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Charged impurity scattering in top-gated graphene nanostructures
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We study charged impurity scattering and static screening in a top-gated substrate-supported graphene
nanostructure. Our model describes how boundary conditions can be incorporated into scattering, sheds light
on the dielectric response of these nanostructures, provides insights into the effect of the top gate on impurity
scattering, and predicts that the carrier mobility in such graphene heterostructures decreases with increasing top
dielectric thickness and higher carrier density. An increase of up to almost 60% in carrier mobility in ultrathin
top-gated graphene is predicted.
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Introduction. The electron mobility in single-layer
graphene (SLG) has been demonstrated to be as high as
200 000 cm2 V−1 s−1,1 and is central to many of its potential
nanoelectronic applications. However, in most graphene-based
heterostructures, SLG must be physically supported by an
insulating dielectric substrate such as SiO2, and the carrier
mobility in such structures is about one order of magnitude
lower1 as a result of scattering with impurities, defects, and
surface roughness. This reduction in carrier mobility can be
further exacerbated when a top gate, consisting of a layer of
high-κ dielectric material such as HfO2 or Al2O3 overlayed
with metal, is deposited on SLG.2–4

Experiments suggest that the dominant factor limiting
electrical transport is scattering by charged impurities, which
are believed to be located at or near the SLG-substrate
interface.5 Adam and co-workers have successfully explained
the linearity of the conductivity with respect to carrier density
as a consequence of charged impurity scattering.6,7 However,
their theory is limited to the simple geometry of SLG supported
by a substrate. In more realistic graphene heterostructures, the
SLG is encapsulated between the substrate and the top gate,5,8,9

an arrangement which offers better local electrostatic control
than the bottom gate and is probably required for large-scale
integration. On the other hand, top gates modify the dielectric
environment of the SLG by introducing image charges along
the various interfaces. Thus, given the significance of impurity
scattering, it is important to treat this process theoretically
by accounting fully for these geometrical effects in order to
optimize the design of SLG-based nanoelectronics.

Jena and Konar10 suggest that charged impurity scattering
in low-dimensional semiconductor nanostructures can be
damped by coating them with high-κ dielectrics. It has been
shown11,12 that placing a higher-κ overlayer (e.g., ice in Ref. 11
and nonpolar liquid in Ref. 12) on SLG can lead to a weakening
of the Coulombic scattering forces and to an improvement
in the conductivity (although Ponomarenko and co-workers
using a high-κ liquid overlayer were not able to find any
significant improvement13). The deposition of dielectric films,
such as HfO2 or Al2O3, on graphene has been found to
lead to the degradation of electron mobility.2,14 This has
been attributed to the roughening of the graphene surface.
However, using atomic layer deposition (ALD), Fallahazad
and co-workers5,8 have been able to deposit ultrathin high-κ
dielectric materials on SLG with much less roughness and

observe a significant improvement in the carrier mobility.
Hollander and co-workers were also able to see an increase of
the Hall mobility in epitaxial graphene with thinner top gate
dielectrics.15

In this Rapid Communication, we extend the theory of
Adam and co-workers to the more complicated geometry of
top-gated SLG, and apply it to study the effect of the top gate
on impurity scattering, emphasizing the dependence of the
mobility on the top dielectric thickness. Our principal finding is
that a thinner top gate leads to a higher carrier mobility because
of the stronger image-charge effect in the gate. This agrees with
the scaling trend found by Fallahazad and co-workers8 as well
as Hollander and co-workers.15 This mobility improvement
due to stronger gate screening was also suggested for con-
ventional metal-oxide-semiconductor systems by Gamiz and
Fischetti.16 A general formula for charged impurity scattering
in SLG heterostructures is provided.

The outline of the paper is as follows. We derive the
Thomas-Fermi screening and the electron-impurity Coulom-
bic interaction, taking into account the boundary conditions
imposed by the substrate and the top gate. The matrix element
for electron-impurity interaction is calculated and used to
compute the momentum relaxation rate, which determines the
conductivity and carrier mobility. We then compute the carrier
mobility for different top dielectrics, gate thickness, and carrier
densities.

Method. The model of the top-gated graphene nanostructure
consists of a SLG sheet sandwiched between two oxide layers
with the interfaces coplanar with the x-y plane. The substrate
consists of the semi-infinite region z < 0, while the top oxide
spans the region h � z < h + tox , where h is the height of
the empty space between the two oxide layers and tox is the
thickness of the top oxide layer. The region z � h + tox is
assumed to be composed of a semi-infinite ideal metal. Thus,
all field lines terminate at z = h + tox . For simplicity, we
assume that the SLG floats at a height of z = d = h/2 halfway
between the oxide layers. The structure is shown in Fig. 1. The
dielectric constants of the top and bottom oxides are εtox and
εbox, respectively.

To describe the static dielectric screening of a charged
impurity in SLG, we start from the Poisson equation for the
screened scalar potential �scr:

−∇2�scr(R,z) = 1

ε0
[ρimp(R,z) + ρscr(R,z)], (1)
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FIG. 1. (Color online) Basic model used in our calculation. The
SLG is an infinitely thin layer suspended in the middle of the
vacuum gap between a semi-infinite substrate and a top oxide layer of
thickness tox . The dielectric is capped with metal, which we assume
to be a perfect conductor. The charged impurity on the SLG has image
charges under and above it in the substrate and top gate, respectively.

where ρimp is the impurity charge and ρscr represents the
screening (polarization) charge. Here R represents the coor-
dinate on the x-y plane, while z is the coordinate along the
perpendicular direction. The integral form of Eq. (1) is

�scr(R,z) = �(R,z) +
∫

dR′ dz′ G(Rz,R′z′)ρscr(R′z′), (2)

where G(Rz,R′z′) is the Green function that satisfies the
equation −∇2[ε(R,z)G(Rz,R′z′)] = δ(R − R′,z − z′) with
the proper boundary conditions. The bare potential �(R,z)
is defined as �(R,z) = ∫

dR′ dz′ G(Rz,R′z′)ρimp(R′z′). The
second term on the right-hand side of Eq. (2) represents the
screening charge distribution. The bare and screened potentials
can be written in terms of their Fourier components: �(R,z) =∑

Q φQ(z)e−iQ·R and �scr(R,z) = ∑
Q φscr

Q (z)e−iQ·R. The two-
dimensional Fourier transform of Eq. (2) yields the following
expression for the z-dependent part of the Fourier-transformed
screened potential:

φscr
Q (z) = φQ(z) +

∫
dz′ GQ(z,z′)ρscr

Q (z′), (3)

where Q is the two-dimensional in-plane wave vector.
Equation (3) can be solved if we express the polarization
charge ρscr

Q as a function of the screened scalar potential. Thus,
we express the screening charge as

ρscr
Q (z) = e2�(Q)f (z)φscr

Q (z), (4)

where �(Q) is the in-plane static polarizability and f (z) gov-
erns the polarization charge distribution in the perpendicular
direction. We require f (z) to be normalizable to unity, i.e.,∫

dz f (z) = 1. For convenience, we choose f (z) = δ(z − d).
Physically, this implies that the SLG is idealized as an infinitely
thin sheet of polarized charge. Combining Eqs. (3) and (4), we
obtain the expression

φscr
Q (z) = φQ(z) + e2

∫
dz′ GQ(z,z′)�(Q)f (z′)φscr

Q (z′). (5)

After some algebra, Eq. (5) yields

φscr
Q (z) = φQ(z) + e2GQ(z,d)�(Q)

1 − e2GQ(d,d)�(Q)
φQ(d).

Since we are only concerned about the in-plane scattering
potential φscr

Q (d), we have

φscr
Q (d) = φQ(d)

1 − e2GQ(d,d)�(Q)
. (6)

Therefore, the generalized expression for the static
two-dimensional screening function is ε(Q) =
1 − e2GQ(d,d)�(Q). In the simplest case of suspended
SLG, we have GQ(d,d) = 1

2ε0Q
and �(Q) = − 2EF

πh̄2v2
F

,6 giving

us ε(Q) = 1 + Qs

Q
, where Qs = e2EF

ε0πh̄2v2
F

, EF , and vF are the

inverse screening length, the Fermi level, and the Fermi
velocity, respectively. Note that the screening function is
determined by its electrostatic environment through GQ(d,d),
the electrostatic Green function.

In order to solve Eq. (6) and find the screening function
ε(Q), we need an explicit expression for the electrostatic
Green function GQ(z,z′). This Green function incorporates
the details of the electrostatic environment around the SLG.
For a source in the empty space between the top and
bottom oxide layers, i.e., for 0 < z′ � h, GQ(z,z′) satisfies the
equation

−ε

(
∂2

∂z2
− Q2

)
GQ(z,z′) = δ(z − z′).

This implies that we can always express GQ(z,z′) as a linear
combination of eQz and e−Qz, or cosh(Qz) and sinh(Qz).
The Green function has to satisfy the following continuity
conditions at the interfaces z = 0, z = h, and z = h +
tox : GQ(h + tox,z

′) = limz→−∞ GQ(z,z′) = 0, GQ(h+,z′) =
GQ(h−,z′), GQ(0+,z′) = GQ(0−,z′), εtox

∂GQ(z=h+,z′)
∂z

=
ε0

∂GQ(z=h−,z′)
∂z

, and ε0
∂GQ(z=0+,z′)

∂z
= εbox

∂GQ(z=0−,z′)
∂z

. In
addition, we have the following conditions at z = z′:
GQ(z = z′−,z′) = GQ(z = z′+,z′) and ε0

∂
∂z′ GQ(z = z′−,z′) −

ε0
∂

∂z′ GQ(z = z′+,z′) = 1. After some straightforward but
lengthly algebra we obtain for GQ(0 < z � h,0 < z′ � h)
the following expression:

GQ(z,z′) = 1

2ε0Q

{
e−Q|z−z′ |

+ λtλbe
−2Qh

1 − λtλbe−2Qh
[e−Q(z−z′) + eQ(z−z′)]

− λte
Q(z+z′−2h) + λbe

−Q(z+z′)

1 − λtλbe−2Qh

}
, (7)

where λt = εtox coth Qtox−ε0
εtox coth Qtox+ε0

and λb = εbox−ε0
εbox+ε0

. In the region
h � z < h + tox , making use of the continuity of the Green
function and the fact that it has to terminate at z = h + tox ,
we can easily write the Green function as GQ(z > h,z′) =
G(h,z′) sinh Q(h+tox−z)

sinh Qtox
. Similarly, for z < 0 we have GQ(z <

0,z′) = G(0,z′)e+Qz.
The scattering potential due to a single bare point charge on

the SLG at the origin satisfies the equation −ε0∇2�(R,d) =

121409-2
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FIG. 2. (Color online) Dependence of the carrier mobility (μ) on
top gate dielectric thickness (tox) for SiO2, Al2O3, and HfO2. The
mobility decreases with increasing tox . This decrease is greater at
n = 1012 cm−2 than at n = 5 × 1012 cm−2.

e2δ(R,d). The corresponding two-dimensional Fourier trans-
form of �(R,d) is φQ(d) = e2GQ(d,d). Upon including the
screening function from Eq. (6), we obtain the generalized
expression for the screened Coulomb scatterer:

φscr
Q (d) = e2GQ(d,d)

1 − e2GQ(d,d)�(Q)
. (8)

The matrix element of the scattering potential of randomly
distributed screened impurity charge centers in SLG is
|〈VsK,sK′ 〉|2 = |φscr

|K−K′|(d)|2(1 + cos θKK′)/2, where θKK′ is
the angle between the wave vectors K and K′, and s = + 1 (−1)
for the conduction (valence) band. The transport scattering
rate is given by 1/τ (EsK) = (nimp/h)

∫
dK′|〈VsK,sK′ 〉|2[1 −

cos θKK′]δ(EsK − EsK′ ), where nimp is the impurity den-
sity, and the conductivity σ is approximated by σ =
e2v2

F D(EF )τ (EF )/2, where D(EF ) is the density of states
at the Fermi level. The impurity-limited mobility is taken to
be6,7

μ = σ

en
= e2v2

F

2en
D(EF )τ (EF ), (9)

where n = E2
F /(πh̄2v2

F ) is the zero-Kelvin approximation to
the carrier density.

Results and discussion. Using Eq. (9), we estimate the
impurity-limited mobility of top-gated SLG for different
carrier densities, top gate dielectrics, and dielectric thickness.
In particular, the dependence of the mobility on tox is studied
in detail. For simplicity, we assume that the doping level is
�1012 cm−2 because charge inhomogeneity (“puddles”) is a
phenomenon at/near the Dirac point and is not captured in our
theory.

We consider three top gate dielectrics, SiO2 (κ = 3.9),
Al2O3 (κ = 12.5),8 and HfO2(κ = 22.0).5 The bottom dielec-
tric is assumed to be SiO2. tox is varied from 1 to 12 nm. The
electron mobility is calculated for two values of the carrier
density, 1 × 1012 cm−2 and 5 × 1012 cm−2. The results are
shown in Fig. 2. We set the impurity density to be nimp =
0.5 × 1012 cm−2. In Fig. 2, we notice that the dependence of
the mobility on tox is stronger for n = 1 × 1012 cm−2 than for
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FIG. 3. (Color online) Dependence of the mobility on carrier
density. The mobility decreases with carrier density, and the extent
of the decrease is greater with smaller top gate dielectric thickness.

n = 5 × 1012 cm−2. As expected, the higher-κ oxides yield a
larger mobility because the higher effective permittivity weak-
ens Coulombic interactions (electron-electron and electron-
impurity) in graphene. Although the weaker electron-electron
interaction results in less screening charge around the impurity,
the bare charge on the impurity is reduced to a greater extent,
resulting in an overall diminished screened impurity charge.

We also find that the mobility increases with decreasing tox ,
in qualitative agreement with the experimental results in Ref. 8.
In our simulations, this increase in mobility can be substantial.
For example, in Fig. 2 at n = 1012 cm−2, the mobility for a
1.0-nm SiO2 top gate is almost 60% higher than that for a
12.0-nm top gate. This scaling trend has been attributed to the
increase in defect concentration with greater tox .8 However, our
model also reproduces this trend because with a decreasing
tox the image “anticharge” at the metal-dielectric interface
gets closer to the impurity charge and weakens its scattering
potential. This implies that ultrathin top gates can be used to
compensate for large charged impurity densities. The carrier-
density dependence of the mobility is calculated for different
top gate dielectrics at tox = 2 and 12 nm. The carrier density is
varied from 1012 to 1013 cm−2. The results are shown in Fig. 3.
In general, the mobility decreases with increasing carrier
density, in contrast to the results in Refs. 6 and 7 which suggest
that mobility should be independent of carrier density. This
decrease is more acute in the 2-nm case than in the 12-nm case
and for higher-κ oxides. To understand why, we look at Eq. (9).
In suspended SLG, the Fermi level EF is proportional to n1/2.
The scattering time τ (EF ) is also proportional to n1/2 because
GQ(d,d) in Eq. (8) scales as 1/Q. Thus, μ is independent of
n. On the other hand, in top-gated SLG, GQ(d,d) is almost
constant over a large range of Q values, and hence, τ (EF ) is
approximately independent of n at low carrier densities. Thus,
μ scales roughly as n−1/2. Thus, the trend shown in Fig. 3
should be viewed as low-density/thin-oxide enhancement of
the mobility above its gate-unscreened value thanks to the
screening effect of the image charges induced in the gate by
the impurities.

The improvement of mobility with a thinner top oxide
layer highlights the compensating effect of having a metal
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layer in close proximity to SLG. It has been suggested that
voltage fluctuations induced by charged impurities in the
substrate lead to local electrostatic doping and are responsible
for the formation of puddles in graphene near the charge
neutral point.17,18 We propose that doping inhomogeneities
can be “smoothened out” through the use of an ultrathin
high-κ top-gate structure since the image charges can partially
neutralize the effects of the charged impurities. Unintentional
doping from the substrate can also be reduced, leading to an
improvement of carrier transport in top-gated SLG.

Conclusions. We have studied charged impurity scattering
and static screening in top-gated SLG nanostructures. The
image charge effect dampens Coulombic interaction, resulting
in weaker unscreened charged impurity scattering and static

screening. The carrier mobility is found to increase with
decreasing top gate dielectric thickness and decreasing carrier
density. Our theory suggests that if charged impurity scattering
is a significant factor in limiting electronic transport in SLG,
then having a top metal gate with an ultrathin dielectric can
compensate for the effect of the charged impurities. This
offers a simple and practical design strategy to improve the
impurity-limited mobility in SLG heterostructures.
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