
DALI: A COLLABORATIVE, AGENT-BASED

TRAFFIC SIGNAL TIMING SYSTEM

by

Behnam Torabi

APPROVED BY SUPERVISORY COMMITTEE:

Rym Zalila-Wenkstern, Chair

Farokh Bastani

Lawrence Chung

Kang Zhang

Copyright © 2019

Behnam Torabi

All rights reserved

This work is dedicated to my parents and sisters,

for their endless love, encouragement, and support.

DALI: A COLLABORATIVE, AGENT-BASED

TRAFFIC SIGNAL TIMING SYSTEM

by

BEHNAM TORABI, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

SOFTWARE ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

May 2019

ACKNOWLEDGMENTS

I would like to express my most profound appreciation to my supervising Professor, Dr. Rym

Zalila-Wenkstern, who has shown me, by her example, what a professional scientist is. She

has not only been my mentor but also family and a good friend to me. I cannot express

enough thanks to my dissertation committee, Professor Farokh Bastani, Professor Lawrence

Chung, and Professor Khang Zhang for their constructive feedback and expertise, and for

devoting their precious time and effort to serve on my proposal and dissertation defense. I

would also like to express my gratitude to my friends who made this challenging journey

pleasant for me. Finally, I want to thank Mr. Robert Saylor, whose valuable cooperation

enabled me to advance my research.

March 2019

v

DALI: A COLLABORATIVE, AGENT-BASED

TRAFFIC SIGNAL TIMING SYSTEM

Behnam Torabi, PhD
The University of Texas at Dallas, 2019

Supervising Professor: Rym Zalila-Wenkstern, Chair

In this dissertation, we present DALI (Distributed, Agent-based traffic LIghts), a smart

collaborative traffic signal timing system. With DALI, intersection controller agents com-

municate with each other through direct links and do not have a supervising unit to oversee

coordination. By default, they execute a timing strategy that improves traffic flow. At the

same time, they observe and analyze their respective intersections. If, at any given time, an

agent determines that its intersection is congested, it deliberates and defines a new timing

plan. It also determines which direct intersections may be affected by the new timing plan

and communicates with the concerned intersection agents. They in turn communicate with

those agents that may be affected, and the process continues until all affected intersections

are notified. The agents then negotiate and collaborate with one another to ensure that the

traffic flow will be optimized throughout the intersections. DALI was validated by traffic

engineers as well as through extensive simulation of the City of Richardson’s traffic network.

In addition, hybrid simulations (i.e., integration of controllers in the field with the simulator)

were run to verify compliance with the strict traffic regulations. DALI was deployed in a

Richardson, Texas, corridor that includes three major intersections. The data collected for

a period of three weeks shows that in average, DALI reduced delay by 40.12 percent (43.56

percent during weekday peak hours).

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF FIGURES . xi

LIST OF TABLES . xiii

INTRODUCTION . 1

CHAPTER 1 BACKGROUND . 4

1.1 Agents and Multi-Agent Systems . 4

1.2 Traffic Concepts . 4

1.2.1 Components of a Traffic Control System 4

1.2.2 Basic Signal Timing Parameters . 7

1.2.3 Signal Operation Modes . 8

1.2.4 Traffic Signal Coordination . 9

1.3 City Of Richardson . 10

1.3.1 Intelight Controllers . 10

1.3.2 Traffic Management Center . 11

1.3.3 Operation Modes . 11

1.3.4 Detection System . 12

1.3.5 Defining Timing Plans . 13

1.4 Related Works . 13

1.4.1 Optimizations at Network or Sub-Network Level 14

1.4.2 Optimizations at Intersection Level 16

CHAPTER 2 DALI’S ALGORITHMS . 22

2.1 DALI Model . 22

2.2 Model Definitions . 23

2.2.1 Set Definitions . 23

2.2.2 Function Definitions . 24

2.3 Non Congested Traffic Conditions . 25

2.3.1 Communicating Vehicle Arrivals . 26

vii

2.3.2 Queue Length Estimation . 26

2.3.3 Evaluating Timing Plans . 27

2.4 Congested Traffic Conditions . 28

2.4.1 Detecting Congestion . 30

2.4.2 Defining new configuration . 31

2.4.3 Requesting Agents’ Feedback . 32

2.4.4 Computing Level Of Agreement . 32

2.4.5 Special Cases . 34

2.5 Adaptive Assignment of Threshold Values 35

2.5.1 Overview of Reinforcement Learning 35

2.5.2 Agent Algorithms for Adaptive Threshold Assignment 36

CHAPTER 3 CASE STUDY . 39

CHAPTER 4 MATISSE: A SIMULATION SYSTEM FOR AGENT-BASED INTEL-
LIGENT TRANSPORTATION SYSTEMS . 42

4.1 Overview of MATISSE 2.0 . 42

4.1.1 High Level Architecture . 42

4.1.2 Traffic Network Structure . 43

4.1.3 Creating Virtual Agents . 43

4.2 MATISSE 3.0 . 45

4.2.1 Importing Traffic Networks from OpenStreetMap 45

4.2.2 Defining Vehicle Distribution at Initialization Time 48

4.2.3 Defining New Vehicle and Intersection Controller Behaviors 48

4.2.4 Hybrid Simulation . 50

CHAPTER 5 EVALUATION OF DALI’S SIMULATION RESULTS 51

5.1 Metrics . 51

5.2 Simulation Setting . 51

5.3 Experiment 1: DALI with fixed threshold values 52

5.3.1 Experiment 1.1: Normal Traffic Conditions 53

5.3.2 Experiment 1.2: Normal Traffic Conditions With Accident 54

viii

5.3.3 Experiment 1.3: Continuous Random Traffic Conditions 55

5.3.4 Experiment 1.4: Continuous Random Traffic Conditions with Accident 56

5.4 Experiment 2: DALI with Adaptive Threshold Values 57

5.4.1 Experiment 2.1: Assessing Delay . 57

5.4.2 Experiment 2.2: Assessing Changing Values of Threshold a 58

5.4.3 Experiment 2.3: Assessing Changing Values of Threshold g 58

5.5 Experiment 3: Hybrid Simulation . 60

CHAPTER 6 DEPLOYMENT OF DALI . 64

6.1 The Waterview Corridor . 64

6.2 Safety and Monitoring Requirements . 64

6.3 Agent Implementation . 65

6.4 Intelight Controllers . 67

6.5 Agent-Controller Interaction Mechanism . 70

6.6 Executing DALI Agents . 71

6.7 Lessons Learned . 71

CHAPTER 7 EVALUATION OF DALI’S DEPLOYMENT RESULTS 73

7.1 Metrics and Data Collection . 73

7.2 Queue Length . 73

7.3 Delay . 76

7.4 Cost of Delay . 76

CONCLUSION . 79

7.5 Contributions . 79

7.5.1 Model and Algorithm Definitions . 79

7.5.2 Traffic Simulator Feature Development 79

7.5.3 Deployment . 80

7.6 Future Work . 80

7.6.1 Model and Algorithm Definitions . 81

7.6.2 Traffic Simulator Feature Development 81

7.6.3 Deployment . 81

ix

REFERENCES . 83

BIOGRAPHICAL SKETCH . 90

CURRICULUM VITAE . 91

x

LIST OF FIGURES

1.1 Overview Of An Intersection Control System. 5

1.2 Overview Of A Traffic Management System. 5

1.3 Standard Phase Numbers and Induction Loops Area. 7

1.4 Timing Diagram For An intersection With Three Phases 7

1.5 Coordination Of Traffic Signals . 10

1.6 City of Richardson’s roads map. 11

1.7 Intelight Cabinet and Controller (Intelight, 2019). 12

1.8 Induction Loops in City of Richardson. 12

2.1 cn determines rateOut and receives rateIn from cm. 29

2.2 PercentCong of phase phcn,k. 31

3.1 Overview of the network in the case study. 40

3.2 Intersection assigned to c2. 40

4.1 Traffic Network Definition in MATISSE . 43

4.2 Code for vehicle Agent . 45

4.3 Generate an intersection from an OSM file . 46

4.4 An Intersection in Paris and Its Representation in Open Street Map 47

4.5 Vehicle agents perception. a) Circle of Influence b) Vision cones 48

4.6 Four possible actions of a vehicle . 49

4.7 Architecture of the Hybrid Simulation. 50

5.1 2D visualization of Richardson’s Traffic Network. 52

5.2 Average delay using traffic data from the City of Richardson 53

5.3 Average delay with accident in peak morning hours using real traffic data 54

5.4 Average delay for random traffic patterns . 55

5.5 Average delay for random traffic patterns with accidents. 56

5.6 Average delay using traffic data from the City of Richardson 58

5.7 Average Delay For Different Values of a. 59

5.8 Average delay For Different Values of g. 60

5.9 Average Group Size For Different Values of g. 61

xi

5.10 Arterial image of simulated intersections. 62

5.11 Average incoming traffic flow at different times of work days. 62

5.12 Delay Reduction For different traffic flows at different entrances. 63

6.1 Overview of The Corridor. 65

6.2 Overview of Intersections. 66

6.3 DALI Agents Running in the Lab. 67

6.4 a) Status of the intersection in MAXTIME. b) Actions in MAXTIME 67

6.5 a) A day plan in MAXTIME. b) Patterns in MAXTIME 68

6.6 a) The schedule table in MAXTIME. b) Schedule rule for DALI 69

6.7 a) Assignments of input points in MAXTIME. b) Assignments of virtual detectors
for DALI. 69

6.8 a) Status of input points in MAXTIME b) Status of detectors in MAXTIME. . 70

6.9 a) Dayplan for DALI. b) Pattern for DALI . 70

7.1 Traffic Flow Rate for Different Times of the Day. 74

7.2 Queue Length Reduction. 75

7.3 Delay Reduction. 77

7.4 Average delay and cost of the delay for each vehicle at each intersection. 78

xii

LIST OF TABLES

5.1 Number of Signalized Intersection with various incoming and outgoing lanes . . 52

5.2 Number of Non-Signalized Intersection with various incoming and outgoing lanes 52

5.3 Number of Message Exchanges For Different Values of a. 59

5.4 Reduction in Delay for Different Traffic Flows 63

7.1 Distribution of data collection time . 74

xiii

INTRODUCTION

Traffic signals impact virtually everyone every day. Whether on congested or uncongested

routes, traffic signals punctuate every urban trip and have a direct impact on drivers, the

environment, and the economy (Day et al., 2010).

Several Traffic Signal Timing systems (TST) have been proposed by manufacturers, traf-

fic engineers and researchers. The purpose of a TST is to coordinate individual traffic

signals to achieve network-wide traffic operational objectives. A TST usually consists of

several components: a) a number of intersection controllers, i.e., devices which control the

operations of the intersection’s traffic signals; b) a communication network and c) either a

central computer or a hierarchy of computers to manage the system. Coordination is imple-

mented through a number of techniques including time-based and hardwired interconnection

methods.

Modern TSTs rely upon the detection of traffic conditions in real-time to determine effec-

tive signal settings. Generally, conventional TSTs define the traffic signal timing problem as

the optimization of a set of signal timing parameters (e.g., split, cycle length, offset) for an

objective function (e.g., minimizing delay, minimizing travel time, maximizing traffic flow).

Many conventional TSTs have been proposed by traffic engineers and researchers. Fully cen-

tralized TSTs (Hunt et al., 1982; Sims and Dobinson, 1980) allow for efficient coordination of

intersection controllers under normal traffic conditions but do not perform well when major

traffic disruptions occur. Partially centralized TSTs (Mirchandani and Head, 2001; Gartner,

1982) adapt to certain traffic variations within fixed constraints, but require knowledge that

is difficult to obtain in practice. Decentralized TSTs respond quickly to any traffic demand

by generating unconstrained signal timings (Henry et al., 1983) but use complex optimiza-

tion algorithms which severely limit their scalability.

1

The application of the agent paradigm to traffic signal timing has been of interest to

Multi-Agent System (MAS) researchers for some time. Distribution, autonomy and coordi-

nation are agent properties that are naturally suited for the traffic domain. In the context of

traffic signal timing, researchers have proposed the use of a variety of techniques including

game theory (Bazzan, 2005; Cheng et al., 2006), neural networks (Srinivasan et al., 2006;

Chao et al., 2008), fuzzy logic (Collotta et al., 2015; Bi et al., 2014) as well as the com-

monly used Reinforcement Learning (RL). RL-based solutions attempt to address two types

of traffic signal timing problems: non-coordinated and coordinated. In non-coordinated RL-

systems, an agent’s goal is to optimize the signal timing at its intersections only. The lack of

coordination between agents often leads to a degradation of the overall traffic conditions. On

the other hand, in coordinated agent systems, agents implicitly coordinate with their direct

neighbors by sharing their states and intended actions. Given the astronomical number of

states and actions that need to be considered for any realistic traffic model, coordinated

RL systems have no option but to overly simplify the traffic model. Other agent-based sys-

tems using vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communications have been

proposed (Younes and Boukerche, 2016; Dresner and Stone, 2008). Although some of these

approaches provide impressive simulation results (Dresner and Stone, 2008), they are based

on assumptions that do not have their counterparts in the real world. In addition, V2X

communication technologies are still in their infancy and their global deployment is years

away.

In this dissertation, we present DALI (Distributed Agent-based traffic LIghts), a collabo-

rative multi-agent traffic signal timing system for congestion reduction. In DALI, intersection

controllers are augmented with agents which communicate with one another through direct

links. The agents collaboratively adapt signal timings by considering the feedback of all

agents affected by a change. DALI was deployed in the City of Richardson’s Waterview

Parkway corridor at three major intersections. The data collected for a three week period

shows that on average, DALI reduced delay by 40.12%.

2

This dissertation is organized as follows: Chapter 1 gives the background knowledge

for the topic of our research and discusses related works. Chapter 2 presents the DALI’s

model and algorithms. Chapter 3 illustrates the DALI’s operations for congestion reduction

through a detailed case study. Chapter 4 gives an overview of MATISSE (Al-Zinati and

Zalila-Wenkstern, 2015), a multi-agent traffic simulation system and discuss the new features

that were developed for the purpose of this research. Chapter 5 presents experimental results

in simulated and hybrid environments. Chapter 6 discusses the deployment of DALI in the

City of Richardson and Chapter 7 evaluates DALI’s performance in a real-world setting. We

conclude by summarizing our contributions and discussing future work.

3

CHAPTER 1

BACKGROUND

In this chapter we review some background information, starting with definitions of impor-

tant terms used in the field of multi-agent based traffic management systems. Then, we

discuss City of Richardson’s traffic management system and review existing works.

1.1 Agents and Multi-Agent Systems

Agent: A software entity that is situated in an environment, and that is capable of au-

tonomous action within this environment in order to meet its design objectives (Wooldridge,

2009).

Multi-Agent System (MAS): A system that consists of a number of agents, which in-

teract with one another by exchanging messages. In order to successfully interact, agents

require the ability to cooperate, coordinate, and negotiate with each other (Wooldridge,

2009). MAS is responsible for hosting such interaction.

1.2 Traffic Concepts

1.2.1 Components of a Traffic Control System

Traffic signal: A signalling device placed along, beside, or above a roadway to guide, warn,

and regulate the flow of traffic.

Traffic signal controller: An electrical device mounted in a cabinet at the intersection

that controls the operation of traffic signals. In this dissertation, we refer to traffic signal

controllers as intersection controllers.

Detection system: A system for indicating the presence or passage of vehicles using sen-

sors. Examples of sensors include magnetometers, which may be placed underneath a paved

roadway or bridge structure; video image processors that use cameras; microwave radar;

4

5

Figure 1.1. Overview Of An Intersection Control System.

Figure 1.2. Overview Of A Traffic Management System.

ultrasonic, and passive infrared sensors installed on tall poles next to the roadway or traffic

signal mast arms; laser radar sensors installed on structures that span the lanes to be mon-

itored and inductive loop detectors, which are sawcut into the pavement.

Inductive loop detectors: A detection system that responds to the presence of vehicles

on the roadway by relying upon the impact of the conductive mass of the vehicle on the al-

ternating magnetic field of a wire loop. When a vehicle passes over the loop of wire mounted

under the surface of the roadway, it reacts with the alternating magnetic field that is asso-

ciated with that loop. On standard loops, this reaction is a reduction in loop inductance.

The decreased inductance actuates an electronic unit which sends a pulse to the intersection

controller signifying the passage or presence of a vehicle.

Traffic management centers (TMCs): A mission control for an urban area’s major

arterials and highway network. A TMC monitors traffic signals, intersections, and roads

and proactively deploys traffic management strategies to decrease congestion and coordinate

authorities during emergencies and special events. TMCs gather online data through con-

tinuous communication with intersection controllers. An overview of an intersection control

system can be seen in Figure 1.1.

Communications: Wire-line communications have been regularly used to transfer in-

formation between a traffic signal controller and a TMC or other traffic signal controllers.

While this alternative remains, additional options have become available in the last few

years. These include closed-circuit televisions (CCTV), variable message signs, short range

and long range wireless ethernet.

The components discussed above form a Traffic Control System (TCS). TCSs may have dif-

ferent architectures and use various approaches to enhance traffic flow in urban areas. An

overview of a traffic management system can be seen in Figure 1.2.

6

Figure 1.3. Standard Phase Numbers and Induction Loops Area.

Figure 1.4. Timing Diagram For An intersection With Three Phases

1.2.2 Basic Signal Timing Parameters

The definitions given in this section are borrowed from the United States Department of

Transportation manual for traffic signal timing (Koonce et al., 2008).

Movement: A term used to describe a vehicle’s action (e.g., turning or going straight) at

an intersection.

Phase: A group of non-conflicting movements receiving the same signal at the same time.

Standard controllers provide eight phases to serve a standard four-legged intersection (see

Figure 1.3).

7

Interval: A period during which traffic signals do not change.

Vehicular green interval: A time devoted to serving a vehicular phase with a green signal.

Change interval: A yellow signal aiming to warn drivers of the impending change in green

interval assignment.

Clearance interval: A duration in which all phases are red to provide additional time

before the time when the next phase becomes green.

Minimum green: A time which represents the least amount of time that a green interval

can last.

Maximum green: A time which represents the maximum amount of time that a green

interval can last when there is a demand for a conflicting phase.

Split: The time assigned to a phase to be green plus change and clearance intervals (see

Figure 1.4).

Offset: A parameter determining the start and/or the end of a split.

Cycle Length: This is the total time to complete one sequence of signalization around an

intersection.

1.2.3 Signal Operation Modes

Traffic signals operate in either pre-timed or actuated mode or some combination of the two.

Pre-timed Control

In pre-timed mode, intervals are pre-set according to a predetermined schedule, based on

historical traffic patterns. Pre-timed control is ideally suited for closely spaced intersections

where traffic volumes and patterns are consistent on a daily or day-of-week basis, (e.g.,

downtown areas). They are also better suited for intersections where three or fewer phases

are needed.

8

Actuated Control

Actuated control consists of intervals that are called and extended in response to vehicle

detectors. The duration of each phase is determined by detector input and corresponding

controller parameters. Actuated control can be characterized as fully-actuated or semi-

actuated, depending on the number of traffic movements that have detectors.

Semi-Actuated Control

Semi-actuated control uses detection only for the minor movements at an intersection. The

phases associated with the major-road through movements are operated as non-actuated. In

this type of operation, the controller is programmed to dwell in the non-actuated phase and,

thereby, sustain a green indication for the highest flow movements (normally the major street

through movement). Minor movement phases are served after either the presence of a vehicle

is detected or the major movement phase reaches its maximum green time. Controllers that

operate in semi-actuated mode are suitable for isolated intersections with a low-speed major

road and lighter crossroad volume.

Fully-Actuated Control

Fully-actuated control refers to intersections for which all phases are actuated and, hence,

it requires detection for all traffic movements. Fully-actuated control is ideally suited to

isolated intersections where the traffic demands and patterns vary widely during the course

of the day.

1.2.4 Traffic Signal Coordination

To minimize traffic delay, it is desirable that a platoon of vehicles leaving one intersection

arrives at the next intersection during a green interval. This is achieved by coordinating

the operations of adjacent signals. Coordination of traffic signals occurs when a group of

9

Figure 1.5. Coordination Of Traffic Signals

intersection controllers across an arterial are coordinated to allow continuous traffic flow.

Figure 1.5 illustrates the concept of moving vehicles through a series of traffic signals. It

is important to note that in the context of traffic management, coordination correspond to

the setting of the values for the coordination parameters. It does not correspond to the

coordination in multi-agent systems.

1.3 City Of Richardson

The City of Richardson is located fifteen miles north of downtown Dallas and is part of the

Dallas-Fort Worth Metroplex. The city has four major highways, eleven major and 6 minor

arterial roads, and 128 signalized intersections (see Figure ??).

1.3.1 Intelight Controllers

The 128 intersection control computers (intersection controllers) are mounted in cabinets

at intersections (see Figure 1.7). The intersection controllers are manufactured by Intelight

(Intelight, 2019). They run Linux on an ATC-compliant motherboard offering speed, perfor-

mance and multi-thread capabilities. Intersection controllers provide eight phases to serve

10

Figure 1.6. City of Richardson’s roads map.

standard four-legged intersections (Figure 1.3). Controllert-to-Controller communication

links exist but are not used in the current traffic system.

1.3.2 Traffic Management Center

A central traffic management center communicates with the controllers via a WiMAX wire-

less network operating in the licensed 4.9 GHz public safety band with about 2.5 GB/s total

throughput.

1.3.3 Operation Modes

Traffic controllers operate in various modes. During the day, a variety of pre-timed plans

designed to address variable traffic patterns are executed based on traffic conditions. Past

midnight, controllers operate either in pre-timed, semi-actuated or fully-actuated modes

depending on the road types and the existence of a detection system. Minimum greens and

maximum greens are specified by traffic engineers for each phase.

11

Figure 1.7. Intelight Cabinet and Controller (Intelight, 2019).

Figure 1.8. Induction Loops in City of Richardson.

1.3.4 Detection System

Vehicles at an intersection are detected through inductive loops. As mentioned in Section

1.2, an inductive loop is a coiled wire that is formed into a loop and installed under the

surface of roadways at appropriate distances from the stop bar (see Figure 1.8). When a

vehicle passes over the loop or is stopped within its area, a pulse is sent to the traffic signal

controller signifying the passage or presence of a vehicle. The City of Richardson utilizes

12

inductive loops that are either placed right behind the stop bar (i.e., stopbar detectors) or

hundreds of feet farther (i.e., setback detectors) As mentioned above, the vehicles that can be

realistically detected are those that cross the inductive loop area. Outside the induction loop

area, the vehicle positions are not known. In addition, given that detectors are only used

at signalized intersections, vehicles traveling to/from residential or service entries are not

detected. These limitations impose two significant constraints on the traffic timing system:

1. It is not possible to plan for more than a few seconds. This is due to the fact that

observation is limited and it is not possible to accurately predict vehicle arrivals.

2. The system cannot keep a red signal for a long period of time. This is due to the

fact that not all lanes are necessarily equipped with stopbar detectors and therefore

vehicles waiting for a green signal may go undetected.

1.3.5 Defining Timing Plans

The City of Richardson maintains a traffic count program which conducts scheduled counts

on major arterial roads as well as collector streets, i.e., roads which move traffic from local

streets to arterial roads. The traffic counts are used for a variety of purposes including the

definition of coordinated traffic signal timing along arterial streets. In order to define traffic

signal timing plans, traffic engineers assign values to cycle length, offset and splits based on

historical data.

1.4 Related Works

The traffic signal timing problem has been traditionally formulated as an optimization prob-

lem, i.e., finding the optimal (or near-optimal) values for a set of signal timing parameters

with the goal of minimizing an objective function (e.g., vehicle travel time, delay). A plethora

of optimization techniques have been discussed in the literature (Papageorgiou et al., 2003).

13

In addition to the traditional optimal-setting-search-based methods, AI techniques such as

game theory (Bazzan, 2005; Cheng et al., 2006), neural networks (Srinivasan et al., 2006;

Chao et al., 2008), fuzzy logic (Collotta et al., 2015; Bi et al., 2014), and reinforcement learn-

ing (El-Tantawy and Abdulhai, 2010; Abdulhai et al., 2003; Bazzan et al., 2010; El-Tantawy

et al., 2013) have been used to propose solutions to the signal timing problem.

In TSTs, signal timing optimizations are computed at the network/sub-network level or

at the intersection level.

1.4.1 Optimizations at Network or Sub-Network Level

TSTs in this category include the widely-used TRANSYT (TRANSYT, 2019), SCOOT

(SCOOT, 2019) and SCATS (SCATS, 2019), as well as TUC (Diakaki et al., 2002). These

systems are centralized, i.e., controllers are managed by a central or several regional com-

puters whose roles are to select the appropriate signal plans. Traffic data are either collected

over time and then processed (off-line system), or passed onto a computer in real-time (online

system).

TRANSYT is an off-line system which uses historical data to calculate the network’s

performance index and then applies an optimization process to determine whether changes

to the signal settings will improve the index. The main limitation of TRANSYT is the use

of historical data which often results in timing plans that are out-of-date and ill-matched to

the current traffic conditions.

SCOOT (SCOOT, 2019) is an online, centralized TST used worldwide in more than 200

locations (Zhao and Tian, 2012). Traffic data are collected in real-time through road sensors

and passed on to a central computer which predicts queue lengths. The predictions are

passed onto an optimizer which determines the optimal timing. Optimizations take effect

by incrementally updating a fixed-time plan. Both SCOOT and TRANSYT are responsive

control systems with fully centralized control. As such, they are not fit to accommodate

highly dynamic traffic patterns and changes in the traffic network.

14

SCATS (Sydney Coordinated Adaptive Traffic System) (SCATS, 2019) was deployed in

Australia in the late 70s. It has been widely used in countries such as the US, China, Singa-

pore and Ireland (Zhao and Tian, 2012). SCATS is structured as a three-layered hierarchical

system with a control center at the highest level, followed by regional computers in the next

layer and local intersection controllers at the lowest layer. The central computer monitors the

system performance whereas the regional computers execute area-based adaptive strategies.

Local controllers can modify, within certain limits set by their regional master, their inter-

section signal settings in response to local traffic conditions. SCATS was primarily designed

to respond to time-of-day and long-term variations in traffic. This is achieved by increasing

the timings by a few seconds every cycle in response to changes in the traffic conditions.

SCATS makes use of real-time measurements from the intersections’ incoming roads only.

As such SCATS does not perform well when unexpected traffic disruptions occur.

TRANSYT, SCOOT and SCATS were primarily designed to respond to time-of-day

and long-term variations in traffic. Their strategy is based on increasing the timings at

intersections and does not account for shortening or skipping a phase. In addition, SCOOT

and SCATS make use of real-time measurements from the intersections’ incoming roads only.

As such these systems are not adequate to deal with unexpected traffic disruptions.

TUC (Diakaki et al., 2002) is a recent centralized TST which formulates the traffic

control problem as a Linear-Quadratic optimal control problem. TUC considers all traffic

intersections simultaneously through the application of a single matrix equation. Results

show that TUC is able to achieve highly efficient and extremely simple coordinated control

strategies in large traffic networks. Although the system was deployed in the Glasgow area

and has proven to be efficient, its centralized architecture requires that the strategy be

completely re-designed (i.e., all control matrices be re-calculated) when the traffic network

is modified or expanded.

Although partially centralized systems allow intersection controllers to have more decision-

making responsibilities, network-level decisions are still made at higher levels.

15

1.4.2 Optimizations at Intersection Level

TSTs in this category break the signal optimization problem into sub-problems which are

assigned to intersection controllers.

Conventional TSTs with No Coordination

Several academic papers have proposed agent-based solutions where isolated smart intersec-

tion controllers execute decision making algorithms to benefit their respective intersections

(Abdulhai et al., 2003; Mannion et al., 2015a; Chin et al., 2011; Lu et al., 2008; Wen et al.,

2007; El-Tantawy and Abdulhai, 2010). The proposed approaches have been validated on

simple simulated grid networks or single intersections, using simplistic assumptions about

traffic. In addition, optimizations at isolated intersections (without any knowledge about

other intersection states) do not guarantee an optimization at the network level.

Conventional TSTs with Implicit Coordination

UTOPIA (Urban Traffic Optimization by Integrated Automation) (Trafitek, 2019) was devel-

oped by Mizar Automazione in Turin, Italy and has been used in several countries including

Italy, Sweden, Norway and Finland. UTOPIA uses a two-level hierarchical structure. At the

lower intersection level, controllers implement signal timings according to the local traffic

conditions. The higher area level is responsible for setting the network control strategy (i.e.,

weights for all the elements, minimum and maximum length of each stage, and offsets). The

central philosophy of UTOPIA is to provide absolute priority to public transport vehicles

and improve the traffic flow for private vehicles, when possible.

PRODYN’s (Henry et al., 1983) optimization at the intersection level uses improved

forward dynamic programming with constraints on maximum and minimum greens. The

coordination between controllers is implicit. It is performed by a) simulating a specific

intersection output as soon as the optimization is computed, and sending the simulation

16

output to each downstream controller; b) using the output message from upstream controllers

at the next time step to forecast arrivals. Although PRODYN’s approach is conceptually

applicable to an entire set of intersection controllers, the exponential complexity of dynamic

programming limits its applicability to only a few intersections.

OPAC (Optimized Policies for Adaptive Control) (Gartner et al., 2001) was the first

comprehensive strategy to be developed in the U.S. for real-time, adaptive TST. OPAC has

gone through several development cycles ranging from OPAC I to OPAC-VFC (Virtual Fixed

Cycle). OPAC’s intersection controller strategy features a dynamic optimization algorithm

that calculates signal timings to minimize a performance function for delay and vehicle stops.

The controller’s algorithm uses measured as well as predicted traffic data. It determines phase

durations that are constrained only by minimum and maximum green times. Similarly to

PRODYN, OPAC’s earlier versions implement implicit coordination. OPAC suffers from the

limitations of dynamic programming.

Conventional TSTs with Explicit Coordination

In OPAC-VFC, the coordination is explicit and is achieved through communication with a

central system responsible to identify “critical intersections” and optimizing the cycle length

for a group of intersections.

RHODES (Mirchandani and Head, 2001) decomposes the traffic problem into three hier-

archical levels. The highest level is the “dynamic network loading” model which captures the

slow varying characteristics of traffic (e.g., road closures), and the route selection of travelers.

The middle level is the “network flow control” which captures traffic flow characteristics in

terms of platoon of vehicles and their speed. The lower level is the “intersection control”

which captures fast varying traffic characteristics in terms of individual vehicles. Each level

makes use of prediction models.

RHODES and OPAC do not employ defined traffic cycles or signal timing plans. They

utilize traffic flow models that predict vehicle arrivals at the intersection, and adjust the

17

timing of each phase to optimize an objective function. Because they emphasize traffic pre-

diction, these systems can respond to the natural statistical variations in traffic flow as well

as to flow variations caused by traffic incidents or other unpredictable events. Intersection

control equipment for these systems is more complex and not readily available in the field.

AI-Based TSTs

With respect to intersection-level TSTs that implement AI-based techniques, most recent

approaches are research-oriented and heavily based on the use of the multi-agent system

paradigm. The core concept for these systems is that intersection controllers are controlled

by autonomous software agents that are capable of interacting with one another to achieve

a local or global goal. Models and architectures have been presented (France and Ghorbani,

2003; Roozemond, 2001; Mashayekhi and List, 2015), and solutions with various techniques

have been discussed in the literature (e.g., game theory (Bazzan, 2005; Bui et al., 2017;

Elhenawy et al., 2015; Cheng et al., 2006; Chen and Ben-Akiva, 1998; Zohdy and Rakha,

2012; Zhen-long, 2003; De Oliveira et al., 2005; Sun et al., 2006), neural networks (Ghanim

and Abu-Lebdeh, 2015; Chao et al., 2008; Srinivasan et al., 2006; Saito and Fan, 2000), fuzzy

logic (Collotta et al., 2015; Bi et al., 2014; Kosonen, 2003), reinforcement learning (Li et al.,

2016; Bazzan et al., 2010; El-Tantawy et al., 2013; Mannion et al., 2015b; Teodorović et al.,

2006; Dong et al., 2005; Abdulhai et al., 2003)). Unfortunately, these solutions are based

on assumptions that simplify the traffic signal optimization problem and were validated on

simple networks. Only a very few multi-agent solutions have considered the full spectrum of

real-world traffic constraints and were validated on simulated models of real cities. Emerging

RL approaches have been shown to be well-fitted to TST systems (Bazzan, 2009). Therefore,

we restrict our discussion to the systems in which agents are placed in intersection controllers

and implement RL approach. Detailed discussions of agent-based TSTs can be found in

(Chen and Cheng, 2010; Bazzan and Klügl, 2014; Araghi et al., 2015; Liu, 2007; Li et al.,

2014; Mannion et al., 2016; Yau et al., 2017; Chin et al., 2011).

18

In (Bazzan et al., 2010) Bazzan et al. used a multi-agent reinforcement learning approach.

The multi-agent reinforcement learning problem considers not individual states and actions,

but joint states and actions, for any number of agents. The general approach naturally leads

to an exponential number of < state, action > pairs. In order to address this problem,

Bazzan et al. propose to partition the set of intersection controller agents into groups of

three and assign a supervisor agent to the group to determine possible joint actions. For the

sake of preventing a combinatorial explosion in the number of < state, action > pairs, each

intersection can only be in one of three “coarse-grained” states. Every sixty seconds, each

intersection controller determines its < state, action > pair. The supervisor who observes the

agents retrieves a set of actions that yielded maximum rewards in the past and communicates

it to the agents. Experiments using a grid-structured road network composed of 64 nodes

(i.e., intersections) connected through unidirectional links (i.e., one way road) were run.

Even though the experiments show an improvement over the author’s single-agent approach

(Bazzan et al., 2010), the assumptions make this work unfit for real-world traffic systems.

The basic premises of RL-based approaches is that traffic signal timing is not pre-defined

but agents learn the appropriate traffic signal settings. In (Dusparic and Cahill, 2012), Dus-

paric and Cahill discuss DWL, a multi-agent RL-based algorithm for multi-policy optimiza-

tion. In DWL, agents collaborate to satisfy multiple heterogeneous policies simultaneously

(e.g., prioritize buses, reduce pollution). An agent uses a combination of Q-learning and W-

learning processes for each of its local policies, and to learn the suitability of its actions for

each of its direct neighbor’s policies. Collaboration is implicit and restricted to immediate

neighbors. It is achieved through the concept of “remote policy”. With respect to traffic

signal timing, the authors state that the optimization is related to phase selection but no

detail is provided about the process. The emphasis of this paper is more on the RL-based

multi-policy optimization than signal timing optimization. DWL was evaluated on a sim-

ulated map of Dublin’s inner city including 62 signalized intersections. The policies used

19

in the evaluation are a policy that optimizes global waiting time and a policy that prioti-

tizes public transport vehicles. Experiments that were run using artificially generated data

show that DWL outperforms the traditional fixed-timed approach and the Simple Adaptive

Technique (Richter, 2006).

In (Dusparic et al., 2016), the authors extend DWL to consider the optimization of

phase duration. This optimization is only possible if more fine-grained traffic data (i.e.,

precise traffic counts) are available. The extended DWL, called REALT, was evaluated in

VISSIM (PTV-Group, 2018) on a simulated model of Cork City comprising six intersections.

The same policies as in (Dusparic and Cahill, 2012) were implemented. Experiments that

were run using real-world data show that REALT outperforms SCOOT in terms of delay

and number of stops.

El-Tantawy et al. (El-Tantawy et al., 2013) present a coordinated multi-agent reinforce-

ment learning architecture called MARLIN-ATSC. In MARLIN-ATSC, agents can operate

in either independent or integrated mode. Coordination is implicit and achieved through

multi-agent modular Q-learning. In modular Q-learning, the state space is partitioned into

partial state spaces comprising of two agents. An agent learns a joint policy with only one

of it direct neighbors. With respect to traffic signal timing, the optimization is related to

the selection of a phase among a set of pre-defined phases. MARLIN-ATSC was tested

on a simulated network of the Lower Downtown Toronto network comprising 59 intersec-

tions. Real-world data for about 25000 vehicle trips during morning peak hours were used

to evaluate the system. Experimental results show that MARLIN-ATSC reduces the aver-

age intersection delay compared to a basic signal timing used by the City of Toronto. The

main drawback of MARLIN-ATSC is the assumption that an intersection controller can only

consider the interest of one immediate neighboring controller.

In addition to the limitations discussed above, both (El-Tantawy et al., 2013) and (Dus-

paric et al., 2016) assume that the systems may have variable phasing sequence. While this

20

assumption may be reasonable in a simulated environment, it is not acceptable in a real-

world setting (Koonce et al., 2008). A variable phasing sequence can lead to endless greens

for phases with continuous demand.

This dissertation advances the state-of-the-art as follows:

1. It discusses DALI, a collaborative multi-agent traffic signal system where: i) collabo-

ration between agents is explicit (i.e., through communication and negotiation); ii) the

collaboration scope is not limited to direct neighbors and is defined dynamically based

on traffic conditions.

2. Agents communicate with one another through direct links and do not have a super-

vising component to oversee coordination.

3. DALI was thoroughly validated through simulation on a realistic model of a city’s

traffic network comprising of 1365 road segments and 128 intersections. It was also

validated through hybrid simulation.

4. DALI’s model follows a“plug-and-play” approach where agents are plugged into exist-

ing intersection controllers and can be turned on and off.

5. DALI was deployed and field-tested. The deployment considered safety constraints.

6. We share the lessons learned in developing and deploying a collaborative multi-agent

traffic signal system.

To our knowledge, DALI is the first collaborative multi-agent based system to be field-

tested in the US.

21

CHAPTER 2

DALI’S ALGORITHMS1

In this chapter, we start by giving an overview of DALI’s model and then present the detailed

algorithms of DALI’s agents.

2.1 DALI Model

In DALI, agents communicate with each other through direct links and do not have a super-

vising agent to oversee coordination. Agents have knowledge of the traffic network topology.

They receive information about the incoming traffic flow from their neighboring controllers

and determine the outgoing traffic flow based on the data sensed by their inductive loops

(see Figure 2.1). Intersections are assigned weights to indicate their criticality in the traffic

network.

Agents continuously exchange the information of detected vehicles and use it to compute

all possible timing plans for the near future (i.e. observable horizon). For an intersection cn,

observable horizon is defined as the duration of travel to cn, from its farthest neighbor with

the maximum allowed speed. A plan include a sequence of phase combinations and the start

and the end of their green interval. The agent considers timing configuration (e.g. agreed

split, minimum and maximum green, yellow and all red intervals) in the computation of the

possible plans. Then, agents assign a score to each plan based on the queue length of its

road lanes and the estimated vehicle arrivals. They finally execute the best plan and start

the process over immediately.

At any given time, if an agent determines that its intersection is congested, it deliberates

and defines a timing configuration to alleviate congestion by adjusting splits. Then, it

1©2018 IEEE. Portions Adapted, with permission, from Behnam Torabi, Rym Z. Wenkstern, and Robert
Saylor. “A Self-Adaptive Collaborative Multi-Agent based Traffic Signal Timing System.” In Proceedings
of the 4th IEEE International Smart Cities Conference, ISC2 2018, September 2018.

22

broadcasts the configuration to the neighboring agents. Upon receipt, the agents evaluate

the configuration by calculating its effect on each outgoing road of their intersection. They

communicate the information with the affected neighboring agents. And the process iterates

until it either reaches a) an intersection within the city boundaries for which the effect of the

request is below a threshold or b) an exit junction at the city’s boundaries. The information is

then propagated back, and at each stage of the propagation, the agents consider each other’s

feedback for their decision on their level of agreement with the configuration, i.e., a value

which indicates the extent at which an agent can agree with the terms of the configuration.

The initiating agent then decides whether to execute or ignore the configuration. It proceeds

by informing the agents of its final decision and, in case the configuration is to be applied.,

requests that they update their timing.

2.2 Model Definitions

2.2.1 Set Definitions

� T = {t1, .., ti} is the set of time-stamps at which traffic conditions are evaluated.

� C = {c1, .., cn} is the set of intersection controllers. An intersection controller cn is

assigned a weight ω which corresponds to its priority in the road network.

� Rd = {rc1,c2 , .., rcm,cn} is the set of road segments between intersections. A road seg-

ment rcm,cn is defined in terms attributes such as length l, speed limit sl and a set of

lanes LNrcm,cn
= {ln1..lnq}.

� LTrcm,cn .lnw is the set of lanes that are accessible from rcm,cn .lnw .

� LFrcm,cn .lnw is the set of lanes that have access to rcm,cn .lnw .

� Each lane rcm,cn .lnw has a detector rcm,cn .lnw.d. The detector rcm,cn .lnw.d could be

either setback bk or stopbar tr.

23

� PHcn = {phcn,1, ..phcn,k} is the set of phases for the intersection controlled by cn. A

phase phcn,k is defined in terms of γ, the split time, ν, the minimum green time, η, the

maximum green time, ε, the yellow time, ξ, the red time and LNphcn,k
, the set of lanes

it applies to.

� A PlanItem is defined as a combination of non-conflicting phases, the start (tstart)

and the end (tend) of the time that they get green, and duration, the duration of green.

� A Plan is a sequence of PlanItem.

� SPlan is a real value that represents a plan’s score.

� V Lrcm,cn
= v1, .., vk is the set of vehicles that will arrive at intersection n from rcm,cn .

� EVENT,EV T,Ind indicates an event at the intersection. An event EV happens for entity

ENT phase or detector. For a phase, the event type EV T is green, yellow or red.

For a detector, EV T is active or inactive. Ind specifies the index of the occurrence of

the same event in the past. For example, EVphcn,k,green,2 refers to the past second time

that phase phcn,k was green.

� Gap is a constant that represents the maximum time gap between consecutive vehicles.

2.2.2 Function Definitions

� p(rcm,cn .lnw, rcn,cp) is the probability that a vehicle exiting lane w in road segment rcm,cn

enters the road segment rcn,cp . This probability is computed by traffic engineers based

on historical data.

� p(rcm,cn , rcm,cn .lnw) is the probability that a vehicle which enters road segment rcm,cn ,

leaves it from lane w. This probability is also computed by traffic engineers based on

historical data.

24

� t(EVENT,EV T,Ind) is the time that event EVENT,EV T,Ind has happened.

� q(phcn,k, t) is the queue length of phase phcn,k at time t. It is computed as the sum of

queue lengths of the lanes that phcn,k controls.

� passed(EVphcn,k,red,1, rcm,cn .lnw.d) is the number of vehicles that passed over detector

rcm,cn .lnw.d while its phase was red.

� passedNS(EVphcn,k,green,1, rcm,cn .lnw.d) is the number of vehicles that have continuously

passed detector rcm,cn .lnw.d since the phase got green.

� rateOut(rcm,cn .lnw) is the rate of vehicles (per second) that leave the intersection

through lane w of road segment rcm,cn .

� rateIn(ti, rcm,cn) is the rate of vehicles (per second) that enter road segment rcm,cn in

the evaluation interval τ that ends at time ti.

� ξti,rcm,cn .lnw is the traffic throughput for lane rcm,cn .lnw, i.e., the ratio of vehicles getting

in and leaving the lane. It is defined as:

ξti,rcm,cn .lnw =
rateIn(ti, rcm,cn)

rateOut(ti, rcm,cn .lnw)
× p(rcm,cn , rcm,cn .lnw)

2.3 Non Congested Traffic Conditions

On a continuous basis, agent cn uses the information received, the observations and the

timing configurations (e.g., minimum and maximum green, yellow and all red intervals) to

compute possible timing plans for the observable horizon. A timing plan Plan includes a

sequence of phase combinations as well as the start and end of their green intervals, and

the green duration. Once the timing plans are computed, agent cn assigns a score to each

plan based on its phases’ estimated vehicle arrivals and the phases’ estimated queue lengths.

Then, cn executes the plan with the lowest score and re-starts the process immediately.

25

2.3.1 Communicating Vehicle Arrivals

With respect to vehicle arrivals, cn continuously exchanges information about detected ve-

hicles with its neighbors (see Algorithm 1). For instance, when phase phcn,k that controls

rcm,cn .lnw is green, cn sends a message about vehicle arrival to the neighboring agents that are

accessible from rcm,cn .lnw under the following conditions: 1) cn has not sent the information

of a detected vehicle on this lane in the last Gap seconds. 2) The queue length of rcm,cn .lnw is

greater than zero or detector rcm,cn .lnw.d gets deactivated. For each neighbor cp the message

contains the detection time and p(rcm,cn .lnw, rcn,cp). Agent cn estimates the arrival of vehicles

for its phases based on the information that it receives from its own neighbors.

Algorithm 1: Communicate Detected Vehicles

Require: PHcn , t
1: for all phcn,k ∈ PHcn do
2: for all rcp,cn .lnw ∈ LNphcn,k

do
3: if HasNotSentInTheLastGapSeconds then
4: if phcn,k 6= red then
5: if q(rcm,cn .lnw, t) > 0 then
6: Send(cm, t, p(rcp,cn .lnw, rcn,cm))
7: end if
8: else
9: if t(EVrcp,cn .lnw.d,inactive,1) < GAP) then

10: Send(cm, t, p(rcp,cn .lnw, rcn,cm))
11: end if
12: end if
13: end if
14: end for
15: end for

2.3.2 Queue Length Estimation

With respect to queue length, cn estimates the queue length of lane rcm,cn .lnw based on its

detector type (i.e., stopbar or setback) and the status of its phase phcn,k (i.e., green, red,

yellow). In case the detector is of type stopbar and phcn,k is green, then the queue length of

26

lane rcm,cn .lnw at time t is estimated as:

q(rcm,cn .lnw, t) = q(rcm,cn .lnw, t(EVphcn,k,g,1))

−passedNS(EVphcn,k,green,1, rcm,cn .lnw.d)

If phcn,k is red, the queue is computed as:

q(rcm,cn .lnw, t) = rateOut(rcm,cn .lnw)

∗(t− t(EVphcn,k
, r, 1))) + q(rcm,cn .lnw, t(EVphcn,k,r,1))

In case the detector is of type setback and phase phcn,k is green, then the queue length of

rcm,cn .lnw is estimated as:

q(rcm,cn .lnw, t) = q(rcm,cn .lnw, t(EVphcn,k,g,1))

−(GAP × (t− t(EVphcn,k,g,1)))

When phcn,k is red, the queue is computed as:

q(rcm,cn .lnw, t) = passed(EVphcn,k,red,1, rcm,cn .lnw.d)

+q(rcm,cn .lnw, t(EVphcn,k,r,1))

2.3.3 Evaluating Timing Plans

Agents continuously generate all possible timing plans concerning its timing configuration.

It then uses the algorithm 2 to evaluate possible plans. Agent cn assigns a score to each

plan. This score is computed as follows: For each PlanItem in Plan, for each phase phcn,k

that is not in PlanItem:

SPlan ← SPlan + q(phcn,k, t)× PlanItem.duration

Also, for each road lane rcm,cn .lnw in LNphcn,k
, and vehicle arrival vk in V Lrcm,cn

, if vk.arrival

is between PlanItem.tstart and PlanItem.tend:

SPlan ← SPlan + (PlanItem.tend − vk.arrival)

×p(rcm,cn , rcm,cn .lnw)

Finally cn executes the plan with the lowest score and re-starts the process immediately.

27

Algorithm 2: Evaluate Plans

Require: Plan, t
1: SPlan ← 0
2: for all phcn,k ∈ PHcn do
3: qphcn,k

← q(phcn,k, t)
4: Sphcn,k

← 0
5: for all PlanItemPI ∈ Plan do
6: if phcn,k ∈ PI then
7: qphcn,k

← max(qphcn,k
−GAP × PI.durtion, 0) else

Sphcn,k
← Sphcn,k

+ (qphcn,k
× PI.durtion)

8:9: for all rcm,cn .lnw in LNphcn,k
do

10: for all vk in V Lrcm,cn
do

11: if vk.arrival < PI.tend then
12: if vk.arrival > PI.tstart then
13: del← (PI.tend − vk.arrival)
14: del← del × p(rcm,cn , rcm,cn .lnw)
15: Sphcn,k

← Sphcn,k
+ del

16: Sphcn,k
← Sphcn,k

+ SC
17: end if
18: end if
19: end for
20: end for
21: end if
22: end for
23: SPlan ← SPlan + Sphcn,k

24: end for

2.4 Congested Traffic Conditions

In DALI, agents collaborate with one another to dynamically respond to traffic changes. In

this section, we discuss the agent algorithms at the basis of the collaborative approach. The

algorithms make use of thresholds a, b, h, d, e, f and g which are assigned values based on

historical traffic data.

28

29

Algorithm 3: Controller Congestion Reduction

Require: PHcn , ti
1: for phcn,k ∈ PHcn do
2: EvaluateTraffic(phcn,k, ti : TotalInstCong)
3: if TotalInstCong

b
> d then

4: GenerateP lan(phcn,k, ti : confnew)
5: RequestForEvaluation(phcn,k, confnew : Ψcn)
6: if Ψcn > h then
7: ExecuteP lan(confnew)
8: end if
9: end if

10: end for
11: if ReceiveRequestForEvaluation(cp, κrcp,cn , κphcq,j) then
12: ComputeLevelOfAgreement(κrcp,cn , κphcq,j)
13: end if
14: if ReceiveRequestForExecution(cp, confnew) then
15: AdjustT iming(confnew)
16: end if

Figure 2.1. cn determines rateOut and receives rateIn from cm.

2.4.1 Detecting Congestion

Intersection controller cn continuously evaluates the traffic state by executing Algorithm 3

to determine if a re-timing operation is necessary. As shown in Figure 2.1, at each ti, cn

receives rateIn (determined by its neighbors’ detectors) and determines rateOut. At time ti,

Algorithm 4: Evaluate Traffic

Require: phcn,k, ti
1: TotalInstCong ← 0
2: for j = 0 to b do
3: δ = 0
4: for rcm,cn .lnw ∈ LNphcn,k

do
5: δ ← ξti−j,rcm,cn .lnw + δ
6: end for
7: Congti,phcn,k

← δ
8: if Congti,phcn,k

≥ a then
9: TotalInstCong ← TotalInstCong + 1

10: * TotalInstCong Represent Sum Over InstantCongestion
11: end if
12: end for

controller cn computes Congti,phcn,k
as the average throughput for the set of lanes controlled

by phcn,k (see Algorithm 4).

Congti,phcn,k
=

∑
rcm,cn .lnw∈LNphcn,k

ξti,rcm,cn .lnw

If Congti,phcn,k
is greater than threshold a, then cn considers that there is an instant

congestion and assigns the value of 1 to InstantCongestion defined as:

InstantCongestionti,phcn,k
=


1 Congti,phcn,k

≥ a

0 Congti,phcn,k
< a

It proceeds by considering the past b evaluation cycles to determine the percentage of

evaluation cycles in which the phase was congested (see Figure 2.2). This is defined as:

PercentCongti,phcn,k
=

∑i
j=i−b InstantCongestiontj ,phcn,k

b
× 100

30

Figure 2.2. PercentCong of phase phcn,k.

If PercentCongti,phcn,k
> d then the road lanes controlled by phcn,k are considered to be

congested.

2.4.2 Defining new configuration

The controller deliberates to determine the value of a new split that will alleviate congestion

on phcn,k. This is achieved in step 7 of Algorithm 5. The value of the new split is calculated

by agent as:

confnew.phase.γ = confcur.phase.γ × (e+

∑i
j=i−ν Congtj ,phcn,k

ν
× f)

e and f are coefficients that can be calibrated. They regulate the influence of the traffic

throughput and the current split time for the new split time. Values of cycle length and

offset change with respect to the new split. If confnew.phase.γ is greater than the maximum

allowed split time γMAX defined for phase phcn,k as:

phcn,k.γMAX = phcn,k.η + phcn,k.ε+ phcn,k.ξ

then its value is set to phcn,k.γMAX (step 9).

31

Algorithm 5: Compute New Configuration

Require: phcn,k, ti
Ensure: confnew

1: confnew.phase← phcn,k
2: χ← 0
3: for j = i− ν to i do
4: χ← χ+ Congtj ,phcn,k

5: end for
6: χ← χ

ν

7: confnew.phase.γ ← confcur.phase.γ ∗ (e+ χ ∗ f)
8: if confnew.phase.γ > phcn,k.γMAX then
9: confnew.phase.γ ← phcn,k.γMAX

10: end if

2.4.3 Requesting Agents’ Feedback

cn determines the impact of executing the new configuration on the neighboring intersections

in terms of κ, the increment in vehicle rate. κrcm,cn .lnw is calculated for road lane rcm,cn .lnw

as:

κrcm,cn .lnw =
rateOut(ti, rcm,cn .lnw)

confnew.phase.γ
× (confnew.phase.γ − confcur.phase.γ)

κphcn,k
for a phase phcn,k is defined as the sum of κrcm,cn .lnw for the set of lanes controlled by

the phase (Algorithm 6, Step 3). In the same way, κrcn,cp
for a road segment rcn,cp , is the

sum of κrcn,cp .lnw (Algorithm 6, Step 10).

Controller cn proceeds by sending confnew, κrcn,cp
and κphcn,k

to each adjacent controller cp

for evaluation. κphcn,k
corresponds to the increment in the rate of vehicles that exit the road

lanes controlled by phcn,k, in case the new configuration is to be executed. κrcn,cp
corresponds

to the portion of κphcn,k
that goes to road segment rcn,cp .

2.4.4 Computing Level Of Agreement

Upon receipt of a new configuration, cn’s neighboring controller cp computes κrcp,cq for each of

its neighbor controllers cq and requests that they each evaluate the configuration. The process

32

Algorithm 6: Request for Evaluation

Require: phcn,k, confnew
Ensure: Ψcn

1: κphcn,k
← 0

2: for rcm,cn .lnw in LNphcn,k
do

3: κphcn,k
← κphcn,k

+ κrcm,cn .lnw

4: end for
5: Ψcn ← 0
6: for accessible neighbor cp , in parallel do
7: κrcn,cp

← 0
8: for rcm,cn .lnw ∈ LNphcn,k

do
9: for rcn,cp .lnu ∈ LTrcm,cn .lnw do

10: κrcn,cp
← κrcn,cp

+ (p(rcm,cn .lnw, rcn,cp .lnu)× κrcm,cn .lnw)
11: end for
12: end for
13: Send(cp, κrcn,cp

, κphcn,k
)

14: Receive(cp, Ψcp)
15: Ψcn ← Ψcn + Ψcp

16: end for

propagates until at a given intersection, either the value of κ is smaller than threshold g or

the configuration reaches the road network boundaries. Following this step and recursively,

each controller sends back its level of agreement in terms of a real number Ψ, to the controller

from which it has received the request. An intermediate controller, cp, calculates Ψcp based

on the existing traffic throughput, its priority ω and the ratio of the received additional

vehicle throughput (see Algorithm 7). x, y and z are coefficients that calibrate the influence

of variables in Ψ. After receiving the level of agreement from all affected neighbors, cp adds

them to its own level of agreement Ψcp and sends the value back to cn. The final decision

is made based on the value of Ψcn representing the opinion of all affected controllers in the

network.

33

Algorithm 7: Compute Level Of Agreement

Require: κrcn,cp
, κphcn,k

Ensure: Ψcp

1: Ψcp ← 0
2: for rcn,cp .lnu ∈ LNrcn,cp

do

3: Ψcp ← Ψcp + x× ω(cp)×
κrcn,cp

κphcn,k

× (y − z × (κrcn,cp
+rateIn(ti,rcn,cp) ×p(rcn,cp ,rcn,cp .lnu)

rateOut(ti,rcn,cp .lnu)
)

4: end for
5: for accessible neighbor cq from cp , in parallel do
6: κrcp,cq ← 0
7: for rcn,cp .lnu ∈ LNrcn,cp

do
8: for rcp,cq .lnf ∈ LFrcn,cp .lnu do
9: κrcn,cp

← κrcn,cp
+ p(rcn,cp , rcn,cp .lnu)× p(rcn,cp .lnu, rcp,cq .lnf)× κrcn,cp

10: end for
11: end for
12: if κrcn,cp

> g then
13: Send(cq, κrcn,cp

, κphcn,k
)

14: Receive(cq, Ψcq)
15: Ψcp ← Ψcp + Ψcq

16: end if
17: end for
18: Send(cn, Ψcp)

2.4.5 Special Cases

During the execution of the scenario discussed above, several exceptions may occur. These

include the following:

1. A controller may receive more than one configuration to evaluate at the same time.

In this case, the controller evaluates the configuration sent by the controller with the

highest priority and halts the evaluation of other configurations. If the configurations

were sent by neighbor controllers having the same level of criticality, the controller

selects one according to a pre-defined criteria, e.g., the smaller controller ID.

2. A controller may receive more than one request to evaluate the same configuration. In

the example mentioned above, executing c2’s configuration will increase the throughput

34

of both rc2,c3 and rc5,c3 . This will result in c3 receiving an evaluation request first from

c2 and then from c5. Controller c3 evaluates the request from c2 and stores the received

additional throughput value. Then c3 considers the stored value to evaluate the request

of c5.

3. A controller may lose connection from the network and stop responding to requests

of evaluation. In this case, other agents assume that the disconnected agent fully

disagrees with any retiming configuration.

4. When a configuration gets rejected, the main agent generates a new configuration by

reducing the split of the rejected configuration and asking other agents to evaluate the

new configuration.

5. After executing a new timing configuration, when the traffic situation goes back to

normal, the main agent switches back to the original timing configuration and asks

other agents to do the same.

2.5 Adaptive Assignment of Threshold Values

2.5.1 Overview of Reinforcement Learning

Reinforcement Learning (RL) allows software agents to learn using temporal learning with-

out the need for external supervision. Several approaches for temporal learning have been

proposed. Most traffic signal controllers discussed in the literature use Q-learning.

At time t, an agent observes its environment modeled as a Markov Decision Process. Based

on the observed environment state s ∈ S, it takes an action a ∈ A and then receives a

delayed or discounted reward at time t+ 1.

The Q-value of a <state,action> pair represents the appropriateness of taking action a

in state s in the long term. It is maintained in a Q-table with |S| × |A| entries using the

Q-function.

35

During action selection, an agent selects the best known action that maximizes value

function V (s) = maxa∈AQ(s, a). After the execution of an action, the agent uses the Q-

function to update its Q-value based on the maximum Q-value of the next state s′. The Q

function is commonly defined as:

Q(s, a)← (1− α)Q(s, a) + α(r(s′) + γmax
a∈A

Q(s′, a))

where α is the learning rate that controls how fast the reward values are modified, 0 <

γ < 1 is the discount factor that controls how far the algorithm looks into the future, and

γmaxaQ(s′, a) is the highest possible accumulated reward expected to be received.

At the start of the system, an agent initializes the Q-values to a fixed value. Then, it

continuously selects the action with the maximum reward in the current state and updates

the previous estimates of Q-values.

2.5.2 Agent Algorithms for Adaptive Threshold Assignment

The algorithms discussed in Section 2.4 assign fixed values to various thresholds (i.e., a, b, h,

d, e, f and g) based on historical data. In order to make the collaboration process between

agents more adaptive, it is necessary that the agents adjust the values dynamically. In this

section we discuss how an RL-based approach is used to dynamically select favorable values

for thresholds a, d and g. As mentioned in Section 2.4, threshold a controls the agent’s

sensitivity to detecting congestion. The lower the values of a, the higher the likelihood

for an agent to detect congestion. Threshold d controls the time duration that a phase

should be flagged as congested in order to be considered as congested. Finally, g controls

the collaboration scope. With lower values of g, a higher number of agents will be involved

in the decision-making for a new timing plan.

36

Environment State

Given that queue lengths are not measurable in a real-world TST, we use the traffic flow

rate to define the environment state. As mentioned in Section 2.4, at time ti, the traffic flow

rate for road segment rcm,cn is defined as:

ξrcm,cn .lnw(ti, τ) =

rateIn(ti, τ, rcm,cn)∑
rcm,cn .lnw∈LNrcm,cn

rateOut(ti, τ, rcm,cn .lnw)

The environment state for each intersection controller cn is the set of states of its incoming

roads. In order to avoid the state-action dimensionality problem inherent to RL approaches,

we assign the rates of low, medium or high to the traffic flow rates, based on their values.

Action Selection

An agent cn’s action is to assign a value to a threshold. In order to avoid the dimensionality

problem, we only allow the assignment of specific values for a, d, and g. These correspond to

values which are meaningful in a real-world setting and were derived from experimental data.

For example, d which represents the duration that a phase should be flagged as congested

in order to be considered as congested, can take the values of 25%, 50%, 75% or 99%. This

means that, for the case d is given the value of 75, a controller cn – which analyzed the

state of phase phcn,k for the past x minutes and found that 75% of the time the phase was

congested – will change the phase status to congested. a can take values of {0.5, 1, 1.5, 2},

and g values of {0.01, 0.2, 0.4, 0.6}.

Rewards

We consider two reward types.

Rewards for minimizing delay (rD). This reward is used to update the Q-values of a, d and

g. Reward rD is defined as the variation in the traffic flow rate. For road segment rcm,cn in

37

the time interval τ (e.g., three minutes) that ends at time ti, ξrcm,cn
(ti, τ) is defined as the

sum of traffic flow rates of its lanes.

Intersection controller cn computes the reward of an action act at time ti and state s as:

rD(act, s, ti) = ξrcm,cn
(ti, τ)− ξrcm,cn

(ti + τ, τ)

Rewards for controlling collaboration scope (rC)

This reward is used together with reward rD to update the Q-value of threshold g. Reward

rC is computed as:

rC(act, s, ti) = rD(act, s, ti) + (1− 2× Nplannew

N
)

where Nplannew is the number of intersections that are involved in the decision about the

new plan and N is the total number of intersections in the network.

38

CHAPTER 3

CASE STUDY

To illustrate the various steps of DALI algorithms, we use a section of the City of Richardson’s

road network (See Figure 3.1). As shown in Figure 3.2, c2 has four incoming roads. The four

phases for c2’s intersection are {phc2,1, phc2,2, phc2,3, phc2,4}. These phases apply as follows:

phc2,1 for rc6,c2 , phc2,2 for rc3,c2 , phc2,3 for rc5,c2 and phc2,4 for rc1,c2 . The phases have the

following attribute values: the split γ = 40, the minimum green ν = 20, the maximum green

η = 60. Thresholds a, b and d have the values of a = 0.6, b = 100 and d = 80. In

this example, c2 evaluates the status of its intersection at the time-stamp t4100 and within

the time interval τ = 500. It starts with phase, phc2,1 and calculates the average traffic

throughput Congt4100,phc2,1 for the set of road lanes that phc2,1 controls. Given that rateOut-

(t4100, 500, rc6,c2 .ln3) = 0.8, p(rc6,c2 , rc6,c2 .ln3) = 0.2 and rateIn(t4100, 500, rc6,c2) = 2.4, the

value of ξt4100,500,rc6,c2 .ln3 is:

ξt4100,500,rc6,c2 .ln3 = 2.4×0.2
1

= 0.48

For the sake of illustration, we assume that Congt4100,phc2,1 = 0.83 which is greater than

threshold a = 0.6. Controller c2, then retrieves the calculated values of Cong between time

stamps t4100 and t4000 and finds that 91 of them are greater than a. Therefore,

PercentCongt4100,phc2,1 = 91
100
× 100 > 80

Consequently, c2 detects congestion on phase phc2,1 and deliberates to define a new configu-

ration.

We assume that the average Cong for phase phc2,1 in the last ν = 10 evaluation cycles is

0.9. Given that e = 1 and f = 0.33, c2 defines a new configuration for phc2,1, and computes

confnew.phase.γ as:

39

40

Figure 3.1. Overview of the network in the case study.

Figure 3.2. Intersection assigned to c2.

confnew.phase.γ = 40 + (1 + 0.9× 0.33) ≈ 52

Therefore, c2 determines that it needs to increase phc2,1.γ by 12 seconds.

c2 proceeds by calculating κrc1,c2 .ln1 as:

κrc1,c2 .ln3 =
0.8× (52− 40)

52
= 0.18

Given that κrc6,c2 .ln2 = 0.32 and κrc6,c2 .ln1 = 0.16, κphc2,1 takes the value of 0.66. Controller

c2 then calculates the effect of executing a new configuration on its neighboring intersec-

tions, including c5. Assuming p(rc6,c2 .ln3, rc2,c5 .ln2) = 0.5 , p(rc6,c2 .ln3,rc2,c1 .ln1) = 0.5 ,

p(rc6,c2 .ln2,rc2,c5 .ln1) = 1 and p(rc6,c2 .ln2,rc2,c1 .ln1) = 0, κrc2,c5 is calculated as:

κrc2,c5 = 0.5× 0.18 + 1× 0.32 = 0.41

c2 then sends a request for evaluation to c5 with κrc2,c5 = 0.41 and κphc2,1 = 0.66. This

indicates that, by executing confnew, an additional 0.66 vehicle per seconds (vps) will leave

the road controlled by phc2,1, and out of the 0.66 vps, 0.41 vps will enter rc2,c5 .

c5 receives the request for the new timing configuration. It calculates Ψc5 using the current

rateOut(t4100, 500, rc2,c5 .ln1) = 1, rateOut(t4100,,500, rc2,c5 .ln2) = 0.3, rateIn(t4100, 500, rc2,c5)-

= 1.2, p(rc2,c5 , rc2,c5 .ln1) = 0.8 and p(rc2,c5 , rc2,c5 .ln2) = 0.2. Ψc5 is calculated as:

Ψc4 = 1.0× 2.0× 0.41

0.66
× ((1− 1× (0.41 + 1.2)× 0.8

1
)+

(1− 1× (0.41 + 1.2)× 0.2

0.3
))

= −1.26

c5 proceeds by calculating κ for c3, c4. If κ is greater than threshold g, c5 requests that

they evaluate the configuration. c3 and c4’s responses are added to Ψc5 and sent back to

c2. Upon receipt of Ψc5 , Ψc1 and Ψc3 , controller c2 calculates Ψ2. Negative values of Ψ are

considered as a level of disagreement. Having Ψ2 = 2.34, c2 executes the new configuration

and announces the execution to all controllers in the network which in turn adapt their

timing configurations.

41

CHAPTER 4

MATISSE: A SIMULATION SYSTEM FOR AGENT-BASED INTELLIGENT

TRANSPORTATION SYSTEMS1

In this chapter we start by giving an overview of MATISSE 2.0, a large-scale multi-agent

based traffic simulation system. We proceed by discussing new features that we have devel-

oped as part of this research.

4.1 Overview of MATISSE 2.0

4.1.1 High Level Architecture

MATISSE’s architecture consists of three building blocks. The simulator’s main constituent

is the Simulation System which includes three subsystems:

1. The Agent System creates and manages simulated standard and ATS-enabled vehi-

cles and intersection controllers as well as zone managers. The various agent types

communicate through the Agent-to-Agent Message Transport Service;

2. The Environment System creates and manages the traffic network;

3. The Simulation Microkernel manages the simulation workflow.

The Control and Visualization System renders 2D and 3D representations of the simulation

and provides real-time interaction mechanisms. The Message Transport Service provides a

configurable messaging infrastructure that allows MATISSE’s building blocks to exchange

information.

1©2018 IEEE. Portions Adapted, with permission, from Behnam Torabi, Rym Z. Wenkstern, and Mo-
hammad Al-Zinati. “An Agent-Based Micro-Simulator for ITS.” In Proceedings of the 21st IEEE Interna-
tional Conference on Intelligent Transportation Systems, IEEE ITSC 2018, November 2018.

42

4.1.2 Traffic Network Structure

In MATISSE, a traffic network is specified as a directed graph where nodes represent inter-

sections or connections between road segments, and directed edges represent road segments.

The graph defines the possible traffic movements between lanes in consecutive roads. Fig-

ure 4.1 (a) shows the graph definition that corresponds to the traffic network illustrated in

Figure 4.1 (b).

Figure 4.1. Traffic Network Definition in MATISSE

4.1.3 Creating Virtual Agents

MATISSE was built as a multi-agent simulation system from the ground up. It provides

several predefined concrete classes for vehicle agents. These classes can be instantiated to

43

create various types of virtual traffic agents equipped with diverse sensing and communica-

tion mechanisms. The modeler can also easily create new types of agents by implementing

concrete classes extending from abstract classes provided in MATISSE’s vehicle agent pack-

age. The vehicle agent package consist of four main modules:

1. Interaction module: This module handles the vehicle agent’s interaction with external

entities. It consists of three sub-modules: a) The perception module implements mech-

anisms necessary for a vehicle agent to perceive the traffic environment using sensors;

b) The communication module handles all communications between the vehicle agent

and other simulated agents; and c) The route guidance module implements mecha-

nisms that allow a vehicle agent to access the traffic network information (e.g., route

guidance, congestion levels on roads).

2. Knowledge module: This module represents the vehicle agent’s memory. It includes

the vehicle agent’s knowledge about itself (e.g., acceleration, deceleration capabilities,

maximum speed) and knowledge acquired through sensing and communication (e.g.,

approaching vehicle).

3. Task module: This module defines the tasks that a vehicle agent can perform. Move-

Task and TurnTask are used by the vehicle to travel in the environment.

4. Planning module: This module implements different vehicle agent planning strategies.

The TravelRoutePlanningModule implements plans used by the vehicle to find a travel

route, while the MovementDynamicsPlanningStrategy computes a set of possible ac-

tions, their reward and risk values and selects an action based on the driving behavior.

Figure 4.2 shows a section of the code for a vehicle agent. A demo illustrating MATISSE’s

features is available at: mavs.utdallas.edu/its

44

Figure 4.2. Code for vehicle Agent

4.2 MATISSE 3.0

In this section, we discuss the features that we added to MATISSE 2.0 to allow the imple-

mentation and the validation of DALI.

4.2.1 Importing Traffic Networks from OpenStreetMap

In MATISSE 3.0 ((Torabi et al., 2018) and (Torabi et al., 2018)), the modeler can either

create a virtual traffic network through a graphical interface by “snapping” road segments

or by importing entire networks through Open Street Map (OSM). The modeler can also

import a section of an OSM network from a file system or an online viewer. Several advanced

algorithms have been developed to reliably convert OSM graphs to MATISSE graphs, and

automatically generate missing information, e.g., number of road lanes, traffic light locations,

and allowable traffic movements. In this section, we give an overview of OSM network

structures and some of MATISSE’s conversion algorithms.

45

OpenStreetMap Network Structure

OSM networks are in the form of XML formatted files. They contain three types of elements:

a) node, b) ways and c) relations. Elements can have tags and keys to describe their features.

A node holds coordinates of a location. A way is an ordered list of nodes. A way can either

be open or closed. A way is closed if it has the same first and last nodes. It is open otherwise.

Relations are included in an OSM file to describe the relations between ways and nodes. In

OSM file format, ways that are marked as “highway” represent roads.

Figure 4.3. Generate an intersection from an OSM file

Converting OpenStreeMap Data into MATISSE’s Networks

To convert an OSM network, MATISSE first reads the OSM file and extracts ways that

represent roads. Then, it adds nodes associated with roads into its network graph. Next, it

connects the nodes in the order that is specified in the OSM file. Then, it widens the roads

depending on their number of lanes. The number of lanes is usually specified in OSM files.

In case it is undefined, MATISSE estimates it based on the road type.

46

In certain cases, widening roads creates overlaps between road surfaces at intersections

(see Figure 4.3). For these cases, stop bar positions have to be computed. MATISSE places

a stop bar at the position where a road surface crosses the surface of its adjacent roads. In

figure 4.3, red circles show crossing points.

Figure 4.4. An Intersection in Paris and Its Representation in Open Street Map

After forming intersections, signalized intersections need to be determined. Most micro-

simulators represent a signalized intersection with one node in their network structure. How-

ever, in Open Street Map a signalized intersection is not necessarily represented by one node,

but often with an arbitrary number of nodes. Figure 4.4(a) shows an OSM graph for a com-

plex signalized intersection in Paris, France. The single signalized intersection is represented

using 6 nodes. Micro-simulators such as SUMO or VISSIM convert each of the OSM nodes

into one signalized intersection which results in an incorrect representation of the real net-

work topology (see Figure 4.4(b)). As shown in Figure 4.4(c), MATISSE’s network structure

and conversion algorithms allow an accurate conversion of the information.

47

4.2.2 Defining Vehicle Distribution at Initialization Time

At the start of the simulation, the user defines the total number of vehicles to be run as well

as entry and exit points. The initial vehicle distribution can be automatically generated by

MATISSE or specified by the user through a graphical interface.

4.2.3 Defining New Vehicle and Intersection Controller Behaviors

Virtual ATS-enabled vehicles and intersection controllers are equipped with sensors and

perceive the environment within their sensor range, called circle-of-influence (COI). They

are able to communicate with other enabled vehicles and intersection controllers located

within their COI (see Figure 4.5(a)).

For standard virtual vehicles, a vision cone is used to simulate a human driver’s vision

range and perception of the environment. Other virtual human sensors such as auditory and

olfactory sensors are available. The virtual driver’s level of distraction is directly related to

its level of perception of its direct environment (See Figure 4.5(b)).

The ranges of the various sensors can be altered during the execution of simulation.

Figure 4.5. Vehicle agents perception. a) Circle of Influence b) Vision cones

48

Vehicle Behavior

Unlike most simulators which use predefined car-following and lane-changing algorithms, in

MATISSE 3.0, vehicle agents compute the set of possible actions based on their current

perception of the environment, the maximum acceleration and deceleration rates and their

flexibility in steering. They assign a reward and a risk value to each action. The reward

indicates the impact that an action has in helping the vehicle achieve its objectives (e.g.,

reach its destination as fast as possible, follow traffic rules, drive smoothly). For each action,

the agent also assesses the risk that an action may result in a collision. For normal driving

behavior, the agent ignores the actions that are considered dangerous and executes the action

with the highest reward.

Figure 4.6. Four possible actions of a vehicle

Various driving behaviors can be simulated by assigning different values to the risk-

aversion factor and the importance of an objective in the reward values. Figure 4.6 shows

a scenario where the vehicle agent in the back can take different actions. In Action 1 the

vehicle agent maintains its current speed and steering. In Action 2 it maintains current

steering and decreases its speed. In Action 3 it maintains current steering and increases its

49

Figure 4.7. Architecture of the Hybrid Simulation.

speed. Finally, in Action 4 it maintains its current speed and steers the vehicle 20 degrees

to the right. If we assume that with respect to the vehicle agent’s objectives, Actions 3 has

the highest reward and Action 4 has the lowest reward, and with respect to collision, Action

3 has the highest risk and Action 2 has the lowest risk then, among the four actions, an

aggressive agent will choose Action 3, a defensive agent will choose Action 2, a regular agent

will select Action 1, and a careless agent will choose Action 4.

4.2.4 Hybrid Simulation

We implemented a feature that allows MATISSE to connect to deployed controllers in order

to obtain real-world traffic information in real-time. Architecture of the Hybrid simulation

can be seen in Figure 4.7. The City of Richardson’s intersection controllers integrate web

servers which are used by traffic engineers to connect remotely to the controllers. MATISSE

connects to the controllers’ web servers through VPN. It sends a request for an update on

the status of the intersections every three hundred milliseconds. The controllers respond by

sending the current state of their traffic lights (i.e., red, green or yellow) and detectors (i.e.,

active or inactive).

50

CHAPTER 5

EVALUATION OF DALI’S SIMULATION RESULTS1

DALI’s algorithms were implemented in MATISSE 3.0. In this chapter we discuss the exper-

imental results for the execution of DALI on a simulated model of the City of Richardson.

5.1 Metrics

The common evaluation metrics for the performance of traffic signal timing systems is delay.

Delay is defined as the increment in a vehicle’s travel time caused by traffic control devices,

compared with the travel time if the vehicle was to maintain its expected speed in the absence

of any control device (Balke and Herrick, 2004).

5.2 Simulation Setting

The experiments were run on a multicore PC (Intel Core i7 X980 CPU (3.33GHz), 6.00

GB, 64-bit Windows 7). A simulated model of the City of Richardson’s road network was

created in MATISSE. The model includes 1365 road segments and the city’s 128 signalized

intersections in addition to the 965 non-signalized intersections. Figure 5.1 shows a 2-D

representation of the traffic network. Tables 5.1 and 5.2 summarize the types of signalized

and non signalized intersections, classified based on the number of incoming and outgoing

lanes.

Three simulation settings were run eight times for 86,400 simulation cycles representing

a 24-hour time period.

1©2018 IEEE. Portions Adapted, with permission, from Behnam Torabi, Rym Z. Wenkstern, and Robert
Saylor. “A Collaborative Agent-Based Traffic Signal System for Highly Dynamic Traffic Conditions.” In
Proceedings of the 21st IEEE International Conference on Intelligent Transportation Systems, IEEE ITSC
2018, November 2018.

51

Figure 5.1. 2D visualization of Richardson’s Traffic Network.

Table 5.1. Number of Signalized Intersection with various incoming and outgoing lanes

Type 1× 1 1× 2 1× 3 2× 2 2× 3 3× 3

Count 0 4 8 18 29 69

Table 5.2. Number of Non-Signalized Intersection with various incoming and outgoing lanes

Type 1× 1 1× 2 1× 3 2× 2 2× 3 3× 3

Count 533 241 175 16 0 0

5.3 Experiment 1: DALI with fixed threshold values

In the first and second experiment, we use real-world data provided by the City of Richardson

to simulate regular traffic patterns with and without accidents. In the third and fourth

experiment we simulate continuous random traffic patterns with and without accidents. For

all experiments, we compare the efficiency of DALI with the SCATS-based system currently

in use in Richardson (SCATS-R), and a model of the RL-based MARLIN-ATSC (El-Tantawy

et al., 2013) (MARLIN-R). To decrease the learning time of MARLIN agents, we initialized

the Q-values based on estimations derived from historical data provided by the City of

Richardson.

52

Figure 5.2. Average delay using traffic data from the City of Richardson

5.3.1 Experiment 1.1: Normal Traffic Conditions

In this experiment, we make use of the traffic data provided by the City of Richardson to

determine the number of vehicles in the traffic network at any given time, as well as their

distribution in the network. This experiment is intended to analyze the behavior of the three

systems under nominal traffic conditions.

As shown in Figure 5.2, between the times of 00:30 am and 5:30 am DALI and SCATS-R

perform at the same level with respect to delay. This is due to the fact that during this time

period, traffic is very light and therefore DALI agents do not perform any action. MARLIN-

R agents perform better (53% delay reduction) in this situation because of their flexibility in

changing the traffic phases at any time. As we progress during the day (i.e., 6:30 am to 8:30

am) the traffic flow increases, and congestion is detected. DALI agents naturally collaborate

with one another to define and implement timing plans that meet the network conditions.

As such, DALI performs significantly better than SCATS-R (23% delay reduction).

53

Figure 5.3. Average delay with accident in peak morning hours using real traffic data

MARLIN-R performs slightly less than DALI. The simulation shows that this is due to the

fact that MARLIN-R agents do not handle heavy traffic in small network areas with a large

number of intersections efficiently. In those cases, MARLIN-R agents give the right-of-way

to vehicles without taking into account the downstream roads which are congested.

5.3.2 Experiment 1.2: Normal Traffic Conditions With Accident

Figure 5.3 shows the performance of the systems when an accident is triggered at run time,

during normal morning peak traffic. As expected, DALI handles the traffic much better than

SCATS-R (35% delay reduction). MARLIN-R agents are unable to control the congestion

created by the accident since they have no prior knowledge of the unexpected traffic pat-

tern. Similarly to Experiment 1, the simulation shows that, rather than leading the vehicles

towards roads with lighter traffic, MARLIN-R agents send vehicles to congested areas.

54

Figure 5.4. Average delay for random traffic patterns

5.3.3 Experiment 1.3: Continuous Random Traffic Conditions

In this experiment, the number of vehicles during the simulation remains constant but new

vehicles are added randomly while others randomly exit the traffic network. This experiment

is intended to illustrate random traffic patterns that are unprecedented. The experiment was

run with 100, 250, 500, 1000, 2000 and 3000 vehicles.

Figure 5.3 shows that when the traffic is light, MARLIN-R agents perform (37%) better

because they use a variable phasing sequence. They can extend the current phase or Result-

Four to any other phase according to the changes in traffic. On the other hand, SCATS-R

controllers and DALI agents execute a fixed phase sequence. Therefore, all phases are ex-

ecuted even in cases where it is not necessary. DALI and SCATS-R perform at the same

level in lighter traffic conditions because the controller agents do not detect congestion and

therefore, do not change the split. As the number of vehicles increases, DALI agents start to

detect congestion and collaborate with other agents for retiming. The collaborative retiming

procedure allows DALI to perform better than SCATS. As the number of vehicles increases,

55

Figure 5.5. Average delay for random traffic patterns with accidents.

MARLIN-R still perform better than SCATS-R. However, DALI performs better. This is due

to the fact that MARLIN-R agents fail to handle heavy traffic in small, condensed network

areas.

5.3.4 Experiment 1.4: Continuous Random Traffic Conditions with Accident

Figure 5.5 shows the performance of DALI, SCATS-R and MARLIN-R in the extreme situ-

ation where an accident is randomly triggered in unpredictable traffic conditions. When the

traffic is light, the three systems nearly act the same. As traffic gets heavier, DALI operates

better than the other two (20% decrease in delay compared to SCATS-R and 12% decrease

in delay compared to MARLIN-R). When the number of vehicles reaches 3000, MARLIN-R

operates worse that SCATS-R (8% delay increase) because SCATS-R controllers are com-

mitted to giving green signal to all movements in a cycle whereas MARLIN-R agents lack

experience in dealing with new traffic conditions.

56

5.4 Experiment 2: DALI with Adaptive Threshold Values

In this experiment, we use real-world data provided by the City of Richardson to simulate

regular traffic patterns. We compare the efficiency of DALI with fixed threshold values of

a = 0.5, d = 75 and g = 0.4, the SCATS-based system currently in use in Richardson

(SCATS-R), DALI with adaptive threshold values (DALI-RL), and a model of the RL-based

MARLIN-ATSC (El-Tantawy et al., 2013) (MARLIN-R). Both DALI-RL and MARLIN-R

Q-values were initialized based on estimations derived from historical data provided by the

City of Richardson.

5.4.1 Experiment 2.1: Assessing Delay

As shown in Figure 5.6, between the times of 00:30 am and 5:30 am, DALI and SCATS-R

perform at the same level with respect to delay. This is due to the fact that during this

time period, traffic is very light and therefore DALI agents do not perform any action. As

expected, DALI-RL performs better (21% delay reduction) in comparison with DALI and

SCATS-R. MARLIN-R agents also perform better (53% delay reduction) than DALI because

of their flexibility in changing the traffic phases at any time. As we progress during the day

(i.e., 6:30 am to 8:30 am) the traffic flow increases, and congestion is detected. DALI agents

naturally collaborate with one another to define and implement timing plans that meet

the network conditions. As such, DALI performs significantly better than SCATS-R (23%

delay reduction). DALI performs slighly better than MARLIN-R (4% delay reduction).

The simulation shows that this is due to the fact that MARLIN-R agents do not handle

heavy traffic in small network areas with a large number of intersections efficiently. In those

cases, MARLIN-R agents give the right-of-way to vehicles without taking into account the

downstream roads which are congested. DALI-RL agents perform better in comparison with

DALI agents (7% delay reduction) by adaptively selecting threshold values.

57

Figure 5.6. Average delay using traffic data from the City of Richardson

5.4.2 Experiment 2.2: Assessing Changing Values of Threshold a

Figure 5.7 compares the performance of DALI with MARLIN-R and SCATS-R for different

values of a. For lower values of a, agents almost continuously collaborate to adapt their

traffic signals. This results in lower average delay since agents do not wait until higher levels

of congestion are reached to act. Nevertheless, as shown in Table 5.3, lower values of a result

in a very large number of exchanged messages. Higher values of a decrease requests for

retiming and consequently the average delay is increased. As shown in Figure 5.7 and Table

5.3, the adaptive selection of a allows DALI-RL agents to perform better for both average

delay and number of message exchanges.

5.4.3 Experiment 2.3: Assessing Changing Values of Threshold g

Figure 5.9 shows the average size of groups that are formed dynamically when a re-timing

is called for by a controller agent.

58

59

Figure 5.7. Average Delay For Different Values of a.

Table 5.3. Number of Message Exchanges For Different Values of a.

Value of a Number of Exchanges

0.0 7,155,289
0.2 358,401
0.4 156,272
0.6 95,478

DALI RL 30,409
0.8 17,654
1.0 7,689
1.2 4,859
1.4 468
1.6 200

Figure 5.8. Average delay For Different Values of g.

When g is equal to zero, the propagation of requests does not stop, and therefore all the

controller agents end up being involved in the collaborative re-timing process.

As g increases, the average group size becomes smaller and therefore fewer communi-

cations are needed. Using a fixed value for g is not always efficient because in certain

unexpected circumstances it may be better to increase the collaboration scope. Figures 5.8

and 5.9 show that when agents use RL to determine g values, better performance is achieved

with fewer communications due to the smaller group size. As illustrated in Figure 5.8, when

the value of g is less than 0.4, no significant improvement occurs with respect to average

delay. This is explained by the fact that, broadening the collaboration scope to include

agents that are not impacted by the plan does not have any effect on the final outcome.

5.5 Experiment 3: Hybrid Simulation

As mentioned in Section 4.2.4, MATISSE is able to run hybrid simulations by retrieving

real-time data from deployed controllers. This data which includes the detector states (i.e.,

active, inactive) and the traffic light state (i.e., green, yellow, red) is processed as follows:

when a detector state goes from active to inactive, MATISSE adds a vehicle in the simulation

at the detector’s position. It also visualizes the queue length at the traffic light.

60

Figure 5.9. Average Group Size For Different Values of g.

In the hybrid simulation, simulated vehicles enter the simulation through entry points

(represented as red arrows in Figure 5.10), and leave the simulation when they reach the

exit points (represented by green arrows in Figure 5.10). The destinations of the simulated

vehicles at the entry points are estimated based on the traffic flow information at the exit

points. The performance of DALI in the simulated environment is evaluated by comparing

the rate of simulated vehicles that exit the simulated traffic network versus the real world.

In this experiment, we create a simulated model of the Waterview corridor in Richardson,

which includes three intersections, Frankford Rd, Synergy Pkway and Franklin Jenifer (see

Figure 5.10). We connect MATISSE to the three real-world controllers, run the hybrid

simulation using DALI and compare the results with the actual SCATS-R-based values

provided by the controllers.

We ran the hybrid simulation for one week and compared the average queue length and

delay in the simulation with their actual SCATS-R counterparts. Figure 5.11 shows the

average traffic flow at different times of the days for network entrance points. As expected,

Waterview Parkway gets a rush in the morning from 7:00 AM to 9:00 AM and in the evening

from 4:00 PM to 6:00 PM. Waterview approaches have approximately the same traffic flow

during the day; however, traffic drops at nights.

61

Figure 5.10. Arterial image of simulated intersections.

Figure 5.11. Average incoming traffic flow at different times of work days.

Table 5.4 shows the reduction in delay for different traffic flows. Similar to the previous

experimental results, when the traffic is light, the average delay does not change since DALI

agents do not perform any action. When the traffic flow increases, agents adapt by generating

new plans and executing them. Therefore, the traffic on roads with higher demand get more

green which results in a decrease of the average delay.

Figure 5.12 shows the reduction in queue length for different flow rates at different entry

points. As illustrated, the queue length was drastically reduced in both directions at Water-

view. However, at the same time, the queue length increased on approaches. The reason is

62

Table 5.4. Reduction in Delay for Different Traffic Flows

Traffic Flow (vph) 0− 200 200− 400 400− 600 600− 800

% Reduction in Delay 0 0 1.27 4.12

Traffic Flow (vph) 800− 1000 1000− 1200 1200− 1400 1400− 1600

% Reduction in Delay 7.15 10.79 17.96 20.81

Figure 5.12. Delay Reduction For different traffic flows at different entrances.

that whenever the traffic flow increases on Waterview, agents react by increasing the green

time of the phases that control Waterview. Therefore, the vehicles in the other directions

receive less green time.

63

CHAPTER 6

DEPLOYMENT OF DALI

In this chapter we discuss the deployment of DALI on the Waterview corridor in the City of

Richardson, and share the lessons learned during deployment.

6.1 The Waterview Corridor

DALI’s agents were deployed on the Waterview corridor which includes three intersections

(see Figure 6.1): Waterview and Frankford Rd (FO), Waterview and Synergy Park Blvd

(SY), and Waterview and Franklin Jenifer Dr (FER). Figure 6.2 shows the location of the

detectors at these intersections.

The phase numbering for the Waterview intersections follows the standard phase number-

ing discussed in Section 1.3. Phases 6, 2, 5 and 1 are assigned respectively to the northbound,

southbound, southbound left turns, and northbound left turns of Waterview Pkwy. For the

Frankford intersection, phase 8 is assigned to the westbound of Frankford Rd. Phase 4 is

assigned to Synergy Park Blvd at the Synergy intersection and to Franklin Jenifer Drive at

the Franklyn intersection. Phases such as 7 and 3 are not considered given the low traffic on

the roads they control.

6.2 Safety and Monitoring Requirements

When deploying a new signal timing system, the first and most crucial issue to address is

safety. Given the strict safety regulations in the US, it was necessary to devise a scheme

to ensure that DALI’s operations comply with these regulations. Rather than replacing

the Intelight controllers (which already implement all required safety features), we used the

controllers to execute the agents’ decisions and pass vehicle detection data to the agents.

When operating in SCATS-R mode, the Intelight controllers execute the timing plans pro-

grammed by the City of Richardson’s traffic engineers. When in DALI mode, they operate

64

Figure 6.1. Overview of The Corridor.

as instructed by the agents while ensuring that the safety requirements are met. In case of

disruption, the agents give back control to the Intelight controllers which then operate in

SCATS-R mode.

While it would have been possible to place the agents inside the Intelight controller

cabinets, we decided to install them in the lab computers and use VPN to connect to the

controllers. This approach allowed us to closely monitor all agents concurrently and adjust

their behavior in a timely manner (see Figure 6.3).

6.3 Agent Implementation

The agents were implemented in JAVA. Each agent runs on a PC with 2 gigabytes of ram and

3.33 GHz clock and communicates with the other agents through a Broadcom gigabit ethernet

net link with a minimum speed of 100 mbps. Each agent runs three threads to update its

intersection status, one thread to execute its algorithm and one thread to communicate with

other agents. The agents’ architecture is discussed in section 4.1.3. In order to implement the

mechanisms that allow the agents to control and release control of the Intelight controllers,

it was necessary to learn how to operate the controllers.

65

66

Figure 6.2. Overview of Intersections.

Figure 6.3. DALI Agents Running in the Lab.

Figure 6.4. a) Status of the intersection in MAXTIME. b) Actions in MAXTIME

6.4 Intelight Controllers

An Intelight controller integrates a web server called MAXTIME which is accessed remotely

via VPN. The communication protocol with the client side is achieved through html forms.

67

Figure 6.5. a) A day plan in MAXTIME. b) Patterns in MAXTIME

These forms allow traffic engineers to specify/update the timing configurations and mon-

itor the intersections. For example, Figure 6.4 (a) shows the form used to communicate the

status of an intersection.

Intelight Controller’s Forms and Operation

Each intersection has a defined day plan for each day of the year. This plan reflects the

controller’s operation mode (i.e., pre-timed, semi-actuated or fully actuated) for the inter-

section. The form shown in Figure 6.5 (a) shows the specification of a day plan in terms of

the actions that have to be executed throughout a day. An action is defined in terms of a

pattern which specifies the timing configurations, i.e., operation mode, split plan, detector

plan, sequence of phases, etc. (see Figure 6.4 (b) and Figure 6.5 (b)).

An Intelight controller selects the current day plan by accessing a time-based schedule

table (see Figure 6.6 (a)) filled by traffic engineers. Each row, i.e., schedule, reflects a rule

that indicates which plan is to be executed on specific days of a month. For example, in

Figure 6.6 (a), traffic engineers have set schedule 3 to indicate that from August 15th to

the 31st, on Mondays through Fridays, Plan 5 is to be executed. A specific day may be

referenced in more than one rule (e.g., August 15th is included in schedules 1 and 3). In this

68

Figure 6.6. a) The schedule table in MAXTIME. b) Schedule rule for DALI

Figure 6.7. a) Assignments of input points in MAXTIME. b) Assignments of virtual detectors
for DALI.

case, the schedule defined for the least number of days in the calendar year (e.g., schedule

3) is selected. When the number of days is equal, the schedule with the smallest ID is selected.

Intelight Controller’s Inputs and Outputs

The controller has I/O modules each with input and output points. I/O points can be either

active or inactive. At the time of installation, traffic engineers connect each detector to

a controller input point (see Figure 6.7 (a)). Figure 6.8 shows the forms that respectively

display the status of input points and the status of detectors. Active detectors are marked

with an “x”.

69

Figure 6.8. a) Status of input points in MAXTIME b) Status of detectors in MAXTIME.

Figure 6.9. a) Dayplan for DALI. b) Pattern for DALI

6.5 Agent-Controller Interaction Mechanism

In order for a DALI agent to instruct a controller to perform an action, it was necessary to:

a) Define a new pattern for the agents. As mentioned above, a pattern specifies the

timing constraints, i.e., maximum and minimum green, fully actuated mode, etc. (see Figure

6.9 (b)). The DALI pattern is associated with an action which is included in a day plan.

Agents update the day plan every one minute (see Figure 6.9 (a)).

b) Define virtual detectors. These virtual detectors are used by the agents to simulate

a detector state (active or inactive) and therefore trigger the execution of a signal change

by the controller. In DALI mode, a controller operates in fully actuated mode. As such,

it always gives green to a phase when a vehicle is detected for that phase and no vehicles

are detected for the other phases. When an agent wants a signal to be green, it changes

the status of the virtual detector to active and all the other virtual detectors to inactive

(see Figure 6.8 (a)). This prompts the controller to give green to that phase. The same

70

approach is followed for a combination of non-conflicting phases. From an implementation

perspective, the virtual detectors controlled by the agents are connected to a spare Intelight

controller’s input point (see Figure 6.7(b)).

6.6 Executing DALI Agents

At initialization time, a DALI agent connects to its controller’s web server through VPN,

adds a new rule to the controller’s schedule table (see Figure 6.6 (b)) to execute the DALI

day plan and takes control.

It then requests an update on the status of the intersection. The Intelight controller

updates the phase status form (see Figure 6.4 (a) which shows the state of its traffic lights

(i.e., red, green or yellow) and detectors (i.e., active or inactive). This information is read

by the agent. The time interval between the agent request and the controller update called

communication speed has to be less than three hundred milliseconds. The agent then proceeds

by executing the steps discussed in Section 2.3.

To release control to the Intelight controller, an agent only needs to remove the rule from

the schedule table.

6.7 Lessons Learned

DALI was thoroughly verified by traffic engineers and intensively tested through simulation

(Torabi et al., 2017, 2018a,c,b). The first execution of DALI ran smoothly, and agents be-

haved as specified. The excitement related to a glitch-free deployment soon dissipated when

we realized that several real-world scenarios were not considered in the problem definition.

Loss of Communication. When an agent loses communication with its controller, the

virtual detector that was given the status active by the agent remains in that status for

as long as the communication is interrupted. This results in giving maximum green to the

phase associated with the detector, and minimum green to all other phases. In order to

71

avoid this situation, we decided that if an agent is disconnected from its controller for over

two minutes, the controller is given control of the intersection.

Time Synchronization. In the simulated traffic environment, we assumed that all agents

use the same clock time. After deployment, we realized that the controller’s clock values

were not synchronized. As a result, when an agent sends a vehicle detection time to its

neighbor, the neighbor computes the estimated arrival time for that vehicle incorrectly. To

address this issue, we added a time-server to DALI. When an agent detects a vehicle, it

sends the detection time using the time-server time and not the controller time.

Detector Failures. We realized that when a detector fails, two things happen: the detector

status (i.e., active, inactive) stays the same for a long period of time, or it changes randomly.

We also realized that the Intelight controllers do not have a mechanism to address detector

failures. We improved our agent algorithms to consider this case as follows: when an agent

notices that a detector has failed, it replaces the actual detector data with an estimate of

the data. This estimate is computed using prediction models and historical data.

Road Construction. While DALI was running, some road construction work was done

at the Franklyn intersection. During construction, the topology of the intersection was

changed. This required a re-definition of the intersection structure for the agent controlling

the Franklyn intersection.

Rain: During heavy rainy days, the communication speed between agents and controllers

decreased drastically. In addition, detectors did not work properly (i.e., they would de-

tect some vehicles but not all). Given that an agent’s performance highly depends on the

communication with its controller and the detection of vehicles, we decided that when the

communication speed is below 300ms, an agent has to give control to the Intelight controllers.

72

CHAPTER 7

EVALUATION OF DALI’S DEPLOYMENT RESULTS

7.1 Metrics and Data Collection

Various metrics are commonly used in Texas to evaluate the performance of a signal timing

system. We evaluate DALI with respect to queue length, delay, and cost of the delay. Queue

length is defined as the number of vehicles stopped at the intersection and is computed as

discussed in Section 2.3. As mentioned in Section 5.1, delay is the increment in a vehicle’s

travel time caused by traffic control devices, compared with the travel time if the vehicle

was to maintain its expected speed in the absence of any control device. The cost of delay

is computed using data from (Cookson and Pishue, 2017).

The results presented in this chapter are based on data collected over a period of 520

hours as follows: we ran DALI and gathered data for 260 hours. Then we turned off DALI

and gathered data for SCATS-R for the remaining 260 hours. An initial analysis of traffic

on Waterview showed that overall, traffic variations occur between 7:00 to 9:00 and 16:00 to

20:00; 9:00 to 16:00 and 20:00 to 00:00; and 00:00 to 7:00 (see Figure 7.1).

We considered week days and weekends, and given the traffic variations discussed above,

divided days into three time periods: peak hours (i.e., 7:00 to 9:00 and 16:00 to 20:00),

off-peak hours (i.e., 9:00 to 16:00 and 20:00 to 00:00), and nighttime (i.e., 00:00 to 7:00).

Table 7.1 shows the distribution of the 520 data collection hours.

7.2 Queue Length

We first analyze the data with respect to reduction in queue lengths at each intersection. As

shown in Figure 7.2, for all phases, DALI agents reduce queue lengths at all intersections.

In average, for all three intersections, queue length is reduced by 39.43% (49.43% for SY,

38.32% for FER and 30.53% for FO).

73

74

Figure 7.1. Traffic Flow Rate for Different Times of the Day.

Table 7.1. Distribution of data collection time
Dali - Duration of Control (Hours)

Peak Off-peak Midnight Total
Weekdays 38.49 67.37 36.16 142.02
Weekends 29.84 53.87 34.25 117.61

Total 67.97 121.24 70.42 259.63
SCATS-R - Duration of Control (Hours)

Peak Off-peak Midnight Total
Weekdays 54.65 93.09 40.64 189.20
Weekends 15.08 29.83 25.68 70.59

Total 69.73 123.74 66.32 259.80

Figure 7.2. Queue Length Reduction.

This reduction is higher for phases 6, 2 and 5 on SY and FER, and phases 6, 2 and 1 on

FO. It is lower for phases 8 and 4. This is due to the fact that information about vehicle

arrivals is not available for these phases either because the upstream intersections are not

under the control of the City of Richardson (case of FO), or the upstream intersections

do not provide detector information (case of SY and FER). Figure 7.2 shows that for SY,

the reduction in queue length for Phase 6 is higher than for Phase 2 although for both

phases, SY’s agent receives information about vehicle arrivals. This is due to the fact that

the distance between SY and FER is twice the distance between SY and FO. Therefore,

SY’s agent has more flexibility in scheduling green signals for Phase 6 given that it receives

information about vehicle arrivals for Phase 6 earlier than for Phase 2.

75

7.3 Delay

Figure 7.3 shows the average reduction in delay for different time periods. We notice that

there is a high reduction in delay for time periods week day nighttime, weekend peak & off peak

and weekend nighttime. This is explained by the fact that, during nighttime (on weekdays

and weekends), traffic is very slow and there are only very few requests for green signals

at the intersections. In SCATS-R mode, once a vehicle is detected, the Intelight controllers

either give green immediately or, if in the middle of a cycle, complete the sequence then

give green. In DALI mode, given that the agents can predict the arrival of vehicles, they

schedule green signals before the vehicles arrive at the intersection. On weekends, during

the day (peak and off-peak), although traffic is slightly heavier than during nighttime, the

same behavior occurs.

Figure 7.3 shows that the lowest reduction in delay happens for weekday off-peak hours.

The 12.81% difference between weekday peak hours and weekday off-peak hours is due to

the fact that during peak hours, intersections are likely to be congested and the agent

collaboration process is superior to the SCATS-R timing strategy. During off-peak hours,

the number of vehicles although high does not necessarily lead to congestion. Therefore

agents are unlikely to collaborate and their performance is not as superior.

7.4 Cost of Delay

Figure 7.4 shows the average delay (in seconds) and the corresponding average cost of delay

(in US $) for each vehicle at each intersection for both SCATS-R and DALI. According to

(Cookson and Pishue, 2017), in the Dallas area, the cost of delay for a driver is on average

$31 per hour which translate into $0.0086 per second. For weekdays peak hours, in SCATS-R

mode, the average delay is 43.2 seconds. In the same period, in DALI mode, the average

delay is 24.38 seconds and therefore delay reduction is on average 43.2−24.38 = 18.8 seconds

76

Figure 7.3. Delay Reduction.

which translates into a savings of 18.8×$0.0086 = $0.16 per vehicle per intersection. During

that period, an average of 1, 604 vehicles/hour passed through a Waterview intersection.

Therefore the average savings for all the vehicles going through an intersection is $1, 604×

$0.16 = $256.64/hour.

We computed the average delay for SCATS-R and DALI during their respective 260

hours of execution time. This was achieved by computing the difference between the arrival

time and the departure time of each vehicle at each intersection. The value of the average

delay for a vehicle at an intersection for SCATS-R is 27.94 seconds whereas for DALI it is

16.73 seconds. Therefore delay reduction is on average 27.94− 16.73 = 11.21 seconds which

translates into a savings of 11.21 × $0.0086 = $0.1 per vehicle per intersection. During the

260 hours of execution, an average of 725 vehicles/hour pass through a Waterview Pkwy

intersection. Therefore the average savings for vehicles going through that intersection is

725× $0.1× 260 = $18, 850 overall.

77

Figure 7.4. Average delay and cost of the delay for each vehicle at each intersection.

Our initial analysis indicates that a deployment of DALI agents on the City of Richard-

son’s 128 signalized intersections may reduce the cost of the delay for the city’s drivers by

tens of million dollars every year.

78

CONCLUSION

In this work we presented DALI, a collaborative multi-agent traffic signal system and its

deployment in the City of Richardson’s Waterview Parkway corridor at three major inter-

sections.

7.5 Contributions

Among our contributions we mention the following:

7.5.1 Model and Algorithm Definitions

� We defined and implemented algorithms for DALI, a multi-agent coordinated traffic

signal timing system.

� We defined and implemented algorithms for adaptive assignment of threshold values.

� We tested DALI through a) simulation using real-world traffic data provided by the

City of Richardson, and b) hybrid simulation using real-time traffic data.

7.5.2 Traffic Simulator Feature Development

We extended the MATISSE agent-based traffic simulation system to include several new

features. These include:

� A tool to automatically convert OpenStreetMap’s traffic network maps into MATISSE’s

format.

� A feature which allows the simulation of real-world traffic detection systems, e.g.,

inductive loops.

� A feature which allows the simulation of real-world intersection controllers’ operation

modes, e.g., pre-timed, semi-actuated.

79

� A tool which reads a database of stored real-world traffic data and populates a MA-

TISSE simulation with this data.

� A feature which allows the integration of MATISSE with MaxTime.

� A feature that allows MATISSE to process real-time traffic data provided by MaxTime

and run hybrid simulations.

� A feature that allows simulated controller agents to send commands to deployed Inte-

light controllers through MaxTime.

7.5.3 Deployment

� We developed DALI controller agents.

� In preparation for deployment, we created a virtual Intelight controller in the lab to

test its integration with DALI agents.

� We developed a tool to monitor the operations of DALI’s agents.

� We investigated possible approaches to safely integrate DALI agents and Intelight

controllers in collaboration with the City of Richardson.

� We successfully ran DALI controller agents on three intersections in the Waterview

Parkway corridor.

7.6 Future Work

Future work includes the investigation of the following open problems:

80

7.6.1 Model and Algorithm Definitions

� In the current DALI model, predictions (e.g., vehicle arrival, vehicle movement) are

made by the agents based on historical data. We plan to investigate the use of simu-

lation by the agents for prediction purposes.

� During the decision making step and in certain situations, the agents generate a very

large number of plans. This number can be reduced.

7.6.2 Traffic Simulator Feature Development

� In the current version of MATISSE, it is not possible to simulate traffic networks for

countries with left-hand traffic. We plan to add this feature.

� Due to the limitation in the communication bandwidth, it is not possible to integrate

more than a few intersection controllers in the hybrid simulation. We plan to investigate

new techniques to increase the number of controllers in the hybrid simulation.

7.6.3 Deployment

� The algorithm that agents use to identify failed detectors does not work properly in

some situations and needs to be improved.

� When an agent loses its connection with the controller, it does not sends information

about vehicle arrivals to its neighbors. We plan to add a feature to enable agents to

send this information to their neighbors based on historical data.

� During road constructions, we had to manually update the network topology for the

agents. We plan to add a feature to enable agents to automatically detect changes in

the topology of the road network.

81

� In the current system architecture, agents run on computers and send commands to

intersection controllers through VPN. We plan to investigate executing agents in the

intersection controller boxes and comparing the performance of these two architectures.

� We plan to extend the deployment of DALI to critical intersections in the City of

Richardson.

� We plan to connect vehicles to DALI to allow for vehicle-to-infrastructure interactions.

82

REFERENCES

Abdulhai, B., R. Pringle, and G. J. Karakoulas (2003). Reinforcement learning for true

adaptive traffic signal control. Journal of Transportation Engineering 129 (3), 278–285.

Al-Zinati, M. and R. Zalila-Wenkstern (2015). Matisse 2.0: A large-scale multi-agent sim-

ulation system for agent-based its. In Web Intelligence and Intelligent Agent Technology

(WI-IAT), 2015 IEEE/WIC/ACM International Conference on, Volume 2, pp. 328–335.

IEEE.

Araghi, S., A. Khosravi, and D. Creighton (2015). A review on computational intelligence

methods for controlling traffic signal timing. Expert systems with applications 42 (3),

1538–1550.

Balke, K. N. and C. Herrick (2004, July). Potential measures of assessing signal timing

performance using existing technologies. Technical Report FHWA/TX-04/0-4422-1, Texas

A&M Transportation Institute, College Station, Texas 77843-3135.

Bazzan, A. L. (2005). A distributed approach for coordination of traffic signal agents. Au-

tonomous Agents and Multi-Agent Systems 10 (1), 131–164.

Bazzan, A. L. (2009). Opportunities for multiagent systems and multiagent reinforcement

learning in traffic control. Autonomous Agents and Multi-Agent Systems 18 (3), 342–375.

Bazzan, A. L., D. de Oliveira, and B. C. da Silva (2010). Learning in groups of traffic signals.

Engineering Applications of Artificial Intelligence 23 (4), 560–568.

Bazzan, A. L. and F. Klügl (2014). A review on agent-based technology for traffic and

transportation. The Knowledge Engineering Review 29 (3), 375–403.

Bi, Y., D. Srinivasan, X. Lu, Z. Sun, and W. Zeng (2014). Type-2 fuzzy multi-intersection

traffic signal control with differential evolution optimization. Expert Systems with Appli-

cations 41 (16), 7338–7349.

Bui, K.-H. N., J. E. Jung, and D. Camacho (2017). Game theoretic approach on real-time

decision making for iot-based traffic light control. Concurrency and Computation: Practice

and Experience 29 (11), e4077.

83

Chao, K.-H., R.-H. Lee, and M.-H. Wang (2008). An intelligent traffic light control based

on extension neural network. In Knowledge-based intelligent information and engineering

systems, pp. 17–24. Springer.

Chen, B. and H. H. Cheng (2010). A review of the applications of agent technology in

traffic and transportation systems. IEEE Transactions on Intelligent Transportation Sys-

tems 11 (2), 485–497.

Chen, O. and M. Ben-Akiva (1998). Game-theoretic formulations of interaction between

dynamic traffic control and dynamic traffic assignment. Transportation Research Record:

Journal of the Transportation Research Board (1617), 179–188.

Cheng, S.-F., M. A. Epelman, and R. L. Smith (2006). Cosign: A parallel algorithm for

coordinated traffic signal control. IEEE Transactions on Intelligent Transportation Sys-

tems 7 (4), 551–564.

Chin, Y. K., L. K. Lee, N. Bolong, S. S. Yang, and K. T. K. Teo (2011). Exploring q-learning

optimization in traffic signal timing plan management. In 2011 Third International Confer-

ence on Computational Intelligence, Communication Systems and Networks, pp. 269–274.

IEEE.

Collotta, M., L. L. Bello, and G. Pau (2015). A novel approach for dynamic traffic lights

management based on wireless sensor networks and multiple fuzzy logic controllers. Expert

Systems with Applications 42 (13), 5403–5415.

Cookson, G. and B. Pishue (2017). Inrix global traffic scorecard. INRIX Research, February .

Day, C. M., T. M. Brennan Jr, H. Premachandra, A. M. Hainen, S. M. Remias, J. R. Sturde-

vant, G. Richards, J. S. Wasson, and D. M. Bullock (2010, October). Quantifying benefits

of traffic signal retiming. Final Report FHWA/IN/JTRP-2010/22, Joint Transportation

Research Program, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907.

De Oliveira, D., A. L. Bazzan, and V. Lesser (2005). Using cooperative mediation to coordi-

nate traffic lights: a case study. In Proceedings of the fourth international joint conference

on Autonomous agents and multiagent systems, pp. 463–470. ACM.

Diakaki, C., M. Papageorgiou, and K. Aboudolas (2002). A multivariable regulator approach

to traffic-responsive network-wide signal control. Control Engineering Practice 10 (2), 183–

195.

84

Dong, C., Z. Liu, and Z. Qiu (2005). Urban traffic signal timing optimization based on multi-

layer chaos neural networks involving feedback. In International Conference on Natural

Computation, pp. 340–344. Springer.

Dresner, K. and P. Stone (2008). A multiagent approach to autonomous intersection man-

agement. Journal of artificial intelligence research 31, 591–656.

Dusparic, I. and V. Cahill (2012). Autonomic multi-policy optimization in pervasive sys-

tems: Overview and evaluation. ACM Transactions on Autonomous and Adaptive Systems

(TAAS) 7 (1), 11.

Dusparic, I., J. Monteil, and V. Cahill (2016). Towards autonomic urban traffic control with

collaborative multi-policy reinforcement learning. In Intelligent Transportation Systems

(ITSC), 2016 IEEE 19th International Conference on, pp. 2065–2070. IEEE.

El-Tantawy, S. and B. Abdulhai (2010). An agent-based learning towards decentralized and

coordinated traffic signal control. In Intelligent Transportation Systems (ITSC), 2010 13th

International IEEE Conference on, pp. 665–670. IEEE.

El-Tantawy, S., B. Abdulhai, and H. Abdelgawad (2013). Multiagent reinforcement learn-

ing for integrated network of adaptive traffic signal controllers (marlin-atsc): methodology

and large-scale application on downtown toronto. IEEE Transactions on Intelligent Trans-

portation Systems 14 (3), 1140–1150.

Elhenawy, M., A. A. Elbery, A. A. Hassan, and H. A. Rakha (2015). An intersection game-

theory-based traffic control algorithm in a connected vehicle environment. In 2015 IEEE

18th International Conference on Intelligent Transportation Systems, pp. 343–347. IEEE.

France, J. and A. A. Ghorbani (2003). A multiagent system for optimizing urban traffic. In

Intelligent Agent Technology, 2003. IAT 2003. IEEE/WIC International Conference on,

pp. 411–414. IEEE.

Gartner, N. H. (1982). Development and testing of a demand-responsive strategy for traffic

signal control. In 1982 American Control Conference, pp. 578–583. IEEE.

Gartner, N. H., F. J. Pooran, and C. M. Andrews (2001). Implementation of the opac

adaptive control strategy in a traffic signal network. In Intelligent Transportation Systems,

2001. Proceedings. 2001 IEEE, pp. 195–200. IEEE.

85

Ghanim, M. S. and G. Abu-Lebdeh (2015). Real-time dynamic transit signal priority op-

timization for coordinated traffic networks using genetic algorithms and artificial neural

networks. Journal of Intelligent Transportation Systems 19 (4), 327–338.

Henry, J.-J., J. L. Farges, and J. Tuffal (1983). The prodyn real time traffic algorithm. IFAC

Proceedings Volumes 16 (4), 305–310.

Hunt, P., D. Robertson, R. Bretherton, and M. C. Royle (1982, April). The scoot on-line

traffic signal optimisation technique. Traffic Engineering & Control 23 (4), 190–192.

Intelight (2019). https://www.intelight-its.com/. Accessed February 2019.

Koonce, P., L. Rodegerdts, K. Lee, S. Quayle, S. Beaird, C. Braud, J. Bonneson, P. Tarnoff,

and T. Urbanik (2008, June). Traffic signal timing manual. Publication FHWA-HOP-08-

024, Department of Transportation, 1200 New Jersey Ave, SE, Washington, DC 20590.

Kosonen, I. (2003). Multi-agent fuzzy signal control based on real-time simulation. Trans-

portation Research Part C: Emerging Technologies 11 (5), 389–403.

Li, L., Y. Lv, and F.-Y. Wang (2016). Traffic signal timing via deep reinforcement learning.

IEEE/CAA Journal of Automatica Sinica 3 (3), 247–254.

Li, L., D. Wen, and D. Yao (2014). A survey of traffic control with vehicular communications.

IEEE Transactions on Intelligent Transportation Systems 15 (1), 425–432.

Liu, Z. (2007). A survey of intelligence methods in urban traffic signal control. IJCSNS

International Journal of Computer Science and Network Security 7 (7), 105–112.

Lu, S., X. Liu, and S. Dai (2008). Incremental multistep q-learning for adaptive traffic signal

control based on delay minimization strategy. In Intelligent Control and Automation,

2008. WCICA 2008. 7th World Congress on, pp. 2854–2858. IEEE.

Mannion, P., J. Duggan, and E. Howley (2015a). Parallel reinforcement learning for traffic

signal control. Volume 52, pp. 956–961. Elsevier.

Mannion, P., J. Duggan, and E. Howley (2015b). Parallel reinforcement learning for traffic

signal control. Procedia Computer Science 52, 956–961.

Mannion, P., J. Duggan, and E. Howley (2016). An experimental review of reinforcement

learning algorithms for adaptive traffic signal control. In Autonomic Road Transport Sup-

port Systems, pp. 47–66. Springer.

86

Mashayekhi, M. and G. List (2015). A multi-agent auction-based approach for modeling of

signalized intersections. In Second Workshop on Synergies Between Multiagent Systems,

Machine Learning and Complex Systems (TRI 2015), Buenos Aires, Argentina.

Mirchandani, P. and L. Head (2001, December). A real-time traffic signal control system:

architecture, algorithms, and analysis. Transportation Research Part C: Emerging Tech-

nologies 9 (6), 415–432.

Papageorgiou, M., C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang (2003). Review

of road traffic control strategies. Proceedings of the IEEE 91 (12), 2043–2067.

PTV-Group (2018). Ptv vissim. http://vision-traffic.ptvgroup.com/en-

us/products/ptvvissim/. Accessed October 2018.

Richter, S. (2006). Learning traffic control-towards practical traffic control using policy

gradients. Albert-Ludwigs-Universitat Freiburg, Tech. Rep.

Roozemond, D. A. (2001). Using intelligent agents for pro-active, real-time urban intersection

control. European Journal of Operational Research 131 (2), 293–301.

Saito, M. and J. Fan (2000). Artificial neural network–based heuristic optimal traffic signal

timing. Computer-Aided Civil and Infrastructure Engineering 15 (4), 293–307.

SCATS, T. R. . M. S. (2019). Scats: The benchmark in urban traffic control.

http://www.scats.com.au/. Accessed February 2019.

SCOOT, U. T. R. L. (2019). Split cycle and offset optimisation technique.

https://trlsoftware.co.uk/products/traffic control/scoot. Accessed February 2019.

Sims, A. G. and K. W. Dobinson (1980). The sydney coordinated adaptive traffic (scat)

system philosophy and benefits. IEEE Transactions on vehicular technology 29 (2), 130–

137.

Srinivasan, D., M. C. Choy, and R. L. Cheu (2006). Neural networks for real-time traffic

signal control. IEEE Transactions on Intelligent Transportation Systems 7 (3), 261–272.

Sun, D., R. F. Benekohal, and S. T. Waller (2006). Bi-level programming formulation and

heuristic solution approach for dynamic traffic signal optimization. Computer-Aided Civil

and Infrastructure Engineering 21 (5), 321–333.

87

Teodorović, D., V. Varadarajan, J. Popović, M. R. Chinnaswamy, and S. Ramaraj (2006).

Dynamic programming neural network real-time traffic adaptive signal control algorithm.

Annals of Operations Research 143 (1), 123–131.

Torabi, B., M. Al-Zinati, and R. Z. Wenkstern (2018). Matisse 3.0: A large-scale multi-

agent simulation system for intelligent transportation systems. In Proceedings of the 16th

International Conference on Practical Applications of Agents and Multi-Agent Systems,

PAAMS 18, Toledo, Spain, pp. 357–360.

Torabi, B., R. Z. Wenkstern, and M. Al-Zinati (2018). An agent-based micro-simulator for

its. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC),

pp. 2556–2561. IEEE.

Torabi, B., R. Z. Wenkstern, and R. Saylor (2017, October). Agent-based decentralized

traffic signal timing. In Proceedings of the 21st International Symposium on Distributed

Simulation and Real Time Applications, DS-RT 17, Rome, Italy, pp. 123–126.

Torabi, B., R. Z. Wenkstern, and R. Saylor (2018a, November). A collaborative agent-based

traffic signal system for highly dynamic traffic conditions. In Proceedings of the 21st IEEE

International Conference on Intelligent Transportation Systems, IEEE ITSC 2018, Maui,

Hawaii, USA, pp. 626–633.

Torabi, B., R. Z. Wenkstern, and R. Saylor (2018b, July). A multi-hop agent-based traf-

fic signal timing system for the city of richardson. In Proceedings of the The Sixteenth

International Conference on Autonomous Agent and Multiagent Systems, AAMAS 2018,

Stockholm, Sweden, pp. 2094–2096.

Torabi, B., R. Z. Wenkstern, and R. Saylor (2018c, September). A self-adaptive collaborative

multi-agent based traffic signal timing system. In Proceedings of the 4th IEEE International

Smart Cities Conference, ISC2 2018, Kansas City, Missouri, USA.

Trafitek (2019). Utopia. http://www.trafitek.com/atc-utopia.php. Accessed February 2019.

TRANSYT, U. T. R. L. (2019). Traffic network and isolated intersection study tool.

https://trlsoftware.co.uk/products/junction signal design/transyt. Accessed February

2019.

Wen, K., S. Qu, and Y. Zhang (2007). A stochastic adaptive control model for isolated

intersections. In Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Con-

ference on, pp. 2256–2260. IEEE.

88

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

Yau, K.-L. A., J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk (2017). A survey on

reinforcement learning models and algorithms for traffic signal control. ACM Computing

Surveys (CSUR) 50 (3), 34.

Younes, M. B. and A. Boukerche (2016). Intelligent traffic light controlling algorithms using

vehicular networks. IEEE transactions on vehicular technology 65 (8), 5887–5899.

Zhao, Y. and Z. Tian (2012). An overview of the usage of adaptive signal control system

in the united states of america. In Applied Mechanics and Materials, Volume 178, pp.

2591–2598. Trans Tech Publ.

Zhen-long, L. (2003). A differential game modeling approach to dynamic traffic assignment

and traffic signal control. In Systems, Man and Cybernetics, 2003. IEEE International

Conference on, Volume 1, pp. 849–855. IEEE.

Zohdy, I. H. and H. Rakha (2012). Game theory algorithm for intersection-based cooperative

adaptive cruise control (cacc) systems. In Intelligent Transportation Systems (ITSC), 2012

15th International IEEE Conference on, pp. 1097–1102. IEEE.

89

BIOGRAPHICAL SKETCH

Behnam Torabi was born in Isfahan, Iran in 1986. After completing his schoolwork at

Alborz High School in Isfahan in 2003, Behnam entered the University of Isfahan in which

he earned a Bachelor of Science with a major in Software Engineering and a Master of

Science in Artificial Intelligence. In January 2015, he moved to Dallas, TX and entered The

University of Texas at Dallas. He was awarded a Master of Science in Software Engineering

from The University of Texas at Dallas in 2017.

90

CURRICULUM VITAE

Behnam Torabi

Address: ECSS 4.220, 800 W Campbell Rd, Richardson, TX 75080

Email: behnam.torabi@utdllas.edu

Education

2017 - M.Sc. in Software Engineering, University of Texas at Dallas

2013 - M.Sc. in Artificial intelligence, University of Isfahan, Iran

2010 - B.Sc. in Software Engineering, University of Isfahan, Iran

Publications

Behnam Torabi, Rym Z. Wenkstern, and Robert Saylor. A Self-Adaptive Collaborative

Multi-Agent based Traffic Signal Timing System. In Proceedings of the 4th IEEE Interna-

tional Smart Cities Conference, ISC2 2018.

Behnam Torabi, Rym Z. Wenkstern, and Robert Saylor. A Collaborative Agent-Based

Traffic Signal System for Highly Dynamic Traffic Conditions. In Proceedings of the 21st

IEEE International Conference on Intelligent Transportation Systems, IEEE ITSC 2018.

Behnam Torabi, Rym Z. Wenkstern, and Mohammad Al-Zinati. An Agent-Based Micro-

Simulator for ITS. In Proceedings of the 21st IEEE International Conference on Intelligent

Transportation Systems, IEEE ITSC 2018, Maui, Hawaii, USA, November 2018.

Behnam Torabi, Rym Z. Wenkstern, and Robert Saylor. A Multi-Hop Agent-Based Traffic

Signal Timing System for the City of Richardson. In Proceedings of the Sixteenth Interna-

tional Conference on Autonomous Agent and Multiagent Systems, AAMAS 2018.

91

Behnam Torabi, Mohammad Al-Zinati, and Rym Z. Wenkstern. MATISSE 3.0: A Large-

Scale Multi-Agent Simulation System for Intelligent Transportation Systems. In Proceedings

of the 16th International Conference on Practical Applications of Agents and Multi-Agent

Systems, PAAMS 18.

Behnam Torabi, Rym Z. Wenkstern, and Robert Saylor. Agent-based decentralized traffic

signal timing. In Proceedings of the 21st International Symposium on Distributed Simula-

tion and Real Time Applications, DS-RT 17.

Behnam Torabi and Ahmad Reza Naghsh Nilchi. Automatic Speech Segmentation Based on

Audio and Optical Flow Visual Classification. In International Journal of Image, Graphics

and Signal Processing.

Awards & News

April 2019 - Winner of Smart 50 Awards

April 2019 - Interview with Smart Cities Connect

March 2019 - News Segment in CBS 11

February 2019 - Article in Dallas Innovates

Technical Skills

JAVA, C#, C/C++, Php, ASP.NET, HTML5, JavaScript, AJAX, CSS, MATLAB, LATEX,

Software Engineering, Artificial Intelligence, Software Design, Signal Processing, Image Pro-

cessing

92

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Agents and Multi-Agent Systems
	Traffic Concepts
	Components of a Traffic Control System
	Basic Signal Timing Parameters
	Signal Operation Modes
	Traffic Signal Coordination

	City Of Richardson
	Intelight Controllers
	Traffic Management Center
	Operation Modes
	Detection System
	Defining Timing Plans

	Related Works
	Optimizations at Network or Sub-Network Level
	Optimizations at Intersection Level

	DALI's algorithms
	DALI Model
	Model Definitions
	Set Definitions
	Function Definitions

	Non Congested Traffic Conditions
	Communicating Vehicle Arrivals
	Queue Length Estimation
	Evaluating Timing Plans

	Congested Traffic Conditions
	Detecting Congestion
	Defining new configuration
	Requesting Agents' Feedback
	Computing Level Of Agreement
	Special Cases

	Adaptive Assignment of Threshold Values
	Overview of Reinforcement Learning
	Agent Algorithms for Adaptive Threshold Assignment

	Case Study
	MATISSE: A Simulation System for Agent-Based Intelligent Transportation Systems
	Overview of MATISSE 2.0
	High Level Architecture
	Traffic Network Structure
	Creating Virtual Agents

	MATISSE 3.0
	Importing Traffic Networks from OpenStreetMap
	Defining Vehicle Distribution at Initialization Time
	Defining New Vehicle and Intersection Controller Behaviors
	Hybrid Simulation

	Evaluation of DALI's Simulation Results
	Metrics
	Simulation Setting
	Experiment 1: DALI with fixed threshold values
	Experiment 1.1: Normal Traffic Conditions
	Experiment 1.2: Normal Traffic Conditions With Accident
	Experiment 1.3: Continuous Random Traffic Conditions
	Experiment 1.4: Continuous Random Traffic Conditions with Accident

	Experiment 2: DALI with Adaptive Threshold Values
	Experiment 2.1: Assessing Delay
	Experiment 2.2: Assessing Changing Values of Threshold a
	Experiment 2.3: Assessing Changing Values of Threshold g

	Experiment 3: Hybrid Simulation

	Deployment of DALI
	The Waterview Corridor
	Safety and Monitoring Requirements
	Agent Implementation
	Intelight Controllers
	Agent-Controller Interaction Mechanism
	Executing DALI Agents
	Lessons Learned

	Evaluation of DALI's Deployment Results
	Metrics and Data Collection
	Queue Length
	Delay
	Cost of Delay

	Conclusion
	Contributions
	Model and Algorithm Definitions
	Traffic Simulator Feature Development
	Deployment

	Future Work
	Model and Algorithm Definitions
	Traffic Simulator Feature Development
	Deployment

	References
	Biographical Sketch
	Curriculum Vitae

