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ABSTRACT 
 
 Supervising Professor:  Dr. Shalini Prasad 
 
ABSTRACT 

 
The research presented in this thesis outlines the design and development of novel biosensing 

platforms for monitoring biomarkers by the non-invasive sampling of body fluids with emphasis 

on self-health and disease management. The purpose of this work is to demonstrate the efficacy of 

two combinatorial biosensors – Continuous awareness through sweat platform (CLASP) and 

Exhaled breath condensate scanning using rapid electro analytics (EBC-SURE) for the detection 

of metabolic and inflammatory biomarkers towards integration onto low-power internet of things 

(IoT) platforms for wearable and point-of-care diagnostic applications. First, this work 

demonstrated the technical utility of a lancet-free, label-free platform for the combinatorial, and 

continuous monitoring of alcohol and glucose in perspired human sweat produced without external 

sweat induction strategies. The motivation of this study was to develop a sweat-based wearable 

platform for alcohol and glucose management to monitor glucose levels on moderate consumption 

of alcohol of diabetic social drinkers. A nanotextured sensor stack was embedded into a flexible 

nanoporous substrate to achieve sensitive and specific affinity-based biomarker detection within 
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physiologically relevant ranges in ultralow volumes of sweat. Non-faradaic EIS is employed as 

the signal transduction mechanism for biomarker detection to give an insight into the binding 

events occurring at the sensor interface. Additionally, the CLASP platform was benchmarked 

against commercially available hand-held devices to establish a one-to-one performance 

correlation. Furthermore, this platform was employed to demonstrate the epidermal functionality 

and sensor performance of CLASP for the on-body detection of sweat lactate to monitor restricted 

oxygen supply in sedentary populations. The successful implementation of CLASP in detecting 

metabolic biomarkers for health monitoring led to the transition of assessing the performance 

metrics of this platform for the detection of inflammatory biomarkers such as cortisol and TNF-α 

for chronic disease monitoring. The important highlight of this work was to establish the long-

term temporal stability of the CLASP in detecting a simulated rise and fall in cortisol levels over 

a 6-hour sleep cycle. The last effort was focused on developing a point-of-care aid platform- EBC-

SURE for the trace detection of inflammatory biomarkers in exhaled breath condensate for 

monitoring respiratory disorders. Exhaled breath condensate is considered a promising source of 

inflammatory biomarkers that can determine the pathophysiological processes underlying lung 

inflammation in a simple and non-invasive manner. EBC-SURE displayed a stable performance 

after rigorous testing enabling its integration onto diagnostic platforms for rapid quantification of 

biomarkers related to a healthy and acute inflammatory disease condition. 
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CHAPTER 1  

INTRODUCTION 

1.1 Biomarkers: Advantages and Challenges 

Biological markers are measurable characteristic indicators critical to understanding the 

physiological state of the body. According to the National Institute of Health Biomarkers 

Definitions Working Group, a biomarker is defined as “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention.” Biomarkers serve as early warning 

indicators of exposures and disorders by providing a cellular level image of the fundamental 

processes occurring from the early to terminal stages of the disease[1]. The pursuit of developing 

advanced technologies has led to identifying molecular cues or ‘biomarkers’ that have the potential 

to revolutionize healthcare[2]. Biomarkers are widely accepted standards in scientific and clinical 

research and have been repeatedly evaluated to validate the relevant outcomes in clinical 

investigations and drug development. The success metrics of biomarkers depend on the 

experimental conditions and their validity with various other scientific techniques. Biomarkers can 

be considered as substitute clinical endpoints that encompass a small subset of well-characterized 

biomarkers that provide robust scientific evidence of accurately predicting a clinical result[3]. 

Biomarkers are divided into two categories – disease biomarkers and drug-related biomarkers. The 

disease biomarkers group includes risk, diagnostic, prognostic, and monitoring biomarkers and the 

drug-related biomarkers include predictive, response, and safety biomarkers. In the research and 

clinical fields, biomarkers find their applications in diagnosing/predicting diseases; health 

monitoring for disease detection; determination of treatment efficacy; prediction of effective and 
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adverse drug effects in specific treatment groups[1]. With the revolution in mobile health care, 

digital biomarkers have been accepted in medicine to monitor patient health and rapidly diagnose 

underlying diseases. Digital biomarkers are quantifiable physiological indicators collected by 

digital modalities integrated on portable, wearable platforms for use in personalized setting[4]. 

Biomarkers add significant value to personalized medicine by its non-invasive or minimally 

invasive testing features further allowing for rapid, economical, point-of-care diagnostic 

evaluation. However, the successful utility of biomarkers for a particular application is limited by 

weak experimental design, tedious statistical analysis, lack of background study, poor 

reproducibility, and the inability to translate bench study into clinical study. Biomarker 

investigations suffer from dilutions, variations in gender, variations at a particular time of the day, 

and limitations in achieving the statistical power criteria for carrying out the study[5].  

1.2 Technology for continuous biomarker monitoring 

Wearable technology has emerged as an innovative solution to continuous health monitoring and 

is the answer to numerous unmet clinical needs. The novel, emerging field of wearable biosensing 

has revolutionized the way healthcare is delivered by allowing continuous monitoring of health 

and disease biomarkers in a wide demographic to better evaluate their body status in emergency 

and hazardous situations. Continuous monitoring systems serve as primary intervention platforms 

by collecting the user’s clinical statistics that can further assist in self-health monitoring, disease 

diagnosis, disease progression, and track therapy[6]. These can assist caregivers to track 

progressions in disease and assure continued recovery in remote settings and prompt immediate 

intervention thereby reducing the monetary burden of $200 billion on the U.S. health care system. 

Continuous biochemical sensors (biosensor) enable real-time receptor-biomarker interaction and 
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report quantifiable signals that are proportional to the biomarker concentration. The field of 

biosensing first came into existence with the invention of the glucose biosensor by Clark and Lyon 

in 1962[7]. Over a period, with the advances in technology, biosensors have become skin-

integrable and implantable to give a detailed account of the body’s vital state and underlying 

disease state. For continuous monitoring, the biosensors are required to be sensitive, specific, 

repeatable, reproducible, combinatorial, and skin compatible[8]. However, current clinical 

techniques suffer from reproducibility under varying conditions and the inability to report 

symptoms in real-time. Wearable technology is still in the stage of infancy, and some of the major 

technical gaps that need to be addressed are low sample volumes, low biomarker concentrations, 

mechanical resilience, biocompatibility, sensor stability, and fouling[9]. Non-invasive wearables 

are integrated into smart clothing and daily-use accessories for chronic disease monitoring, critical 

health vitals management, contractions monitoring, nausea management, and inflammation 

monitoring through body fluid-based metabolite analysis in morbid and mobility constrained 

populations encompassing old-aged people, infants, and pregnant mothers (see Figure 1.1). 

Wearable sensors are increasingly being developed in temporary patch or tattoo forms to detect 

and track core body temperature, blood pressure, electrical heart and muscle activity, hydration 

levels and a host of other biomarkers in hostile military settings for soldier wellness monitoring. 

In resource-challenged settings where access to electricity is limited, harvesting energy from 

natural resources, vibration, and human motion is the future energy source for powering future 

wearable devices. Many research efforts have been focused on the development of efficient 

battery-free systems such as nanogenerators, biofuel cells, and photovoltaic cells for self-powering 

health and disease monitoring devices in defense and pandemic environments. The current 
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advances in wearable research will help migrate lab prototypes into futuristic commercial devices 

for seamless health monitoring in physically demanding tasks and in day-to day-lives.  

 

Figure 1.1. Overview of emergent biosensors that have been explored for continuous monitoring 

of diseases and health status created by authors using BioRender.com. 
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1.3 Need for combinatorial biomarker detection 

Technologies centered around wellness management and early detection of underlying disease 

conditions necessitate the need for biosensors to perform simultaneous, combinatorial analysis of 

biomarkers. From the perspective of clinical relevance in disease diagnostics, detection of several 

targets on a single platform is indispensable for the accurate determination of specific diseases. 

Several instances require urgent treatment decisions to be made at the site of testing wherein 

evidence provided by a single biomarker is inadequate for determining the disease diagnosis and 

further plan of treatment. Hence, it is reliable to screen multiple analytes combinatorially for 

biomarker quantification. Customarily, combinatorial detection is accomplished by assigning 

separate spaces or detection sites for biomarker detection through the use of wells, different 

channel networks, electrode arrays, and labels such as enzymes, redox molecules, dyes, and beads 

to achieve an extended dynamic range of sensing. In addition, clinical applications require 

combinatorial diagnostic platforms to operate on low sample volumes with easy access to non-

invasive body fluids; be user-friendly; require minimal user intervention; have rapid response time; 

have an extended shelf-life; give out accurate results adhering to clinical and laboratory standards 

institute (CLSI); be low-cost and portable; suitable to use with disposable test strips; perform 

continuous monitoring; and be amenable with smart phone technology in resource-limited settings. 

Some drawbacks of combinatorial biomarker detection are complicated device fabrication, assay 

development, signal analysis, readout complexity with the use of multiple labels for several 

analytes, and cross-reactivity between spatially separated detection sites through diffusion[2]. 
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1.4 Existing commercial technology 

Tremendous efforts have gone into extracting clinical information from digital biomarkers for self-

health management such as heart rate, blood pressure, temperature, respiratory rate, motor 

function, sleep patterns, nervous functions, cognition, etc. for the development of wearable 

devices[10]. Existing commercial biosensing technology for disease biomarker detection has been 

brought into reality by lab-on-chip systems employing microfluidics to facilitate rapid, low-

volume, user-friendly, miniaturized detection of multiple targets. Although the current state-of-art 

lab technology is in the developmental stage due to rigorous requirements and complexity, 

substantial progress has been made in the personalized healthcare and lifestyle monitoring arena 

by reducing features to minimize complexity and use disposable cartridges for easy fluid handling 

towards integration of exiting technology on a miniaturized platform. Point of care diagnostic 

devices employ paper, array, and bead-based systems to perform multi-analyte detection. Lateral 

flow assay-based detection is by far best-established owing to their nanomaterial-based recognition 

sites for signal amplification and quantification of multiple analytes using optical and 

electrochemical signal transduction techniques[11]. Electrochemical sensing and colorimetric 

approaches are preferred for combinatorial detection of biomarkers to enhance the sensitivity of 

detection and enable label-free, wash-free, reagent-free monitoring of biomarkers. The commercial 

success of hand-held analyzers for continuous detection of electrolytes and metabolites have made 

electrochemical biosensors popular in wearable and diagnostic platforms due to their performance 

metrics, portability, cost-effectiveness, low analyte volume requirements, ease of design, and 

convenient interfacing with low power electronics[12]. In the past decade, microfluidic principles 

have been applied to paper-based lateral flow assay systems to manipulate liquids and accurately 
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control fluid transport to provide higher degree of multiplexing and detection sensitivity. 

Integration of microfluidics on flexible materials has opened up new prospects for continuous 

monitoring of multiple target molecules by real-time sampling of body fluids for accurate 

biomarker quantification. Other detection technologies include array and bead-based systems. 

Array-based systems consist of individually functionalized microdot or electrode arrays for high 

throughput biomarker screening. Bead-based systems are favored primarily due to highly specific 

responses to biomarkers as these systems detect individual biomarkers by distinguishing beads 

based on size, shape, color, redox labels, enzyme, or separation into different sections of channels. 

1.5 Non-invasive biofluids for biosensing 

Current medical diagnosis techniques rely heavily on highly standardized blood sampling 

techniques that are intrusive and obstructs the extraction of temporal dynamics of biomarkers 

required for continuous monitoring. Frequent blood sampling poses a risk of infection, especially 

in elderly, neonatal, and immunocompromised populations. In addition, blood sample handling 

requires trained individuals and further processing to isolate plasma or serum. In order to enable 

non-invasive and pain-free continuous monitoring of biomarkers, alternative counterparts of blood 

such as human sweat, tears, saliva, urine, and interstitial fluids are being researched to provide 

information on health and disease status. With the advent of wearable technology eccrine sweat 

has emerged as a promising source of biomarkers. Human sweat consists mainly of water (~99%), 

electrolytes, metabolites, hormones, proteins, nucleic acids, and micronutrients that have shown a 

strong correlation with blood-based biomarkers[13], [14]. The biomarkers in sweat partition from 

the blood through the cell membranes by paracellular pathways, active channels, and vesicles 

which can help draw important conclusions about sweat-blood biomarker correlations. Ions such 
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as sodium, chloride, potassium, calcium are found to be in higher ranges (mM) in sweat than in 

blood. These ions play a pivotal role in maintaining the body’s hydration status and predict 

muscular activity. Biomarkers such as lactate and urea partition from blood or are produced locally 

by the sweat glands are found in mM ranges which are relevant in monitoring the body’s endurance 

during intense physical activity. Larger biomolecules such as glucose, neuropeptides, and 

hormones are found in nM and pM ranges which carry information on the body’s glycemic indices, 

stress levels, and clinical depression. Other analytes such as drugs, heavy metals, and alcohol are 

found in human sweat when the body releases its toxins naturally[15]. Cytokines are found in 

human sweat in pg concentrations during infections and are released from the intravascular 

membrane and diffuse into the eccrine sweat glands through the dermal interstitium[16]. Unlike 

other body fluids that can be collected directly, sweat has to be induced to produce sufficient 

volumes for biomarker analysis. Sweat induction relies on many factors such as exercise intensity, 

stress, temperature, humidity, hormonal imbalance, diet, and sweat inducing chemical 

compounds[17]. Iontophoresis is a localized sweat-inducing method used in diagnostic 

applications where movement is constricted. Herein, a sweat-inducing chemical such as 

pilocarpine is delivered transcutaneously by the application of a low-intensity electric current 

(~3.0mA) for a short duration (~5 mins) to collect sweat volumes in the range 15µL-0. 5mL.In this 

era of wearable technology, sweat-based wearable sensors can provide an avenue for non-invasive, 

non-destructive biomarker continuous monitoring with less sample degradation, efficient 

sampling, and robust biomarker detection. However, further attention is required to address some 

of the key challenges of the deployment of these sweat-based wearables in practical scenarios such 

as improving the availability of sweat biomarkers, sustained production of adequate sweat volumes 
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and maintaining the sample integrity under varying environmental conditions[15][17]. Some of 

the technological challenges that have to be resolved for the commercial development of sweat 

wearables are the development of efficient power supply methods, advanced signal processing, 

system integration methods, and reduction of delays in information relay to healthcare providers. 

 Recent research in the development of diagnostic platforms for self-monitoring of disease 

symptoms has opened opportunities for exhaled breath condensate (EBC) as a non-invasive matrix 

of disease markers. Given that the global population is impacted by an ongoing COVID-19 

pandemic and increased need for self-sample collection and analysis, EBC serves as a tool that can 

yield clinical information regarding respiratory infection and evaluate further course of 

treatment[18]. Current techniques to assess airway inflammation such as bronchoscopy and 

bronchoalveolar lavage are not recommended in clinical settings due to their invasiveness, tedious 

procedures, and user discomfort. Although blood and serum diagnostic tests are considered a 

standard, they may not necessarily reflect localized airway inflammation. EBC’s dominant 

component is condensed vapor (~99%), hydrogen peroxide, reactive oxygen species, reactive 

nitrogen species, isoprostanes, cytokines, leukotrienes, prostanoids, proteins, enzymes, hormones, 

and micro-RNA’s[19]. EBC is derived from airway lining fluid when turbulence from the exhaled 

air creates nebulized droplets and is subsequently condensed on contact with a cold condenser 

surface (-20-80°C). EBC is collected during tidal breathing at a defined temperature using a nose-

clip with saliva traps to prevent salivary contamination and a one-way valve to avoid inhalation or 

condensation of ambient air through the condenser. EBC sampling can be done in healthy 

individuals in a sitting position, mechanically ventilated patients through an in-line connection 

with the expiratory circuit of the ventilator, and in children through face masks. A collection time 
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of 3-60mins can yield 1-2mL of EBC. EBC biomarker profiling is generally done using mass 

spectroscopy, multiplexed array systems, and NMR techniques[20]. Limited research has been 

done in the area of metabolic and inflammatory biomarkers in EBC. The advantages of using EBC 

lies in its non-invasiveness, pain-free analytics, availability of large volumes, the ability to 

continuously monitor disease status, and provision of rapid and low-cost diagnostic solutions. 

However, the standardization of normal biomarker reference points has to be determined which 

would require screening of large EBC sample set representing the global demographic. Some of 

the challenges faced in EBC based-biosensor development are – (1) sensor stability, (2) 

experimental accuracy effected by humidity and temperature, and  (3) need of correlation with a 

laboratory gold standard[21]. 

1.6 Prior Publication 

This chapter has been adapted from two prior publications:  

1. Ashlesha Bhide, Antra Ganguly, and Tejasvi Parupudi contributed equally. Ashlesha 

Bhide, Antra Ganguly, and Tejasvi Parupudi cowrote the manuscript, Mohanraj Ramasamy 

contributed to the schematics, Sriram Muthukumar and Shalini Prasad conceived the 

framework for this mini review and reviewed the manuscript. This article was published in 

ACS omega in 2021. This article has been reproduced by permission from American 

Chemical Society and the link to this article is: https://doi.org/10.1021/acsomega.0c06209 

2. Some parts of this chapter have been published as a part of a book chapter in Reference 

module in Biomedical Sciences. This chapter has been reproduced by permission from 

Elsevier publishing company and link to this chapter is: https://doi.org/10.1016/b978-0-

12-822548-6.00044-3. 



 
 
 

11 

CHAPTER 2   

SIMULTANEOUS LANCET-FREE MONITORING OF ALCOHOL AND GLUCOSE 

FROM LOW-VOLUMES OF PERSPIRED HUMAN SWEAT 

2.1 Abstract 

A lancet-free, label-free biosensor for simultaneous detection of sweat glucose and alcohol was 

demonstrated using zinc oxide thin films integrated into a nanoporous flexible electrode system. 

Sensing was achieved from perspired human sweat at low volumes (1–3μL), comparable to 

ambient conditions without external stimulation. Zinc oxide (ZnO) thin film electrodes were 

surface functionalized with alcohol oxidase enzyme and with glucose oxidase enzyme towards 

developing an affinity biosensor specific to the physiologically relevant range of alcohol 

comprising of 0-2 drinks (0 mg/dL to 50mg/dL) and physiologically relevant range of glucose 

ranging from hypo to hyper-glycaemia (50mg/dL to130mg/dL) in perspired human sweat. Sensing 

was achieved by measuring impedance changes associated with alcohol and glucose binding onto 

the sensor interface using electrochemical impedance spectroscopy with a dynamic range from 

0.01mg/dL to 200mg/dL and a limit of detection of 0.01mg/dL for alcohol in human sweat. Sensor 

calibration in synthetic sweat containing interferents (25mg/dL to 200mg/dL) and comparison 

using regression and Bland-Altman analysis of sweat sensor performance was done with reference 

standards. Combinatorial detection of glucose and ethanol in perspired human sweat and 

comparison of sweat sensor performance with reference blood glucose monitoring system that we 

expect would be relevant for pre-diabetics and diabetics for monitoring their glucose levels and 

alcohol consumption. 
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2.2 Introduction 

Alcohol consumption is prevalent in the United States, with an estimated 109 million Americans 

who drink alcohol. The effect of alcohol on the causation or prevention of diabetes has been 

studied. It appears that there may be a U-shaped relationship between alcohol and type 2 diabetes 

such that there is a higher risk of developing diabetes with both low and high intake levels and a 

lower risk with moderate intake[22]. Moderate alcohol consumption was defined as ~ 5–30 g/day. 

This corresponds to about 0.5–2.5 drinks per day[23][24]. Alcohol consumption in people with 

type 2 diabetes can result in hypoglycemia because of decreased gluconeogenesis, decreased 

glycogenolysis, and possibly reactive hypoglycemia in response to carbohydrate intake. However, 

most data are retrospective or observational, and hence there is an immediate and significant need 

to determine the long-term effects of alcohol consumption on glycemic control, self-management 

behaviors, and the complications of diabetes. In this research, we demonstrate the first 

technological proof of feasibility in using human sweat-based biosensors towards combinatorial 

monitoring of alcohol and glucose content in perspired human sweat towards the larger goal of 

designing diagnostics wearables that can quantify and dynamically report both alcohol and glucose 

content from users. The use of wearable biosensing in health care in the form of diagnostics 

wearables is still in a stage of infancy, but market research from TrustMarque points toward 81% 

of respondents wanting more use of connected devices in the area of chronic disease 

management[25].Wearable biosensing technologies that detect biomarkers from human sweat 

have evolved from this need for non-invasive monitoring of social lifestyle choices coupled with 

a view of chronic disease management. Human sweat is one such biomarker rich fluid containing 

valuable medical information that can be the key driver for developing sweat based point-of-care 
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health management devices[26]. Sweat is a preferred candidate for bodily fluid-based analysis 

amongst others such as serum, saliva, and urine due to the ease of gland stimulation, sample 

gathering, and analysis. Biosensors that monitor human sweat biomarkers are required to have a 

wide dynamic range of response, robust sensitivity, and specificity in the physiologically relevant 

range. Non-invasive sweat monitoring is one of the most researched areas in recent times[27]. 

Alcohol biosensing has gained attention in clinical and forensic analysis of bodily fluids, and food 

and beverage industries [see supplementary table S1 of [28]]. Alcohol abuse and addiction are 

leading causes of violence, driving under influence causing fatal vehicle crashes and poses a severe 

threat to the lives of other drivers. Blood alcohol content (BAC) is an accurate indicator of ingested 

alcohol in the human circulatory system but requires tedious procedures (e.g., gas 

chromatography) and trained personnel to analyze samples[29]. Breathalyzers are currently being 

used to indirectly estimate BAC through the measurement of breath alcohol content (BrAC). The 

standard breath alcohol to blood alcohol ratio is 2100:1 is based on Henry’s law which estimates 

breath alcohol present in the exhaled volume of air from the blood alcohol present in the 

bloodstream[30]. Breath alcohol is susceptible to other alcohol components present in the 

environment and hence generates false positives. About 1% of alcohol metabolized by the liver 

leaves the body through sweat through diffusion from the skin and secretion from eccrine 

gland[31]. Previous studies have established a correlation between transdermal alcohol content 

and blood alcohol content[32]. Alcohol consumption modifies glucose homeostasis exerting 

contradictory effects on blood glucose levels contingent on nutrition states. Diabetes Mellitus 

requires frequent monitoring of glucose levels with glucose being present in the range 0.1mg/dL 

to 50mg/dL in human sweat[33]. Alcohol consumption in a fasting state induces hypoglycemia 
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affecting the process of gluconeogenesis; the response to alcohol intake in a fed state is the 

development of hyperglycemic condition inhibiting the effects of insulin[29]. Turner et al. studied 

the effects of alcohol consumption on glucose levels the next morning in Type I diabetes 

individuals. Moderate consumption of alcohol (~ 2 standard drinks) accompanied by the intake of 

food increased chances of developing delayed, acute hypoglycemia after breakfast the following 

morning[34]. The premise of this research is to demonstrate a lifestyle monitor based on sweat 

alcohol detection designed on a flexible platform towards building a wearable, point-of-care 

diagnostic for (1) Glucose management to monitor blood glucose levels after consumption of 

alcohol (2) addressing the rising need for controlling alcohol induced fatalities and damages. 

2.3 Results and Discussions 

The organization of this section organized is as follows (1) Structural characterization and 

functionalization of the developed sensor for alcohol sensing; (2) Evaluation of sensor 

performance in synthetic sweat buffers through AC and DC step based techniques; (3) Evaluation 

of sensor performance and calibration in human sweat through AC based technique; (4) Sensor 

calibration in synthetic sweat containing interferents and comparison of sweat sensor performance 

with BACtrack® S80 Pro breathalyzer; (5) Combinatorial detection of glucose and ethanol in 

human sweat and comparison of the sweat sensor performance with Accu-Chek® Nano SmartView 

blood glucose monitoring system.  
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2.3.1 Structural characterization and functionalization of the developed sensor for 

alcohol sensing 

Human eccrine glands secret sweat at the rate 5-10nL/min/gland typically which necessitates the 

use of low volumes for sensor functioning when it comes in contact with the skin[35]. We use 

flexible, nanoporous polyamide membranes as the substrate material to fabricate the zinc oxide 

sensor stack. Analysis volumes as low as 1-3µL are maintained through this study of biosensing 

in sweat buffers. Nanopores of the flexible substrate allow absorption of sweat molecules which 

are carried across to the sensor surface when sweat is introduced into the membrane. Affinity 

biosensing is primarily achieved through the capture probes bound to the active sensing region 

which interact with the biomolecules of interest as shown in Figure 2.1A. Figure 2.1B shows the 

wicking of the 1-3µL volume of the sweat on the active sensing region on both faces of the sensor 

and sensor flexing when subjected to bending. The intercalated nanopore structures of the 

polyamide substrate act as a biomolecule sieve allowing only desirable biomolecules to travel to 

the sensor surface. Figure 2.1C shows the scanning electron microscope (SEM) image of ZnO 

sputtered on polyamide substrate with energy dispersive X-ray analysis (EDAX) spectrum 

represented in the inset. The peak at 1KeV corresponds to the Zn L-shell of ZnO indicating the 

deposition of the film within the nanopores. Nanoconfinement of biomolecules based on size offers 

an enhanced signal-to-noise ratio (SNR) which is feasible for detecting small analytes because 

human sweat consists of ions and lipids that would otherwise contribute to the noise factor[36]–

[39]. The binding events occurring within the nanopores in the vicinity of the electrode are reported 

in terms of impedance changes contributed by electrical double layer modulations and electron 

charge transfer.  
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Figure 2.1.(A) Schematic of the immunoassay for the combinatorial detection of alcohol and 

glucose (B) Sweat sensor array showing fluid confinement in the active sensing region, sensor 

flexibility, and size comparison with one cent (C) SEM of polyamide membrane sputtered with 

ZnO. Inset shows the EDAX spectra of the sputtered membrane surface. 
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2.3.2 Evaluation of sensor performance in synthetic sweat buffers through AC and DC 

step-based techniques 

An AC based signal transduction technique electrochemical impedance spectroscopy is used to 

record the sensor response over a range of frequencies from 1MHz to 1Hz with a small AC 

excitation signal. This technique enables us to understand the charge modulation arising at the 

electrode-electrolyte interface as an outcome of biomolecular binding events and catalytic 

oxidation of alcohol by the enzyme occurring at the electrode surface. The interaction of a buffer 

with a semiconducting electrode surface modulates the capacitive reactance which is primarily 

driven through charge accumulation within the electrical double layer (EDL). These dynamic 

changes occurring within the EDL at the electrode-electrolyte interface are derived from the 

imaginary impedance (Zimag) component characterized by EIS. Charge modulation in the EDL is 

affected by its Debye length (λD) which is also a measure of the thickness of the double layer. The 

thickness of the Debye length is influenced by the ionic concentration of the buffer and hence 

dictates the charge screening effects at the electrode-electrolyte interface[40], [41]. 

The responses of the sensor to varying ethanol concentrations in 0.1xPBS and synthetic 

sweat (SS) buffers of pH 4 to 8 captured in terms of percentage changes in imaginary impedance 

(Zimag) at 50Hz and 500Hz are shown in Figures 2.2A and 2.2B respectively for N= 3 replicates. 

The percentage change in Zimag is calculated as the variation in the impedance of the ethanol 

concentration response with respect to impedance of baseline measurement using the expression 

(100*(baseline Zimag - spiked ethanol concentration Zimag)/baseline Zimag). A signal to noise (SNR) 

of 3 is chosen to compute the specific signal threshold (SST)[42]. SST is estimated by the 

expression (3*(standard deviation baseline /average baseline)). Control studies are performed by 
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spiking 0.1xPBS with ethanol concentrations ranging from 0.01mg/dL to 200mg/dL that 

corresponds to the alcohol content present in perspired human sweat after consumption of 0 to 5 

standard drinks. In this study, we chose to use 0.1x PBS buffer (pH ~ 7.4) which has a λD of ~2.5nm 

which is approximately equivalent to the size of biomolecules. Hence, the effect of charge 

screening on biosensing is minimized and a dose-dependent impedance response was observed. 

The percentage change in Zimag for 0.01mg/dL ethanol concentration in 0.1xPBS at 50Hz and 

500Hz is ~ 8.5%. At 200mg/dL ethanol concentration, the percent changes in Zimag observed at 

50Hz and 500Hz are ~30-35% respectively. The percentage impedance changes in Zimag are 

distinguishable from its SST for the lowest ethanol concentration of 0.01mg/dL which is identified 

as the limit of detection (LOD)20 . The dynamic range of ethanol in 0.1xPBS is 0.01mg/dL to 

200mg/dL. Smaller percentage changes in Zimag are observed in 0.1xPBS owing to the lower 

electrical conductivity of the buffer contributing to smaller charge accumulation changes[43]. The 

percentage changes in Zimag across the frequency range 50Hz-500Hz increase as the pH of synthetic 

sweat buffer varies from pH 4 to pH 8. At 0.01mg/dL ethanol concentration, the percentage 

changes in Zimag for SS of pH 4 in the range 50Hz-500Hz are ~11-13%. The percentage changes 

in Zimag at 200mg/dL ethanol concentration for SS of pH 4 in the range 50Hz to 500Hz is ~40-

45%. For SS of pH 6, the percentage changes in Zimag
 for 0.01mg/dL and 200mg/dL ethanol 

concentrations are observed to be ~24- 26% and ~60% respectively across the 50-500Hz frequency 

range. In SS of pH 8, the percentage changes in Zimag for 0.01mg/dL ethanol concentration lie 

between ~25-30% for 50-500Hz range while for 200mg/dL ethanol concentration the percentage 

change is found to be ~63% in the frequency range 50Hz-500Hz. The LOD is found to be 

0.01mg/dL while the linear dynamic range (LDR) is preserved in the range 0.01mg/dL to 
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200mg/dL for synthetic sweat buffers of pH range 4 to 8. Heinonen et al. have demonstrated the 

stability of nanotextured ZnO films in acidic and basic conditions over an 8-week period[44]. We 

observed a higher response to ethanol dose concentration in synthetic sweat buffers of pH 6 and 

pH 8 than pH 4. The pH values of buffer solution favorable for a stable enzyme activity lie in the 

range 6.0-8.0[45], [46]. Lower percentage changes in Zimag at lower pH’s can also be attributed to 

the H+ ions from the surrounding buffer that interfere with the charge modulation in the EDL at 

the electrode-electrolyte interface24. The ZnO sensors used in this work can be operated over a 

frequency window of 50Hz to 500Hz as the percentage change in Zimag is preserved for buffers 

over varying pH ranges allowing for the sensors to be interfaced with portable electronics and 

tuned as per their frequency operation range.  

Chronoamperometry (CA) technique allows for the measurement of non-faradaic 

capacitive current generated at the electrode-electrolyte interface by applying a step DC potential. 

The chronoamperometric response curves, as shown in Figure 2.2C for N= 2 replicates, represent 

the dose dependent changes in double layer capacitance through the charging currents in SS of pH 

6. The current spike seen within ~1s of the response is a result of non-faradaic charging of the 

electrical double layer following which there is an exponential decay in the current that is termed 

steady state current. The steady state current represents a linear change between 2.8-4.8µA with 

increasing ethanol concentrations in the range 0.01mg/dL to 200mg/dL and is represented as a 

calibration curve as shown in Figure 2.2D. The sensitivity calculated from the calibration curve is 

0.2±0.02µA/mM with the R2 of 0.986 which is comparable to the sensitivity reported by Kim et 

al. which demonstrates a wearable tattoo sensor based on the amperometric detection of alcohol 

in sweat using alcohol oxidase enzyme by using printed Prussian blue electrode[47].  
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Figure 2.2.(A) Calibration dose response of ethanol in 0.1xPBS and synthetic sweat buffers of pH 

4 to 8 as a function of percentage change in imaginary impedance (Zimag)  at 50Hz (B) Calibration 

dose response of ethanol in 0.1xPBS and synthetic sweat buffers of varying pH as a function of 

percentage change in imaginary impedance (Zimag) at 500Hz (C) Chronoamperograms for ethanol 

concentrations in the range 0.01mg/dL to 200mg/dL spiked in SS of pH 6 (D) Calibration curve 

plotted for ethanol concentrations from 0.01mg/dL to 200mg/dL spiked in SS of pH 6 in terms of 

steady state current. 
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2.3.3 Evaluation of sensor performance and calibration in human sweat through AC 

based technique 

The response of the sensor in human (pH ~5.98) sweat spiked with ethanol concentrations over 

the frequency window 50Hz to 500Hz is shown in Figure 2.3A for N= 6 replicates. The percentage 

change in Zimag is analyzed over the frequency range from 1Hz to 1MHz. The outcome of this 

analysis is that highest SNR is obtained over the frequency window 50Hz to 500Hz with highest 

percentage change in Zimag being observed at 50Hz and the calibration trend being preserved 

across the frequency window. The sensor is sensitive within the chosen frequency window to 

capture the contributions from non-faradaic charge modulation. The same frequency window was 

used for evaluating the performance of the sensor in SS of pH 6. At 0.01mg/dL, the percentage 

change in Zimag between 50Hz to 500Hz is ~5-9%. The percentage change in Zimag at 200mg/dL 

ethanol within 50Hz to 500Hz is ~30-34%. The SST for ethanol detection in human sweat is 

calculated to be ~5-7%. The LOD of ethanol in human sweat is measured to be 0.01mg/dL. Higher 

standard deviation and lower percentage changes in Zimag are observed in human sweat relative 

to SS of pH 6 because of contributions from interferents present in human sweat. The Nyquist plot 

for ethanol detection in human sweat ranging from 0.01mg/dL to 200mg/dL over frequencies 1Hz-

1MHz is shown in Figure 2.3B. The Nyquist plots can be divided into three regions. In the first 

region, real impedance (Zreal) component varies from 3.7KΩ to 8.7KΩ and Zimag varies from 

500Ω to 1.35KΩ. This region corresponds to 1MHz–10KHz region on the Bode magnitude plots 

as shown in Figure 2.3C. There is a shift in the semicircle towards left side on the x-axis of the 

plot with increasing ethanol concentration. This shift can be attributed to the change in the solution 

resistance as more ethanol molecules are catalytically oxidized in the presence of AOx forming 
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reaction products. In the second region, corresponding to the mid frequency range 10Hz to 1KHz 

in the Bode magnitude plot, Zreal varies 5.6-13.2KΩ and Zimag varies from 1.5-5KΩ. This represents 

the capacitive and charge transfer properties of the semiconducting oxide film deposited on the 

nanoporous membrane. In the low frequency region between 1KHz–10Hz, Zreal varies between 14-

34KΩ while Zimag varies between 4.1-15.4KΩ. These changes reflect the binding events occurring 

within the EDL across the interface contributing to the variations in the capacitive reactance. The 

equivalent circuit, as shown in Figure 2.3D, is represented by a Randles circuit models a charged 

electrode surface in contact with an ionic buffer consisting of biomolecules of interest forms an 

EDL at the interface. The charge accumulation within the EDL is measured by the double layer 

capacitance (Cdl); the solution resistance (Rs) is a measure of the resistance of the bulk solution 

extending beyond the EDL; the electron transfer between the enzyme biomolecule complex and 

the electrode is represented by the charge transfer resistance (Rct). The first semicircle in the 

frequency range 1MHz-10KHz is a characteristic of the electrode material properties and is 

indicated as a parallel combination of resistor (RZnO) and a capacitor (CZnO). The second semicircle 

in the low frequency captures the changes within the EDL and is represented by a parallel 

combination of Rct and Cdl. Using ZView® circuit fitting analysis tool, the experimental 

impedance spectrum for ethanol dose concentrations in the range 0.01mg/dL to 200mg/dL is fitted 

to the equivalent circuit shown in Figure 2.3D and tabulated in Table 2.1. The double layer 

capacitance shows a dose dependent response validating a higher charge accumulation in the EDL 

with increasing dose concentrations as a result of more target ethanol molecules being catalytically 

oxidized.  
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Figure 2.3.(A) Calibration dose response of ethanol in human sweat as a function of percentage 

change in imaginary impedance (Zimag) (B) Nyquist plots for ethanol concentrations 0.01mg/dL 

to 200mg/dL spiked in human sweat (pH ~5.98) (C) Bode magnitude plots for ethanol 

concentrations 0.01mg/dL to 200mg/dL spiked in human sweat (pH ~5.98). Inset shows the bode 

magnitude plots over the frequency range 10Hz to 1KHz (D) Equivalent circuit representation of 

the ethanol detection sweat sensor system. 
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Table 2.1. Extracted circuit fit parameters obtained by fitting the impedance response to the 

equivalent circuit. 

 

2.3.4 Sensor calibration in synthetic sweat containing interferents and comparison of 

sweat sensor performance and BACtrack® S80 Pro 

An interference study was carried out in SS of pH 6 (N= 3 replicates) to validate the selectivity of 

ethanol in the presence of interferents such as glucose, lactate, uric acid, ascorbic acid, and 

creatine. The calibration dose response for ethanol ranging from 25mg/dL to 200mg/dL present in 

the interferent spiked SS of pH 6 at 50Hz and 500Hz is shown in Figure 2.4A. For 25mg/dL ethanol 

concentration, the percentage change in Zimag at 50Hz and 500Hz is ~25-32% whereas the 

percentage change in Zimag for 200mg/dL ethanol concentration across 50Hz to 500Hz is ~45-55%. 

The LOD of ethanol in SS of pH 6 with interferents is 25mg/dL. We observe an increasing 

percentage change in Zimag with increasing ethanol dose concentrations as a results of increasing 

Ethanol 
concentrations 

(mg/dL) 

Extracted circuit fit parameters 

Rs(KΩ) RZnO(MΩ) CZnO(µF) Rct(KΩ) Cdl(nF) 

Baseline 7.3 0.28 3.44 29.3 550 

0.01 6.3 0.26 2.94 22.8 520 

0.1 6.5 0.13 4.25 19.1 504 

1 6.1 0.08 3.93 19.4 490 

10 5.3 0.072 3.54 16.8 445 

100 5.1 0.066 3.84 13.9 438 

200 3.9 0.064 3.53 14.6 423 
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charge accumulation within the EDL. Here, the SST is established by the impedance response 

obtained in the absence of target ethanol molecules. The interferents study suggests the ability of 

the enzyme biomolecule complex to selectively react to ethanol molecules by neglecting the 

presence of   interferents.  

 The performance of our sensor system in the presence of interferents is compared to a 

commercially available breathalyzer BACtrack® S80 Pro. Blood alcohol content (BAC) measured 

by BACtrack® is used to estimate sweat alcohol content (SAC) by the equation BAC (g/L) = 

0.71*SAC (g/L)[32]. The responses of our sweat sensor and BACtrack® to sweat alcohol measured 

in the presence of interferents are correlated to the actual ethanol concentrations presented to both 

the systems through (i) Regression analysis to quantify the goodness of a fit between the ethanol 

concentrations measured by developed sweat sensor and BACtrack® in comparison to the actual 

ethanol spiked interferent-based sweat samples presented to them (ii) Bland-Altman analysis to 

quantify the agreement between the two measurement techniques. Regression analyses was carried 

out on N= 4 ethanol spiked synthetic sweat samples of pH 6 in the range 25mg/dL to 200mg/dL 

with interferents as shown in Figure 2.4B. In section 2, we have demonstrated alcohol sensing in 

synthetic buffers over the frequency window 50Hz to 500Hz. We chose to present the outcomes 

of the statistical analyses at 50Hz in this section. The results of the analyses at 500Hz are displayed 

in supplementary in Figs. S1and S2[28]. R2 value of 0.99 is obtained for sweat sensor correlation 

at 50Hz with the actual ethanol concentrations spiked in interferent based SS of pH 6. A 

significantly linear relationship can be drawn between the alcohol measured by the sweat sensor 

and the actual alcohol concentration dosed on it. We obtain an R2 of 0.97 for the correlation 

analysis done between BACtrack® and the actual dose concentrations presented to it. Although a 
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linear fit is obtained between the actual and measured alcohol doses, a one-to-one agreement of 

the measurements is not seen between them. The linear fits obtained for both the sweat alcohol 

measurement techniques exhibit a linearly increasing offset with increasing ethanol dose 

concentrations. The offset observed in measuring the sweat alcohol content using BACtrack® is 

mainly because breathalyzers are designed to estimate BAC from a breath sample. We have 

simulated a breath like environment by nebulizing ethanol samples spiked in synthetic sweat of 

pH 6 with interferents [48][see Methods section]. The differences in analysis volumes utilized on 

both sensing platforms is another source of this offset. Figure 2.4C displays the Bland-Altman 

plots for sweat sensor compared to BACtrack® highlighting the bias and variations associated with 

the sensor and BACtrack®[49]. The normalized difference between sensor and BACtrack® is 

computed to address the variability in the differences of both measurement techniques. A mean 

bias value of 82.86% indicates that on an average the sensor estimates the ethanol concentrations 

accurately. All measurements except one lie within ±1.96SD of the mean bias and are spread 

equally on either side of the bias. We find six measurements lying within the ±95% CI [74.4–

91.3%] with minimum of one measurement per ethanol concentration to be in these limits. 
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Figure 2.4.(A) Calibration dose response of ethanol spiked in SS of pH 6 with interferents as a 

function of percentage change in imaginary impedance (Zimag) (B) Regression plot for sweat 

ethanol measured by the sweat sensor at 50Hz and BACtrack® in comparison to the actual ethanol 

concentrations spiked in interferent based SS of pH 6 (C) Bland-Altman plot for the developed 

sweat sensor at 50Hz compared to BACtrack®. 
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2.3.5 Combinatorial detection of ethanol and glucose in human sweat and comparison of 

the sensor performance and Accu-Chek® Nano SmartView blood glucose monitoring 

system 

In this section, we present the results of our study on glucose and alcohol level modulations when 

combined in human sweat and detected on the developed glucose and alcohol sensing systems. 

Previously, correlations between blood glucose and sweat glucose levels have been established 

which are utilized in this study[50]–[52]. A dose combination index table, shown in Table 2, 

consists of glucose and ethanol concentrations used to make the concoctions for this study. The 

impedance response to the dose combinations is presented as an imaginary impedance ratio (IIR) 

calculated relative to the baseline Zimag. A specific analysis frequency of 100Hz for the 

combinatorial detection is chosen from previous work which reported glucose detection in human 

sweat using the same sensor platform[51]. The LOD and dynamic range for glucose detection in 

human sweat was reported to be 0.1mg/dL and 0.01mg/dL to 200mg/dL respectively. The 

sensitivity of glucose molecules to the assay was recorded as percentage changes in real and 

imaginary impedances which were attributed to the electron charge related to the biomolecule 

complex and ZnO sensor surface. The combinatorial effects of detecting a glucose level in the 

presence of alcohol as an interferent in human sweat on a glucose sensor is depicted as a box plot 

in Figure 2.5A for N= 3 samples. The average IIR varies from 0.11 to 0.21 with increasing glucose 

levels from 20mg/dL to 100mg/dL in the absence of alcohol with a tighter spread in the IIR’s for 

increasing glucose levels. The average IIR for increasing glucose levels in the presence of alcohol 

(~ 2 standard drinks) as an interferent varies from 0.18-0.33[see supplementary table S2 of [28]]. 

The changes in IIR (δIIR) between the glucose levels in the absence and presence of alcohol lie in 
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the range 0.06-0.1. The shift and spread in IIR’s for glucose levels in the presence of alcohol is a 

manifestation of background noise from human sweat, cross talk between the target molecules, 

and variations in the molarities of the target concentrations while combining them into a 

concoction. For this study, we chose to represent the IIR at 100Hz to draw a comparison between 

the combinatorial detection of glucose and alcohol on a glucose sensor in relation to an alcohol 

sensor. A box plot representation for the combinatorial detection of alcohol (0-2 drinks) in the 

presence of glucose at 100Hz for N= 3 samples as shown in Figure 2.5B. The average IIR range 

recorded by the sensor for a concoction consisting of only the interferent glucose in the absence of 

the target ethanol is 0.12-0.15; the IIR range recorded by the sensor for a concoction containing 

both the interferent and the target ethanol concentration (~2 standard drinks) is 0.21-0.13[See 

Table S2]. The modulation in the IIR in the presence of target molecules represented by the greater 

δIIR changes in the range 0.07-0.18 indicate the robustness of the alcohol assay in the presence of 

non-specific molecules. Higher impedance ratios observed in the presence of alcohol (~2 standard 

drinks) show a clear distinction in the frequency responses of the alcohol sensor in the absence 

and presence of alcohol.  

Performances of the developed sweat glucose sensor and the commercially available Accu-

Chek® Nano SmartView blood glucose monitoring system are gauged with relative to the actual 

glucose concentrations presented to both systems[53]. The correlation of the two measurement 

techniques with respect to actual glucose concentrations dosed is quantified by (i) R2 value and 

(ii) Bland-Altman analysis. Figure 2.5C represents the correlation analysis performed on sweat 

sensor and Accu-Chek® using glucose samples (N= 3) without alcohol. Human sweat and blood 

samples are spiked with varying glucose and alcohol concentrations on the developed and the 
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commercial sensor respectively as per the dose combinations shown in Table 2.2. An R2 of 0.97 

for sweat and blood glucose samples without ethanol measured by both the systems relative to the 

actual sweat glucose concentrations dosed on sensor was determined. At 100mg/dL glucose 

concentration both the systems overlap. At 50 mg/dL glucose concentration, repeat measurements 

lie in proximity to each other with small deviations observed for the sweat sensor and Accu-Chek® 

respectively. For a low glucose concentration of 20mg/dL, only one blood glucose measure of the 

triplicate was recorded by the blood glucometer while the sensor recorded sweat glucose levels 

accurately with a ±1mg/dL deviation. Similar correlation analysis is performed on sweat sensor 

and Accu-Chek® to record their responses to glucose concentrations (N= 3) in the presence of 

alcohol and is represented in Figure 2.5D. R2 values of 0.91 and 0.82 are observed for the sweat 

sensor and Accu-Chek® correlation respectively. The skew in the correlation can be attributed to 

the ethanol molecules that hamper the glucose measurements. The glucose sensor system 

developed is efficient in neglecting the effects of interferent ethanol molecules. According to 

ISO15197 standards, it is acceptable for commercial glucometers to show a ±15mg/dL deviation 

in measuring glucose concentration < 75mg/dL while for glucose concentrations ≥100mg/dL, the 

acceptable deviation is only about ±5mg/dL[54]. The differences between the developed sweat 

glucose sensor and Accu-Chek® Nano SmartView glucose monitoring system can be better 

inspected from the Bland-Altman plots as shown in Figure 2.5E. The mean bias for both the 

measurement techniques is -10 mg/dL or -0.39% indicating that differences between them are 

subtle and not significant. For sweat and blood glucose measurement performed in the absence of 

alcohol, 70% of the measurements lie within ±95% CI. At 100mg/dL glucose concentrations, the 

mean differences (circled by blue in Figure 5E) between developed sensor and Accu-Chek® meet 
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the ISO standards of measurement accuracy at glucose concentrations beyond 75mg/dL. Mean 

differences at 50 mg/dL glucose concentration vary by 25% from the mean bias owing to drift at 

low concentrations. Two measurements at 20mg/dL glucose concentration lying out of the limits 

of agreement due to the blood glucometer not being able to detect very low concentration and are 

recorded as zero. The alterations in the performances of the sensor and Accu-Chek® in the 

presence of ethanol (~2 drinks) is evident in the Bland-Altman plot. Triplicate measurements done 

at 20mg/dL glucose concentration exhibit a high degree of variability contributed by the 

interferent, sensor drift, and inability to obtain readings from the glucometer.  

 

Figure 2.5.(A) Box plots for combinatorial detection of glucose levels in the presence of alcohol 

(0- 2 standard drinks) as an interferent in human sweat on a glucose sensor at 100Hz (B) Box plots 
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for combinatorial detection of alcohol (0-2 standard drinks) in the presence of glucose as an 

interferent in human sweat on an alcohol sensor at 100Hz (C) Regression plot for human sweat 

glucose measured by the sweat sensor at 100Hz and blood glucose measured by Accu-Chek® 

Nano SmartView glucose monitoring system in comparison to the actual glucose concentrations 

presented to them without alcohol (0 drink) (D) Regression plot for human sweat glucose measured 

by the sweat sensor at 100Hz and blood glucose measured by Accu-Chek® Nano SmartView 

glucose monitoring system in comparison to the actual glucose concentrations presented to them 

with and without alcohol (0-2 drinks) (E) Bland-Altman analysis for sweat sensor at 100Hz and 

Accu-Chek® for human sweat samples with varying glucose levels in the absence (0 drink) and 

presence of alcohol (2 drinks) at 100Hz. 

Table 2.2.  Dose combination index. 

 

Dose combination index 
Dose combinations Labels Glucose 

concentration 
(mg/dL) 

Ethanol 
concentration 

(mg/dL) 
Low glucose level, zero drink LG,0d 20 0 

Low glucose level, two drinks LG,2d 20 50 

Normal glucose level, zero drink NG,0d 50 0 

Normal glucose level, two drinks NG,2d 50 50 

High glucose level, zero drink HG,0d 100 0 

High glucose level, two drinks HG,2d 100 50 
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2.4 Conclusions 

Wearable biosensing has provided a non-invasive platform to monitor metabolites in bodily fluids 

such as human sweat to track fluctuations in glucose levels on the consumption of alcohol as a part 

of social drinking in diabetic individuals that makes it imminent to address the need of developing 

a patch sensor that can accurately and non-invasively measure alcohol and glucose. The 

transdermal alcohol content is correlated in magnitude to blood alcohol content but lags in 

response time with respect to blood alcohol content which is governed by the parameters that 

control ethanol transport through the skin[55]. Desirable characteristics of wearable biosensors 

that make them commercially viable are enhanced sensitivity, capability to detect low target 

biomolecules in low analysis volumes within clinically relevant ranges, low power consumption, 

and cost-effectiveness. The novelty proposed in this research is an electrochemical biosensor 

fabricated on a flexible, nanoporous substrate to combinatorial detect glucose levels reliably in the 

absence and presence of alcohol in human sweat. Such a device is of help for pre-diabetic and 

diabetic individuals to monitor their glucose levels and limiting their intake of alcohol for healthier 

lifestyle choices. The findings of this study are that we could distinguish the effects of alcohol (~2 

standard drinks) on low, normal, and high glucose levels prior to and post consumption of alcohol 

in low analysis volumes of 1-3µL. Standard agreement analyses as per Clinical and Laboratory 

standards institute (CLSI) such as regression and Bland-Altman analyses are used to compare the 

performance of the developed sensor in comparison to a commercially available Accu-Chek® 

blood glucometer. Electrical impedance spectroscopy is used to capture the impedance changes 

occurring at the interface of the sensor surface and the buffer containing the target biomolecules 

of interest. Biomolecule detection is affected by the ionic strength, pH, and conductivity of the 
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buffer. We demonstrated the performance of the sensor on detection of alcohol in changing pH 

levels of synthetic sweat and in the presence of other metabolites as interferents to show the 

selectivity of ethanol molecules to the immunoassay. The responses of the sweat sensor and a 

commercially available breathalyzer BACtrack® to synthetic sweat solution containing interferents 

are correlated to the actual alcohol concentrations made available to both the systems through 

regression and Bland-Altman analysis. Alcohol detection in human sweat is demonstrated over a 

linear dynamic range of 0.01mg/dL to 200mg/dL which is equivalent to 0-5 standard drinks with 

a lower detection limit of 0.01mg/dL. The detection of ethanol molecules in terms of changes in 

the capacitive reactance component of the impedance measurement can be attributed to the higher 

charge accumulation occurring within the EDL across the ZnO-sweat buffer interface and electron 

charge transfer occurring between the enzyme biomolecule complex and the ZnO surface. 

Nanoconfinement of target biomolecules within the pores of substrate reduces noise from other 

molecules present in the sweat matrix leading to a higher SNR and distinguishable impedance 

signal from background noise[36],[55]. 

2.5 Methods  

2.5.1 Reagents and materials 

Polyamide substrates with a pore size of 0.2µm were obtained from GE Healthcare Life Sciences 

(Piscataway, NJ, USA). The linker molecule dithiobis-succinimidyl propionate (DSP) and its 

solvent dimethyl sulfoxide (DMSO) were purchased from Thermo Fisher Scientific Inc. (Waltham, 

MA, USA). Salt-free streptavidin from Streptomyces avidiini, alcohol oxidase enzyme from Pichia 

pastoris, glucose oxidase from Asperigillus niger, D-(+)- glucose, absolute ethyl alcohol (≥ 
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99.5%), and sodium bicarbonate (≥ 99.7%) were procured from Sigma- Aldrich (St. Louis, MO, 

USA). Sodium L-Lactate, Creatinine, L-Ascorbic acid, and Uric acid were obtained from Sigma-

Aldrich (St. Louis, MO, USA). Biotin (Long arm) NHS was purchased from Vector laboratories 

(Burlingame, CA, USA). The antibody for glucose oxidase was obtained from Abcam (Cambridge, 

MA, USA). The antibody for glucose oxidase enzyme was diluted in 1X phosphate buffered saline 

(PBS, Thermo Fisher Inc., Waltham, MA, USA). Streptavidin was lyophilized in 1X PBS and 

biotin was dissolved in DMSO. Synthetic sweat was prepared as per the recipe described in Table 

2.2 of M.T. Mathew et al[56]. The pH range was varied by varying the concentrations of the 

constituents. Single donor human sweat of pH ~6 was purchased from Lee Biosolutions Inc. 

(Maryland Heights, MO, USA). No preservatives were added to this product, and it was stored at 

below -20°C. Anticoagulated venous or arterial blood sample drawn from a patient was obtained 

from Carter BloodCare (Plano, TX, USA). Experiments were performed within two days of 

obtaining the blood samples. All ethanol dilutions are made in synthetic and human sweat. All 

glucose dilutions were made in human sweat. 0.1X PBS was made by diluting PBS in deionized 

water (conductivity 18.5 MΩ.cm). BACtrack® S80 Pro was purchased from Amazon.com, Inc. 

(Seattle, WA, USA). MQ5600 Nebulizer machine system was purchased from Mountainside 

Medical Equipment (Marcy, NY, USA). Accu-Chek® Nano SmartView blood glucose monitoring 

system and the test strips were purchased on the counter from CVS pharmacy (Plano, TX, USA). 

2.5.2 Sensor fabrication 

Fig 2.1B shows the sensor stack deposited on nanoporous polyamide substrate. The sensor stack 

consists of gold electrodes and a ZnO active sensing region. Gold electrodes are deposited using a 

shadow mask in a Temescal e-beam evaporator tool (Ferro Tec, Livermore, CA, USA). ZnO thin 
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films are sputtered using AJA Orion RF magnetron with a 99.999% ZnO target (Kurt J. Lesker) at 

room temperature. The thickness of the film is measured to be ~100nm using a Veeco Dektak 8 

profilometer. 

2.5.3 Structural characterization 

The deposition of the ZnO thin film on the flexible nanoporous substrate is investigated and 

characterized through SEM images captured using SUPRA SEM (Zeiss, Oberkochen, Germany). 

Sensor calibration for alcohol detection in synthetic and human sweat 

The immunoassay protocol followed for the detection of alcohol in synthetic and human sweat is 

illustrated in Figure 1A. 10mmol of DSP linker is diluted in DMSO and functionalized on the 

sensor surface by dispensing 1-3µL volume for 3 hours. A PBS wash is carried out prior to 

incubation of streptavidin for 1 hour on the sensor surface [See Figure S3]. Another PBS wash is 

given post immobilization of streptavidin following which biotinylated alcohol oxidase enzyme is 

immobilized on the sensor surface by incubating for 15 minutes [See Figure S4]. Alcohol oxidase 

enzyme is biotinylated as per the recipe formulated by Du et al [57]. Synthetic sweat of desired 

pH is dosed on the sensor prior to introducing the doses and is considered as the baseline or the 

zero-dose step. Dilutions of ethanol made in synthetic sweat in the increasing range from 

0.01mg/dL to 200mg/dL are dispensed on the sensor and incubated for 10 minutes. EIS 

measurements record the current flow taken using a potentiostat (Gamry Instruments, Warminster, 

PA, USA) after an AC excitation signal with a frequency sweep of 1Hz to 1MHz is applied. All 

measurements are carried out in dark and under ambient temperature conditions. Similar protocols 

are followed for detection of alcohol in human sweat and 0.1X PBS buffer solutions. CA 

measurements are performed using the same potentiostat after applying a constant step voltage of 
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200mV for 60 seconds. CA measurements are done for the same ethanol doses in synthetic sweat 

buffer of pH 6 to match the pH of human sweat (~6).  

2.5.4 Sensor performance for alcohol detection in synthetic sweat with interferents and 

comparison with BACtrack® S80 Pro 

Synthetic sweat of pH 6 is spiked with metabolites present in sweat by making additions of 5.6µM 

glucose, 3.7mM lactate, 8.8µM creatinine, 10µM ascorbic acid, and 4.2µM uric acid[58]. All 

ethanol dilutions are made in interferent spiked SS of pH 6 in the range from 25mg/dL to 

200mg/dL and dispensed on the sensor. 6mL analysis volume of the same ethanol concentrations 

in the interferent spiked SS of pH 6 is used to nebulize the solution to mimic breath. The nebulized 

solution is passed into the mouthpiece of BACtrack® through a simple adapter system that connects 

the nebulizer output line to the mouthpiece of BACtrack® which further outputs BAC (%) readings 

corresponding to the concentration of ethanol solution used. The BAC (%) readings are converted 

into SAC (mg/dL) as per the equation mentioned in section 4. 

2.5.5 Combinatorial detection of glucose and ethanol in human sweat and comparison of 

sensor performance with Accu-Chek® Nano SmartView blood glucose monitoring system 

for samples in the absence and presence of alcohol 

Combinatorial detection of glucose and alcohol is done by preparing a concoction of glucose and 

ethanol in human sweat. Glucose is spiked in concentrations of 20mg/dL, 50mg/dL, and 100mg/dL 

in human sweat. Ethanol is spiked simultaneously in concentration of 50mg/dL in human sweat. 

Immunoassay protocol for glucose detection is followed as per the protocol outlined in Munje et 

al[51]. The glucose oxidase and alcohol oxidase enzyme biomolecule complexes are used on two 
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different sensors deposited on the same substrate as shown in Figure 1B. Combined concentrations 

of glucose and ethanol in the order as mentioned in Table 2 are dispensed in 1-3µL volume on the 

glucose and alcohol sensors individually in the regions depicted by G and A symbols in Fig 1B. 

EIS measurements post dose incubations are obtained in a similar manner with similar parameters 

as mentioned above. Test samples for blood glucose measurement using the Accu-Chek® blood 

glucose meter was prepared by spiking blood with glucose and ethanol concentrations are 

mentioned in Table 2. N=3 readings are obtained for every dose combination. No animal or human 

subjects testing was performed during data collection for this manuscript. 

2.5.6 Statistical Analyses 

All the data is analyzed using OriginPro software. Data is presented as mean± standard error of 

mean (SEM) throughout this manuscript. SEM is calculated for the number of replicates or repeats 

used for experimentation and are mentioned in the results section. Error bars are plotted in terms 

of SEM.  
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CHAPTER 3  

CLASP (CONTINUOUS LIFESTYLE AWARENESS THROUGH SWEAT 

PLATFORM): A NOVEL SENSOR FOR SIMULTANEOUS DETECTION OF 

ALCOHOL AND GLUCOSE FROM PASSIVE PERSPIRED SWEAT 

3.1 Abstract 

Wearable-IoT based low-cost platforms can enable dynamic lifestyle monitoring through enabling 

promising and exciting opportunities for wellness and chronic- disease management in 

personalized environments. Diabetic and pre- diabetic populations can modulate their alcohol 

intake by tracking their glycemic content continuously to prevent health risks through these 

platforms. We demonstrate the first technological proof of a combinatorial biosensor for 

continuous, dynamic monitoring of alcohol and glucose in ultra- low volumes (1-5µL) of passive 

perspired sweat towards developing a wearable-IoT based platform. Non-invasive biosensing in 

sweat is achieved by a unique gold-ZnO thin film electrode stack fabricated on a flexible substrate 

suitable for wearable applications. The active ZnO sensing region is immobilized with enzyme 

complexes specific for the detection of alcohol and glucose through non-faradaic EIS and CA. 

Biomolecular interactions occurring at the electrode-sweat interface are represented by the 

impedance and capacitive current changes in response to charge modulations arising in the double 

layer. We also report the detection of alcohol concentrations of 0.01mg/dL to 100 mg/dL and 

glucose concentrations of 0.01mg/dL to 50 mg/dL present in synthetic sweat and perspired human 

sweat. The limit of detection obtained for alcohol and glucose was found to be 0.1mg/dL in 

perspired human sweat. Cross-reactivity studies revealed that glucose and alcohol did not show 

any signal response to cross-reactive molecules. Furthermore, the stable temporal response of the 
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combinatorial biosensor on continuous exposure to passive perspired human sweat spiked with 

alcohol and glucose over a 120-minute duration was demonstrated. 

3.2 Introduction 

IoT platforms have emerged as a class of rapidly evolving embedded technologies that 

interconnects everyday objects in the environment with sensors using the internet to create 

application- specific solutions for remote, real-time monitoring[59], [60]. IoT has primarily made 

its way into the biosensing applications market through continuous self-tracking of health 

indicators and preventive medicine to provide immediate care without the need for 

hospitalization[61]. The rise in health risks and the steep increase in medical costs associated with 

treatments has led to the transformation of the current health care system into a highly 

industrialized ecosystem through the emergence of wearable personal devices. In addition to 

wellness management, wearable biosensing technology offers low-cost diagnostic solutions for 

chronic and fatal disease management in remote locations. Statistics suggest that the current 

market of wearable devices has benefited 80% of the consumers who have adopted wearable IoT 

enabled devices[62]. By 2021, healthcare devices will dominate the IoT space and are expected to 

grow into $45.4 billion market by then[63]. Wearable sensors provide users with the opportunity 

of seamless monitoring of the body’s vital parameters and disease symptoms in a time-controlled 

manner. Biosensors can be integrated into a wearable platform by enclosing miniaturized sensors 

and electronics into smart portable form-factors with a capability to store data obtained in 

continuum and to periodically provide feedback to physicians for clinical diagnosis. Although in 

their nascent stages, wearable health tattoos and patches to monitor vital parameters such as ECG 

signals, respiration rate, oxygen saturation, and body temperature have forayed into the 
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market[64], [65]. With wellness devices gaining traction, one of the daunting challenges being 

faced in healthcare is the need for continuous, dynamic non-invasive monitoring of biochemical 

markers to understand chronic health conditions. Hence, integration of wearable diagnosis devices 

on an IoT platform proves promising for enabling continuous, point-of-care chronic disease 

detection improving early-stage detections and providing the user with warnings to seek medical 

care.  

 Existing wearables devices monitor digital biomarkers to track heart rate and physical 

activity, however, there is no information obtained on human health status which can be 

understood by probing biochemical markers. Biochemical markers play an acute role in 

determining the medical state of a person by quantifying relative changes in their molecular 

expressions[10]. Recent advances have been made towards understanding easily accessible human 

biofluids (sweat, saliva, urine) to non-invasively monitor biomarkers that reflect the physiological 

state of the body. Perspired human sweat is recognized to be a highly attractive source of valuable 

information for this type of monitoring due to its ease of access, presence of biomarkers, 

stimulation, collection, and analysis[66]. Literature studies show clinical correlations between 

sweat analyte and blood analyte levels which confirm that there is value in investigating sweat of 

wellness and disease management[49]. Some of the challenges faced in sweat-based sensing are 

(1) Very low sweat secretion rates of 1-5nL/min/mm2 by the eccrine glands [35] (2) Large pH 

changes which affect ionic concentrations of sweat and (3) Changing the composition of sweat 

due to environmental factors[67]. Portable bioelectronic devices capable of detecting electrolytes, 

glucose, and lactate in small-volumes of sweat using amperometric techniques have been 

demonstrated previously[26], [68], [69]. Alcohol and glucose are two biochemical markers that 
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have a significant impact on the human lifestyle. Alcohol consumption by diabetics and pre- 

diabetics can alter blood sugar levels to either hyperglycemic or hypoglycemic stages depending 

on their nourishment state[23]. In the 18-50 age group of the U.S., an estimated population of 3 

million are diagnosed with diabetes and 27. 4 million are prediabetic[70]. Almost 37% of the total 

U.S. population consumes alcohol at moderate levels[71]. A curvilinear relationship exists 

between alcohol consumption and incidence of type 2 diabetes posing serious risks to a large 

demographic within this age group[72]. Hence, there is an imminent need to monitor the effects 

of alcohol consumption on blood glucose levels for health and lifestyle management. Passive sweat 

based dynamic monitoring of these two biochemical markers offers a paradigm-shifting 

opportunity towards wholistic on body monitoring. 

In this work, we have effectively demonstrated for the first time a wholistic approach 

towards biosensing alcohol and glucose combinatorially in a continuous, dynamic manner in ultra- 

low volumes (1-5µL) of passive perspired human sweat. Real–time monitoring of analytes gives 

a better understanding of the enzyme-analyte reaction mechanisms on continuous exposure to 

sweat which is required for the characterization of a wearable sweat-based biosensor. We also 

report the robust and stable performance of the combinatorial biosensor in perspired human sweat 

(pH ~5.98) and synthetic sweat buffers of varying pH ranges 4-8. We observed that pH changes 

in sweat microenvironment does not influence the performance of the developed biosensor 

enabling the continuous operation of the sensor without degradation in sensor response. AC- based  

EIS and DC-based CA techniques are the two detection modalities used to report the impedance 

and current changes in response to the target concentrations presented to biosensing system. EIS 

and CA provide an insight into the biomolecular interactions occurring at the electrode-buffer 
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interface through which information regarding the target analyte concentrations can be 

extracted[73], [74]. Additionally, the selectivity and the specificity of the combinatorial biosensor 

towards target analytes have been validated to demonstrate the feasibility of detection in human 

sweat buffer. Dynamic responses to varying levels of the biomolecules were demonstrated for a 

period of 120-minutes. 

3.3 Results and discussion 

3.3.1 Modulation of hybrid electrode-solution interface to evaluate the sweat-based 

combinatorial biosensor’s performance through EIS and CA techniques 

The combinatorial biosensor, as shown in Figure 3.1A, that was designed for the detection of 

alcohol and glucose employs a novel hybrid electrode with gold as the measurement electrode and 

a thin film of ZnO as the active sensing region on a flexible nanoporous substrate. The active 

sensing region of the biosensor is surface functionalized with specific enzyme biomolecule 

complexes for alcohol and glucose detection as shown in Figure 3.1B Biocompatibility and the 

ability to tailor the physical and chemical properties ZnO make it a suitable sensing element for 

enhanced biosensing performance[75], [76]. The response of the functionalized biosensor to the 

biomolecules of interest is captured through EIS and CA techniques. The sensor performance of 

the combinatorial biosensor towards detecting alcohol and glucose is characterized through the 

evaluation of a few key sensor metrics – dynamic range within the relevant concentration range, 

limit of detection, and signal to noise threshold[77].  

The response of the combinatorial biosensor to the varying dose concentrations of the target 

biomolecule can be understood through non-faradaic electrochemical impedance spectroscopy. 
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Non-faradaic EIS is a label-free, AC based spectroscopic technique wherein a low amplitude 

sinusoidal excitation voltage over a wide frequency range is applied to the biosensing system and 

the corresponding frequency signatures of the combinatorial biosensor in terms of impedance are 

recorded[78]. Typically, in biological systems non-faradaic EIS allows one to understand the 

surface and bulk phenomenon that occurs in a biosensing system when a biological buffer solution 

interacts with a charged electrode surface[79]. We are interested in understanding the surface 

phenomenon that takes place at the hybrid electrode-solution interface which contributes to the 

impedance response of the combinatorial biosensor. The interaction of the buffer solution with the 

charged hybrid electrode results in the formation of an electrical double layer which comprises of 

a stern layer and a diffuse layer[41]. The stern layer is a thin, compact region consisting of ions 

with a charge opposite to that of the electrode held together by electrostatic forces of attraction. 

The diffuse layer consists of charges under the influence of residual electrostatic forces of 

attraction from the electrode surface and thermal motion. The EDL of the hybrid electrode- 

solution interface is modeled as a Randles circuit which is an equivalent circuit comprising of a 

solution resistance (Rs) in series with a parallel combination of a charge-transfer resistance (Rct) 

and a double layer capacitance (Cdl) [See Figure S17 of [80]]. Capacitive effects are more 

predominantly observed in non-faradaic EIS in the frequency regime < 1KHz. In enzyme systems, 

charge transfer process occurs due to the electron-transfer between the enzyme complex and the 

electrode surface but its effects are more pronounced in lower frequencies[78], [79]. Non-faradaic 

CA is a DC based quantitative technique that captures currents from the non- faradaic processes 

occurring in the double layer as a function of time. In response to an applied DC pulse, the recorded 

current consists of a non-faradic current arising from the charging of the double layer, and a 
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capacitive decay current caused by the relaxation of the double layer (Icapα e-t/Rct*Cdl) reaching a 

steady state[73]. 

 

 

Figure 3.1.A) Picture of the combinatorial biosensor (B) Schematic of the functionalized 

immunoassays for the combinatorial detection of alcohol and glucose in synthetic sweat and 

perspired human sweat. C) Scenarios illustrating the relationship between evening alcohol 

consumption and next morning glucose levels in pre-diabetic and diabetic populations subject to 

their nourishment state, continued on pg 47, 



 

47 

 

3.3.2 AC and DC based performance evaluation and sensor calibration of the alcohol 

biosensor in synthetic sweat of varying pH’s 

The calibration of the biosensor’s response to alcohol concentrations in synthetic sweat buffers of 

pH 4, 6, and 8 for N= 3 replicates are represented as calibration dose response (CDR) curves in 

Figure 3.2A, 3.2B, and 3.2C. The CDR curves are plotted as percentage change in impedance of 

the dose concentrations with respect to baseline at which no alcohol molecules were present in the 

sweat buffers. The impedance variations across a frequency range of 1Hz to 1MHz were analyzed. 

A high signal to noise ratio (SNR) was observed within the 10Hz to 1KHz range at which the 

percentage change in impedance with respect to baseline was maximum. However, we choose 

100Hz as our calibration frequency to compare the responses of the two biomolecules of interest 
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and for the ease of integration with portable electronics towards developing a point-of-care 

diagnostic device. As shown in Figures 3.2A, 3.2B, and 3.2C the percentage change in impedance 

response from 0.01mg/dL to 100 mg/dL was observed to be ~20% in synthetic sweat buffers of 

pH 4 and 6 and ~30% in synthetic sweat buffer of pH 8. A standard deviation of ~3-8% is observed 

in the impedance response across N= 3 replicates which lies in the acceptable range of deviation 

according to CLSI standards. The SST for alcohol biosensing in synthetic sweat buffers lies below 

the percentage impedance response of the lowest alcohol concentration being detected. It is 

observed that the LOD for the combinatorial biosensor in detecting alcohol in synthetic sweat 

buffers of varying pH’s is 0.01mg/dL. The reliable range of alcohol concentrations that the 

biosensor can detect is described as the dynamic range which is 0.01mg/dL to 100 mg/dL.  

Although the LOD and the dynamic range of alcohol detection are retained across the synthetic 

sweat buffers of varying pH, higher impedance response is observed in synthetic sweat of pH 8 

than in pH’s 4 and 6. The H2O2 produced by the catalytic oxidation of alcohol on interaction with 

the enzyme undergoes the reaction: 𝐻𝐻2𝑂𝑂2 →  2𝐻𝐻+ + 𝑂𝑂2 + 2𝑒𝑒−. The excess H+ ions present in 

synthetic sweat buffer at low pH’s affect the linearity of the impedance response by interfering 

with charge transfer process. The pH of the buffer solution affects (1) the charge behavior of ZnO 

thus significantly affecting the interface and bulk properties when a buffer solution interacts with 

ZnO[81] (2) Stability of the enzymatic activity[68]. Alcohol oxidase and glucose oxidase enzymes 

are stable within our chosen pH range of operation. Change in impedance produced by the 

biosensor in response to the increasing target biomolecule concentrations is facilitated by a 

combination of two processes: (1) charge modulation occurring within the double layer as a 

function of change in permittivity (2) charge transfer occurring between the enzyme biomolecule 
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complex when the target biomolecules are catalytically oxidized by their specific enzyme 

complexes to produce reaction products and H2O2.  

Chronoamperometric responses of the combinatorial biosensor in detecting alcohol was 

recorded by applying a step dc potential and measuring the resultant current vs. time. DC potential 

of ~0.6V was applied to the system corresponding to the catalytic oxidation of alcohol and 

generation of H2O2 by AOx enzyme as previously reported[47]. The measured current reflects the 

non-faradaic charge transfer between the enzyme complex and the capacitive current for the double 

layer. The calibration curves for N= 3 replicates shown in Figs. 3.2D, 3.2E, and 3.2F are plotted 

for the average change in steady state current from the baseline obtained for varying alcohol 

concentrations. We observe that the current response decreases with increasing pH which 

corroborates with the increasing impedance observed with increasing pH in the EIS studies. We 

attribute this behavior to the excess H+ ions participating in the charge-transfer between the 

enzyme biomolecule complex and the ZnO electrode. 
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Figure 3.2. Calibration dose response of alcohol as a function of percentage change in impedance 

at 100Hz in (A) synthetic sweat buffer of pH 4 (B) synthetic sweat buffer of pH 6 (C) synthetic 

sweat buffer of pH 8. Calibration dose response chronoamperograms for alcohol as a function of 

average change in current from the baseline in (D) synthetic sweat buffer of pH 4 (E) synthetic 

sweat buffer of pH 6 (F) synthetic sweat buffer of pH 8 

3.3.3 AC and DC based performance evaluation and sensor calibration of the glucose 

biosensor in synthetic sweat of varying pH’s 

The calibration of the combinatorial biosensor’s response to glucose in sweat buffers of pH’s 4, 6, 

and 8 for N= 3 replicates are shown in Figures 3.3A, 3.3B, and 3.3C. An increasing percentage 
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change in impedance is observed with increasing logarithmic glucose concentrations from 

0.01mg/dL to 50 mg/dL spiked in synthetic sweat buffers of pH 4, 6, and 8. At pH 4, the percentage 

impedance change from the baseline was observed to be between 10-40% from the lowest to the 

highest glucose concentration with a standard deviation of 3-7%. The percentage changes in 

impedance in synthetic sweat of pH 6 for the increasing glucose concentrations varied from 16- 

50% with a standard deviation of 0.03-5%. Higher percentage changes in impedance of 22-58% 

with a standard deviation of 5-11% were observed in synthetic sweat of pH 8 in comparison to 

pH’s 4 and 6. A larger deviation is observed for glucose dose concentrations 1mg/dL to 100 mg/dL 

detected in synthetic sweat pH’s 4 and 8 in comparison to pH 6. At pH 6, lesser contribution from 

the buffer lowers the overall deviation of the impedance response. The LOD in synthetic sweat 

buffers of pH’s 4, 6, and 8 was found to be 0.01mg/dL.  

The chronoamperometric responses of the combinatorial biosensor in detecting glucose 

concentrations in synthetic sweat buffers of pH 4, 6, and 8 for N= 3 replicates are shown in Figures 

3.3D, 3.3E, and 3.3F respectively. The GOx enzyme catalyzes the oxidation of glucose by 

producing H2O2 at ~0.7V as reported in literature[51]. For synthetic sweat pH 4, the average 

change in current produced by the increasing glucose concentrations from the baseline varies from 

2.4 (±0.4)-8.4 (±1.2) µA. The current changes observed for glucose concentrations from 0.01- 

500mg/dL in synthetic sweat of pH 6 is 1.9 (±0.8)-5.5 (±1) µA whereas in synthetic sweat of pH 

8, the current changes in the range of 1.7(±0.4)-5.4 (±0.9) µA were observed for the lowest to the 

highest dose concentration. The LOD computed across synthetic buffers for CA based glucose 

detection is 0.01mg/dL. 
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Figure 3.3.Calibration dose response of glucose as a function of percentage change in impedance 

at 100Hz in (A) synthetic sweat buffer of pH 4 (B) synthetic sweat buffer of pH 6 (C) synthetic 

sweat buffer of pH 8. Calibration dose response chronoamperograms for glucose as a function of 

average change in current from the baseline in (D) synthetic sweat buffer of pH 4 (E) synthetic 

sweat buffer of pH 6 (F) synthetic sweat buffer of pH 8 

3.3.4 AC and DC based performance evaluation and sensor calibration of the alcohol 

biosensor in perspired human sweat 

The calibration dose response curves obtained for alcohol biosensing in human sweat buffer (pH 

~5.98) using EIS and CA are shown in Figures 3.4A and 3.4C. The percentage change in 

impedance for logarithmic alcohol concentrations between 0.01mg/dL to 100 mg/dL varies from 
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12-35%. The standard deviation across N= 3 replicates lies between 4-8%. The LOD of the 

combinatorial biosensor for alcohol detection in human sweat is found to be 0.1mg/dL with a 

dynamic range is 0.1mg/dL to 100 mg/dL. Sweat alcohol content equivalent to blood alcohol levels 

on consumption of <1- 3 drinks estimated by the correlation: Blood alcohol content (g/L) = 0.71* 

Sweat alcohol content (g/L), R2 = 0.912[32]. The sweat alcohol content for <1-3 drinks detected 

by the biosensor marked by the color bands in Figure 4A lies well within the relevant range of 

alcohol found in human sweat. In comparison to the biosensor performance in synthetic sweat of 

pH 6, the LOD and the standard deviation is higher in human sweat as it as complex biomatrix 

consisting of interferents that contribute to the noise factor. The average current change from the 

baseline from the lowest to the highest alcohol concentration in the CDR is the 0.4(±0.17)- 2 (±0.8) 

µA. A correlation coefficient of R2= 0.98 is calculated for the CDRs obtained using EIS and CA. 

The LODs measured using EIS and CA differed owing to the biochemical events occurring at the 

electrode-solution interface being recognized disparately by both these techniques.  

CA captures the temporal response of the biosensor as an average function of current change 

derived from the double layer relaxation, concentration, mobility of ions in the solution, and the 

time dependent electric field experienced by the ions[74]. However, EIS is a powerful sensitive 

technique that allows characterization of biosensor system by detecting a time-based impedance 

response across a frequency spectrum. The impedance response is a summation of the individual 

responses obtained from the bulk solution resistance, charge transfer resistance, and the double 

capacitance. Due to the sensitivity of EIS in capturing the biomolecular events at the EDL interface 

as individual events rather than an average function, the LOD for alcohol detection in human sweat 
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is one logarithmic concentration higher than the LOD detected by the chronoamperometric 

technique. 

3.3.5 AC and DC based performance evaluation and sensor calibration of the glucose 

biosensor in perspired human sweat 

The EIS based performance of the combinatorial biosensor in detecting glucose in perspired human 

sweat represented by the calibration dose response curves are shown in Figure 3.4B for N= 3 

replicates. The percentage change in impedance varies from 14-35% with a deviation of 4-13% 

for logarithmic glucose dose concentrations ranging from 0.01mg/dL to 50mg/dL. A correlation 

coefficient of R2 = 0.95 was obtained after performing regression analysis. The LOD is found to 

be 0.1mg/dL and the dynamic range of glucose detection is 0.01mg/dL to 50mg/dL. The sweat 

glucose concentrations corresponding to hypoglycemic, normal, and hyperglycemic levels are 

marked by color bands in Figure 3.4B. A correlation factor of 0.017 (R2 = 0.83) is used to compute 

the equivalent sweat glucose concentrations from the blood glucose concentration[49]. The noise 

threshold is found to be higher in comparison to synthetic sweat buffers due to the human sweat 

interferents and background noise form the higher antibody concentrations utilized in the 

detection. The larger deviations obtained at the elevated glucose concentrations could be induced 

by the steric hindrances from the size of glucose molecules and crosstalk from the sweat 

interferents [See section 3.6]. Despite of the larger deviations obtained on the 10mg/dL and 

50mg/dL concentrations, the deviations are within 15% which meet the CLSI standards[82]. 

 The chronoamperometric calibration dose response curve for glucose detection in human 

sweat as shown in Figure 3.4D. The average change in current for the glucose range 0.01mg/dL to 

50mg/dL varies from 2.3(±0.7)-4.8(±0.6) µA. The current changes obtained from the non-specific 
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biomolecules present in human sweat cannot be decoupled from the behavior obtained from the 

specific biomolecules hence affecting the linearity and the lower detection limit of the CDR. The 

LOD obtained is 0.01mg/dL. A correlation coefficient R2 = 0.82 is obtained from the regression 

analysis. Although the LOD obtained from CA is one logarithmic concentration lower than the 

LOD obtained by EIS, EIS has merits of being able to capture subtle EDL effects which are 

averaged in CA. 

 

 



 

56 

 

Figure 3.4.A) Calibration dose response of alcohol as a function of percentage change in 

impedance at 100Hz in perspired human sweat (B) Calibration dose response of glucose as a 

function of percentage change in impedance at 100Hz in human sweat (C) Calibration dose 

response chronoamperograms for alcohol as a function of average change in current from the 

baseline in perspired human sweat (D) Calibration dose response chronoamperograms for glucose 

as a function of average change in current from the baseline in human sweat 
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3.3.6 Performance of the biosensors in the presence of cross-reactive biomolecules in 

synthetic sweat 

The reliability of the combinatorial sensor in detecting specific target biomolecules of interest and 

no other similar molecules can been investigated from cross-reactivity analysis. The label-free 

combinatorial biosensor relies on the functionalized enzyme-biomolecule complex to selectively 

oxidize specific biomolecules and to have minimal non-specific interactions. To assess the 

specificity of the alcohol and glucose immunoassays developed on the combinatorial biosensor, 

cross- reactivity studies were performed in synthetic sweat pH 6 with alcohol and glucose as 

described in Section 2.5.  The cross-reactive response of glucose on the alcohol sensor is shown 

in Figure 3.5A. The median percentage changes in impedance increase linearly from 12.5-31% 

with increasing logarithmic alcohol concentrations with a noise threshold of 11%. The impedance 

signals obtained from the cross-reactive glucose molecules vary between 2.5-10% and lie below 

the noise threshold. The linearly increasing impedance response obtained from the specific 

interactions and flat impedance trend obtained from the cross-reactive glucose molecules indicate 

that the electrochemical signal response in obtained only from the specific interactions of alcohol 

with alcohol oxidase enzyme biomolecule complex. The response of the glucose sensor to cross- 

reactive alcohol molecules, as shown in Figure 3.5B, shows an increasing trend in median 

percentage change in impedance ranging from 22-55% with logarithmic glucose concentrations. 

The variation in response from the alcohol molecules lies within the range 1-7% and falls below 

the noise threshold of 14%. Alcohol molecules show a larger spread in impedance response at 50 

mg/dL yet, the impedance response from the glucose molecules at 50mg/dL concentration shows 

a clear separation from the non-specific alcohol molecules. Thus, the combinatorial biosensor is 
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feasible in distinguishing the non-specific interactions from the specific interactions and keeping 

the cross-reactions of similar biomolecules within the specified noise threshold. 

 

Figure 3.5.(A) Alcohol biosensor selectivity for glucose as the cross- reactive molecule in synthetic 

sweat on pH 6 (B) Glucose biosensor selectivity for alcohol as the cross-reactive molecule in 

synthetic sweat on pH 6 

3.3.7 Continuous combinatorial monitoring of alcohol in perspired human sweat  

The robustness and stability of the combinatorial biosensor was evaluated by performing dynamic 

continuous monitoring of alcohol in perspired human sweat. The dynamic impedance response of 

the combinatorial biosensor to alcohol concentrations equivalent to consuming <1-3 standard 

drinks i.e., 3mg/dL to 125mg/dL alcohol in perspired human sweat obtained at 100Hz is depicted 

in Figure 3.6A. The rate of change in impedance slopes as a function of drink dose are observed 

to be 1.7 Ω/min for <1 drink, 42.7 Ω/min for 1 drink, 113. 4 Ω/min for 2 drinks, and 269.8 Ω/min 
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for 3 drinks. An incremental impedance response is observed with increasing alcohol dose 

concentrations over a 110-minute duration implying that the rate of change of impedance is 

entirely drink dependent. This time limited dynamic monitoring of alcohol in human sweat when 

extended to longer periods as desired in real-world applications, would indicate similar trends in 

impedance response over time proportional to drink consumed. A polynomial curve was fit to the 

impedance response and correlation coefficient R2 = 0.99 was obtained. 

 We have demonstrated for the first time the dynamic interplay in the temporal variations 

of alcohol and glucose. The dynamic response of the biosensor functionalized with alcohol 

detection immunoassay was tested to understand the modulation in alcohol levels under the 

influence of hyperglycemic and hypoglycemic glucose levels. The typical sweat glucose 

concentrations corresponding to hypoglycemic, normal, and hyperglycemic lie within the range 

0.85mg/dL to 5.5mg/dL (Lee et al., 2016). A drink dependent increasing trend in impedance is 

observed proportional to the alcohol concentration consumed in the presence of hypoglycemic and 

hyperglycemic glucose levels as shown in Figures 3.6C and 3.6D respectively. The rate of change 

in impedance slopes as a function of drink dose in the presence of hypoglycemic glucose levels 

are observed to be 0.05 KΩ/min for <1 drink, 0.52 KΩ/min for 1 drink, 0.9 KΩ/min for 2 drinks, 

and 1.2 KΩ/min for 3 drinks. The rate of change in impedance slopes as a function of drink dose 

in the presence of hyperglycemic glucose levels are observed to be 0.06 KΩ/min for <1 drink, 0.68 

KΩ/min for 1 drink, 0.73 KΩ/min for 2 drinks, and 1.15 KΩ/min for 3 drinks. The performance 

of the sensor in terms of their impedance responses suggest its ability to capture only the specific 

interactions of the alcohol oxidase with alcohol in presence of hypoglycemic (0.85mg/dL) or 
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hyperglycemic (5.5mg/dL) glucose levels. An R2 value of 0.99 was obtained for both the 

polynomial fits. 

 Continuous monitoring of glucose levels in diabetic individuals with a social drinking 

lifestyle is essential for diabetes management. Two scenarios representing the effect of evening 

consumption of alcohol on next morning glucose levels subject to nourishment states are illustrated 

in Figure 3.1C. The temporal modulations in the glucose levels on drink consumption to simulate 

real-life situations to control drink consumption is evaluated on the biosensor functionalized with 

the glucose detection immunoassay. The change in impedance response observed from the varying 

glucose levels – hypoglycemic (0.85mg/dL), normal (2mg/dL), hyperglycemic (5.5mg/dL) on 

consuming <1-2 standard drinks in shown in Figures 3.6E and 3.6F over a 120-minute duration. 

The rate of change of in the slope of impedance response is glucose level dependent. The rate of 

change in impedance slopes as a function of glucose concentrations in the presence of alcohol 

equivalent to <1 standard drink is observed to be 27.3 Ω/min for hypoglycemic level, 108.6 Ω/min 

for normal level, and 395.1 Ω/min for hyperglycemic level. The rate of change in impedance slopes 

as a function of glucose concentrations in the presence of alcohol equivalent to 2 standard drink is 

observed to be 40.6 Ω/min for hypoglycemic level, 185 Ω/min for normal level, and 769. 2 Ω/min 

for hyperglycemic level. The increasing trend in the rate of change in impedance responses 

observed with increasing alcohol content can be utilized in detecting variations in glucose levels 

on the consumption of alcohol suitable for wearable applications. Polynomial curves were fit to 

impedance responses obtained for both cases and an R2 of 0.99 was obtained.  
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Figure 3.6.(A) Continuous and dynamic monitoring of alcohol spiked in perspired human sweat. 

(B) Alcohol and glucose dose combination index for combinatorial biosensing. Continuous 

dynamic monitoring of alcohol in (C) hypoglycemic glucose spiked perspired human sweat (D) 

hyperglycemic glucose spiked perspired human sweat. Continuous dynamic monitoring of glucose 

in (E) alcohol equivalent to <1 drink spiked perspired human sweat (F) alcohol equivalent to 2 

drinks spiked perspired human sweat  

3.4 Conclusion 

This work is the first-time demonstration of a biosensor on ultra-low passive perspired human 

sweat volumes for rapid and dynamic monitoring of alcohol and glucose in a temporal manner 
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suitable foe wearable IoT applications. A relationship between blood glucose levels and 

consumption of alcohol has been found to interfere with blood glucose levels and reduce the 

effectiveness of insulin. Alcohol consumption is prone to increasing diabetes related risks leading 

to acute hypoglycemia or hyperglycemia depending on the body’s nutrition state. To maintain a 

healthy wellness state, it is imperative to track the fluctuations caused in glucose levels and to limit 

one’s alcohol intake through investigation of human bodily fluids. In this work, we have 

demonstrated the combinatorial detection of alcohol and glucose in human sweat using 

electrochemical impedance spectroscopy and CA as a comparative analysis technique. A thorough 

analysis of effect of pH of the sweat buffers on the combinatorial biosensor’s performance in 

detecting target biomolecules of interest yielded an outcome that the ionicity of buffer plays a key 

role in giving out reliable and stable sensor output. The biosensor enables users to track the 

interplay between glucose and alcohol in a “real-time” manner. 

The biosensor showed an LOD of 0.01 mg/ dL for alcohol and glucose detection in synthetic 

buffers using EIS and CA techniques. However, LODs of 0.1mg/dL in human sweat were obtained 

for alcohol and glucose detection using EIS while lower LODs of 0.01mg/dL were obtained using 

CA. Shift in linearity of the impedance response and differing LOD’s obtained in human sweat are 

primarily due to the sensitivity of the detection techniques in deconvoluting the specific 

interactions between the target  biomolecules-enzyme biomolecule complex and the non – specific 

interactions originating from the interferents present in human sweat buffer. The mechanisms 

underlying the biosensing performance is capacitive double layer modulation from the formation 

of products and the electron charge transfer processes occurring between the electrode-enzyme 

complex. Selectivity of the immunoassays functionalized with enzymes on the biosensors specific 
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to the target biomolecule of interest was established through cross-reactivity studies performed 

with glucose on alcohol sensor and alcohol on glucose sensor. Negative interactions from the 

cross-reactive biomolecules yielded responses that lie well within the noise threshold of the 

biosensor. The combinatorial biosensor’s performance in monitoring alcohol and glucose in 

perspired human sweat in continuous and dynamic manner has been demonstrated towards making 

it suitable for developing a wearable lifestyle monitor for limiting alcohol intake in the diabetic 

and pre-diabetic population. The dynamic effects exerted by a chronic cohort of alcohol and 

glucose molecules on each other are continuously monitored through their impedance responses 

which indicate an incremental rate of change in impedance response proportional to the 

biomolecule concentration levels. This work demonstrates a non-invasive, label-free approach 

towards translation onto portable diagnostic platforms for monitoring vital statistics through 

analysis of ultra-low volumes of passive perspired sweat.  

3.5 Materials and Methods 

3.5.1 Materials and reagents 

Polyamide substrates (pore size-200nm, thickness-60µm) were obtained from GE Healthcare Life 

Sciences (Piscataway, NJ, USA). The linker molecule dithiobis succinimidyl propionate (DSP), 

dimethyl sulfoxide (DMSO), and 1X phosphate buffered saline (PBS) were purchased from 

Thermo Fisher Scientific Inc. (Waltham, MA, USA). Salt-free streptavidin from Streptomyces 

avidiini (≥ 13 units/mg protein), alcohol oxidase enzyme from Pichia pastoris (10-40 units/mg 

protein), glucose oxidase from Asperigillus niger (100,000-250,000 units/g), D-(+)- glucose, 

absolute ethyl alcohol (≥ 99.5%), and sodium bicarbonate (≥ 99.7%) were purchased from Sigma- 
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Aldrich (St. Louis, MO, USA). Long arm NHS-biotin was purchased from Vector laboratories 

(Burlingame, CA, USA). Glucose oxidase antibody was obtained from Abcam (Cambridge, MA, 

USA). Glucose oxidase antibody was diluted in 1X PBS. Streptavidin was lyophilized in 1X PBS 

and biotin was dissolved in DMSO. Alcohol oxidase enzyme was biotinylated using the protocol 

stated in Du et. al[57]. Synthetic sweat was prepared as per the recipe described in M.T. Mathew 

et. al[56]. The pH range was varied by varying the concentrations of the constituents. Single donor 

human sweat of pH ~6 was purchased from Lee Biosolutions Inc. (Maryland Heights, MO, USA). 

No preservatives were added to this product, and it was stored at -20°C. All alcohol and glucose 

dilutions were made in synthetic and human sweat buffers.  

3.5.2 Sensor fabrication 

The combinatorial biosensing stack deposited on flexible nanoporous polyamide substrate is 

shown in Fig 1A. The biosensing stack comprises of gold electrodes and a ZnO active sensing 

region. Fabrication of the combinatorial biosensing stack consists of two steps: (1) Deposition of 

~150nm gold electrodes on the substrate using a Temescal e-beam evaporator tool (Ferro Tec, 

Livermore, CA, USA). (2) Sputtering of ZnO thin films in the central region between the two gold 

electrodes using AJA Orion RF magnetron with a 99.999% ZnO target (Kurt J. Lesker) at room 

temperature. The thickness of the film is measured to be ~100nm using a Veeco Dektak 8 

profilometer. 
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3.5.3 Sensor calibration in synthetic sweat and perspired human sweat for alcohol 

detection 

The immunoassay developed on the combinatorial biosensor towards detection of alcohol in 

synthetic sweat and human sweat buffers are shown in Figure 1B. The biosensor was 

functionalized with 10mM DSP thiol-cross linker diluted in dimethylsulfoxide (DMSO) by 

dispensing 3uL of sample volume on the ZnO sensing region for 3 hours in dark. Sample solutions 

were dispensed on the side behind the electrode fabricated region of the sensor. 1 mg/mL of 

streptavidin in 1X PBS was incubated on the sensing region for 60 minutes. After immobilizing 

streptavidin, biotinylated alcohol oxidase enzyme was incubated on the sensing region for 15 

minutes. The enzyme biotinylation procedure was carried out as outlined in Du et. al. Synthetic 

sweat solution of 3uL volume was dispensed on the sensing region depending on the detection 

buffer. This step was the baseline measurement for computing impedance changes. Pure alcohol 

was diluted in synthetic sweat buffers in a logarithmically increasing concentration range between 

0.01mg/dL to 100 mg/dL. Alcohol dilutions in sweat were dispensed on the sensor in increasing 

dose concentrations and incubated for 10 minutes each. EIS and CA measurements were 

performed after every immobilization step. Single frequency EIS measurements recorded the 

impedance measurements over 5 minutes and were taken using a potentiostat (Gamry Instruments, 

Warminster, PA, USA) after applying an AC excitation signal of 10mVrms at 100Hz frequency. 

All measurements were performed in dark and under ambient temperature conditions [See Figs 

S1-S4 of [80]]. CA measurements were carried out using the same potentiostat after applying a 

constant step voltage of 600mV for 1 minute. Similar protocols as followed for detection of alcohol 
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in synthetic sweat were followed for detection of alcohol in human sweat buffer solution [See Figs 

S4-S8 of [80]]. All data is represented as mean± standard error of mean (SEM). 

The calibration dose responses (CDR) for synthetic and human sweat buffers obtained using 

EIS and CA were calculated for N= 3 replicates. The combinatorial biosensor’s EIS response is 

represented as the percentage change in impedance between the baseline step and the dose 

concentration step. The percentage change in impedance is the change in impedance observed in 

response to the target biomolecule concentration with respect to the baseline in the absence of 

target biomolecule and is calculated using the expression (100*(baseline impedance – spiked 

biomolecule concentration impedance)/ baseline impedance). The limit of detection (LOD) 

described as the smallest concentrations of target biomolecules that is reliably detected beyond the 

specific signal threshold (SST). The chronoamperometric CDRs obtained in synthetic and human 

sweat buffers are plotted in terms of change in average steady state current of the dose 

concentration step with respect to the average steady state current obtained for the baseline 

measurement step. SST for CDR’s obtained using both the techniques are computed using a signal 

to noise ratio (SNR) of 3 [refer to supplementary information of [80]] (Armbruster and Pry, 2008). 

3.5.4 Sensor calibration in synthetic sweat and perspired human sweat for glucose 

detection 

The glucose detection immunoassay as shown in Figure 1B developed on the combinatorial 

biosensor was adapted based on the protocol described in Munje et. al [51] . Glucose dilutions of 

concentrations from 0.01mg/dL to 50 mg/dL were made in synthetic sweat and human sweat buffer 

solutions. The calibration dose responses using EIS and CA techniques were obtained for N= 3 

replicates [See Figs S8-S16 of [80]]. Sensor response metrics such as percentage change in 
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impedance, average change in steady state current, specific signal threshold, and LOD were 

computed similarly as done for sensor calibration in synthetic and human sweat for alcohol 

detection [See Table S1-S4 of [80]]. 

3.5.5 Evaluation of cross reactivity on alcohol and glucose biosensors with interferents 

in synthetic sweat of pH 6 

The specificity of the combinatorial biosensing system was tested through the sensor’s cross 

reactivity of glucose biomolecules on the alcohol sensor and alcohol biomolecules on the glucose 

sensor. All alcohol and glucose dilutions were made in synthetic sweat buffer of pH 6. Cross 

reactivity study on the alcohol biosensor for N= 3 replicates was performed by dispensing varying 

glucose concentrations in the range 0.01mg/dL to 100 mg/dL on the sensing region functionalized 

with alcohol detection immunoassay. Similarly, cross reactivity of the glucose sensor to alcohol 

was examined for N= 3 replicates by dispensing alcohol concentrations varying from 0.01mg/dL 

to 50 mg/dL on the sensing region functionalized with glucose detection immunoassay. Percentage 

change in impedance captured at 100Hz is computed as described in the above section. 

3.5.6 Continuous monitoring of alcohol in perspired human sweat 

Continuous, dynamic monitoring of alcohol in perspired human sweat was performed by 

dispensing 3µL of sweat alcohol dose concentrations in the range 3mg/dL to 125 mg/dL (≈ <1-3 

drinks) for 9 minutes on the ZnO sensing region in succession over a 110-minute duration. Alcohol 

concentrations of 1mg/dL and 10 mg/dL were prepared by spiking alcohol in human sweat. 

1mg/dL alcohol dose was dispensed on the sensing region three times in progression to simulate 

the ingestion of <1 drink condition. Following this, nine doses of 10mg/dL alcohol concentration 
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were applied successively to simulate the ingestion of 1-3 standard drinks. The dynamic 

impedance response of the biosensing system for continuous sweat alcohol monitoring was 

measured using a potentiostat on the application of an AC excitation signal of 10mVrms (Root mean 

square) at 100Hz frequency.  

3.5.7 Continuous, dynamic monitoring of the effect of hypoglycemic and hyperglycemic 

glucose levels on perspired human sweat alcohol content 

The effect of hypoglycemic glucose levels on sweat alcohol content was monitored in a continuous 

manner over a 120-minute window by dispensing 3µL solution of glucose and alcohol spiked in 

human sweat onto the ZnO sensing region functionalized with alcohol detection immunoassay. 

Two hypoglycemic cocktail solutions were made: (1) Hypoglycemic glucose concentrations of 

0.85mg/dL combined with alcohol concentration of 1mg/dL in human sweat buffer. (2) 

Hypoglycemic glucose concentration of 0.85mg/dL combined with alcohol concentration of 

10mg/dL in human sweat buffer. Cocktail solution 1 was dispensed three times on the sensing 

region successively every 9 minutes to simulate the effects of hypoglycemic glucose levels on 

sweat alcohol post consumption of <1 standard drink. Subsequently, cocktail solution 2 was 

dispensed nine times on the sensing region successively every 9 minutes to simulate the effects of 

hypoglycemic glucose levels on sweat alcohol post consumption of 1-3 standard drink.  

Two hyperglycemic glucose cocktail solutions were prepared by spiking human sweat with 5.5 

mg/dL glucose concentration in combination with 1mg/dL and 10mg/dL alcohol concentrations. 

Similar procedure as described above was followed to monitor the effect of hyperglycemic glucose 

levels on sweat alcohol content. All impedance responses were captured at 100Hz.  
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3.5.8 Continuous, dynamic monitoring of perspired sweat glucose on consumption of <1-

2 standard drinks 

The effect of consuming alcohol equivalent to <1-3 drinks on the sweat glucose content was 

continuously monitored over a period of 120 minutes. Cocktail solutions were prepared by spiking 

glucose and alcohol in human sweat buffer solution. Glucose solutions of concentrations 0.85 

mg/dL, 2 mg/dL, and 5.5 mg/dL were made in human sweat. Alcohol solutions of concentrations 

3mg/dL (<1 standard drink) and 87mg/dL (2 standard drinks) were made in human buffer solution. 

Combined concentration of glucose and alcohol solutions were made in six combinations as shown 

in Figure 5B. The cocktail combinations were dispensed five times on the ZnO sensing region 

functionalized with glucose detection immunoassay in 3µL volume every 9 minutes. Individual 

dynamic impedance responses were obtained at 100Hz for glucose levels combined with alcohol 

concentration equivalent to <1 drink and for glucose levels combined with alcohol concentration 

equivalent to 2 drinks. 
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CHAPTER 4   

ON-DEMAND LACTATE MONITORING TOWARDS ASSESSING PHYSIOLOGICAL 

RESPONSES IN SEDENTARY POPULATIONS 

4.1 Abstract 

Identification of diseases in sedentary populations on a timely basis before reaching a critical stage 

is a continuing challenge faced by emergency care centers. Lactate is a key biomarker for 

monitoring restricted oxygen supply essential in assessing the physiological responses of the user 

for clinical diagnostics. The novelty of this work is the development of a non-invasive, mediator-

free, stick and remove biosensor for the on-demand measurement of lactate in passive sweat 

targeted towards sedentary populations. The conformable interface of the biosensors with skin can 

be engineered to extract relevant biochemical signals and quantify the in-situ sweat biomarker 

levels. In this work, we demonstrate a highly sensitive and specific on-demand biosensor with a 

fabricated hybrid nanotextured Au/ZnO electrode stack embedded within a flexible nanoporous 

material to capture the temporal dynamics of passive sweat lactate. The biosensor exhibits a lactate 

specific response in human sweat with a 1mM lower limit of detection and a wide dynamic 

detection range of 1-100 mM (R2 = 0.98). The proposed biosensor yields a sensitivity of 8.3% 

mM-1 while selectivity studies reveal negative interactions with non-specific molecules. The 

sensor stability studies showed a ~30% degradation in the lactate biosensing response over 4-day 

duration stored under 4°C. Non-faradaic electrochemical spectroscopy is employed as the 

detection modality to quantify the enzymatic catalysis of sweat lactate at the electrode-sweat 

interface. Spectroscopic characterization techniques confirm the enzymatic assay binding efficacy 

on a qualitative scale.  
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4.2 Introduction 

Geriatric and pediatric populations are vulnerable to unforeseen circumstances that demand the 

identification of technologies that can prolong the lives of these sedentary population subsets. 

Thus, facile care approaches are required to monitor the health parameters of sedentary populations 

calling for the need of developing on-demand, single- use platforms for point-of-use testing. Early 

screening and diagnosis provide initial heath intervention through safe, non-invasive, and 

potentially inexpensive methods for detecting the onset and progression of diseases. Progression 

of diseases into an advanced stage causes delay in procuring effective treatment consequently 

requiring laborious invasive, immunological, imaging, and genomic diagnosis procedures[83]. 

The invasiveness of conventional diagnosis techniques requires frequent painful testing procedures 

posing a challenge for regular screening of disease progression in elderly and infants. Biomarkers 

have the enormous ability to assess and characterize the extent of disease towards the development 

of next-gen non-invasive diagnostic devices without the requirement of expensive and bulky 

equipment[84]. Increase in blood lactate levels are related to increased production or decreased 

lactate clearance further leading to conditions such as tissue hypoxia and subsequently leading to 

septic shock in extreme conditions[85]. Hence, an on-demand, point-of-use, stick and remove 

biosensor can be used for initial quantification of lactate levels further prompting clinicians to 

initiate immediate medical actions.  

 For years, eccrine sweat has been a neglected diagnostic bodily fluid but with the advent 

of flexible sensing, sweat sampling has become an extremely promising non-invasive diagnostic 

approach for biomarker analysis. Most efforts have been focused on the detection of sweat 

metabolites such as lactate, glucose, and uric acid as they are present in higher detectable 
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concentrations while the protein concentrations are in lower ranges. Low tonicity and acidic pH of 

sweat allows of more accumulation of biomarkers in sweat[17]. Eccrine sweat is a valuable source 

of proteins, metabolites, electrolytes, lipids, and other non-invasive biomarkers with less 

susceptibility to fouling making it a critical tool for frequent monitoring of disease states in 

sedentary populations[86]. Sweating occurs as a response to maintain thermoregulation when there 

is an excess rise in core body temperature. Higher sweat volumes can be achieved by inducing 

sweating through stimulation in healthy subjects. The quality and quantity of the biomarkers is 

highly depending on the type of glands and the region of sweat sampling on the body. Eccrine 

sweat is present on the body’s skin with an average density of 100-200/cm2 on the surface area of 

the body with its appearance on the body’s surface allowing for non-invasive biomarker 

detection[87]. Advancement in passive sweat sampling and iontophoretic sweat stimulation 

techniques have unlocked new opportunities for sweat analytics-based screening devices with the 

potential to provide the continuous feedback on health and disease status. Lactate levels in eccrine 

sweat are found to be higher than in blood ranging from 4mM to 25mM in healthy individuals to 

50-100mM after exhaustive exercise rendering sweat lactate detection to be a viable alternative 

for monitoring clinical conditions[88]–[91]. Most sweat based sensors rely on localized 

pilocarpine stimulation of sweat glands so as to achieve 10-100µL of sweat volume required for 

biomarker detection[26],[92]. Studies have shown that sweat stimulation induced using 

pilocarpine did not significantly show a change in lactate levels before exercise and during exercise 

in the exercise group in comparison to the non-exercising group[93]. Previously, our group has 

demonstrated dynamic continuous monitoring of lactate in ultra-low volumes of passive perspired 

sweat on a graphene biosensing platform[94]. Recent studies reporting real-time lactate biosensing 
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require high sweat volumes and the use of redox mediators to widen their dynamic range of 

detection (see supplementary Table S1 of [95])[26], [92], [96]–[100]. Most of the efforts report a 

dynamic range up to ~70mM with the use of redox probes. However, in our work, we report a non-

faradaic, mediator-free lactate sensing strategy with an extended dynamic detection range up to 

100mM by leveraging the properties of a porous substrate. 

Porous substrates such as polyamide offer higher current density and capacitance due to 

the enlarged surface area to volume ratio in comparison to flat substrates. The dimensionality of 

the electrode materials also enhances the kinetics of electrochemical reactions. Nanoporous 

membranes allow for nanoconfinement of biomolecules within small volumes to increase the 

frequency of interactions with the biomolecules and the functionalized electrode surface[101]. The 

sensitivity of biomarkers can be enhanced by macromolecular crowding in the nanopores which 

influences the conformal stability of the protein, enhances the folding process, accelerates enzyme 

reaction kinetics, and prevents protein denaturation[102]. The specificity in detecting the target 

biomarker is achieved by excluded-volume effect wherein inert macromolecules crowd the 

nanopore and reduce the randomness in motion of the target biomolecules[38]. The decrease in the 

entropy of a crowded solution increases the thermodynamic activity of the solution resulting from 

the volume exclusion effect thus allowing specific probe-target analyte interactions[103]. Aside 

from the biocompatibility provided by the polyamide required for integration in flexible devices, 

another important aspect of using porous substrates is its capability to capture ultralow sweat 

volumes, drive the passively produced local sweat from the epidermis to the functionalized 

electrode interface, and provide the user with instantaneous feedback. Experimental studies and 

simulation done previously by the group have shown that passive eccrine sweat is transported 
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rapidly through the entire cross-section of the polyamide substrate steadily within 30seconds in a 

radial profile through capillary action[104].  

Zinc oxide nanostructures have been explored heavily in recent times for biosensing 

applications (glucose, H2O2, cholesterol) because they offer advantages such as faster response 

time and sensitivity of detection. The nanotextured surface of ZnO provides greater surface area 

of probe-target biomarker interaction, biocompatibility, structural and chemical stability, fast 

electron kinetics, and strong adsorption ability due to its high isoelectric point[105]. The direct 

charge tunnelling between the ZnO nanostructures, and the active site of the enzyme reduces the 

need to use a redox mediator[106]. The ZnO surface is positively charged at physiological pH 

allowing for immobilization of negatively charged proteins to be adsorbed on its surface by 

electrostatic forces of attraction 28. The electronic properties of ZnO allow for sensitive detection 

of biomarkers in small volumes with a wider dynamic range of detection while tailoring the polar 

termination of ZnO surface enhances the selectivity of the biosensor. The zinc and oxygen 

terminations of the ZnO nanostructures have been demonstrated to be efficient for the 

functionalization of antibodies and enzymes through dithiobis succinimidyl propionate (DSP) 

linker chemistry[107]. This work demonstrates the operation of biosensor with the capability of 

providing an on-demand measurement to the user for monitoring elevated lactate levels. Highly 

sensitive and specific lactate detection is accomplished by capitalizing on the interaction between 

the low volumes of passive sweat entrapped in the pores of the substrate and the nanotextured 

hybrid Au/ZnO electrodes aiding in signal amplification for ultra-sensitive lactate detection.  
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4.3 Results and Discussions 

4.3.1 Enzymatic assay functionalization and structural characterization of the 

biosensing substrate 

Lactate detection in eccrine sweat is achieved by the catalytic oxidation of L-lactate into pyruvic 

acid and H2O2 through lactate oxide (LOx) embedded within the nanopores and immobilized on 

the nanostructured ZnO active sensing region by a crosslinker as shown in Figure 4.1A. The 

production of H2O2 contributes to the impedance changes which are monitored by electrochemical 

impedance spectroscopy. The fluid wicking profile of the nanoporous substrate on contact with 

3µL of passive sweat is shown in Figure 4.1B. The sweat is introduced into the pores through the 

face opposite to the sensing region and is transported through the pores to interact with enzyme. 

The mechanism guiding the fluid transport is a function of pore diameter, thickness, contact angle, 

packing density and pore arrangement which drives the transport of sweat across the membrane 

and influences the biosensor metrics. The SEM image in the inset provides evidence of the 

intercalated pore structure that aids in navigation of the passive sweat expressed from the 

epidermis to the detection region by lateral diffusion.  
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Figure 4.1.(A) Enzymatic assay chemistry immobilized on the ZnO active sensing region for the 

detection of L-lactate. Created using BioRender.com (B) Fluid wicking profile of the nanoporous 

polyamide substrate. Inset shows the SEM image of the substrate 

4.3.2 Surface characterization for confirmation of enzymatic assay functionalization on 

lactate biosensing platform  

Attenuated total reflectance (ATR) spectroscopy provides a detailed insight of the protein 

interactions occurring at the electrode-electrolyte interface. The interactions between the various 

layers of the enzymatic assay chemistry are characterized by a unique spectral fingerprint which 

is associated with the appearance or shift in certain absorption peaks. The ATR-FTIR spectra for 

nanostructured ZnO surface modified with DSP and DSP-LOx chemistry within the spectral range 

600-4000cm-1 is shown in Figures 4.2A and 4.2B respectively. The peak related to ZnO 

nanotextured surface appears at 587 cm-1 and is shown in supplementary figure S1b. DSP linker 

is an amine-reactive crosslinker consisting of NHS-ester groups at the ends of its spacer arm and 
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a cleavable disulfide bond. The peaks appearing at 670 cm-1 and 705cm-1 represents the vibrations 

of CH2 bond that form the backbone of DSP. The peaks at 1022 cm-1 and 1315 cm-1 are assigned 

to the stretching vibrations of the ester linkage and symmetric C-N-C stretch of NHS present in 

DSP respectively. Other significant identifier groups present in DSP appear at 1674cm-1 

representing the asymmetric carbonyl stretch of NHS ester group. The absorption bands at 

1407cm-1 and 1438cm-1 are characteristics of vibrations of the methylene scissors present in DSP. 

The bending vibrations of alkane stretch (C-H) is indicated by the two peaks at 2915 cm-1 and 

3000 cm-1. The DSP linker binds to the enzyme at the NHS end by breaking the C=O bond to form 

a stable amide bond and releasing the succinimidyl group. This process is indicated by appearance 

of peaks at 1020cm-1 (C-N stretch) and 1200 cm-1(C-C stretch) associated with aminolysis of NHS 

groups in DSP with primary amines in enzyme. The peak at 1044 cm-1 indicates the C-O vibrations 

in LOx. The peaks at 1633cm-1 and 1538 cm-1 indicates the presence of amide I and amide II bonds 

of LOx. The amide I band appears from the C-O stretching of the peptide linkage present in the 

backbone of the protein. The amide II band appears due to the combined stretching of N-H and C-

N bonds of the peptide group. 
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Figure 4.2. (A) ATR-FTIR spectra for ZnO- linker (DSP) binding (B) ZnO- linker (DSP)- enzyme 

(LOx) binding.  

Another surface analysis technique called X-ray photoelectron spectroscopy (XPS) is utilized to 

get an in-depth understanding of the elemental composition of the interface being probed. XPS 

analysis was performed to ensure the binding of the thiol crosslinker to the sensing element. 

Figures 4.3A, 4.3B, and 4.3C show the XPS spectrum of bare ZnO and DSP modified ZnO surface 

for Zn2p3/2, O1s, and N1s peaks respectively. The Zn 2p3/2 peak for bare ZnO appears at 

1021.4eV; it shifts to 1021.8eV for the DSP modified ZnO surface indicating the formation of Zn-

S bonds. The O1s peak for bare ZnO observed at 530.8 eV shifts to 531.4 eV and can be attributed 
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to the C=O group of the NHS terminus. The peak at appearing at 533.4 eV indicates the presence 

C-O in the NHS terminus of DSP. The N1s peak appears at a binding energy of 400.4eV after 

modifying the ZnO surface with DSP which is a signature of the nitrogen species present in the 

NHS ester. 

 

Figure 4.3.XPS spectra for bare ZnO and linker (DSP) modified ZnO surface for (A) Zn 2p3/2 

peak (B) O1s peak (C) N1s peak 
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4.3.3 Zeta potential analysis for investigation of enzymatic assay stability in varying 

sweat pH buffers 

Zeta potential quantifies the effective electric charge present on the surface of a particle. We utilize 

zeta potential measurements to characterize the electrical double layer formed at the sensing 

element – sweat interface and the modulations arising at the interface from LOx-lactate interaction. 

The surface charge states of a particle suspended in a solution is highly dependent on factors such 

as varying pH, ionic strength, and temperature. Zeta potential of bare ZnO nanoparticles and DSP- 

LOx functionalized ZnO nanoparticles in contact with sweat of pH 6 and pH 8 is shown in Figure 

4.4A. The zeta potentials of bare ZnO nanoparticles in sweat pH 6 and pH 8 are 6.9±0.4mV and 

2.55±0.5mV respectively. Higher potential is observed for ZnO particles suspended in sweat pH 6 

than pH 8 due to excess H+ ions of the sweat buffer surrounding the ZnO nanoparticles. After 

DSP-LOx functionalization, the zeta potentials in sweat pH 6 and pH 8 alters to -13.68±0.6mV 

and -13.45±0.3mV respectively. The zeta potentials of DSP-LOx modified ZnO nanoparticles in 

varying pH sweat buffers change to negative potentials from positive potentials of bare ZnO 

nanoparticles. At pH 6 and 8, the positive surface charge of ZnO nanoparticles favors electrostatic 

coupling of the negatively charged enzymes to its surface[108]. Figure 4.4B shows the zeta 

potential response of the enzyme functionalized ZnO nanoparticles to increasing lactate dose 

concentrations in sweat buffer pH’s 6 and 8. The zeta potential of zero doses for sweat pH 6 and 

8 were -13.46±0.45mV and -13.44±0.6mV respectively. For 1mM lactate concentration, the zeta 

potentials for sweat pH’s 6 and 8 are observed to be -13.11±0.52mV and -13.2±0.45mV 

respectively. At 100mM lactate concentration, the zeta potentials for sweat pH’s 6 and 8 increase 

to -12.41±0.52mV and -12.39±0.12mV respectively. 
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Figure 4.4. (A) Zeta potential for bare ZnO and linker (DSP)-enzyme (LOx) modified ZnO 

nanoparticles in synthetic sweat pH’s 6 and 8 (B) Zeta potential response of the enzyme 

functionalized ZnO nanoparticles to increasing lactate dose concentrations in synthetic sweat pH’s 

6 and 8 

4.3.4 Electrochemical characterization of the lactate biosensing platform for analytical 

performance evaluation in synthetic and human sweat 

Electrochemical impedance spectroscopy has increasingly gained interest in characterizing 

protein-protein interactions in complex biological matrices. EIS yields several advantages such as 

high sensitivity, non-destructive sensing, quantification of the signal registered due to protein 

interactions from the background noise produced by the complex biological medium, and the 

capability to discriminate between interfacial and bulk processes[109]. Herein, the impedance 

spectrum is recorded within a narrow frequency range by applying a small AC perturbation signal 

and then measuring the AC current produced by the electrochemical changes occurring from the 
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immobilized biorecognition element – target analyte interactions. The data extracted from EIS 

analysis can be mapped to distinct frequency regimes consisting of solution resistance (Rs), 

resistance to charge transfer between the electrode surface and the solution (Rct), resistance to 

diffusion of species to and from the bulk solution (Zw), and the double layer capacitance (Cdl). The 

numerical values of these individual frequency dependent impedance parameters can be extracted 

by fitting the EIS spectrum to the Randle’s equivalent circuit [see supplementary figure S2 of 

[95]]. We have used the non-faradaic mode of EIS for reporting the LOx enzyme-lactate 

interactions wherein the ionic charges are confined to the electrode and no true charge transfer is 

observed at the electrode-electrolyte interface making the system more capacitive in nature[110]. 

The formation of an electrical double layer at the electrode-electrolyte interface is the origin of 

capacitance in the system. Adsorption of the biorecognition element and its interactions with the 

target analyte induces a change in the dielectric properties at the electrode-electrolyte interface by 

displacing water and hydrated ions from the near vicinity, or from the change in protein structure 

conformation which are detected through capacitance probing. The total double layer capacitance 

of the system is generated from the capacitances contributed by the semiconducting film, the 

biorecognition element film, and the target analyte-biorecognition element interactions. 

 Although, human subject testing is considered ideal validation for performance testing of 

the lactate detection platform, constraints such as variation in sweating mechanism, sweat 

collection times and regions in the same subjects can affect the repeatability in measurements 

during system development and characterization phase of the platform. Hence, synthetic sweat is 

utilized to standardize the sensing protocol and expedite the development of the platform. We have 

calibrated the performance of the lactate detection platform for increasing lactate concentrations 
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0.1mM to 100 mM in synthetic sweat pH 6 and 8 to understand the effect of sweat pH variance on 

the lactate biosensing. The impedance response is represented as the change in impedance at a 

given concentration from the baseline impedance at zero dose (sweat devoid of lactate). The 

percentage change in impedance for increasing lactate dose concentration spiked in sweat is 

represented by the equation: 

% change in impedance =  100 × (
 Baseline impedance− Dose impedance

Baseline impedance
) 

The signal detection frequency was chosen to be 10Hz as maximum signal to noise response was 

obtained within the 1Hz to 100Hz regime with stable noise variation. The percentage change in 

impedance for lactate spiked in synthetic sweat pH 6 (SS6) from 0.1mM to 100mM varied from 

4.5±2.2% to 37.6±3.3% as shown in Figure 4.5A. The specific signal threshold (SST) calculated 

using an SNR of 3 was computed to be 9.5%. Limit of detection of lactate in synthetic sweat pH 6 

was found to be 1mM with an R2 of 0.98. The percentage change in impedance for lactate spiked 

in synthetic sweat pH 8 from 0.1mM to 100 mM varied from 4.8±4.5% to 35.1±1.8% as shown in 

Figure 5B. The limit of detection was found to be 1mM as the percentage impedance change 

recorded from 0.1 mM lactate in synthetic sweat pH 8 falls under the 8.6% signal threshold level. 

The coefficient of determination R2 was found to be 0.97. The dynamic range for lactate detection 

in synthetic sweat pH 6 and 8 was found to be 1mM to 100 mM. The overall percentage change in 

impedance for lactate dose concentrations in synthetic sweat pH 6 and 8 varies between ±1-4%. 

The Nyquist plots for target lactate dose concentration range 0.1mM to 100 mM spiked in synthetic 

sweat pH 6 and 8 are shown in supplementary figures S3a and S3b of [95] respectively. The 

imaginary impedance increases concomitantly with increasing lactate concentrations resulting 

from the charge storage capacitive properties of the double layer. These modulations arise from 
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the permittivity changes within the double layer which quantifies the LOx enzyme-lactate 

interactions at the electrode-sweat electrolyte interface and can be validated from the extracted 

capacitance values obtained from fitting the experimental Nyquist plot to the Randle’s circuit as 

shown in Figure 4.5D. The double layer capacitance values demonstrate a dose dependent increase 

in response with increasing lactate concentrations. For 0.1mM to 100mM lactate dose 

concentrations, the Cdl values vary from 0.5µF to 0.96µF for synthetic sweat pH 6 and 0.44µF to 

1.2µF for synthetic sweat pH 8. Figure 4.5C shows the calibration dose response curve for the 

detection of lactate in human sweat. The variation in percentage change in impedance from 0.1 

mM to 100mM lactate concentration was found to be 0.4±0.28% to 27±2.2%. The sensitivity of 

the biosensor is calculated to be 8.3±0.92%/mM. The selectivity of the immobilized LOx enzyme 

in specifically detecting lactate molecules specifically in a complex human bodily fluid was 

established through cross-reactivity studies. The cross-reactive study was performed with cortisol 

as the detection molecule on the lactate biosensing platform. The percentage change in impedance 

obtained from the cross-reactive interactions of cortisol with the LOx enzyme was found to be 

1.1±3.6% to 6.8±3.4% from 0.1mM to 100mM cortisol concentrations. The impedance responses 

obtained from 0.1mM lactate and cortisol overlap while the responses obtained from non-specific 

cortisol concentrations from 1mM to 100mM lie below the responses obtained from specific lactate 

interactions giving a confirmation that the developed enzymatic assay is specific to the target 

analyte lactate. The signal threshold was calculated to be 4.3% and smallest detectable lactate 

concentration (LOD) was found to be 1mM making the biosensor capable of detecting lactate 

within the established physiologically relevant range of 4mM to 80 mM in human sweat[111]. The 

Nyquist plot for increasing lactate dose concentrations in human sweat is shown in supplementary 
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figure S3c of [95]. The extraction of double layer capacitance varies from 0.38µF to 0.46µF for 

0.1mM to 100mM lactate dose concentrations as shown in Figure 4.5D. The variations in charge 

transfer resistance resulting from the increased lactate binding in synthetic sweat of varying pH’s 

and human sweat is shown in supplementary figure S3d of [95]. The performance calibration 

outcomes of the lactate biosensing platform demonstrate reliable and specific detection of lactate 

within the physiologically relevant range present in human sweat primarily originating from the 

permittivity changes within the double layer. The enhanced sensitivity of detection can be credited 

to the nanoporosity of the flexible membrane used for detection which influences transport 

kinetics, reduces diffusion time, and provides high surface area to volume. The macromolecular 

confinement stabilizes protein, retains protein conformation, and enhances protein-bioreceptor 

interactions. Selectivity is achieved by leveraging the size-based exclusion feature of the 

membrane that rejects interfering lipid and ions present in human sweat allowing for small 

molecule detection[112]. 
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Figure 4.5.Calibration dose response of lactate in (A) synthetic sweat pH 6 (B) synthetic sweat pH 

8 (C) human sweat (D) Extracted double layer capacitances for 0.1mM – 100mM lactate 

concentrations in synthetic sweat pH 6,8, and human sweat 

4.3.5 Sensor stability and continuous lactate monitoring 

Majority of the biosensing platforms suffer from instability as the immobilized proteins or enzyme 

are liable to undergo alterations under inappropriate storage conditions further affecting the 

biosensor’s sensitivity. The evaluation of the biosensor’s stability is crucial for the assessment its 
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of performance metric particularly in the use of single-use, disposable sensors. The stability metric 

gauges the retainment of the biosensor’s activity when stored under specific conditions to avoid 

performance degradation[113]. The biosensor strips were immobilized with LOx enzyme at room 

temperature and the performance of the lactate biosensor stored at 4°C until use was measured 

over 4 days as shown in Figure 4.6A. Each day a new biosensor strip was taken out from 4°C to 

measure the impedance response of varying lactate concentrations spiked in human sweat. The 

mean % impedance changes produced over 4 days for 1, 10, 100mM lactate were found to be 

11.9±0.96, 18.4±2.05, 27.0±2.0 respectively. The lactate biosensor’s performance diminishes by 

~30% over the 4-day period while the % coefficient of variation in this duration was computed to 

be well within 20% variation limit as set by CLSI standards indicating stable sensor operation. 

  It is imperative to understand the long-term sensing performance of the biosensing 

platform making it essential to establish the passive sweat patterns in average people during 

sedentary phases. The average passive sweating rate of one consenting sedentary subject were 

recorded using a commercial sweat rate sensor (VapoMeter, Delfin Technologies, Ltd.) over a 60-

minute duration. The average passive sweat rate in the sedentary phase was recorded to be 19.7± 

3.2g/m2h as shown in the inset of Figure 4.6B. The passive sweat volumes calculated from the 

sweat rates of the three subjects are calculated to be 0.03 – 0.05µL/cm2min. Considering a sweat 

gland density of ~200/cm2 present on the forearm, the passive sweat volume rates can be translated 

into 3-6µL sweat volume which is adequate for on-demand, single- use biosensing. The response 

of the platform to continuous benchtop dosing of lactate spiked in human sweat to mimic the 

continuous mode of passive sweat based-lactate detection in real-time is shown in Figure 4.6B. 

The biosensor was dosed with 3 µL lactate concentrations in the range 20mM to 80mM in a 5- 
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minute loading interval with an incremental percentage change in impedance observed for every 

dose loading step. The output percentage impedance increases from 5-22%, 32- 45%, 47-49% for 

20,40, 60mM lactate loading respectively. At 80mM, the sensor begins to reach an inflection point 

at 56% owing to excess lactate ions causing charge screening. The developed lactate biosensing 

platform is responsive to accumulative lactate concentrations up to 80mM in passive human sweat 

over a 45-minute duration before the sensor begins to show signs of saturation. 

 

Figure 4.6 (A) Stability performance of the lactate biosensing platform over a 4-day duration. 

Dashed line at 20% represents the acceptable variation limit as set by CLSI standards (B) 

Continuous detection of lactate in passively expressed human sweat. Inset shows the passive sweat 

evaporation pattern in an average person during a sedentary phase. 
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4.3.6 Human subject on-demand evaluation of lactate biosensing platform  

The translation of the lactate biosensing platform from a benchtop environment to its utility as an 

on-demand platform for sedentary lifestyle can be studied by characterizing its performance when 

placed in close proximity to the human epidermis such that there is direct interaction with the sweat 

biomarker of interest. The underlying idea is to capture the temporal dynamics of sedentary 

lifestyle in its entirety from inactive state to less active state yet producing passive sweat. The 

electrochemical performance of the developed lactate biosensor was evaluated to estimate the 

lactate levels from three consenting human subjects recruited as per IRB compliant protocols. 

Eccrine sweat glands play an important role in thermoregulating the temperature of the body when 

sweat is produced in response to activity. The eccrine gland density present on the forearm region 

is 225±25 glands/cm2 and is chosen to be an ideal location for placing the sensor[114]. The lactate 

levels were extracted after a 60-minute duration of being sedentary or a lightly intense active phase 

by correlating the obtained impedances to the impedance ranges obtained from the constructed 

calibration dose response curves (see materials section for detailed protocol). Signals generated 

from the interaction of the lactate produced in human eccrine sweat with the LOx enzymatic assay 

are authenticated by simultaneously testing for lactate on a control sensor without any LOx 

functionalized on it. Figure 4.7A shows the impedance values extracted from the human subjects 

before and after activity on the LOx functionalized and control sensors respectively. The 

impedance response generated before and after activity from the catalytic interaction of the lactate 

produced in human sweat with the LOx enzyme lie within ranges 28.5-29.5KΩ and 26.9-27.4KΩ 

respectively while the impedance ranges produced by the control sensor before and after activity  

are found to be 44-193KΩ and 23-41KΩ. Additionally, the transition in the phase response from 



 

91 

a resistive phase angle prior to activity to a capacitive phase angle post activity confirms our claim 

of double layer capacitance modulation occurring on enzymatic catalysis of lactate [see 

supplementary figures S4a, 4b, and 4c of [95]]. A significant difference is found in impedance 

levels registered by the lactate sensor pre and post activity with a p-value of 0.017 (assuming 

p<0.05). The decrease in the impedance after the catalytic interaction of the lactate with the LOx 

enzyme corroborates with our observations made in human sweat calibration studies. The 

percentage changes corresponding to the extracted sweat lactate levels produced by the lactate 

sensor lie within the 10-18% range. As shown in Figure 4.7B, the sweat lactate levels extracted 

from the percentage impedance changes observed on LOx functionalized sensors for subjects 1, 2, 

and 3 were found to be 4.87 mM, 9.07 mM, and 21.2 mM respectively validating the catalysis of 

sweat lactate by the immobilized LOx on the sensor surface. The responses generated by the 

enzymatic and non-enzymatic control sensors indicate that the biosensing platform is selective to 

detecting only lactate present in sweat over other sweat constituents. Table 4.1 provides the 

detailed summary about the activity of the human subjects and the ranges of their vital parameters. 

Factors that affect the sweat lactate production in human subjects depend on the sweat rates, 

intensity of the exercise, lactate excretion, and the heart rate[115].  
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Figure 4.7.(A) Extracted impedance values from human subjects before and after activity on LOx 

functionalized and control sensors (B) Sweat lactate levels of human subjects extracted after 

activity on LOx functionalized sensors 

Table 4.1. Summary of the activity of the human subjects and the ranges of their vital parameters 

Subject 1  Sedentary 
Subject 2 Sedentary 
Subject 3 Light activity 
Heart rate 110-120bpm 

Temperature 36-37.5°C 
spO2 95-100% 

Blood pressure 120/80-135/80 
 

4.4 Experimental section 

4.4.1 Materials and reagents 

Polyamide substrates of pore size 200nm and thickness 60µm were obtained from GE Healthcare 

Life Sciences (Piscataway, NJ, USA). The linker molecule dithiobis succinimidyl propionate 
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(DSP), dimethyl sulfoxide (DMSO), and 1X phosphate buffered saline (PBS) were purchased from 

Thermo Fisher Scientific Inc. (Waltham, MA, USA). Sodium L-lactate (~98% purity) and ZnO 

nanopowder (<100nm) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Lactate oxidase 

(80U/mg) was purchased from Toyobo USA. α-cortisol antibody and hydrocortisone were 

purchased from Abcam (Cambridge, MA, USA). Synthetic sweat was prepared from the recipe 

described in M.T. Mathew et. al[56]. The pH range was adjusted by varying the concentrations of 

lactic acid and ammonia. Single donor human sweat of pH ~6 was purchased from Lee 

Biosolutions Inc. (Maryland Heights, MO, USA). No preservatives were added to this product, 

and it was stored at -20°C. All lactate dilutions were made in synthetic sweat pH 6, 8, and in human 

sweat. 

4.4.2 Sensor fabrication 

The fabrication process of the lactate biosensor involves thin film deposition of 150nm thick gold 

interdigitated electrodes on a flexible nanoporous polyamide membrane using a Temescal e-beam 

evaporator tool (Ferro Tec, Livermore, CA, USA). Further, a 100nm thick semi-conducting ZnO 

thin film was sputtered onto the overlap region between the interdigitated gold electrodes using 

AJA Orion RF magnetron with a 99.999% ZnO target (Kurt J. Lesker, Pittsburgh, PA, USA).  

 

4.4.3 Lactate biosensor calibration 

3-5µL volume of 10 mM DSP linker was diluted in DMSO and incubated on the sensor surface 

for 3 hours. All solutions are dispensed from the backside of the sensor. 3-5µL PBS wash was 

carried out to remove any unbound linker. The linker functionalized surface was treated with 
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4mg/mL of lactate oxidase and incubated for 90 minutes. Lactate-free synthetic sweat was applied 

to the sensing region to obtain baseline impedance measurement. Further, lactate dilutions of 

concentrations – 0.1, 1, 10, 50, 100mM were made in synthetic and human sweat buffers. The 

lactate doses were incubated on the sensor surface for 5 minutes to allow for catalysis reaction to 

occur. The lactate doses were applied serially from low to high concentrations to construct the 

calibration response curve. The cross-reactivity study was performed in a similar manner with 

cortisol dose concentrations- 0.1, 1, 10, 50, 100mM made in human sweat buffer being introduced 

serially on the sensing surface. EIS measurements were recorded using a potentiostat (Gamry 

Instruments, Warminster, PA, USA) after the application of a 10mV AC excitation signal with a 

frequency sweep of 1Hz to 1MHz. All measurements were carried out in under ambient 

temperature conditions. All data is represented as mean± relative standard deviation (RSD). A 

sample set of N= 3 was used throughout this research for building CDRs in synthetic and human 

sweat buffers.  

 The stability study was performed by immobilizing the lactate oxidase enzyme on four 

sensors and storing it in 4°C until usage. Each day a new sensor was tested by serially applying 1, 

10, 100mM lactate doses made in human sweat and EIS measurements were recorded at 10Hz.  

The continuous dosing study was performed by dispersing 20, 40, 60, 80mM lactate doses made 

in human sweat on the sensor successively. Each lactate dose concentration was added twice at the 

rate of 3µL every 5 minutes over a total duration of 45 minutes. Single frequency EIS response 

was recorded at 10Hz. 
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4.4.4 ATR-IR spectroscopy 

The infrared spectra collected to establish the successful functionalization of the lactate detection 

enzymatic assay was captured using Thermo Scientific Nicolet iS-150 FTIR (Waltham, MA, USA) 

in Attenuated Total Reflectance (ATR) mode. The tool consists of a KBr window and deuterated 

triglycine sulphate (DTGS) detector. A Harrick VariGATR sampling stage with a 65° germanium 

crystal was used to obtain the spectra. The spectra were collected with a resolution of 4 cm-1 for 

256 scans in a wavelength range of 4000 cm-1 to 600 cm-1. The ATR-IR samples were prepared on 

ZnO deposited polyamide membrane by functionalizing the lactate detection enzymatic assay.  

4.4.5 X-Ray Photoelectron Spectroscopy  

XPS spectra was obtained by using a PHI 5000 Versa Probe II (ULVAC-PHI, Inc., Methuen, MA, 

USA) with a monochromatic Al Kα radiation (hν = 1486.6 eV) at a 45° takeoff angle with respect 

to the sample surface. All spectra were obtained with a 0.2 eV step size and 23.50 eV pass energy. 

The base pressure in the analysis was maintained at 1.6 × 10−8 Torr. Sample preparation was 

carried out on a silicon wafer by functionalizing the lactate detection enzymatic assay. Further, the 

prepared samples were dried in a vacuum chamber. All binding energies were corrected for the 

charge shift using the C1 s peak of graphitic carbon (BE = 284.8 eV) as a reference. 

4.4.6 Zeta potential study 

Zeta potential measurements were carried out in synthetic sweat pH 6 and 8 to validate the 

enzymatic assay functionalization on the ZnO sensing surface by using Malvern ZetaSizer Nano 

ZS (Malvern Panalytical, Malvern, UK). The zeta potential was calculated from the measured 

electrophoretic mobility using the Smoluchowski approximation: 
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𝜇𝜇 = (𝜀𝜀. 𝜁𝜁)/𝜂𝜂 

where μ is electrophoretic mobility; ε is the dielectric constant; ζ is the zeta potential; and η is the 

viscosity of solution. Initially, the zeta potential of the zinc oxide nanoparticles suspended in 

synthetic sweat pH 6 and 8 were measured. Further, 10µL of ZnO nanoparticles, 10µL of DSP 

made in DMSO, and 10µL of lactate oxidase enzyme was incubated for three hours at room 

temperature followed by the addition of 970 µL of synthetic sweat pH 6 and 8. All measurements 

were performed in triplicate measures. The zeta potentials for lactate concentrations- 0, 1, 10, 100 

mM made in synthetic sweat pH 6 and 8 were recorded to ensure the functionality of the enzymatic 

assay immobilized on the ZnO surface. 

4.4.7 Vapometer sweat rate measurements 

One healthy volunteer (age: 20-30 years) was recruited for sweat rate measurement study using an 

FDA approved commercial device VapoMeter (Delfin Technologies, Ltd., Kuopio, Finland) that 

measures transepidermal water loss and sweat evaporation rate. The subject was asked to wear a 

trimmer band on the forearm at the site of sweat rate measurement to induce passive sweat. 

Measurements was carried out every 2 minutes for 60 minutes. Written and informed consent was 

obtained from the subject prior to the study. All trials were conducted with strict compliance to 

the IRB protocol (#19-23) approved by the Institutional review board of University of Texas at 

Dallas 

4.4.8 Human subjects testing 

Three healthy volunteers (age: 20- 30 years) were recruited for this study. Written and informed 

consent was obtained from the subjects prior to the study. All trials were conducted with strict 
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compliance to the IRB protocol (#18-116) approved by the Institutional review board of University 

of Texas at Dallas. The study conducted involves less than minimal risk. The recruited volunteers 

had no history or existing heart condition, diabetes, or muscular pain. The site of sensor placement 

on the forearm was cleaned with alcohol wipes prior to securing the control and the LOx 

functionalized sensors with a medical grade adhesive. The volunteers were asked to wear a trimmer 

belt on their arm to induce sweating for the 60-minute duration of being sedentary or during the 

light activity phase. The impedance baselines of the control and LOx functionalized sensors were 

measured prior to human subject trials. After the 60-minute duration, the sweat lactate levels were 

extracted by connecting the sensor to the Gamry for impedance measurements. The instantaneous 

lactate levels were extracted by measuring the percentage change in impedance before and 

immediately after 60 minutes. The sensors were carefully unmounted from the forearm of the 

volunteers and the impedance data was recorded using a potentiostat (Gamry Instruments, 

Warminster, PA, USA) at 10Hz frequency.  

4.5 Conclusions 

The timely recognition of diseases by means of non-invasive fluids such as eccrine sweat would 

be critical in providing rapid treatment and improving the survival rates for patients that further 

develop complications. Design and development of on-demand, point-of-use sensing platforms 

will aid in measurement of biomarker levels for better care of sedentary population. Lactate 

detection has grown out of the stage of infancy to become a molecule of interest in health and 

disease monitoring. Emergent flexible sensing technologies have shifted their focus from fitness 

tracking towards real-time physiological biomarkers in non-invasive bodily fluids for disease 

detection. Aside from being a workhorse biomarker for endurance testing in the sports arena, 
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increased lactate production is indicative of clinical conditions caused by restricted oxygen supply. 

The key highlight of this work is the epidermal functionality and performance of a sweat lactate 

sensor on a surface engineered nanoporous platform with low volume detection capability for on-

demand measurements. Semiconducting properties of nanotextured zinc oxide films have been 

leveraged for the sensitive detection of lactate in a complex human sweat buffer through non-

faradaic EIS technique. EIS gives a microscopic understanding of the enzyme-target analyte 

interaction dynamics characterized by the charge perturbations occurring in the double layer. The 

lactate biosensor exhibited an LOD of 1 mM and a dynamic detection range of 1-100 mM in human 

sweat. A highly specific response to lactate was observed with minimal cross-reactivity from non-

specific molecules present in human sweat. Stability and continuous dosing studies indicate the 

robustness and the long-term capability of the biosensing platform in detecting lactate in human 

sweat. The on-demand feature of the biosensing platform provided a rapid quantification of sweat 

based-lactate levels when placed on human subjects. ATR-FTIR and XPS analysis gives a 

confirmation on the enzymatic assay immobilization on the ZnO sensing surface. The modification 

in surface charge at the electrode-electrolyte interface as a consequence of enzymatic assay binding 

and synergistic interactions between enzyme-lactate is characterized by the zeta potential.  
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CHAPTER 5   

POINT-OF-USE SWEAT BIOSENSOR TO TRACK THE ENDOCRINE-

INFLAMMATION RELATIONSHIP FOR CHRONIC DISEASE MONITORING 

5.1 Abstract 

When the body is under stress, a lot of physiological processes work towards bringing the body 

back to its normal state. The Hypothalamic-Pituitary-Adrenal (HPA) axis is involved in 

maintaining homeostasis by engaging with the parasympathetic nervous system. During the 

process of chronic disease affliction, this relationship is disturbed and there is an imbalance driven 

response observed. Cortisol, a stress hormone and TNF-α, a protein related to inflammation, are 

direct products of these physiological processes. By monitoring the two key components involved 

in these pathways, cortisol and TNF-α, the manifestations of chronic stress on the homeostasis of 

the body can be evaluated in a comprehensive manner. The goal of this work is the demonstration 

of a biosensor that is capable of tracking these molecules in human sweat. This work highlights 

the development of an electrochemical detection system for the two biomarkers through human 

sweat. The limit of detection and dynamic ranges are 1ng/mL, 1ng/mL to 200ng/mL for cortisol 

and 1pg/mL, 1pg/mL to 1000pg/mL for TNF-α. The significance lies in simplifying disease 

diagnostics, i.e., to detect and monitor diseases. This system is designed to be a wearable that will 

track the levels of cortisol and TNF-α and use it as an indicator of the user’s health status. 

5.2 Introduction 

Understanding the relationship between the endocrinal pathway for stress regulation and the 

inflammation pathway is key to understanding the physiological effects and the extent of damage 
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inflicted during periods of exposure to stress. The HPA axis is a prime component of the endocrinal 

system to prepare the body to react to a stressful episode. The response to stressful stimuli is non-

voluntary and is aimed at bringing the body back into homeostasis via a process known as 

allostasis. A detailed summary of the response to stress is illustrated in Figure 5.1A. The signal 

originates in the hypothalamus, specifically in the hypothalamic paraventricular nucleus. The 

neurons in response to this produce Corticotropin releasing hormone. Corticotropin releasing 

hormone production signals the pituitary gland to release Adrenocorticotropic hormone into the 

blood stream. Once in the blood stream, as the name of the hormone suggests, it activates the 

receptors present in adrenal gland – specifically in the adrenal cortex. This houses cells that are 

capable of steroidogenesis and with the adrenocorticotropic hormone-mediated activation, start 

producing Glucocorticoids, like cortisol. Cortisol is an anti-inflammatory corticosteroid, which is 

responsible for performing allostasis by activating various pathways responsible for a decreased 

inflammatory response in the target organs. One of the pathways functions by reducing the 

adaptive immunity effector cells i.e., T-cells, by apoptosis and the other pathway performs 

tightening of the tight junctions in endothelial cells to prevent transport of peripheral immune cells 

from entering the blood-brain barrier. However, the main response of cortisol mediated control of 

inflammation is through the glucocorticoid receptor (GR) controlled genomic immunosuppression, 

which reduces the production of pro-inflammatory cytokines like TNF-α[116], [117]. There is a 

presence of a negative feedback mechanism that is controlled by the affinity of corticosteroids to 

GRs. After sufficient production, the receptor is saturated and signals the HPA axis components 

to stop production of GC activating hormones. With the production of cortisol as a response to 

stress, the inflammation pathway is stimulated as demonstrated in Figure 5.1B. The glucocorticoid 
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receptor has a major role in the processes responsible for cell homeostasis. There are various modes 

of action by which the GC receptors operate. In this research, we focus on capturing the pathway 

that is responsible for controlling the production of TNF-α. Normally, GR is present in the 

cytoplasm; once activated with corticosteroid, the bound proteins dissociate, and it enters the 

nucleus. Figure 1 depicts a red cylinder, which is the HSP90 chaperone protein, and the two circles 

are the other accessory proteins involved with activation and transport of the GR from the 

cytoplasm to the nucleus. The GR regulates genomic expression by dimerizing to glucocorticoid 

response elements in the target genes and affecting the transcription/translation of the mRNA to 

produce cytokines. Due to this effect, the production of pro-inflammatory cytokines like TNF-α, 

IL-6, and IL-1β are decreased and the production of anti-inflammatory cytokines such as IL-10 

and TGFβ is increased[118], [119]. The interconnection of these two pathways is of diagnostic 

importance to many disorders. An impairment of these regulation pathways is highly associated 

with mortality. In case of patients suffering from Crohn’s disease, findings suggest that the 

inflammation pathway is disturbed and there is an overexpression of TNF-α. Similarly, in the case 

of IBD (irritable bowel disease) there is an imbalance in the sympathetic control of the adrenal 

gland activity. The triggers for generating severe symptoms in both these conditions were observed 

to affect the HPA axis functioning first, thus resulting in lower cortisol production[120]. A report 

also suggests that the elevation of pro-inflammatory cytokines and corticosteroid levels has 

negative effects on the cognitive functioning and hippocampal structure of older adults [121]. All 

these examples highlight the interconnectivity of the two pathways and the need to monitor the 

direct products from a chronic disease diagnostics and monitoring aspect. The effective solution 

for offering a convenient platform for self-monitoring is using sweat for biomarker quantification. 
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Human sweat based sensing platforms offer significant advantages over traditional and gold 

standard methods of detection. Physiologically, cortisol and TNF-α are expressed in sweat in the 

ranges of 8ng/mL to 141ng/mL and 9pg/mL to 362pg/mL respectively[122], [123]. There have 

been significant advances in the field of developing sweat-based cortisol sensors for investigation 

into the effects of stress on the body. TNF-α has been explored as a key to understanding the 

regulatory processes in the body upon the onset of inflammation. Table 5.1 describes the different 

biosensors developed for tracking TNF-α and cortisol in various biofluids, which are aimed 

towards eventually becoming wearable technology. TNF-α detection in sweat has not yet been 

extensively researched and is an upcoming area of interest amongst the researchers in the field of 

wearable diagnostics. However, in the past few years, researchers have looked at understanding 

the fluctuation of cortisol and TNF-α levels in blood/serum towards characterization of phenotypes 

of multiple diseases[124], [125]. The levels of cortisol have been known to correlate with the sweat 

levels with levels being independent of sweating rate[126]. Similarly for TNF-α, it has been 

reported that sweat biomarker levels closely mirror the blood/serum levels and can be easily 

detected using wearable patches[123]. By tuning the sensor to capture changes in the biomarker 

levels withing the physiologically relevant levels of cortisol and TNF-α, this platform offers a 

novel approach towards understanding the effect of circadian dysregulation on the inflammatory 

response of the body. This would also enable early detection of circadian dysregulation and 

understanding its connection with the etiology and pathophysiology of disorders.  
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Figure 5.1.(A) Figure depicting relationship between the Endocrinal HPA(Hypothalamic-

Pituitary-Adrenal) axis pathway and Inflammation pathway (TNF-α) (B) Schematic depicting 

diurnal cycling of cortisol over the period of 24 hours. Created using BioRender.com 
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Table 5.1.  Biosensor technologies for detection of TNF-α and cortisol 

Sensor description Biomarker 
and biofluid 

Type of detection Limit of 
Detection 

(LOD) 

Reference 

Polypyrrole based 
gold screen printed 
electrode (enzyme 

labelled) 

TNF-α, 
bovine calf 

serum 

Potentiometric 10pg/mL, 
compared 

with 
commercial 

ELISA 

[127] 

Gold interdigitated 
electrode capacitor 

arrays 

TNF-α, 
Phosphate 
Buffered 

Saline (PBS) 

Label free 
capacitance 

measurements 

32pg/mL [128] 

Affinity based gold 
electrode 

functionalized using 
carboxymethylaniline 

(CMA) 

TNF-α, 
artificial 

saliva, human 
saliva 

Chronoamperometry 1pg/mL [129] 

Stretchable and 
disposable 3D 
micropatterned 
elastomer-based 

electrode 

TNF-α, 
human serum 

Electrochemical 
(potentiometric and 

impedimetric) 

100fM [130] 

Label-free 
chronobiology 
tracking system 

Cortisol, 
sweat 

Impedimetric 1ng/mL [104] 

Molybdenum 
disulphide (MoS2) 
nanosheet based 
flexible electrode 

Cortisol, 
sweat 

Impedimetric 1ng/mL [131] 

 
Multiplexed biomarker detection has gained considerable visibility in point-of-use testing arena in 

the recent years, owing to its capability in enhancing the diagnostic detection process of an 

underlying condition with precision and efficiency through rapid on-site analysis of bodily 

fluids[132]. Multi-biomarker detection platforms provide an in-depth clinical understanding of the 

processes occurring within the body with a certainty that a condition is indeed present in an 

individual; single biomarker analysis may not prove to be effective in providing accurate diagnosis 
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[133], [134]. Multiplexed point-of-care testing, through its capabilities, has paved the way for 

home-based, personalized patient centric systems for the management of chronic and acute 

diseases in resource limited settings[135]. Conventional testing methods are tedious, constrained 

to laboratory and hospital setups, require trained personnel, and require prolonged analysis times 

[136]. Wearable technology is expected to show a global growth rate of 38% in the next decade 

and will continue to evolve with the advent of smart-watches, patches, clothing, and fitness 

trackers[3]. Real-time, continuous health monitoring is one important feature that is being explored 

in the research space of multiplexed biomarker detection to provide an account of an individual’s 

health status for the healthcare provider to administer accurate treatment and drug therapy. Herein, 

we describe a proof-of-concept multiplexed detection of stress biomarker cortisol and 

inflammatory cytokine TNF-α on flexible, body conforming substrate towards integration on a 

wearable platform. The choice of substrate is a key parameter to be considered while designing 

flexible biosensing platforms. The desired features of the selected substrate are bendability, 

foldability, stretchability, portability, skin-conformability, disposability, and being 

lightweight[137]. We have utilized a nanoporous polyamide membrane that allows for sweat 

wicking through its intercalations, sensitive detection due to enhanced charge storage through its 

nanoconfinement properties, and selective detection of target biomolecules from the biomolecular 

sieving properties[37].  

 In this work, we have demonstrated the functionality of biosensing platform in detecting 

dual biomarkers – cortisol and TNF-α in human sweat towards the development of a multiplexed 

point of use device. Additionally, the long-term temporal stability of the cortisol biosensor in 

detecting the simulated rise and fall in cortisol levels through the 6-hour sleep cycle has been 
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demonstrated. Furthermore, COMSOL Multiphysics simulation highlight the electrode design 

features and fluid wicking pattern of membrane for design optimization of the sweat based 

platform. The cross-reactivity performance demonstrates that the sensor is highly specific for the 

target biomarker. Thus, this novel platform shows the feasibility of tracking the endocrine-

inflammation relationship towards chronic disease diagnostics using sweat.  

5.3 Results and Discussions 

5.3.1 Sensor substrate characterization 

The focus of this work is to demonstrate the functionality of a novel, flexible sweat based sensing 

platform for quantifying the concentrations of biomarkers, cortisol and TNF-α. The substrate 

employed to make this platform is a nanoporous polyamide membrane. A two-electrode 

interdigitated system is chosen as the electrode design and fabricated using thin film gold 

deposition. The physical properties of the nanoporous membrane are highlighted in Table S1 of 

[138]. Nanoporous platforms offer significant advantages over porous materials. They increase the 

overall surface area of interaction between the target molecule and receptor i.e., capture probe. 

This work is based on an affinity sensing mechanism by using electrochemical detection modality. 

The gold electrode surface is treated to immobilize the detection probe i.e., the antibody, using a 

thiol linker chemistry. The analyte present in sweat is introduced on the sensor surface and it wicks 

through the membrane to interact with the bioactive components and generate a signal response. 

The advantage of having a nanoporous membrane is that it provides selective molecular 

confinement based on size and diffusion kinetics[139]. A schematic of this phenomenon is 

presented in Figure 5.2A. The schematic describes the process of detection of target biomarker in 
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a complex biofluid sample matrix, which in this case, is human sweat.  Sweat is a complex mixture 

of proteins, steroids, hormones, electrolytes, and other interferent molecules. The blue droplet of 

sweat is loaded on to the functionalized sensor surface, with the antibodies concentrated on the 

gold surface of the sensor. The sensor surface depicted as a grey matrix in the figure is a magnified 

cross-section of the sensing membrane. With the nanopore based filtration, there is enhancement 

in the selectivity of the sensor response. Also, this reduces the overall noise of the system and 

improves the selectivity and sensitivity. The principle of wicking in this nanoporous membrane is 

capillary imbibition. Two main factors contribute to it, one is the transport of biomolecules 

normally a function of permeability and retention factor of the membrane, and second is 

biomolecular confinement, which is associated with the pore packing structure of the membrane. 

The retention factor describes the affinity of the dye to the solid phase, which is the nanoporous 

polyamide membrane. Zone separation of a liquid solute during wicking through the nanoporous 

membrane highlights the ability of the membrane to filter the different components in the liquid 

phase. The red dye solution has approximately four components, thus the formation of three or 

more separation zones indicates that the chosen substrate is able to perform density dependent 

separation of the mixture. The formation of zones of separation highlighted in Figure S1 of [138] 

and shows the density-dependent filtration performed in the membrane. The biomolecular 

transport is a function of pore size, thickness, contact angle and pore diameter, whereas the 

confinement is driven by pore packing arrangement and density. Both of these factors are 

important measures while choosing a substrate to ensure maximum sweat wicking occurs during 

sample collection[104]. Permeability of the membrane drives the fluid transport across the 

membrane and influences biomolecule interaction. The goal is to leverage maximum lateral 
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transport towards enhancing of biosensing outcomes of a detection platform, namely, limit of 

detection (LOD), sensitivity and range of operation[82]. The permeability calculated for the 

polyamide membrane was approximately 0.04 cm2 per second and the fluid coverage was 

identified to be 0.16 mm2 per second. The wicking profiles have been generated using COMSOL 

Multiphysics simulations, which highlights the rapid lateral transport of polyamide membrane. 

These profiles have been used to further calculate the optimal rate and time for fluid loading. From 

these calculations, the optimal time for complete sensor area coverage will be 16 seconds. Rapid 

wicking facilitates fast sample collection especially using a passive sweat collection method. 

Herein, no external stimulation is required by the user to generate a sample. Eccrine sweat volumes 

between 3-5 nL per gland per minute are produced passively by the sweat glands. Thus by 

employing this hydrophilic, rapid wicking membrane, this system can perform detection using 

ultralow volumes i.e. 3 μL of human sweat[140]. All the conditions mentioned above are 

applicable to sweat based detection systems only if the surface is hydrophilic. This is because 

sweat is aqueous in nature. Contact angle studies illustrated in Figure 5.2B show the contact angles 

of de-ionized (D.I.) water and human sweat on the surface of the polyamide membrane. The 

contact angle was measured to be 20.23° for de-ionized water and 18.11° for human sweat. These 

studies were carried out at room temperature. Evaluation of contact angle, i.e. the angle measured 

between the tangents of a liquid-solid interface indicates the degree of wetting of the 

substrate[141].  A contact angle less than 90° indicates that the surface is hydrophilic. The acute 

angle results in this case confirm the hydrophilicity of the membrane, which also corresponds to 

high wettability. This is advantageous for developing wearable platforms as it facilitates rapid 

wicking of sweat throughout the membrane. Therefore, by employing this nanoporous membrane 
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in the platform development, the dynamic range is extended due to optimal filtration, better signal 

resolution is promoted, bulk solution effects are reduced, and higher sensitivity is observed. A 

picture of the sensing system, highlighting the flexibility aspect has been presented in Figure 5.2C.  

 

 

 Figure 5.2.(A) Schematic depicting the wicking of sweat with target biomarkers (cortisol and 

TNF-α) on the nanoporous membrane highlighting selective molecular confinement (B) Contact 

angle studies using DI water (top) and human sweat (bottom) on membrane (C) Sensor pictures to 

highlight flexibility of platform and sensor prototype with case (D) Open circuit potential for 

electrochemical stability. 
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5.3.2 Sensor stability 

The electrochemical stability of the sensor is determined using open circuit potential. This is used 

to evaluate the inherent baseline potential and the potential fluctuations in the bare, non-

functionalized electrode system[74]. The inherent potential can then be used to remove the offset 

created by the bare system during active measurement and determine the true binding responses 

from a normalized system. The potential of this system is averaged at 2.7 mV, which is stable and 

has very low susceptibility for corrosion as shown in Figure 5.2D. The sensor system does not 

show any sharp peaks or sudden rise and fall in the system. The study is performed by drop-casting 

phosphate buffered saline solution on the sensor surface. Following 600 seconds, the membrane 

starts drying, which is characterized by the increase in the potential seen in the graph. Overall, the 

system indicates that it is electrochemically stable, not prone to corrosion, and will not drive the 

electrochemical response. 

5.3.3 Sensor design and substrate simulations using COMSOL Multiphysics  

Finite Element Analysis (FEA) helps in visualizing the distribution of simulated electrochemical 

conditions. It can also be used to characterize the wicking pattern of the nanoporous substrate used 

in this work. Figure 3 demonstrates the various FEA results that were performed on the sensing 

system. Figure 5.3A highlights the geometry of the interdigitated electrode along with the 

appropriate boundary conditions. The sensor has two electrodes (RE-Reference electrode and WE- 

Working electrode) interdigitated geometry created by thin film deposition of gold. The working 

area is simulated by using a layer of Phosphate saline buffer as an electrolyte for maintaining 

controlled conditions. The equations governing the simulations have been described in the 



 

112 

supplementary section 1 of [138]. A 10mV bias is applied to the working electrode and the 

distribution of electrolyte potential and current density was simulated. This is illustrated in Figures 

5.3B and 5.3C. The distribution of electrolyte potential has been plotted as a multi-slice graph 

showing the cross-section view of the electrolyte. The maximum potential is concentrated around 

the working area with the gradient being created as we move from working to reference electrode 

area. The interdigitated electrode design is known to increase the overall capacitance of the system 

due to the increased surface area. Also, it provides enhanced sensitivity, lower detection limits, 

ability to operate with lower sample volumes, and ease of fabrication[142]. The current density 

was extracted and plotted as a line plot extending from working to reference electrode. There is a 

sharp drop in the current density from 5.4 Am-2 to 1.0 Am-2, highlighted by the current gradient 

present in Figure 5.3C. There are minimal parasitic current peaks indicative of an 

electrochemically stable sensing system. Substrate optimization is of prime importance while 

designing optimal sweat based detection platforms. The substrate used for this study is a 

hydrophilic polyamide membrane. The membrane is designed to offer rapid wicking of sweat 

which enables instant sample collection and optimal interaction time between analyte and 

detection probes in the sensor system. Table S1 of [138] summarizes the properties of this 

membrane. The surface capacitance has been presented as Figure S2 of [138]. The uniform 

distribution and value of inherent capacitance (values ranging in the pico farad range) contributed 

by the membrane indicates that the membrane will not drive the capacitive behavior of binding. 

This is ideal, as the response is mapped as capacitive modulations and will be a direct function of 

binding between the target and detection probe. Another component related to simulations 

presented is performing FEA analysis to determine the wicking pattern and speed according to the 
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given porosity of the membrane. This helps in optimizing the sample loading time and volume. 

Figures 5.3D,5.3E, and 5.3F highlight the lateral flow wicking profile of the polyamide membrane 

strip generated using COMSOL Multiphysics. It shows the progression of transfer of a dilute 

medium going from 0 molm-3 to 1 molm-3 in a period of 20 seconds. This capillary wicking has 

been simulated using principles of Darcy’s law and diffusion kinetics[143]. The equations 

regarding the transport have been added to the supplementary section 1 of [138]. The assumptions 

related to the flow in the membrane strip model are also listed in the supplementary data of [138]. 

The flow is modelled to be a bulk flow from one end of the strip to the other. It can be observed 

that rapid wicking occurs within the first 5 seconds and then once the membrane nanopores start 

saturating by filling up, the transport slows down. Within 20 seconds, it can be observed that there 

is transport of solute halfway through the membrane strip. The driving forces are capillary flow 

due to the pressure gradient created by the volume of liquid in the filled spaces versus the empty 

spaces. This is modelled using the Lucas Washburn equation, which describes the capillary 

wicking in a channel inside a nanoporous membrane[144]. Due to these fluid transport properties, 

the sensing system can successfully perform detection using ultralow sample volumes such as 3μL. 

This is conducive to passive sampling for detection instead of active stimulation of sweat. 

Moreover, some of the other advantages of using this nanoporous membrane is that it reduces the 

biofouling that occurs at the electrode surface. Also being biocompatible, it nests with the user’s 

epidermis and does not create any local irritation at placement site.  
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Figure 5.3.(A) Electrode schematic depicting conditions for COMSOL simulations (B) Multislice 

3D graph depicting electrolyte potential distribution (C) 1D line plot illustrating the current density 

distribution from working (WE) to reference electrode (RE). Simulation for wicking of solute over 

porous membrane at (D) 0s (E) 1s and (F) 20s. 
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5.3.4 Binding chemistry characterization 

 ATR-IR analysis was performed to characterize the binding interaction of the capture probe 

antibody with thiol bound DSP linker between 1000 and 3500 cm-1. Figure 5.4A shows the peak 

observed at 1310 cm-1 of DSP before antibody incubation indicating the symmetric C-N-C 

(Carbon-Nitrogen-Carbon) stretch of DSP. The peak observed at 1738 cm-1 in Figure 5.4B 

indicates the presence of free carboxylic acid in DSP. After antibody incubation, antibody 

conjugation to DSP occurs by breaking of carbon-oxygen bond within N-hydroxysuccimide (NHS) 

ester of DSP. Amine-reactive NHS ester reacts with primary amine of the antibody to form a stable 

amide bond. This occurrence is observed by the disappearance of peak at 1738 cm-1 due to breaking 

of C-O bond of NHS ester in the DSP. The appearance of 1655 cm-1 representing amide I band 

associated with C=O indicates the conjugation of Cortisol and TNF-α antibody to DSP 

functionalized gold surface. The C-N-C stretching mode also shift from 1310 to 1316 cm−1 after 

antibody incubation suggesting that Cortisol and TNF-α were successfully conjugated to the thiol 

linker (Figure 5.4A). Additionally, the broad O-H stretch at 3400 cm-1 confirms the Cortisol and 

TNF-α were successfully bound to DSP immobilized linker substrate (Figure 5.4C).  
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Figure 5.4.FTIR spectrums validating the binding chemistry (A) C-N-C stretch for DSP 

immobilization, (B) Amide bond and carboxylic acid highlight for protein immobilization, (C) 

Broad O-H stretch for antibody immobilization, and (D) schematic depicting the immunoassay 

employed for performing affinity-based detection for cortisol and TNF-α. 

5.3.5 Dose dependent response of sensing platform 

The performance of the affinity biosensor was characterized by building a calibration dose 

response curve (CDR) for varying concentrations of cortisol and TNF-α in human sweat. The CDR 

is represented as percentage change in impedance obtained for a given analyte concentration from 

a baseline concentration (without the presence of the target analyte) at 100Hz. The analysis 

frequency is chosen to be 100Hz due to maximum signal response and stable noise factor obtained 

within the frequency regime of interest. The calibration sensor responses of cortisol and TNF-α in 
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human sweat are shown in Figures 5.5A and 5.5B, respectively. As demonstrated in Figure 5.5A, 

the percentage change in impedance varies from 37.2± 0.03% and 82.3±0.5% for 1ng/mL to 

200ng/mL cortisol concentrations with a specific signal threshold (SST) of 10%. The specific 

signal threshold is calculated with an SNR of 3 with the lowest detectable dose concentration 

1ng/mL lying above the SST and thus can be regarded as the LOD. We have achieved a linear 

dynamic range of 1ng/mL to 200ng/mL which encompasses the physiological relevant range of 

cortisol present in human sweat and reliably distinguishes between low and elevated cortisol levels 

with a p-value of less than 0.001. The constructed CDR for increasing TNF-α concentrations 

1pg/mL to 1000pg/mL is shown in Figure 5.5B. The variation in percentage impedance changes 

is observed to be 2.5±0.3% and 24.6±2.4% from 1pg/mL to 1000pg/mL TNF-α. The SST is 

computed to be 1.85% with an LOD of 1pg/mL. The linear dynamic range is found to be 1pg/mL 

to 1000pg/mL. The established LDR comprises of physiological TNF-α ranges found in human 

sweat with an ability to distinguish between low (10pg/mL), normal (100pg/mL), and elevated 

(300pg/mL) levels of TNF-α (p-value <0.001). The mechanism underlying the biosensing of 

cortisol and TNF-α in a complex medium such as human sweat is the charge modulations arising 

within the electrical double layer (EDL) formed at the electrode – sweat interface because of 

antibody-target analyte binding. The charge modulations induce an impedance change which can 

be attributed to either the charge-transfer resistance or the double layer capacitance. Here, the 

biosensing in capacitance dominated and the enhanced signal response obtained from the antibody- 

target analyte binding is due to the high charge storage capability of the double layer[145]. 

Typically in affinity-based assays, the double layer capacitance is enhanced due to interlinking of 

biomolecules of the immunoassay which causes charge modulation within the EDL[78], [146]. 
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The capacitance of the EDL increases with increasing target analyte concentrations and can thus 

be used to quantify sensor response. 

 

 Figure 5.5.(A) Calibrated Dose Response (CDR) curves for cortisol (B) CDR curve for TNF-α. 

Significance ****p<0.0001, SST- Specific Signal Threshold  

5.3.6 Long term study and temporal response of sensing platform 

Continuous monitoring of biomarker levels is of paramount importance in maintaining a healthy 

lifestyle with an intent of providing the user with an assessment of their health status from time to 

time. Herein, we have demonstrated the temporal response of varying levels of cortisol on 

polyamide to mimic the rise and fall of cortisol as represented by the diurnal cortisol curve over a 

1-hour duration to assess the feasibility of continuous, dynamic monitoring of cortisol in human 

sweat. The cortisol biosensor was subjected to three low (1ng/mL) and three elevated (100ng/mL) 

cortisol doses spiked in human sweat to simulate the cortisol rise level; subsequently the biosensor 

was loaded with three intermediate (10ng/mL) cortisol concentration to simulate the fall of cortisol 

level. The input cortisol dose concentration profile presented to the biosensor as accumulated dose 
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concentrations in the 1-hour window with a sampling interval of 5 minutes is shown in Figure 

5.6A. The percentage change in impedance from baseline obtained in response to the accumulated 

dose concentrations in human sweat, as shown in Figure 5.6B, indicated a change from 7.5% to 

28% for the rise cycle while the percentage change observed for the fall cycle was 28% to 31%. 

In temporal accumulative dose response studies, the dynamic differential signal (DDS) change is 

an appropriate method to indicate the concentration being detected as affinity binding is designed 

for association of analytes to their receptors and sensor surface regeneration is not feasible[147]. 

As shown in Figure 5.6C, the DDS change from 0ng/mL (baseline) to first 1ng/mL (low dose) was 

observed to be 6.55KΩ; the DDS change from last 1ng/mL dose (low dose) to the first 100ng/mL 

dose (high dose) was found to be from 5.8 KΩ to 9.7KΩ; the DDS change from the last 100ng/mL 

dose (high dose) to the first 10ng/mL dose (intermediate dose) was found to be from 3.6 KΩ to 

5.1 KΩ. The porous structure of the membrane allows for nanoconfinement of biomolecules 

leading to a steep rise in impedance is observed for low to high concentration dosing while the 

change in impedance begins to taper with high to intermediate dose concentration. The cortisol 

biosensor’s long-term temporal response to the ebb and flow of cortisol levels within 12 am to 12 

pm sleep cycle of the day is mimicked on the sensor platform as a proof-of-concept for utility as a 

wearable sensor. The cortisol biomarker level cycling is carried in the 6-hour time period to mimic 

the cortisol rise and fall response with the onset of rise in cortisol at 12 PM, peaking of cortisol 

levels during 6 AM to 9 AM time period, and fall in cortisol levels towards the late afternoon. 

Herein, we have chosen the cortisol levels appearing in sweat during the 6AM- 12PM time period 

to capture the response of the sensor during the transition from rise to fall of cortisol levels. The 

accumulative cortisol dosing concentrations representing the rise and fall of cortisol in the 6 hours. 
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sleep window of the day is shown in Figure 5.6D wherein dose levels increasing from 20ng/mL – 

80ng/mL represent the rise in cortisol, 100ng/mL represents the peak cortisol level followed by 

the fall in cortisol doses from 100ng/mL to 60ng/mL. The percentage change in impedance and 

the DDS change registered by the cortisol biosensor in response to the accumulative dosing input 

at a loading interval of 5 minutes are shown in Figures 5.6E and 5.6F. The percentage change in 

impedance for the 20ng/mL to 100ng/mL rise cycle increases from 23% to 64%; the percentage 

change in impedance for the fall cycle from 100ng/mL to 60ng/mL dose concentrations is found 

vary from 64% to 67%. The dynamic percentage signal change computed considering the previous 

dosing step as the baseline for the rise cycle decreases from 24% to 7.1%. For the fall cycle, the 

percentage signal change decreases from 7.1% to 2% for 100ng/mL to 80ng/mL cortisol doses. 

Beyond 80ng/mL cortisol dose, the sensor begins to show signs of saturation as the percentage 

signal change increases from 2% to 3.8% for 80ng/mL to 60ng/mL cortisol dose. The cortisol 

biosensor can detect the cortisol rise and fall dose levels presented to it over a 5.5-hr duration 

beyond which an inflection point is reached indicating slow saturation of the immobilized 

immunoassay. The developed biosensing platform demonstrated in this work is dynamically 

responsive to cortisol rise and falls levels over a period of 5.5 hours continuously thus enabling 

early detection of circadian dysregulation and understanding its connection with the etiology and 

pathophysiology of disorders. 
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Figure 5.6.Long term stability study over a period of an hour (A) Input for long term stability 

experiment versus time (B) Cumulative output for low, mid, and high doses of cortisol (C) 

Differential output (change from baseline) highlighting rise and fall for cortisol levels. Long term 

stability over a period of 6 hours (D) Input for 6-hour stability study (E) Cumulative output for 

rise and fall for cortisol levels (F) Differential output highlighting percentage change from baseline 

for cortisol concentrations over 6 hours 

5.3.7 Cross-reactivity of sensing platform 

As discussed earlier, an antibody system is functionalized on the sensor surface which binds to the 

target molecule creating a response signal. However, there are certain instances when the antibody 

system might show some cross-reactivity between the signaling molecules due to inaccurate 
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binding between the antigen epitope and antibody paratope. Sweat has a plethora of interferent 

molecules like hormones, proteins, urea, lactic acid, creatinine, and lactic acid for example, that 

may be capable of generating such a false-positive response. Previous studies performed to 

characterize the selectivity of the system for similarly structured compounds has confirmed that 

the capture probes are specific for the specific molecule e.g., cortisol. In this section, as this is a 

multi-biomarker detection platform, the cross-reactivity signal between the two molecules of 

interest was evaluated. This study was performed in pooled human sweat, so that the biological 

fluid driven variance can also be accounted for while evaluating the cross-reactivity of the sensing 

platform. The two graphs illustrated in Figure 5.7 represent testing on two separate biosensors, one 

which is immobilized with cortisol antibody as depicted in Figure, 5.7A, and the second graph is 

immobilized with TNF-α antibody as shown in Figure 5.7B. For the sensor demonstrated in Figure 

5.7A, three high doses (300pg/mL*3) of TNF-α were consecutively introduced onto the 

functionalized sensor surface and the signal impedance response was recorded. This non-specific 

signal was compared to the specific signal response of low (1ng/mL), medium (10ng/mL) and high 

dose of cortisol (200ng/mL). The impedance response from non-specific TNF-α doses is below 

the noise threshold and it is significantly lower than that of the medium and high doses of cortisol. 

Physiologically we would see a spike in TNF-α levels with the occurrence of inflammation, 

however, under normal conditions, we would not expect to see a high biomarker spike. Since the 

system is an irreversible binding model, the final response is a cumulative signal. From the results, 

it can be observed that after three subsequent high doses of TNF-α, the final cumulative signal is 

significantly lower than the cortisol doses with a p value < 0.05. This indicates that the system can 

sensitively differentiate between the two molecules and recognize the target molecule. Similarly, 
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the reverse analysis was carried out to evaluate the sensitivity and selectivity of TNF-α capture 

probe functionalized membrane surface. The cross-reactivity for TNF-α antibody immobilized 

surface has been illustrated in Figure 5.7B. This is especially important because out of the two 

molecules, the physiological levels are a magnitude lower for TNF-α than cortisol. Thus, it is 

imperative that the signal for cortisol, which will physiologically be present in sweat in higher 

concentration, does not cross react with the TNF-α response. We can observe that for high 

concentrations of both cortisol and TNF-α, the signal response is significantly higher for TNF-α 

(specific) molecule as compared to cortisol (non-specific molecule). The change for TNF-α is 

approximately 23% from baseline (unspiked pooled human sweat) and the change for high dose 

of cortisol is approx. 7% from the baseline. The significance tests were carried out by performing 

a t-test analysis with confidence condition of α = 0.05. Thus, the sensing platform has specificity 

for the target biomarker of interest and can differentiate it from the non-specific target.  
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Figure 5.7.(A) Cross-reactivity on cortisol antibody immobilized platform using TNF-α (non-

specific) (B) Cross-reactivity on TNF-α antibody immobilized platform using cortisol (non-

specific) molecule. Significance *p<0.05, **p<0.01.    

5.4 Materials and Methods 

5.4.1 Reagents and materials 

Cortisol antibodies and cortisol molecules were procured from Abcam (Cambridge, MA, USA). 

The TNF-α antibody and antigen, thiol linker used DSP (Dithiobis (succinimidyl propionate)) and 

DMSO (Dimethyl Sufloxide) were purchased from Thermofisher Scientific Inc. (Waltham, MA, 

USA). Milipore DI water (conductivity – 18 MΩ cm) was used to prepare the solutions. 

Nanoporous polyamide membranes were obtained from GE Healthcare Life sciences (Piscataway, 

NJ, USA). Pooled human sweat was procured from Lee Biosolutions (St Louis, MO, USA). No 

animal or human subjects were tested in this work.  



 

125 

5.4.2 Sensor Fabrication 

The gold sensors were fabricated in-house utilizing the facilities provided by the cleanroom at 

University of Texas at Dallas (TX, USA). Cryo e-beam evaporator was used to deposit a thin gold 

film (150 nm) on the nanoporous polyamide membrane. Shadow masks were placed on the 

electrode surface during deposition to create the interdigitated gold electrode pattern on the 

sensors. This was then used for functionalization followed by testing. The sensor is designed to 

operate with ultra-low volumes of sweat to enable passive sample collection. The volume of 

sample needed is 3 μl, which aligns with the passive eccrine sweat rate and sweat production 

amount at rest [45].  

5.4.3 COMSOL Multiphysics® software simulations 

Finite element analysis was carried out utilizing licensed software version of COMSOL 

Multiphysics v5.4. The module used for performing simulations are transport of diluted species in 

porous media, electrostatics, and primary current distribution. 3D multislice plots for electrolyte 

potential, 1D plot group for current density and wicking simulations were exported through the 

software. 

5.4.4 FTIR Experimental details 

Infrared spectra of functionalized electrode were recorded with a Thermo Scientific Nicole iS50 

FTIR using an Attenuated Total Reflectance (ATR) stage. The tool was equipped with a deuterated 

triglycine sulfate (DTGS) detector and KBr window. A Harrick VariGATR sampling stage with a 

65° Germanium ATR crystal was used in this study. ATR-FTIR specimens were prepared by 
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deposition solutions on polyamide membrane as substrate. The contact area was about 1 cm2. All 

spectra were recorded between 4000 and 700 cm-1 with a resolution of 0.5 cm-1 and 256 scans. 

5.4.5 Experimental details for electrochemical analysis 

Fabricated gold electrodes were tested for baseline stability and then employed for 

functionalization. This was performed by incubation with DSP/DMSO for 1.5 hours followed by 

incubation of 10μg/mL of antibody solution for 30 minutes. Incubation times were optimized using 

wicking simulation and baseline studies. Functionalized electrodes were utilized for testing by 

building an immunoassay using increments of target dose concentrations. During measurements 

of EIS, a 10mV AC potential bias was applied to the working electrode against the reference 

electrode and the response was recorded. These electrochemical measurements were carried out 

using Gamry Reference 600 potentiostat (Gamry Instruments, PA, USA). Dose concentrations of 

target biomarkers were tested within the physiologically relevant concentrations. These dose 

concentrations were prepared by artificially spiking the human sweat and analyzing the data as 

change from the baseline. Human sweat already has proteins, steroids, and other molecules present 

in the solution. The process in which the biofluid was spiked was by adding a known concentration 

of target biomarker ranging from 1ng/mL to 200 ng/mL for cortisol, and 1pg/mL to 1000 pg/mL 

for TNF-α. These spiked biofluid doses were then introduced on the functionalized sensor surface 

and the change in response from the blank human sweat was recorded as sensor response. The 

optimal frequency was 100Hz, where maximum capacitive behavior was observed. 
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5.4.6 Experimental detail for long-term studies 

 For the long-term studies, single frequency EIS was performed over the study time period (60 

minutes and 6 hours) and the sensor was loaded at 5-minute intervals. The frequency of operation 

was set at 100Hz. For the short study of 60-minute duration, increments of cortisol dose 

concentrations ranging from1ng/mL to 100 ng/mL were loaded on the sensor surface. To capture 

the rise, concentrations of 1ng/mL and 100 ng/mL were loaded consecutively on the sensor 

surface. And to capture the fall, concentrations of 100ng/mL and 10ng/mL were loaded on the 

surface consecutively. The cumulative impedance response was then recorded using single 

frequency EIS. Similarly, for the long term 6-hour continuous study, concentrations were ramped 

up from 20 ng/mL to 100 ng/mL in increments of 20 ng and fall was captured by loading 

concentrations of 80 ng/mL followed by 60 ng/mL.  

5.4.7 Statistical analysis 

 Data is represented as mean±SEM with an N=3, where n is the number of biosensor replicates 

tested. The inter-assay and intra-assay variations are less than 10 % which is compliant with CLSI 

guidelines. Statistical analysis for dose dependent response was performed using ANOVA 

followed by Tukey test to establish significance. Unpaired T-test was employed when the test for 

significance was between two groups. The confidence interval was fixed at 95% and α was 0.05. 

The analyses were performed using GraphPad Prism version 8.01 (Graph Pad Software Inc., La 

Jolla, CA, USA)     
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5.5 Conclusions 

This work demonstrates the feasibility of using a sweat-based platform for tracking the intricate 

relationship between the endocrine and inflammatory pathway using sweat based biomarkers-

cortisol and TNF-α. A detailed analysis for the optimal electrode design and platform wicking is 

provided using COMSOL Multiphysics® simulations. Binding characterization studies performed 

using FTIR validated the immunochemistry used for performing affinity-based detection. Sensor 

showed enhanced sensitivity to biomarker concentrations in sweat with a limit of detection of 

1ng/mL for cortisol and 1pg/mL for TNF-α. Dynamic range of the sensor encompassed the 

physiologically relevant ranges with low noise. Additionally, long term stability of the sensing 

platform was demonstrated with continuous measurements to understand the temporal response of 

the sensor to rise and fall cortisol concentrations in accordance with the cortisol diurnal cycle over 

a diagnostically relevant time period. Finally, cross-reactivity studies confirm the specificity and 

selectivity of the sensor for the target biomarker. In conclusion, this work uses a novel, 

electrochemical wearable platform to offer enhanced sensitivity and improved sensor stability to 

map the endocrine -inflammatory relationship towards advancement of chronic disease diagnosis 

and management. 

5.6 Future Perspective 

The focus of healthcare tools has shifted from bulky, expensive diagnostic equipment to rapid, 

economical, and miniaturized diagnostic tools. There is a rise in patient-centric treatment approach 

which leads to increase in the demand of point-of-use devices. These point-of-use devices assist 

with performing healthcare related tasks on a miniaturized platform like a chip. In the next few 
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years, there will be a significant change in the appearance of healthcare technologies, where lab-

on-a chip devices will be taken into consideration as a predominant healthcare choice. Also, with 

the growing awareness in people for monitoring their health e.g., smart watches etc., self-

monitoring devices will simplify the arduous task of pricking for blood to obtain biomarker levels, 

by employing non-invasive biofluids instead. However, there are several challenges that need to 

be tackled towards creating highly sensitive wearable sensing/ detection platforms. These include 

optimizing for on-body device use, system integration using hardware, improving analytical 

reliability of results, and improving accuracy and stability.  
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CHAPTER 6   

EBC-SURE (EXHALED BREATH CONDENSATE- SCANNING USING RAPID 

ELECTRO ANALYTICS): A NON-FARADAIC AND NON-INVASIVE 

ELECTROCHEMICAL ASSAY TO SCREEN FOR PRO-INFLAMMATORY 

BIOMARKERS IN HUMAN BREATH CONDENSATE 

6.1 Abstract 

The innovation of this work lies in the trace detection of inflammatory biomarkers (IL-6, hs-CRP) 

in human exhaled breath condensate on the developed EBC-SURE platform as a point-of-care aid 

for respiratory disorder diagnosis. The unique design of the EBC-SURE leverages non-faradaic 

electrochemical impedance spectroscopy to capture target-specific biomolecular interactions for 

highly sensitive biomarker detection. For sensor calibration, EBC-SURE’s performance is 

assessed to measure the response of the sensor to a known concentration by spike and recovery 

analysis with a recovery error of <20% and an extended dynamic range over 3-log orders. The 

lowest detection limits for IL-6 and hs-CRP detection in EBC were found to be 3.2 pg/mL and 4 

pg/mL respectively. The efficacy of EBC-SURE for its usage as a diagnostic device was tested 

rigorously through reproducibility and repeatability studies. The percentage variation (< 20%) met 

the CLSI standards indicating a highly stable performance for robust biomarker detection. EBC-

SURE generated highly selective IL-6 and hs-CRP responses in the presence of other non-specific 

cytokines. Statistical validation methods- Correlation and Bland Altman analysis established the 

one-to-one agreement between EBC-SURE and the reference method. Correlation analysis 

generated a Pearson’s R value of 0.99 for IL-6 and hs-CRP. Bland-Altman analysis indicated a 
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good agreement between both the methods with all data points confined within the ±2SD limits. 

We have demonstrated EBC-SURE’s ability in detecting inflammatory biomarkers in human 

breath condensate towards developing a non-invasive technology that can quantify biomarker 

levels associated with healthy and acute inflammatory conditions. 

6.2 Introduction 

Identification of inflammatory biomarkers related to airway diseases has been of emergent 

research interest in recent times. These biomarkers should be representative of the degree of lung 

inflammation and disease severity; provide reproducible results in clinical settings; allow non-

invasive determination of the disease; and be repeatable during patient follow-ups[148], [149]. 

Inflammation plays a critical role in lung diseases like asthma and chronic obstructive pulmonary 

disease (COPD). Hence, the initial detection of lung disease biomarkers is relevant in disease 

management for early clinical intervention and further guided drug therapy. Understanding the 

body’s inflammatory response has been a subject of immense interest amongst researchers over 

the decades. The human pulmonary system is constantly exposed to pathogens and toxic molecules 

present in the environment thus requiring resilient pulmonary defense mechanisms for survival. 

Innate and adaptive immunity systems fight together against pathogens to induce an inflammatory 

response. The epithelium of the airway tract is the first site of the microbial attack and secretes 

cytokines in response to infection which further stimulates inflammation [150]. Macrophages 

present in the airway lining orchestrate the acute and chronic inflammatory responses through the 

release of proteases and cytokines that attract neutrophils into the airways [151]. The neutrophils 

release pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 
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IL-6, IL-8, and interferon (IFN)-γ that activate the immune system and generate an inflammatory 

response. Evidence from the literature indicates a physiological link between IL-6 and C- reactive 

protein (CRP), an acute phase protein induced by IL-6 [152]–[154]. IL-6 and CRP are present in 

higher concentrations in serum and can be easily detected during low-grade inflammation. During 

inflammation, IL-6 is released into the circulation by macrophages, neutrophils by initiation from 

TNF-α and IL-1β. IL-6 stimulates the production of CRP in the liver and its release into the blood 

circulation; IL-6 also stimulates the production of neutrophils in the bone marrow and is attracted 

to the infection site. Further, as IL-6 crosses the blood-brain barrier inducing an increased body 

temperature and causing a fever. IL-6 supports the differentiation of T-cells and B-cells leading 

them to target the infected cells and foreign antigens. IL-6 plays three important roles- instigating 

tissue damaging inflammatory responses, reducing inflammation, initiating tissue repair. During 

an inflammatory episode, as IL-6 rises there is a dramatic rise in CRP which begins to rise 4-6 

hours and peaks after 1-2 days. CRP also binds to the damaged cells and activates phagocytosis 

by neutrophils and macrophages[155].  

At present, lung inflammation is quantified by invasive methods such as sampling of 

bronchoalveolar lavage (BAL) fluid, tissue biopsies; less invasive methods such as sputum 

induction, plasma, and urine sampling. These methods indicate systemic inflammation rather than 

pulmonary inflammation. Direct sampling from the lungs such as BAL suffers from dilution and 

metabolism of inflammatory biomarkers within the lungs; sputum induction suffers from the 

expectorated fluid altering the collected sample[156]. Other practical concerns such as the 

invasiveness and patient discomfort of sample collection have made EBC a promising diagnostic 

fluid for non-invasive biomarker analysis in personalized and clinical settings[157]. EBC is 
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derived from the oral cavity, respiratory tract, and alveoli but the source of biomarkers in it is 

uncertain. There is a general understanding in the research space that EBC is a representation of 

the airway lining fluid (ALF) that aerosolizes during turbulent airflow containing primarily 

consisting of non-volatile substances. EBC has been explored for non-invasive measurement of 

lung cytokines related to pulmonary disorders associated with a triad of symptoms- airway 

inflammation, bronchial hyperresponsiveness, and airway obstruction[19]. Stiegel et.al. 

investigated pair-wise correlation within an across of 10 different cytokines across human blood 

and exhaled breath condensate[158]. Within the same medium, pro-inflammatory cytokines 

showed positive correlations amongst themselves and negative correlations with anti-

inflammatory cytokines. However, no specific pattern was observed for blood and EBC cytokines 

correlations indicating differences in cytokine expressions between individual subjects. The 

majority of the blood pro-inflammatory cytokines showed statistically significant correlations with 

those in EBC showing a promise that EBC can be a potential, non-invasive medium to investigate 

respiratory inflammation. Standard techniques utilized for the detection of biomarkers in EBC 

include enzyme-based assay, fluorometric assays, and chemiluminescence; highly sensitive 

detection of biomarkers necessitates the use of liquid chromatography and tandem mass 

spectroscopy techniques. Although these techniques provide detection limits in lower pg/mL 

ranges, EBC samples require pre-treatment to stimulate reactions and removal of interferents, use 

of expensive equipment, slow response time, and the need of skilled technicians[84]. 

Electrochemical analysis techniques offer high sensitivity, rapid sensor response, ease of use, cost-

effectiveness, minimal sample pretreatment, use of low fluid volumes, miniaturized sensor, and 
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readout interface enabling its incorporation into point-of-care diagnostic platforms for biomarker 

detection[159]. 

Cytokines play an important role in inflammation leading to the release and regulation of 

other cytokines. Literature on EBC has reported the presence of interleukins (IL-1β, IL-2, IL-4, 

IL-6, IL-8, IL-10), IFN-γ, and TNF-α in low pg/mL concentrations in human EBC[160][161]. IL-

6 concentration in EBC ranges from 4pg/mL in normal healthy volunteers to 200pg/mL in acute 

exacerbated conditions[162]. hs-CRP is a sensitive biomarker for the identification of systemic 

inflammation and tissue damage. It is not disease-specific but can help in guiding clinical decisions 

in patients with lower respiratory tract infections; hs-CRP levels are found to significantly elevated 

in acute exacerbation conditions[163]. In airway inflammation, hs-CRP levels in EBC are reported 

to be in varying ranges from lower pg/mL to higher ng/mL[164]–[166]. IL-6 and hs-CRP can be 

utilized as early diagnostic biomarkers to track lung inflammation, identify the onset of pulmonary 

disease flare-ups, and to provide effective treatment. Our work is a first-time demonstration of 

early inflammatory biomarker detection in human EBC to show its usability in rapid, single-

measurement platforms for point-of-care diagnostics. The proposed sensor platform is highly 

sensitive and captures the lower regime of biomarker concentration with the ability to distinguish 

between healthy and acute inflammation conditions. Figure 6.1 illustrates the end-to-end process 

flow from the origin of inflammatory biomarkers in EBC to the envisioned practical 

implementation of EBC-SURE in personalized and clinical settings for tracking inflammation. 
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Figure 6.1.Process flow from the origin of inflammatory biomarkers in breath condensate to the 

envisioned practical implementation of the EBC-SURE platform for tracking inflammation. 

Created using BioRender.com 

6.3 Materials and Methods 

6.3.1 Reagents and Instrumentation 

The capture antibodies for IL-6 and hs-CRP were procured from Abcam (Cambridge, MA, USA). The IL-

6 ELISA kit was purchased from Abcam, and the hs-CRP ELISA kit was purchased from Invitrogen 
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(Waltham, MA, USA). The cross-linker 3,3’-dithiobis (sulfosuccinimidyl propionate) and phosphate 

buffered saline (PBS) were purchased from Thermo Fisher (Waltham, MA, USA). Simulated exhaled 

breath condensate (SEBC) was prepared by diluting simulated airway lining fluid with PBS (Boisa et al., 

2014). The sensor substrates were purchased from PharmChek (Fort Worth, TX, USA). All reagents were 

used without any purification and were stored under appropriate conditions as mentioned by the vendor. 

6.3.2 EBC-SURE device 

The EBC-SURE device comprises an electronic reader enclosed in the prototype casing onto which 

a replaceable sensor strip functionalized with antibodies for specific target biomarker detection is 

mounted. The electronic reader transduces the impedance signal produced from the target probe-

biomarker binding that is required to build the calibration curves of SEBC biomarkers. The signal 

transduction is enabled by a 2-electrode design fabricated on the substrate by screen printing 

technique which allows a relevant electrochemical signal to be measured in response to the affinity 

binding. The sensor fabrication process has been described in detail by our group previously[80]. 

Figure 6.2 shows the sensor device and the envisioned prototype for the rapid detection of 

inflammatory biomarkers in real-time. Non-faradaic EIS was employed to measure the sensor 

response wherein a low-voltage sinusoidal input was applied, and the impedance obtained from 

the affinity binding was recorded over a 100Hz to 1000Hz frequency range[79]. A calibration 

curve was constructed from the impedance produced by the increasing biomarker concentrations 

in SEBC and pooled human EBC. 
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Figure 6.2.(A) Electronic reader top view (B) Electronic reader bottom view (C) Sensor mounted 

on the reader (D) Envisioned EBC-SURE prototype. 

6.3.3 Sensor immunoassay development 

The sensing platform was fabricated with a 2-electrode interdigitated system sputtered with zinc 

oxide in the overlap region as described in our previous work. The electrodes were incubated with 

a thiol crosslinker of 10mM concentration on one end while the other end was functionalized with 

10µg/mL of monoclonal IL-6 or hs-CRP antibody. Monoclonal antibodies were chosen to achieve 

specificity during binding interactions. 10mM thiol cross-linker was dissolved in PBS and 
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functionalized on the sensing electrodes for 3 hours in dark. Further, IL-6/hs-CRP antibodies were 

immobilized on the electrodes to attach to the NHS ester group of the cross-linker through 

aminolysis. IL-6/hs-CRP antibodies were spiked in SEBC (pH ~7.0) and pooled human EBC to 

prepare doses of varying concentrations for constructing the calibration response curve. A sample 

volume of 3µL was utilized throughout the study. 

6.3.4 Evaluation of EBC-SURE performance 

 The calibration curve for the detection of IL-6 and hs-CRP in SEBC and pooled human EBC was 

built from the impedance data gathered through conducting benchtop experiments with EBC-

SURE for a sample size of N=6 for each concentration. SEBC was used to mimic the true breath 

condensate samples for characterization of biomarker detection on the developed platform, and 

protocol standardization for biomarker detection. The biomarker concentrations were increased 

from low to high and the impedance response generated in response to the dosing was recorded. 

The data was represented as a percentage change in impedance with respect to the baseline (devoid 

of any biomarker of interest). A 4-parameter logistic curve was fit to the obtained impedance 

response for each of the biomarkers; the calibration equation obtained from the curve fit was used 

for the spike and recovery experiments to evaluate the performance of the EBC-SURE.  

6.3.5 Evaluation of EBC-SURE selectivity in SEBC and pooled human EBC 

For the specificity studies in SEBC, a cocktail solution of IL-8 and IL-10 spiked in SEBC with 

concentrations in the range 3.2-819.2pg/mL was prepared without any IL-6 and was tested on the 

IL-6 sensor to record the impedance. Albumin was spiked in SEBC with concentrations in the 

range 4-1024pg/mL in the absence of hs-CRP for gauging EBC-SURE’s specificity to hs-CRP. 
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For specificity studies in pooled human EBC, two cocktail solutions of low concentration and high 

concentration interferents (IL-8, IL-10, IL-1β, TNF-α) were made in pooled EBC. The two 

cocktail solutions were spiked with low and high IL-6 and hs-CRP concentrations and their 

impedances were recorded (See supplementary section S2 for more details). 

6.3.6 ELISA Analysis 

ELISA was used as the reference method for performance comparison with the EBC-SURE 

device. SEBC samples were spiked with varying IL-6 and hs-CRP concentrations and tested on 

the ELISA kits in accordance with the protocols described by the manufacturers. The SEBC and 

pooled human EBC samples were spiked with varying concentrations of IL-6 and hs-CRP and 

were tested on the EBC-SURE and ELISA platforms simultaneously. N=3 and N=2 samples for 

each concentration were tested on the ELISA platform after dilution with diluent buffer in SEBC 

and pooled human EBC respectively. 

6.3.7 Collection of human exhaled breath condensate and sample pooling 

The EBC samples were collected from three healthy volunteers with an informed consent for 

participation as per the approved IRB from UT Dallas (IRB # 20-38). The EBC samples were 

collected using a commercially available FDA approved device, RTube™.The subjects were asked 

to breathe normally into the mouthpiece of the device at tidal volume for 10-15 mins which yielded 

a sample volume between 0.5- 2mL. The samples were aliquoted and stored in -80°C. The samples 

from three subjects were pooled in equal volumes to create the pooled samples for further analysis. 
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6.3.8 Statistical Analysis 

All statistical tests were performed using Origin Pro. ANOVA was carried out with 95% 

confidence intervals for spike and recovery experiments to show that the concentrations recovered 

are statistically different from each other. The degree of agreement between the EBC-SURE and 

the reference method were determined by using Pearson correlation and Bland-Altman analysis.  

6.4 Results 

6.4.1 Demonstration of EBC-SURE for IL-6 and hs-CRP detection and evaluation of its 

specificity in simulated exhaled breath condensate  

In these trying times of COVID-19, elevated levels of IL-6 and hs-CRP have been established to 

be predictive biomarkers of forthcoming respiratory failure[153]. Thus, the approach towards 

detection of IL-6 and hs-CRP on a non-invasive, all electronic sensor integrated on a portable 

FDA-approved breath condensate collection device would be feasible for guiding clinicians on 

hyperinflammatory treatments. The sensor was calibrated individually to detect IL-6 and hs-CRP 

in SEBC covering a dynamic range including physiological and elevated levels of the chosen 

biomarkers. Spike and recovery analysis was used as a figure of merit to determine the analytical 

performance of the sensing platform in detecting IL-6 and hs-CRP. The efficiency of the platform 

was validated by spiking known concentrations of biomarkers and determining the recovered 

concentration from a calibration curve. Recovery reports the proportion of the biomarker that can 

be extracted after being spiked in the test sample[167]. The spike and recovery analysis for IL-6 

and hs-CRP in SEBC for the concentration ranges spanning over three log concentration ranges 

are shown in Figures 6.3A and 6.3B. The error between the spiked and recovered concentrations 
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is computed to be 0.2-20%. The non-overlapping error bars quantify the reliability in 

distinguishing between individual target concentrations. Statistical ANOVA performed with 

p<0.05 and 95% confidence intervals reveals that the means of the groups are significantly 

different from each other. The smallest detectable IL-6 concentration this sensor can reliably 

distinguish from blank is found to be 3.2pg/mL with a dynamic detection range of 3.2pg/mL to 

819.2pg/mL. hs-CRP showed a dynamic detection range from 4pg/mL to 1024pg/mL with a lower 

limit of detection of 4pg/mL.  

 Specificity is a key requirement that influences the biosensing performance in 

preferentially detecting the target biomarkers of interest in the biological samples consisting of 

non-specific molecules that can be lower in concentration[168]. Ideally, it is expected that the 

signals produced by the non-specifics in proportion to the concentration of the target biomarkers 

should be negligible. The % reactivity was calculated as the ratio of measured concentration to the 

actual concentration of the biomarkers loaded on the sensor. As shown in Figure 6.3C, the EBC-

SURE demonstrates a 99%-106% selectivity for IL-6 specific interactions in the 3.2pg/mL to 

819.2pg/mL range and negative non-specific response for the interactions with IL-8+IL-10 mix. 

The selectivity of hs-CRP detection antibody was tested against albumin diluted in SEBC for the 

concentration range 4pg/mL to 1024pg/mL[169]. The non-specific interactions demonstrate a 

reactivity of -25% indicating minimal crosstalk between the hs-CRP antibody and albumin as 

shown in Figure 6.3D. A high average reactivity of 105% was seen for hs-CRP specific interactions 

in the range 4pg/mL to 1024pg/mL. 

 We attribute the increased sensitivity, extended dynamic range, and selectivity of 

biomarker detection to a unique electrode design with a specialized surface coating functionalized 
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with target-specific capture probes on a porous substrate. The scaffolds of the porous membrane 

provide enhanced surface area for target-analyte interaction while accelerating the target probe- 

analyte binding kinetics[170]. Herein, a label- free, impedimetric approach is employed to measure 

the target probe-analyte interactions by sensing variations in the electric double layer. The 

impedance changes occurring in response to the target probe-analyte interactions occurring at the 

electrode- electrolyte interface is reflective of the target analyte’s concentration. The use of 

impedimetric sensing in the detection of inflammatory biomarkers in sweat and serum has been 

previously demonstrated by our group[171], [172]. 
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Figure 6.3.Spike and recovery analysis curves for the detection and quantification of inflammatory 

biomarkers in SEBC (A) IL-6 (B) hs-CRP. Linear regression analysis performed between spiked 

and recovered concentrations reported an R2 ≈ 0.99. Assessment of EBC-SURE’s selectivity for 

(C) IL-6 detection in the presence of IL-8 and IL-10 in SEBC (D) hs-CRP detection in the presence 

of albumin in SEBC. The EBC-SURE demonstrates a minimal to negative reactivity of <30% to 

non-specific molecules and a highly specific response >95% to target molecules. 

 



 

144 

6.4.2 Evaluation of EBC-SURE’s repeatability and reproducibility performance for IL-

6 and CRP detection in simulated exhaled breath condensate  

Clinical investigations require the measurement of quantities multiple times for diagnosis and 

outcome prediction. Measurements are prone to errors, and it is necessary to understand the origin 

of variations; a small error degree may not affect the clinical measurement while large errors skew 

the investigation and make the measurements unusable[173]. Repeatability measures the 

variations in measurements performed on multiple trials using the same procedure, operating 

conditions, and location[174]. To evaluate the repeatability, two sensors each were functionalized 

with IL-6 and hs-CRP detection antibodies, and five replicate measurements were performed in 

the same session at room temperature. Normal and elevated concentrations within the 

physiological range of presence in EBC were chosen for IL-6 and hs-CRP – 5pg/mL and 50pg/mL 

for IL-6; 100pg/mL and 1000pg/mL for CRP. The mean recovered IL-6 concentrations in response 

to repeatedly dosed normal and elevated IL-6 concentrations for the two test sensors, as shown in 

Figure 6.4A, are 6.9± 0.5pg/mL and 51.4± 4.2pg/mL respectively. Acceptable sensor performance 

is associated with allowable standard deviation in measurement (% CV), as set by CLSI, taken 

repeatedly for the same dose concentrations on the two sensors. Figure 6.4B shows the percent 

coefficient variation that the sensor reports for normal and elevated IL-6 dose concentrations on 

repeated sensor dosing. The %CV reported by the sensor lies below <10% well within the 20% 

threshold of acceptable variation confirming the repeatability metric of the IL-6 sensor. The spike 

and recovery hs-CRP concentrations obtained on dosing the same sensor repeatedly, as shown in 

Figure 6.4E, report mean normal and elevated hs-CRP concentrations of 172 ± 16pg/mL and 833 

± 61.5pg/mL respectively. The %CV computed for normal and elevated CRP concentrations when 
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the sensor is subjected to repeated dosing protocol is found to be 9.2% and 7.3% respectively as 

shown in Figure 6.4F. Statistical analysis reports p < 0.05 confirming that the normal and elevated 

concentrations of IL-6 and hs-CRP can be reliably distinguished individually. 

 Reproducibility is the degree of variations in measurements performed under varying 

conditions to understand the stability of sensor performance for point-of-care use. Storage stability 

was assessed to understand the decline in the sensor sensitivity on storage at particular conditions 

over a period of time. The sensors were functionalized with IL-6 and hs-CRP antibodies and stored 

in 4°C for performance investigation over 48 hours. The functionality of new sensor in response 

to varying IL-6 and hs-CRP concentrations was examined every 24 hours over a 48-hour duration. 

Figure 3C shows the reproducibility response of IL-6 functionalized sensors over 48 hours with a 

low average IL-6 concentration reported to be 3.3± 0.06pg/mL and high IL-6 concentration 

reported at 155± 33.5pg/mL. The functionalized sensors report a %CV of 2- 21% over 48 hours, 

as shown in Figure 6.4D, indicating the reproducible nature of the sensor platform for utilization 

in practical scenarios. The reproducibility response and %CV for hs-CRP functionalized sensors 

over a 48-hour duration are shown in Figures 6.4G and 6.4H respectively. The low and high hs-

CRP concentrations reported by the hs-CRP functionalized sensor after 48 hours was found to be 
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17.7± 0.7pg/mL and 841± 85.7pg/mL respectively with %CV found to be <10% indicating time-

based stability in sensor response. 

 

Figure 6.4.Assessment of sensor performance metrics. Repeatability performance of EBC- SURE 

for (A-B) IL-6 detection (E-F) hs-CRP detection. Reproducibility performance of EBC-SURE for 

(C-D) IL-6 detection and (G-H) hs-CRP detection over 48 hours to confirm sensor stability. The 

dotted line 20% indicates the acceptable limit of variation according to CLSI standards. EBC-

SURE demonstrates a %CV < 20% confirming the repeatable and reproducible sensor response to 

target molecules. 
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6.4.3 Performance comparison of EBC-SURE with standard reference method for IL-6 

and hs-CRP quantification 

The developed EBC-SURE must be compared with a gold reference standard to validate the 

efficiency of the platform in reporting accurate biomarker levels. The measurements obtained from 

EBC-SURE are correlated with those obtained from a standard ELISA platform. The degree of 

agreement between the EBC-SURE and the reference ELISA technique was established by 

Pearson’s correlation analysis and Bland-Altman (BA) analysis (Bunce, 2009). A higher 

correlation closer to 1.0 indicates a strong dependence between the sensor and the reference 

method. The EBC-SURE exhibits a Pearson’s r= 0.99 and 0.98 for IL-6 and hs-CRP, as shown in 

Figures 6.5A and 6.5C, representing a significant linear relationship between the recovered IL-6 

and hs-CRP concentrations obtained from the sensor and the reference method. BA analysis gives 

a quantification of the agreement levels between the sensor and the reference method by 

emphasizing on any biases and differences between the two measurement methods. The BA plots 

for IL-6 and hs-CRP, as shown in Figures 6.5B and 6.5D, show a good agreement of the EBC-

SURE with the reference method. In the BA scatter plot, x- axis represents the average biomarker 

concentration reported by both the methods, and the y-axis represents the difference in biomarker 

concentrations reported by the two methods. The mean bias is the differences in the mean 

biomarker concentrations reported by the two methods and the data points are restricted to ±2 SD. 

The BA analysis for IL-6 and hs-CRP sensor with the reference, mean biases of -11.62pg/mL and 

16.5pg/mL were obtained indicating no significant difference between the two measurement 

methods. At lower IL-6 and hs-CRP concentrations, the scatter points were packed closer to zero; 



 

148 

however, at higher IL-6 and hs-CRP concentrations, most of the scatter points were spread above 

and below the mean bias within ±2 SD limits in a random order suggesting no treatment bias.  

 

Figure 6.5.Evaluation of EBC-SURE’s in comparison with reference ELISA method using linear 

correlation for (A) IL-6 and (C) hs-CRP in SEBC. A Pearson’s correlation coefficient of R≈ 0.99 

is observed between EBC-SURE and the reference method. Bland-Altman analysis performed 

between EBC-SURE and reference method (B) IL-6 (D) hs-CRP in SEBC demonstrate a mean 

bias of (B) -11.62pg/mL for IL-6 (D) 16.5pg/mL for hs-CRP 
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6.4.4 Demonstration of EBC-SURE for IL-6 and hs-CRP detection and its analytical 

validation with standard reference method in pooled human exhaled breath condensate 

We report for the first time the possibility of using an electrochemical platform to detect 

inflammatory biomarkers in human EBC for tracking inflammation in healthy and diseased 

individuals. The efficacy of EBC-SURE in detecting IL-6 and hs-CRP in pooled human exhaled 

breath condensate by spiking biomarkers of varying concentrations on the platform and the 

determination of recovered concentrations from the individually constructed calibration dose 

response curves are shown in Figures 6.6A and 6.6D. A series of ten concentrations spiked in 

pooled human EBC encompassing the physiologically reported ranges for healthy and acute 

inflammatory conditions were tested on the EBC-SURE. A linear response was observed over a 

dynamic range of 3pg/mL to 820pg/mL for IL-6 and 10pg/mL to 1000pg/mL for hs-CRP with an 

R2 of 0.99. The tight range of recovered biomarker concentrations and the non-overlapping error 

bars allow the ability to distinguish between each biomarker with assurance. The %CV is 

computed to be <17%, which is well below the accepted CLSI standards of < 20% indicates the 

precision of EBC-SURE in detecting the biomarker concentrations. Seifi et.al. reported an IL-6 

detection range of 0.05pg/mL to 1.17pg/mL using ELISA in their investigation on the relationship 

between the concentration of respiratory air particulate matter and inflammatory biomarkers in 

EBC[175]. In another study performed by Zee et.al. to detect cytokines and chemokines in the 

EBC of mechanically ventilated patients, an IL-6 detection range of 0pg/mL to 131.8 pg/mL was 

demonstrated by a multiplexed assay[176]. hs-CRP detection ranges of 0ng/mL to 0.1ng/mL and 

0.08mg/L to 0.17mg/L in EBC have been reported in studies based on the assessment of 

biomarkers related to airway inflammation in asthma using ELISA as the detection method[164], 
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[177]. The performance of EBC-SURE was further evaluated to assess the selectivity and 

specificity while detecting each biomarker as shown in Figure S2. A statistical significance of 

p<0.05 was achieved between the non-specific and specific responses. 

 The commercial viability of a platform for use in clinical studies can be assessed by 

comparing the performance of EBC-SURE with a widely accepted reference standard such as 

ELISA. The pooled EBC samples collected from healthy subjects were spiked with varying IL-6 

and hs-CRP biomarker concentrations and tested concurrently on EBC-SURE and ELISA. The 

degree of agreement between the two methods under test was determined by Pearson’s correlation 

and Bland-Altman analysis. The two methods showed a linear response with a Pearson’s R of 0.98 

for IL-6 and 0.99 for hs-CRP detection indicating a good agreement between the two methods as 

shown in Figures 6.6B and 6.6E. Furthermore, the BA analysis yields a low mean bias of -

1.5pg/mL for IL-6 and 0.85pg/mL for hs-CRP in pooled human EBC as shown in Figures 6.6C 

and 6.6F. Most of the scatter points lie closer to 0 indicating neither method overestimate nor 

underestimate the biomarker concentrations. Although at higher IL-6 and hs-CRP concentrations 

the scatter points lie close to the 95% CI bands (±1.96SD) or beyond the CI band, a clear distinction 

between normal and elevated biomarkers can be made. The one-to-one agreement between the 

EBC-SURE and ELISA performances ensures the robustness of the developed platform in 

quantifying human EBC biomarker concentrations precisely. 
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Figure 6.6.Spike and recovery analysis curves for the detection and quantification of inflammatory 

biomarkers in pooled human EBC (A) IL-6 (D) hs-CRP. Linear regression analysis performed 

between spiked and recovered concentrations reported an R2 ≈ 0.99. Evaluation of EBC-SURE’s 

in comparison with reference ELISA method using linear correlation for (B) IL-6 and (E) hs-CRP 

in pooled human EBC. A Pearson’s correlation coefficient of R≈ 0.99 is observed between EBC-

SURE and the reference method. Bland-Altman analysis performed between EBC-SURE and 
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reference method (C) IL-6 (F) hs-CRP in pooled human EBC demonstrate a mean bias of (C) -

1.5pg/mL for IL-6 (F) 0.85pg/mL for hs-CRP. 

6.5 Summary and Conclusions 

In summary, this work demonstrates a rapid, non-invasive, electrochemical EBC-SURE platform 

for the rapid screening of inflammatory biomarkers in exhaled breath condensate for pulmonary 

disorder management such that clinicians can initiate treatment at an earlier stage. This research 

can be extended towards developing a multiplexed sensor for the detection of an inflammatory 

biomarker panel in human EBC. The developed sensing platform facilities reliable and robust 

detection through affinity based monoclonal antibody-target biomarker interaction mechanism 

captured by a highly sensitive electrochemical impedance based-technique (EIS). The advantages 

of using the EBC-SURE for diagnostic purposes are the sensor portability; rapid response time 

(~5mins); multiplexing capability to detect a biomarker panel to distinguish between healthy and 

acute conditions; sensitive, selective, stable sensor response; requirement of low sample volumes 

(>3uL). The strategic design of the EBC-SURE provides a promise of non-invasive technology 

for the detection of biomarkers associated with pulmonary inflammation further paving a way for 

the developed platform to be integrated on a handheld prototype device to detect a host of 

inflammatory biomarkers in human EBC for pulmonary disease diagnostics. The limitation of this 

platform is the inherent nature of EBC rather the technology wherein biomarkers are present in 

low concentrations due to dilution by water vapor, low reproducibility, high variability in EBC 

samples, no accepted dilution markers, the requirement of expensive cross-validation techniques, 

lack of standardization and, data validation with known biofluids. In the future, studies will be 

conducted to understand the temporal variations in EBC cytokines in healthy and sick cohorts. 
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CHAPTER 7   

CONCLUSION AND FUTURE WORK 

 
The key contribution of this research is the feasibility of CLASP and EBC-SURE platforms for 

the detection of biomarkers, that serve as physiological cues, non-invasively in health and disease 

management. These platforms can be characterized further to enable on-body, continuous, real-

time monitoring of biomarkers to get a deep understanding of temporal and spatial fluctuations in 

health conditions. This research explores the nano dimensionality of the substrate and the hybrid 

electrode stack to enhance the detection sensitivity and extend the dynamic range of detection 

without the use of external redox reagents. The stability of the platforms is evaluated by metrics 

such as accuracy, specificity, reproducibility, repeatability, analytical validation with gold 

standards. The affinity binding events occurring at the electrode-body fluid interface is captured 

by non-faradaic electrochemical impedance spectroscopy. A charged electrode in contact with an 

electrolyte result in the formation of an electrical double layer that is equivalent to a capacitance 

system. The output signal produced is the reflection of interfacial charge modulation that is 

recorded as the biosensing response.  

 This work demonstrates the combinatorial detection of alcohol and glucose in human sweat 

aimed at monitoring the effects of alcohol intake on the glucose levels of pre-diabetic and diabetic 

populations. The effects of varying pH environments, buffer ionicity, and cross-reactive molecules 

were tested on the platform from which we drew an inference that the sensing response is stable 

and does not degrade under these variations. CLASP demonstrated a feasible low-volume 

detection of alcohol and glucose within the physiologically relevant ranges (0.1mg/dL to 

100mg/dL) found in human sweat. 
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Agreement analysis methods approved by CLSI such as regression and Bland-Altman analysis 

were used to correlate the biosensor performance with a commercial breathalyzer and a 

glucometer. The dynamic interplay between alcohol and glucose in human sweat was monitored 

continuously over a 1.5-hour window through the incremental rate of change in impedance 

signifying the increased biomolecule-receptor interaction. This research demonstrated that CLASP 

has the potential to function as a wearable lifestyle monitor for alcohol and glucose management. 

 The next progression of this work was the demonstration of on-demand monitoring of 

elevated sweat lactate levels in sedentary populations. The skin conformable interface of the lactate 

biosensor when placed in close proximity to the human epidermis captured the sweat lactate 

variations in individuals in a sedentary and less active phase. Firstly, the on-body lactate levels 

extracted after a 60min period showed sweat lactate levels in the range 5mM to 20mM which can 

be mapped to the physiologically relevant ranges (4mM to 80mM) of lactate found in sweat. 

Secondly, the stability of the functionalized bioreceptor was evaluated to understand the duration 

of its stability for long-term usage. The biosensor signal degraded by ~30% over 4-days with a 

percent variation of less than 20% which is an acceptable CLSI standard. Spectroscopic and zeta 

analysis techniques confirmed the successful bioreceptor binding to the electrode surface and the 

bioreceptor- analyte interactions. Further, the utility of CLASP to quantify healthy and elevated 

cortisol and TNF-α levels were demonstrated to track endocrine-inflammatory relationship. The 

dynamic range of operation encompassed the diagnostic ranges of 8ng/mL to 141ng/mL for 

cortisol and 9pg/mL to 362pg/mL for TNF-α expressed in human sweat. Simulations were 

performed to demonstrate the optimal electrode design and the wicking capabilities of the 

nanoporous substrate. Long-term stability studies indicated the ability of the sensing platform to 
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capture the diurnal or inflammation related cycling of biomarkers over long time periods without 

compromised sensitivity. 

 Lastly, we explored the potential of human exhaled breath condensate as a non-invasive 

source of biomarker detection in tracking respiratory inflammation. Interleukin-6 and high 

sensitivity C-reactive protein are established as biomarkers to detect the flare of respiratory 

inflammation. The detection efficiency of the developed EBC-SURE platform was validated by 

spike and recovery analysis, and specificity studies performed in simulated and human EBC. The 

non-overlapping recovered concentration ranges and negative reactivity to cross-reactive 

molecules indicated the accuracy of EBC-SURE in determining the biomarker concentration 

reliably. Repeatability studies performed by repeatedly subjecting EBC-SURE to normal and 

elevated biomarker concentrations in EBC produced distinguishable signals confirmed by 

statistical tests. Reproducibility studies generated similar responses over a 48-hour duration with 

a decline in sensor performance after 72hrs of bioreceptor immobilization. The performance of 

EBC-SURE was compared against a standard reference method -ELISA to validate its use for 

further clinical studies. A correlation coefficient of ~0.99 obtained from regression analysis, and 

a mean bias close to zero obtained from Bland-Altman analysis indicated the platform’s robustness 

in detecting EBC biomarkers. 

 Future work for recruiting EBC-SURE as a point-of-aid screening platform is directed 

towards enhancing its multiplexing capabilities to detect other inflammatory biomarkers; studying 

a larger set of human EBC samples to understand subject to subject variability for clinical studies; 

correlation of EBC biomarker levels with salivary biomarker levels; continuous monitoring of 
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biomarkers; and the development of a hand-held device prototype that houses the EBC-SURE and 

condenser to enable real-time biomarker monitoring.   
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