrid models. These models use an HMM to model temporal dynamics (similar

to conventional GMM-HMM models), but replace all the GMMs with a single feed-forward

DNN which is responsible to predict posterior probability of each HMM state given the

acoustic observation. In other words, the output space for the DNN is still defined by

the decision-tree clustering performed for an initially trained separate GMM-HMM model.

1For phoneme labels, obtaining a manual alignment between the sequence of phonemes and a speech
signal is too cumbersome and impractical for large datasets. In the case of text characters, there is often no
unique alignment.
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The DNN-HMM hybrids were shown to significantly outperform conventional GMM-HMMs

on a variety of different benchmarks, datasets, and tasks [11]. As a result, they quickly

replaced older GMM-based models and are now widely accepted as state-of-the-art in speech

recognition.

2.3.3 End-to-end RNN models

In spite of the impressive results obtained from DNN-HMM hybrids, they are still dependent

on a separate GMM-HMM model which defines the output space and provides senone labels

for training. In other words, part of the learning is still dependent on hand-crafted and

human-designed procedures such as phoneme dictionary specification, context-dependency

definitions (biphones, triphones), decision-tree state clustering, etc. These rules define the set

of classes for which a DNN classifier is built during training. Although the DNN can achieve

better classification compared to GMMs, it is still forced to learn the fixed representations

defined by the initial GMM-HMM model. Moreover, this implies that the HMM simplifying

assumptions mentioned in Section 2.3.1 will also carry over to the DNN model.

An alternative to DNN-HMM hybrids which has quickly attracted a lot of attention is the

so-called end-to-end models, in which the acoustic model consists of a single RNN, without

any reliance on a separate HMM. The feedback paths in RNNs make them suitable for

sequence modeling tasks without any additional mechanism to handle temporal dynamics.

In other words, RNNs are capable of jointly modeling both temporal aspects and state

distributions at the same time. Moreover, since RNNs directly map from a sequence of

acoustic features to the corresponding sequence of labels, no explicit alignment is needed

during training. End-to-end RNN models possess charactertistics which result in drastically

simplified ASR pipelines:

• RNNs model context dependencies through their internal states, instead of requiring

the output space to encode phoneme contexts. As a result, there is no need to define
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context-dependent labels (e.g., triphones). RNN models have been shown to provide

state-of-the-art performance with mono-phone output spaces, making the use of tri-

phones and decision-tree state clustering unnecessary.

• Even further, RNN models can be used with character output spaces instead of phonemes.

This is because RNN-based acoustic models are essentially sequence-to-sequence mod-

els which map a sequence of features to a sequence of labels, without any explicit

alignment. Therefore, since no specific label is needed for individual frames, the out-

put sequence can be any arbitrary chain of symbols which represents the content of

the feature sequence. Using character output spaces has the significant advantage that

it does not require a phoneme dictionary, which used to be the primary source of

requirement for human expertise in conventional ASR systems.

• The number of senones in conventional HMM-based systems is on the order of thou-

sands, resulting in a very large decode graph and slow beam search. The use of mono-

phones or character output spaces in RNN acoustic models results in a much simpler

decoding graph which enables faster decoding.

The above mentioned benefits come at the cost of requiring more training data. This is

because end-to-end models are expected to learn everything from data, including temporal

dynamics, alignment of features with labels, conversion to the character space, etc. In

situations where such data is available, an end-to-end RNN model provides state-of-the-art

results without requiring the conventionally designed complex ASR pipelines.

There are mainly two network structures which enable end-to-end training of RNN acous-

tic models, namely RNN-CTC models [26], and the more recent attention-based encoder-

decoder models [27]. We briefly review both approaches here. However, end-to-end experi-

ments in this dissertation are all based on the RNN-CTC approach.
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RNN-CTC end-to-end models

The first (and currently most popular) neural network structure that enables end-to-end

training is based on the Connectionist Temporal Classification (CTC) framework [26] for

labeling unsegmented sequences. Figure 2.2 shows the basic architecture of RNN-CTC mod-

els. Given a sequence of feature vectors X = [x1, · · · ,xT ] from a speech utterance, a deep

RNN applies multiple stages of nonlinear recurrent transformations of the form

h
(l)
t = f(h

(l)
t−1,h

(l−1)
t ,θ(l)), (2.3)

where h
(l)
t is the output of layer l at time frame t (h

(0)
t = xt), θ

(l) represents the trainable

parameters of layer l, and f(·) is used to generally denote the internal layer transformations

of the particular recurrent architecture that is used (either a Long Short-Term Memory

(LSTM) layer [28] or a Gated Recurrrent Unit (GRU) layer [29]). The activations of the

last hidden layer are passed to a final softmax layer of size |S|, where S = {s1, · · · , s|S|, blk}

is the output symbol set (phonemes or characters plus an additional blank label) and | · |

represents the cardinality of the set. The softmax outputs at each frame are interpreted as

the posterior probability of observing each of the labels at that frame:

p(si,t|X) =
exp

(
wT
i h

(L)
t

)∑|S|
j=1 exp

(
wT
j h

(L)
t

) . (2.4)

Here, p(si,t|X) represents the probability of observing symbol si at time t given the input

sequence, and wT
i denotes the transpose of a column weight vector from the softmax layer.

The extra symbol (blk) represents a blank or no output at a particular frame, which enables

the network to appropriately align the input features with the label sequence. Note that since

the recurrent layers are often bi-directional, the posteriors at each frame are conditioned on

the whole input sequence.

The CTC objective is to maximize the overall probability of the ground-truth label

sequence given the observed feature sequence using any possible alignment between them.
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Figure 2.2. RNN-CTC acoustic models

This is obtained by summing over the probabilities given by all possible alignments:

JCTC = − log
(∑
a∈A

T∏
t=1

p
(
sa[t],t|X

))
. (2.5)

Here, A is the set of all possible alignments and a[t] is one such alignment which gives a sym-

bol index for every time frame t. The sum in (2.5) is efficiently computed using a dynamic

programming forward-backward algorithm which makes use of the intermediate probabil-

ities of partial label sequences [26]. The gradients resulting from the CTC objective are

back-propagated through time and over all hidden layers to tune the network parameters.

To decode a particular test utterance, the simplest approach is to use a memoryless search

by selecting the most active output at each frame followed by removing blanks and label

repetitions (referred to as best-path decoding). Alternatively, we can track multiple paths

in a beam search algorithm similar to [30] to find the most likely label sequence. Moreover,

to efficiently incorporate a language model and an orthographic lexicon, we can use a con-

ventional Weighted Finite State Transducer (WFST) to construct a search graph similar to

[31].

Implicit in Equation 2.5 is the assumption of conditional independence between the net-

work outputs at different time steps given the internal hidden state of the network. This
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assumption is valid since no feedback connections exist from the predicted outputs to the

network layers. Note that this is a fundamentally different assumption from the conditional

independece assumption in HMMs. While in HMMs the input features at different time steps

are assumed independent, RNNs make no such simplifying assumption about the input se-

quence. Rather, the conditional independence in the CTC framework refers to the output

symbols at different time steps. The consequence of this assumption is that the network

will not be able to learn any information about common patterns in the output sequences,

and will have to rely on a separate language model to incorporate sequential structure of

the labels. In other words, the acoustic model and the language model in RNN-CTC sys-

tems are two completely disjoint modules whose scores should be properly combined prior

to decoding.

Attention-based encoder-decoder models

An alternative structure for end-to-end acoustic modeling is sequence-to-sequence models,

where an encoder RNN transforms the input sequence into a fixed-length compact repre-

sentation, and a decoder RNN uses this representation to produce the sequence of output

labels. These models were initially used in Neural Machine Translation (NMT) to map a

sequence of words in one language to another [32], and were later found to be useful in

acoustic modeling in ASR as well [27, 33].

Figure 2.3 shows the basic architecture of an attention-based RNN acoustic model. Given

a sequence of acoustic features X = [x1, · · · ,xT ], the encoder RNN maps them to a syn-

chronous sequence of higher level representations H = [h1, · · · ,hT ]. At the k’th step of the

decoder, first an attention model produces a glimpse vector gk using a weighted average of

the encoded features

gk =
T∑
t=1

wk,tht. (2.6)
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Figure 2.3. attention-based encoder-decoder acoustic models

The weights wk,t in (2.6) determine the contribution of t’th frame of the speech signal on

the k’th produced label by the decoder, and are therefore refered to as an alignment. The

role of the attention model is to provide this alignment given the previous hidden state of

the decoder and the elements of h:

wk,t = fAttend
(
q(k−1),ht

)
. (2.7)

The glimpse vector, the previous hidden decoder hidden state, and the previous output are

all used to complete the decoder’s recurrence step, and a final softmax layer predicts the

label posterior distribution at each step:

qk = fRNN(gk,qk−1,pk−1), (2.8)

pk = [p0(k), · · · , p|S|(k)] = fout(qk). (2.9)

Here, pi(k) is the probability of outputting symbol si at the k’th step of the decoder.

The parameters of the encoder, decoder, and the attention model are jointly optimized based

on the average cross-entropy error between the decoder outputs and the ground-truth label
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sequence [y1, · · · , yL]:

θ = arg max
1

L

L∑
k=1

log pyk(k). (2.10)

Here, θ represents the set of all parameters in the network, and pyk(k) is the predicted

posterior probability for the ground-truth label yk at time step k.

A major difference between this model and the RNN-CTC model is the inclusion of

the previous output pk−1 in the decoder’s recurrence, which allows it to learn information

about output sequences. In RNN-CTC models, outputs at different time frames are assumed

conditionally independent. The model is thus confined to learn only the acoustic information

about the input sequence, requiring a separate language model to adjust acoustic scores prior

to decoding. Here, the model is allowed to learn both acoustic and sequential (language)

information. As a result, when a separate language model is not provided, the attention

approach often outperforms RNN-CTC models.

2.4 Distant speech model

The effect of sound reflections received by a distant microphone in a reverberant environment

can be modeled as a convolution between the clean speech signal and a Room Impulse

Response (RIR) which characterizes the acoustic path from the speaker to the microphone:

x(n) =

Lh∑
q=0

h(q)s(n− q) + e(n). (2.11)

Here, s(n) is the clean speech, x(n) is the received microphone signal, e(n) is the additive

environment or recording noise, and h(n) is the RIR. Figure 2.4 shows two example RIRs

from an office room with a reverberation time of T60 ≈ 430 ms. RIRs are typically divided

into three regions, namely the direct path which is the desired component, early reverberation

which is a number of distinct reflections arriving soon after the direct path (typically within

50 msec), and late reverberation which is a build-up of thousands of reflections which are not
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Figure 2.4. Example RIRs from an office room with T60 ≈ 430 ms (from Aachen Impulse
Response (AIR) dataset [1]).

clearly distinguishable from each other. The reverberation model in (2.11) can be rewritten

based on these three components:

x(n) = sd(n) + e′(n), (2.12)

sd(n) = hd(n) ∗ s(n), (2.13)

e′(n) = he(n) ∗ s(n) + hl(n) ∗ s(n) + e(n), (2.14)

where hd(n), he(n) and hl(n) represent the direct path, early reverberation and late rever-

beration, respectively, and ∗ denotes convolution. The relative energy of the direct path

compared with the reflections is known as direct-to-reverberation ratio (DRR) and has a

high correlation with ASR accuracy. The value of DRR is a function of reverberation time

and the speaker-to-microphone distance. A longer reverberation time leads to more reverber-

ant energy and lower DRR. Also, a longer speaker-to-microphone distance results in lower

direct-path energy while the late reverberation energy stays the same, hence resulting in

a lower DRR. Moreover, the effects of speaker head orientation can also be subsumed in

the RIR. A speaker who is not facing a microphone emits less energy in the direct path

component, effectively reducing DRR.

It should be noted that even in the absence of environmental noise (i.e., when e(n) =

0), the interference term e′(n) is a non-stationary, non-Gaussian and colored noise which
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is correlated with the desired clean component sd(n). This is a very challenging type of

interference to remove, as most noise-robust approaches assume uncorrelated and stationary

noise. As a result, conventional noise-robust approaches that are designed to address additive

noise are often not useful to deal with the reverberation problem in distant ASR.

The RIR length is a function of room reverberation time (T60) and varies from a few

hundred miliseconds (e.g., typical office rooms) to a few seconds (e.g., highly reverberant

auditoriums, etc.). In almost all practical cases, the RIR length is larger than the typical

frame length used in speech recognition (25-30 msec). As a result, the convolutive relation in

(2.11) cannot be described as a simple multiplicative relation in the frequency domain. This

is what makes far-field robustness a more challenging problem compared to other variability

compensations in ASR (noise and channel robustness, speaker independence, etc.), where

distortions are limited to multiplicative or additive effects in the feature domain. The time

domain model in (2.11) is described in the Short Time Fourier Transform (STFT) domain

as

X̃(k,m) =
K−1∑
k′=0

L−1∑
p=0

H̃kk′(p)S̃(k′,m− p) + Ẽ(k,m), (2.15)

where k is the frequency bin index, m is frame index, S̃(k,m) and X̃(k,m) are the complex

STFT coefficients of the clean speech and received microphone signal, Ẽ(k,m) is the STFT

of the noise, and H̃kk′(m) is a time-frequency representation of the RIR using an analysis

window of the form,

wkk′(n) = wa(n)ej
2π
N
kn ∗ ws(n)ej

2π
N
k′n, (2.16)

where wa(n) and ws(n) are the analysis and synthesis windows used in the STFT of the input

speech, N is the Discrete Fourier Transform (DFT) length, and ∗ denotes convolution. Using

the window given in (2.16), the time-frequency representation Hkk′(m) can be expressed as

Hkk′(m) =
∑
n

h(n)wkk′(mB − n), (2.17)
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where B is the skip period in STFT analysis, and the summation is over the length of the

window. The cross-band filters Hkk′(m) (k 6= k′) represent the aliasing effects due to the

downsampling operation inherent in a STFT analysis with skip period of B > 1. In other

words, the contents of each frequency band in the STFT of reverberant speech is influenced

by adjacent bands in the clean speech. However, the energy of the cross-band filters Hkk′(m)

(for k 6= k′) are small compared to the band-to-band filters Hkk(m) due to the increasingly

smaller overlap regions between the two modulated windows in (2.16) as |k − k′| increases.

As a result, it is common practice to consider the cross-band terms as additional noise terms,

and write (2.15) in the magnitude STFT domain as

X(k,m) =
L−1∑
p=0

H(k, p)S(k,m− p) + E(k,m), (2.18)

where S(k,m) and X(k,m) are the magnitude STFTs of the clean speech and recorded

microphone signal, H(k,m) = |H̃kk(m)| represents the spectral envelope of the RIR from

the speaker position to the microphone, and E(k,m) represents the combined effects of

additive noise, cross-band terms, and the error introduced by replacing the magnitude of the

sum as required by (2.15) by a sum of magnitudes. Similar to h(n), the length of the filters

H(k,m) is a function of room reverberation time. The relationship in (2.18) is a very useful

representation which explicitly models the masking effect of reverberation in each frequency

band (using the filters H(k,m)), and serves as a basis for many studies on reverberant speech

[34–36]. The zero-lag coefficients (H(k, 0)) model the self-masking effects of reverberation,

which are the temporal smearing distortions that occur within a single frame. The other

filter coefficients (H(k, p), p = 1, · · · , L−1) represent overlap-masking, which is the long-term

smearing effects from each frame on the subsequent frames.

2.5 Fundamental problem in distant speech recognition

Fig. 2.5 illustrates a comparison between a clean speech signal and its reverberant version

recorded at a distance of 3 meters. It can be seen that reverberation causes a temporal
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Figure 2.5. Waveform and spectrogram comparison between clean and reverberant speech
for an office room with T60 ≈ 430 ms and at a distance of d = 3 m.

smearing effect, increasing long-term correlations in the sequence of spectral features derived

from the short-term frames. This can be viewed as a leakage of spectral content from each

frame to subsequent frames in each frequency band, which is also indicated by the model in

(2.18). In other words, unlike other robustness issues such as additive noise, speaking style

or microphone mismatch, reverberation does not independently affect each frame. Rather,

it has a long-term effect which spans multiple time frames.

The long-term dependencies in far-field speech are specifically detrimental to the oper-

ation of Hidden Markov Models (HMMs). Both of the underlying assumptions in HMM

acoustic models, namely the conditional independence and the first order Markov assump-

tion, are inaccurate for reverberant speech. Using these assumptions, HMMs describe the

likelihood of the observed sequence of speech features as

p(x1 · · ·xT ) =
∑
s

T∏
t=1

p(xt|st)p(st|st−1), (2.19)

where xt and st represent the speech feature vector and the internal state at time t, and the

summation is over all possible state sequences s = [s1, · · · , sT ]. Based on Equation (2.19),
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once the current state is determined, the distribution is fixed and independent of past visited

states. This does not match the described far-field speech model in (2.18), where each frame

is influenced by multiple frames in the past, and the distribution is directly influenced by

these past observations. Therefore, a solution for far-field ASR must inevitably consider past

observed features and states in order to specify the probability distribution for the current

frame (i.e., it should describe probabilities of the form p(Xt|X1, · · · ,Xt−1, s1, · · · , st)).

Many front-end enhancement strategies attempt to alleviate this problem by incorporat-

ing longer context into the feature processing stage. This includes using delta or double-delta

features, feature concatenation across multiple time frames, log-spectral mean and variance

normalization, etc. However, these are not sufficient to provide robust predictions due to

the highly non-stationary nature of the distortions in a far-field signal. Log-spectral mean

normalization, in particular, is intended to remove transient (fast-decaying) channel distor-

tions that are additive in the log-spectral domain, and can thus remove only the effects of

early reverberation (self-masking). Any similar feature normalization strategy which applies

the same normalizing function to all frames in an utterance is unable to address the late

reverberation problem due to the context-dependent nature of the distortion.

2.6 Existing solutions for distant speech recognition

2.6.1 Microphone array processing

Using an array of closely-spaced microphones to capture a higher-quality signal has by far

been the most popular solution to the problem of distant speech recognition [37–40]. Such

uniform microphone arrays enable beamforming, which results in a signal with considerably

improved SNR and DRR. A comprehensive review of microphone array techniques can be

found in [41].
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2.6.2 Robust features

There have been many studies which explore feature representations that are inherently

robust to reverberation. These include RASTA-PLP [42] or MHEC [43] features. Based

on the discussion in Section 2.5, these methods are insufficient to address the reverberation

problem due to the cross-frame correlations involved. These approaches can at best alleviate

only the self-masking effects of early reverberation, and they are unable to compensate the

overlap-masking effects of late reverberation.

2.6.3 Feature enhancement

Many existing solutions use single-channel enhancement, aiming to recover the clean features

by jointly processing the sequence of corrupted observations from a single microphone. These

approaches can be broadly categorized to three groups according to where the enhancement

takes place in the front-end processing pipeline. Blind deconvolution approaches enhance the

time domain signal or the complex STFT coefficients to estimate a clean waveform, which is

input to a standard feature extraction pipeline [44–46]. Spectral enhancement approaches,

on the other hand, aim at suppressing noise and reverberation in the power spectrum do-

main. This enhancement can either be carried out on the full-resolution magnitude STFT

coefficients [34, 35], or directly on the final log-mel spectral or cepstral features [47, 48].

2.6.4 Model adaptation

Model adaptation aims at tuning the parameters of an existing acoustic model to better

match a set of far-field observations. There are two different scenarios in which adaptation

is useful. The first is the adaptation of a clean-trained acoustic model to a set of far-

field observations. Here, the original acoustic model is trained on a large dataset of clean

(close-talking) features. The distribution of different phoneme classes can be learned more

easily and effectively in this setting, because there is no context-dependent distortion in the
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training data. However, the clean-trained model cannot be directly used on mismatched far-

field recordings. Starting from this clean-trained model and using a dataset of transcribed

far-field observations, we can adapt the model parameters to reduce the mismatch with far-

field data. The second scenario for adaptation is when the original model is already trained

on multi-condition far-field data from a variety of different room characteristics. The original

model in this scenario has less mismatch with the test data, but its paramters have been

optimized to provide average best performance across the room conditions present in the

training set. If a few transcribed sentences are available from a specific target environment,

model adaptation can help improve the performance for that particular environment.

2.6.5 Multi-condition training

If a large corpus of far-field speech recorded in reverberant environments with different

acoustic properties (reverberation time, DRR, etc.) is available, we can train acoustic models

directly based on far-field features without any front-end compensation. Although this is a

more difficult learning problem because of the distortions in training data, it often results

in large improvements compared to most front-end compensation approaches due to the

significantly reduced mismatch between training and test conditions. RNN models are in

particular an attractive choice for multi-condition training with reverberant data due to

their remarkable capability to learn long-term correlations caused by reverberation. A deep

RNN that is trained on a sufficiently large dataset of reverberant speech often provides very

competetive accuracies which outperforms most manually designed enhancement approaches.
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CHAPTER 3

A ROBUST MULTICHANNEL FRONT-END FOR DISTRIBUTED

MICROPHONE ARRAYS: CNTF ALGORITHM

xThis chapter introduces CNTF algorithm1, a front-end enhancement solution that is de-

signed to improve reverberation robustness in distributed microphone arrays. Microphone

array processing has been a major solution for obtaining better quality recordings in noisy

and reverberant environments [37–40]. A conventional microphone array consists of a few

closely-spaced microphones with a fixed known geometry and shared processing among the

elements (common clock pulse). By sampling the sound field from multiple known locations,

a microphone array enables us to perform spatial filtering (in the form of fixed or adaptive

beamforming) to enhance the desired signal coming from a target location. Although such

beamforming techniques are one of the most common solutions for distant speech recogni-

tion, there are a number of factors which limit their applicability. We first discuss these

limitations and then focus on the more flexible case of distributed arrays, where the different

channels are independent recording devices in random unknown locations.

3.1 Limitations of conventional microphone arrays

In spite of their popularity as a front-end enhancement solution for distant ASR, conven-

tional array processing approaches that depend on inter-element phase information have the

following limitations:

• Microphone array approaches necessarily need uniform configurations of closely-spaced

microphones that are designed and calibrated in advance. In particular, all array

1 c© 2016 IEEE. Reprinted with permission, from S. Mirsamadi and J. H. L. Hansen, A Generalized
Nonnegative Matrix Factorization Approach for Distant Speech Recognition with Distributed Microphones,
IEEE Trans. Audio Speech Lang. Process., vol. 24, no. 10, Oct. 2016.
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elements must be driven by the same processor and clock pulse, so that they share the

same time reference and sampling frequency.

• Microphone arrays require knowledge of speaker location. Although this information

can be estimated from the array signals, sound source localization in reverberant en-

vironments is itself a challenging task which inevitably introduces errors.

• A microphone array’s look direction is not narrow enough to cancel all reflections.

Although there are techniques such as filter-and-sum to arbitrarily design an array’s

directional response [41], there is a limit on how narrow the mainlobe width can be

designed (enforced by the array geometry). This is usually not a problem for cancelling

additive interferences unless the noise source happens to be in the same direction as

the speaker. However, with reverberation, there are always many reflections arriving

from all directions including the array’s look direction. As a result, beamforming is

fundamentally a sub-optimal approach for achieving reverberation robustness.

3.2 Distributed microphone arrays

In this study, as an alternative to classical array processing, we consider situations where

we have multiple microphones available, but they do not form a compact synchronous array.

Instead, they are independent recording devices distributed in random unknown locations,

and there is no assumed synchrony between their signals (they do not share the same clock).

This is a more flexible situation that covers a wider range of applications (it eliminates

the need to have pre-designed and calibrated arrays), but it gives rise to a number of new

challenges which makes conventional techniques inapplicable [49, 50]. First, the lack of syn-

chrony among the different channels means there is no meaningful time-delay information

between them, hence making beamforming impractical. The delays between signals of dif-

ferent recording devices in this case are directly dependent on segmentation decisions which
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Figure 3.1. An illustration of the problem of no shared time reference in distributed audio
processing (gray areas indicate the recorded segments of audio). (a) Sound wave reaching
microphone 1; (b) Sound wave reaching microphone 2 (delayed with respect to microphone 1);
(c) Recorded waveform by microphone 1; (d) Recorded waveform by microphone 2 (falsely
indicating a time-advance with respect to microphone 1);

mark the beginning of an utterance. Thus, they do not carry any meaningful spatial infor-

mation. Fig. 3.1 illustrates this problem for two distributed microphones. While the sound

wave reaches microphone 2 with a delay compared to microphone 1, the recorded waveforms

falsely show the opposite, because there is no shared time reference. Another challenge with

distributed arrays is the possibility of very different SNRs or DRRs among the various chan-

nels. The quality of a recording channel is directly dependent on how close it is to the source.

Thus, unlike compact uniform arrays, it is very common to have significantly different signal

qualities among the different channels.

The solution in such distributed array scenarios is to combine information from the differ-

ent channels in the power spectrum (or magnitude STFT) domain. According to the far-field

model in 2.18, the subband magnitudes in this case are different convolutively distorted ver-

sions of the the same subband in the clean speech. By jointly processing such distorted

power spectra from multiple channels, we can obtain an estimate of the clean speech com-

ponent which is shared among them, and discard the differences as the contribution from

the corresponding RIRs. Another advantage is that power spectrum enhancement is less
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sensitive to speaker movements, because the spectral envelope of the reverberation tail is

fairly insensitive to the precise locations of the source and microphone.

3.3 CNTF algorithm

This section describes our proposed convolutive nonnegative tensor factorization (CNTF)

algorithm for reverberation-robust feature extraction in distributed microphone arrays. We

first describe a non-negative tensor model for multi-channel spectra in reverberant environ-

ments, and then describe how this tensor can be decomposed into a clean speech estimate

and the corresponding RIR elements.

3.3.1 Nonnegative tensor model for reverant spectrograms

Recall from Section 2.4 that the following relationship holds between the magnitude STFT

coefficients of each channel and the original clean speech:

X(i)(k,m) =
L−1∑
p=0

H(i)(k, p)S(k,m− p) (3.1)

where S(k,m) and X(i)(k,m) are the magnitude STFTs of the clean speech and reverberant

speech of the i’th channel, and H(i)(k,m) represents the spectral envelope of the RIR from

the speaker position to the i ’th microphone. The superscript (i) is used to represent the

channel index throughout this chapter.

The magnitude spectrogram matrices from the individual channels can be viewed as

frontal slices of a third-order nonnegative tensor X with dimensions K ×M × C, where K

is the number of frequency bins in the STFT analysis, M is the total number of frames in

the utterance, and C is the number of microphones. Based on the signal model in (3.1), the

frontal slices of this tensor can be obtained by multiplying delayed versions of the source

signal’s spectrogram matrix by different diagonal matrices representing the different taps of
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Figure 3.2. Convolutive tensor model for multichannel reverberant speech recognition. X
and H(p) are used to denote three-dimensional tensors as a whole, and the matrices X(i)

and H(i)(p) represent the frontal slices of these tensors, i.e. the magnitude spectrogram and
the RIR component for the i’th channel.

the RIR spectral envelopes:

X(i) ≈
L−1∑
p=0

H(i)(p)Sp→. (3.2)

Here, H(i)(p) is a K×K nonnegative diagonal matrix whose diagonal elements are H(i)(p, k)

(k = 0, · · · , K − 1), S is the spectrogram matrix of the clean speech, and the operator p→

shifts the rows of its argument matrix by p positions to the right, filling in zeros from the

left. Multiplying these shifted spectrograms with diagonal matrices H(i)(p) and adding the

results is equivalent to the individual convolutions in each frequency band. Note that H(i)(p)

is assumed to be diagonal due to the approximate model in (3.1) which does not use the

cross-band filters in 2.15. Fig. 3.2 illustrates the described tensor model.

The introduced tensor model enables us to remove reverberation by using a convolutive

extension of nonnegative tensor factorization (NTF) [51] in order to decompose X into a

sum of tensor-matrix products, with the frontal slices of the factor tensors constrained to

be diagonal. The resulting algorithm will thus attempt to discover a common component

between the frontal slices of X , which is the clean speech spectrogram, and discard the

differences as the contribution from the convolutive effects of H(i)(p) (i.e., the RIR effects).
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To achieve this decomposition, a divergence measure is minimized between the observed

tensor X and its estimate Z given by the nonnegative factors. The objective function for

the CNTF algorithm can thus be expressed in terms of the tensor elements as,

J =
∑
i,k,m

D
[
X(i)(k,m)||Z(i)(k,m)

]
, (3.3)

where

Z(i)(k,m) =
L−1∑
p=0

Ĥ(i)(k, p)Ŝ(k,m− p). (3.4)

Here, Ĥ(i)(k, p) and Ŝ(k,m− p) represent the current estimates of the nonnegative factors.

Note that since the base matrices H(i)(p) in (3.2) are diagonal, the optimization can be

carried out independently in each frequency bin k by operating on the scalars Ĥ(i)(k, p) and

Ŝ(k, p) instead of the entire matrices in (3.2). The remainder of the derivations here will

therefore follow this scalar form.

3.3.2 Alpha-beta divergence

The choice of the divergence measure for tensor factorization influences the performance

of the algorithm because it is closely related to the distribution of the data. Most com-

mon choices in standard nonngetive matrix factorization (NMF) are the Euclidean Distance

(ED) and the (generalized) Kullback-Leibler (KL) divergence [52], although other divergence

measures have also been studied [53, 54]. Each of these divergences correspond to a certain

underlying generative model assumed for the input data through the following relationship

(here we drop channel, frame, and frequency indices for simplicity):

p(X|Z;θ) =
1

f(θ)
exp

(
−D(X‖Z;θ)

)
, (3.5)

where D(X||Z;θ) indicates a divergence measure with parameters θ, and f(θ) is a normal-

izing factor (called the partition function) which makes p(X|Z;θ) a valid probability density

function:

f(θ) =

∫
X

exp(−D(X‖Z;θ))dX. (3.6)
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Table 3.1. common divergence measures as special cases of alpha-beta divergence.

α β divergence
underlying
distribution

1 1 Euclidean Distance Gaussian

1 0 Generalized Kullback-Leibler (KL) Divergence Poisson

1 -1 Itakura-Saito (IS) divergence Gamma

Based on this interpretation, minimizing a divergence measure is actually a maximum-

likelihood (ML) estimation of the nonnegative factors assuming the corresponding distri-

bution given by (3.5) [55]. For example, NMF with the Euclidean distance measure gives

ML estimates for the factors under a Gaussian assumption for the input matrix elements

(several other correspondences of this kind are listed in Table 3.1).

In this study, we propose to use the general family of αβ-divergences [56] for the described

tensor factorization task in multichannel dereverberation:

Dαβ(X‖Z) = − 1

αβ
(XαZβ − α

α + β
Xα+β − β

α + β
Zα+β). (3.7)

It has been shown in [56] that Dαβ(X‖Z) in Equation (3.7) is a valid divergence measure

which is nonnegative for all values of the arguments and has a global minimum of zero

only when X = Z. This general definition can be extended by continuity to include the

singularity points α = 0, β = 0 and α + β = 0, so that the divergence will be defined for

all α, β ∈ R. These continuity extensions (as well as some other particular values for α

and β, as summarized in Table 3.1), coincide with a number of popular divergence measures

used in the literature. The alpha-beta divergence is thus a unifying generalization which

interpolates between these measures, providing increased flexibility to match the actual data

distribution according to (3.5) by appropriately selecting the parameters α and β. We will

show in Section 3.5 that the use of αβ-divergence with appropriate values of the parameters

improves performance of the CNTF algorithm, resulting in better ASR accuracy. This is
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because the Gaussianity assumption underlying the commonly used Euclidean distance is

inaccurate for the observed power spectrum data, which results in sub-optimal estimates for

the factors.

Using αβ-divergence, our goal in CNTF enhancement is to find the factors H(i)(k, p) and

S(k,m) which minimize the cost function in (3.3) subject to the nonnegativity constraints:

H(i)(k, p) > 0 and S(k,m) > 0, for all i, k, p,m. (3.8)

At the point of minimum divergence, S(k,m) is expected to be an estimate the clean speech

magnitude spectrum, while H(i)(k,m) will represent the RIR spectral envelope for channel i.

3.3.3 Multiplicative update rules

In this section, we derive update rules for S(k,m) and H(i)(k, p) which yield the minimization

of (3.3). As explained in Section 3.3.1, the diagonality of the frontal slices of tensors H(p)

allows us to carry out the optimization independently in each frequency bin, thus breaking

the matrix formulations into equivalent scalar forms with simpler gradient expressions.

For alpha and beta values in the region 1−β
α
∈ [0, 1], the cost function (3.3) is ensured to

be convex with respect to either Ŝ(k,m) or Ĥ(k, p), but not both [56]. Consequently, the

optimization of the nonnegative components are carried out in an alternating fashion, i.e.,

by keeping Ŝ(k,m) constant and updating Ĥ(k, p), and vice versa.

The derivatives of the cost function (3.3) with respect to the factor variables are:

∂J

∂H(i)(k, p)
=
−1

α

∑
m

[
X(i)(k,m)αZ(i)(k,m)β−1

−Z(i)(k,m)α+β−1
]
S(k,m− p),

(3.9)

∂J

∂S(k, l)
=
−1

α

∑
i

∑
m

[
X(i)(k,m)αZ(i)(k,m)β−1

−Z(i)(k,m)α+β−1
]
H(i)(k,m− l).

(3.10)
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Gradient descent updates using the above derivatives does not necessarily preserve nonneg-

ativity of the results. However, similar to conventional NMF algorithms [52], we can derive

multiplicative update rules (which guarantee the preservation of nonnegativity) by assuming

the following adaptive learning rates for the gradient descent optimizations:

ηH =
H(i)(k, p)

1
α

∑
m Z

(i)(k,m)α+β−1S(k,m− p)
, (3.11)

ηS =
S(k, l)

1
α

∑
i

∑
m Z

(i)(k,m)α+β−1H(i)(k,m− l)
. (3.12)

Using (3.11) and (3.12) with the gradients in (3.9) and (3.10) results in the following gradient

descent update equations:

H(i)(k, p)← H(i)(k, p)

∑
m Y

(i)(k,m)S(k,m− p)∑
m Z

(i)(k,m)α+β−1S(k,m− p)
, (3.13)

S(k, l)← S(k, l)

∑
i

∑
m Y

(i)(k,m)H(i)(k,m− l)∑
i

∑
m Z

(i)(k,m)α+β−1H(i)(k,m− l)
, (3.14)

where,

Y (i)(k,m) = X(i)(k,m)αZ(i)(k,m)β−1. (3.15)

Note that both numerators and denominators in update equations (3.13) and (3.14) are

in the form of correlations between the estimated factors
(
H(i)(k, p) and S(k,m)

)
and the

intermediate variables
(
Z(i)(k,m) and Y (i)(k,m)

)
. In practice, similar to [57], these corre-

lations are computed via FFT multiplication which considerably reduces the computational

complexity of the CNTF algorithm. Also note that by setting α = β = 1 in (3.13) and

(3.14), we obtain the update equations of [58] for CNTF with Euclidean Distance objective

function. Moreover, by setting the number of channels to C=1, the algorithm simplifies to

the single-channel CNMF algorithms of [34] and [59].

To address the scale indeterminacy inherent in the decomposition of (3.4), we impose the

additional constraint
∑

i

∑
pH

(i)(k, p) = 1, which is satisfied by performing the following

normalization for the RIR spectral envelopes after each update:

H(i)(k, p)← H(i)(k, p)∑
i

∑
pH

(i)(k, p)
. (3.16)
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We prefer to use this normalization strategy which is shared among the RIR components of

different channels instead of individually normalizing H(i)(k, p) for each channel (i.e. nor-

malizing only over different lags p = 1, · · · , L − 1 for each channel i). This is because the

normalization in (3.16) allows the algorithm to automatically adjust the gains of the filters

H(i)(k, p) according to the DRR of the corresponding channel. This will in turn adjust the

contribution of each individual channel to the final estimate of S(k,m) according to the

distance between the corresponding microphone and the speaker. This is required in a blind

scenario where we have no information about speaker or microphone locations. We believe

such a strategy is beneficial compared to channel selection algorithms which identify noisy

channels and completely eliminate their contribution [60, 61] (see the results in Section3.5.3

for more details about this automatic adjustment of channel contributions).

3.4 Parameter selection by score-matching

The update formulas provided in Section 3.3.3 can be used with the specific values of α and

β listed in Table 3.1 which correspond to known divergences and distributions, as well as

any other values which satisfy the convexity condition 1−β
α
∈ [0, 1]. If a development dataset

is available from the target environment, the best values for α and β can be selected based

on closed-loop ASR performance on the development data. In this section, we describe an

alternative method for automatically selecting the optimum values of alpha and beta for

cases where a transcribed development dataset is not available.

As noted in Section 3.3.2, divergence measures correspond to likelihood assumptions for

the data. Thus, by using αβ-divergence, we are assuming the distribution given in (3.5) for

the magnitude STFT values, parametrized by θ = [α, β]. With this assumption, maximum

likelihood seems to be a natural choice to estimate the parameters α and β. However, this is

not possible in general for αβ-divergence, since the partition function in (3.5) is analytically

intractable and very difficult to compute numerically, except for the specific values of α and
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β in Table 3.1. In [62], an alternative method called score-matching, is introduced for the

estimation of such non-normalized models in which the distribution is only known up to a

multiplicative constant (f(α, β) in our case). The score matching technique was extended

to the case of nonnegative data in [63], and was successfully used for divergence selection in

the task of music analysis in [64]. Here, we apply the score-matching technique for selecting

the parameters of αβ-divergence in the CNTF algorithm.

3.4.1 The score-matching principle

The score function of a distribution is defined as the derivative of its log-density:

ψ(X;θ) =
∂ log p(X;θ)

∂X
. (3.17)

The point in using the score function is that it does not depend on the normalization

term f(θ) (the partition function). It has been shown in [62] that the parameters of non-

normalized models can be estimated by minimizing the expected distance between the score

function resulting from the observed data and the score function given by the model. An

extension of this principle for nonnegative data [63] states that the score-matching (SM)

estimator for the parameters θ is given by:

θSM = arg min
θ
LSM(θ), (3.18)

LSM(θ) =

∫
R+

p(X;θ)
[
2Xψ(X;θ) +X2ξ(X,θ) +

1

2
ψ2(X;θ)X2

]
dX, (3.19)

where ξ(X;θ) indicates the derivative of the score function (i.e., the second derivative of the

log-density):

ξ(X;θ) =
∂2 log p(X;θ)

∂X2
. (3.20)

In practice, the integral mean in (3.19) is replaced by a sample average over the data.
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3.4.2 Score-matching estimator for α and β in CNTF algorithm

Using the alpha-beta divergence and based on the assumed distribution in (3.5), the score

function for the magnitude STFT coefficients and its derivative will be given by:

ψ(X|Z;α, β) = −∂Dαβ(X‖Z)

∂X
=

1

β
Xα−1(Zβ −Xβ), (3.21)

ξ(X|Z;α, β) = −∂
2Dαβ(X‖Z)

∂X2
=

1

β
Xα−2((α− 1)Zβ − (α + β − 1)Xβ

)
. (3.22)

Inserting (3.21) and (3.22) into the SM objective function (3.19), and replacing the integral

by a sample mean, we obtain:

LSM(α, β) =
∑
i,k,m

[α + 1

β
XαZβ− α + β + 1

β
Xα+β+

1

2β2
X2α(Zβ−Xβ)2

]
. (β 6= 0) (3.23)

Note that in (3.23) we have dropped all indices from X(i)(k,m) and Z(i)(k,m) (i.e., replaced

them with X and Z) for simplicity. For the singularity point β = 0, we extend (3.23) by

continuity which yields:

LSM(α, 0) =
∑
i,k,m

[(
− 1 + (α + 1) log(

Z

X
)
)
Xα +

1

2

(
Xα log(

Z

X
)
)2]

(3.24)

The optimum values for α and β are thus found by searching for a (α, β) pair in the convexity

region (1−β
α
∈ [0, 1]) which minimizes LSM(α, β).

The problem with the above procedure for divergence selection is that it requires the true

values of the nonnegative factors (in order to compute Z(i)(k,m)), which are not available

in practice. We will thus take a two-step approach by alternately optimizing over the factor

values and divergence parameters for a certain number of iterations. A summary of the final

proposed CNTF dereverberation algorithm is provided in Algorithm 1 at the end of this

chapter.
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3.5 Experiments

3.5.1 Speech Data

To provide a flexible framework for choosing different microphone configurations and speaker

locations, we use room impulse responses from Aachen Impulse Response (AIR) dataset [1].

This is a collection of RIRs recorded in real rooms with different T60 values at different

source-to-microphone distances. These RIRs have been measured using maximum length

sequences of degree 15 as the excitation signal. The measurements have been performed at

a sampling rate of 48 kHz with an accuracy of 24 bits, using professional audio equipment

providing high-quality and low-noise measurements. More detailed information about the

AIR dataset can be found in [1].

To generate reverberant speech data, we convolve TIMIT utterances with different RIRs

from the AIR dataset. We use the standard TIMIT data partitions, consisting of 462 speakers

for train and 168 speakers for test. This produces a medium-vocabulary ASR task for distant

read speech which allows us to concentrate on the evaluation of our front-end enhancement

framework.

The AIR dataset provides RIRs from different rooms with different reverberation times.

These include an office room (T60 ' 430 ms), a stairway area (T60 ' 800 ms) and a lecture

hall (T60 ' 800 ms). For the majority of experiments reported here, we use the RIRs from

the stairway area which have been measured at different distances (1m, 2m, 3m) and different

azimuth angles for each distance (ranging from 0◦ to 180◦ with step sizes of 15◦). This allows

us to test the algorithm for different source and microphone configurations. The microphone

locations used in this study are illustrated in Fig. 3.3, where they have been numbered for

easy referencing. The experiments in Section (3.5.4) use RIRs from the office area and lecture

hall as well. This will enable us to have diverse reverberation characteristics for experiments

with multi-condition training.
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Figure 3.3. Microphone positions used in ASR experiments.

3.5.2 ASR system setup

All ASR experiments reported here use hybrid DNN-HMM acoustic models and a trigram

language model created using TIMIT transcriptions (resulting in a medium-vocabulary task

with approximately 6000 words). Using a frame size of 25 ms and a skip rate of 10 ms,

we extract Mel-filterbank features with 24 Mel filters along with their first and second or-

der derivatives (i.e., delta and double-delta features). We choose Mel-filterbank coefficients

because they have been shown to provide consistently better accuracies with DNN-based

acoustic models compared to Mel-frequency cepstral coefficients (MFCCs) which are com-

monly used in GMM-HMM systems [11]. Utterance based mean and variance normalization

has been used for these features in all experiments. We initially train tied-state triphone

GMM-HMM acoustic models on the clean MFCC features from the training data using the

Kaldi speech recognition toolkit [25]. The trained models are then used for forced-alignment

of the training data to obtain frame-level senone labels for the training features. Using

these labels, we train a deep neural network acoustic model. The inputs to the DNN are

concatenated features from a context window of 11 frames. Considering the limited training

data in the TIMIT corpus and in order to prevent overfitting, we use a DNN with 3 hidden

sigmoid layers each containing 1024 nodes. A softmax output layer in the DNN converts the

activations of the last hidden layer into senone posteriors. The DNN parameters are tuned
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by stochastic gradient descent (SGD) using error back-propagation to minimize the frame-

level cross-entropy between the DNN outputs and the ground-truth senone labels from the

forced alignment. The DNN training consists of 30 epochs over the training data with a fixed

learning rate of 0.04, using a minibatch size of 256 features. The described clean-trained

acoustic model results a word error rate of 3.1% on the clean test set of TIMIT, which is

expected for a medium-vocabulary matched train and test experiment.

For recognizing reverberant test data, we first compute magnitude STFTs for all channels

using a frame size of 64 ms and a skip rate of 16 ms. These are then jointly processed by

10 iterations of the CNTF dereverberation algorithm to produce an estimate of the clean

speech spectrogram. The choice of 10 iterations was experimentally verified to be adequate

to provide best ASR accuracy. The CNTF algorithm uses a filter length of L = 16 for all

H(i)(k, p), and the filters are initialized with H(i)(k, p) = 1 − p/2L, (p = 0, · · · , L − 1). We

perform experiments both with the commonly used Euclidean distance measure (and some

other well-known fixed divergences) as well as with αβ-divergence using optimum values for

α and β given by the score-matching estimator discussed in Section 3.4. The estimated

clean speech magnitude STFT is used together with the phases from one of the channels

(first microphone) to reconstruct an estimate for the clean speech waveform, which is finally

used for Mel-filterbank feature extraction.

3.5.3 ASR results and algorithm analysis

Table 3.2 shows the results of ASR experiments performed to assess the performance of the

CNTF algorithm in different DRR scenarios with different microphone configurations. All

experiments in this section use subsets of the microphones shown in Figure 3.3. The word

error rates shown in the table indicate the effectiveness of the proposed dereverberation

strategy in both single-channel and multi-channel scenarios. Using a single-channel version of

the algorithm in Table 3.2 (i.e. setting C = 1) with the Euclidean distance measure, relative
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Table 3.2. Word Error Rates (%) in ASR experiments with clean-trained models*

number of
channels

Feature Processing
d = 2m
DRR ≈
2.1 dB

d = 3m
DRR ≈
−0.8 dB

C=1

No enhancement 21.0 29.9

CNTF (α = β = 1) (Euclidean Distance) 8.7 13.0

CNTF (α = 1, β = 0) (KL Divergence) 8.5 12.8

CNTF (α = 1, β = −1) (IS Divergence) 9.4 13.6

CNTF (SM estimates for α, β) 8.5 12.7

C=2

CNTF (α = β = 1) (Euclidean Distance) 7.2 10.2

CNTF (α = 1, β = 0) (KL Divergence) 6.6 9.8

CNTF (α = 1, β = −1) (IS Divergence) 7.0 10.7

CNTF (SM estimates for α, β) 6.2 9.2

C=4

CNTF (α = β = 1) (Euclidean Distance) 5.9 8.1

CNTF (α = 1, β = 0) (KL Divergence) 5.5 7.6

CNTF (α = 1, β = −1) (IS Divergence) 5.9 8.3

CNTF (SM estimates for α, β) 4.8 6.7

* Single-channel experiments use microphones at 90◦ (i.e. microphones 6,10) in
Fig. 3.3. Dual-channel experiments use microphones at 30◦ and 90◦ (i.e. micro-
phones 6,8,10,12).

improvements of +58.5% and +56.5% are provided over the raw filterbank features for source-

to-microphone distances of d = 2m and d = 3m. The relative WER improvements provided

by dual-microphone and four-microphone configurations over the single-channel scenario are

+17.2% and +32.2% for d = 2m, and +21.5% and +37.7% for d = 3m. The improvements

provided by adding more microphones is more significant in low-DRR scenarios. It can

be observed that although the DNN-based acoustic model shows some inherent robustness

to reverberation (indicated by the starting WER of 29.9% in the low-DRR condition of

d = 3m), the proposed multichannel front-end enhancement strategy can provide significant

improvements over the clean-trained DNN baseline. Also shown in Table 3.2 are the WERs

obtained with different divergence measures in each scenario. Although all measures are able
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(a) 3 microphones at distances of 1m, 2m and 3m

0 2 4 6 8 10 12 14 16
p

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

H
(
p
,
k
)
 
a
v
e
r
a
g
e
d
 
o
v
e
r
 
k mic-1

mic-2
mic-3
mic-11

(b) Unbalanced DRRs: 3 microphones at d = 1m,
one microphone at d = 4m

Figure 3.4. Estimates of RIR spectral envelopes H(i)(k, p) (averaged across all frequencies
k = 0, · · · , K − 1)

to provide considerable improvements, the best ASR accuracy in most cases is achieved by

the (α, β) pair given by the score-matching estimator introduced in Section 3.4.

To better understand the operation of the algorithm, we have plotted the RIR spectral

envelopes (H(i)(k, p)) discovered by the CNTF algorithm in Figure 3.4 for different con-

figurations. In the first experiment, we use a 3-channel version of the algorithm for three

microphones located at distances of 1m, 2m, and 3m from the source (microphones 3, 7,

and 11 in Figure 3.3). The resulting RIR envelopes estimated by the CNTF algorithm for

each channel are then averaged across all frequencies and plotted in Figure 3.4a. It can be

observed that the algorithm has correctly identified the RIR spectral envelope characteristics

from the reverberant spectrograms. Microphone 3 at d = 1m has a fairly high DRR which

results in a fast exponential decay of the corresponding RIR’s spectral envelope. In contrast,

the RIR spectral envelope of microphone 11 at d = 3m has a much slower energy decay due

to the lower DRR of this channel.

We also perform a second experiment which is designed to illustrate the algorithm’s

performance when we have highly unbalanced DRRs among the channels. We test a 4-

channel example of such situations, in which three channels (microphones 1, 2, and 3) are
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fairly close to the source (d = 1m), but the fourth channel (microphone 11) is farther

away at d = 3m. The resulting estimates of H(i)(k, p) given by the CNTF algorithm are

averaged across all frequencies and plotted in Figure 3.4b. It is observed that the algorithm

has automatically identified the low-DRR channel and has assigned much smaller values to

the corresponding H(i)(k, p). Considering the update equation of (3.14), this will in turn

reduce the contribution of the low-DRR channel to the final estimate of the clean speech

spectrogram. Thus, the algorithm is capable of blindly adjusting the channel contributions

according to their signal quality. This is a very useful characteristic in a blind scenario where

there is no information about the source and microphone locations.

3.5.4 Experiments with multi-condition and enhanced training data

A DNN acoustic model trained on multi-condition data from various environments is becom-

ing increasingly popular to handle far-field ASR tasks [65]. If such multi-condition data is

available, a DNN with a sufficient number of hidden layers usually provides very good results,

outperforming most other approaches. In this section, we study the proposed algorithm’s

performance in situations where a multi-condition training data is available. We compare

three different cases. The first method uses clean-trained acoustic models and applies CNTF

to reverberant test data in order to reduce the mismatch. The second approach uses rever-

berant data from multiple different rooms and distances to train multi-condition models, and

uses reverberant features directly for decoding (no feature processing). The third approach

applies CNTF to both training and test data to further reduce the mismatch.

The experiments in this section use RIRs from all three environments in the AIR dataset

(office room, lecture hall, stairway). Using different source-to-microphone distances available

for each room, we have a collection of 62 different RIRs to create a multi-condition training

data which is diverse in terms of reverberation characteristics. The multi-condition data is

created by convolving each utterance in the TIMIT training set with a randomly selected
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Table 3.3. Word Error Rates (%) in ASR experiments with clean, multi-condition, and
CNTF-enhanced training data*

Train data Features

Office Room
(T60 ' 0.43s)

(mic locations:
d=2m, d=3m)

Stairway Area
(T60 ' 0.8s)

(mic locations:
d=2m, d=3m)

Lecture Hall
(T60 ' 0.8s)

(mic locations:
d=4m, d=5.5m)

clean
fbank +

CNTF (1ch)
8.8 10.8 15.9

clean
fbank +

CNTF (2ch)
8.4 9.2 12.9

multi-cond.
fbank
(1ch)

6.6 7.3 10.6

multi-cond.
(w/ CNTF)

fbank +
CNTF (1ch)

6.3 6.6 9.1

multi-cond.
(w/ CNTF)

fbank +
CNTF (2ch)

5.9 6.3 8.1

* Single channel experiments use the microphone closer to the source.

RIR from this pool. The resulting reverberant signal is time-synchronized with the original

clean utterance so that the ground-truth senone alignments from the clean data can be used

for training. We consider three different test environments. The first set of experiments are

in an office room (T60 ' 0.43s) with two microphones placed at d = 2m and d = 3m from the

source. The second set of experiments are conducted in the stairway area which possesses a

longer reverberation time (T60 ' 0.8s), keeping the same distances of d = 2m and d = 3m.

For the last set of experiments, we use a lecture hall which has a similar reverberation time

of T60 ' 0.8s, but we increase source-to-microphone distances to d = 4m and d = 5.5m. For

all of the experiments in this section, fixed values of α = 1 and β = 1 have been used for

CNTF updates.

The results of ASR experiments in the above three cases are shown in Table 3.3. All

multichannel experiments here have unbalanced DRRs, i.e., one microphone is located far-

ther from the source compared to the other (note the distances mentioned in Table 3.3).

An important observation from the table is that although the farther microphone has a
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more corrupted signal (lower DRR), including it in a joint CNTF processing with the closer

channel is still superior to a channel selection strategy in which only the closer microphone

is identified and used [60]. In this case, based on the discussion in Section 3.5.3, although

the reverberation filters H(i)(k, p) place a smaller weight on the low-DRR channel, they

are still able to draw useful information from this channel which helps ASR accuracy. An-

other result to be noted in Table 3.3 is that although the multi-condition DNN baseline

(third row) provides considerable robustness to reverberation and good accuracy, the error

rates can be further reduced by applying CNTF processing to both train and test data,

because this will further reduce the mismatch. Therefore, while CNTF front-end processing

is necessary in mismatched conditions with clean-trained models, it can also be beneficial

for multi-condition models. We believe that for very large datasets spanning very diverse

environmental conditions, multi-condition trained DNN acoustic models are sufficient with-

out front-end processing. However, for moderate data sizes which inevitably exclude many

possible reverberation conditions, reducing the mismatch by applying CNTF processing will

prove helpful, as verified by the results in Table 3.3.

3.6 Summary

We presented an algorithm for reverberation-robust distant speech recognition using dis-

tributed far-field microphones based on convolutive nonnegative tensor factorization (CNTF).

The developed algorithm attempts to remove the convolutional effects of the RIR from the

received signals. In the single channel case, the algorithm simplifies to nonnegative matrix

factorization and attempts to decompose each subband envelope into a convolution of two

components, one being the clean speech subband envelope and the other representing the

convolutive effects of the RIR. In the multichannel case, the algorithm makes use of the addi-

tional observations to improve this decomposition. In each subband, the algorithm identifies

a common component among the subband envelopes of the different channels (which is the
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clean speech component), and discards the convolutive differences between the channels as

RIR distortions. The proposed CNTF algorithm explicitly addresses the reverberation tail

effect by attempting to remove the long-term correlations that are introduced in the sub-

band envelopes by the RIR. In addition to the clean-trained scenarios, it was shown that the

proposed algorithm can also be helpful with multi-condition training data, since applying

CNTF to both train and test signals will help reduce the mismatch.
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Algorithm 1: CNTF dereverberation

// Superscript ∗ represents complex conjugate.

// All variables with a bar represent FFT domain variables.

Input: X(i)(k,m) (∀i, k,m)
m ∈ {0, · · · ,M − 1}, k ∈ {0, · · · , K − 1}, i ∈ {1, · · · , C}, p ∈ {0, · · · , L− 1}
Set α = 1, β = 1
Set F = M + L− 1
repeat

Initialize H(i)(k, p) = 1− p
2L

(∀i, k, p)
Initialize S(k,m) = X(1)(k,m) (∀k,m)
for iter = 1 to N do

// Computing Z(i)(k,m) via FFT multiplication:

H̄(i)(k, f) =
∑L−1

p=0 H
(i)(k, p) exp(−j 2πpf

F
)

S̄(k, f) =
∑M−1

m=0 S(k,m) exp(−j 2πmf
F

)

Z(i)(k,m) =
∑F−1

f=0 H̄
(i)(k, f)S̄(k, f) exp(j 2πmf

F
)

// Intermediate variables:

Y (i)(k,m) = X(i)(k,m)αZ(i)(k,m)β−1

V (i)(k,m) = Z(i)(k,m)α+β−1

Ȳ (i)(k, f) =
∑M−1

m=0 Y
(i)(k,m) exp(−j 2πmf

F
)

V̄ (i)(k, f) =
∑M−1

m=0 V
(i)(k,m) exp(−j 2πmf

F
)

// Compute correlations via FFT multiplication:

C
(i)
Y S(k, p) =

∑F−1
f=0 Ȳ

(i)(k, f)S̄∗(k, f) exp j 2πpf
F

C
(i)
V S(k, p) =

∑F−1
f=0 V̄

(i)(k, f)S̄∗(k, f) exp j 2πpf
F

C
(i)
Y H(k,m) =

∑F−1
f=0 Ȳ

(i)(k, f)H̄(i)∗(k, f) exp j 2πmf
F

C
(i)
V H(k,m) =

∑F−1
f=0 V̄

(i)(k, f)H̄(i)∗(k, f) exp j 2πmf
F

// Update nonnegative factors:

H(i)(k, p)← H(i)(k, p)
C

(i)
Y S(k,p)

C
(i)
V S(k,p)

S(k,m)← S(k,m)
∑C
i=1 C

(i)
Y H(k,m)∑C

i=1 C
(i)
VH(k,m)

// Normalization

H(i)(k, p)← H(i)(k,p)∑
i,pH

(i)(k,p)

end
// Update α and β:

LSM(α, β) =
∑

i,k,m

[
α+1
β
XαZβ − α+β+1

β
Xα+β + 1

2β2X
2α(Zβ −Xβ)2

]
(α, β) = arg min(α,β) LSM(α, β) 1−β

α
∈ [0, 1]

until α and β converge, or maximum iterations is reached
return S(k,m) (∀k,m)
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CHAPTER 4

MULTI-DOMAIN ADVERSARIAL TRAINING OF NEURAL NETWORK

ACOUSTIC MODELS FOR IMPROVED FAR-FIELD ROBUSTNESS

Our discussion on far-field robustness in chapter 3 was focused on multi-channel front-ends

to compensate the far-field effects and reduce the feature distortions. Beginning in this

chapter, we take a different approach to robustness by focusing on back-end (acoustic model)

robustness in single-channel scenarios. This chapter presents a novel strategy for training

neural network acoustic models based on adversarial training which improves robustness to

recording conditions1. We provide a motivating study on the mechanism by which a deep

network learns environmental invariance, and discuss some relations with existing approaches

for improving the robustness of DNN models.

4.1 Robust representation learning with multi-condition DNNs

A major advantage of DNNs to conventional models is their representation learning capabil-

ity which facilitates the use of simple raw features with less task-specific feature engineering.

As a consequence, the adoption of DNN-based acoustic models has brought a shift of focus in

strategies to address the problem of distant (far-field) speech recognition. Traditionally, ar-

ray processing or single-channel enhancement have been considered as the primary solutions.

In contrast, the use of deep learning in ASR has popularized an alternative solution which

addresses the far-field problem from an acoustic modeling perspective, directly using rever-

berant features without any manually-designed enhancement pipelines. By training models

on a large corpus of far-field speech from different rooms with different acoustic properties,

the network learns to perform the necessary feature transformations within the hidden layers

1This work has been submitted to the IEEE for possible publication. Copyright may be transferred
without notice.
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to compensate for far-field distortions, resulting in robust final-layer representations that are

less impacted by recording conditions. Assuming there is sufficient diversity in the train

data in terms of reverberation times, direct-to-reverberation ratios, etc., the resulting model

is expected to generalize to unseen recording conditions.

Modeling the feature distributions of speech phonemes based on reverberant data is a

difficult learning problem due to the long-term context-dependent distortions introduced by

reverberation which span multiple frames. However, the remarkable capability of RNNs to

remember relevant past information enables them to sufficiently model the long-term cor-

relations in reverberant speech. This makes RNN-based acoustic models very attractive for

multi-condition training on reverberant data. The resulting model often outperforms most

front-end engineered solutions which aim to directly compensate distortions by manual fea-

ture enhancement. For moderate data sizes, feature enhancement may help when employed

in a noise-adaptive manner [66] (i.e., applied to both train and test utterances). However,

as more training data is added, the impact from such enhancement techniques is reduced.

As a result, the current focus in far-field ASR is on more effective DNN/RNN architec-

tures and improved representation learning algorithms that can automatically derive useful

representations directly based on far-field data.

The studies in [67] and [68] introduce modifications to the standard Long Short Term

Memory (LSTM) networks in order to improve information flow in time and through the

network layers. They report improvements in ASR accuracy by using these alternative recur-

rent structures. Other studies attempt to improve the model by extracting auxiliary features

which describe the recording condition and appending them to the spectral features [69–71].

These factor-aware approaches are expected to guide the training procedure by providing

additional information about the recording environment. Another group of approaches make

use of parallel clean data to improve training. They show that if a training dataset consisting

of pairs of close-talk and far-field utterances is available, the model training can be guided

to jointly learn both enhancement and recognition [70, 72, 73].
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Figure 4.1. (a) Conventional multi-condition training: far-field data from different rooms is
combined into a single train set (b) Multi-domain adversarial training: room labels are used
during training to achieve improved invariance to recording conditions.

4.2 Multi-domain training

The current common way to build multi-conidition acoustic models is to compile speech

data from different recording environments (e.g., different rooms with different reverbera-

tion times) into a single train set, and then build models based on this combined dataset,

ignoring the environment labels during training (Figure 4.1(a)). This is similar to the early

work on multi-style training for robust speech recognition under stress [74, 75]. In the

far-field scenario, by providing many training examples from different environments, the

network is expected to derive robust representations that are invariant with respect to the

range of recording conditions. Ideally, the recording environment of an utterance should be

indistinguishable from the features of the last hidden layer. However, as will be shown in

Section 4.5.1, in practice there is sustained residual information concerning the recording

environment at the last hidden layer.

The goal of this chapter is to improve multi-condition training of RNN acoustic models by

incorporating knowledge about the recording environment of each utterance into the training
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process. We assume a dataset of far-field speech from multiple different rooms is available,

in which each utterance is labeled not only by a phoneme or character sequence, but also

by an additional label that indicates which room it belongs to. The intention is to use this

available corresponding meta-data about the training utterances in order to force better

invariance with respect to recording conditions (Figure 4.1(b)). To achieve this, we propose

to use adversarial training with respect to a domain recognizer that is built on top of the

hidden layers in the nework, and is expected to predict the environment label of an input

utterance. We refer to the different rooms and recording conditions as multiple domains

within the train data which exhibit slightly different distributions. In this context, we use

multi-domain training in place of multi-condition training to emphasize the use of domain

labels during training.

The idea of adversarial training was first proposed in [76] as a generative model that could

learn the data distribution by explicitly trying to make samples from the modeled distribution

indistinguishable from actual training examples. Generative Adversarial Networks (GANs)

were used in [76] for the task of realistic image generation. Since then, GANs have been

successfully used in many different tasks and applications where invariance is needed with

respect to different distributions. For example, the works in [77] and [78] use adversarial

training for effective transfer learning by making use of an unlabeled adaptation set from a

target distribution. Also, the study in [79] uses a Gradient Reversal Layer (GRL) similar

to [78] in order to improve noise robustness of hybrid DNN-HMM models by negating the

gradients derived from a noise-type classifier.

To motivate the use of GANs for achieving far-field robustness in ASR, we first present

an analytic study on how RNN acoustic models automatically learn to compensate environ-

ment variabilities from multi-condition data. This study reveals an opportunity to employ

adversarial training in order to enforce better environment invariance at the intermediate

layers.
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4.3 Environment invariance in hidden representations

4.3.1 Environment-specific features in hidden layers

When trained on a large dataset of far-field speech from different environments with diverse

acoustic properties, a DNN-based acoustic model often provides competetive results without

requiring manually-designed dereverberation or feature enhancement strategies. This is be-

cause the internal representations of a deep network become increasingly invariant to those

varations in data which are irrelevant to the classification task. For an RNN acoustic model

trained on multi-condition far-field data, we expect the hidden features to be less sensitive to

the recording environment as we move toward the deeper layers in the network. At the final

hidden layer, the discovered representations should be maximally discriminant with respect

to speech phonemes, with minimum variance resulting from the recording environment.

Figure 4.2 shows the hidden representations from a 3-layer RNN-CTC model that are

mapped into a 2D plane through a Linear Discriminant Analysis (LDA) projection. The

network has been trained on far-field data from the AMI corpus [6], which contains speech

recorded by table-top microphones in 3 different meeting rooms (more details about the

AMI data is provided in Section 4.5.1). The input features from the different rooms are

significantly overlapped in the input feature space (Figure 4.2(a)). This is expected because

there is no explicit room-specific feature in the input feature vectors (only Mel filterbank

coefficients which represent spectral characteristics of speech). However, it can be observed

in Figure 4.2(b) that in the first hidden layer, the network tries to map the features from

the different rooms (domains) into separate subspaces. In other words, the first hidden

transformation automatically learns to extract features that are indicative of the recording

environment of an utterance. Note that this is achieved while the network receives no

supervising information about the environment to which each training example belongs. The

only supervision provided to the network during training is the output character sequence.
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Figure 4.2. RNN hidden features projected onto the 2D plane (best viewed in color).
Reprinted with permission, from S. Misamadi, J. H. L. Hansen, On multi-domain training
and adaptation of end-to-end RNN acoustic models for distant speech recognition, Inter-
speech 2017.

The network implicitly learns that in order to accurately predict the label sequence, it

first needs to project the data from different domains to different subspaces by extracting

environment-specific features. The subsequent layers, however, show an increasing overlap

between the data from different rooms, indicating the network’s attempt to dervie room-

invariant features. The process of representation learning in multi-condition DNNs can thus

be viewed as a two-step procedure. The initial layers map data from different domains into

separate subspaces by extracting room-specific features, and the subsequent layers learn to

use this encoded domain knowledge to compensate the differences.

4.3.2 domain classification accuracy in hidden layers

To quantitatively assess this propagation of domain information within the network, we

employ a simple linear classifier based on features from the different layers to predict which
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of the three meeting rooms of the AMI corpus an input utterance belongs to. Here, we

explicitly use the room labels to train a logistic regression model as a room classifier while

keeping the parameters of the RNN-CTC model fixed (See Section X for details about the

setup). The resulting accuracies are depicted in Figure 4.3. The solid lines indicate the

accuracy of room classification based on the hidden features of different layers, when the

model is trained on far-field data. It is observed that predicting the recording rooms directly

based on input filterbank features using a linear classifier results in low accuracy, since there

is no feature in the input which explicitly describes room characteristics. However, using

the first hidden layer representations results in a much higher accuracy for both 3-layer and

6-layer RNN models. This indicates that the network has automatically derived features in

the first layer that bear information about the characteristics of the recording environment.

The subsequent layers, however, show gradually decreasing domain classification accuracy,

which indicates that the network is trying to discover domain-invariant features as we move

towards the output layer. Note that these results have been obtained using a simple linear

model for domain classification (logistic regression). By using approporiate nonlinear feature

transformations (i.e., an arbitrarily deep domain classifier), we can achieve higher accuracies

even with input filterbank features. However, the goal here is to simply measure the amount

of domain knowledge already encoded in the feature representations at each layer, without

any supervised nonlinear transformations to extract those features.

The domain classification accuracy at the first hidden layer of the deeper (6-layer) network

is superior to the 3-layer network. This means that a deeper network allows for better extrac-

tion of environment-specific information in the initial layers. Second, the domain accuracy

at the last hidden layer of the deeper network is lower, which demonstrates the ability of the

deeper network to better achieve domain-invariant final representations. However, even at

the final layer of the deeper network, domain classification accuracy is still significantly higher

than chance-level, indicating the presence of some residual domain-specific information at
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Figure 4.3. Room classficiation accuracies based on features from different hidden layers in
a 3-layer and a 6-layer RNN trained on speech data from AMI corpus.

this stage. In other words, although the supervison provided by label sequences encourages

the network to minimize the influence of room-related factors in the final representations, in

practice it cannot achieve complete domain invariance. The proposed adversarial training

framework described in Section 4.4 uses room labels during training to better enforce this

desired invariance in the hidden representations.

It is worth noting that the different rooms in the AMI corpus differ not only in terms of the

acoustic properties of the rooms, but also in terms of the speakers in each room. Therefore,

by training on the Single Distant Microphone (SDM) channel, the model learns differences

that result from both environment and speaker characteristics. Based on the hidden features

of the SDM model, it is not clear how much of the encoded domain knowledge pertains to

room characteristics versus speaker differences. To quantify the role of each factor, Figure 4.3

also shows the domain accuracies with a clean-trained model (dashed lines) which is trained

on data from the Individual Headset Microphones (IHM). The input features in this case are

still far-field SDM features, but they are passed through the IHM-trained model to produce

hidden features. The IHM model uses close-talking signals and thus cannot learn any specific

information concerning room characteristics. Thus, any domain discrimination in this case
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Figure 4.4. (a) factor-aware training where manually extracted room features are appended
to input feature vectors, (b) Given sufficient far-field training data, the network automatically
learns to extract room features in the hidden representations. (best viewed in color)

is solely due to speaker differences. The SDM model, in contrast, learns both speaker and

environment differences, and thus results in higher domain classification accuracy. Based on

this consideration, the difference between solid and dashed lines in Figure 4.3 indicates the

amount of added domain information due to room differences.

4.3.3 Links to factor-aware training

A group of approaches collectively referred to as factor-aware training [69–71] attempt to

improve neural network acoustic models by extracting manually designed features that are

indicative of a variability factor in the signal (speaker, room, etc.) and appending them

to spectral features for ASR. By having access to this extra information about the signal,

the network is able to derive more robust features that compensate those variations. In the

context of far-field ASR, the auxilliary feature may descibe distance, reverberation time,
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DRR, spectral envelope of RIR, etc. The analysis provided in the previous section indicates

that by having access to sufficient far-field speech from each room, the network is able to

automatically derive room-specific features in the initial hidden layers, without relying on a

separate module. In essence, factor-aware training uses input features that lie on separate

subspaces for each room. However, given sufficient depth, a multi-condition model trained

on far-field data tries to automatically achieve a similar mapping into separate subspaces in

the initial layers. Figure 4.4 compares the flow of domain-specific knowledge in factor-aware

versus multi-condition training.

4.4 Multi-domain adversarial acoustic model training

4.4.1 Generative Adversarial Networks (GAN)

The basic idea in GANs is to set up a game between two learners, which are referred to as

generator and discriminator. The generator’s task is to create samples from a distribution

that closely resembles the training data. The role of the discriminator is to distinguish

between real and fake samples, (i.e., to recognize whether a sample is an actual training

example or created by the generator). The idea of GANs was originally proposed in [76] and

used for the task of generating images, where the generator is expected to map from random

noise to a realistic image. In the context of neural networks, adversarial training refers to

optimizing the parameters from two parts of a network with opposing objective functions.

In the image generation task, the discriminator is a binary neural network classifier which is

trained to maximize the probability of correct decision on whether its input is supplied from

the training set or provided by the generator. The generator is another network which is

trained to fool the discriminator by maximizing the probability that its output representation

is recognized as a real image by the discriminator. In other words, the generator is trained to

yield an incorrect prediction in terms of real or fake images. As a result of this competition
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between the two networks, the generator will try to produce images that very closely resemble

actual images in the training data, therefore making it difficult for the discriminator to

distinguish real images from the generator outputs. GANs have gained rapid popularity as

state-of-the-art in generative modeling in many different tasks and fields [80, 81]. The idea

of adversarial training was used in [77] and [78] for unsupervised adaptation, where instead

of real and fake images, the discriminator is trained to distinguish between source-domain

data coming from a labeled train set and target-domain data from an unlabled adaptation

set. In [78], adversarial training of the generator is implemented by using a gradient reversal

layer, which is an identity transform in the forward pass, but negates the gradients during

back-propagation. The gradient reversal technique was also used in [79] for a noise-type

classifier to improve noise robustness of a hybrid DNN-HMM model.

4.4.2 Multi-domain Adversarial training of RNN-CTC models

Figure 4.5 shows our proposed network architecture for improved training of RNN-CTC

acoustic models using multi-domain far-field speech data. The left path in Figure 4.5 (G

and W networks) is a standard RNN-CTC model as described in Section 2.3.3. It uses

multiple bi-directional recurrent layers on top of the input filterbank features, followed by

a softmax layer to yield posterior probabilities for each of the symbols in the character (or

phoneme) set. In addition to this main path, there is a secondary network (D) branching out

from one of the hidden layers. Here, D is a domain classifier, (i.e., it is expected to recognize

the specific recording environment for the input utterance). The domain classifier consists

of a few initial dense layers at the frame level (with paramters shared in time), which are

expected to map from the hidden representations of the CTC network to a new space with

features that are discriminant with respect to the recording environment. Since we need a

single decision for the entire utterance, intermediate features from these frame-level layers

are aggregated into an utterance-level representation via mean-pooling over all frames. Note
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Figure 4.5. Network structure for the proposed multi-domain adversarial training approach.

that there is in general alternate possible ways to train such networks that are expected to

map from a sequence of features to a single label. These include frame-wise training where

the overall label is assigned to each and every frame (and the resulting errors back-propagated

from every frame), as well as different forms of pooling in time (mean, max , final-frame,

etc.). For the proposed multi-domain training approach, we have empirically verified that

a simple mean pooling of the intermediate domain features over all frames yields the best

results. This is in agreement with what has been observed for other sequence classification

tasks for speech [82] and video [83].

Assuming that the domain classifier is based on features from the lG’th recurrent layer,

frame-level transformations for domain classification can be written as:

v
(k)
t = σ

(
R(k)v

(k−1)
t + c(k)

)
, (4.1)

where R(k) and c(k) are layer weights and biases, σ(·) represents the layer non-linearity, and

v
(0)
t = h

(lG)
t . The output layer of the domain classifier is a softmax layer which maps from
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the time-averaged domain representations to posterior probabilities for each of the domains:

qi = p(di|X) =
exp

(
uTi v

)∑ND
j=1 exp

(
uTj v

) , (4.2)

where,

v =
1

T

T∑
t=1

vLDt . (4.3)

Here, di denotes the i’th recording environment (domain), ND is the total number of domains

in the train data, and LD is the number of frame-level layers in the domain classifier.

The parameters in the second part of the CTC network (θW ) are trained using the CTC

cost in the usual way as described in Section 2.3.3. The parameters of the domain classifier

(θD) are trained to maximize the probability of correct domain prediction, (i.e., by using

the cross-entropy cost between the softmax outputs and ground-truth domain labels):

JD = −
ND∑
i=1

zi log(qi), (4.4)

where [z0, · · · , zND ] is a one-hot encoding of the ground-truth domain label (i.e., zi is 1 if it

corresponds to the correct domain and 0 otherwise). The parameters in the shared section

of the network between the CTC task and the domain classifier (i.e., θG) are optimized to

reduce both the CTC cost and an adversarial domain objective (JA) which is designed to

oppose a correct domain classification:

JG = JCTC + λJA. (4.5)

There are different possible choices for the adversarial cost JA which are listed in Table 4.1.

The simplest approach is to choose JA = −JD, which corresponds to a minimax game where

the domain classifier tries to maximize the probability of the correct domain, while the

generator tries to minimize it. Although the operation of GANs is often described using

this objective, in practice it suffers from an early saturation of the cost when the domain

classifier is providing a correct prediction, thus receiving vanishing gradients and failing to
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Table 4.1. Different parameters of a multi-domain RNN-CTC network and their associated
costs

parameters associated cost

θW JCTC = − log
(∑

a∈A
∏T

t=1 p
(
sa[t],t|X

))
θD JD = −

∑ND
i=1 zi log(qi)

θG

JG = JCTC + λ
∑ND

i=1 zi log(qi)

JG = JCTC − λ
∑ND

i=1(1− zi) log(qi)

JG = JCTC − λ
∑ND

i=1
1
ND

log(qi)

achieve the adversarial task [84]. An alternative cost to overcome this problem is to reverse

the domain labels for training the generator (i.e., assigning 0 to the correct domain and 1 to

the other domains):

JA = −
ND∑
i=1

(1− zi) log(qi). (4.6)

Although this works well for the original GAN structure which uses a binary discriminator,

for our multi-domain training framework, switching the labels does not lead to a well-defined

objective, as it yields multiple correct domains and a single incorrect domain. To be appli-

cable to a multi-domain scenario, we propose to use the Kullback-Liebler (KL) divergence

between the discriminator outputs and a uniform distribution (zi = 1
ND
, i = 1, · · · , ND) as

the training cost for generator parameters:

JA = −
ND∑
i=1

1

ND

log(qi). (4.7)

Here, instead of using the hard domain labels, the domain posteriors are being compared

with a set of soft targets which represent a uniform distribution over all domains. The

generator is thus trained to achieve a state of maximum confusion where equal probabilities

are assigned to different domains.
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Many original GAN studies choose to simultanously optimize all network parameters

together according to the objectives in Table 4.1. This means that each mini-batch of data

results in an update of θD in the direction of minimizing domain cost and an update of

θG to minimize the adversarial cost. Although this is an approximation for the complete

iterative training (where we alternate between discriminator and generator updates, keeping

one fixed and updating the other), it has been shown to perform well in practice in image

generation tasks with feed forward nets. However, to have a stable learning in our multi-

domain RNN training, using an iterative optimization strategy was found to be necessary.

The resulting train procedure is summarized in Algorithm 2. Each epoch of the algorithm

consists of one CTC pass over the train data, followed by domain discriminator updates

and generator updates. Note that Algorithm 2 uses Stoachastic Gradient Descent (SGD)

updates for simplicity. In practice, adaptive learning rate methods such as RMSprop [85]

can be used for faster convergence.

4.4.3 Comparison with multi-task learning

The proposed network architecture in Fig. 4.5 is structurally similar to Multi-Task Learn-

ing (MTL) networks where two different classification tasks are solved based on a shared

intermediate representation. However, in spite of this structural similarity, multi-domain

adversarial training is actually the exact opposite of MTL. This comparison is illustrated in

Fig. 4.6. In MTL, we have two different but related tasks to be learned from a single domain

of data. The network parameters are optimized to reduce classification error for both tasks.

By sharing some of the hidden transformations, the two tasks are expected to support each

other. In other words, the intermediate features at the output of the shared section of the

network are expected to be discriminant with respect to both tasks. In contrast, in multi-

domain adversarial training, we have a single main task which is common to multiple data

domains, and we need an intermediate representation which is discriminant for the main

classification task but invariant with respect to the domains.
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Figure 4.6. Comparison between standard multi-task learning and multi-domain adversar-
ial training. The arrow directions indicate the changes in each cost value resulting from
parameter updates. (best viewed in color)

4.5 Experiments

4.5.1 System setup and data

We evaluate the proposed multi-domain training approach on an end-to-end ASR task based

on the AMI meeting corpus [6]. The AMI corpus consists of speech recorded in three different

meeting rooms1, using both Individual Headset Microphones (IHM) and a micorphone array

placed on the meeting table. We use only a Single Distant Microphone (SDM) from the array

to provide far-field speech data for train and test. The SDM channel poses two different

problems for ASR: simultanous speech and far-field distortions. To focus on the latter, we

remove any utterances that contain overlapped speech regions from both train and test data,

which leaves us with approximately 30 hours of train, 4 hours of development, and 4 hours

of test data (we use the recommended data partitions for ASR outlined in [86]).

The input features are 24-dimensional Mel filterbank coefficients with speaker-level mean

and variance normalization. These are extracted using 25 msec windows at a rate of 100

1Three different data collection sites: University of Edinburgh (U.K.), IDIAP research institute (Switzer-
land), and the TNO Human Factors Research Institute (The Netherlands)
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frames per second. We use frame-skipping [87] with a context window of 3 frames to reduce

the required computations for RNN training1.

The baseline acoustic model is a 6-layer recurrent network with bi-directional LSTM

(BLSTM) layers containing 128 cells per direction, leading to 256-dimensional hidden layer

representations. We choose an output space similar to [88], by having multi-character units

(such as ll in tall and ’s in let’s), and by using uppercase characters to indicate the beginning

of a word. This makes an output space of size 79, consisiting of 78 character labels plus

the blank symbol2. Network parameters are optimized using RMSprop [85] with an initial

learning rate of 0.001 and a minibatch size of 20 utterances. Training epochs are stopped

when no further improvement in Character Error Rate (CER) is observed on the development

set. The results are reported using both a simple best-path decode strategy (choosing the

most active output at each frame followed by removing blanks and repetitions), and also by

a beam-search algorithm with a beam width of 10 to track multiple candidate sequences.

In both cases, decoding is based only on acoustic scores from the RNN using no additional

lexicon or language information.

Table 4.2 shows the performance of this baseline CTC network when trained on clean

speech (IHM channel) and far-field speech (SDM channel). As expected, the clean-trained

model results in a high error rate on the SDM test data due to the significant underlying

mismatch in this case. The multi-condition model uses far-field (SDM) train data from

multiple rooms and speaker-to-microphone distances within the AMI corpus, and thus pro-

vides significantly improved far-field robustness, yielding a +23% relative improvement with

respect to the clean-trained model.

1This has been been shown to have minimal performance effects on CTC models particularly with large
datasets [87].

2We have empirically verified that using this output space provides consistently better results compared
to the alternative approach which uses dedicated space and apostrophe characters [89].
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Table 4.2. Baseline Character Error Rates with clean-trained (IHM) and far-field (SDM)
models

Train
Data

Test
Data

CER
(best-path)

CER
(beam-search)

IHM IHM 32.8 32.2
IHM SDM 63.6 62.9
SDM SDM 49.1 48.5

4.5.2 Results on multi-domain adversarial training

Table 4.3 compares the performances provided by the proposed multi-domain adversarial

framework when the domain discriminator branches out from different hidden layers of the

network. The domain discriminator is chosen to be a 2-layer network with a frame-level

sigmoid layer of 256 nodes, followed by a mean-pool operation across all frames of the

utterance and a final softmax layer to provide probabilities of belonging to each of the three

AMI meeting rooms. The network is trained according to Algorithm 2, with λ = 20.0 and

rD = rG = 4 (i.e., each epoch consists of one CTC pass to tune θW and θG, followed

by 4 iterations of cross-entropy updates on domain discriminator (θD) and 4 iterations of

adversarial updates on θG). As observed in Table 4.3, the best results are obtained when the

domain discriminator is based on layer-2 features, which yields a +3.3% relative improvement

over a multi-condition baseline that does not use domain labels during training. The overall

improvement with respect to the clean-trained baseline is +25.4% in this case.

Several observations can be made based on the results in Table 4.3. First, note that

when the domain discriminator is based on features from the first hidden layer, the resulting

performance is worse than the baseline. In other words, forcing environment invariance from

the very first layer actually harms performance. This can be understood by considering the

learning mechanism described in Section 4.3. In the first hidden layer, the network extracts

domain-specific features that are indicative of the recording conditions. The subsequent lay-

ers use this encoded domain knowledge to derive the robust final representations. Therefore,
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Table 4.3. Character Error Rates provided by multi-domain adversarial training, when the
domain discriminator is based on the features from different hidden layers.

Discriminator branch layer CER (best-path) CER (beam-search)
None (Baseline) 49.1 48.5

Layer-1 53.1 52.9
Layer-2 47.6 46.9
Layer-3 47.8 47.0
Layer-4 49.1 48.6
Layer-5 49.0 48.3
Layer-6 86.2 78.2

forcing the features to be domain-invariant from the very first layer interferes with this in-

herent operation of the network, resulting in lower overall performance. Instead, we should

allow the first few layers to contain domain-specific information and only force invariance

at a subsequent layer where we expect higher-level knowledge that is independent of the

recording conditions.

Moreover, note that when the domain discriminator is based on 6th layer features, learn-

ing cannot converge and yields a high error rate. Although this happens only in this case

with the chosen hyper-parameters described here (discriminator architecture, learning rate,

etc.), we have observed that other choices of hyper-parameters also lead to this phenomenon.

Similar difficulties have been reported for GAN training in other applications [84]. In our

case, we attribute this to the network’s failure in reaching an equilibrium between the do-

main discriminator and the generator layers. When the generator contains all 6 BLSTM

layers (last row of Table 4.3), it significantly outperforms the domain classifier and does not

allow it to learn any discriminating information about the domains. This poorly trained dis-

criminator will then return gradients to the recurrent layers which cause learning to diverge

completely. In other words, similar to most existing GAN applications, successful training in

our case depends on a careful choice of hyper parameters which enables the network to reach

an equilibrium between the generator and the domain discriminator. In essence, adversarial
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training is an inherently more difficult learning problem, because unlike most other learning

problems which seek minimization of a single cost, here we are interested in an equilibrium

between two opposing objectives.

4.6 Summary

We presented a novel multi-domain training approach for neural network acoustic models

which makes use of environment labels in far-field speech data in order to achieve increased

invariance with repsect to the recroding conditions in different rooms. Unlike conventional

multi-condition training which combines data from different recording environments into

a single set, we consider multi-environment datasets to consist of different domains with

slightly different distributions. We presented an analytic study on how a deep network

learns to derive environmentally robust features solely based on label sequence supervision.

It was shown that the initial layers in a deep network function as a domain separator,

mapping data from different rooms into different subspaces. The subsequent layers can then

use this encoded domain knowledge to derive robust final representations. This propagation

of domain knowledge within the hidden layers was evaluated using a simple domain classifier

trained on features from the different hidden layers, which revealed that in practice there

is residual domain information even in the last hidden layer, indicating insufficient domain

invariance.

Further, it was shown that if the initial layers in an RNN acoustic model are trained

adversarially with respect to a domain classifier which recognizes the recording environments,

we can enforce better domain invariance and hence a more robust model. The proposed multi-

domain adversarial training strategy was evaluated in an end-to-end speech recognition task

based on the AMI corpus. It was shown that with a domain classifier based on features from

the second hidden layer, a relative improvement of +3.3% can be achieved in character error

rate compared to a multi-condition trained baseline which does not use the domain labels
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during training. The overall performance improvement with respect to the clean-trained

baseline is +25.4%.

Note that although the data domains in our study correspond to actual rooms in the

train data, this does not scale to larger datasets which may contain hundreds of different

rooms. For a larger number of rooms, the differences in terms of T60, DRR, etc. may be

very small, making it impractical to reliably train a domain discriminator to recognize all

individual rooms. In such scenarios, the domain discriminator should be trained to recognize

groups or classes of rooms which have similar acoustic properties. An example of this is when

the available rooms are grouped according to their reverberation times into different groups

where each group represents a certain interval for possible values of T60. Alternatively, if the

speaker-to-microphone distances are also known for the input utterances, we can define the

domains based on approximate DRR value.
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Algorithm 2: Iterative CTC and adversarial updates

Input: Features: X(i) = [x
(i)
1 , · · · ,x

(i)
T ],

Label sequences: y(i) = [y
(i)
1 , · · · , y

(i)
L ],

Domains: d(i)

while stop criterion not met do
for k = 1, · · · , n minibatches do

Sample a mini-batch of M examples (X(i),y(i), d(i)).

p(i) = [p
(i)
1 , · · · , p

(i)
S ] = fW

(
fG(X(i))

)
.

JCTC = 1
M

∑M
i=1 CTC

(
p(i),y(i)

)
.

θW ← θW − η∇θW JCTC .
θG ← θG − η∇θGJCTC .

end
for r = 1, · · · , rD do

for k = 1, · · · , n minibatches do
Sample a mini-batch of M examples (X(i),y(i), d(i)).

q(i) = [q
(i)
1 , · · · , q

(i)
ND

] = fD
(
fG(X(i))

)
.

JD = −λ 1
M

∑M
i=1 log(qd(i)).

θD ← θD − η∇θDJD.

end

end
for r = 1, · · · , rG do

for k = 1, · · · , n minibatches do
Sample a mini-batch of M examples (X(i),y(i), d(i)).

JA = −λ 1
M

∑M
i=1

∑ND
j=1

1
ND

log(qj).

θG ← θG − η∇θGJA.

end

end

end
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CHAPTER 5

ADAPTATION OF DNN/RNN ACOUSTIC MODELS TO SPECIFIC

ENVIRONMENTS

5.1 The adaptation problem1

The robustness of speech recognition systems is influenced by the mismatch between the

training data and the test conditions encountered in practice. Many existing strategies

in robust ASR aim to minimize this mismatch, either by feature processing to make the

input features more similar between the two domains, or by training an acoustic model

that generalizes better to unseen conditions, e.g. by using a very large and diverse training

dataset. However, in practice there is always residual mismatch between a general acoustic

model and test data from a specific target environment. The goal in model adaptation is to

refine the parameters of a previously trained model to improve performance on a particular

test condition. For far-field ASR, model adaptation is useful in two different contexts:

• Adaptation of clean-trained acoustic models to far-field data: An acoustic

model that is trained on clean close-talking speech suffers from a severe mismatch

with reverberant far-field speech. If a small dataset of far-field speech is available,

performance can be considerably improved by adapting the model parameters to the

far-field features.

• Adaptation of multi-condition far-field acoustic models to specific target

environments: An acoustic model that is already trained on far-field data exhibits a

smaller mismatch with far-field test conditions. However, if a few adaptation examples

are available from a specific target environment with particular acoustic properties,

1 c© 2015 ISCA. Reprinted with permission, from S. Mirsamadi and J. H. L. Hansen, A study on deep
neural network acoustic model adaptation for robust far-field speech recognition, in Proc. Interspeech,
Dresden, Germany, Sep. 6-10, 2015.
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model adaptation can be used to further improve performance. This is because the

parameters of the original acoustic model are tuned to perform best on average accross

all recording conditions present in the training data. If the ASR system is to be

deployed in a specific room with particular acoustic characteristics, the mismatch can

be further reduced by adapting the paramters towards data coming from that particular

room.

Model adaptation in general is a well studied problem in ASR [90–92]. However, a consid-

erable majority of existing approaches focus on speaker adaptation which is a fundamentally

different problem from environment adaptation. In speaker adaptation we are concerned with

speech production differences, while in far-field adaptation we are interested in influences

from the recording condition. Morever, the few existing environment adaptation approaches

such as Vector Taylor Series (VTS) adaptation [93, 94] and REMOS adaptation [36, 95] are

exclusively developed for GMM-HMM models and are not applicable to DNNs. The goal

of this chapter is to develop and evaluate different DNN adaptation strategies for the task

of environment adaptation in ASR. We will present DNN adaptation strategies which pre-

vent overfitting, and evaluate them for both scenarios described above and for DNN-HMM

hybrids as well as end-to-end RNN models.

5.2 Supervision in model adaptation

The transcripts for adaptation data can either be known in advance (supervised adaptation)

or obtained by decoding the data using the unadapted model (unsupervised adaptation). In

the unsupervised mode, adaptation performance is limited by the accuracy of the obtained

labels. In spite of this limitation, in tasks such as speaker adaptation, the number of correct

labels in the initial decoding is often adequate to provide reasonable adaptation performance.

However, in the case of environmental mismatch such as noise and reverberation, the initial
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decoding with the unadapted model has a high error rate and is thus unable to provide a

reasonable number of correct labels for adaptation. Furthermore, discriminative estimation

of adaptation parameters is known to be more sensitive to the accuracy of the labels compared

to the maximum likelihood estimations used for GMMs. As a result, unsupervised DNN

adaptation is not able to provide noticeable improvements in scenarios with considerable

environmental mismatch. All of the experiments in this chapter use supervised adaptation

towards a set of transcribed adaptation data.

5.3 DNN adaptation approaches

Although DNN-based acoustic models provide superior modeling capability compared to

traditional GMM-based models, they are particularly difficult to adapt to new conditions.

This is due to the very large number of parameters in a deep network which cause overfitting

when tuned on limited adaptation data. If we simply run a few more passes of parameter

optimization using adaptation data, the model will severely overfit to the new data, essen-

tially erasing most of the previously learned information. To prevent the overfitting problem

in adaptation, there are three major categories of solutions:

• Domain-specific parameter sets: By introducing a small set of extra parameters

dedicated to a specific environment and adapting only those (while keeping the rest of

the network fixed), we can achieve effective adaptation on limited data without the risk

of overfitting. Alternatively, instead of using new parameters, we can choose a subset

of existing parameters to adapt from the original model. In either case, we assume the

domain transfer from the original training distribution to the new condition is a simple

transformation that can be described by a small number of parameters.

• Conservative training: Instead of choosing parameter subsets, we can adapt all

DNN parameters in a conservative or regularized manner to ensure overfitting does
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not occur. To achieve this, a regularized optimization objective should be used which

ensures the output distribution provided by the DNN does not radically change as a

result of adaptation.

In the following sections, we describe different DNN adaptation methods from the above

categories.

5.3.1 Domain-specific linear transformations

The simplest and most effective method for DNN adaptation is to apply an affine transfor-

mation to either the input features, activations of a hidden layer, or the output activations

of the network. In the case of input features, the approach is referred to as Linear Input

Network (LIN), and is similar in form to the feature-space MLLR (fMLLR) [96], which is a

common adaptation technique for GMM-HMM models. Note that in spite of this structural

similarity, LIN is fundamentally different from fMLLR in that the parameters of the affine

transformation are tuned discriminatively using frame-level senone labels of the adaptation

data.

Assuming xt to be a context-dependent feature vector (concatenation of multiple consec-

utive frames), LIN applies an affine transformation of the form,

x̃t = Wxt + b, (5.1)

where x̃t represents the adapted feature vector. The DNN outputs are computed based on

this transformed vector and compared to the ground truth label from the adaptation labels.

The resulting errors are then back-propagated from the output to the LIN layer and used

to update its parameters (the parameters of the original network are kept fixed and are not

updated based on these errors).

Given the fact that xt is a concatenation of features from multiple frames, the LIN trans-

formation matrix is sometimes constrained to be block-diagonal, with the parameters of the
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(a) LIN (b) LHN (c) LON

Figure 5.1. Domain-specific linear transformations for environment adaptation. (a) Linear
Input Network (LIN). (b) Linear Hidden Network (LHN). (c) Linear Output Network (LON).

diagonal blocks tied together [97]. The resulting adaptation strategy is referred to as feature-

discriminative linear regression (fDLR). This frame-specific transformation is reasonable for

speaker adaptation where we are interested in updating the features of a single frame in-

dividually to match speaker characteristics, and it can lead to improvements specially with

small adaptation data because it uses fewer parameters than a fully dense transformation.

However, in adaptation for environmental distortions specially in reverberant environments,

context information and the correlations between adjacent frames are important information

to be used for adaptation. It is therefore desirable in such cases to use the unconstrained

(fully dense) transformation matrix W, although this will require more adaptation data for

estimating a larger number of parameters.

Similar transformations can be applied to one of the hidden representations or to the

final activations of the network. The resulting adaptation strategies are called Linear Hid-

den Network (LHN) and Linear Output Network (LON), respectively. LHN and LON are

equivalent to adding an extra layer with linear activation to the network. Figure 5.1 shows

a comparison between these three adaptation methods.

Although LIN, LHN, and LON are similar in nature, their adaptation capability in dif-

ferent tasks may be quite different depending on the amount of available adaptation data
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and the nature of the distortion. While the number of adaptation parameters in LHN is

determined by the number of nodes in the hidden layers, LIN and LON parameter sizes

are dependent on feature dimension and the total number of labels in the output space,

respectively. This can influence the amount of adaptation data required for each method.

Moreover, the exact position of the adaptation layer is dependent on the nature of the dif-

ferences between train and test conditions. In particular, the best position for inserting

an adaptation layer is where the latent variables (hidden features) are indicative of the

particular differences between train and test conditions. This makes the exact position of

adaptation layer a task-specific decision. However, for the task of environment adaptation to

a specific room, we can use the analysis provided in Section 4.3 on the learning mechanism

of DNN acoustic models in order to select the appropriate position of the adaptation layer.

We will discuss this choice in more detail in Section 5.6. The experimental observations

in Sections 5.4 and 5.5 support the provided guidelines for the choice of adaptation layer

position.

5.3.2 Factorized DNN adaptation

Factorized adaptation is an extension of VTS-style adaptation to DNN acoustic models

[98]. It is based on the assumption that the final DNN hidden representations for far-field

speech can be decomposed into the clean component and linear transformations of noise and

channel components. Starting from the input spectral features and assuming only short-time

transient channel distortions, the far-field spectral feature vectors can be written as

yt = xt � ht + nt, (5.2)

where yt, xt, ht and nt are power spectral features for far-field speech, clean speech, channel

transfer function, and additive environment noise, and � indicates element-wise multiplica-

tion. In the log-spectrum domain, the above relationship can be written as

x̃t = ỹt − h̃t + log
[
1− exp(ñt − ỹt)

]
, (5.3)
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where (̃·) indicates a log-domain variable. This relationship can be expressed concisely as

x̃t = ỹt + g(ỹt, ñt, h̃t), (5.4)

where g(·) is the overall nonlinear function that relates ỹt to x̃t. In the VTS approach for

noise robust ASR [93], a first-order Taylor series approximation of this nonlinear function is

used, which effectively expresses the relationship between clean and noisy features as additive

distorting factors:

x̃t = ỹt + Aỹt + Bñt + Ch̃t + d, (5.5)

where A, B and C are the Jacobian matrices of g(·) w.r.t. y, n and h, respectively, and

d is the sum of all constant terms in the VTS expansion. In factorized DNN adaptation,

we assume a similar relationship exists between the final hidden features of noisy and clean

speech:

v̂Lt = vLt + Ayt + Bnt + Cht + d, (5.6)

Here, v̂Lt and vLt represent the final hidden representations of the network corresponding to

clean and noisy inputs, respectively. The final softmax layer of the network first linearly

transforms these features to the output space, followed by a softmax operation to yield

posterior probabilities for output symbols:

pt = softmax(WvLt + A
′
yt + B

′
nt + C

′
ht + d

′
), (5.7)

where pt represents the vector of posteriors probabilites for output labels and,

A
′
= WA, B

′
= WB, C

′
= WC, d

′
= Wd. (5.8)

Equation (5.7) can be rewritten in the compact form

pt = softmax(WFAvFAt + d
′
), (5.9)
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y n h

Figure 5.2. Factorized adaptation: Estimated of noise and channel for each frame together
with the input noisy feature vector are appended to the final hidden representations.

where,

WFA = [W,A
′
,B

′
,C

′
], (5.10)

vFAt = [vL
T

t ,yTt ,n
T
t ,h

T
t ]T . (5.11)

According to Equation (5.9), Factorized adaptation is equivalent to concatenating the

last hidden layer features with (manual) estimates of noise and channel factors as well as

the input noisy feature vector. Figure 5.2 illustrates this equivalence. Assuming we have

estimates of the noise and channel components, the adaptation problem consists of estimating

the connecting matrices A′, B′, and C′, as well as the offset vector d′. These new parameters

are tuned based on adaptation data while keeping the rest of the network fixed.

Note that the provided formulation for factorized adaptation assumes that channel effects

are limited to a single frame (hence the use of the model in 5.2). This assumption is valid for

microphone or transmission channels, as well as early reverberation. However, as discussed

in Section 2.5, late reverberation is a long-term effect which involves multiple time frames.

Therefore, factorized adaptation is mostly helpful for additive intereferences (preferrably

stationary noise), and has limited performance when applied to the problem of far-field

adaptation to reverberant data.
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5.3.3 Conservative training

The most straight-forward way of adapting a DNN is to simply adapt all parameters using a

few more passes of retraining on the adaptation data. However, given the small size of adap-

tation data, this would result in overfitting and erase the information learned during training.

An effective approach to prevent this overfitting is to force the adapted output distribution

to stay close to the unadapted distribution [99]. To achieve this, the Kullback-Leibler (KL)

divergence between adapted and unadapted posteriors is added to the optimization criterion:

CREG = (1− ρ)C + ρ
1

T

T∑
t=1

|S|∑
i=1

p0
(
si(t)|X

)
log

p0

(
si(t)|X

)
p
(
si(t)|X

) . (5.12)

Here, C is the objective for supervised learning (i.e., CTC cost or average cross-entropy error

across frames), and ρ ∈ [0, 1] is a trade-off parameter that adjusts the contribution from the

regularization term. The terms p0
(
si(t)|X

)
and p

(
si(t)|X

)
are label distributions for frame

t given by the original and adapted models, respectively. The distribution p0
(
si(t)|X

)
is a

constant term (w.r.t. adaptation parameters) that is always provided by the fixed unadapted

model. Thus, the terms depending only on p0
(
si(t)|X

)
can be removed from the objective,

yielding the following regularized cost:

Creg = (1− ρ)C − ρ 1

T

T∑
t=1

|S|∑
i=1

p0
(
si(t)|X

)
log p

(
si(t)|X

)
(5.13)

Training the network parameters using this regularized cost results in less aggressive updates

by penalizing output distributions that are radically different from the original unadapted

distribution. The trade-off parameter ρ can be adjusted based on closed-loop performance

on a validation set.

For the case where the original supervised learning criterion (C) is frame-level cross-

entropy (i.e., in DNN-HMM models where output symbols are senone labels), we can re-write

(5.13) in a more compact form by expanding the cross-entropy term (C) which yields:

Creg = − 1

T

T∑
t=1

|S|∑
s=1

preg
(
si(t)|xt

)
log p

(
si(t)|xt

)
, (5.14)
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Here, the target distribution preg
(
si(t)|xt

)
is a linear combination of the ground-truth label

distribution (pgt, given by forced alignment of adaptation data) and the original distribution

provided by the unadpted model:

preg
(
si(t)|xt

)
= (1− ρ)pgt

(
si(t)|xt

)
+ ρp0

(
si(t)|xt

)
. (5.15)

We are thus effectively replacing the ground-truth hard alignments in the original objective

function with a smoothed version which is an interpolation between the original alignments

and the distribution given by the unadapted model.

5.4 Experiments on adaptation of clean-trained models to far-field data

5.4.1 System decription and data

We evaluate the discussed DNN adaptation approaches on the single-channel track of Aspire

challenge [100]. The data consists of 10-minute audio files of conversational speech from

30 different speakers recorded using far-field microphones in different reverberant and noisy

rooms. Half of the utterances from each recording were used as test data and the other half

were used for adaptation. A 100-hour subset of the Fisher English corpus [101] was used

for training. All experiments use a trigram language model trained on the full Fisher cor-

pus transcripts. The speech features are 13-dimensional Mel-frequency Cepstral coefficients

(MFCC) with utterance-based cepstral mean and variance normalization. The input features

for the DNN-HMM model are a concatenation of MFCC vectors from a context window of

11 frames. The senone labels for the entire training data are obtained by forced-alignment

using an initial GMM-HMM model. For this initial model, dynamic (delta and double-delta)

features are used as well, and the concatenated feature vector from 11 context frames was

further transformed by Linear Discriminant Analysis (LDA) to a 40-dimensional feature vec-

tor. The Kaldi speech recognition toolkit [25] was used for training the GMM-HMM model,

with a total number 7716 senones. The DNN model consists of 6 hidden layers of 2048
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Table 5.1. Baseline error rates in mismatched conditions (clean-trained models and far-field
test data from Aspire challenge)

Acoustic Model WER(%)
GMM-HMM 74.4
DNN-HMM 62.4

nodes (∼ 37M parameters). The gradient descent optimizations (both for DNN training and

adaptation) use a mini-batch size of 256 feature vectors. The DNN parameters are optimized

using a learning rate of 0.08 for the first 25 epochs and 0.04 for the rest. Training epochs

are stopped when no further improvement is observed on a held-out validation set.

Table 5.1 shows the word error rates of the baseline GMM-HMM and DNN-HMM sys-

tems. Note that both models are trained on clean Fisher corpus, and no front-end enhance-

ment has been used for the far-field test data. The resulting error rates are thus high due to

the significant underlying mismatch. The DNN-HMM model outperforms the GMM-HMM

system by an absolute error difference of 12.0%.

5.4.2 Adaptation results

In this section, we report the recognition results obtained by adapting the clean-trained DNN

model to the adaptation utterances selected from Aspire challenge data. For each 10-minute

recording, a set of adaptation parameters were estimated based on half of the utterances in

the recording (or a subset of them), and used to decode the rest of the utterances. All of the

experiments use Stochastic Gradient Descent (SGD) optimization with a minibatch size of

256 and a fixed learning rate of 0.001. In all of the reported results, LHN-i refers to a linear

hidden layer added after i’th layer in the network. The transformation matrices in LIN, LHN

and LON were initialized as identity matrices, and the biases as zero vectors. For factorized

adaptation (FA), compensation matrices A′ and B′ were initialized as zero matrices (we

do not use the channel factor). The average feature vector from the first 3 frames of each
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Figure 5.3. Comparison of ASR performance on Aspire data using different adaptation
strategies and different amounts of adaptation data. The dashed line indicates performance
of the unadapted model.

utterance was used as noise estimate in FA (this assumes a stationary noise across the

utterance. Alternatively, more sophisticated strategies such as sparse decomposition [102,

103] can be used to estimate the noise factor). All adaptation experiments are supervised,

i.e., the ground-truth transcripts of adaptation utterances have been used to provide labels.

Figure 5.3 compares the word error rates provided by the discussed adaptation strategies

using different amounts of adaptation data. The dashed line represents the performance of

the unadapted DNN model. It can be observed that the discussed adaptation strategies can

provide significant performance gains compared to the clean model. Using the full adaptation

dataset, the relative WER improvements range from 16.6% (for LHN-1) to 3.0% (for FA).

LIN and LHN have provided the largest overall improvements, particularly when adequate

adaptation data is available. LON, on the other hand, has resulted in smaller improvements.

This is mainly due to the large output layer size of the DNN (7716 senone targets), which

results in a LON transformation matrix with a very large number of parameters which cannot

be reliably estimated using the limited adaptation data. Factorized adaptation provides

small improvements over the baseline unadapted model, mainly because it is unable to
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effectively handle reverberation as discussed in Section 5.3.2. KL-regularized adaptation is

able to provide almost consistent improvements even with very low adaptation data sizes,

but its overall performance is lower than the linear transormation method in all cases. For

comparison, we have also included the results obtained by unregularized adaptation of the

DNN parameters (ρ = 0), which, as expected, results in poor performance due to overfitting

problem. This shows the importance of adding the KLD regularization term (i.e., nonzero

value for ρ).

Considering the superior performance of the domain-specific linear transform approach

in Figure 5.3, we did a set of experiments to identify the best position in the network for

inserting the adaptation layer. The results are depicted in Figure 5.4. It can be observed that

for all adaptation data sizes, LHN-1 (i.e. a hidden transform right after the first layer) results

in the lowest error rate. In other words, the best domain to perform far-field adaptation

is the space of features from the first hidden layer. This is a general observation that we

have seen to be consistent across different models and different datasets. We will discuss the

reasons for this observation in Section 5.6.

5.5 Experiments on adaptation of multi-condition models to specific target en-

vironments

As discussed in Section 5.1, adaptation is useful even with multi-condition models that are

already trained on far-field data. Multi-condition training adjusts model parameters to per-

form best on average across all the different rooms and recording conditions within the train

data. If recorded adaptation utterances are available from a specific target environment

with fixed reverberation properties (T60, DRR, etc.), ASR performance can be further im-

proved by adapting the model towards the test environment. In this section, we provide

experimental results to evaluate DNN adaptation performance in such scenarios.
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Figure 5.4. Comparison of ASR performance on Aspire data for different positions of the
domain-specific layer in the DNN and different amounts of adaptation data from the target
domain (5, 10, 20 and 40 utterances).

5.5.1 System decription and data

The experiments in this section are based on the AMI meeting corpus [6] which was described

in Section 4.5.1. We remove all utterances containing any overlapped speech frames from

both train and test sets, resulting in 30 hours of data for train, and 3.5 hours for each of dev

and test sets. We use an end-to-end RNN-CTC model consisting of 3 bi-directional LSTM

(BLSTM) layers with 128 cells in each direction, followed by a final softmax layer with 79

outputs representing each of the symbols in our character set plus the blank symbol. We

adopt an output space similar to [104], where instead of using a space character, capital

letters are used as word delimiters. The input features are 24 dimensional Mel filterbank

coefficients extracted from 25 msec frames at a rate of 100 frames per second, and are mean

and variance normalized across each speaker. The network parameters are optimized using

RMSprop [85] with an inital learning rate of 0.001 and a minibatch size of 20 utterances.

We use frame-skipping [87, 105] with a context window of 3 frames to speed up training.

Training iterations are stopped when no further improvement is observed on the development
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Table 5.2. Character Error Rates on AMI SDM test set. These results use the standard
ASR train/dev/test data partitions in [86]

Train Data Test Data
CER

(best-path)
CER

(beam-search)
IHM IHM 37.1 35.8
IHM SDM 65.8 64.8
SDM SDM 52.7 51.6

data. Beam search decoding uses a beam width of 10 paths in all cases. All decoding is

based on acoustic scores only, using no language or lexicon information.

Table 5.2 shows the obtained character error rates on the AMI far-field (SDM) test set.

These results use the standard ASR train/dev/test data partitions in [86], which includes

data from all 3 meeeting rooms in the train set, but uses separate meeting sessions (hence

different speakers and RIRs) for train and test. The IHM model suffers a sharp performance

degradation when presented with far-field SDM test data due to the large mismatch between

the acoustic conditions of train and test. Training a model on multi-domain SDM data

compensates a significant portion of this degradation, yielding 20% improvement relative to

the clean-trained model.

5.5.2 Adaptation results

In this section we use a custom partitioning of AMI data, in which all the data from Ed-

inburgh and TNO meeting rooms (∼25 hours) is used for training, and the IDIAP room

data (∼10 hours) is equally split into three subsets for adaptation, development and test.

The goal is to investigate adaptation of the original acoustic model trained on Edinburgh

and TNO rooms to the acoustic conditions of the IDIAP meeting room. The resuls are

provided in Table 5.3. Similar to the previous results on the Aspire challange task discussed

in Section 5.4.2 , an intermediate transformation inserted after the first hidden layer is most
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effective for adaptation of the deep RNN to the acoustic properties of a new environment.

This approach provides 3.5% relative improvement compared to the unadapted model.

Table 5.3. Character Error Rates with different adaption methods

Train
Data

Test
Data

position of
adaptation layer

CER
(best-path)

CER
(beam-search)

SDM SDM

None 56.5 55.6
after input 55.4 54.5

after layer-1 54.5 53.5
after layer-2 55.2 54.2
after layer-3 55.3 54.4

These results use the custom partitioning of AMI corpus explained in Section 5.5.2
(Train on data from Edinburgh and TNO rooms, and divide the Idiap room data
into adaptation, dev, and test sets). Reprinted with permission from [106].

5.6 Determining best position for a domain-specific adaptation layer

We have empirically shown that for far-field adaptation, the best position to insert a domain-

specific adaptation layer is after the first hidden layer of the original network. This result

holds both for adaptation of clean-trained models to far-field data, as well as adaptation of

multi-condition models to specific rooms. Our previous discussion on multi-domain training

of deep neural networks in Section 4.3 justifies this observation. The goal in adaptation

is to transform the intermediate features such that the resulting distribution resembles the

equivalent features from the train data (for which the rest of the network is trained to perform

best). In other words, we are interested in a domain switch from the new test domain to

the domain of training samples. As was pointed out in Section4.3, domain information is

maximum in the initial hidden layer of a deep network. Therefore, it is reasonable to perform

the domain switch at this stage.
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5.7 Summary

We discussed far-field adaptation strategies for DNN-based acoustic models and compared

the performance of different DNN adaptation methods. Most existing adaptation studies are

either on speaker adaptation or developed for GMM-HMM models. The presented study is

intended to address the problem of far-field adaptation for DNNs which are state-of-the-art

acoustic models. Two general solutions were considered for the overfitting problem in DNN

adaptation. Domain-specific parameter subsets (in the form of linear adaptation layers)

can be used to transform intermediate hidden representations to resemble the train data.

Alternatively, we can adjust all DNN parameters in a conservative manner by introduc-

ing additional regularization terms that ensure sufficient closeness between the original and

adapted posteriors. Empirical evaluations both with DNN-HMM hybrids and end-to-end

RNNs revealed that the linear transformation approach consisently outperforms other adap-

tation strategies. Moreover, it was determined that carrying adptation in the space of the

first hidden layer features results in best performance. This was explained in light of the

observation that adaptation to new room characteristics is more effective in a space where

room-dependent features are maximum.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

Robustness to far-field distortions is a major challenge in speech recognition due to mismatch

caused by the non-stationary and context-dependent nature of these environment distortions.

As recent advancements in acoustic modeling have pushed close-talking ASR performance

closer to human-level accuracy, far-field ASR has emerged as a natural next milestone in the

field which will significantly broaden the application scope. Voice-enabled room/platform

systems, distant communication with social/personal robots, and voice interaction in the

car, all represent domains where using hand-held microphones (smartphones, etc.) is not

possible. This dissertation has focused on the development of solutions both at the front-end

and acoustic modeling (back-end) stages to reduce the performance gap between close-talking

and far-field ASR. The effectiveness of the proposed solutions have been demonstrated under

a variety of both simulated and realistic far-field conditions. In this chapter, we summarize

the key thesis contributions and results of this dissertation. We also discuss some open

research problems and provide possible future directions for further study.

6.1 Key thesis contributions

Solutions to address the problem of far-field ASR fall under two broad categories of ap-

proaches: They either aim to reduce the acoustic mismatch using feature enhancement

(single-channel or multi-channel) or model adaptation, or they attempt to create acoustic

models that are inherently more robust to existing mismatch. This dissertation has pro-

vided solutions from both categories for improved robustness in far-field ASR. Here, we

briefly summarize the key contributions made in this dissertation.
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Contribution #1: Development of a reverberation-robust multi-channel front-

end for distributed microphobe arrays (CNTF algorithm)

Microphone array processing has long been at the center of attention in far-field ASR re-

search. In spite of the variety of existing array processing solutions, most are focused on

pre-designed arrays with fixed and known microphone configurations and central processing

that is shared among all elements. In other words, they rely on the assumption that the mi-

cophones are co-located within a compact array, which makes spatial filtering possible based

on phase information between the array elements. Chapter 3 of this dissertation has focused

on the alternative case of non-uniform distributed microphones, where the speech signal is

captured by independent recording devices in random unknown locations. We introduced a

convolutive non-negative tensor factorization algorithm which was able to estimate the clean

speech power spectrum by decomposing a tensor of spectrograms from the individual chan-

nels into a convolutive combination of channel room impulse responses and a single clean

speech estimate. In a clean-trained scenario based on reverberated TIMIT test sentences,

four-channel CNTF processing was shown to provide a relative WER improvement of 37.7%

over a single-channel case which operates on the microphone with highest DRR. Table 3.2

provides more detailed results on the performance of CNTF algorithm.

The proposed algorithm was shown to provide multiple benefits compared to conven-

tional array processing methods, relaxing many constraints imposed by these methods. By

exclusively operating on the spectral amplitudes (discarding phases), the proposed CNTF

approach avoids problems resulting from the lack of a shared time reference between the

various channels. Essentially, it was shown that the magnitude information alone from spa-

tially distant microphones provides sufficient complementary information to provide a better

estimate of the clean speech magnitude spectrum. This is in contrast to conventional array
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techniques which primarily rely on phase information 1. Note that while conventional array

processing requires closely-spaced elements, the CNTF approach actually benefits more from

spatially distant microphones. For two microphones that are very close to each other, the

magnitude spectra are very similar, (there are only phase differences), and thus they pro-

vide limited complementary information. Moreover, the proposed algorithm does not require

knowledge about the source location, and does not impose any restrictions on the locations

of the microphones. It was shown in Section 3.5.3 that CNTF dereverberation is sufficiently

robust to unbalanced DRRs among the channels, meaning that if one of the microphones

happens to be much farther from the speaker than the others, its contribution to the final

estimate of the clean speech will automatically be minimized.

Contribution #2: Analytic study on the learning mechanism of multi-condition

trained neural network acoustic models

Multi-condition training of DNN-based acoustic models (specifically RNNs which can ef-

fectively model long-term correlations in reverberant speech) has recently gained inreasing

popularity to address the problem of far-field ASR. It is now possible to train deep networks

based on large amounts speech data collected in various reverberant environments with alter-

nate acoustic properties (T60, DRR, source to microphone distance, etc.). In Chapter 4, by

analyzing the propagation of environment-specific (domain) knowledge within the hidden lay-

ers, we demonstrated how a multi-condition trained network learns environmental invariance

during training. It was shown that the network first extracts environment specific features

in the initial front hidden layers, effectively mapping the data from different recording envi-

ronments into separate subspaces of the hidden representation space. The subsequent layers

1Variants of filter-and-sum beamforming can also make use of magnitue information implicitly, but they
have no clear separation for the individual contributions of the phase and magnitude components.
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then use these encoded domain-related cues to compensate for environment-induced differ-

ences, yielding robust output (final layer) representations that are insensitive to recording

conditions.

A remarkable observation was the implicit extraction of this additional domain knowledge

while the network receives no supervision concerning the environment labels during training.

The only supervising information provided to the network is the sequence of phonemes or

characters for each utterance. However, the network implicitly learns that in order to predict

this label sequence correctly, it should first discover clues about the recording environment.

Contribution #3: Developing an improved multi-domain training approach for

DNN acoustic models based on adversarial training with respected to a domain

classifier

Conventional multi-condition training discards any available information regarding the record-

ing environments of the training utterances by compiling all data from different environments

into a single train set. The expectation is that the network is itself able to derive robust

environment-invariant representations in the hidden layers using the supervision based on

label sequences. However, it was shown in Section 4.3.2 that in practice, there is residual

information concerning the recording rooms in the last hidden layer, indicating that the

network has not achieved complete environment invariance. We proposed an improved neu-

ral network training strategy in Chapter 4 which makes use of environment labels during

training to encourage the derivation of shared hidden representations among the different

environments. It was shown that by adjusting the parameters of the initial layers adver-

sarially with respect to a domain recognizer which predicts the environment labels, we can

enforce better invariance to the various recording conditions in the subsequent layer repre-

sentations. The proposed approach was shown to be similar to multi-task learning, where

instead of encouraging discriminant features with respect to an auxilliary task, we encourage
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invariance to recording environments. The proposed multi-domain approach was shown to

provide a relative character error rate reduction of 3.3% and 25.4% using multi-condition

trained and clean-trained baseline models, respectively. Table 4.3 provides a full set of results

from multi-domain experiments.

Contribution #4: Far-field adaptation of DNN-based acoustic models

Adaptation is very useful in reducing the mismatch between train data and a particular test

environment if transcribed utterances are available from the target environment of interest.

Most previously existing adaptation studies for ASR have focused on speaker adaptation and

have been exclusively developed for GMM-HMM models. In Chapter 5, we have presented

adaptation strategies for DNN-HMM hybrid and end-to-end RNN-based acoustic models that

are suitable for environment adaptation. These included environment-specific linear hidden

transformations, KLD-regularized adaptation, and factorized adaptation. These approaches

attempt to use a limited number of transcribed utterances from a specific test environment

in order to update a previously trained model to perform better in the target environment

without overfitting to the adaptation utterances. The formulated adpatation methods were

evaluated in two different scenarios: (i) adaptation of clean-trained models to far-field data,

and (ii) Adaptation of multi-condition (far-field trained) models to specific rooms. It was

shown that a simple linear hidden transformation inserted into the initial layers, particularly

right after the first layer, consistently outperforms other adaptation strategies in both of these

scenarios. This approach provided a relative WER reduction of +16.6% on Aspire challenge

data (the full set of comparative results are provided in Figures 5.3 and 5.4). The improved

gains from transformations inserted in the front layers was justified based on the analysis

provided earlier in Section 4.3 which demonstrated how environment invariance is learned

by a deep network during training. In particular, since environment-specific information

is maximum in the initial hidden layers (most often the first layer), it is easier to carry a
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domain-switch at this stage from the test condition to the average acoustic conditions of

train data.

6.2 Future work

In this dissertation, we have taken a number of major steps toward reducing the gap between

distant-talking and close-talking ASR performance. However, there is still the potential to

further improve performance in order to bring far-field error rates closer to the (currently

satisfactory) level of close-talking ASR. Here, we list a few possible directions to pursue that

are related to the solutions proposed in this dissertation.

Improving robustness of CNTF algorithm to non-stationary additive interefer-

ences

The CNTF algorithm discribed in Chapter 3 was mainly developed to improve reverbera-

tion robustness using distributed microphone arrays. Nonetheless, the presented formulation

based on alpha-beta divergence allows it to be moderately robust to stationary additive noise

as well, due to the flexibility provided by alpha and beta parameters for fitting arbitrary

distributions. However, the presense of non-stationary additive interference can result in

considerable performance degradation in the CNTF algorithm, as the convolutive tensor

model in Equation 3.2 will no longer be accurate. Thus, we need a separate mechanism to

suppress additive interference on individual channels before employing CNTF to derever-

berate and combine channel signals. We studied one possible solution for handling additive

noise in distributed arrays in [107], where sparse decomposition of channel spectra was used

prior to CNTF processing. Alternatively, DNN-based solutions could be used in a regression

setting to remove additive noise if a dataset of parallel noisy/clean utterances is available.
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Adversarial multi-domain training using large datasets with hundreds of different

recording conditions

The formulation provided in Chapter 4 for adversarial training assumed a dataset of far-field

speech recorded in a number of distinct recording rooms. The domain labels in our study

were thus the actual room labels attached to each utterance. This original formulation, how-

ever, does not scale to larger datasets, where millions of utteranes are available from possibly

hundreds of alternate rooms. In such cases, reliable estimation of the domain discriminator

parameters is not possible. Moreover, in many cases, the training set is synthetically gener-

ated by randomly selecting from a large number of simulated RIRs [108]. In such situations,

there are no explicit room labels attached to the utterances. Rather, the training examples

are sampled from a continuous distribution of acoustic parameters such as reverberation time

(T60), DRR, microphone-to-speaker distance, etc. To use adversarial multi-domain training

in such cases, the defined domains should correspond to specific ranges for the acoustic prop-

erties of the environment. For example, the training utterances can be roughly categorized

to low-DRR, moderate-DRR, and high-DRR conditions. Alternatively, we could divide the

range of possible T60 values into fixed intervals (e.g., 100 msec intervals spanning the range

from 0 to 1 second). The domains in this case would correspond to how reverberant the

specific recording environment might be.

Unsupervised DNN adaptation

All of the far-field adaptation approaches discussed in Chapter 5 require accurate human-

provided transcripts for adaptation utterances in order to provide sufficient improvement. In

practice, it is often difficult to obtain transcribed utterances from the test environment. In

contrast, it is fairly easy to collect unlabaled data from specific environments after the system

is deployed in that environment. Therefore, it is desirable to have unsupervised adaptation
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strategies that can provide improvement given only the recorded speech without access to

text trancripts.

In the context of speaker adaptation in close-talking ASR, it is possible to first use

the initial (unadapted) model to decode the adaptation utterances and obtain labels, and

then use these estimated labels as ground-truth during adaptation. However, for far-field

adaptation, the accuracy of the labels provided by the initial decoding is not sufficient to

yield any overall improvement. Thus, alternative approaches are needed for unsupervised

adaptation in far-field scenarios. One possibility is to use unsupervised domain-transfer

strategies similar to [78] that are based on adversarial training. The basic idea in such

approaches is to employ a particular regularization strategy during training which ensures

the distribution of intermediate representations is similar between source and target domain

data. If such a common representation is learned between the two domains, reducing the

loss on source domain data would also improve target domain performance.

Taken collectively, the contribitions developed in this dissertation have advanced system

performance for far-field distance-based ASR, which will have direct impact on speech and

language based voice-enabled technologies, in the home, office, and public domains.
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