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It is challenging to identify meaningful gene networks because biological interactions are
often condition-specific and confounded with external factors. It is necessary to integrate
multiple sources of genomic data to facilitate network inference. For example, one can
jointly model expression datasets measured from multiple tissues with molecular marker
data in so-called genetical genomic studies. In this paper, we propose a joint conditional
Gaussian graphical model (JCGGM) that aims for modeling biological processes based on
multiple sources of data. This approach is able to integrate multiple sources of information
by adopting conditional models combined with joint sparsity regularization. We apply
our approach to a real dataset measuring gene expression in four tissues (kidney, liver,
heart, and fat) from recombinant inbred rats. Our approach reveals that the liver tissue
has the highest level of tissue-specific gene regulations among genes involved in insulin
responsive facilitative sugar transporter mediated glucose transport pathway, followed by
heart and fat tissues, and this finding can only be attained from our JCGGM approach.

Keywords: Gaussian graphical models, gene networks, GGMs, conditional GGMs, joint sparsity

1. INTRODUCTION
Inference of gene networks plays an important role in reveal-
ing the interactions among genes that may lead to a better
understanding of molecular mechanisms in organisms. Biologists
routinely use high-throughput technologies (e.g., microarrays) to
measure gene expression data at the genome scale to study var-
ious biological and biomedical problems. Statisticians are often
charged to explore interactions among genes through statisti-
cal analysis of these large data sets. It is natural to use mul-
tivariate approaches to analyze these high-throughput datasets,
because multivariate methods may reveal various interactions
among genes that cannot be captured from individual gene based
approaches.

In this paper we focus on a graphical model approach that
aims at finding relationships among a group of genes, where a
graph is used for encoding relationships among multiple vari-
ables. When a graph is used for a gene network, nodes represent
genes and edges represent relationships between the connected
genes. The edges can be defined with various relationships among
genes. For example, pairwise correlations are used to define edges
in a “relevance network.” Similarly, we can define edges through
conditional dependence, that is, any two genes connected with
an edge in such graphical models are conditionally dependent of
each other when the effects from all other genes are explained
away. Therefore, when the expression profiles of two genes are
correlated because they are both regulated by some other genes,
the graphical model does not put an edge between these two genes
because they are conditionally independent given the expres-
sions of the common regulatory genes. In this way, the graphical

model produces a more parsimonious graph than a relevance
network.

Gene network inference is a complex problem, because the
relationships of genes are often affected by external variables (e.g.,
genomic variations), and gene regulatory relationships may be
altered under different conditions such as tissue types. This means
that a single network inferred from gene expression measure-
ments alone may not be adequate to describe the relationships
among genes. Further, it is often desirable to jointly model gene
networks under various conditions rather than considering them
separately, because large parts of the networks are likely to share
common topologies corresponding to similar underlying biolog-
ical processes across conditions (e.g., the house keeping functions
and the clock), and thus joint modeling may increase the power
of detecting common gene interactions. Therefore, one may want
to infer multiple condition-specific networks in a single model
framework, while the network models may also need to incor-
porate all available external variables as well. Such inference is
possible through the analysis of datasets in genetical genomic
studies from same genetic origin (Jansen and Nap, 2001) where
gene expressions from multiple tissues, as well as marker geno-
types, are measured from the same set of individuals. These
data allow us to perform an integrative analysis via joint condi-
tional Gaussian graphical models (JCGGM) to infer relationships
among genes. The JCGGM approach is an extension of the con-
ditional Gaussian graphical model (CGGM) in order to increase
power of the methods via joint modeling. The joint modeling is
particularly important in the conditional models with a limited
sample size, since the model’s complexity increases very quickly
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We use gene expression data and marker data from recombinant inbred rats and infer gene regulation network by

using genes consisting of the insulin responsive facilitative sugar transporter mediated glucose transport pathway.
• Q: How was the quality/utility of the inferred networks assessed?
• A: Our JCGGM found that the liver network has the highest tissue specificity, and this is in line with the role of

SLC2A4 protein, which forms glucose concentration gradient of muscle and fat cells, as well as the specialized
glycogen breakdown of glycogen phosphorylase that only occurs in liver tissue (Watson et al., 2004; Campbell et al.,
2006).

• Q: How were these networks validated?
• A: We have performed simulation study to test performance of the proposed JCGGM approach and our approach

performs the best over all simulation scenarios. We have also provided the scientific literature to support the validity
of the inferred networks.

and the separate models have no power unless appropriately
combined.

In Section 2, we first introduce CGGMs and joint regulariza-
tion approaches, and then propose the JCGGM that uses both
the CGGM and a joint regularization approach. In Section 3, we
show the performance of our approach via a simulation study
and then apply it to a genetical genomics study, where gene
expressions from four different tissues are measured together with
genotype data from recombinant inbred rats. We show that the
JCGGM approach is able to find tissue-specific gene networks.
The discussion follow in Section 4.

2. MATERIALS AND METHODS
2.1. MATERIAL
For a real data analysis, we used a dataset of Petretto et al.
(2006) in which gene expression levels in four tissues (liver,
kidney, heart and fat) were measured from a panel of 29 rat
recombinant inbred (RI) strains. This strain was derived from
a cross between the spontaneously hypertensive rat (SHR) and
the brown norway (BN) strains (Hubner et al., 2005). We down-
loaded the dataset normalized by the robust multi-array average
(RMA) algorithm from www.genenetwork.org (Accession num-
bers: GN70, GN79, GN221 and GN222). From the same website,
we also downloaded a genetic marker dataset that consists of 556
markers.

2.2. METHODS
In this section, we briefly introduce recent approaches for
CGGMs as well as those for joint estimation of multiple Gaussian
graphical models. We then propose a new method to combine
these approaches in order for inferring networks from multiple
sources of biological data for finding multiple CGGMs. Finally,
we explain the simulation process for generating datasets that are
used for comparing the performance of our proposed method.

2.2.1. A brief summary on CGGM and joint estimation of
multiple GGMs

A GGM describes the conditional independences of multiple ran-
dom variables, Y1, . . . , Yp with a graph G = (V, E), where V =
{1, . . . , p} is a set of nodes and E is a set of edges, in which an edge
between nodes represents that they are conditionally dependent.
According to the Hammersely and Clifford theorem, a graphical

FIGURE 1 | Illustration of conditional GGM: X represents a single

molecular marker, and Y1, Y2, Y3 represent the expressions of three

genes. When the marker effect is ignored, there are two edges in a graphical
model: 1 ↔ 2 and 2 ↔ 3. After considering the marker effect, there is a
single edge, represented with a solid line, in a conditional graphical model.

model can be inferred from a factorization of the joint density
of a multivariate random vector Y = (Y1, . . . , Yp)

T . When Y is
assumed to follow a multivariate Gaussian distribution Np(0, �),
where � is a p × p covariance matrix, a factorization can be eas-
ily found from zero elements of the inverse covariance matrix
(also known as the precision matrix), �−1 = �. Hence, condi-
tional independence can be directly inferred from zero entries of
a precision matrix, when a multivariate Gaussian assumption is
made. This model is called a GGM (Lauritzen, 1996). Finding a
sparse precision matrix with various regularizations such as lasso
and adaptive lasso (Tibshirani, 1996; Zou, 2006) has been studied
by many researchers including Li and Gui (2006); Yuan and Lin
(2007); Friedman et al. (2008).

More recently, it has been noted that one can further elabo-
rate a GGM by using extra sources of information. For example,
as in Figure 1, let us assume that X represents a single molecular
marker, and Y1, Y2, Y3 represent the expressions of three genes.
When the marker effect is ignored, there are two edges in the
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unconditional graphical model: 1 ↔ 2 and 2 ↔ 3. After consid-
ering the marker effect, there is only one edge, represented by the
solid line, in the conditional graphical model. For this purpose, a
conditional Gaussian graphical model (CGGM) is introduced by
several researchers including Yin and Li (2011); Li et al. (2012);
Cai et al. (2013).

In addition to the conditional modeling, there is recently an
increasing needs for inferring multiple networks that vary across
conditions. For example, gene expression levels are measured in
multiple tissues so as to study the tissue specificity of the gene
regulations. Since the sample size is often limited, we would
achieve a more accurate network inference when an appropri-
ate joint modeling is used than when a separate estimation is
made for each network because such joint analysis allows borrow-
ing information across conditions. The joint modeling problem
has been studied by several researchers including Guo et al.
(2011); Danaher et al. (2013); Chun et al. (unpublished). These
approaches do not accommodate the conditional models, and we
will consider a joint approach in the context of estimating the
conditional models.

2.2.2. Joint estimation of multiple conditional Gaussian
graphical models

In this section, we propose an approach to estimate the multi-
ple CGGMs jointly. This approach is aimed to infer tissue-specific
gene networks from a genetical genomic dataset that consists of a
marker dataset and a collection of gene expression datasets from
several tissues.

We assume that at the t-th condition, a p-dimensional gene

expression measurement Y (t) is from Np(f (t)(X), (�(t))
−1

), t =
1, . . . , T, where f (t)(·). is an arbitrary function, and X is a
q-dimensional vector (X1, . . . , Xq)

T , describing an extra dataset
such as a genetic marker dataset. We remark that f (t)(·) varies
along with the condition t, and thus our model is able to reflect
the dynamic nature of genetic controls (Gerrits et al., 2009). A
conditional model describes conditional independence between
any two variables, Yi and Yj given the remaining variables Y−{i, j}
and the extra information f (t)(X). Here, Y−{i, j} represents a p − 2
dimensional subvector of Y excluding the i th and j th com-
ponents. The interest is in estimating {�(t)}T

t = 1 jointly, while
accounting for the effects from X. We will take a two-stage
approach: (1) finding consistent conditional covariance matrix
�̂(t), t = 1, . . . , T and (2) finding sparse estimates of {�(t)}T

t = 1
by using a joint sparsity penalty.

The first step is finding �̂(t) with a conditional covariance
matrix estimator after carefully selecting a subset of X that are
related to Y . Such �(t) can be estimated by using a condi-
tional variance matrix of �YY |X , based on a conditional vari-
ance operator between RKHSs of X and Y under some gen-
eral model assumptions (Li et al., 2012). Assuming the X(t), i

and Y (t), i, i = 1, . . . , n, are independently and identically dis-
tributed random vectors as with X(t) and Y (t), respectively, we
can estimate the conditional variance matrix by using a kernel

KX as follows: 1
n

(
Y(t)T

QY(t) − Y(t)T
Q(QKXQ)(QKXQ)†QY(t)

)
,

where Y(t) = (
Y (t), 1, . . . , Y (t),n

)T
, Q = In − 1

n Jn, In is an n × n
identity matrix, Jn is an n × n matrix whose elements are all
1, and A† means a generalized inverse of a matrix A. When a

linear kernel is used, the conditional variance matrix becomes

SY (t)Y (t) − SY (t)XS−1
XXSXY (t) , where SXX = 1

n

∑n
i = 1 XiXiT , SXY (t) =

1
n

∑n
i = 1 XiY (t), iT and SY (t)Y (t) = 1

n

∑n
i = 1 Y (t), iY (t), iT . Thus, one

can obtain the estimate of the conditional variance as in Yin
and Li (2011); Cai et al. (2013) by using linear kernels. When
X represents marker genotypes of a backcross from a geneti-
cal genomics study, the linear model assumption is reasonable
because the genotypes have two levels of genotype values (e.g.,
back cross population). With other kernels such as a polynomial
and a radial basis function kernel, one can model an arbitrary
form of f flexibly.

Second, we will use a penalized profiled likelihood that jointly

estimate
{
�(t)

}T
t = 1 with a joint sparsity penalization as follows:

PPL

({
�(t)

}T

t = 1

)
=

T∑
t = 1

nt

(
− log det

(
�(t)

)
+ tr

(
�̂(t)�(t)

))

+ P

({
�(t)

}T

t = 1

)
, (1)

where �̂(t) is the conditional covariance matrix estimate, and
P(·) is a penalty function. In addition, tr(A) and det(A) denote
trace and determinant of matrix A, respectively. The joint sparsity
function P(·) can be chosen from the following different penalty
functions:

• λ1
∑

j �= j′

√∑T
t = 1

∣∣∣ω(t)
j, j′
∣∣∣ (Guo et al., 2011)

• λ1
∑T

t = 1

∑
j, j′
∣∣∣ω(t)

j, j′
∣∣∣+ λ2

∑
j, j′

√∑T
t = 1 ω

(t)
j, j′

2
(Danaher

et al., 2013)

• λ1
∑

j �= j′ g
(∑T

t = 1

∣∣∣ω(t)
j, j′
∣∣∣) (Chun et al., unpublished),

where ω
(t)
j, j′ is the (j, j′)th element of �(t), λ1 and λ2 are positive

tuning parameters, and g is a nonconvex function such as g(x) =
xβ, where 0 < β < 1, or a truncated log function or a truncated
inverse polynomial function.

The approach of Chun et al. (unpublished) is a generaliza-
tion of Guo et al. (2011), where it allows the control in balance
between common and condition-specific structures by the choice
of the penalty function P(·). Through a simulation study, Chun
et al. (unpublished) showed that the truncated log penalty per-
forms well, when the majority of networks are shared across
conditions. Interestingly, the approach of Danaher et al. (2013)
uses two tuning parameters, which can make the algorithm com-
putationally challenging. Also, in their approach, the common

structure is defined as

√∑T
t = 1 ω

(t)
j, j′

2
, whereas it is defined as∑T

t = 1

∣∣∣ω(t)
j, j′
∣∣∣ in the other approaches. With the latter choice, the

condition-specific regularization can be automatically achieved
by the use of a nonconvex penalty function. Additionally, they
proved that the estimator from the nonconvex penalty has a spar-
sistency (variable selection consistency) for edges that appear in
any of the conditions. We thus use the truncated log penalty of
Chun et al. (unpublished) for the joint estimation of multiple
GGMs. That is, our penalty function is given by
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P
(
{�}T

t = 1

)
=
∑
j �= j′

{(
log

(
T∑

t = 1

∣∣∣ω(t)
j, j′
∣∣∣
)

− log ε + 1

)
IA

+
∣∣∣∑T

t = 1 ω
(t)
j, j′
∣∣∣

ε
IAc

⎫⎬
⎭ ,

where A =
(∑T

t = 1

∣∣∣ω(t)
j, j′
∣∣∣ > ε

)
, Ac =

(∑T
t = 1

∣∣∣ω(t)
j, j′
∣∣∣ ≤ ε

)
and ε

is a small positive constant (we used ε = 1e−3 in the current
manuscript). We remark that the choice of a different penalty
function corresponds to enforcing different level of joint sparsity
in network inference. Hence we may obtain improved results from
the different penalty function depending on the underlying truth.
However, due to the limited sample size in biological datasets, it
is often very difficult to find the optimal penalty function.

The objective function 1 can be optimized by using a local lin-
ear approximation as in Guo et al. (2011). We remark that the
solution from the current optimization algorithm may not pro-
duce a global solution, and hence the choice of the good initial
estimate is very important. However, our simulation study sug-
gests that the current algorithm yields a good estimate in terms
of performance of the approach. Specifically, at the (k + 1)th
iteration, the PL is decomposed into T individual optimization
problems as follows:

(
�(t)

)(k + 1) = argmin�(t)nt

(
tr
(

S(t)�(t)
)

− log
{

det
(
�(t)

)})
+ λ

∑
j �= j′

ζ
(k)
j, j′
∣∣∣ω(t)

j, j′
∣∣∣ ,

where ζ
(k)
j, j′ = P′

(∑T
t = 1

∣∣∣∣(ω(t)
j, j′
)(k)

∣∣∣∣
)

=

max

(∑T
t = 1

∣∣∣∣(ω(t)
j, j′
)(k)

∣∣∣∣ , ε
)−1

and
(
ω

(t)
j, j′
)(k)

is the solu-

tion of the previous k-th step. Then, the formulation becomes a
single precision matrix estimation problem with a weighted lasso
penalty, which can be solved by the glasso algorithm (Friedman
et al., 2008).

JCGGM algorithm

1. Compute �̂ by using a kernel. When a linear kernel is
used, �̂t = SYt Yt − SYt XS−1

XXSXYt .

2. Initialize �̂t =
(
�̂t + δIp

)−1
for all 1 ≤ t ≤ T, where Ip

is the identity matrix and the constant δ is chosen so that
�̂t + δIp is invertible. We added 1e−3 to the diagonals
when the ratio of largest and smallest eigen values is larger
than 1e3.

3. Update �̂t for all 1 ≤ t ≤ T by solving

min�t tr
(
�̂t�t

)
− log

{
det

(
�t)} +λ

∑
j �= j′

∣∣∣ωt
j, j′
∣∣∣(∑T

t = 1

∣∣∣ω̂t
j, j′
∣∣∣) ,

using a glasso, where ω̂t
j, j′ is the estimate from the previ-

ous step.
4. Repeat step 2 until convergence is achieved.

For selecting the tuning parameter λ, one can use the following
BIC criterion:

BIC(λ) =
T∑

t = 1

{
− log det

(
�̂(t)(λ)

)
+ tr

(
�̂(t)�̂(t)(λ)

)

+ log (nt) dft/nt
}
,

where {�̂(t)(λ)}T
t = 1 are the estimates from solving the penal-

ized negative log likelihood with a tuning parameter λ where

dft is card{(j, j′) : j ≤ j′, ω̂(t)
j, j′ �= 0} with card representing the

cardinality of a finite set.

2.3. METHODS FOR SIMULATION STUDY
For simulation study, we generate datasets by taking the num-
ber of conditions T = 3, the number of gene expression variables
p = 30 and the number of markers q = 10. We set the sample
sizes nt = 30 and 100 to assess the small and large sample per-
formances of the estimators. We first simulate X that mimics a
marker dataset by using sim.map and sim.cross functions from
R/qtl package. We consider a single chromosome with length
1000 cM and place 10 equally spaced markers. We use the back-
cross design, since it is the design used in our real data analysis in
the next section.

The scale-free network structures, which are the most com-
monly observed structure in biology, are generated using the
Barabasi–Albert algorithm (Barabasi and Albert, 1999). We start
from six edges, and add one edge at each step. We first gen-
erate common edges from each of the network structures. For
each condition, randomly selected 0.1 M edges are added as
condition-specific edges, where M is the total number of edges
in the common structure. Based on the network structures, we
simulate the precision matrices by setting values for the off-
diagonals that correspond to edges with random numbers from
Unif ([−1, −0.5] ∪ [0.5, 1]), and by setting the diagonal elements
with

∑
j �= i |ωi, j|. The process is repeated until �t becomes a

positive definite matrix.
For simulating Yt , we first consider a scenario where there is no

external variable that causes dependence among genes. This is an
extreme scenario where our proposed conditional approach does
not have any advantage over the unconditional model. We sim-
ulate Yt with the model Yt = XBt + Et . The elements of Bt are
zeros except for (1,1), (2,4) and (3,8)th positions. These nonzero
coefficients are (−0.09, 0.789, −0.667), (1.361, 1.508, −2.608)
and (0.687, 0.316, 2.020) for three conditions. The ith row of Et is
simulated from Np(0, �t−1

).
We then consider a scenario where there exist hotspots

that cause marginal associations among genes. This is the
case where our proposed conditional approach is expected
to perform better than the unconditional approach. Now,
Yt

1, . . . , Yt
18 are linked to X1; Yt

19, . . . , Yt
25 are to Xt

4; and
Yt

26, . . . , Yt
30 are to X8. The nonzero coefficients are simulated

by perturbing the coefficients used in Case 1. B1
(i, 1)

= −0.09 +
N(0, 0.12), for i = 1, . . . , 18; B1

(i, 1)
= 0.789 + N(0, 0.12), for

i = 19, . . . , 25; B1
(i, 1)

= −0.667 + N(0, 0.12), for i = 26, . . . , 30;

B2
(i, 1)

= 1.361 + N(0, 0.12), for i = 1, . . . , 18; B2
(i, 1)

= 1.508 +
N(0, 0.12), for i = 19, . . . , 25; B2

(i, 1)
= −2.608 + N(0, 0.12), for
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i = 26, . . . , 30;B3
(i, 1)

= 0.687 + N(0, 0.12), for i = 1, . . . , 18;and

B1
(i, 1)

= 0.316 + N(0, 0.12), for i = 19, . . . , 25; B1
(i, 1)

= 2.020 +
N(0, 0.12), for i = 26, . . . , 30. The ith row of Et is simulated from
Np(0, �t−1

).

3. RESULTS
3.1. RESULTS FROM SIMULATION STUDY
We compare the performances of unconditional/conditional
GGMs and joint conditional GGMs. We use the following five
criteria for the comparison:

1. False positive rate at λ̂BIC:

FP(λ̂BIC) = 1

T

T∑
t = 1

card{(i, j) : i > j, ωt
i, j = 0 and ω̂t

i, j �= 0}
card{(i, j) : i > j and ωi, j = 0} .

2. False negative rate at λ̂BIC:

FN(λ̂BIC) = 1

T

T∑
t = 1

card{(i, j) : i > j, ωt
i, j �= 0 and ω̂t

i, j = 0}
card{(i, j) : i > j and ωi, j �= 0} .

3. False positive rate for common zeros at λ̂BIC:

FPC(λ̂BIC)

=

card
{
(i, j) : i > j; ωt

i, j = 0 for all t = 1, . . . , T; and

ω̂t
i, j �= 0 for any t, 1 ≤ t ≤ T

}
card{(i, j) : i > j; and ωt

i, j = 0 for all t = 1, . . . , T} .

4. False negative rate for common zeros at λ̂BIC:

FNC(λ̂BIC)

=

card
{
(i, j) : i > j; ωt

i, j �= 0 for any t, 1 ≤ t ≤ T; and

ω̂t
i, j = 0 for all t = 1, . . . , T

}
card{(i, j) : i > j; and ωi, j �= 0 for any t, 1 ≤ t ≤ T} .

5. Relative Frobenius loss (RFL):

RFL = 1

T

T∑
t = 1

||�t − �̂t ||2F/||�t ||2F.

The results are given in Tables 1, 2. First, one can see that the joint
approach improves the performance greatly for the small sample
cases. This effect is more pronounced for the conditional mod-
els. This may be explained by the fact that conditional models
require the estimation of more parameters than unconditional
ones. Second, for large sample sizes, JCGGM performs the best
in both simulation scenarios. This also confirms that even if we
include extra variables in a conditional model, it will perform
well as long as the sample size is large enough. The current
results depend on the BIC criterion, and one may have differ-
ent results when different tuning parameter selection approach
is used. We thus present ROC curves in Figure 2. These ROC
curves are the average ROC curves of 200 replicates. The fig-
ure confirms that JCGGM performs the best in all simulation
scenarios.

3.2. REAL DATA ANALYSIS
In this section, we demonstrate how to use the JCGGM approach
in a real biological study. In this analysis, we focused on genes
that consist of a particular pathway. Pathway information was
obtained from rgd.mcw.edu, and we investigated the insulin
responsive facilitative sugar transporter mediated glucose transport
pathway. We were able to identify 34 genes in our dataset that
belong to the pathway. We then used joint GGMs and joint
CGGMs approach for finding a gene regulation networks. For
the CGGM approach, we have selected a marker set based on
scanone function of R/qtl package. For each of 34 genes, we
selected markers that were significantly linked to the gene expres-
sion at the genome wide significance level of 0.05. We used
permutation with 1000 replicates for computing the genome wide
significance. We then took the union of those selected markers as
covariates for our RKHS conditional covariance estimator with
a linear kernel. We remark that the set of selected markers were
tissue-specific.

Table 1 | Results for Case 1.

FP FN FPC FNC RFL

n = 30

GGMs 0.081 (0.002) 0.755 (0.004) 0.222 (0.004) 0.518 (0.008) 0.703 (0.002)

CGGMs 0.946 (0.001) 0.063 (0.002) 0.999 (0.000) 0.000 (0.000) 5087.146 (135.93)

JGGM 0.053 (0.002) 0.560 (0.004) 0.067 (0.002) 0.524 (0.005) 0.564 (0.002)

JCGGM 0.114 (0.013) 0.459 (0.007) 0.134 (0.014) 0.434 (0.008) 2.517 (0.624)

n = 100

GGMs 0.051 (0.001) 0.475 (0.003) 0.144 (0.003) 0.262 (0.004) 0.577 (0.001)

CGGMs 0.054 (0.001) 0.335 (0.003) 0.152 (0.003) 0.164 (0.004) 0.348 (0.002)

JGGM 0.027 (0.002) 0.383 (0.002) 0.030 (0.001) 0.346 (0.003) 0.504 (0.001)

JCGGM 0.020 (0.001) 0.329 (0.002) 0.021 (0.001) 0.298 (0.003) 0.263 (0.001)

The performances of GGMs, CGGMs, JGGMs, and JCGGMs are compared with the comparison criteria explained in subsection 3.1. When the sample size is small,

the separate CGGMs select many false positives, which can be alleviated with JCGGMs. Under the scenario which is favored to JGGM, the JCGGM performs as

well as the JGGM in both small and large sample cases.
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Table 2 | Results for Case 2.

FP FN FPC FNC RFL

n = 30

GGMs 0.143 (0.003) 0.685 (0.005) 0.367 (0.006) 0.359 (0.007) 0.692 (0.002)

CGGMs 0.945 (0.001) 0.066 (0.002) 1.000 (0.000) 0.000 (0.000) 5343.2 (142.343)

JGGM 0.011 (0.005) 0.907 (0.006) 0.014 (0.005) 0.890 (0.006) 71.99 (71.27)

JCGGM 0.112 (0.013) 0.467 (0.008) 0.133 (0.013) 0.444 (0.008) 2.992 (0.84)

n = 100

GGMs 0.161 (0.002) 0.226 (0.002) 0.365 (0.004) 0.061 (0.002) 0.471 (0.002)

CGGMs 0.080 (0.001) 0.228 (0.002) 0.189 (0.003) 0.060 (0.002) 0.328 (0.002)

JGGM 0.103 (0.001) 0.164 (0.002) 0.135 (0.002) 0.132 (0.003) 0.392 (0.001)

JCGGM 0.023 (0.001) 0.162 (0.003) 0.024 (0.002) 0.127 (0.003) 0.234 (0.001)

The performances of GGMs, CGGMs, JGGMs, and JCGGMs are compared with the comparison criteria explained in subsection 3.1. When the sample size is small,

the separate CGGMs select many false positives, which can be alleviated with JCGGMs. Under the scenario which is favored to JCGGMs, the JCGGM performs

the best in both small and large sample cases.

A

C

B

D

FIGURE 2 | ROC curves: the average ROC curves are presented.

Throughout all scenarios, the JCGGM performs the best. (A) With no
external variable and a small sample size, JGGM, and JCGGM perform well.
(B) With no external variable and a large sample size, JCGGM performs the
best, followed by CGGM and JGGM. These two performs similarly. (C)

With external variables and a small sample size, only JCGGM performs
well. (D) With external variables and a large sample size, JCGGM performs
the best, followed by JGGM and CGGM.

The results are given in Table 3. First, in both JGGM and
JCGGM, the liver networks have the largest numbers of edges.
The heart and fat networks have similar numbers of edges to
the liver network based on JGGM, but they have fewer edges
based on JCGGM. This suggests that the pathway is the most acti-
vated in a liver tissue, and some tissue-specific controls in heart
and fat might be from marker effects. We then computed the
percentage of edges that present only in the corresponding tis-
sue. Based on the JGGM, liver and heart networks have a high

Table 3 | Results from JGGM and JCGGM.

Kidney Liver Heart Fat

JGGMs Number of edges 93 120 115 117

% specific edges 1.1 5.8 6 4.2

JCGGMs Number of edges 74 99 94 93

% specific edges 0 9.1 3.2 2.1

The JGGM and JCGGM are applied to the expression measurements of genes

involved in insulin responsive facilitative sugar transporter mediated glucose

transport pathway. The JGGM implies that liver, heart, and fat tissues have the

similar level of tissue-specificity, whereas the JCGGM implies that the liver tis-

sue has the highest level of tissue specificity. The result from JCGGM is more

convincing due to the fact that the specialized enzyme activity of glycogen

phosphorylase only occurs in liver tissue.

level of tissue-specific edges. But, the JCGGM found that the
liver network has the highest tissue specificity. Interestingly, our
finding is in line with the role of SLC2A4 protein, which forms
glucose concentration gradient of muscle and fat cells, as well
as the specialized glycogen breakdown of glycogen phosphory-
lase that only occurs in liver tissue (Watson et al., 2004; Campbell
et al., 2006). We also present the estimated graphs in Figure 3.

As demonstrated in the analysis, the CGGMs can distinguish
intrinsic and extrinsic regulations and gives a better overview in
tissue-specificity in intrinsic regulations. To our knowledge, the
tissue-specificity in gene regulations has been studied in marker-
expression relationships only, and the tissue specificity in intrinsic
interactions has never been studied. The JCGGMs approach can
be useful for studying tissue-specificity in gene interactions.

4. DISCUSSION
Genes interact with each other in various ways. Some genes inter-
act directly, whereas some genes interact because they are both
regulated by the same set of genes or other covariates. CGGM
allows us to infer only direct interactions among genes by using
the definition of a graphical model and using extra information
as predictors. The joint sparsity regularization can be achieved
by using various penalty functions. By combining these two
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A B

C D

FIGURE 3 | Networks inferred from JCGGM: the liver network has the

largest number of edges and the highest level of tissue-specificity.

(A) The inferred gene regulation network of the kidney tissue is presented.

(B) The inferred gene regulation network of the liver tissue is presented. (C)

The inferred gene regulation network of the heart tissue is presented. (D)

The inferred gene regulation network of the fat tissue is presented.

approaches, we have explained how to find multiple CGGMs
jointly and applied the approach to a real biological dataset. The
analysis showed that JCGGM is able to reveal tissue-specific inter-
actions that cannot be explained by marker effects. In addition to
the previous findings on tissue specificity in gene-marker regu-
lations, studying the extra level of tissue-specificity in gene-gene
interactions brings additional understanding of the complexity in
gene interactions.

In the conditional model, it is important to include all rele-
vant extra information in the model. However, it is not necessary
to include only relevant predictors, which means that one can find
a better network when one incorporates available extra variables
into the model as long as the sample size is large compared to
the number of included variables. The RKHS approach does not
involve a variable selection step of X because it assumes that a
proper set of covariates are available. However, when the num-
ber of covariate is is large, while the sample size is small, we need
to consider a variable selection step for choosing only a relevant
subset of covariates. Otherwise, the RKHS conditional covari-
ance estimator would not be consistent. The only requirement for
the conditional covariance matrix estimator is that the estimator
is consistent and has a finite variance [Equation 24 of Li et al.

(2012)], and thus any method that can produce such an estima-
tor can work well for finding a CGGM. For example, one can use
the approaches of Yin and Li (2011) or Cai et al. (2013) as long
as it yields a reasonable set of covariates. In genetical genomics
study, one can use a traditional quantitative trait loci (QTL) map-
ping method to select relevant markers, and the eQTL mapping
method was used in our manuscript.
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##function for JGGM algorithm:  this takes the trainY which is a 
covariate adjusted responses, a nK by p matrix and trainX is a 
vector of length nK representing conditions. 
 
JGGM <- function(trainX, trainY, lambda_value) 
{ 
 library(glasso) 
   ## Set the general paramters 
    
   beta = 0 #this is for the log penalization 
   K <- length(unique(trainY)) 
   p <- ncol(trainX) 
   diff_value <- 1e+10 
   count <- 0 
   tol_value <- 1e-2 
   max_iter <- 30 
   epsilon <- 1e-3 
 
   ## Set the optimizaiton parameters 
   OMEGA <- array(0, c(K, p, p)) 
   S <- array(0, c(K, p, p)) 
   OMEGA_new <- array(0, c(K, p, p)) 
   nk <- rep(0, K) 
 
   ## Initialize Omega 
   for (k in seq(1, K)) 
   {    
       idx <- which(trainY == k) 
       S[k, , ] <- cov(trainX[idx, ])  
      
        if (kappa(S[k, , ]) > 1e+3) 
       {    
           S[k, , ] <- S[k, , ] + 0.001*diag(p)  
       } 
       tmp <- solve(S[k, , ]) 
       OMEGA[k, , ] <- tmp 
       nk[k] <- length(idx) 
 }   
 
 
 
  
    p2.deriv <- function(a, epsilon=1e-3){ 
     #function for truncation 
 if(abs(a) < epsilon){ 
  b <- 1/epsilon 
 }else{ 
  b <- 1/abs(a)    
 } 
 return(b) 



 } 
 
 
  while((count < max_iter) & (diff_value > tol_value)) 
     { 
            
       tmp2 <- abs(OMEGA) 
       tmp3 <- apply(tmp2, c(2,3), sum) 
       tt <- matrix(tmp3,nc=1, byrow=T) 
       tt2 <- apply(tt, 1, p2.deriv) 
       tmp <- matrix(tt2, nc=dim(tmp3)[1], byrow=T) 
      
      
       for (k in seq(1, K)) 
         { 
           if(alpha !=1){ 
             tt <- matrix(abs(OMEGA)[k,,],nc=1, byrow=T) 
             tt2 <- apply(tt, 1, p2.deriv) 
             tmp4 <- matrix(tt2, nc=dim(tmp3)[1], byrow=T)            
             V2 <- tmp*tmp4 
           } 
            
          
           penalty_matrix <- lambda_value*V2 
 
           checkeigen <-eigen(S[k,,]) 
           if(sum(which(checkeigen$val <=0)) > 0){ 
             S[k,,] <- S[k,,] + 
diag(rep(max(c(abs(checkeigen$val[which(checkeigen$val <=0)]),1e-
6)),p)) 
           } 
 
            
           obj_glasso <- glasso(S[k, , ], penalty_matrix, 
maxit=30,thr=tol_value) 
           OMEGA_new[k, , ] <- (obj_glasso$wi + t(obj_glasso$wi)) 
/ 2 
           
         } 
 
       ## Check the convergence 
       diff_value <- sum(abs(OMEGA_new - OMEGA)) / 
sum(abs(OMEGA)) 
       count <- count + 1 
       OMEGA <- OMEGA_new 
                                        #cat(count, ', 
diff_value=', diff_value, '\n') 
     } 
  
    



 
 
    
   ## Filter the noise 
   for (k in seq(1, K)) 
     { 
       ome <- OMEGA[k, , ] 
       ww <- diag(ome) 
       ww[abs(ww) < 1e-10] <- 1e-10 
       ww <- diag(1/sqrt(ww)) 
       tmp <- ww %*% ome %*% ww 
       ome[abs(tmp) < 0.01] <- 0 
       OMEGA[k, , ] <- ome 
     } 
    
   return(list(OMEGA=OMEGA, converg=(count == max_iter))) 
 
} 
 
 
 
##this is simle code for running JGGM algorithm. 
### Users must input residuals from conditional models and the 
conditions for inputs as well as the regularization parameter. 
 
K =3 
n=100 
p =10 
condition <- rep(c(1:K), each=n) #condition 
 
RY  <- matrix(rnorm(3*100*p), nc= p ) ## assume that this is the 
residuals from QTL mapping. 
 
fit <- JGGM(trainY=condition, trainX=RY,lambda_value=1e-3) 
 
##solution 
fit$OMEGA 
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