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ABSTRACT 

 
 
 Supervising Professors: Balakrishnan Prabhakaran, Chair 
                                        Gopal Gupta, Co-Chair 
 
 
 
 
Artificial Intelligence (AI) is a science or technology by virtue of which machines inculcate human 

intelligence by implementing intelligent algorithms. This research study could be generalized as 

an application understanding and imitating expert human (an orthodontist) to solve an optimization 

problem with computing ability as high as a normal computer system. Formalizing the common 

sense facts and constraints, and then designing a logically sound algorithm to solve the constraints 

and produce an optimum solution are two main parts of the optimization mechanism. Using a real-

world 3D model for parameter evaluation to generate a single input matrix for the algorithm is a 

part of preprocessing for the optimization. Thus, this convergence and automation of AI and 

Orthodontics for the malocclusion treatment will minimize the differences and errors from manual 

work and reduce labor force saving time and cost by minimizing the iterative biological sequence 

of diagnosis. 
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CHAPTER 1 

INTRODUCTION 

“I don’t see that human intelligence is something that humans can never understand.”  

~ John McCarthy, March 1989 

1.1 The Beginning 

Artificial Intelligence (AI) is a science or technology by virtue of which machines inculcate human 

intelligence by implementing intelligent algorithms. It can be defined as science and engineering 

of building intelligent machines with the help of intelligent computer programs. It is related to the 

work of computer systems understanding human intelligence, not confining itself to biologically 

observable methods [32].  

Intelligent behavior could be attributed to two main qualities – logic formalism and 

decision making. System possessing artificial intelligence must be capable of performing 

automated decision making and responding to the changing environment (as we change the 

knowledge). Machines need to understand this logic and make the decisions while interacting with 

the environment to produce an intelligent outcome. To build automated reasoning systems, 

classical logic based approaches have been used traditionally.  

AI has certain branches like – Logical AI, Search, Representation, Inference, Learning 

from Experience, Pattern Recognition, Common Sense Knowledge and Reasoning, Planning, 

Epistemology, Genetic Programming, Ontology, Heuristics.  

AI offers a wide range of applications in terms of Game Playing, Computer Vision, Speech 

Recognition, Expert Systems, Natural Language Processing, Heuristic Classification [32].  
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This research is more of an application based than the theoretical aspect of AI. It could be 

generalized as an application understanding and imitating expert human (an orthodontist) to solve 

an optimization problem with computing ability as high as a normal computer system. Formalizing 

the common sense facts and constraints, and then designing a logically sound algorithm to solve 

the constraints and produce an optimum solution are two main parts of the optimization 

mechanism. Using a real-world 3D model for parameter evaluation to generate a single input 

matrix for the algorithm is a part of preprocessing for the optimization. Thus, this convergence and 

automation of AI and Orthodontics for the malocclusion treatment will minimize the differences 

and errors from manual work and reduce labor force saving time and cost by minimizing the 

iterative biological sequence of diagnosis.  

 

1.2 Existing Scenario 

Nowadays the dental care can be costly and hard to access, especially if you live in a rural country 

side. The biggest challenge in dental care is cost. According to a study from the National Health 

and Nutrition Examination Survey, about 65% of the population could have treatment from an 

orthodontist [5]. But it is the higher income generating people who get to afford for most of the 

treatments.  

Most predominant appliances used in the treatment – braces and invisible aligners (clear, 

mouth-guard like piece of fiber) may have variable cost, but the treatment can range from $4500 

to $6500 for adolescents (with mixed dentition or number of teeth anywhere in between 20 and 

32), and up to $7000 for adults (permanent dentition, with 32 number of teeth). Thus, a handful of 

startups are now vying to use the opportunity in this market with over $10 billion revenue [10].  
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Several startups use clear aligners in most of their treatments and try to come up with the 

plan for each patient in multiple phases with an experienced team of Orthodontists [11] [12] [13] 

[14]. Each patient is then allocated with different sets of invisible aligners iteratively at the end of 

each phase in the plan. This plan is orthodontist crafted. And again lacks the ability to confront 

many mechanical and biological constraints producing the minimum sequence of fixtures.  

 

1.3 Overview 

 

The AI driven Orthodontics is divided in two major phases – data generation and optimization. 

The input to the problem is the simple 3D image and the output of this process is the sequence of 

fixtures required to fix the crooked model by an orthodontist, as in Figure 1.1.   

 
Figure 1.1: Overview of AI based Orthodontics 
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1.4 Thesis Outline 

This research involves two main ideas – formalism of a constraint logic program understanding 

the different movements an orthodontist could make freely, and extraction of required parameters 

as an input to the logic program.  

The next chapter on Orthodontics discusses the problem from an orthodontist perspective. 

It explains several basic ideas about the misalignment of the teeth. Other than aesthetic benefits, it 

explains the health benefits of a healthy bite, with signs, symptoms, and consequences of 

disfigured orientation of teeth. It gives an overview of the structure of the teeth and discusses 

several classifications on the type of irregularities. It concludes with the diagnosis, challenges of 

crowding of teeth, which is the most prevalent type of irregularities found in orthodontic treatment, 

followed by the need for an optimization technique.  

Chapter 3 is about Constraint Logic Programming. It builds up from the idea of logic 

programming and moves further into the realms of Prolog, followed by Prolog programs using 

Constraint Logic Programming over Finite Domains (referred to as CLP(FD) hereafter). It 

discusses the formulation of the optimization algorithm using snippets from the source code and 

provides the set of constraints assumed and relaxed for simplicity.  

The next chapter, Chapter 4, is about Segmentation and Data Generation, which provides 

insights on how the required input data is generated from a real-world 3D model.  

And the last chapter, Chapter 5 – Applications, provides a brief summary of this study in 

the form of conclusion, it’s contribution to the research community and future work, and 

applications of this AI based Orthodontics study. 
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CHAPTER 2 

ORTHODONTICS 

2.1 Background 

Orthodontics (or Dentofacial Orthopedics) is a dental domain that consists of the diagnosis, 

prevention, interception and correction of malocclusion, as well as neuromuscular and skeletal 

abnormalities of the developing or mature orofacial structures [17]. “Orthodontics” is formed by 

combining two greek words – orthos (correct or straight) and odont (tooth).  

 

2.1.1 Malocclusion 

Malocclusion can be defined as incorrect alignment of teeth forming uneven alignment of two 

dental arches as they are joined together, as seen in Figure 2.1. This termed was first coined by 

Edward Angle, father of modern Orthodontics, deriving it from occlusion (the way in which 

opposing teeth meet together) [17]. 

  

 
Figure 2.1: Mandibular Malocclusion [Meshlab] 
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2.1.2 Signs, Symptoms and Treatment  

It is a common myth to consider malocclusion as a disease. It is no more than just a misalignment 

of maxillary (upper) and mandibular (lower) teeth. It varies in adults, with permanent dentition, as 

well as in children, with primary dentition. Several studies indicate the prevalence of malocclusion, 

and it can be safely said that about 57% of the United States population has malocclusion, and thus 

can be treated with the help of an Orthodontist [5].  

Generally, the treatment of malocclusion spans from 1 to 3 years, where the individual is 

called upon every 4 to 10 weeks for monitoring and treatment purposes. Depending upon the need 

of the patient, necessity of fixtures and some other constraints, various methods can be adopted to 

treat the malocclusion. If left untreated, malocclusions can result in several oral issues like -  

1. crooked teeth    6. temporo-mandibular joint dysfunction (TMJ) 

2. crowded teeth    7. sleep disorders 

3. protruding teeth    8. cosmetic appearance 

4. gum problems    9. speech 

5. headaches     10. difficulty with eating or chewing 

Treatment of malocclusion could reduce the risk of tooth decay, and help in relieving 

excess pressure on the temporo-mandibular joint (TMJ). Properly aligned dentition is also easier 

to keep clean, preventing plaque, bacterial growth and cavities [16]. Orthodontic treatment is also 

used to align teeth for aesthetic reasons, to gain a confident smile.  

Improperly aligned teeth can wear down the enamel which could eventually end up having 

a tooth loss. Coupling with the skeletal disharmony of the face, malocclusion is an inappropriate 

relation between the upper and lower jaws. These skeletal disharmonies distort individual’s face 
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shape thereby affecting aesthetics of the face and causing mastication or speech problems. Many 

of the skeletal disharmonies can be treated by Orthognathic surgery only.  

 

2.1.3 Types of Plane in 3D 

There are 3 hypothetical planes transecting a body, so as to describe relative movements and 

structures around it. As shown in the Figure 2.2, we’ll use these three naming conventions for each 

tooth in the 3D model.  

• Sagittal Plane – Plane dividing the body in two identical halves, left and right. 

• Frontal Plane – Plane dividing the body into front and back portions. 

• Transverse Plane – Plane dividing the body into head and tail (or legs). 

 

Note that, for teeth structures, Frontal plane and Sagittal plane changes as we move along 

the arch form from one tooth to another, Transverse plane being left unchanged.  

  

 
Figure 2.2: Planar division of human body. Image obtained 

from Opinions on Horizontal plane, May 2019 
http://www.writeopinions.com/horizontal-plane.  

http://www.writeopinions.com/horizontal-plane
http://www.writeopinions.com/horizontal-plane
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2.2 Structure and Type of Teeth  

A tooth has two main parts – crown and root. Crown is the part above the gums and root is the part 

below the gums. Neck is between the crown and the root of the tooth as in Figure 2.3.  

 

  

 
Figure 2.3: Tooth Anatomy. Image ID: 11229680 from Tooth Anatomy Dental Vectors in 

Royalty Free Vectors by MicroOne (artist). Source URL: 
https://www.vectorstock.com/royalty-free-vector/tooth-anatomy-dental-infographics-

vector-11229680 

https://www.vectorstock.com/royalty-free-vector/tooth-anatomy-dental-infographics-vector-11229680
https://www.vectorstock.com/royalty-free-vector/tooth-anatomy-dental-infographics-vector-11229680
https://www.vectorstock.com/royalty-free-vector/tooth-anatomy-dental-infographics-vector-11229680
https://www.vectorstock.com/royalty-free-vector/tooth-anatomy-dental-infographics-vector-11229680


 

9 

There are four main types of teeth in the oral cavity, as in Figure 2.4.  

 

Primary dentition (the arrangement or condition of the teeth in a particular species or individual) 

is the first oral cavity, often termed as deciduous teeth. These teeth will be exfoliated (lost) as the 

permanent teeth grow (erupt). It has 6 anterior teeth (4 incisors and 2 canines), whereas 4 posterior 

teeth (2 molars in each quadrant), in each of the maxillary and mandible arch forms.  

            Secondary dentition comprises of 32 teeth, where 12 teeth (3 in each quadrant) are newly 

added. Mixed dentition period is a phase when both primary (deciduous) and permanent teeth are 

present in the oral cavity.  

  

 
Figure 2.4: Primary and Secondary Dentition. From an 
article What are the Different Types of Teeth called? 
Medically reviewed by Christine Frank, written by 

Stephanie Watson, May, 2018 from 
https://www.healthline.com/health/teeth-names#diagram  

https://www.healthline.com/health/teeth-names#diagram
https://www.healthline.com/health/teeth-names#diagram
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2.2.1 Incisors  

The four front teeth in either of the jaws are called incisors as in Figure 2.5. The main function of 

incisors is to cut food. The two adjacent teeth to the mid-line are called central incisors whereas 

the other two are called lateral incisors. They have a single root and a sharp incisal edge.  

2.2.2 Canines  

There are two canines in each jaw – upper (maxilla) and lower (mandible), as in Figure 2.6. Their 

primary function is to tear food. Canines have single pointed cusp and a single root. They have the 

longest root among all the teeth. They form corners of the mouth.  

 
Figure 2.5: Incisors in Green [Meshlab] 
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2.2.3 Premolars  

Designed to crush the food, premolars are in between molars and canines. There are 2 premolars 

in each quadrant of the mouth as shown in Figure 2.7, with a total of 8 in a secondary dentition 

and no premolars in a primary dentition. Premolar closest to the mid-line is the first premolar and 

the other is second premolar. These type of teeth could have 3-4 cusps. The maxillary premolar 

has 2 roots, and the rest of them has single root.  

 

 
Figure 2.6: Canines/ Cuspid in Red [Meshlab] 

 
Figure 2.7: Premolars in Yellow [Meshlab]  
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2.2.4 Molars  

Molars are the posterior (farthest from the mid-line) teeth as shown in Figure 2.8. They have 4-5 

cusps with a broader and flatter crown. They serve as to grind the food. They usually have 2-3 

roots. There are 12 molars, with 3 in each quadrant, in a fully grown dentition, whereas there are 

8 molars in the primary dentition. Identifying from the closest to the mid-line, they are termed as 

first, second and third molars. Third molar is referred to as wisdom tooth, which may or may not 

be developed in some individuals.  

 

2.3 Classification of Occlusions and Malocclusions 

2.3.1 Angel’s Classification Method  

The common system used to classify occlusion is termed as Angel’s classification system. It is 

based on relative positions of maxillary and mandible first molars. Class I, as in Figure 2.9 and 

Figure 2.10, is considered as normal occlusion. Class II and III are considered as malocclusions 

and further have different divisions [18].  

 
Figure 2.8: Molars in Blue [Meshlab] 
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Class II malocclusion can be classified further into division 1 (maxillary incisors tilting 

outwards) and division 2 (maxillary incisors inclining labially).  

 
 

Figure 2.9: Types of Malocclusion. A. Normal occlusion; B. Class I malocclusion; C. Class II 
malocclusion; D. Class III malocclusion. Dorland's Medical Dictionary for Health Consumers. 

S.v. "malocclusion." Retrieved May 6 2019 from https://medical-
dictionary.thefreedictionary.com/malocclusion  

 
 

Figure 2.10: Angel’s Classification of Malocclusion. Mosby's Medical Dictionary, 8th edition. 
S.v. "malocclusion." Retrieved May 6 2019 from https://medical-

dictionary.thefreedictionary.com/malocclusion  

https://medical-dictionary.thefreedictionary.com/malocclusion
https://medical-dictionary.thefreedictionary.com/malocclusion
https://medical-dictionary.thefreedictionary.com/malocclusion
https://medical-dictionary.thefreedictionary.com/malocclusion
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2.3.2 Types of Malocclusions  

Human skull has its maxillary arch wider than the mandibular arch structure. This leads to natural 

occlusion where mandibular teeth just touch maxillary teeth from inside while making the contact 

on closing the jaws. Thus, bone structure plays a vital role in determining the severity of 

malocclusion in addition to the misalignment of the teeth. 

There are several different types of malocclusions, and while some may be symptom-less, 

others can be inconvenient and even painful. But they all can be straightened at any age. And they 

are not all mutually exclusive [15].  

Here are most commonly found types of malocclusions in an Orthodontic treatment. These 

disharmonies can be observed as the extended cases of Angel’s classification in an abstract form 

from the three classifications.  

 

2.3.2.1 Overcrowding 

The most common orthodontic treatment among adults is Overcrowding. It is caused by lack of 

space, resulting in the formation of crowded teeth, which are at times crooked and might have an 

overlap. 

 

2.3.2.2 Overjet 

Overjet, a type of class II occlusion, is often confused with an overbite. It is an alignment of the 

teeth where upper teeth extend beyond the bottom teeth in transverse plane. It can cause damage 

to the dentition, producing eating and speech problems. 
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2.3.2.3 Overbite 

A small attachment of mandibular teeth within the maxillary teeth is an ideal occlusion. Overbite 

occurs when the maxillary teeth bite down onto the mandibular gums. 

 

2.3.2.4 Crossbite 

Just like Overbite, where mandibular teeth are inside, Crossbite is a case where maxillary teeth 

bite inside your mandibular teeth. This could happen to either side of the jaws and mainly affects 

your front (anterior) and back (posterior) teeth.  

 

2.3.2.5 Anterior Crossbite (or Underbite) 

Underbite or anterior Crossbite is a type of Crossbite where the front teeth are affected.  

 

2.3.2.6 Spacing 

A case of misalignment of teeth where there occurs a space between two neighboring teeth, is 

termed as Spacing. Tongue thrusting, missing teeth, small teeth and thumb sucking are common 

causes of Spacing.  

 

2.3.2.7 Diastema 

A case of Spacing where there exists a space between anterior (front) teeth. Famous models like 

Lara Stone and Madonna are known to have Diastema.  
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2.3.2.8 Impacted tooth 

A tooth which has a stunted growth and is unable to erupt from the gums is called as Impacted 

tooth. It could be often treated by extruding it to apply force couple or even the tooth could be 

removed in few cases.  

 

2.3.2.9 Missing tooth (or Hypodontia) 

A tooth not grown due to trauma or not developing in the dentition is often treated as the case of a 

Missing tooth or Hypodontia. 

 

2.3.2.10 Openbite 

A case where anterior teeth do not occlude ideally, creating space is called an Openbite. It can also 

called be as anterior Openbite.  

 

There are also several occasions of malocclusion of type – Misplaced mid-line (the 

misaligned line formed by joining the central incisors from upper and lower jaws), Rotation (a 

case when a tooth turns or tips from its normal orientation), and Transposition (when a tooth 

grows or erupts in to one another’s place).  
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2.4 Global prevalence of Malocclusion 

Following, as shown in Table 2.1, is the global prevalence of malocclusions with respect to 3 

classes from Angel’s classification system [19]. 

Table 2.1: Percentage of malocclusions in Mixed and Permanent Dentition 

Mixed Dentition Permanent Dentition 

Class I Class II Class III Class I Class II Class III 

72.74% 23.11% 3.98% 74.70% 19.56% 5.93% 

 

Figure 2.11 and 2.12 represent the above values for Mixed and Permanent Dentition respectively.  

 

2.5 Crowding of Teeth  

Crowding of teeth is very common cause of malocclusion treated by orthodontists. It occurs when 

there is insufficient room for teeth in either of the arches (maxillary, or mandible). The blocking 

for the space is in all planes of space in a 3 dimensional view.  

  

 
Figure 2.11: Mixed Dentition Malocclusion  

Figure 2.12: Permanent Dentition Malocclusion 
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2.5.1 Diagnosis of Crowding  

The strategy for correction of Crowding involves estimating the amount of crowding. It is followed 

by defining the therapeutic strategy which may include extraction of teeth, expanding the dental 

arches, reducing the size of the teeth (commonly called as inter-proximal reduction), distal 

movement of molars, flaring the lower incisors, uprooting teeth. These approached may be applied 

singularly or in combination. The decision to use any of those strategies is dependent on the 

severity of the problem, biological and physiological parameters, the patient’s desire, soft tissue 

aesthetics, and the dental history of an individual.  

To make diagnosis of crowding quantifiable, many attempts have been made over the years 

to develop accurate space analysis. The measure remains limited in their scope since they measure 

crowding in a linear and a single plane only.  

It has been found in a study [3] that direct visualization was the preferred method of space 

estimation by all the orthodontists. In contrast, the crowding estimations were very variable. For a 

mandibular crowding with most crowded model having 7.5mm of crowding, the estimates of the 

orthodontists ranged from 5 to 20mm. Besides, all the crowding estimates made were unrelated to 

clinical experience. Errors in estimation of crowding often lead to incorrect treatment approaches 

which add to the cost of treatment, length of care and unwanted biological sequel thus affecting 

the treatment outcome adversely.  
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2.5.2 Challenges in the Diagnosis - Constraints  

Correction of crowding is accomplished by applying mechanical force to the bone via the teeth. 

These forces include a biological response within the bone. More specifically, apposition of the 

bone i.e. build of the bone is caused by tensile forces and bone resorption is caused by compressive 

forces. The interplay of apposition and resorption of bone is bone remodeling, which allows the 

tooth to move through the bone towards its planned position. The force delivery mechanisms are 

called as orthodontic appliances. These may be forced in nature as the commonly seen braces 

which are bonded to the teeth and carry wires whose elastic recovery post deformation provide the 

force mechanism to move the teeth. The shape or the configuration of the wire drives the teeth 

towards their final state.  

More recently clear aligners have come into vogue [8]. These consist of pre-molded plastic 

trays to deliver forces created by their elastic deformation. They are progressively changed to apply 

forces on the teeth to reach the target state. The aligner can only produce push forces and therefore 

special attachments need to be placed on the teeth to elicit forces and rotational couples to move 

the teeth effectively.  

Furthermore, these aligners are designed using a CAD/CAM process, where by a 3D virtual 

image of the dentition is captured with a scanner. This image is processed, and each tooth is 

segmented to create an individual movable object. And then the teeth are set to be in a desired 

target state.  

A similar process is also offered for fixed appliance treatment. So, this CAD/CAM 

approach in orthodontics offers the orthodontist the ability to create totally personalized 

orthodontic appliances for their patients. The customized wires are automatically designed, and 
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the fixed braces are machined while the aligners fabricated by printing molds of teeth that reflect 

their incremental movement and for each mold a plastic tray is thermoformed over the positive 

vector.  

 

2.5.3 The Need for Optimization  

The greatest challenge in designing the optimal therapeutic device is that neither the biological 

constraints nor the mechanical constraints, such as tooth-to-tooth conflicts, are reflected in design 

parameters.  

In other words, planning is designed by a linear model driven by an initial state and the 

final state. In case of Invisalign, the largest aligner manufacturing company, there is more credence 

paid to the design of the target state by considering conflict management, but the approach remains 

superficial at its best. Thus, CAD/CAM approaches to orthodontics treatment remain limited in 

offering the doctor an optimized care strategy with associated appliances.   

There is a need to aid the orthodontist with the design software that enables her to perform 

a target setup that recognizes the impact of biological boundary conditions on tooth movement to 

resolve crowding and furthermore enhance the ability to optimize the setup through logic-based 

approach. This overrides any conflict (or collisions) between teeth as their target positions are 

designed. This would help clinician to design more predictable care regiments and achieve superior 

outcomes in shorted care cycles, thereby minimizing the iterative cycles in the virtual care process 

that the doctor has to go through in dental care planning.  
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CHAPTER 3 

CONSTRAINT LOGIC PROGRAMMING 

3.1 Introduction to Logic Programming 

Scientific thinking lays foundation for the inception of logic [30]. It provides the explicit 

expression of one’s goals, knowledge, and assumptions as a precise language. 

Logic gives the constitution for -  

i. deducing consequences from premises 

ii. studying the truth or falsity of statements given the truth or falsity of other statements 

iii. establishing the consistency of one’s claims 

iv. verifying the validity of one’s arguments  

Every modern-day computer is based on the early concepts of von Neumann and his 

colleagues. A program based on this concept is a sequence of instructions which are intended to 

do such tasks, with an additional set of control instructions monitoring the next instruction to be 

executed in the sequence, which may reside at some register in the memory.  

Logic and programming both need the explicit expression of one’s knowledge and methods 

in an acceptable formalism. It is common presumption that programming should be an 

intellectually rewarding activity. Moreover, a good programming language is a powerful tool that 

could organize, express, experiment, and even communicate with the thought process. 

Programming is often treated as “coding”, which is nothing but the last, mundane, intellectually 

trivial, time-consuming and unexciting phase of problem solving using a computer system, which 

perhaps lies at the root of modern “software crises”. 
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Rather, we think that programming can be, and should be, part of the problem-solving 

process itself; that thoughts should be organized as programs, so that consequences of complex set 

of assumptions can be investigated by “running” the assumptions; that a conceptual solution to a 

problem should be developed hand-in-hand with a working program that demonstrates it and 

exposes its different aspects.  

Logic programming, and its sister approach, functional programming, radically departs 

from the conventional computer languages. Logic programming is derived from an abstract model, 

which has no direct relation to or dependence on to one machine model or another. Logic 

programming proposes, in it’s purest form, that explicit expressions should not be provided for the 

operations rather the assumptions and knowledge about the problem sufficient enough to solve it 

be stated explicitly, as logical axioms. Therefore, implementation of a logical program is an 

endeavor to solve a problem having a goal statement, by formalizing the statement to be proved, 

given the assumptions included in the program. This idea can be summarized as following two 

metaphorical equations:  

program = set of axioms  

computation = constructive proof of a goal statement from the program   

     The intuition to these equations could be traced back to David Hilbert’s program [34], in 

1906, on formalizing theorem proving set as a part of agenda of mathematics (23 problems). 

Failure of this program lead to incompleteness and undecidability results – given a set of axioms 

that encompasses natural numbers there are results that can be neither be proved or disproved, 

from Gödel and Turing (1930) [35]. This marked the beginning of modern age computers.  
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The first use of this approach in practical computing is a sequel to J. A. Robinson’s 

unification algorithm and resolution principle [36] (1965), which is considered to be an 

improvement over Herbrand’s automatic theorem proving procedure [37]. In early 1970s, R. 

Kowalski formulated the procedural interpretation of Horn clause logic [38] [39], showing one can 

design a programming language based on resolution known as a SLD resolution principles. It is a 

commonly used inference rule in the logic programming domain. It is both sound and refutation 

complete for Horn clause, i.e. a refinement of resolution. And thus, the field of logic programming 

was born.  

 

3.2 Prolog 

Prolog is a language built upon the fundamental constructs of logic programming – terms and 

statements. There are three main kinds of statements in Prolog – facts, rules, and queries. The only 

data structure it has is termed as a logical term.  

 

3.2.1 Facts  

% fact: father(X,Y) : X is father of Y  

father(tywin, tyrion).  

could be read as “tywin is father of tyrion” or “father relation holds between tywin and tyrion”. 

Here “father” is a predicate symbol and tywin or tyrion are called atoms or actuals. Predicates and 

atoms always begin with lowercase letter.  

male(john).  

Is another simple fact stating that “john is male”.  
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3.2.2 Rules  

As facts are unconditional truths, rules are conditional truths. Rules are generally of the form:  

Head ← Body   or  A ← B1, B2, B3, …, Bn.  

where n >= 0. Here, A is the head of the rule, and the conjunction of goal statements B1, …, Bn is 

the body of the rule.  

Thus, a fact is a rule without a body (n = 0). A rule expressing son relationship is as follow -  

son(X, Y) :- father(Y, X), male(X). 

 

3.2.3 Queries  

Queries are means of retrieving information from the logic program. Syntactically, facts and 

queries looks the same, but they can be distinguished by the context. A simple query like in Figure 

3.1 consists of a single goal. Rules, facts, and queries are also called as Horn clauses.  

 

3.2.4 Data Structure 

The logic programs consist of single data structure, called predicates. A predicate could be 

explained as - P(t1, t2, t3, ..., tn). Where P is the predicate name, and t1, t2, t3, ..., tn are terms as 

arguments to the predicate P.  

Each term could be a -  

i. constant, beginning with a lowercase letter. E.g. parent(catelyn, arya).  

ii. Variable, beginning with an uppercase letter.  

iii. Structure or a function, which is of type f(t1, t2, t3, ..., tn) where again t1, t2, t3, ..., tn are 

terms of the function f, or a function symbol or a functor f.  
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Note that predicate occurs in rules, but functors will always be in a predicate’s or other functor’s 

argument. E.g. f(g(a,X), Y). Here, ‘g’ is a functor whereas ‘f’ is a predicate [31].  

 

 

 3.2.5 Unification and Execution model  

These queries are matched with a rule having a matching head, which is referred to as unification. 

These matching is executed from left to right, with a goal to find all possible matchings. On a 

failure to unify a rule, the search backtracks to find more possible unifications. This search is 

executed in a depth first search manner.  

 
Figure 3.1: Simple logic program with facts, rules and queries 
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The execution model -  

i. calls the expansion using argument matching with the head of a matching rule 

ii. substitutes variables in the body with values found during argument matching 

iii. repeats until no calls are left 

iv. backtracks if failure occurs 

 

3.2.6 Horn Clauses and The Power of Prolog  

Predicate, of the form P(t1, t2, t3, ..., tn) with P as predicate symbol and t1, t2, t3, ..., tn as terms, can 

be also called as atomic formula in Prolog.  

A literal could be of form of:  

• an atomic formula (or a positive literal) 

• a negated atomic formula (or a negated literal) E.g. ¬P(t1, t2, t3, ..., tn)  

A clause is a disjunction of literals:  

• L1 V L2 V L1 V . . . V LN    where each Lk is a literal 

A clause with at most one positive literal is called a Horn clause. And a definite clause is a Horn 

clause with exactly one positive literal.  

• (H V ¬G1 V ¬G2 V . . . V ¬GN) . . . . where H is called head of the clause and the rest is 

called body of the clause.  

Equivalently, it can be written as:  

• H V ¬(G1 Λ G2 Λ  . . . Λ GN) . . . . using DeMorgan’s rule 

which is semantically equivalent to A V ¬B Ξ A ← B,  

we can write this clause as an implication.  
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• H ← (G1 Λ G2 Λ  . . . Λ GN)  

And we know that, these implications are the basic building blocks for programming in Prolog.  

Prolog uses :- for ← and , for Λ.  

Horn clauses are a Turing complete subset of predicate logic.  

A Turing machine consists of:  

• a set Q of states 

• an initial state 

• a final state qf  

• a tape alphabet Γ 

• a transition function δ  

which maps current state, and symbol under the tape head to:  

◦ the next state  

◦ a symbol that is written at the current position  

◦ and L or R indicating how to move the tape head  

δ: Q X Γ → Q X Γ X {L, R} 

This formalism suffices to express all computations that are currently known. A Turing machine 

can be modeled as a conjunction of Horn clauses. 

Thus, two main characteristics of Horn clauses:  

1. they have a simple structure 

2. they are general enough to express all computations. 

Syntactic simplicity allows fast inference algorithms.  
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Horn clauses thus strike a nice balance between expressiveness and efficiency. Prolog 

benefits from this balance. Prolog lets us write short programs that are general and efficient. In 

addition, we can reason logically about Prolog programs. This makes pure Prolog code also easy 

to understand and debug.  

 

3.3 CLPFD 

CLP(FD) stands for Constraint Logic programming over Finite Domains [28]. It solves problems 

that involves sets of variables, where relationships among the variables need to be satisfied. 

CLP(FD) is also useful for replacing many getter and setter methods in Object Oriented design, 

which restricts the domain of the input/ output. For example, if we are asked about height of a 

certain person, without knowing it’s actual height, we can assert that it is in the range of 21 to 108 

inches (shortest to tallest known height of a human). We can again restrict other unreasonable 

values, as we find a solution to the height finding problem.  

Constraints help in pruning subtrees of the search space, thus improvising the efficiencies 

in several search space optimization problems.  

Here are some broad categories of problems that CLP(FD) can address:  

• Scheduling problems: For example, when to schedule task, tk, given N tasks and their 

dependencies.  

• Optimization problems: For example, what combinations of elements could be added to 

make products maximizing profits earned in the factory.  

• Satisfaction problems: For example, arranging rooms in a school, with some constraints 

like staff room should be close to all the class rooms, or the well-known Zebra Puzzle.  
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• Labeling problems: For example, solving a Sudoko or a Cryptarithmetic problem.  

• Belief or intention problems: Like in detective puzzles or Non-Player Characters (NPCs) 

in video-games.  

• Sequence problems: Like finding a travel itinerary that gets to our destination.  

• Geometric constraints for Graphics: Like in a CAD system, where two lined need to 

perpendicular to each other, with being parallel to the third line with distance D apart, and 

so on.  

All widely used Prolog implementations provide CLP(FD) constraints. Exact details might 

differ from system to system. In SWI-Prolog, the CLP(FD) constraints are conveniently available 

from as a built-in library.  

 

3.3.1 Example of Constraints in the Logic program  

To include the CLP(FD) library, we need to import it by mentioning it in the first line as in the 

following program [27]. Here, we’ve put 3 constraints for variables X and Y. Domain constraint 

on both the variables and X always being greater than Y. On querying, as in Figure 3.2, we can 

get all possible values for these variables, or even ask for values of one variable by fixing the other.  

 

3.3.2 Labeling  

After adding constraints to the program, it is necessary to get variables in their grounded form. For 

e.g. if we have unbounded variable X, it must be assigned or bounded by some value. This often 

gives us a deterministic or non-deterministic solution.   
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The predicate indomain/1 successively binds a single variable to it’s all possible values on 

backtracking the search. But usually we could call label/1 or labeling/2 to find all possible 

solutions. These predicates bind a set of values to the variable on backtracking.  

Thus, our constraint system is capable enough to fall back and generate, similar to most of 

the Prolog programs, every possible outcome satisfying the set of constraints in the program [29]. 

Consequently, the generate and test model becomes – constraint, generate (by labeling), and test 

model. And therefore, most of the CLP(FD) programs follow a general design of constraint 

followed by label.  

 

 

  

  

 
Figure 3.2: Simple program with constraints using CLPFD 
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3.4 Formulation of the Optimization Algorithm  

We’ve identified the following structure of tooth predicate for representational simplicity and 

robustness of the problem representation.  

tooth(ToothIndex, [M1, M2, M3, M4, [X, Y], M6], [Bl, Br]).  

Here, the tooth predicate has 3 terms as it’s arguments -  

1. ToothIndex: Determines the index of each tooth in the arch as in Figure 3.3. Note that it 

starts from 0, and goes on till N – 1, where N is total number of teeth in the arch form.  

2. List of deviations: [M1, M2, M3, M4, M5, M6] denotes the list of deviation (movements) 

of the tooth from its correct orientation. Each of these deviations could be computed as a 

vector from irregular to regular plan (or model). Following is the list of all these deviations 

and their corresponding descriptions:  

 
Figure 3.3: Indexed Teeth Representation [Meshlab] 
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• M1: It corresponds to Crown Tipping of the tooth. It can be described as tooth being 

rotated keeping pivot at its root. Note that this movement could be observed in sagittal 

plane as well as frontal plane.  

• M2: It corresponds to Root Tipping of the tooth. It can be described as tooth being 

rotated around a pivot which is at the crown. Like Crown tipping, it can also be 

observed in sagittal as well as frontal plane.  

• M3: It corresponds to Torquing of the tooth. It can be described as a rotation at center 

of the tooth (pivot) where axis of rotation is in transverse plane.  

• M4: It corresponds to the Rotation of the tooth. Here, the axis of rotation passes through 

the center of the tooth to the crown making it a rotation of the tooth around itself.  

• M5: It corresponds to translational movement of the tooth. It is again a list of a pair of 

numbers. For example, M5 = [X1, Y1] where X1 denotes the deviation in X dimension 

whereas Y1 denotes deviation is Y dimension perpendicular to X dimension. Both of 

these deviations occur in the transverse plane. Note that these deviations are in 3D 

coordinate system.  

• M6: It denotes the Intrusion/ Extrusion of the tooth. It is along the perpendicular to the 

transverse plane.   

3. List of pair of booleans(1 or 0): [Bl, Br] denotes the Blocking constraint from the 

neighbors of the tooth. Bl and Br denotes blocking constraint by the previous indexed tooth 

and next indexed tooth on this tooth respectively.  

 

  



 

33 

3.4.1 Fixing with and without Blocking  

The simplest form of constraint is having no constraint on the tooth movement. With these 6 

degrees of freedom, a tooth could be moved to be fixed resolving irregularities in the dentition. 

These movements are identified as the fixtures that could be performed by an orthodontist when 

fixing the malocclusion of a patient. These movements are combination of two basic 

transformations of objects in 3D – translation and rotation.  

When a tooth is unblocked for its desired fixture the fixture is performed readily. For 

example, if a tooth is supposed to be moved along X axis by Dx = -0.5 mm, and there is no blocking 

constraint conflicting this fixture, then we can say the fixture could be performed safely. Note that, 

if there is a blocking constrain from one of the neighbors and if it does not cause conflict with the 

desired fixture, the action is performed as well. Here, the terms – left and right neighbors are used 

in place of – previous and next indexed tooth and vice versa quite often.  

 When a tooth is blocked by its neighbor, in such a way that the fixture required to perform 

is blocked, then such a neighbor is assumed to be at inappropriate location. This fact can be 

attributed to the logic that teeth are assumed to be the bounding boxes, not as their actual shape, 

and therefore, any blocking box must be misaligned from its correct orientation. Eventually, every 

blocking tooth is fixed preferably and thus provides the sequence of the fixtures following the 

blocking dependency from neighbor to neighbor. Note that, a tooth blocked by it’s both the 

neighbors if only fixed when these neighboring teeth are fixed.  
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3.4.2 Movements and their descriptions  

3.4.2.1 M1 – Crown Tipping  

Fixes the tooth at index I, with the two cases as in Figure 3.4. Tooth is fixed only if the neighboring 

condition is not blocked. Here, two in-built predicates from the CLP(FD) library are extensively 

used – flatten and ins.  

Predicate flatten/2: flatten(+NestedList, -FlatList) is true if FlatList is not nested version of 

NestedList, without any empty lists.  

Predicate ins/2: +Vs ins +D describes that the variables in the list Vs are elements of the domain 

D. Domain D is always an integer set.  

Built-in meta predicates like assert/2 retract/2 are used to dynamically add and remove facts from 

the Prolog database.  

 

 
Figure 3.4: Crown Tipping Predicate  
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3.4.2.2 M2 – Root Tipping  

Fixes the tooth if there is no blocking on its corresponding side of fixture as in Figure 3.5. For 

example, if right neighbor blocks, but the root tipping could be performed swiftly on the left side, 

then the tooth is diagnosed with relevant amount of root tipping.  

 

3.4.2.3 M3 – Torquing and M4 – Rotation  

Torquing and Rotation for a tooth, refer Figure 3.6, it is desirable to have unblocked conditions on 

either side. So, a tooth is performed with the relevant fixture out of these two only if the tooth is 

unblocked. If it is even blocked by one of the adjacent tooth, the fixture is not performed. Thus, 

one has to have to fix the blocking neighbor first and then try to perform these fixtures. Note that 

the torquing can be performed in the both sagittal and frontal plane. Rotation is recommended only 

if there is no tipping or torquing needed for a tooth. Besides, Rotation as well as Torquing does 

not affect the change in the center of the tooth. 

 
Figure 3.5: Root Tipping Predicate 
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3.4.2.4 M5 – Translation movement in Transverse plane  

This movement consist of a vector along which the translation is to be performed. This vector is 

broken down into 2D representation along X and Y axes.  

It is observed that the blocking by left neighbor does not affect the translation in positive 

X axis, and likewise, blocking by right neighbor does not cause any conflict with translation in 

negative X axis, as referred from Figure 3.7. Note that, Bl and Br variables can be 0, and so the 

fixtures could be evaluated accordingly. Similarly, the fixture for translation in Y directions is also 

evaluated.  

 
Figure 3.6: Torquing and Rotation Predicates 
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3.4.2.5 M6 – Intrusion/ Extrusion  

The level of intrusion (pushing the tooth towards to bone) or extrusion (pulling the tooth away 

from the bone) depends upon the deviation of the tooth in Z axis. Z axis is perpendicular to the 

transverse plane. And the Z-deviation determines the level of intrusion/ extrusion by comparing 

the model to be diagnosed with the correct model as in Figure 3.8.  

Eventually all the values in the predicate are fixed to be 0, so that the model or dentition 

has no irregularities left. This process continues until we find a fixture for all the deviations for 

every tooth in the model.   

These predicates combine to form a logic program which could serve as an input in a 

predicate called state. The state is evaluated and according the sequence of fixtures is generated. 

 
Figure 3.7: Translation in Transverse Plane Predicates 
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A state consists of assertions about initial dentition and for each tooth indexed from 0 to N-1, 

where N is total number of teeth in the arch form.  

 

The main search predicate, as in Figure 3.9, goes through all the possibilities to fix the 

tooth sequentially by considering the blocking constraints. It evaluates the tooth which has no 

blocking. The model needs to have at-least a single tooth that has no blocking, in our case which 

is the most posterior molar (second or third molar depending upon the dentition).  

  

 
Figure 3.8: Intrusion/ Extrusion Predicate 

 
Figure 3.9: Main search Predicate 
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3.5 Test Cases and Results 

 

• Test Case 1: As simple as no deviation at all, as shown in Figure 3.10.  

  

• Test Case 2 and 3: Case 2 is a simple single deviation for a tooth at index 8. Case 3 is 

multiple deviations for teeth with no blocking constraints, as shown in Figure 3.11. 

 

  

 
Figure 3.10: Input and Output - Test Case 1 

 
Figure 3.11: Input and Output - Test Case 2 and 3 
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• Test Case 4: With a simple blocking of tooth(7, _) to tooth(8, _), as shown in Figure 3.12.  

 

• Test Case 5: Multiple blocking to a single tooth – tooth(8, _, [1,1]) as in Figure 3.13. 

 

 
Figure 3.12: Input and Output - Test Case 4 

 
Figure 3.13: Input and Output - Test Case 5 
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• Test Case 6: Multiple triplets of multiple blocking constraints as in Figure 3.14. 

 

• Test Case 7: A complex dentition with multiple blocking constraints as in Figure 3.15.  

 

  

 
Figure 3.14: Input and Output - Test Case 6 

 
Figure 3.15: Input and Output - Test Case 7 
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CHAPTER 4 

SEGMENTATION AND DATA GENERATION 

4.1 Background  

The most challenging part of this study is to go through an actual 3D model to figure out the 

relevant parameters for the optimization program we saw in Chapter 3.  

In order to generate the required data for each model, we need to know the orientation of 

each irregular tooth with its correct orientation. The parameters indicate the deviations for each 

tooth from its expected orientation.  

The general 3D model looks like the Figure 4.1 and Figure 4.2.  

 

These models are obtained by technologies which are available in the market. It uses 

cephalometric tracing [9] which could generate the STL file of segmented teeth and bone structures 

from a CBCT (Cone Beam Computed Tomography) file. These CBCT scans are computed using 

divergent X-rays, forming a cone. The generated STL files have been used for computation of 

parameters in this study.  

 
Figure 4.1: O4R8 3D model in STL format 

(Meshlab) with Gingiva 

 
Figure 4.2: O3M6 3D model in STL format 

(Meshlab) with supplemental 
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These 3D models were studied using Meshlab and Meshlab server [20] [21] to automate 

the segmentation of these pre-processed file. Due to some challenges in the scripting the manual 

process in Meshlab server, there is a shift in usage of Blender from Meshlab. Blender provides 

more control over the processing and has been popular in professional community. Figure 4.3 

shows a 3D STL model in Blender application.  

 

  

 
Figure 4.3: A sample 3D model in Blender 
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4.2 Blender and Python (bpy)  

Blender is equipped with large API (Application Programming Interface) available with many 

modules with extensive documentation on its application [1]. To name a few – Math Types & 

Utilities (mathutils), Blender Python (bpy), Geometry Utilities (mathutils.geometry), BMesh 

Module (bmesh), OpenGL Wrapper (bgl).  

The most widely used module is Blender Python (bpy). Python is an interactive, interpreted 

and object-oriented programming language. It has exceptional potential with a clear syntax for 

incorporating modules, exceptions, dynamic typing, classes, and so on.  

To extend the Blender functionalities, Python scripts are powerful and versatile to script 

repetitive tasks in the areas of animation, rendering, import/ export, object creation, modification 

and data extraction. Blender Python API have been referenced for writing scripts to automate the 

task in this chapter. One can create add-ons to encapsulate and distribute scripts, or even share the 

scripts to be included in official Blender distribution.  

The Blender Python API has components which are still in development phase, like mesh 

creation and editing functions, which could be subject to change in future. Although, there are 

more stable areas which are unlikely to be changed and could be used by any development research 

group.  

We use the Blender version 2.79b, Hash: f4dc9f9d68b, in a Linux environment with ubuntu 

16.04 LTS (64-bit) operating system. It uses Intel® UHD Graphics 620 (Kabylake GT2) for 

graphics and Intel® Core™ i5-8250U CPU @ 1.60GHz × 8 as it’s processor.  
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4.2.1 Python in Blender  

Blender can be invoked from the terminal using its blender executable. The above screen appears 

as we see the startup screen in the Blender application. Blender has an embedded Python interpreter 

[2]. It is loaded as the application is running staying active until we close. This interpreter is used 

to implement certain python scripts with Blender’s internal tools.  

It is more like a Python environment, and one could start off with writing code from 

tutorials on how to write python scripts. Blender provides bpy and mathutils to be imported in the 

python scripts, which are executed with this embedded interpreter, to give access to Blender’s data, 

classes, and functions.  

Here is a simple example which demonstrates a translation of a vertex attached to an object 

(default object) Cube.  

import bpy 

bpy.data.objects[“Cube”].data.vertices[0].co.x += 1 

 

This can modify the internal data directly. This script can be saved in a file to be executed 

from a Text Editor (bottom middle window in the above image), or it can be executed in the 

interactive Python console (bottom left window with black background in the above image).  

It is advisable to load the scripts in the Text Editor and run, but one could use any of these 

3 methods to execute the scripts -  

1. Load the script in the Text Editor and press Run Script. 

2. Type or paste the script into the interactive Python console. 
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3. Execute a python file with Blender from the command line. For example:  

$ Blender2.79b/blender --python /home/rahul/AI-Based-

Orthodontics/Samples/Q3Z7-L/BPY01.Segmentation.Script.py  

 

4.3 Conventions about the input 3D models  

• Each file represents a 3D teeth model in .STL format.  

• NAMING CONVENTION of the files:  

Consider the example files - O3M6.L1.013.stl, and O3M6.L1.Suppl.027.stl  

◦ First four characters represent the patient number.  

Here, O3M6 is patient number.  

◦ Again, after the 'dot' we have first character as 'L' for lower and 'U' for upper teeth 

model. This is followed by '1' (indicating crooked model) or by '2' (indicating fixed 

model).  

◦ After the 'dot' separator we have 'Suppl' as optional to only those files which has the 

complete root model. We can also have 'Ging' as optional to those files with gingiva 

(gums) present in the 3D models.  

◦ After the 'dot', we have last three digits determining the number (N - 1) where N is the 

total number of teeth (or the number of meshes) in the 3D model file. Here, as we’ve 

N = 14 so, we add '.013' in the end for normal O3M6.L1.013.stl file.  

Thus, O3M6.L1.Suppl.027.stl tells us that this is the model for the patient 'O3M6' which is 

supplemental which is lower crooked model having 14 teeth with 28 different meshes.   
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Few models as an example opened as in Blender:  

O3M6-L1: Figure 4.4 and Figure 4.5 shows normal and supplemental model respectively.  

 

O4R8-L1: Figure 4.6 and Figure 4.7 shows normal and supplemental model respectively.  

 

  

 
Figure 4.4: O3M6.L1.013.stl 

 
Figure 4.5: O3M6.L1.Suppl.013.stl 

 
Figure 4.6: O4R8.L1.015.stl 

 
Figure 4.7: O4R8.L1.Ging.015.stl 
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4.4 Series of Python Scripts  

There is a series of scripts, as shown in Figure 4.8, through which a 3D model is passed through 

to generate the parameters we require for the optimization algorithm.  

 

Each script file uses a set of input and produces an output. Overall, the first script uses the 

plain non-segmented 3D model for a patient with irregularities and fixed versions, whereas the last 

script generates the parameters required.  

These scripts generate segmented files creating new directories. These scripts could be 

executed from a batch file as we can run python scripts in the blender environment. The convention 

for naming the input and output files is strictly followed throughout this pipeline so that the 

indexing is as expected for the subsequent programs.  

Scripts BPY02 and BPY03 uses two different add-ons which are available freely [23]. 

BPY02 uses BTrace which is pre-installed, whereas BPY03 uses Min Bounding Box [24] [25] 

which is requires manual installation.   

 
Figure 4.8: Block Diagram of Python Scripts 
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4.4.1 BPY01.Segmentation.Script.py 

 

Given a 3D model (with no gingiva, or supplemental), this script segments the meshes from the 

pre-processed STL file as shown in Figure 4.9 and Figure 4.10. These meshes were present in the 

given single STL file. After execution of this script, each tooth is saved into new STL file with 

mesh of its own.   

 
Figure 4.9: I/O for BPY01 

 
Figure 4.10: Output of BPY01 in Blender 
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4.4.2 BPY02.Spline.Generation.py 

 

Once the 3D model is segmented, from Figure 4.11, the individual meshes are imported back to 

produce the spline subsequently. Their centers are extracted so that the BTrace add-on is executed 

with Objects Connect tool, connecting the centers of these meshes sequentially. Note that this 

curve is then made smooth and stored in the STL file again as in Figure 4.12.  

  

 
Figure 4.11: I/O for BPY02 

 
Figure 4.12: Output for BPY02 
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4.4.3 BPY03.Spline.Approximation.py 

 

The smooth spline is again imported to compute the Minimum Bounding Box for it as shown in 

Figure 4.13 and Figure 4.14. It is used to further compute the rotation parameters for the 3D model. 

These rotation parameters are then applied to the original 3D model to produce the rotated version 

of the model.  

  

 
Figure 4.13: I/O for BPY03 

 
Figure 4.14: Output for BPY03 in Blender 
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4.4.4 BPY04.New.Segmentation.py  

The rotated version of the 3D model is then segmented in the similar fashion that it was segmented 

in the first script, as shown in Figure 4.15 and Figure 4.16. Here, the model file is renamed as in 

the above example, from O4R8.L1.015.Rotated.stl to O4R8.L1.Rot.015.stl.  

  

 
Figure 4.15: I/O for BPY04 

 
Figure 4.16: Output for BPY04 in Blender 
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4.4.5 BPY05.Apprx.Z.Translation.py 

 

As shown in Figure 4.17, the rotated and segmented models are then applied a transformation 

along Z axis. The amount of translation is calculated from average Z coordinates of the centers of 

these individual meshes. All these meshes are then pushed towards Z = 0 plane by the mean Z 

values to give the properly aligned model as shown in Figure 4.18.  

  

 
Figure 4.17: I/O for BPY05 

 
Figure 4.18: Output of BPY05 in Blender 
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4.4.6 BPY06.Generation.M5.M6.py 

 

The final step, as in Figure 4.19, comprises of computing the deviations in terms of translation and 

rotation vectors. There is visible difference in terms of translation, as seen from Figure 4.20, but 

there is no tool available to discover the deviations in terms of rotation vectors.  

   

 
Figure 4.19: I/O for BPY06 

 
Figure 4.20: Start and Final (Yellow) State of 3D model 
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These deviations can be stored in the required file which then further could be read into the 

optimization program as shown in Figure 4.21.  

 

These numbers indicated in the above image, in the left-hand side of the python console 

window, is the outcome of the script shown in the Text Editors on the right side. These numbers 

could be fit it in the tooth predicate for each of the index. For example, for ToothIndex = i,  

tooth predicate will look like -  

tooth(i, [M1, M2, M3, M4, [Dx[i], Dy[i]], Dz[i]], [Bl, Br]).  

 

  

 
Figure 4.21: Output for BPY06 
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4.5 Bounding Box and Challenges 

The segmentation and parameter generation has been the most challenging part of this study. The 

evaluation of other parameters in the tooth predicate requires knowledge of the deviation in 

rotation vectors of the 3D model [33].  

tooth(i, [M1, M2, M3, M4, [Dx[i], Dy[i]], Dz[i]], [Bl, Br]).  

Parameters for Crown Tipping, Root Tipping, and Torquing requires information about the 

vector passing from the center (or root) to the crown of the tooth. As we have the center, the point 

on the crown is to be calculated considering different surfaces for the crowns of different tooth. 

Let’s call this as normal N1. Crowns may have a single cusp or up to 4-5 cusps as in case of molars. 

Thus, identifying the best suitable crown point for these surfaces would yield the parameters for 

M1, M2, and M3, as these movements (or deviations) rely on vertical axis of the tooth passing 

through the crown.  

Besides, that M4 requires to know the direction of frontal plane for the tooth. It is the 

deviation vector in terms of rotation of the tooth, where normal N1 is acting as axis of rotation, 

from its fixed counterpart. Let us call this as normal N2. This normal is passing through the center 

and perpendicular to the frontal plane of a tooth. As you rotate a tooth, along the axis of rotation 

as N1, this normal changes its angle and thus contributes to the parameter required as M4.  

The boolean values for Bl and Br can be determined using simple overlapping of two 

bounding boxes. As, we have normals N1 and N2, we can form a bounding box encapsulating the 

mesh of a tooth. Hence, construction of this bounding box could attribute to the blocking 

constraints of neighboring teeth. For example, tooth at index 7 and index 8 has an overlap, we can 

further verify that by confirming whether tooth(7, _) or tooth(8, _) has non-zero deviation in 
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general direction of its neighbor. As in this case, say tooth(8, _) had a deviation on the opposite 

direction of tooth(7,_), it means tooth(8, _) needs to be moved towards tooth(7, _). And thus, 

tooth(7, _) would have a blocking constraint on tooth(8, _). We can further check the same for 

tooth(7, _) and its neighbors. Therefore, blocking is not a two-way constraint.  

Computation of remaining parameters is tricky and could be extended as an add-on in 

Blender to contribute to this problem. The problem could also be simplified by determining any 

other point on the mesh, assuming that the same point is determined for all different orientations 

of the same mesh. Further, joining these two segments on the same source as origin or a pivot, we 

can compute the deviations in the rotation of these teeth.  

Though absence of other parameters is still a goal to be achieved, evaluating the 

translational parameters has more impact in determining the irregularities in malocclusions as most 

of the orthodontic treatment fall under the class I malocclusion [4] [5] [6] [7]. Note that, no 

prediction or estimates are made in evaluation of the parameters. Thus, these parameters can be 

trusted with high confidence level capturing slightest of deviation in the dentition. 
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CHAPTER 5 

APPLICATIONS 

5.1 Conclusion 

Existing scenarios in today’s world depict cost and time as biggest challenges in the orthodontic 

treatment. It is predominantly affordable to the people with higher income. Besides, no treatment 

uses machine intelligence to optimize the dental plan. Instead expertise of Orthodontists is used in 

evaluation of such optimization problem in most of the treatments. Thus, existing approaches tend 

to have limited capabilities as they mostly rely on direct visualization. It has been found that these 

estimates generated by orthodontists on a simple model could be variable, and are unrelated to 

their clinical experience. Errors in estimation of crowding often lead to incorrect treatment 

approaches, adding cost to the treatment, length of the care and unwanted forced biological sequel 

in the dentition taking toll on natural remodeling of bone structures, affecting the treatment 

outcome adversely.  

We propose an approach based on logic and reasoning to model the estimation of spatial 

orientation of the dentition, and generate the best solution to solve the optimization problem 

considering all reasonable constraints in to our program. We use Prolog program with CLP(FD) 

which is predominantly used for solving optimization problem on the constraint systems. The 

problem is formalized, asserting and retracting logical facts dynamically and a solution is 

generated satisfying all the constraints from the vast search space.  
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5.2 Contributions to the Research and Future work 

This study has been made with an objective to make the orthodontic care reliable, affordable, and 

expedite the overall treatment. It contributes to the field of Orthodontics by applying machine 

intelligence from the logic-based approaches to solve the problem of finding best sequence of 

fixtures as we rely on technology over visual observations, interactions, and articulation of human 

capacity. The proposed solution harnesses key insights to produce reliable outcomes by 

combination of the human expertise and technological aspects of AI. It also provides use case of 

logic programming to solve a real-world optimization problem. Moreover, in its first attempt of 

data extraction from 3D images, this study provides foundation for producing relevant information 

from a set of point cloud.  

Future work could be made in deriving more and more constraints from the scanned images 

using advanced tools to get every bit of knowledge about the dentition. Several scripts used in this 

study are used from freely available add-ons in Blender. Their usage is limited to manual 

implementation in the Blender application. One can come up with automated pipeline of these 

scripts to tackle semi-automatic segmentation and data generation process. Research could also be 

made in identifying relevant bounding box for each individual tooth based on its shape and type. 

This may involve the use of machine learning to identify the correct bounding box given an input 

3D model for a tooth. This extraction of bounding box could also be achieved using another 

approach involving identification of the location of the relevant crown point. It also needs another 

point to identify the normal for the frontal plane. This work would ease the entire process and 

provide a sound manifestation for building more applications around teeth movement.   
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5.3 Applications 

The intriguing applications of AI-driven Orthodontic treatment is in the diagnosis, treatment and 

monitoring phases of the dental care [22]. Such treatment provides better diagnosis by in-depth 

understanding of the 2D and 3D constraints, quicker treatment plan due to solving the optimization 

problem satisfying necessary constraints, and produces reliable outcomes.  

AI based Orthodontics enables clinicians to utilize their time effectively making them focus 

on actual treatment and monitoring the progress. This improves the capability of doctors to 

diagnose more patients in the same amount of time.  

It removes the responsibility of space estimation done usually by direct visualization by 

most of the orthodontists, which is considered to be the most challenging part, by providing 

accurate space analysis. Thus, this approach eliminates the uncertainty from the very first step – 

understanding the case, in dental care.  

Further, it considers the constraints provided by scanning the 3D model and then using an 

optimization algorithm, plans the shortest series of fixtures required to fix the malocclusion for the 

patient’s dentition. This leads to tremendous amount of cost cutting for most of the population 

with minor to moderate crowding of teeth. These fixtures decide which of the patient’s teeth and 

how the patient’s teeth should be moved, with 6 movements designed around the combination of 

both translation and rotation of 3D objects. It leaves the decision of actual implementation of these 

movements on to the expertise of an orthodontist. Thus, AI driven Orthodontic treatment would 

save huge time and cost and would give reliable outcomes providing healthy as well as aesthetic 

benefits. 
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