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Thermo-mechanical high-cycle fatigue is a major failure mechanism for many engineering

components in a diverse range of industries such as aerospace, automotive, and nuclear

among others. Engineers trying to determine the fatigue life of a component typically rely on

commercial fatigue analysis software which uses traditional fatigue criteria that are limited in

their applicability. For instance, they are poor at handling multiaxial and variable amplitude

loading. Furthermore, adding variable amplitude thermal loading into the mix makes using

these traditional fatigue criteria even less appealing.

In recent years, there have been attempts to establish methods for simulating high cycle

fatigue based on finite element calculations rather than using it as a post-processing step.

These include cohesive zone and continuum damage mechanics models. However, all of these

methods employ cycle jumping strategies to cut down on the enormous computational time

required. However, cycle jumping is not applicable for a random loading history or with

random or out-of-phase temperature variation. Motivated by these current developments,

this thesis proposes the use of the extended space-time finite element method (XTFEM)

in combination with a two scale progressive fatigue damage model for the direct numerical

simulation of thermo-mechanical high cycle fatigue. Instead of using the conventional explicit

or implicit finite difference time integration methods, temporal approximations are introduced
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with FEM mesh and enriched based on the extended finite element method. After outlining

the basic theory for XTFEM with thermo-mechanical coupling, the effectiveness of the

computational framework is demonstrated in numerical examples including a coupled, thermo-

mechanical fatigue simulation of a plate and hat stiffener model representative of a hypersonic

aircraft’s structure.
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CHAPTER 1

INTRODUCTION

1.1 Fatigue: Definition, Mechanisms, and Importance

Fatigue is the dominant failure mechanism for many engineering components. Cyclic loading

of these components causes the nucleation of microcracks in the material. As more and more

cracks form and propagate, they coalesce to form a macrocrack which propagates until the

remaining structure can no longer sustain the load resulting in the fracture of the component.

The “total number of cycles or time to induce fatigue damage and to initiate a dominant

fatigue flaw which is propagated to final failure” is called ‘fatigue life’ (Suresh (1998), p.221).

The failure category of fatigue may be further subdivided into different fatigue ranges

with their own specific failure mechanisms. Table 1.1 is based off of the work of Dufailly and

Lemaitre (Dufailly and Lemaitre (1995)). High and very high cycle fatigue occurs due to

low-amplitude stresses typically below the material’s yield strength causing elastic behavior

globally (Suresh (1998), p.221). While there is some plastic deformation in these two ranges,

the plasticity largely occurs around defects at the microscopic scale. Thus, most of the fatigue

life is spent initiating the macroscopic fatigue crack (Bhamare (2012), p.3). For low and very

low cycle fatigue, on the other hand, plastic strain occurs at the macroscopic scale with every

cycle (Schijve (2009), p.161). This causes a relatively quick crack initiation, and thus, the

time spent in crack growth is comparable to the time spent initiating the crack (Bhamare

(2012), p.3).

In 1983, the U.S. government estimated that the total economic cost due to fracture was

$119 billion (in 1982 dollars; Reed et al. (1983), p.1). It also estimated that 80% of these

costs involved cyclic loading or fatigue as a contributing factor which meant that the annual

cost due to the fatigue of materials accounted for about 3% of the gross national product

(Dowling (2013), p.399). Similar studies in Europe have also arrived at high economic costs
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Table 1.1. Fatigue Ranges

Fatigue Ranges Cycles to Failure Typical Stress Level Strain Ratio: ∆εp

∆εe

Very High Cycle Fatigue > 107 σ∞f ≈ 0

High Cycle Fatigue (HCF) 105 to 106 < σY ≈ 0
Low Cycle Fatigue (LCF) 102 to 104 σY to σU 1 to 10
Very Low Cycle Fatigue 1 to 20 ≈ σU 10 to 100

for fatigue (Milne (1994), p.173). Additionally, the U.S. Air Force estimated that, between

1982 and 1996, 56% of Class A engine-related failures were due to high cycle fatigue (Bartsch

(2003), p.xi), and in fiscal year 1994, approximately 850,000 maintenance man-hours were

expended inspecting components as part of HCF risk management (Bartsch (2003), p.xi). In

total, the cost of HCF to the Air Force and Navy is estimated at $400 million per annum

(Bartsch (2003), p.xi).

1.2 Thermo-Mechanical Fatigue

1.2.1 Definition and the Effects of Cycling Temperatures

Thermal fatigue is defined as relating to structures which undergo thermal cycling leading

to “the initiation of cracks, their propagation and failure,” whereas thermo-mechanical

fatigue (TMF) involves structures undergoing both mechanical as well as thermal cyclic

loading leading to fatigue failure (Charkaluk and Rémy (2011), p.271). Reasons to include

temperature and its affects in a fatigue life prediction are many. As a structure undergoes

temperature changes, its mechanical properties change which affects how the structure

responds to mechanical loading. For this reason alone, fatigue life prediction models based

on isothermal data need to be modified before being applied to TMF (Bill (1986), p.1).

Things become even more pronounced at higher temperatures. At temperatures in excess

of one half the homologous temperature, strain-rate effects become significant and creep

phenomenon must be taken into account (Suresh (1998), p.590). As as result, the amount of
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plastic deformation in the plastic zone of a fatigue crack is enhanced leading to higher fatigue

damage accumulation (Schijve (2009), p.481). Indeed, it is well-known from experiments that

crack-growth is faster at elevated temperatures than at room temperature (Bill (1986), p.2;

Schijve (2009), p.488). Lastly and sometimes more importantly, temperature changes to an

overly constrained structure can translate into mechanical stress, and when the temperature

change is cyclic, these mechanical stresses will result in fatigue damage.

1.2.2 History, Examples and Importance

The study of TMF began with the work of Coffin who was researching the affects of TMF

in the nuclear power industry (Coffin (1954a,b)). Around the same time, Manson studied

TMF in application to turbine blades and disks in the aerospace industry (Manson (1953)).

The nuclear and aerospace industries continue to be concerned with TMF phenomena in the

present (Charkaluk and Rémy (2011), p.272), but the applications have proliferated to other

areas. Examples illustrating the importance of TMF are many, but a few will suffice:

1. Aerospace engine parts: Aerospace engine turbine blades are exposed to enormous

temperatures through the combustion of jet fuel in addition to immense centrifugal

forces and vibration loads (Schijve (2009), p.482). The thermal and centrifugal loading

correspond to low-cycle fatigue conditions where each start-up and shutdown constitutes

a cycle whereas the blade vibrations yield high cycle fatigue conditions (Schijve (2009),

p.483).

2. Nuclear pressure vessels: Nuclear fission generates an enormous amount of heat and

pressure. This heat requires the periodic application of coolant to decrease the temper-

ature of the vessels and piping thus creating cyclic temperature variations leading to

low-cycle fatigue (Mohanty et al. (2012)).

3



3. The mixing of hot and cold fluids in nuclear plant pipes: In the piping systems of some

nuclear power plants, there exist “mixing tees” where water flows of different temper-

atures turbulently mix and generate seemingly random and fluctuating temperature

fields and corresponding stresses (Desmorat et al. (2007), p.923). These stresses do not

typically exceed the yield strength, and so, this example falls into the high-cycle fatigue

category.

4. A brake disk undergoing friction-heating from a brake pad: In this situation, the surface

of the disk is heated to a high temperature over a short period of time creating a

large temperature gradient across just a tiny fraction of the total thickness of the disk

(Charkaluk and Rémy (2011), p.272). Because this affected thickness is negligible,

we may assume that the deformation of the disk is negligible. This means that any

temperature-induced strain will translate to mechanical strains, and when the gradients

are high enough, the material will undergo plastic deformation. Over many heating and

cooling cycles, this will lead to cyclic plasticity and thus low-cycle fatigue (Charkaluk

and Rémy (2011), p.272).

5. Automotive engine parts: A number of parts in the internal combustion engine such as

pistons, cylinder heads, exhaust manifolds, and turbo-compressors experience very high

temperatures while in use but eventually cool down to ambient temperature when the

vehicle is turned off. This thermal cycling induces repeated mechanical loads leading to

fatigue (Charkaluk and Rémy (2011), pp.274-275).

6. Super- and hypersonic aircraft structures: Aircraft traveling at supersonic and hyper-

sonic speeds generate an enormous amount of drag which causes the skin of the aircraft

to heat up while the inner structure trails behind creating large temperature gradients.

The situation is reversed upon landing (Schijve (2009), p.486). Additionally, these

structures experience random acoustic loads during their trajectory. The combined

thermal and acoustic loading yields a high-cycle fatigue condition.
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1.3 Traditional Methods of Estimating Fatigue Life

Traditional methods of estimating the fatigue life of a component can be broken into two

categories: the ‘safe-life’ concept and the ‘damage-tolerant’ concept. The safe-life concept

is essentially theoretical in nature, and its goal is the prevention of crack initiation (Suresh

(1998), pp.14-15). The safe-life concept generally adheres to the following procedure (Suresh

(1998), pp.14-15):

1. The component’s expected service loading is determined.

2. The component is analyzed using hand calculations, simulation software, and/or tested

in a lab under service loading conditions. A fatigue life is estimated for the component.

3. The fatigue life is modified by a safety factor. This modified fatigue life becomes the

component’s ‘safe-life.’

4. After the component in service has reached the end of its safe-life, it is “automatically

retired from service” regardless of whether cracks have formed or not (Suresh (1998),

p.14).

The analysis done by hand calculation and/or simulation software mentioned in step 2 above

utilizes one of the ‘total-life’ approaches. These approaches, first begun in the mid-nineteenth

by Wӧhler (Wöhler (1860)), plot the service load stress against the number of cycles to

failure, the classic S-N curve. A problem is presented when the loading is multiaxial since

S-N curves are typically created using uniaxial loading. In this case, the multiaxial loading

needs to be processed so that it can be compared with the uniaxial curve. These approaches

are discussed further in chapter 3.

The damage-tolerant concept, on the other hand, is more empirical, and the goal is the

tolerance of a fatigue crack without it leading to failure. The argument is that if there

exists a structural redundancy, failure of one load path would not compromise the others,
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and the component or machine could still be operated safely until the crack is found during

maintenance or inspection (Suresh (1998), p.15). The damage-tolerant concept makes use of

the field of fracture mechanics which was first started by Irwin (Irwin (1957)) who built upon

the work of Griffith (Griffith (1921)). Irwin showed that the magnitude of the crack-tip stress

field can be represented by a scalar value called the stress-intensity factor, K (Hertzberg

et al. (2013), p.318). The crack tip advances when the stress-intensity reaches a critical value,

Kc (Sun and Jin (2012), p.3). The application of fracture mechanics to fatigue was initiated

by Paris et al. (Paris et al. (1961)) who proposed that the rate of crack growth per cycle,

da/dN , was related to the stress intensity factor range, ∆K (Suresh (1998), pp.5, 296):

da

dN
= C (∆K)m (1.1)

where C and m are empirical constants which depend on the material properties, microstruc-

ture, loading conditions, temperature, etc. (Suresh (1998), p.297). These constants must

be determined in a lab setting and are applied to the same component in service by the

concept of similitude. That is, a crack in the lab component and a crack in the service

component “subjected to the same range of stress intensity factor” at the same load ratio

should grow at the same rate (Bhamare (2012), p.6). The fatigue life can then be defined

as “the number of fatigue cycles or time to propagate the dominant crack from its initial

size to some critical dimension” (Suresh (1998), p.13). The benefits of the damage-tolerant

approach then are that: a.) the component or machine does not need to be retired from

service after a set number of cycles and b.) even the presence of a crack does not necessarily

require a retirement from service.

There are a number of problems with these traditional approaches. The problems with

the various total-life approaches associated with the safe-life concept are discussed in more

detail in chapter 3. The problems with the damage-tolerant approach of fracture mechanics

are as follows:
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1. Determination of a stress-intensity factor for a complex geometry under multiaxial

loading is difficult (Bhamare (2012), p.6).

2. The extension of equation 1.1 from constant amplitude cyclic loading to random,

variable amplitude loading is problematic since different loading conditions will change

the empirical constants (Suresh (1998), p.333).

3. The damage-tolerant concept is not applicable to all structures. For some components,

regular inspection is either impractical, too expensive relative to the cost of the

component, or both. For other components, undetected cracks can easily grow to failure

in between inspections resulting in catastrophic consequences.

Given the problems with the traditional methods for fatigue life estimation, we seek a

different method of fatigue analysis. This method needs to be able to account for multiaxial,

variable amplitude loading. It should also be able to handle the effects of non-zero mean

stresses and random, thermal variation. Additionally, this method should avoid Miner’s

problem-fraught linear damage law as well as the somewhat arbitrary rainflow cycle counting

methods (Desmorat et al. (2007), p.910).

Since the late 1950’s, researchers have been developing the field of continuum damage

mechanics wherein “the analysis of the damage development in mesoscopic and macroscopic

fracture processes” is done “in the framework of continuum mechanics” (Murakami (2012),

p.3). Specifically, the two-scale progressive fatigue damage model first proposed by Lemaitre

(Lemaitre and Doghri (1994); Lemaitre et al. (1999); Lemaitre and Desmorat (2005)) and

developed by Desmorat et al. to handle random, thermal variation (Desmorat et al. (2007))

is specifically designed for high cycle fatigue and can handle all the requirements listed in the

previous paragraph. The two scale model, discussed more fully in chapter 4, separates the

macroscale structure calculation from the microscale damage evaluation. The macroscale

structure calculation is solved with the finite element method or other method using a purely
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elastic material model. The strains at this scale are then used to evaluate damage locally at

the microscale where defects such as inclusions exist, plasticity occurs, and microcracks form.

The two scale model has been used to predict service life for both low and high cycle

fatigue and applied to both uniaxial and multiaxial analyses (Lemaitre and Doghri (1994)).

Lemaitre et al. (Lemaitre et al. (1999)) then showed the power of the two scale model for

a non-zero mean stress and non-proportional loading with results comparing well with the

Dang Van criterion. More recently, Latrou et al. (Lautrou et al. (2009)) used the two scale

model to accurately predict the fatigue life of steel welded joints commonly used in naval

structures. Additionally, dos Santos et al. (dos Santos et al. (2012)) modified Lemaitre et

al.’s model (Lemaitre et al. (1999)) by means of the Soderberg fatigue relation to account for

high mean stress effects in cardiovascular stents and showed that the modified model has

good agreement with experimental results. Finally, Desmorat et al. (Desmorat et al. (2007))

added the ability for the two scale model to take into account random temperature changes

and proved its predictive power even in random thermo-mechanical loading by showing good

agreement with a pressure-vessel testing experiment. It is this latter, thermo-mechanical

model which we will use to predict thermo-mechanical fatigue life.

1.4 Simulating Fatigue

1.4.1 Finite Difference Methods: Explicit and Implicit Time Integration

The standard computer-aided means for determining a component’s fatigue life is to simulate

a representative set of loading amplitudes in finite element software and run the results

through a fatigue analysis post-processor (see chapter 3). However, there have been efforts

in recent years to simulate the fatigue process within the finite element analysis itself. Roe

and Siegmund (Roe and Siegmund (2003)) and Siegmund (Siegmund (2004)) employed a

cohesive zone model to simulate the fatigue of a double cantilever beam bonded by an
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adhesive. Instead of making crack growth a function of cycle count, their model relies upon an

“incremental solution process to the cyclic load problem” (Siegmund (2004), p.932). Cedergren

et al. (Cedergren et al. (2004)) utilized an extended Gurson void growth model, a viscoplastic

formulation, with plasticity to simulate low cycle fatigue in powder manufactured steel bars.

The time integration scheme they used was an explicit Newmark method (Cedergren et al.

(2004), p.902). Oller et al. (Oller et al. (2005)) used a continuum damage mechanics model

combined with elasto-plasticity to simulate low cycle thermo-mechanical fatigue damage

evolution. They utilized an implicit time-integration method to begin tracking the load

history in small steps but then employed a time advancing strategy for load cycles of the

same amplitude as the one previously tracked (Oller et al. (2005), p.185). Pirondi et al.

(Pirondi et al. (2006)) performed finite element simulations of low cycle fatigue using both

continuum damage mechanics and porous metal plasticity models for comparison. Takagaki

and Nakamura (Takagaki and Nakamura (2007)) also utilized a continuum damage mechanics

model with an anisotropic damage tensor and elasto-plasticity to simulate fatigue crack

propagation for low cycle fatigue. They were able to simulate the simultaneous growth of two

cracks in a plate which showed good agreement with experiments. Lu et al. (Lu et al. (2015))

simulated the low cycle fatigue behavior of 9Cr power plant steel at high temperature using

a continuum damage mechanics approach coupled with the Chaboche elasto-visco-plastic

model and employed an implicit scheme for time integration (Lu et al. (2015), p.151). All of

the previously mentioned studies have looked at the simulation of low cycle fatigue which,

given the relatively short time scale, is not computationally prohibitive using standard, finite

difference time integration methods.

However, some researchers have attempted to simulate high cycle fatigue using the

traditional, finite difference time integration schemes. Jiang et al. (Jiang et al. (2009))

used a cohesive zone model with cyclic plasticity and a damage variable to simulate high

cycle fatigue for a compact-tension-shear specimen. Acknowledging that an implicit time-

integration scheme for the entire life of the component is computationally prohibitive, they
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utilized an extrapolation scheme where the damage done over a small number of cycles is

extrapolated over relatively small time spans (Jiang et al. (2009), p.680). Raje et al. (Raje

et al. (2009)) examined the microstructure of polycrystaline materials under rolling contact

fatigue loading using continuum damage mechanics with lattice springs connecting the grains.

They utilized the explicit central difference scheme for time integration with a ‘jump-in-cycles’

procedure to speed up the simulation (Raje et al. (2009), 350). Lestriez et al. (Lestriez et al.

(2007)) presented a continuum damage mechanics model combined with a flow surface of

fatigue using the Sines criterion and element deletion to simulate the fatigue damage of roller

bearings. They employed an explicit time integration scheme in Abaqus/Explicit’s VUMAT,

but in order to reduce CPU time, they used a cycle jump technique which extrapolates the

damage over a given number of cycles (Lestriez et al. (2007), p.391). Kim (Kim (2013)) and

Kim and Yoon (Kim and Yoon (2014)) used a bilinear, cycle-dependent cohesive zone law to

study the high cycle fretting fatigue of 7050-T7451 aluminum alloy. They solved the equations

of motion with an implicit time integration but used a cycle jump strategy to speed-up the

computation (Kim (2013), p.684; Kim and Yoon (2014), p.31). Martin and Sun (Martin

and Sun (2015)) developed a means for assessing fatigue damage in transcatheter aortic

valves using a soft tissue damage model. To hasten the fatigue simulation, they multiplied

the damage per simulated cycle by a factor (Martin and Sun (2015), p.3029). Barbu et al.

(Barbu et al. (2015)), building off the work of Oller et al. (Oller et al. (2005)), proposed

a “stepwise load-advancing strategy” for high cycle and very high cycle fatigue combined

with a continuum damage mechanics model to simulate fatigue specimens and showed good

agreement with experiments. Their load-advancing strategy consisted of two phases. The

first, load-tracking phase, used small time increments following the loading path in order

to “save the characteristics of the cyclical load” (Barbu et al. (2015), p.120). The second,

large-increments phase simply multiplied the results of the first phase by however many

cycles were at that load level (Barbu et al. (2015), p.122). Bak et al. (Bak et al. (2016))

10



simulated the formation of mixed-mode delamination cracks in laminated structures due to

high cycle fatigue using a cohesive zone model combined with a “Paris law-like model” to

determine crack growth rate. Instead of solving the equations of motion multiple times to

form a loading cycle, they used an “envelope load approach” where Paris’s law and fracture

mechanics were used to determine the crack growth rate at the maximum load during a cycle,

and they simply integrated that rate over time (Bak et al. (2016), p.164).

The takeaway from the previous high cycle fatigue studies is that they all had to use

a form of cycle jumping extrapolation or a damage multiplier given that the time scale

of high cycle fatigue makes a complete simulation impractical even with high-performance

computers (Bhamare (2012), p.9). However, such methods cannot be used in cases with

a random mechanical loading history (Bhamare (2012), p.10). Additionally, if a cyclic or

random temperature variation that is not in phase with the mechanical loading is present,

then extrapolation simply is not possible. Thus, we seek a time integration method that

can perform a complete thermo-mechanical high cycle fatigue simulation without the high

computational cost.

1.4.2 Extended Space-Time Finite Element Method (XTFEM)

Instead of the methods listed above, we propose the use of an extended space-time finite

element method (XTFEM) formulation to solve thermo-mechanical high cycle fatigue problems.

In contrast to the semi-discrete finite difference methods such as explicit or implicit time

integration, space-time finite element methods discretize not only the spatial object being

analyzed but also the temporal domain as well using finite elements. XTFEM builds off of

the standard space-time finite element method (TFEM) by enriching the temporal shape

functions with harmonic functions such as sine or cosine in order to match the nature of

the loading conditions. By doing so, one can make the time step size equal to the harmonic

loading’s time period, a vast improvement over the finite difference methods or the standard
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TFEM. A history and research developments with TFEM and XTFEM will be discussed in

chapter 2.

1.5 Objective and Outline of the Thesis

The objective of this work is to develop a direct numerical simulation approach to calculating

a component’s life under thermo-mechanical high cycle fatigue loading. Since the two scale

progressive fatigue damage model does not account for creep or other viscosity effects, our

study will be limited to less than one-third of a material’s melting temperature (Desmorat

et al. (2007), p.911). We will demonstrate through several examples the power of our

thermo-mechanical XTFEM code.

Chapter 2 will begin by explaining and deriving the regular space-time finite element

method for both thermal analysis (section 2.2) as well as mechanical analysis (section 2.3).

This will prepare us for the derivation of the thermo-mechanical extended space-time finite

element method in section 2.4. Chapter 3 will give a brief overview of the traditional

approaches to calculating multiaxial high-cycle fatigue damage. Approaches discussed here

include equivalent stress methods (section 3.1.1), critical plane methods (section 3.1.2), and

Dang Van’s multiscale method (section 3.1.3). The last half of the chapter will examine the

Palmgren-Miner rule (section 3.2), the cycle counting methods for random loading (section

3.3), and finish by summarizing the problems with the traditional approaches (section 3.4).

Next, chapter 4 will explain the two scale progressive fatigue damage model from continuum

damage mechanics. The chapter will start in section 4.1 by discussing the research history of

continuum damage mechanics in general and the two scale model in particular and explain

how the two scale model works. It is necessary in section 4.2 to describe the material

parameters that are utilized in the two scale model since not all of them are familiar to many

readers. The detailed derivation of the two scale formulation is given in section 4.3 followed

by an outline of the implementation in section 4.4. Chapter 5 will describe three numerical
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examples used to demonstrate the power of the XTFEM code and discuss the results. Lastly,

chapter 6 will then conclude this thesis and give a consideration of future work.
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CHAPTER 2

EXTENDED SPACE-TIME FINITE ELEMENT METHOD (XTFEM)

2.1 Introduction

2.1.1 Chapter Outline

To solve the problem of the time scale associated with high cycle fatigue, this work utilizes a

coupled thermo-mechanical extended space-time finite element method (XTFEM) formulation.

In this chapter, the XTFEM method based on the time-discontinuous Galerkin (TDG)

formulation is derived. First, regular space-time finite element method (TFEM) formulations

for thermal and mechanical analyses are derived in sections 2.2 and 2.3, respectively. Section

2.4 then details the XTFEM formulation for mechanical analysis which is derived by building

off of the previous TFEM mechanical formulation in section 2.3.

2.1.2 XTFEM Background

Generally, dynamic FEM problems have been integrated in the time domain using finite

difference methods such as the central difference or Newmark-β methods. That is, while

the partial differential equations in the spatial domain are solved using finite elements, the

temporal domain uses finite differences making such methods “semi-discrete.” While these

methods work well in many cases including low-cycle fatigue, the time scale associated

with high-cycle fatigue makes these methods computationally prohibitive (see section 1.4.1).

Furthermore, these methods suffer from either time step size limitations or convergence issues

“due to the oscillatory nature of the fatigue loading condition” (Bhamare et al. (2014), p.388).

In contrast to the semi-discrete methods previously mentioned, space-time finite element

methods discretize not only the spatial object being analyzed but also the temporal domain as

well using finite elements. The concept of extending the use of finite element shape functions

to the time domain was first proposed by Argyris and Scharpf (Argyris and Scharpf (1969)),
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Fried (Fried (1969)), Oden (Oden (1969)), and others. These early pioneers in this area

utilized a formulation with a continuous temporal mesh called the time-continuous Galerkin

(TCG). An alternative to the TCG formulation is to break-up the temporal domain into time

segments and allow jumps in the solution variable between segments. This approach is known

as the time-discontinuous Galerkin (TDG) formulation and was first used by Reed and Hill

(Reed and Hill (1973)) and Lesaint and Raviart (Lasaint and Raviart (1974)). Hulbert and

Hughes (Hulbert and Hughes (1990)), Hughes and Stewart (Hughes and Stewart (1996)),

and Li and Wiberg (Li and Wiberg (1996, 1998)) extended the TDG formulation to solve

second-order hyperbolic systems such as structural dynamics. Lesaint and Raviart (Lasaint

and Raviart (1974)) and others (Delfour et al. (1981); Johnson (1984)) have proven that the

TDG formulation results in systems that are A-stable and higher-order accurate.

2.2 Space-Time Finite Element Method (TFEM) for Thermal Analysis

2.2.1 Governing Equation to Weak Form

We start with the governing equations of initial-boundary-value thermal analysis over a 3D

spatial domain, Ω, and temporal domain, I = ]0, T [:

G = ρ cp φ̇−∇· (k ∇φ) on Q ≡ Ω × I (2.1)

φ = φ̄ (Γ, t) on ΥD ≡ ΓD × I (2.2)

q = k ∇φ n on ΥN ≡ ΓN × I (2.3)

h (φa − φ) = k ∇φ n on Υ3 ≡ Γ3 × I (2.4)

φ (x, 0) = φ0 (x) on x ∈ Ω (2.5)

Γ = ΓD ∪ ΓN ∪ Γ3 (2.6)

ΓD ∩ ΓN ∩ Γ3 = 0 (2.7)
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where equation 2.1 is the general heat equation, Γ is the boundary of Ω and is the combination

of the non-overlapping essential (Dirichlet) temperature boundary ΓD, natural (Neumann)

surface heat flux boundary ΓN , and convection boundary Γ3, G is the heat source generation,

φ is the temperature, k is the conductivity, ρ is the volumetric mass density, cp is the specific

heat, n is the outward normal to Γ, φ̄ is the prescribed temperature on ΓD, q is the prescribed

surface heat flux on ΓN , h is the prescribed convection coefficient on Γ3, and φ0 is the initial

temperature. Lastly, the superposed dot in φ̇ denotes a partial derivative with respect to

time.

Since our formulation is the time-discontinuous Galerkin, we discretize the temporal

domain into segments which, combined with the spatial mesh, comprise space-time slabs.

Figure 2.1 shows a 1D spatial mesh combined with the discretization in time to form the space-

time slabs. The temporal domain, I = ]0, T [, consists of N segments, In = ]tn−1, tn[, such

that 0 = t0 < t1 < . . . < tn < ... < tN = T . The nth space-time slab is given as Qn ≡ Ω × In.

Space-time boundary conditions are defined as (ΥD)n ≡ ΓD × In, (ΥN)n ≡ ΓN × In, and

(Υ3)n ≡ Γ3 × In for the temperature, surface heat flux, and convection boundary conditions,

respectively, such that (Υ)n = (ΥD)n
⋃

(ΥN)n
⋃

(Υ3)n. Each space-time slab is divided into

nel space-time elements where Qe
n is the eth space-time element and (Υe)n is the eth element’s

boundary. Thus, the interior of the slab is given as:

QΣ
n =

nel⋃
e=1

Qe
n (2.8)

and the inter-element boundary of the slab is given as:

(
ΥΣ
)
n

=

nel⋃
e=1

(Υe)n − (Υ)n (2.9)
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Figure 2.1. Space-Time Discretization (Linear Spatial; Quadratic Temporal)

Adding the natural and thermal convection boundary conditions to equation 2.1, multi-

plying by the variation in temperature, δφ, and integrating over both time and space:

0 =

ˆ
In

ˆ
Ω

δφ
(
ρ cp φ̇−∇· (k ∇φ)−G

)
dΩ dt

+

ˆ
In

ˆ
ΓN

δφ (k ∇φ·n− q) dΓ dt

+

ˆ
In

ˆ
Γ3

δφ (k ∇φ·n− h (φa − φ)) dΓ dt

(2.10)

The essential boundary condition is not added since we make its test function vanish on that

boundary (Krysl (2005), p.40). The middle term on the top line can be expanded by the

product rule (Krysl (2005), p.39):

−
ˆ
In

ˆ
Ω

δφ (∇· (k ∇φ)) dΩ dt = −
ˆ
In

ˆ
Ω

∇· (δφ k ∇φ) dΩ dt

+

ˆ
In

ˆ
Ω

δ∇φ· (k ∇φ) dΩ dt

(2.11)
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Using the divergence theorem, the first term on the RHS of equation 2.11 can be converted

to (Krysl (2005), p.39):

ˆ
In

ˆ
Ω

∇· (δφ k ∇φ) dΩ dt =

ˆ
In

ˆ
Γint

δφ Jk ∇φ·nK dΓ dt+

ˆ
In

ˆ
Γ

δφ (k ∇φ·n) dΓ dt (2.12)

where the Jk ∇φ·nK is the spatial, inter-element jump term which vanishes due to the inter-

element continuity. Both terms on the RHS of equation 2.12 have dΓ rather than dΩ because

“the test function vanishes on the complement of the traction boundaries” (Belytschko et al.

(2014), p.153). The RHS term of equation 2.12 cancels with both k ∇φ·n terms in equation

2.10 since Γ in equation 2.12 is the union of all surfaces and would thus include both the

surfaces where surface heat flux (ΓN) and convection (Γ3) boundary conditions are applied

(Krysl (2005), p.40). This leaves us with:

ˆ
In

ˆ
Ω

δφ ρ cp φ̇ dΩ dt

+

ˆ
In

ˆ
Ω

δ∇φ· (k ∇φ) dΩ dt

=

ˆ
In

ˆ
Ω

δφ G dΩ dt

+

ˆ
In

ˆ
ΓN

δφ q dΓ dt

+

ˆ
In

ˆ
Γ3

δφ h (φa − φ) dΓ dt

(2.13)

We now add a new term to allow for discontinuities across time element boundaries.

ˆ
Ω

δφ
(
t+n−1

)
ρ cp Jφ(tn−1)K dΩ =

ˆ
Ω

δφ
(
t+n−1

)
ρ cp φ

(
t+n−1

)
dΩ

−
ˆ
Ω

δφ
(
t+n−1

)
ρ cp φ

(
t−n−1

)
dΩ

(2.14)

18



Note that this term is not integrated over the time step as it only occurs at the boundaries.

Adding the RHS of equation 2.14 to the LHS of equation 2.13 and rearranging, we have:

ˆ
In

ˆ
Ω

δφ ρ cp φ̇ dΩ dt

+

ˆ
In

ˆ
Ω

δ∇φ· (k ∇φ) dΩ dt

+

ˆ
Ω

δφ
(
t+n−1

)
ρ cp φ

(
t+n−1

)
dΩ

=

ˆ
In

ˆ
Ω

δφ G dΩ dt

+

ˆ
In

ˆ
ΓN

δφ q dΓ dt

+

ˆ
In

ˆ
Γ3

δφ h (φa − φ) dΓ dt

+

ˆ
Ω

δφ
(
t+n−1

)
ρ cp φ

(
t−n−1

)
dΩ

(2.15)

2.2.2 Discretization

We use the following definitions for the discretization of the weak form:

∇Nx = Bx

N (x, t) = N t ⊗Nx

B (x, t) = N t ⊗Bx

G (x, t) = G (t) G (x)

q (x, t) = q (t) q (x)

h (x, t) = h (t) h (x)

φ (x, t) =
n∑
I=1

NI (x, t)φI

∇φ (x, t) =
n∑
I=1

∇NI (x, t) φI =
n∑
I=1

BI (x, t)φI
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φ̇ (x, t) =
n∑
I=1

ṄI (x, t)φI

δφ (x, t) =
n∑
I=1

NI (x, t) δφI

δ∇φ (x, t) =
n∑
I=1

∇NI (x, t) δφI =
n∑
I=1

BI (x, t) δφI

where I is the node number. Substituting the discretized equations into the weak form of the

general heat equation (2.15), moving the variation in the temperature outside the integrals,

breaking up the h (φa − φ) term, and moving the negative portion of the convection term to

the LHS:

δφ

ˆ
In

ˆ
Ω

NT ρ cp Ṅ dΩ dt φn

+ δφ

ˆ
In

ˆ
Ω

BT kB dΩ dt φn

+ δφ

ˆ
Ω

NT
(
t+n−1

)
ρ cpN

(
t+n−1

)
dΩ φn

+ δφ

ˆ
In

ˆ
Γ3

NThN dΓ dt φn

= δφ

ˆ
In

ˆ
Ω

NT G dΩ dt

+ δφ

ˆ
In

ˆ
ΓN

NT q dΓ dt

+ δφ

ˆ
In

ˆ
Γ3

NTh dΓ dt φa

+ δφ

ˆ
Ω

NT
(
t+n−1

)
ρ cpN

(
t−n−1

)
dΩ φn−1

(2.16)
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Since δφ is arbitrary, we cancel it out. Next, we separate spatial and temporal integrals and

use h (x, t) = h (x) h (t), G (x, t) = G (x) G (t), and q (x, t) = q (x) q (t):[ˆ
In

NT
t Ṅ t dt⊗

ˆ
Ω

NT
x ρ cpNx dΩ

+

ˆ
In

NT
t N t dt⊗

ˆ
Ω

BT
x kBx dΩ

+NT
t

(
t+n−1

)
N t

(
t+n−1

)
⊗
ˆ
Ω

NT
x ρ cpNx dΩ

+

ˆ
In

NT
t h(t)N t dt⊗

ˆ
Γ3

NT
x h(x)Nx dΓ

]
φn

=

ˆ
In

NT
t G(t) dt⊗

ˆ
Ω

NT
x G(x) dΩ

+

ˆ
In

NT
t q(t) dt⊗

ˆ
ΓN

NT
x q(x) dΓ

+

ˆ
In

NT
t h(t) dt⊗

ˆ
Γ3

NT
x h(x) dΓ φa

+

[
NT

t

(
t+n−1

)
N t

(
t−n−1

)
⊗
ˆ
Ω

NT
x ρ cpNx dΩ

]
φn−1

(2.17)

where φn and φn−1 are space-time temperature vectors for the current and previous time

steps, respectively. We define the following:

C =

ˆ
Ω

NT
x ρ cpNx dΩ

K =

ˆ
Ω

BT
x kBx dΩ

H =

ˆ
Γ3

NT
x h (x) Nx dΓ

PG =

ˆ
Ω

NT
x G (x) dΩ

Pq =

ˆ
ΓN

NT
x q (x) dΓ

Ph =

ˆ
Γ3

NT
x h (x) dΓ φa

INND =

ˆ
In

NT
t Ṅ t dt

INN =

ˆ
In

NT
t N t dt
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INNh =

ˆ
In

NT
t h (t) N t dt

INh =

ˆ
In

NT
t h (t) dt

ING =

ˆ
In

NT
t G (t) dt

INq =

ˆ
In

NT
t q (t) dt

NNP = NT
t

(
t+n−1

)
N t

(
t+n−1

)
NNM = NT

t

(
t+n−1

)
N t

(
t−n−1

)
Using the above definitions, equation 2.17 becomes:

[INND ⊗C + INN ⊗K +NNP ⊗C + INNh⊗H ]φn =

ING⊗ PG+ INq ⊗ Pq + INh⊗ Ph+ [NNM ⊗C]φn−1

(2.18)

Gathering like terms:

[(INND +NNP )⊗C + INN ⊗K + INNh⊗H ]φn =

ING⊗ PG+ INq ⊗ Pq + INh⊗ Ph+ [NNM ⊗C]φn−1

(2.19)

If h (t) = G (t) = q (t) = 1, then using IN =
´
In
NT

t dt equation 2.19 becomes:

[(INND +NNP )⊗C + INN ⊗ (K +H)]φn =

IN ⊗ (PG+ Pq + Ph) + [NNM ⊗C]φn−1

(2.20)

Equation 2.19 can be simplified into a space-time linear system:

Ktemp
stn φn = F temp

stn (2.21)

where:

Ktemp
stn = [(INND +NNP )⊗C + INN ⊗K + INNh⊗H ] (2.22)

F temp
stn = ING⊗ PG+ INq ⊗ Pq + INh⊗ Ph+ [NNM ⊗C]φn−1 (2.23)
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The presence of φn−1naturally raises the question of what to do for the case when n=1. For

this case, the last term of equation 2.23 becomes:

[ˆ
Ω0

N+T ρ cpNx dΩ

]
φ0 =

[
NT

t

(
0+
)
⊗
ˆ
Ω0

NT
x ρ cpNx dΩ

]
φ0 = [NP0 ⊗C]φ0 (2.24)

where NP0 = NT
t (0+) and φ0 is the initial temperature vector whose size is the number

of spatial nodes only. That is, φ0 is a spatial temperature vector and not a space-time

temperature vector.

2.2.3 Space-Time Matrix Formulation

The time Lagrangian shape function has the following form (Cook et al. (2002), p.86):

Nti =
(t1 − t) (t2 − t) ... [ti − t] ... (tk − t)

(t1 − ti) (t2 − ti) ... [ti − ti] ... (tk − ti)
(2.25)

where the bracketed terms are omitted to obtain the ith shape function. If we want non-

zero accelerations for the mechanical analysis and desire to make the thermal analysis

consistent, then we should choose quadratic (or higher) polynomial order time shape functions.

For these quadratic time shape functions, there are three, equally-spaced nodes at tn−1,

tn−1/2 = tn−1 + 1
2
∆t, and tn = tn−1 + ∆t where n is the time-step number:

N t =


(tn−1/2−t)(tn−t)

(tn−1/2−tn−1)(tn−tn−1)

(tn−1−t)(tn−t)
(tn−1−tn−1/2)(tn−tn−1/2)

(tn−1−t)(tn−1/2−t)
(tn−1−tn)(tn−1/2−tn)


T

(2.26)

Or:

N t =


1

∆t2
(∆t− t+ tn−1) (∆t− 2t+ 2tn−1)

1
∆t2

(4 (t− tn−1) (∆t− t+ tn−1))

1
∆t2

(tn−1 − t) (∆t− 2t+ 2tn−1)


T

(2.27)
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The first time derivatives of these shape functions are:

Ṅ t =


1

∆t2
(−3∆t+ 4t− 4tn−1)

1
∆t2

(4∆t− 8t+ 8tn−1)

1
∆t2

(−∆t+ 4t− 4tn−1)


T

(2.28)

Using equations 2.27 and 2.28, the definitions used in the previous section become:

NP0 = NT
t

(
0+
)

=


1

0

0



INND =


−1

2
2
3
−1

6

−2
3

0 2
3

1
6
−2

3
1
2



INN = ∆t


2
15

1
15
− 1

30

1
15

8
15

1
15

− 1
30

1
15

2
15



NNP =


1 0 0

0 0 0

0 0 0



NNM =


0 0 1

0 0 0

0 0 0


If h (t) = G (t) = q (t) = 1, then:

INhconst = INGconst = INqconst = IN =

ˆ
In

NT
t dt = ∆t


1
6

2
3

1
6


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INNhconst = INN = ∆t


2
15

1
15
− 1

30

1
15

8
15

1
15

− 1
30

1
15

2
15



Ktemp
stn =


1
2C + 2

15 (K +H) ∆t 2
3C + 1

15 (K +H) ∆t − 1
6C −

1
30 (K +H) ∆t

− 2
3C + 1

15 (K +H) ∆t 8
15 (K +H) ∆t 2

3C + 1
15 (K +H) ∆t

1
6C −

1
30 (K +H) ∆t − 2

3C + 1
15 (K +H) ∆t 1

2C + 2
15 (K +H) ∆t

 (2.29)

F temp
stn =


0 0 C

0 0 0

0 0 0

φn−1 +
∆t

6


PG+ Pq + Ph

4 (PG+ Pq + Ph)

PG+ Pq + Ph

 (2.30)

For n=1:

F temp
st1 =


C

0

0

φ0 +
∆t

6


PG+ Pq + Ph

4 (PG+ Pq + Ph)

PG+ Pq + Ph

 (2.31)

If, on the other hand, q (t) = sin (ω t) in the case of a cyclic heat flux, then INq becomes:

INqsin =[
1

ω3∆t2

[
4 cos

(
ω
[
tn−1 + ∆t

])
− 4 cos

(
ω tn−1

)
+ ω2∆t2 cos

(
ω tn−1

)
+ ω∆t sin

(
ω
[
tn−1 + ∆t

])
+ 3ω∆t sin

(
ω tn−1

)]
1

ω3∆t2

[
8 cos

(
ω tn−1

)
− 8 cos

(
ω
[
tn−1 + ∆t

])
− 4ω∆t sin

(
ω
[
tn−1 + ∆t

])
− 4ω∆t sin

(
ω tn−1

)]
1

ω3∆t2

[
4 cos

(
ω
[
tn−1 + ∆t

])
− 4 cos

(
ω tn−1

)
− ω2∆t2 cos

(
ω
[
tn−1 + ∆t

])
+ 3ω∆t sin

(
ω
[
tn−1 + ∆t

])
+ ω∆t sin

(
ω tn−1

)]
]

(2.32)

A cyclic heat flux with a non-zero mean flux will be a combination of the previous two INq

matrices above:

(INq ⊗ Pq)total = INqconst ⊗ Pqconst + INqsin ⊗ Pqsin (2.33)

where Pqconst is the mean heat flux load and Pqsin is the sinusoidal heat flux amplitude.

2.2.4 Thermal TFEM Implemention

The implementation of the thermal TFEM formulation is as follows:

1. Generate a mesh of the spatial domain.
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2. Assemble the global, spatial capacitance, conductance, and convection-stiffness matrices,

C, K, and H , respectively.

3. Assemble the global, spatial heat source, heat flux, and convection-load vectors, PG,

Pq, and Ph, respectively.

4. Initiate the time loop:

(a) Calculate the various time matrices (e.g., INND, INNH, NNP , etc.) for

the given time step’s ∆t.

(b) Assemble the thermal space-time stiffness matrix, Ktemp
stn , using equation 2.29.

(c) Calculate the space-time thermal load vector, F temp
st1 or F temp

stn , using equations

2.31 or 2.30 for the first time step or subsequent time steps, respectively.

(d) Apply boundary conditions.

(e) Solve the linear system, equation 2.21, for the space-time temperature vector, φn.

(f) Store the space-time temperature vector for the next space-time time-step, φn−1.

(g) Repeat (a) through (f) for all time intervals.

5. End time loop.

2.3 Space-Time Finite Element Method (TFEM) for Mechanical Analysis

2.3.1 Governing Equation to Weak Form

We start with the governing equations of initial-boundary-value linear elastodynamics over a

3D spatial domain, Ω, and temporal domain, I = ]0, T [:

ρ ü = ∇·σ + ρ b on Q ≡ Ω × I (2.34)

σ = D : (ε− εθ) (2.35)
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u = ū on Υu ≡ Γu × I (2.36)

n · σ (∇u) = h on Υh ≡ Γh × I (2.37)

u (x, 0) = u0 (x) on x ∈ Ω (2.38)

u̇ (x, 0) = v0 (x) on x ∈ Ω (2.39)

Γ = Γu ∪ Γh (2.40)

Γu ∩ Γh = 0 (2.41)

where equation 2.34 is the conservation of linear momentum, Γ is the boundary of Ω and

is the combination of the non-overlapping essential (Dirichlet) displacement boundary Γu

and natural (Neumann) traction boundary Γh, ρ is the volumetric mass density, b is the

body acceleration, u is the displacement vector, n is the outward normal to Γ, ū and h

are the prescribed boundary displacement and traction, respectively, and u0 and v0 are the

initial displacement and velocity, respectively. Lastly, the superposed dots in u̇ and ü denote

partial derivatives with respect to time. The temporal and spatial domains and corresponding

boundary terms are similar to the thermal TFEM and will not be repeated here (see section

2.2.1).

To get equation 2.34 in its weak form, we multiply by the virtual velocity, δv, and integrate

over the space-time domain:

ˆ
Qn

δv ρ ü dQ =

ˆ
Qn

δv (∇·σ) dQ+

ˆ
Qn

δv ρ b dQ (2.42)

The first term on the RHS can be expanded by the product rule (Belytschko et al. (2014),

p.153): ˆ
Qn

δv (∇·σ) dQ =

ˆ
Qn

[∇· (δv·σ)−∇δv·σ] dQ (2.43)

The first term on the RHS of equation 2.43 can itself be expanded by Gauss’s Theorem:

ˆ
Qn

∇· (δv·σ) dQ =

ˆ
In

ˆ
Γint

δv Jn·σK dΓ dt+

ˆ
In

ˆ
Γh

δv·h dΓ dt (2.44)
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where h is the traction and Jn·σK is the inter-element traction jump term. Both terms on

the RHS of equation 2.44 have dΓ rather than dΩ because “the test function vanishes on

the complement of the traction boundaries” (Belytschko et al. (2014), p.153). The Jn·σK

becomes zero due to the traction continuity. Substituting these results into equation 2.42, we

have:

ˆ
Qn

δv· ρ ü dQ =

ˆ
In

ˆ
Γh

δv·h dΓ dt−
ˆ
Qn

∇δv·σ dQ+

ˆ
Qn

δv· ρ b dQ (2.45)

Substituting equation 2.35 into equation 2.45 and rearranging, we get:

ˆ
Qn

δv· ρ ü dQ

+

ˆ
Qn

∇δv· (D : ε) dQ =

ˆ
In

ˆ
Γh

δv·h dΓ dt

+

ˆ
Qn

δv· ρ b dQ

+

ˆ
Qn

∇δv· (D : εθ) dQ

(2.46)

Given that
´
In

´
Γh
dΓ dt =

´
(Υh)n

dΥ:

ˆ
Qn

δv· ρ ü dQ

+

ˆ
Qn

∇δv· (D : ε) dQ =

ˆ
(Υh)n

δv·h dΥ

+

ˆ
Qn

δv· ρ b dQ

+

ˆ
Qn

∇δv· (D : εθ) dQ

(2.47)

We now introduce two terms to allow for discontinuities across time element boundaries:

ˆ
Ω

δv
(
t+n−1

)
· ρ Ju̇ (tn−1)K dΩ =

ˆ
Ω

δv
(
t+n−1

)
· ρ u̇

(
t+n−1

)
dΩ

−
ˆ
Ω

δv
(
t+n−1

)
· ρ u̇

(
t−n−1

)
dΩ

(2.48)

28



ˆ
Ω

∇δu
(
t+n−1

)
· Jσ (tn−1)K dΩ =

ˆ
Ω

∇δu
(
t+n−1

)
· JD : (ε (tn−1)− εθ (tn−1))K dΩ

=

ˆ
Ω

∇δu
(
t+n−1

)
·D : ε

(
t+n−1

)
dΩ

−
ˆ
Ω

∇δu
(
t+n−1

)
·D : εθ

(
t+n−1

)
dΩ

−
ˆ
Ω

∇δu
(
t+n−1

)
·D : ε

(
t−n−1

)
dΩ

+

ˆ
Ω

∇δu
(
t+n−1

)
·D : εθ

(
t−n−1

)
dΩ

(2.49)

Adding equations 2.48 and 2.49 to the LHS of equation 2.45 and moving everything to one

side:

0 =

ˆ
Qn

δv· ρ ü dQ

+

ˆ
Qn

∇δv· (D : ε) dQ

−
ˆ
Qn

∇δv· (D : εθ) dQ

+

ˆ
Ω

δv
(
t+n−1

)
· ρ u̇

(
t+n−1

)
dΩ

+

ˆ
Ω

∇δu
(
t+n−1

)
·D : ε

(
t+n−1

)
dΩ

−
ˆ
Ω

∇δu
(
t+n−1

)
·D : εθ

(
t+n−1

)
dΩ

−
ˆ

(Υh)n

δv·h dΥ

−
ˆ
Qn

δv· ρ b dQ

−
ˆ
Ω

δv
(
t+n−1

)
· ρ u̇

(
t−n−1

)
dΩ

−
ˆ
Ω

∇δu
(
t+n−1

)
·D : ε

(
t−n−1

)
dΩ

+

ˆ
Ω

∇δu
(
t+n−1

)
·D : εθ

(
t−n−1

)
dΩ

(2.50)

The presence of u̇
(
t−n−1

)
, ε
(
t−n−1

)
, and εθ

(
t−n−1

)
naturally raises the question of what to do

for the case when n=1. For this case, the last three terms evaluated at
(
t−n−1

)
in equation
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2.50 become:

−
ˆ
Ω

δv
(
0+
)
· ρv0 dΩ −

ˆ
Ω

∇δu
(
0+
)
· ε0 dΩ +

ˆ
Ω

∇δu
(
0+
)
·D : ε0

θ dΩ (2.51)

where v0 is the initial velocity vector, ε0 is the initial total strain tensor, and ε0
θ is the initial

thermal strain tensor. Note that v0 is a spatial velocity vector and not a space-time velocity

vector.

2.3.2 Discretization

We use the following definitions for the discretization of the weak form:

∇Nx = Bx

N (x, t) = N t ⊗Nx

B (x, t) = N t ⊗Bx

h = h (x, t) = h (t) h (x)

b = b (x, t) = b (t) b (x)

εθ = εθ (x, t) = εθ (t) εθ (x)

u (x, t) =
n∑
I=1

NI (x, t)dI

∇u (x, t) =
n∑
I=1

∇NI (x, t)dI =
n∑
I=1

BI (x, t)dI

u̇ (x, t) =
n∑
I=1

ṄI (x, t)dI

∇u̇ (x, t) =
n∑
I=1

∇ṄI (x, t)dI =
n∑
I=1

ḂI (x, t)dI

ü (x, t) =
n∑
I=1

N̈I (x, t)dI
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δu (x, t) =
n∑
I=1

NI (x, t) δdI

δv (x, t) = δu̇ (x, t) =
n∑
I=1

ṄI (x, t) δdI

∇δu (x, t) =
n∑
I=1

∇NI (x, t) δdI =
n∑
I=1

BI (x, t) δdI

∇δv (x, t) = ∇ ˙δu (x, t) =
n∑
I=1

∇ṄI (x, t) δdI =
n∑
I=1

ḂI (x, t) δdI

where dI are the nodal displacements. Substituting the above discretized equations into

equation 2.50 and moving the variations in displacement outside the integrals:

0 = δdn

ˆ
(Qn)Σ

Ṅ
T
ρ N̈ dn dQ

+ δdn

ˆ
Qn

Ḃ
T
Dε dQ

− δdn
ˆ
Qn

Ḃ
T
Dεθ dQ

+ δdn

ˆ
Ω

Ṅ
T (
t+n−1

)
ρ Ṅ

(
t+n−1

)
dn dΩ

+ δdn

ˆ
Ω

BT
(
t+n−1

)
Dε

(
t+n−1

)
dΩ

− δdn
ˆ
Ω

BT
(
t+n−1

)
Dεθ

(
t+n−1

)
dΩ

− δdn
ˆ

(Υh)n

Ṅ
T
h dΥ

− δdn
ˆ
Qn

Ṅ
T
ρ b dQ

− δdn
ˆ
Ω

Ṅ
T (
t+n−1

)
ρ Ṅ

(
t−n−1

)
dn−1 dΩ

− δdn
ˆ
Ω

BT
(
t+n−1

)
Dε

(
t−n−1

)
dΩ

+ δdn

ˆ
Ω

BT
(
t+n−1

)
Dεθ

(
t−n−1

)
dΩ

(2.52)

For the case where n=1, the last three terms of equation 2.52 become:

− δdn
ˆ
Ω

Ṅ
T (

0+
)
ρ v0 dΩ − δdn

ˆ
Ω

BT
(
0+
)
Dε0 dΩ + δdn

ˆ
Ω

BT
(
0+
)
Dε0

θ dΩ (2.53)
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Since the virtual displacements are arbitrary, they may be dropped. Furthermore, the nodal

displacements are independent of the integrals and may be moved outside:

0 =

ˆ
(Qn)Σ

Ṅ
T
ρ N̈ dQ dn

+

ˆ
Qn

Ḃ
T
Dε dQ

−
ˆ
Qn

Ḃ
T
Dεθ dQ

+

ˆ
Ω

Ṅ
T (
t+n−1

)
ρ Ṅ

(
t+n−1

)
dΩ dn

+

ˆ
Ω

BT
(
t+n−1

)
Dε

(
t+n−1

)
dΩ

−
ˆ
Ω

BT
(
t+n−1

)
Dεθ

(
t+n−1

)
dΩ

−
ˆ

(Υh)n

Ṅ
T
h dΥ

−
ˆ
Qn

Ṅ
T
ρ b dQ

−
ˆ
Ω

Ṅ
T (
t+n−1

)
ρ Ṅ

(
t−n−1

)
dΩ dn−1

−
ˆ
Ω

BT
(
t+n−1

)
Dε

(
t−n−1

)
dΩ

+

ˆ
Ω

BT
(
t+n−1

)
Dεθ

(
t−n−1

)
dΩ

(2.54)

Likewise for the case where n=1, the last three terms of equation 2.54 become:

−
ˆ
Ω

Ṅ
T (

0+
)
ρ dΩ v0 −

ˆ
Ω

BT
(
0+
)
·Dε0 dΩ +

ˆ
Ω

BT
(
0+
)
Dε0

θ dΩ (2.55)

Substituting ε = Bd and εθ = α∆T I where d is the displacement vector, α is the coefficient

of thermal expansion, ∆T = ∆T (t) ∆T (x) = T (x, t)−Tref , Tref is the reference temperature,
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and I is the second-order identity tensor into equation 2.54, we have:

0 =

ˆ
(Qn)Σ

Ṅ
T
ρ N̈ dQ dn

+

ˆ
Qn

Ḃ
T
DB dQ dn

−
ˆ
Qn

Ḃ
T
D α ∆T I dQ

+

ˆ
Ω

Ṅ
T (
t+n−1

)
ρ Ṅ

(
t+n−1

)
dΩ dn

+

ˆ
Ω

BT
(
t+n−1

)
DB

(
t+n−1

)
dΩ dn

−
ˆ
Ω

BT
(
t+n−1

)
D α

[
T
(
t+n−1

)
− Tref

]
I dΩ

−
ˆ

(Υh)n

Ṅ
T
h dΥ

−
ˆ
Qn

Ṅ
T
ρ b dQ

−
ˆ
Ω

Ṅ
T (
t+n−1

)
ρ Ṅ

(
t−n−1

)
dΩ dn−1

−
ˆ
Ω

BT
(
t+n−1

)
DB

(
t−n−1

)
dΩ dn−1

+

ˆ
Ω

BT
(
t+n−1

)
D α

[
T
(
t−n−1

)
− Tref

]
I dΩ

(2.56)

Likewise for the case where n=1, the last three terms of equation 2.56 become:

−
ˆ
Ω

Ṅ
T (

0+
)
ρ dΩ v0

−
ˆ
Ω

BT
(
0+
)
DBx dΩ u0

+

ˆ
Ω

BT
(
0+
)
D α (T0 − Tref ) I dΩ

(2.57)

where u0 is the initial displacement vector and T0 is the initial temperature. Note that u0

is a spatial displacement vector and not a space-time displacement vector. Separating the
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spatial and temporal integrals and combining the thermal jump terms:

0 =

[ˆ
In

Ṅ
T

t N̈ t dt⊗
ˆ
Ω

NT
x ρNx dΩ

+

ˆ
In

Ṅ
T

t N t dt⊗
ˆ
Ω

BT
x DBx dΩ

+ Ṅ
T

t

(
t+n−1

)
Ṅ t

(
t+n−1

)
⊗
ˆ
Ω

NT
x ρNx dΩ

+ NT
t

(
t+n−1

)
N t

(
t+n−1

)
⊗
ˆ
Ω

BT
x DBx dΩ

]
dn

−
ˆ
In

Ṅ
T

t h (t) dt⊗
ˆ

Γn

NT
x h (x) dΓ

−
ˆ
In

Ṅ
T

t b (t) dt⊗
ˆ
Ω

NT
x ρ b (x) dΩ

−
ˆ
In

Ṅ
T

t ∆T (t) dt⊗
ˆ
Ω

BT
x D α∆T (x) I dΩ

−
[
Ṅ

T

t

(
t+n−1

)
Ṅ t

(
t−n−1

)
⊗
ˆ
Ω

NT
x ρNx dΩ

+ NT
t

(
t+n−1

)
N t

(
t−n−1

)
⊗
ˆ
Ω

BT
x DBx dΩ

]
dn−1

−NT
t

(
t+n−1

)
⊗
ˆ
Ω

BT
x D α

[
T
(
t+n−1

)
− T

(
t−n−1

)]
I dΩ

(2.58)

When n=1, the last three terms become:

− ṄT

t

(
0+
)
⊗
ˆ
Ω

NT
x ρNx dΩ v0

−NT
t

(
0+
)
⊗
ˆ
Ω

BT
x DBx dΩ u0

−NT
t

(
0+
)
⊗
ˆ
Ω

BT
x D α

[
T
(
0+
)
− T0

]
I dΩ

(2.59)

We define the following:

M =

ˆ
Ω

NT
x ρNx dΩ

K =

ˆ
Ω

BT
x DBx dΩ

H =

ˆ
Γn

NT
x h (x) dΓ

Bf =

ˆ
Ω

NT
x ρ b (x) dΩ
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Θ =

ˆ
Ω

BT
x D α∆T (x) I dΩ

ΘJ =

ˆ
Ω

BT
x D α

[
T
(
t+n−1

)
− T

(
t−n−1

)]
I dΩ

ΘJ0 =

ˆ
Ω

BT
x D α

[
T
(
0+
)
− T0

]
I dΩ

INN3 =

ˆ
In

Ṅ
T

t N̈ t dt

INN1 =

ˆ
In

Ṅ
T

t N t dt

IN1H =

ˆ
In

Ṅ
T

t h (t) dt

IN1B =

ˆ
In

Ṅ
T

t b (t) dt

IN1Θ =

ˆ
In

Ṅ
T

t ∆T (t) dt

NN2P = Ṅ
T

t

(
t+n−1

)
Ṅ t

(
t+n−1

)
NN2M = Ṅ

T

t

(
t+n−1

)
Ṅ t

(
t−n−1

)
NNP = NT

t

(
t+n−1

)
N t

(
t+n−1

)
NNM = NT

t

(
t+n−1

)
N t

(
t−n−1

)
NP = NT

t

(
t+n−1

)
N1P0 = Ṅ

T

t

(
0+
)

NP0 = NT
t

(
0+
)

Using the above definitions and moving the negative terms to the other side, equation 2.58

becomes:

[(INN3 +NN2P )⊗M+

(INN1 +NNP )⊗K] dn = IN1H ⊗H + IN1B ⊗Bf

+ IN1Θ ⊗Θ +NP ⊗ΘJ

+ [NN2M ⊗M +NNM ⊗K] dn−1

(2.60)
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For n=1, the last three terms on the RHS of equation 2.60 become:

[N1P0 ⊗M ] v0 + [NP0 ⊗K] u0 +NP0 ⊗ΘJ0 (2.61)

Equation 2.60 can be simplified into a space-time linear system:

Kmech
stn dn = Fmech

stn (2.62)

where:

Kmech
stn = [(INN3 +NN2P )⊗M + (INN1 +NNP )⊗K] (2.63)

Fmech
stn = IN1H ⊗H + IN1B ⊗Bf

+ IN1Θ ⊗Θ +NP ⊗ΘJ

+ [NN2M ⊗M +NNM ⊗K] dn−1

(2.64)

Fmech
st1

= IN1H ⊗H + IN1B ⊗Bf

+ IN1Θ ⊗Θ +NP0 ⊗ΘJ0

+ [N1P0 ⊗M ] v0 + [NP0 ⊗K] u0

(2.65)

2.3.3 Space-Time Matrix Formulation

Assuming a quadratic interpolation (see section 2.2.3), the shape functions and their first

and second derivatives become:

N t =


1

∆t2
(∆t− t+ tn−1) (∆t− 2t+ 2tn−1)

1
∆t2

(4 (t− tn−1) (∆t− t+ tn−1))

1
∆t2

(tn−1 − t) (∆t− 2t+ 2tn−1)


T

Ṅ t =


1

∆t2
(−3∆t+ 4t− 4tn−1)

1
∆t2

(4∆t− 8t+ 8tn−1)

1
∆t2

(−∆t+ 4t− 4tn−1)


T
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N̈ t =


4

∆t2

−8
∆t2

4
∆t2


T

The time matrices then become:

NP = NP0 = NT
t

(
0+
)

=


1

0

0



N1P0 = Ṅ
T

t

(
0+
)

=
1

∆t


−3

4

−1



INN3 =
1

∆t2


−4 8 −4

0 0 0

4 −8 4



INN1 =


−1

2
−2

3
1
6

2
3

0 −2
3

−1
6

2
3

1
2



NN2P =
1

∆t2


9 −12 3

−12 16 −4

3 −4 1



NN2M =
1

∆t2


−3 12 −9

4 −16 12

−1 4 −3


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NNP =


1 0 0

0 0 0

0 0 0



NNM =


0 0 1

0 0 0

0 0 0


Assuming h (t) = b (t) = ∆T (t) = 1, IN1H , IN1B, and IN1Θ become:

IN1Hconst = IN1Bconst = IN1Θconst =


−1

0

1


Using the above, the parts of the linear system become:

Kmech
stn =


5

∆t2
M + 1

2
K − 4

∆t2
M − 2

3
K − 1

∆t2
M + 1

6
K

− 12
∆t2
M + 2

3
K 16

∆t2
M − 4

∆t2
M − 2

3
K

7
∆t2
M − 1

6
K − 12

∆t2
M + 2

3
K 5

∆t2
M + 1

2
K

 (2.66)

Fmech
stn =


− 3

∆t2
M 12

∆t2
M − 9

∆t2
M + 1

6K

4
∆t2
M − 16

∆t2
M 12

∆t2
M

− 1
∆t2
M 4

∆t2
M − 3

∆t2
M

dn−1 +


− (Bf +H +Θ) +ΘJ

0

Bf +H +Θ

 (2.67)

Fmech
st1

=


− 3

∆t
M vo +Ku0 − (Bf +H +Θ) +ΘJ0

4
∆t
M vo

− 1
∆t
M vo +Bf +H +Θ

 (2.68)

If, on the other hand, h (t) = sin (ω t) in the case of cyclic mechanical fatigue loading, then

IN1H becomes:

IN1Hsin =
1

ω2∆t2 [4 sin(ω [tn−1 + ∆t])− 4 sin(ω tn−1)− ω∆t cos(ω [tn−1 + ∆t])− 3ω∆t cos(ω tn−1)]

1
ω2∆t2 [8 sin(ω tn−1)− 8 sin(ω [tn−1 + ∆t]) + 4ω∆t cos(ω [tn−1 + ∆t]) + 4ω∆t cos(ω tn−1)]

1
ω2∆t2 [4 sin(ω [tn−1 + ∆t])− 4 sin(ω tn−1)− 3ω∆t cos(ω [tn−1 + ∆t])− ω∆t cos(ω tn−1)]

 (2.69)
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A cyclic fatigue loading with a non-zero mean stress will be a combination of the previous

two INH1 matrices above:

(IN1H ⊗H)total = IN1Hconst ⊗Hconst + IN1Hsin ⊗Hsin = −Hconst + 1
ω2∆t2

[4 sin(ω [tn−1 + ∆t])− 4 sin(ω tn−1)− ω∆t cos(ω [tn−1 + ∆t])− 3ω∆t cos(ω tn−1)]Hsin

1
ω2∆t2

[8 sin(ω tn−1)− 8 sin(ω [tn−1 + ∆t])+ 4ω∆t cos(ω [tn−1 + ∆t])+ 4ω∆t cos(ω tn−1)]Hsin

Hconst + 1
ω2∆t2

[4 sin(ω [tn−1 + ∆t])− 4 sin(ω tn−1)− 3ω∆t cos(ω [tn−1 + ∆t])− ω∆t cos(ω tn−1)]Hsin

 (2.70)

where Hconst is the mean traction load and Hsin is the sinusoidal traction amplitude.

2.4 Extended Space-Time Finite Element Method for Mechanical Analysis

2.4.1 Introduction

Given the cyclic character of fatigue loading, it is difficult to accurately capture the structural

response of a component using the standard polynomial shape functions without using small

time steps, somewhere around 100 or more per period. This would nullify much of the

advantage over the finite difference methods mentioned earlier. To be able to use longer time

steps, one method employed has been to enrich the temporal shape functions with harmonic

functions such as sine or cosine in order to match the nature of the loading conditions (see

Figures 2.2 and 2.3). By doing so, one can make the time step size equal to (or multiples of)

the harmonic loading’s time period, a vast improvement over the finite difference methods

and the standard TFEM. This translates to much smaller computation times. The process

of including functions matching the problem physics is called enrichment, and the resulting

formulation is commonly known as an extended formulation. In the case of TFEM enrichment,

the result is the extended space-time finite element method (XTFEM).

The idea of enriching TFEM is an outgrowth of the extended finite element method

(XFEM) (Moës et al. (1999)) which was itself based on the generalized finite element method

(GFEM) and partition of unity method (PUM) (Belytschko et al. (2014), p.646; Melenk

and Babuska (1996)). The first researchers to use a space-time enrichment were Chessa and
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Figure 2.2. Standard Polynomial (Quadratic) Space-Time Shape Function

Figure 2.3. Enriched (Harmonic) Space-Time Shape Function
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Belytschko (Chessa and Belytschko (2004)) who used it to solve linear, first-order wave and

non-linear Burgers’ equations. Qian and Chirputkar (Qian and Chirputkar (2014)) used an

enriched space-time formulation to capture high frequency waves in a coupled molecular-FEM

simulation of dynamic fracture. Using “examples involving wave propagations and dynamic

fracture in harmonic lattice,” Yang et al. (Yang et al. (2012)) proved the robustness of

XTFEM and its superior convergence properties over the traditional TFEM for problems

involving multiple time scales. The first researchers to use XTFEM to predict component life

for high cycle fatigue problems were Bhamare et al. (Bhamare et al. (2014)) who performed a

direct numerical simulation of a single-edge notched plate specimen for over 1 million fatigue

cycles with a high degree of accuracy. Zhang et al. (Zhang et al. (2016)) demonstrated

XTFEM’s potential for parallel computing resulting in a drastic reduction in computation

time. This section details the formulation and implementation of XTFEM for mechanical

analysis.

2.4.2 Formulation

The extended finite element method (XFEM) is based on the partition of unity framework

(Belytschko et al. (2014), p.647, Melenk and Babuska (1996)):

ÑJ (X, t) = NJ (X, t) ΦJ (X, t) (2.71)

where ÑJ is the enriched nodal shape function, J is the node number, and ΦJ is the shifted

enrichment function given by:

ΦJ (X, t) = Φ (X, t)− Φ (XJ , tJ) (2.72)

Thus, the total displacement approximation is:

uh (X, t) =
ns∑
I=1

NI (X, t) dI +
ne∑
J=1

ÑJ (X, t) aJ
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where ns is the total number of regular nodes, ne is the total number of enriched nodes,

and aJ is the additional degrees of freedom due to enrichment. For fatigue applications, we

introduce the enrichment function:

ΦJ (t) = Φ (t)− Φ (tJ) = sin (ω t)− sin (ω tJ) (2.73)

which is only a function of time and so will only be applied to the time shape functions.

Assuming quadratic time shape functions (see section 2.2.3), the enrichment approximation

is:

uh = Ñ dX =
[
Ñ t ⊗Nx

]  dn
an



=
[
Nt1Nx Nt2Nx Nt3Nx Ñt1Nx Ñt2Nx Ñt3Nx

]



d1x1t

...

dns3t

a1x1t

...

ane3t



(2.74)

where Ñ =
[
Ñ t ⊗Nx

]
, dX =

[
dn an

]T
, and:

Ñt1 =

(
tn−1/2 − t

)
(tn − t)(

tn−1/2 − tn−1

)
(tn − tn−1)

(sin (ω t)− sin (ω tn−1))

Ñt2 =
(tn−1 − t) (tn − t)(

tn−1 − tn−1/2

) (
tn − tn−1/2

) (sin (ω t)− sin
(
ω tn−1/2

))
Ñt3 =

(tn−1 − t)
(
tn−1/2 − t

)
(tn−1 − tn)

(
tn−1/2 − tn

) (sin (ω t)− sin (ω tn))

(2.75)

Moving back to equation 2.56, we now substitute

[
N Ñ

]
in place of N ,

[
Ṅ ˙̃N

]

in place of Ṅ ,

[
N̈ ¨̃N

]
in place of N̈ ,

[
B B̃

]
in place of B,

 dn
an

 in place of dn,
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etc.:

0 =

ˆ
(Qn)Σ

[
Ṅ ˙̃N

]T
ρ

[
N̈ ¨̃N

]
dQ

 dn
an


+

ˆ
Qn

[
Ḃ ˙̃B

]T
D

[
B B̃

]
dQ

 dn
an


−
ˆ
Qn

[
Ḃ ˙̃B

]T
D α∆T I dQ

+

ˆ
Ω

[
Ṅ
(
t+n−1

) ˙̃N
(
t+n−1

) ]T
ρ

[
Ṅ
(
t+n−1

) ˙̃N
(
t+n−1

) ]
dΩ

 dn
an


+

ˆ
Ω

[
B
(
t+n−1

)
B̃
(
t+n−1

) ]T
D

[
B
(
t+n−1

)
B̃
(
t+n−1

) ]
dΩ

 dn
an


−
ˆ
Ω

[
B
(
t+n−1

)
B̃
(
t+n−1

) ]T
D α

[
T
(
t+n−1

)
− Tref

]
I dΩ

−
ˆ

(Υh)n

[
Ṅ ˙̃N

]T
h dΥ

−
ˆ
Qn

[
Ṅ ˙̃N

]T
ρ b dQ

−
ˆ
Ω

[
Ṅ
(
t+n−1

) ˙̃N
(
t+n−1

) ]T
ρ

[
Ṅ
(
t−n−1

) ˙̃N
(
t−n−1

) ]
dΩ

 dn−1

an−1


−
ˆ
Ω

[
B
(
t+n−1

)
B̃
(
t+n−1

) ]T
D

[
B
(
t−n−1

)
B̃
(
t−n−1

) ]
dΩ

 dn−1

an−1


+

ˆ
Ω

[
B
(
t+n−1

)
B̃
(
t+n−1

) ]T
D α

[
T
(
t−n−1

)
− Tref

]
I dΩ

(2.76)

Likewise for n=1, the last three terms are:

−
ˆ
Ω

[
Ṅ (0+) ˙̃N (0+)

]T
ρNx dΩ

 v0

0


−
ˆ
Ω

[
B (0+) B̃ (0+)

]T
DBx dΩ

 u0

0


+

ˆ
Ω

[
B (0+) B̃ (0+)

]T
D α (T0 − Tref ) I dΩ

(2.77)

43



where u0, v0, and T0 are the initial, spatial (not space-time) nodal displacements, nodal

velocities, and nodal temperatures, respectively. Separating the spatial and temporal integrals:

0 =

ˆ
In

[
Ṅ t

˙̃N t

]T [
N̈ t

¨̃N t

]
dt⊗

ˆ
Ω
NT

x ρNx dΩ

 dn
an


+

ˆ
In

[
Ṅ t

˙̃N t

]T [
N t Ñ t

]
dt⊗

ˆ
Ω
BT
x DBx dΩ

 dn
an


+

[
Ṅ t

(
t+n−1

) ˙̃N t

(
t+n−1

) ]T [
Ṅ t

(
t+n−1

) ˙̃N t

(
t+n−1

) ]⊗ ˆ
Ω
NT

x ρNx dΩ

 dn
an


+

[
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]T [
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]⊗ ˆ
Ω
BT
x DBx dΩ

 dn
an


−
ˆ
In

[
Ṅ t

˙̃N t

]T
h (t) dt⊗

ˆ
ΓN

NT
x h (x) dΓ

−
ˆ
In

[
Ṅ t

˙̃N t

]T
b (t) dt⊗

ˆ
Ω
NT

x ρ b (x) dΩ

−
ˆ
In

[
Ṅ t

˙̃N t

]T
∆T (t) dt⊗

ˆ
Ω
BT
x D α∆T (x) I dΩ

−
[
Ṅ t

(
t+n−1

) ˙̃N t

(
t+n−1

) ]T [
Ṅ t

(
t−n−1

) ˙̃N t

(
t−n−1

) ]⊗ ˆ
Ω
NT

x ρNx dΩ

 dn−1

an−1


−
[
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]T [
N t

(
t−n−1

)
Ñ t

(
t−n−1

) ]⊗ ˆ
Ω
BT
x DBx dΩ

 dn−1

an−1


−
[
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]T ⊗ ˆ
Ω
BT
x D α

[
T
(
t+n−1

)
− T

(
t−n−1

)]
I dΩ

(2.78)

For the case when n=1, the last three terms become:

−
[
Ṅ t (0+) ˙̃N t (0+)

]T
⊗
ˆ
Ω

NT
x ρNx dΩ

 v0

0


−
[
N t (0+) Ñ t (0+)

]T
⊗
ˆ
Ω

BT
x DBx dΩ

 u0

0


−
[
N t (0+) Ñ t (0+)

]T
⊗
ˆ
Ω

BT
x D α

[
T
(
0+
)
− T0

]
I dΩ

(2.79)
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We define the following:

M =

ˆ
Ω

NT
x ρNx dΩ

K =

ˆ
Ω

BT
x DBx dΩ

H =

ˆ
Γn

NT
x h (x) dΓ

Bf =

ˆ
Ω

NT
x ρ b (x) dΩ

Θ =

ˆ
Ω

BT
x D α∆T (x) I dΩ

ΘJ =

ˆ
Ω

BT
x D α

[
T
(
t+n−1

)
− T

(
t−n−1

)]
I dΩ

ΘJ0 =

ˆ
Ω

BT
x D α

[
T
(
0+
)
− T0

]
I dΩ

EINN3 =

ˆ
In

[
Ṅ t

˙̃N t

]T [
N̈ t

¨̃N t

]
dt

EINN1 =

ˆ
In

[
Ṅ t

˙̃N t

]T [
N t Ñ t

]
dt

EIN1H =

ˆ
In

[
Ṅ t

˙̃N t

]T
h (t) dt

EIN1B =

ˆ
In

[
Ṅ t

˙̃N t

]T
b (t) dt

EIN1Θ =

ˆ
In

[
Ṅ t

˙̃N t

]T
∆T (t) dt

ENN2P =

[
Ṅ t

(
t+n−1

) ˙̃N t

(
t+n−1

) ]T [
Ṅ t

(
t+n−1

) ˙̃N t

(
t+n−1

) ]

ENN2M =

[
Ṅ t

(
t+n−1

) ˙̃N t

(
t+n−1

) ]T [
Ṅ t

(
t−n−1

) ˙̃N t

(
t−n−1

) ]

ENNP =

[
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]T [
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]

ENNM =

[
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]T [
N t

(
t−n−1

)
Ñ t

(
t−n−1

) ]
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ENP =

[
N t

(
t+n−1

)
Ñ t

(
t+n−1

) ]T
EN1P0 =

[
Ṅ t (0+) ˙̃N t (0+)

]T
ENP0 =

[
N t (0+) Ñ t (0+)

]T

dXn =

 dn
an



dXn−1 =

 dn−1

an−1



uX0 =

 u0

0



vX0 =

 v0

0


Using the above definitions and moving the negative terms to the other side, equation 2.78

becomes:

[(EINN3 +ENN2P )⊗M+

(EINN1 +ENNP )⊗K] dXn = EIN1H ⊗H +EIN1B ⊗Bf

+EIN1Θ ⊗Θ +ENP ⊗ΘJ

+ [ENN2M ⊗M +ENNM ⊗K]dXn−1

(2.80)

For n=1, the RHS of equation 2.80 becomes:

+EIN1H ⊗H +EIN1B ⊗Bf

+EIN1Θ ⊗Θ +ENP0 ⊗ΘJ0

+ [EN1P ⊗M ]vX0 + [ENP ⊗K]uX0

(2.81)
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Equation 2.60 can be simplified into a space-time linear system:

Kmech
Xstn d

X
n = Fmech

Xstn (2.82)

where:

Kmech
Xstn = [(EINN3 +ENN2P )⊗M + (EINN1 +ENNP )⊗K] (2.83)

Fmech
Xstn = EIN1H ⊗H +EIN1B ⊗Bf

+EIN1Θ ⊗Θ +ENP ⊗ΘJ

+ [ENN2M ⊗M +ENNM ⊗K]dXn−1

(2.84)

Fmech
Xst1

= EIN1H ⊗H +EIN1B ⊗Bf

+EIN1Θ ⊗Θ +ENP0 ⊗ΘJ0

+ [EN1P ⊗M ]vX0 + [ENP ⊗K]uX0

(2.85)

Kmech
Xstn can be broken down into its normal, enriched, and coupled parts:

Kmech
Xstn =

 Kmech
stn Kmech

ean

Kmech
ebn Kmech

een

 (2.86)

where Kmech
stn is the normal space-time stiffness matrix, Kmech

ean and Kmech
ebn represent the

coupling between regular and enriched degrees of freedom, and Kmech
een represents the coupling

between enriched degrees of freedom (Bhamare (2012), p.93). Note that Kmech
ean 6=

(
Kmech

ebn

)T
.

2.4.3 Mechanical XTFEM Implementation

The implementation of the mechanical XTFEM formulation is as follows:

1. Generate a mesh of the spatial domain.

2. Assemble the global, spatial mass and stiffness matrices, M and K, respectively.
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3. Assemble the global, spatial external traction and body force vectors, H and Bf ,

respectively.

4. Initiate the time loop:

(a) Solve the thermal space-time equations for the temperatures (see section 2.2.4).

(b) Calculate the various time matrices (e.g., EINN3, EINN1, ENN2P , etc.)

for the given time step’s ∆t.

(c) Assemble the space-time stiffness matrix, Kmech
Xstn , using equation 2.83.

(d) Calculate the space-time thermal “force” and thermal jump terms, EIN1Θ ⊗Θ

and ENP ⊗ΘJ , respectively.

(e) Calculate the space-time force vector, Fmech
Xst1

or Fmech
Xstn , using equations 2.85 or

2.84 for the first time step or subsequent time steps, respectively.

(f) Apply boundary conditions.

(g) Solve the linear system, equation 2.82, for the extended space-time displacement

vector, dXn .

(h) Store the extended space-time displacement vector for the next time-step, dXn−1.

(i) Repeat (a) through (f) for all time intervals.

5. End time loop.
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CHAPTER 3

TRADITIONAL APPROACHES TO CALCULATING MULTIAXIAL

HCF DAMAGE

There are several traditional models employed by modern virtual fatigue analysis software

packages for evaluating HCF for multiaxial problems. This chapter will give a brief overview

of some of these models. Since the goal of this study is HCF life estimation, we will neither

discuss the various low-cycle fatigue (LCF) methods nor the damage-tolerant approach of

fracture mechanics.

3.1 Multiaxial Methods for Complex Loading

3.1.1 Equivalent Stress Methods

Equivalent stress methods calculate an equivalent stress from the stress tensor values. These

methods are easy to implement and computationally very fast.

3.1.1.1 Principal Stress Criterion

Fatigue initiation will occur if:

σPS,a = σ1,a ≥ σE,R=−1 (3.1)

where σPS,a is the principal stress amplitude, σ1,a is the maximum principal stress amplitude,

and σE,R=−1 is the fully reversed fatigue limit for normal stress.

One problem with the principal stress criterion is that it assumes that fatigue life is

dependent only on the largest principal stress, σ1, and that the other principal stresses play

no role (Safe Technology Ltd. (2002), p.7-15). To use a circular shaft in pure torsion as

a counter-example, the principal stress criterion would predict that “the fatigue strength

in torsion is the same as the fatigue strength under axial loading,” an assumption that is
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not supported by experimental results (Safe Technology Ltd. (2002), p.7-15). Furthermore,

the principal stress criterion gives very non-conservative fatigue lives for ductile metals and

should only be used (if at all) for brittle metals such as cast irons and very high strength

steels (Safe Technology Ltd. (2002), p.7-16). Lastly, this criterion shows poor correlation for

non-proportional loading (Papuga et al. (2012), p.99).

3.1.1.2 Maximum Shear Stress Criterion

Fatigue initiation will occur if:

τMS,a = σ1,a − σ3,a ≥ τE,R=−1 (3.2)

where τMS,a is the maximum shear stress amplitude, σ1,a is the maximum principal stress

amplitude, σ3,a is the minimum principal stress amplitude, and τE,R=−1 is the fully reversed

fatigue limit for shear stress. In general, the maximum shear stress criterion gives conservative

fatigue lives for ductile metals but non-conservative (i.e., unsafe) fatigue lives for brittle

metals (Safe Technology Ltd. (2002), p.7-18). Furthermore, it shows poor correlation for

non-proportional loading (Papuga et al. (2012), p.99).

3.1.1.3 von Mises Stress Criterion

Fatigue initiation will occur if:

σvM,a + αvM σvM,m ≥ σE,R=−1 (3.3)

where σvM,a is the von Mises stress amplitude, σvM,m is the mean stress, and αvM is the mean

stress sensitivity factor. σvM,a and σvM,m are defined as follows:

σvM,a =

√
3

2
σDij : σDij (3.4)

σvM,m = σ1,m + σ2,m + σ3,m (3.5)
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where σ1,m, σ2,m, and σ3,m are the three principal stresses, and σDij is the deviatoric stress

tensor.

One problem with the von Mises stress criterion is that the von Mises stress is always

positive, and thus, one cannot use cycle counting methods directly (see section 3.3). Though

there are methods for assigning a sign to the von Mises stress such as using the sign of the

largest stress tensor component or using the sign of the hydrostatic stress, these different

methods give vastly disparate life estimates (Safe Technology Ltd. (2002), p.7-23). A

second, more important problem is that the von Mises criterion does not correlate well with

experimental results, especially for non-proportional loading (Safe Technology Ltd. (2002),

p.7-23; Papuga et al. (2012), p.99).

3.1.1.4 Sines Criterion

The Sines criterion calculates fatigue damage on the basis of the octahedral shear stress

amplitude and the mean hydrostatic stress (Sines (1959)). Fatigue initiation will occur if:

τSines,a = τoct,a + αoct
(
3σHm

)
≥ τE (3.6)

where αoct is the hydrostatic stress sensitivity factor, σHm is the hydrostatic part of the mean

stress, τoct,a is the octahedral stress amplitude, and τE is the fatigue limit for shear stress.

σHm and τoct,a are defined as:

σHm =
1

3
(σ1,m + σ2,m + σ3,m) (3.7)

τoct,a =

√
1

3
σDij : σDij (3.8)

where σ1,m, σ2,m, and σ3,m are the mean principal stresses. According to Lee and Barkey

(Lee and Barkey (2011a), p.172), the Sines criterion “shows satisfactory correlation with

experimental investigations.” It also correctly reproduces the independence of the fatigue

life in torsion from a superimposed mean shear stress in the very high cycle fatigue range
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(> 107cycles) as well as a dependence of fatigue life in bending upon a superimposed normal

mean stress (Papadopoulos et al. (1997), p.227).

However, the Sines criterion requires a torsion test and a repeated bending test to calibrate

parameters (Papadopoulos et al. (1997), p.227). Furthermore, the criterion predicts that “the

fatigue limits in torsion and fully reversed bending are in a constant ratio for all metals,”

which does not line up with experimental results (Papadopoulos et al. (1997), p.227). Lastly,

the Sines criterion can only be applied to components under proportional loading conditions

since it has poor predictive power for components under non-proportional loading (Santos

et al. (2003), p.470; Tchoupou and Fotsing (2015), p.2507).

3.1.2 Critical Plane Methods

Critical plane methods are typically used for fatigue analyses involving variable amplitude,

nonproportional, multiaxial loading (Lee and Barkey (2011a), p.186). These approaches are

premised on the fact that, for most ductile materials, fatigue cracks tend to “initiate on the

plane with the maximum shear stress amplitude” (Karpanan (2016), p.2). Critical plane

methods involve searching for a particular plane in which a fatigue damage parameter for the

entire loading history is maximized. All possible planes must be evaluated at each material

point of interest (Karpanan (2016), p.2).

3.1.2.1 Critical Plane Search Algorithm

The search is done by transforming the stress tensor through coordinate system rotations:

σ∗ = QT σQ (3.9)

or in indicial notation:

σ∗ij = Qmi σmnQnj (3.10)
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where Qij = cos
(
ei, e

∗
j

)
is the transformation matrix (Lai et al. (2010), pp.24-25), ei are the

original coordinate system base vectors, and e∗j are the new coordinate system base vectors.

The steps are:

1. First, the original coordinate system is rotated about a single axis by a certain angle, θ.

2. Then, the new coordinate system is rotated again but about a different axis by a certain

angle, φ.

3. The transformed stress tensor’s history is evaluated at this point and the number of

cycles to failure is calculated. The popular damage parameter criteria are discussed in

the subsections below.

4. Repeat steps 2 and 3 for all angles 0 ≤ φ ≤ 180°.

5. Repeat steps 1 through 4 for all angles 0 ≤ θ ≤ 180°.

6. The plane that has the fewest cycles to failure determines the component’s life.

A common practice is to vary θ and φ by 10° (Safe Technology Ltd. (2002), p.7-34; Karpanan

(2016), p.4) or 5° intervals though even this small of an increment can still lead to discretization

errors (Lee and Barkey (2011a), p.188).

3.1.2.2 Findley Damage Parameter

Findley’s parameter is premised on the theory that friction between crack faces can provide

resistance to shear forces and thus reduce the force seen at the crack tips which, in turn,

reduces crack growth (see Figure 3.1). When the crack faces separate as in the case of a

tensile load, the shear force is allowed to concentrate at the crack tips (see Figure 3.2). The

criterion is thus a combination of the shear stress amplitude and the maximum normal stress

on the plane being investigated. A crack will form on the plane being investigated if:

(τFindey,a)max = τE (3.11)
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Figure 3.1. Effect of Crack Face Friction on Crack Propagation

Figure 3.2. Effect of Crack Face Opening on Crack Propagation
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τFindey,a = τa + kF σn,max (3.12)

where τE is the shear fatigue limit, τa is the shear stress amplitude, σn,max is the maximum

normal stress, and kF is the normal stress sensitivity factor which represents “the influence

of the maximum normal stress on the maximum shear stress amplitude” (Lee and Barkey

(2011a), p.192). One criticism is that the Findley criterion fails to predict that, in the very

high cycle fatigue range (i.e., > 107), fatigue life for cyclic torsion is independent of the

applied mean shear stress (Papadopoulos et al. (1997), p.225).

3.1.2.3 McDiarmid Damage Parameter

McDiarmid’s fatigue criterion is based on Findley’s method, but his critical plane definition

is based on the maximum shear stress amplitude only (Papadopoulos et al. (1997), p.226;

Karpanan (2016), p.3):

τa
τE

+
σn,max
2σu,t

= 1 (3.13)

where τa is the shear stress amplitude, τE is the shear fatigue limit, σu,t is the ultimate tensile

strength, and σn,max is the maximum normal stress on the critical plane with the maximum

shear stress amplitude. McDiarmid’s criterion correctly captures the fact that the fatigue

limit in bending is highly dependent upon a superimposed mean normal stress and that, in

the very high cycle fatigue range (i.e., > 107), fatigue life for cyclic torsion is independent of

the applied mean shear stress (Papadopoulos et al. (1997), p.226). As a result, McDiarmid’s

criterion has shown good correlation in the very high cycle range (Safe Technology Ltd.

(2002), p.7-19).

However, there are two main drawbacks to McDiarmid’s parameter. In order to calibrate

the shear fatigue limit, τE, one must have torsion test data (Safe Technology Ltd. (2002),

p.7-19). Furthermore, it is not as accurate in fatigue life predictions below the very high

cycle range (Safe Technology Ltd. (2002), p.7-50).
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3.1.2.4 Evaluation of Critical Plane Methods

Critical plane methods can be very useful in the case of multiaxial, non-proportional loading.

In addition to the criticisms of the specific criterions, however, they are computationally

expensive especially for long and complex loading histories (Karpanan (2016), p.4).

3.1.3 Dang Van’s Multiscale Method

Dang Van’s method (Dang Van (1973); Dang Van et al. (1989); Dang Van (1993)) is a

variation of the Crossland (Crossland (1956)) and Sines (Sines (1959)) criterions, but instead

of calculating fatigue life, the Dang Van criterion asseses whether or not “a component will

have infinite life” (Safe Technology Ltd. (2002), p.7-48). It is a multiscale approach that

calculates mesoscopic stress values based on the macroscopic (i.e., finite element) stress tensor.

Dang Van assumed that for an infinite component life, “crack nucleation in slip bands may

occur in the most unfavorably oriented grains, which are subjected to plastic deformation

even if the macroscopic stress is elastic” (Lee and Barkey (2011a), p.199). These plastic

stresses result in residual stresses “due to the restraining effect of the adjacent grains” (Lee

and Barkey (2011a), p.199). A second assumption is that an elastic shakedown occurs in the

macroscale and that plastic strains at the mesoscale reach constant values after a number of

iterations (Lee and Barkey (2011a), p.200). The last assumption in this criterion is that the

mesoscopic shear stress, τmeso, (which acts on the plane of maximum shear stress) “on a grain

is responsible for crack nucleation in slip bands within a grain and the mesoscopic hydrostatic

stress,” σHmeso, “will influence the opening of these cracks” (Lee and Barkey (2011a), p.202).

Dang Van assumed that for an infinite component life, the macroscopic elastic strain

tensor is equal to the sum of the mesoscopic elastic and plastic strain tensors:

εemacron = εemeson + εpmeson (3.14)
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where the subscript, n, is the nth stress value from the loading history. Dang Van defines the

following:

εemeson =
1

Emeso
σmeson (3.15)

εemacron =
1

Emacro
σmacron (3.16)

where Emeso and Emacro are the elastic moduli at mesoscale and macroscale, respectively.

Substituting equations 3.15 and 3.16 into equation 3.14, we have:

1

Emacro
σmacron =

1

Emeso
σmeson + εpmeson (3.17)

Rearranging equation 3.17:

σmeson =
Emeso
Emacro

σmacron − Emesoεpmeson (3.18)

Assuming that Emeso
Emacro

= 1, we have:

σmeson = σmacron − Emesoεpmeson (3.19)

Defining the backstress tensor as α∗n = Emesoε
p
meson and substituting this definition into

equation 3.19:

σmeson = σmacron −α∗n (3.20)

Because of the elastic shakedown assumption, α∗n and εpmeson become constant after a number

of loading cycles:

σmeson = σmacron −α∗ (3.21)

Because α∗ is deviatoric, the hydrostatic mesoscopic and macroscopic stresses are equal:

σHmeson = σHmacron
1

3
tr (σmeson) =

1

3
tr (σmacron)

(3.22)

The deviatoric part of equation 3.21 is:

σDmeson = σDmacron −α
∗ (3.23)
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Under the assumption that α∗ is “the center of the smallest von Mises yield surface, σvM ,

that completely encloses the path described by the macroscopic deviatoric stress tensor” (Lee

and Barkey (2011a), p.201), α∗ is found by minimizing “the maximum von Mises stresses

calculated from the macro deviatoric stress tensor with respect to the updated yield surface

center” (Lee and Barkey (2011a), p.201):

α∗ = min
α

{
max
n

σvMn

}
(3.24)

σvMn =

√
3

2

(
σDmacron −α∗

)
:
(
σDmacron −α∗

)
(3.25)

As an initial guess, one might start with the average of the macro deviatoric stress points as

the yield surface center (Lee and Barkey (2011a), p.201). Once α∗ is found, equation 3.23 is

calculated. The mesoscopic shear is then given by:

τmeson =
1

2

(
σDmeso,1n − σ

D
meso,3n

)
(3.26)

where σDmeso,1n and σDmeso,3n are the largest and smallest principal stresses of the mesoscopic

deviatoric stress tensor. The Dang Van criterion calculates an equivalent stress from τmeson

and σHmeson to compare with a shear fatigue limit, τE. No fatigue damage will occur if (Lee

and Barkey (2011a), p.202):

max
{

max
n

∣∣τmeson + b σHmeson
∣∣} ≤ τE (3.27)

where b is the hydrostatic stress sensitivity. A graphic depiction of the Dang Van criterion is

shown in Figure 3.3. As long as the
(
σHmeson , τmeson

)
coordinate at each point in the loading

history remains inside the “safe zone” depicted in Figure 3.3, the component will not accrue

fatigue damage.

A safety factor at any point in the loading history can be calculated as:

SFn =
τE

τmeson + b σHmeson
(3.28)
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Figure 3.3. Dang Van Criterion

As a design tool, the Dang Van multiscale method is very effective for components

intended for infinite life (Safe Technology Ltd. (2002), p.7-51) and is the standard solution

technique implemented in commercial fatigue analysis software (e.g., fe-safe, eFatigue, nCode

DesignLife, etc.). However, there are some drawbacks. Since it is a design tool for predicting

infinite life, it is unreliable for predicting finite life when the stress sum exceeds the shear

fatigue limit, τE (Safe Technology Ltd. (2002), p.7-49) though there have been proposed

modifications to allow for finite life (e.g., Charkaluk et al. (2009)). Second, it requires more

materials data than other criterions such as the shear fatigue limit, τE, and the hydrostatic

stress sensitivity, b.

3.2 Palmgren-Miner Rule

Real world engineering components are rarely subjected to a single load amplitude. This

brings up the question of how to predict failure for an engineering component that is subject

to several different load amplitudes. According to Palmgren (Palmgren (1924)) and Miner

(Miner (1945)), the total damage is the linear sum of individual damages caused by each set

of cycles at their respective amplitudes. Thus, the Palmgren-Miner rule (or, simply, “Miner’s
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rule”) states that failure occurs when Miner (1945)):

1 =
kn∑
i=1

ni
Nf,i

(3.29)

where kn are the total number of stress amplitude bins, ni is the number of cycles of the ith

amplitude bin, and Nf,i is the fatigue life at the ith amplitude. Palmgren and Miner assumed

that the sum of the damages from all amplitudes, the critical damage value, D, would be

equal to one at failure. However, researchers have since determined that D depends on the

material, varying from 0.15 to 1.06 (Lee and Barkey (2011b), p.150):

D =
kn∑
i=1

ni
Nf,i

(3.30)

Based on experiments, the recommendation for steels, steel casings, and aluminum alloys is

D = 0.6 and D = 1.0 for ductile irons, grey cast irons, and malleable cast irons (Lee and

Barkey (2011b), p.150).

Over the years, many researchers have pointed out two serious problems with the Palmgren-

Miner rule. First, the Miner rule assumes that stress amplitudes below the fatigue limit will

not cause damage (Schijve (2009), p.299). This is false since “stress cycles with amplitudes

below the fatigue limit could become damaging if some of the subsequent stress amplitudes

exceed the original fatigue limit” because it “is believed that the increase in crack driving

force due to periodic overloads will overcome the original grain barrier strength and help the

crack to propagate until failure” (Lee and Barkey (2011b), p.119). Another criticism is that

the Miner rule assumes that the sequence of loading amplitudes is irrelevant (Suresh (1998),

p.227). However, if a larger amplitude which results in a compressive residual stress precedes

a smaller amplitude stress, this would help lower the stress during the tensile portion of the

low amplitude cycles resulting in a longer fatigue life than Miner’s rule would predict (Schijve

(2009), p.301). Conversely, if the larger amplitude ended with a tensile residual stress, this

would amplify the tensile peaks of the low amplitude cycles resulting in a shorter fatigue life
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than Miner’s rule would predict (Schijve (2009), p.302). Nevertheless, for many sequences of

loading these criticisms are less problematic, and Miner’s rule can give a rough approximation

of fatigue life (Lemaitre and Desmorat (2005), p.280).

3.3 Cycle Counting Methods for Random Loading

For variable amplitude loading, it is difficult to assess when a cycle has occurred and at what

amplitude. The various means for determining cycle count, amplitude, and mean stress are

briefly discussed in this section. These algorithms are then paired with the Palmgren-Miner

rule discussed in the previous section to calculate accumulated damage.

3.3.1 Counting Methods for Uniaxial Loading

It is necessary to discuss cycle counting methods for uniaxial loading because they can be

used in multiaxial cases with some modifications.

3.3.1.1 Rainflow Cycle Counting (Matsuishi-Endo)

Prior to the late 1960’s, there were several counting methods such as the level crossing

analysis, peak and valley counting, and range counting that sought to provide a solution

to the variable amplitude problem, but each of these methods gave less than satisfactory

results (Safe Technology Ltd. (2002), pp.4-10 to 4-13). Then in the late 1960’s, Japanese

engineers Matsuishi and Endo (Matsuishi and Endo (1968)) developed the rainflow algorithm,

the first widely accepted algorithm for extracting cycles from variable amplitude loading (Lee

and Tjhung (2011), p.90). The term, ‘rainflow,’ comes from the fact that when one turns

the loading history 90° clockwise and starts counting cycles, one is to envision rain flowing

down the roof levels of a Japanese pagoda (Safe Technology Ltd. (2002), p.4-4). The rainflow

cycle counting algorithm is as follows (Matsuishi and Endo (1968); Lee and Tjhung (2011),

pp.91-92; Suresh (1998), pp.266-267):
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1. Rotate the loading history 90° clockwise so that the time axis points downward.

2. For a periodic loading history, rearrange the loading history so that the peak with the

largest magnitude of stress (positive or negative) comes first. This way, the algorithm

will be able to identify full cycles. For a non-periodic loading history, the algorithm

will have to identify half-cycles in addition to full cycles.

3. The “rain” flows on both “sides” of the plot and starts flowing at the upper part of

each “roof” level.

4. A loading reversal (i.e., a half-cycle) happens by allowing the rain flow to continue

until:

(a) It “drips” down past an upper roof level of greater stress magnitude than the

upper “roof” level from which it came.

(b) It merges with “rain” flowing from a “roof” above.

(c) It falls past all subsequent peaks.

5. Identify full cycles by pairing half-cycles of identical magnitude but opposite sense.

3.3.1.2 Three-Point Cycle Counting (Socie-Downing)

Although Matsuishi and Endo’s cycle counting method was a breakthrough at the time,

it has since been replaced by simpler algorithms which are computationally more efficient

(Safe Technology Ltd. (2002), p.4-4; Lee and Tjhung (2011), p.101). The three-point cycle

counting algorithm of Downing and Socie (Downing and Socie (1982)), for instance, is

recommended by the American Society for Testing and Materials (ASTM (2005)) and is

frequently implemented in commercial fatigue analysis codes (Safe Technology Ltd. (2002),

p.4-3). As its name suggests, the three-point algorithm simplifies things by considering only
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three points at a time. Once a cycle is found, it will eliminate the first two points of the three

under consideration from the history and re-start the analysis from the beginning. This way,

it can automatically pair-up reversals in the earlier loading history with opposite reversals

that happen only later in the history. The three-point algorithm is as follows (Downing and

Socie (1982)):

1. Initialize load sequence counter: n = 2.

2. n = n+ 1

3. Let σ1 = σ (n− 2), σ2 = σ (n− 1), and σ3 = σ (n).

4. Let X = |σ3 − σ2| where the two vertical bars denote the absolute value operation.

5. Let Y = |σ1 − σ2|.

6. Compare X and Y :

(a) If X ≥ Y and σ1 is the first point in the loading history sequence (i.e., σ1 = σ (1)),

then:

i. The range is equal to Y .

ii. The mean is 1
2

(σ1 + σ2).

iii. A half-cycle is counted, and the above range and mean are recorded.

iv. Remove only σ1 from the loading history and re-label the data points starting

at 1.

v. Repeat analysis starting with step 1.

(b) If X ≥ Y and σ1 is not the first point in the loading history sequence (i.e.,

σ1 6= σ (1)), then:

i. The range is equal to Y .
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ii. The mean is 1
2

(σ1 + σ2).

iii. A full cycle is counted, and the above range and mean are recorded.

iv. Remove σ1 and σ2 from the loading history and re-label the data points

starting at 1.

v. Repeat analysis starting with step 1.

(c) If X < Y , then:

i. No cycle is formed.

ii. Go to step 2.

3.3.2 Counting Methods for Multiaxial Loading

Since most engineered parts experience loading multiaxially, it is necessary to formulate

counting methods that can handle the whole stress tensor rather than a single stress value.

In the case of proportional loading, any uniaxial cycle counting method may be used along

with a signed equivalent stress (Lee and Tjhung (2011), p.106). For non-proportional loading,

one could use a critical plane approach along with any of the uniaxial cycle counting methods

for each potential failure plane (Lee and Tjhung (2011), p.113).

Alternatively, Wang and Brown (Wang and Brown (1996)) developed a fully multiaxial

cycle counting technique based on Matsuishi and Endo’s rainflow method (see section 3.3.1.1)

to extract reversals from a complex loading history. It uses the maximum von Mises equivalent

stress range, ∆σeq, as the basis for reversal counting. The following description of the algorithm

is based on that found in Lee and Tjhung (Lee and Tjhung (2011), pp.108-109):

1. Calculate the von Mises equivalent stress history:

σeq (t) =

√
1

2

[
(σx (t)− σy (t))2 + (σy (t)− σz (t))2 + (σz (t)− σx (t))2

]
+ 3

[
τ2
xy (t) + τ2

yz (t) + τ2
zx (t)

]
(3.31)
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2. Reorder the von Mises equivalent stress history to begin with the maximum von Mises

stress. This point now starts at time t0, and the stress at t0 becomes the reference

stress. Any stress points that came before this maximum are moved to the end of the

loading history.

3. Calculate the relative von Mises stress history with respect to the reference point:

∆σeq(t) =

√
1

2

[(
∆σx(t)−∆σy(t)

)2 +
(
∆σy(t)−∆σz(t)

)2 + (∆σz(t)−∆σx(t))
2
]

+ 3
[
∆τ2

xy(t) + ∆τ2
yz(t) + ∆τ2

zx(t)
]

(3.32)

where:

∆σx (t) = σx (t)− σx (t0) (3.33)

∆σy (t) = σy (t)− σy (t0) (3.34)

∆σz (t) = σz (t)− σz (t0) (3.35)

∆τxy (t) = τxy (t)− τxy (t0) (3.36)

∆τyz (t) = τyz (t)− τyz (t0) (3.37)

∆τzx (t) = τzx (t)− τzx (t0) (3.38)

4. Identify the point at which ∆σeq is maximized, max (∆σeq). This point is at time tE:

max (∆σeq) = ∆σeq (tE).

5. All the points that cause ∆σeq (t) to monotonically increase from (t0, 0) to (tE,

max(∆σeq)) form a reversal. If there are valleys and possibly small peaks in be-

tween (i.e., values of ∆σeq below where it stopped monotonically increasing), then all

these points are excluded from the reversal. They will be examined in later passes.

6. The remaining points are grouped into segments of continuous points. Each segment is

evaluated individually.
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7. For the new segment being evaluated, the first stress point becomes the new reference

stress, and the time at which it occurs becomes the new t0.

8. Repeat steps 3 through 7 until all data segments have been evaluated.

3.4 Conclusion to Traditional Approaches

Over the course of this chapter, we’ve seen several problems with the traditional approaches

for calculating fatigue damage.

Equivalent Stress Criterions

1. Some of the criterions are too simple. The principal stress criterion only uses the first

principal stress, σ1, and ignores the other two. The Sines criterion assumes that the

fatigue limits in torsion and fully-reversed bending are in a constant ratio for all metals.

2. Some of the criterions are limited to the type of material. Some are limited to brittle

solids only while others are limited to ductile solids.

3. None of these approaches works well for non-proportional loading.

4. The von Mises criterion has an issue with assigning a sign to the von Mises stress.

5. The Sines criterion requires extra test data.

Critical Plane Methods

1. These approaches are limited to ductile solids.

2. These approaches are computationally expensive.

3. Even small angular increments during the plane search can lead to discretization errors.
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4. The Findley approach does not predict that, in the very high cycle fatigue range (i.e.,

> 107), fatigue life in cyclic torsion is independent of a superimposed mean shear stress.

5. The McDiarmid approach requires extra test data and is limited to the very high cycle

fatigue range.

The Dang Van Criterion

1. This approach is limited to infinite life design and cannot be used to calculate a finite

life.

2. This approach also requires extra material data.

The Palmgren-Miner Rule

1. The Miner rule assumes that amplitudes below the fatigue limit cause no fatigue damage

(which is false).

2. It also assumes that the sequence of loading amplitudes doesn’t matter (which is also

false).

Given that fatigue is a complex interaction of grains at the microscopic level, it is difficult

to create an algorithm that will be able to avoid all of the above pitfalls. Creating a

single algorithm that can handle both ductile and brittle solids, for instance, would be very

challenging. Nonetheless, we can avoid some of the above drawbacks by utilizing a continuum

damage mechanics approach which will be detailed in the next chapter.
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CHAPTER 4

THE TWO SCALE PROGRESSIVE FATIGUE DAMAGE MODEL

Having detailed the extended space-time finite element method, we now need a means for

calculating the cumulative fatigue damage from the finite element results. This chapter

briefly lays out the idea behind continuum damage mechanics (CDM) and then details the

formulation of the two scale progressive fatigue damage model and its implementation.

4.1 Introduction

The idea of using a scalar variable, D, to quantify damage started with L.M. Kachanov

(Kachanov (1958)) who used it to model material deterioration, crack initiation, and fracture

due to brittle creep in metals. Rabotnov (Rabotnov (1969)) extended Kachanov’s idea “by

allowing for the increase in creep rate ε̇c due to creep damage” (Murakami (2012), p.219)

and expressed an equation for damage evolution. Jan Hult (Hult (1972)) was the first to use

the term, “continuum damage mechanics,” again, in reference to creep damage. Lemaitre

(Lemaitre (1971)) extended the Kachanov-Rabotnov damage law to low-cycle fatigue by using

the law to derive a damage evolution equation that was a function of energy. This damage

evolution equation was derived from a thermodynamics framework, and this framework

became the standard manner of modeling fatigue damage evolution up to the present since

it “provided the necessary scientific basis to justify continuous damage mechanics as a

theory” (Lemaitre (1985), p.83). Several high- and low-cycle fatigue models were then

developed by Chaboche (Chaboche (1974, 1981, 1987)) and Lemaitre (Lemaitre (1985)). Like

Lemaitre’s earlier work (Lemaitre (1971)), these models used a damage evolution equation

that was a function of “macroscale” (Lemaitre (1985), p.83) variable amplitudes of the form:

dD
dN

= f (∆σ,∆ε) (Bhamare (2012), p.98).

With a fully coupled analysis like those used in the previous works cited above, strain

and damage affect each other globally (Lemaitre and Doghri (1994), p.199). This sort of
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analysis is necessary for certain types of failures such as creep because “the damage is not

localized but diffused in a large region” (Lemaitre and Doghri (1994), p.199). Given that

the damage in HCF situations is highly localized, however, an opportunity was seen to

simplify the CDM fatigue analysis by separating the macroscale structure calculation from

the microscale damage evaluation. As with the fully coupled models mentioned above, the

microscale evaluation is derived from the thermodynamics framework. In this locally coupled

analysis, the macroscale structure calculation can be solved with the finite element method

or other method using a purely elastic material model. The strains at this scale can then

be used to evaluate damage locally at microscale where defects such as inclusions exist and

where plasticity occurs and microcracks form. This locally coupled method became known as

the two scale progressive fatigue damage model (Lemaitre et al. (1999)).

The two scale model has been used to predict service life for both low and high cycle

fatigue and applied to both uniaxial and multiaxial analyses (Lemaitre and Doghri (1994)).

Lemaitre et al. (Lemaitre et al. (1999)) then showed the power of the two scale model for

a non-zero mean stress and non-proportional loading comparing well with the Dang Van

criterion. More recently, Latrou et al. (Lautrou et al. (2009)) used the two scale model to

accurately predict the fatigue life of steel welded joints commonly used in naval structures.

Additionally, dos Santos et al. (dos Santos et al. (2012)) modified Lemaitre et al.’s model

(Lemaitre et al. (1999)) by means of the Soderberg fatigue relation to account for high mean

stress effects in cardiovascular stents and showed that the modified model has good agreement

with experimental results. Others (e.g., Flaceliere et al. (2007a,b)) have created two scale

models of their own. Finally, Desmorat et al. (Desmorat et al. (2007)) added the ability

for the two scale model to take into account random temperature changes and proved its

predictive power even in random thermo-mechanical loading by showing good agreement

with a pressure-vessel testing experiment. It is this model which we will use to predict

thermo-mechanical fatigue life from our XTFEM simulation.
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A few definitions are in order:

• Atomic Scale - “The mechanical properties of materials are determined by the constituent

atoms or molecules, their array, and the kind of interatomic or intermolecular forces

between them,” and, the “damage of materials in the atomic scale is induced by the

separation of these interatomic or intermolecular bonds” (Murakami (2012), p.4).

• Microscopic Scale - Visually, the material at this scale has a discontinuous structure but

may have some continuous regions. The damage at this scale is found in “microcavities,

microcracks, or in decohesion in microstructures of materials” (Murakami (2012), p.4).

• Mesoscopic Scale - “If the value representing a mechanical property or a mechanical

state of the material averaged over the small region can be expressed as a continuous

function of the position x of the material point P , then the material can be idealized

as a continuum” (Murakami (2012), p.5)

• Macroscopic Scale - At this scale, “every point in a material can be viewed as a material

point in a continuum” (Murakami (2012), p.5).

The thermo-mechanical two scale model works as follows (see Figure 4.1):

1. The macroscale stucture is broken down into representative volume elements (RVE).

An RVE is the smallest mesoscale region in a macroscopic body in which “the material

with discontinuous structures...can be statistically homogeneous and the mechanical

state of the material...can be represented by the statistical average of the mechanical

variables” (Murakami (2012), p.11). When the two scale model is combined with finite

element analysis as in this work, the RVE is equivalent to a finite element.

2. Stress and strain calculations at the RVE level are done using a thermo-elastic material

model in finite element analysis software.
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Figure 4.1. Two Scale Progressive Fatigue Damage Model

3. As a post-processing stage after each time step, these values at mesoscale are applied to

each microscale material point (i.e., integration points when using FEM) through the

modified Eshelby-Krӧner localization law (Eshelby (1957); Kröner (1961); Desmorat

et al. (2015)). At this scale, plasticity with kinematic hardening and damage can occur.

The asymptotic fatigue limit, σ∞f , is used as the yield strength, and damage, D, is a

function of the accumulated plastic strain, pµ. Finally, the material parameters such as

the damage strength, S, and the damage exponent, s, are obtained from an isothermal,

uniaxial S-N curve.

4. Once the damage at a microscale material point reaches a critical value, Dc, a crack

initiates, and crack propagation is modeled using fracture mechanics tools (Desmorat

et al. (2007), p.913). In the XTFEM simulation, we have chosen to model this process

using element deletion, but one could utilize more sophisticated FEM fracture techniques

such as XFEM.

4.2 Material Parameters

There are a number of material parameters utilized in the two scale damage model, and not

all of them are familiar to many readers.
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4.2.1 E, ν, α, σu, Cy, εpD

Young’s Modulus, E, Poisson’s Ratio, ν, the coefficient of thermal expansion, α, and the

ultimate tensile strength, σu, can all be determined from uniaxial tension tests. The plastic

modulus, Cy, can be estimated by drawing a straight line on a uniaxial tension curve from

the yield point to the point where the curve reaches the ultimate strength. The slope of

this line is the plastic modulus. The monotonic plastic strain damage threshold, εpD, is the

amount of plastic strain a material undergoes by the time it reaches its ultimate strength. It

can be derived from the uniaxial tension curve by drawing a line of slope E from the point of

ultimate strength to the strain axis. The value of the strain-intercept is εpD. For all of these

parameters, no scale transition needs to be made (see subsection 4.3.2).

4.2.2 h, Dc

From experimental data, the micro-defects closure parameter, h, is typically h ≈ 0.2 for

metals (Lemaitre and Desmorat (2005), p.16; Desmorat et al. (2007), p.912). The critical

damage, Dc, is also derived from experimental data and is between 0.2 and 0.5 for many

materials, especially ductile ones (Lemaitre and Desmorat (2005), p.65; Murakami (2012),

p.153). The default value for metals is Dc = 0.3 (Desmorat et al. (2007), p.920). For ductile

fracture, the critical damage can be estimated using (Murakami (2012), p.153):

Dc = 1− σR
σu

(4.1)

where σR is the stress at final fracture and σu is the ultimate tensile strength.

4.2.3 σ∞f , S, s

The asymptotic fatigue limit, σ∞f , also known as the endurance limit, is the fatigue strength

at which an isothermal, fully-reversed (R = −1) S-N curve plateaus, usually around 106 cycles

(Suresh (1998), p.222). If the stress amplitude is below this strength, fatigue failure will,
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theoretically, never occur. For non-ferrous materials which do not exhibit a clear asymptotic

fatigue limit, σ∞f may be taken as the fatigue strength at 107 cycles or more depending on

the material (Suresh (1998), p.223). The damage strength, S, and damage exponent, s, are

also derived from a fully-reversed S-N curve. Using a standalone script, the two parameters

are optimized using a non-linear least-squares fit algorithm so as to fit the following equation

to the experimental S-N curve data (Desmorat et al. (2007), p.914):

NR = ND +
(2E S)

s
GDc

(
σ∞f
)2s [

∆σ − 2σ∞f
] Rsνmin +R

s
νmax

 (4.2)

where:

ND =
1

4
εpD
G 2

Cy

σu − σ∞f(
∆σ
2
− σ∞f

)2 (4.3)

G =
3E

2 (1 + ν)
(1− b) + Cy (1−D) ≈ 3E

2 (1 + ν)
(1− b) (4.4)

b =
2

15

(
4− 5ν

1− ν

)
(4.5)

Rνmin =
2

3
(1 + ν) +

1

3
(1− 2 ν)

[
σmin
σ∞f

]2

(4.6)

Rνmax =
2

3
(1 + ν) +

1

3
(1− 2 ν)

[
σmax
σ∞f

]2

(4.7)

NR is the number of cycles to rupture, ND is the number of cycles to crack initiation,

Rνmin and Rνmax are the stress triaxiality ratio during loading at σ = σmin and σ = σmax,

respectively, and ∆σ > 2σ∞f . Equations 4.6 and 4.7 assume that the micro-defects closure

parameter has been set equal to h = 1 which is fine if the experimental S-N curve was created

using a zero mean stress (i.e., R = −1). When there is a non-zero mean stress, however,

the fact that the damage evolution in compression is less than that in tension necessitates

the use of the micro-defects closure parameter, h (Lemaitre and Desmorat (2005), pp.12-13;
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Desmorat et al. (2007), p.915). For a non-zero mean stress, Rνmin and Rνmax in equation 4.2

are replaced with Rνhmin and Rνhmax , respectively:

Rνhmin
=

1 + ν

9

〈2 +
σmin
σ∞f

〉2

+ 2

〈
−1 +

σmin
σ∞f

〉2

+ h

〈
−2− σmin

σ∞f

〉2

+ 2h

〈
1− σmin

σ∞f

〉2


− ν

〈
σmin
σ∞f

〉2

− ν h

〈
σmin
σ∞f

〉2
(4.8)

Rνhmax
=

1 + ν

9

〈2 +
σmax
σ∞f

〉2

+ 2

〈
−1 +

σmax
σ∞f

〉2

+ h

〈
−2− σmax

σ∞f

〉2

+ 2h

〈
1− σmax

σ∞f

〉2


− ν

〈
σmax
σ∞f

〉2

− ν h

〈
σmax
σ∞f

〉2
(4.9)

4.2.4 Stored Energy Damage Threshold, wD

While the microscale accumulated plastic strain at damage initiation, pµD, is typically only

0.1 to 0.3 in monotonic tension (for metals), it can be several hundreds of percent in fatigue

depending on the loading condition (Desmorat et al. (2007), p.913). Because it is load

dependent and thus cannot be a material parameter, pµD cannot be used to determine when

the material begins to accumulate damage (Desmorat et al. (2007), p.913). Instead, we

must find a different parameter not dependent upon the load magnitude. The stored energy

density meets this requirement as it is loading independent and thus can serve as a material

property (Desmorat et al. (2007), p.913). For both isotropic and kinematic hardening, we

have (Desmorat et al. (2007), p.913):

ws =

tˆ

0

(R ṗ+Xij α̇ij) dt (4.10)

In fatigue, kinematic hardening is periodic (and will be lost) while isotropic hardening is

monotonic (Desmorat et al. (2007), p.913). So, only using the isotropic terms and applying

equation 4.10 to the microscale, we have:

wµs =

tˆ

0

(
σµeq − σµy

)
ṗµ dt (4.11)
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This is considered the “envelope of the maxima in stored energy reached during complex

loading” (Desmorat et al. (2007), p.913). For monotonic loading with linear hardening and

assuming no scale transition has to be considered, the stored energy damage threshold is:

wD = wµs (p = εpD) =

(
σy +

1

2
Cy εpD − σµy

)
εpD (4.12)

Using the approximation σu ≈ σy + 1
2
Cy εpD and the assumption that the microscale yield

stress is equal to the asymptotic fatigue limit, σ∞f (see subsection 4.3.2 below), we have:

wD ≈
(
σu − σ∞f

)
εpD (4.13)

4.3 Formulation

This section derives the equations used in the two-scale progressive fatigue damage model

subroutine.

4.3.1 Mesoscale

We begin with the laws of linear elasticity at mesoscale. The constitutive law for an isotropic

elastic material is:

σij = λ [εkk − 3α (T − Tref )] δij + [2µ εij − α (T − Tref ) δij] (4.14)

Solving for the strains, we arrive at:

εij = εeij =
1 + ν

E
σij −

ν

E
σkk δij + α (T − Tref ) δij (4.15)

For cases involving plasticity, the strains can be additively decomposed into elastic and plastic

strains:

εij = εeij + εpij (4.16)

For high-cycle fatigue (HCF) applications, microcracks only form in a small number of

crystal grains (Murakami (2012), p.202). Consequently, we are justified in assuming that, at

mesoscale, εpij ≈ 0.
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4.3.2 Modified Eshelby-Krӧner Localization Law

Applying the Eshelby-Krӧner localization law (Eshelby (1957); Kröner (1961)) to equation

4.15:

εµeij =
1 + ν

E (1−D)
σµij −

ν

E (1−D)
σµkk δij + αµ (T − Tref ) δij (4.17)

where εµeij is the microscale elastic strain tensor, σµij is the microscale stress tensor, αµ is the

microscale coefficient of thermal expansion, and D is the damage variable. More generally,

the damage variable is a tensor, but reduces to a scalar for isotropic materials (Lemaitre and

Doghri (1994), p.198). It represents “the maximum equivalent area density of microcracks or

microcavities which lies in any cross plane that can be defined in a representative volume

element” (Lemaitre and Doghri (1994), p.198). Applying the localization law to equation

4.16:

εµij = εµeij + εµpij (4.18)

where εµij is the microscale total strain tensor and εµpij is the microscale plastic strain tensor.

Assuming that αµ = α and that, for HCF applications, εpij ≈ 0, the modified Eshelby-Krӧner

localization law is (Eshelby (1957); Kröner (1961); Desmorat et al. (2015)):

εµH =
1

1− aD
[
εH − aD α (T − Tref )

]
(4.19)

εµDij =
1

1− bD
[
εDij − b (1−D) εµpij

]
(4.20)

where εµH is the hydrostatic microstrain, εµDij is the deviatoric microstrain tensor, and a and

b are the Eshelby parameters for a spherical inclusion (Eshelby (1957)):

a =
1 + ν

3 (1− ν)
(4.21)

b =
2

15

(
4− 5ν

1− ν

)
(4.22)
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Given equations 4.19, 4.20, and using εµij = εµDij + εµHδij, the total microscale strains are

given as:

εµij =
1

1− bD

[
εij +

(a− b)D
3 (1− aD)

εkk δij + b (1−D) εµpij

]
− aD α

1− aD
(T − Tref ) δij (4.23)

Because we assume that plasticity with kinematic hardening can happen at microscale,

εµpij ≥ 0.

According to Lemaitre’s damage law, we distinguish between the actual stress at microscale

and the effective stress at microscale. The relationship between the two is given as:

σ̃µij =
σµij

(1−D)
(4.24)

where σ̃µij is the effective stress at microscale. For HCF applications, we assume that the

microscale yield strength is the asymptotic fatigue limit, σ∞f . Hence, the microscale yield

criterion, fµ, is given by:

fµ =
(
σ̃µij −X

µ
ij

)
eq
− σ∞f (4.25)

where (·)eq denotes the von Mises norm. The plastic strain rate definition applied to microscale

is:

ε̇µpij =
3

2

(
σ̃µDij −X

µ
ij(

σ̃µij −X
µ
ij

)
eq

)
ṗµ (4.26)

The anisothermal variation of the Prager linear kinematic hardening law is:

d

dt

(
Xµ
ij

Cy

)
=

2

3
ε̇µpij (1−D) (4.27)

Lemaitre’s damage evolution law applied to microscale is:

Ḋ =

(
Y µ

S

)s
ṗµ (4.28)

Using the consistency condition (fµ = 0; ḟµ = 0), the microscale plastic multiplier is:

λ̇ = ṗµ (1−D) (4.29)
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4.3.3 Derivation of the Damage Energy Release Rate

The damage energy release rate, Y µ, in Lemaitre’s damage evolution law (equation 4.28) is

the release rate of the elastic strain energy caused by the development of the damage variable,

D (Murakami (2012), p.97). The damage energy release rate thus plays a similar role to the

strain energy release rate in fracture mechanics (Chaboche (1977)). To derive the expression

for Y µ used in the two scale model, we first start with its definition (Murakami (2012), p.97):

Y µ =
wµe

1−D
(4.30)

where wµe is the microscale elastic strain energy density given as:

wµe =
1

2
σµij ε

µ
ij (4.31)

Note that the strain tensor, εµij, in equation 4.31 does not include any thermal strains.

Combining equation 4.31 with 4.17 gives:

wµe =
1

2
σµij

(
1 + ν

E (1−D)
σµij −

ν

E (1−D)
σµkk δij

)
=

1 + ν

2E (1−D)
σµij σ

µ
ij −

ν

2E (1−D)
σµkk σ

µ
ij δij

=
1 + ν

2E (1−D)
σµij σ

µ
ij −

ν

2E (1−D)
(σµkk)

2

(4.32)

Splitting the stress tensor, σµij, into hydrostatic and deviatoric parts:

wµe =
1 + ν

2E (1−D)

(
σµDij + σµHδij

)(
σµDij + σµHδij

)
− ν

2E (1−D)

(
3σµH

)2
(4.33)

Given that σµDij σ
µHδij = 0, we have:

wµe =
1 + ν

2E (1−D)

[
σµDij σ

µD
ij +

(
σµH

)2
δij δij

]
− ν

2E (1−D)

(
3σµH

)2
(4.34)

Using the definition of the von Mises norm, σµeq =
√

3
2
σµDij σ

µD
ij , then σµDij σ

µD
ij = 2

3

(
σµeq
)2

, and

given that δij δij = 3, we have:

wµe =
1 + ν

2E (1−D)

[
2

3

(
σµeq
)2

+ 3
(
σµH

)2
]
− ν

2E (1−D)

(
3σµH

)2
(4.35)
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Simplifying equation 4.35, we get:

wµe =

(
σµeq
)2

2E (1−D)

[
2

3
(1 + ν) + 3 (1− 2ν)

(
σµH

σµeq

)2
]

(4.36)

where σµH

σµeq
is the triaxiality ratio. Combining equation 4.36 with equation 4.30, we have:

Y µ =

(
σµeq
)2

2E (1−D)2

[
2

3
(1 + ν) + 3 (1− 2ν)

(
σµH

σµeq

)2
]

(4.37)

Backing up a bit, we next combine equation 4.30 with equation 4.32 to get:

Y µ =
1 + ν

2E (1−D)2 σ
µ
ij σ

µ
ij −

ν

2E (1−D)2 (σµkk)
2 (4.38)

We need to account for the fact that damage is less in compression than in tension due to

the closure of micro-defects in compression (Desmorat et al. (2007), p.912). We first split up

the stress tensor into tensile and compressive parts. To do this, we introduce the Macauley

bracket:

〈x〉 = xH(x) =


x x ≥ 0

0 x < 0

(4.39)

where H(x) is the Heaviside function. Thus, the principal stress tensor becomes:

σµij =


σµ11 0 0

0 σµ22 0

0 0 σµ33

 =


〈σµ11〉 0 0

0 〈σµ22〉 0

0 0 〈σµ33〉

−

〈−σµ11〉 0 0

0 〈−σµ22〉 0

0 0 〈−σµ33〉



=


〈σµ11〉

+ 0 0

0 〈σµ22〉
+ 0

0 0 〈σµ33〉
+

−

〈σµ11〉

− 0 0

0 〈σµ22〉
− 0

0 0 〈σµ33〉
−


(4.40)

Using σµij σ
µ
ij =

〈
σµij
〉+ 〈

σµij
〉+

+
〈
σµij
〉− 〈

σµij
〉−

and (σµkk)
2 =

(
〈σµkk〉

+)2
+
(
〈σµkk〉

−)2
(see proofs

A.1 and A.3 in the Appendix), we have:

Y µ =
1 + ν

2E (1−D)
2

[〈
σµij
〉+ 〈

σµij
〉+

+
〈
σµij
〉− 〈

σµij
〉−]− ν

2E (1−D)
2

[(
〈σµkk〉

+
)2

+
(
〈σµkk〉

−
)2
]

(4.41)
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We now introduce the micro-defects closure parameter, h, to account for the lower damage in

compression. Multiplying the compressive terms and their corresponding damage variable by

the closure parameter gives us:

Y µ =
1 + ν

2E

[〈
σµij
〉+ 〈

σµij
〉+

(1−D)2 + h

〈
σµij
〉− 〈

σµij
〉−

(1− hD)2

]
− ν

2E

[
〈σµkk〉

2

(1−D)2 + h
〈−σµkk〉

2

(1− hD)2

]
(4.42)

where h ≈ 0.2 for metals (Lemaitre and Desmorat (2005), p.84). Substituting equation 4.24

into equation 4.42, we have:

Y µ =
1 + ν

2E

[〈
σ̃µij

〉+ 〈
σ̃µij

〉+
+ h

(
1−D

1− hD

)2 〈
σ̃µij

〉− 〈
σ̃µij

〉−]
−

ν

2E

[〈
σ̃µkk

〉2
+ h

(
1−D

1− hD

)2 〈
−σ̃µkk

〉2] (4.43)

4.3.4 Derivation of the Two-Scale Numerical Scheme

4.3.4.1 Elastic Prediction

For the elastic prediction step, we assume constant damage Dn+1 = Dn, constant microscale

plastic strain εµpn+1 = εµpn , and constant microscale kinematic hardening backstressXn+1 = Xn.

We start with the microscale total strains (equation 4.23):

εµelpr =
1

1− bDn

[
εn+1 +

(a− b)Dn

3 (1− aDn)
tr (εn+1) I + b (1−Dn) εµpn

]
− aDn αn+1

1− aDn
(Tn+1 − Tref ) I

(4.44)

By rearranging equation 4.18 and removing the thermal strains, we get the elastic prediction’s

microscale elastic strains:

εµeelpr = εµelpr − ε
µp
n − αn+1 (Tn+1 − Tref ) I (4.45)

We can now calculate the elastic prediction’s microscale effective stress:

σ̃µelpr = En+1 : εµeelpr (4.46)

To determine yielding we discretize equation 4.25:

fµn+1 =
(
σ̃µelpr −X

µ
n

)
eq
− σ∞fn+1

(4.47)

80



If fµn+1 ≤ 0, then the material does not yield and the variables for the next time step can be

updated using the elastic prediction variables:

εµn+1 = εµelpr

εµen+1 = εµeelpr

εµpn+1 = εµpn

Xµ
n+1 = Xµ

n

σ̃µn+1 = σ̃µelpr(
σ̃µn+1

)
eq

=
(
σ̃µelpr

)
eq

Dn+1 = Dn

pµn+1 = pµn

∆pµn+1 = ∆pµn

(4.48)

4.3.4.2 Plastic Correction

If fµn+1 > 0, then the material yields and the elastic prediction is corrected by ensuring the

consistency condition (Desmorat et al. (2007), p.918). This is performed using an implicit

Euler backward scheme. We should also note that in HCF, “the maximum damage increment

per cycle is of the order of magnitude of Dc/NR < 1/NR” where NR is the total number of

cycles (Desmorat et al. (2007), p.918). Thus, we are justified in making the damage variable,

D, be constant over an increment. This helps us eliminate the need for a computationally

intensive Newton iterative method (Bhamare et al. (2014), p.393).

The plasticity with damage equations discretized using the Euler backward scheme are

(Desmorat et al. (2007), p.918):

εµn+1 = εµen+1 + εµpn+1 (4.49)

εµen+1 =
1 + ν

En+1

σ̃µn+1 −
ν

En+1

tr
(
σ̃µn+1

)
I + αµn+1 (Tn+1 − Tref ) I (4.50)
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∆εµpn+1 =
3

2

(
σ̃µDn+1 −X

µ
n+1

)
(
σ̃µn+1 −X

µ
n+1

)
eq

∆pµn+1 (4.51)

Xµ
n+1

Cyn+1

− X
µ
n

Cyn
=

2

3
∆εµpn+1 (1−Dn) (4.52)

∆D =

(
Y µ
n+1

Sn+1

)sn+1
∆pµ (4.53)

Writing the variables in equations 4.49 and 4.23 in incremental form (again, subtracting the

thermal strains):

∆εµn+1 = ∆εµen+1 + ∆εµpn+1

=
1

1− bDn

[
∆εn+1 +

(a− b)Dn

3 (1− aDn)
tr (∆εn+1) I + b (1−Dn) ∆εµpn

]
− aDn αn+1

1− aDn

∆Tn+1 I − αn+1∆Tn+1 I

(4.54)

Multiplying ∆εµpn+1 in the first RHS above by 1−bDn
1−bDn , and using the two RHS’s above, we

move everything to one side:

0 = ∆εµen+1 +
1− bDn

1− bDn

∆εµpn+1 −
b− bDn

1− bDn

∆εµpn −
1

1− bDn

∆εn+1

− (a− b)Dn

3 (1− aDn) (1− bDn)
tr (∆εn+1) I +

aDn αn+1

1− aDn

∆Tn+1 I + αn+1∆Tn+1 I

(4.55)

Combining the ∆εµp terms and multiplying by the constitutive elasticity tensor, E:

0 = En+1 : ∆εµen+1 +
1− b

1− bDn

En+1 : ∆εµpn+1 −
1

1− bDn

En+1 : ∆εn+1

− (a− b)Dn

3 (1− aDn) (1− bDn)
tr (∆εn+1)En+1 : I

+
aDn αn+1

1− aDn

∆Tn+1En+1 : I + αn+1∆Tn+1En+1 : I

(4.56)

Noting that E : I = 3K I:

0 = En+1 : ∆εµen+1 +
1− b

1− bDn

En+1 : ∆εµpn+1 −
1

1− bDn

En+1 : ∆εn+1

−Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I +

3 aDn αn+1

1− aDn

∆Tn+1Kn+1I

+ 3αn+1∆Tn+1Kn+1I

(4.57)
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Combining the temperature terms:

0 = En+1 : ∆εµen+1 +
1− b

1− bDn

En+1 : ∆εµpn+1 −
1

1− bDn

En+1 : ∆εn+1

−Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I +

3Kn+1αn+1

1− aDn

∆Tn+1I

(4.58)

We use the following:

En+1 = 2µn+1P
d + 3Kn+1P

s (4.59)

En+1 : ∆εµen+1 = ∆σ̃µn+1 (4.60)

where P d is the deviatoric projection tensor and P s is the spherical projection tensor. These

tensors have the following properties:

I4 = P s + P d (4.61)

P d : P d = P d (4.62)

P s : P s = P s (4.63)

where I4 is the fourth-order identity tensor (I4
ijkl = 1

2
[δik δjl + δil δjk]). Substituting equations

4.59 and 4.60 into equation 4.58:

0 = ∆σ̃µn+1 +
1− b

1− bDn

(
2µn+1P

d : ∆εµpn+1 + 3Kn+1P
s : ∆εµpn+1

)
− 1

1− bDn

En+1 : ∆εn+1 −Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I

+
3Kn+1αn+1

1− aDn

∆Tn+1I

(4.64)

Since P s : ∆εµp = 0 and P d : ∆εµp = ∆εµp:

0 = ∆σ̃µn+1 +
1− b

1− bDn

2µn+1∆εµpn+1 −
1

1− bDn

En+1 : ∆εn+1

−Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I +

3Kn+1αn+1

1− aDn

∆Tn+1I

(4.65)

Using ∆σ̃µn+1 = σ̃µn+1 − σ̃µn and adding Xµ
n+1 −X

µ
n+1, we have:

0 = σ̃µn+1 − σ̃µn +Xµ
n+1 −X

µ
n+1 +

1− b
1− bDn

2µn+1∆εµpn+1 −
1

1− bDn

En+1 : ∆εn+1

−Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I +

3Kn+1αn+1

1− aDn

∆Tn+1I

(4.66)
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Rearranging equation 4.52:

Xµ
n+1 =

Cyn+1

Cyn
Xµ

n +
2

3
Cyn+1 (1−Dn) ∆εµpn+1 (4.67)

Substituting sµn+1 = σ̃µn+1 −X
µ
n+1 and equation 4.67 into equation 4.66:

0 = sµn+1 − σ̃µn +
Cyn+1

Cyn
Xµ

n +
2

3
Cyn+1 (1−Dn) ∆εµpn+1

+
1− b

1− bDn

2µn+1∆εµpn+1 −
1

1− bDn

En+1 : ∆εn+1

−Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I +

3Kn+1αn+1

1− aDn

∆Tn+1I

(4.68)

Grouping the εµpn+1 terms:

0 = sµn+1 − σ̃µn +
Cyn+1

Cyn
Xµ

n

+

[
2

3
Cyn+1 (1−Dn) +

1− b
1− bDn

2µn+1

]
∆εµpn+1

− 1

1− bDn

En+1 : ∆εn+1 −Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I

+
3Kn+1αn+1

1− aDn

∆Tn+1I

(4.69)

Using σ̃µDn+1 −X
µ
n+1 = sµDn+1 and

(
σ̃µDn+1 −X

µ
n+1

)
eq

=
(
sµn+1

)
eq

in conjunction with equation

4.51:

0 = sµn+1 − σ̃µn +
Cyn+1

Cyn
Xµ

n

+

[
Cyn+1 (1−Dn) +

1− b
1− bDn

3µn+1

]
sµDn+1(
sµn+1

)
eq

∆pµn+1

− 1

1− bDn

En+1 : ∆εn+1 −Kn+1
(a− b)Dn

(1− aDn) (1− bDn)
tr (∆εn+1) I

+
3Kn+1αn+1

1− aDn

∆Tn+1I

(4.70)

We define the following:

Γ = Cyn+1 (1−Dn) +
1− b

1− bDn

3µn+1 (4.71)
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Qs =
Cyn+1

Cyn
Xµ

n − σ̃µn

− 1

1− bDn

[
En+1 : ∆εn+1 −Kn+1

(a− b)Dn

(1− aDn)
tr (∆εn+1) I

]
+

3Kn+1αn+1

1− aDn

∆Tn+1I

(4.72)

Substituting equations 4.71 and 4.72 into equation 4.70, we get:

0 = sµn+1 + Γ
sµDn+1(
sµn+1

)
eq

∆pµn+1 +Qs (4.73)

Using sµn+1 = σ̃µn+1−X
µ
n+1 and substituting it into equation 4.47, the yield function becomes:

fµn+1 =
(
sµn+1

)
eq
− σ∞fn+1

(4.74)

In order to find the unknowns, sµn+1 and ∆pµn+1, we must solve equations 4.73 and 4.74

simultaneously. First, we multiply equation 4.73 by the spherical projection tensor, P s, to

get the hydrostatic part:

0 = P s : sµn+1 + Γ
P s : sµDn+1(
sµn+1

)
eq

∆pµn+1 + P s : Qs (4.75)

Using P s : sµDn+1 = 0, P s : sµn+1 = sµHn+1 : I, and P s : Qs = QH
s : I, we have:

sµHn+1 = −QH
s (4.76)

Multiplying equation 4.73 by the deviatoric projection tensor, P d, to get the deviatoric part:

0 = P d : sµn+1 + Γ
P d : sµDn+1(
sµn+1

)
eq

∆pµn+1 + P d : Qs (4.77)

Using P d : sµDn+1 = sµDn+1, P d : sµn+1 = sµDn+1, and P d : Qs = QD
s , we have:

0 = sµDn+1 + Γ
sµDn+1(
sµn+1

)
eq

∆pµn+1 +QD
s (4.78)

Moving QD
s to the LHS:

−QD
s = sµDn+1

(
1 + Γ

∆pµn+1(
sµn+1

)
eq

)
(4.79)

85



Taking the von Mises norm of both sides:√
3

2
sµDn+1 : sµDn+1

(
1 + Γ

∆pµn+1(
sµn+1

)
eq

)
=

√
3

2
QD
s : QD

s

=
(
sµn+1

)
eq

(
1 + Γ

∆pµn+1(
sµn+1

)
eq

)
= (Qs)eq

(4.80)

Solving for ∆pµn+1, we get:

∆pµn+1 =
1

Γ

[
(Qs)eq −

(
sµn+1

)
eq

]
(4.81)

Substituting equation 4.74 into equation 4.81:

∆pµn+1 =
1

Γ

[
(Qs)eq − σ

∞
fn+1

]
(4.82)

Solving 4.79 for sµDn+1 and combining with equation 4.74:

sµDn+1 = − QD
s(

1 + Γ
∆pµn+1

σ∞fn+1

) (4.83)

Thus sµn+1 is:

sµn+1 = sµHn+1I + sµDn+1 (4.84)

The microscale effective stress is:

σ̃µn+1 = sµn+1 +Xµ
n+1 (4.85)

We can calculate the vector normal to the yield surface as:

mµ =
3

2

sµDn+1

σ∞f n+1

(4.86)

With the yield surface normal, the new microscale plastic strains can be updated:

εµpn+1 = εµpn +mµ ∆pµn+1 (4.87)

Microscale elastic strains and total strains can be calculated using:

εµen+1 = E−1 : σ̃µn+1 (4.88)

εµn+1 = εµen+1 + εµpn+1 + αn+1 (Tn+1 − Tref ) I (4.89)
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4.4 Two-Scale Model Implementation

To summarize, the implementation of the two-scale progressive fatigue damage model is as

follows:

1. Import the mesoscale strains, εn+1, calculated from the finite element analysis into the

damage subroutine.

2. Calculate the elastic prediction microscale total strains, εµelpr, using equation 4.44, the

elastic prediction microscale elastic strains, εµeelpr, using equation 4.45, and then the

elastic prediction microscale effective stress, σ̃µelpr, using equation 4.46.

3. Determine if there is microscale plastic yielding or not by calculating fµn+1 using equation

4.47.

(a) If fµn+1 ≤ 0, then the material does not yield and the variables are updated as

follows (equation 4.48):

εµn+1 = εµelpr

εµen+1 = εµeelpr

εµpn+1 = εµpn

Xµ
n+1 = Xµ

n

σ̃µn+1 = σ̃µelpr(
σ̃µn+1

)
eq

=
(
σ̃µelpr

)
eq

Dn+1 = Dn

pµn+1 = pµn

∆pµn+1 = ∆pµn

(b) If fµn+1 > 0, then the material yields at the microscale and the elastic prediction is

corrected by ensuring the consistency condition using an implicit Euler backward

scheme:
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i. Calculate Qs using equation 4.72, and from Qs, calculate QD
s and QH

s .

ii. Calculate (Qs)eq using the von Mises norm.

iii. Calculate Γ using equation 4.71.

iv. Calculate the new change in accumulated plastic strain, ∆pµn+1, using equation

4.82.

v. Update the total accumulated plastic strain using:

pµn+1 = pµn + ∆pµn+1 (4.90)

vi. Calculate sµHn+1 using equation 4.76, sµDn+1 using equation 4.83, and sµn+1 using

equation 4.84.

vii. Calculate the yield surface normal, mµ, using equation 4.86 and update the

microscale plastic strains, εµpn+1, using equation 4.87.

viii. Update the backstress, Xµ
n+1, using equation 4.67.

ix. Update σ̃µn+1 using equation 4.85 and
(
σ̃µn+1

)
eq

using the von Mises norm.

x. Update the microscale elastic strains, εµen+1, using equation 4.88 and the

microscale total strains, εµn+1, using equation 4.89.

xi. Calculate the stored energy damage threshold, wD, using 4.13, and the stored

energy density, wsn+1 , can be updated using an incremental version of equation

4.11 with a simple numerical integration scheme:

σµnew =
∣∣∣(σ̃µn+1

)
eq
− σ∞fn+1

∣∣∣ (4.91)

σµold =
∣∣∣(σ̃µn)eq − σ

∞
fn

∣∣∣ (4.92)

wsn+1 = wsn +
1

2

(
σµnew ∆pµn+1 + σµold ∆pµn

)
(4.93)

where the vertical bars in equations 4.91 and 4.92 are absolute value operators.

A. If wsn+1 < wD, then damage does not accumulate: Dn+1 = Dn.
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B. If wsn+1 ≥ wD, then damage accumulates:

• Calculate the damage energy release rate, Y µ
n+1, using an incremental

version of equation 4.43:

Y µn+1 =
1 + νn+1

2En+1

[〈
σ̃µn+1

〉+
:
〈
σ̃µn+1

〉+
+ h

(
1−Dn

1− hDn

)2 〈
σ̃µn+1

〉−
:
〈
σ̃µn+1

〉−]

−
νn+1

2En+1

[〈
tr
(
σ̃µn+1

)〉2
+ h

(
1−Dn

1− hDn

)2 〈
−tr

(
σ̃µn+1

)〉2
] (4.94)

• Update the damage using an incremental version of equation 4.28:

Dn+1 = Dn +

(
Y µ
n+1

Sn+1

)sn+1
∆pµn+1 (4.95)

xii. If Dn+1 ≥ Dc, then a crack initiates at the mesoscale. In the XTFEM code,

this translates to element deletion should any integration point reach the

critical damage value.
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CHAPTER 5

NUMERICAL EXAMPLES

In order to demonstrate the effectiveness of XTFEM for the direct numerical simulation of

thermo-mechanical high cycle fatigue, we will present three cases of increasing complexity.

First, we will establish the need for XTFEM by contrasting it with a simple case of a single

element under fatigue loading using a finite difference time integration scheme. Next, we will

present an elementary, academic example of a prismatic beam fixed at both ends subjected to

a uniform fluctuating temperature resulting in thermal fatigue. As a capstone illustration of

the XTFEM code’s abilities we will present a coupled, thermo-mechanical fatigue simulation

of a plate and hat stiffener representative of an aircraft’s structure.

5.1 Abaqus UMAT

In order to illustrate the need for XTFEM, it was deemed prudent to simulate the fatigue

of structures using a traditional, finite difference time integration algorithm while using the

two scale progressive fatigue damage model for fatigue damage calculation (Desmorat et al.

(2007)). To do this, an Abaqus’ user-material model subroutine or UMAT was utilized and

coded with the two scale model.

A single, eight-noded, reduced integration brick element (C3D8R in Abaqus) of 1 mm

length on all three sides was used as the model. The material used was AISI 304L stainless

steel, and the material properties and parameters specific to the two scale model were taken

from Zhang et al. (Zhang et al. (2016), p.343; see Table 5.1). Symmetry boundary conditions

were applied to three sides so that the model would be fully constrained while the Poisson’s

effect would not translate to stress (see Figure 5.1). A mechanical force was applied to one of

the other sides in the direction normal to its face with a user-defined amplitude or UAMP.

The UAMP had a sinusoidal character except for the first 10 seconds which served as a
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Table 5.1. Material Parameters for AISI 304L Steel at Room Temperature

ρ
(
kg/m3

)
E (GPa) ν Cy (MPa) σu (MPa) σ∞f (MPa) εpD h Dc S (MPa) s

7,860 197 0.3 1,740 577 180 0.08 0.2 0.3 0.5 0.5

Figure 5.1. Single Element Model

load-ramping period to limit artificial oscillations:

A =


t

10
M sin (ω t) t < 10

M sin (ω t) t ≥ 10

(5.1)

where A is the amplitude, t is the time, M is the load magnitude (specified in the Edit Load

dialogue within Abaqus’ GUI), and ω is the circular frequency in radians per second. The

frequency of the mechanical force was chosen to be 20 Hz making the circular frequency

approximately 126 radians/sec. It was decided that these simulations would be isothermal so

as to limit the complexity. This simulation was run at different magnitudes and the time to
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Table 5.2. Abaqus UMAT and XTFEM Results

Load

(MPa)

C++ Code

1,000

points/cycle

(cycles)

XTFEM

200

points/cycle

(cycles)

Abaqus

20

steps/cycle

(cycles)

Abaqus

64

steps/cycle

(cycles)

XTFEM

200

points/cycle

(user time)

Abaqus

20

steps/cycle

(user time)

Abaqus

64

steps/cycle

(user time)

300 9,589 9,600 10,260 N/A 5 sec 1.2 hr N/A

265 18,987 19,000 20,224 N/A 9 sec 7.6 hrs N/A

235 45,080 45,100 47,482 N/A 21 sec 34.6 hrs N/A

230 54,853 54,900 64,453

57,392

(pro-

jected)

27 sec 65.0 hrs

222 hrs

(pro-

jected)

220 84,823 84,900 111,284

90,227

(pro-

jected)

39 sec 197.5 hrs

416 hrs

(pro-

jected)

element deletion was recorded. In order to provide a contrast with XTFEM, the same model

was run using the XTFEM code with time steps equal to 100 cycles, and the time to element

deletion was recorded. In addition, a standalone C++ code which takes stress amplitudes

as inputs (i.e., no finite element calculations) and calculates fatigue life using the two scale

model with 1,000 interpolation points per cycle was also run as a control. Both Abaqus and

the XTFEM code were run on a single processor. Table 5.2 provides the results of all codes.

The first observation from examining Table 5.2 is that the user time to run the XTFEM

code was several orders of magnitude less than the standard, implicit time integration in

Abaqus. The second observation is that the number of interpolation points per cycle is

correlated with accuracy (i.e., similarity to the results of the C++ code). The Abaqus

simulations with 64 implicit time steps per cycle were closer to the C++ code than the ones

with 20 steps per cycle, and the XTFEM simulations with 200 interpolation points per cycle

were even closer to the C++ code. This characteristic of the two scale model with sinusoidal

loading has been studied by Zhang et al. who noted that, as loading amplitudes approach the

asymptotic fatigue limit, more interpolation points are necessary to obtain accuracy (Zhang

et al. (2016), p.344).
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Figure 5.2. Constrained Prismatic Beam Geometry

5.2 Constrained Prismatic Beam

A simple, academic example was chosen to demonstrate the thermo-mechanical abilities of the

XTFEM code. The example was a beam with a constant, rectangular cross-section prevented

from expanding or contracting along its length and subjected to a spatially uniform but

cyclically, time-varying temperature change (see Figure 5.2). The beam was assigned the same

material properties and parameters as the previous example (see Table 5.1) with a coefficient

of thermal expansion of α = 1.65E-5/°C. The beam was constrained from deforming along

its length, and symmetry was utilized in the other two directions. The geometry was meshed

with 20-node brick elements with reduced integration (C3D20R in Abaqus) with a total of

300 elements and 1,782 nodes. No mechanical force was used, but a sinusoidal, time-varying

temperature was uniformly assigned to all nodes on the beam. In this case, we used an

extended space-time temperature vector so that we could make the time steps multiples of
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Figure 5.3. Beam Mesh

the temperature’s time period:

φX =



φ1

φ2

φ3

φ̃1

φ̃2

φ̃3


=



Tref + Tamp sin (ω t1)

Tref + Tamp sin (ω t2)

Tref + Tamp sin (ω t3)

Tamp

Tamp

Tamp


(5.2)

where φi is the spatial nodal temperature DOF at the ith time node, φ̃i is the extended spatial

nodal temperature DOF at the ith time node, Tref is the initial or reference temperature, Tamp

is the temperature amplitude, and ω = 2 π f is the circular frequency. A frequency of f = 1

Hz was chosen for the temperature, and the model was simulated at various temperature

amplitudes with a mean temperature and an initial temperature of zero. No thermal analysis

was conducted as the temperatures were assigned directly.
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Table 5.3. Constrained Prismatic Beam Results

Temperature

Amplitude

(°C)

Stress

(MPa)

C++

Cycles

XTFEM

Cycles

Percent

Difference

70.8 230 54,853 54,500 -0.6%

69.2 225 67,361 67,500 0.2%

67.7 220 84,823 84,500 -0.4%

66.1 215 111,041 111,800 0.7%

64.6 210 151,797 151,900 0.1%

63.1 205 218,987 217,500 -0.7%

61.5 200 338,378 341,100 0.8%

60.0 195 612,428 610,700 -0.3%

58.5 190 1,357,474 1,332,000 -1.9%

56.9 185 4,972,627
4,970,600

(Projected)
0.0%

As we recall from section 2.4, the thermal “force” term is given by:

EIN1Θ ⊗Θ =

ˆ
In

[
Ṅ t

˙̃N t

]T
∆T (t) dt⊗

ˆ
Ω

BT
x D α∆T (x) I dΩ (5.3)

Given that the temperature is uniformly distributed spatially and varies only with time, the

above expression can be simplified as:

EIN1Θ ⊗Θ =

ˆ
In

[
Ṅ t

˙̃N t

]T
(Tamp sin (ω t)) dt⊗

ˆ
Ω

BT
x D α 1 I dΩ (5.4)

The simulations were run on the Texas Advanced Computing Center’s (TACC) Lonestar5

high-performance computer using a single compute node with 24 processors. The results of

the simulations were compared with those from the C++ code mentioned in the previous

example using an equivalent uniaxial stress amplitude given by σamp = E α (Tamp − Tref )

where Tref in this case is zero. The results are displayed in Table 5.3. The last simulation at

a temperature amplitude of 56.9°C had to be projected due to Lonestar5’s 48 hour runtime

limitation.

From the results displayed in Table 5.3, it is apparent that the XTFEM formulation can

accurately translate temperature changes into equivalent “forces.” The minor differences in
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cycles to failure between the C++ code and the XTFEM code were most likely due to the

round-off in the calculated temperature values used to create the equivalent stress levels.

5.3 Plate and Hat Stiffener

At hypersonic speeds, aircraft structures experience extreme combined environments over

their trajectory. By traveling at speeds in excess of Mach 5 (Sziroczak and Smith (2016), p.4),

velocity is converted “into heat by viscous forces within the boundary layer that surrounds

the vehicle” (Ho (2010), p.55). Temperatures on atmospheric, hypersonic flight vehicles can

build up to several thousands of degrees Fahrenheit (Blevins et al. (1993), p.971). The intense

heat creates large temperature gradients between the aircraft’s skin and its inner structure

causing large stresses. Complicating matters, the structural material is more flexible (i.e.,

lower elastic modulus) at higher temperatures which makes it more susceptible to oscillations

(Ho (2010), p.54). Repeated stresses from combined (random) acoustic and thermal loads

over the lifetime of the aircraft cause fatigue damage in the material (Ho (2010), p.55).

A physical experiment was conducted by the Aerospace Systems Directorate of the Air

Force Research Laboratory (AFRL) in which a plate and hat stiffeners made of the titanium

alloy Ti-6242S and representative of an aircraft’s structure were subjected to a combined

thermal and random mechanical loading eventually leading to crack formation (see Figure

5.4). This study, while highly simplified, sought to reproduce the results of the experiment.

5.3.1 The Computer Model

The Abaqus model of the experimental apparatus originally consisted of 4 hat stiffeners

connected to a plate by means of spot welds 5×10-4 inch thick (see Figure 5.5). Given that

the purpose of this study was a fatigue simulation, a decision was made to further simplify the

model in order to decrease simulation time. So, the model was limited to one-quarter of a hat

stiffener and corresponding plate section with symmetry boundary conditions applied to the
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Figure 5.4. AFRL Experimental Apparatus (Picture from Case #: 88ABW-2018-1008)

Figure 5.5. Original Abaqus Model Created by the AFRL
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Figure 5.6. Quarter Plate and Hat Stiffener

sides where the hat was cut (see Figure 5.6). Furthermore, the spot welds were exaggerated

in thickness and given fillets so as to make meshing and post-processing easier (see Figure

5.7). Lastly, it was determined from a preliminary, static analysis in Abaqus that the stress

would concentrate in the first spot weld from the end of the hat (opposite the cut). So, that

area was further partitioned for meshing (see Figure 5.8). Since the XTFEM code does not

have the capacity to model components consisting of multiple materials at this time, the

welds were modeled with the same material as the plate and hat stiffener, Ti-6242S.

5.3.2 The Mesh

Due to the highly curved geometry of the weld fillets (see Figure 5.7), the component was

meshed with twenty node brick elements with reduced integration (C3D20R in Abaqus).

98



Figure 5.7. Thickened Spot Welds

Figure 5.8. 1st Spot Weld Vicinity
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Figure 5.9. 1st Spot Weld Mesh

Since the XTFEM code can currently handle neither shell elements nor mixed element meshes

of any kind, the entire model had to be meshed using the C3D20R element. This resulted in

large increases in the number of elements every time the number of elements through the

thickness of either the plate or the hat increased. Since the stress was going to concentrate in

the first weld, that area was meshed first. The remaining spot welds were meshed with only

a single element through their thicknesses. The rest of the model was then meshed based on

the first spot weld using a general mesh size of 0.1 inch (see Figure 5.10).

A convergence study was performed to find the optimal mesh. The material properties

used were those for Ti-6242S at room temperature since the material properties at higher

temperatures had yet to be determined (see Table 5.4). Since a mesh convergence study is

largely independent of the material properties for a linear-elastic material, this was deemed
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Figure 5.10. Quarter Plate and Hat Stiffener Mesh

Table 5.4. Material Properties for Ti-6242S at Room Temperature

ρ
(

lbf· s2

in4

)
E (ksi) ν α

(
in/in
°F

)
k
(

Btu
in·s·°F

)
cp

(
Btu·in

lbf·s2·°F

)
4.244E-4 16,700 0.32 4.248E-6 9.259E-5 42.504

not to be an issue. The model was loaded with a constant heat flux to the bottom of the

plate of 0.0018 Btu
in2·s , the equivalent flux amplitude used in the experiment, for 1,000 seconds

to achieve a large temperature gradient between the plate and the top of the hat. The

nodal temperature data was then used in a subsequent static mechanical simulation in which

the side of the plate opposite the symmetry-cut was loaded with a pressure of 5,120 psi,

the approximate mean stress used in the experiment. Symmetry boundary conditions were

applied to the plate and hat along the sides where the hat was cut (x = 0 and z = 0) while

the bottom of the plate (y = 0) was fixed in the y-direction to prevent mesh distortion from

the plate bowing. As expected, the stress concentrated at the first spot weld (see Figures 5.11
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Figure 5.11. Mesh Test Results (1st Weld - Side View)

Table 5.5. Mesh Convergence Study

Mesh # Elements Nodes Max Stress (ksi)

1 27,398 131,091 191.8

2 28,353 135,536 214.7

3 29,987 143,136 227.9

4 35,162 165,039 203.0

5 42,578 195,275 243.9

6 43,634 200,075 240.1

7 45,326 207,423 243.3

8 63,455 281,803 258.2

9 75,059 329,681 274.0

10 107,384 461,852 280.1

11 254,763 1,063,699 297.1

and 5.12). After many iterations of remeshing, heat transfer analysis, and static mechanical

analysis, however, the mesh did not reach convergence (see Table 5.5). Refining the mesh

even further would have been computationally prohibitive even for the XTFEM code. Since
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Figure 5.12. Mesh Test Results (1st Weld - Section Cut)

the objective of this study was to demonstrate the abilities of the XTFEM code and not to

achieve the exact same answer as the AFRL experiment, mesh #7 was chosen for the study

based on a balance of the mesh size and stress results.

5.3.3 Calibrating Material Parameters

The S-N curve chosen to be representative of the high temperature experiment was for

Ti-6242S duplex annealed bar at 900°F (Welsch et al. (1994), p.362). Material properties

at this temperature were then interpolated from ASM’s Material Properties Handbook:

Titanium Alloys (Welsch et al. (1994), pp.337-362). However, properties specific to the two

scale damage model needed to be calibrated.

The paper by Desmorat et al. describing the two scale damage model also provides a

means of calculating the damage parameters, S and s, from a uniaxial S-N curve (Desmorat

et al. (2007), pp.914-917, 920). A standalone Fortran code was created to give preliminary
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Figure 5.13. MATLAB Results for Two Scale Parameters (Metric Units): S=1.32 MPa, s=56.9 (left);

S=2.88 MPa, s=6 (right)

values to the damage parameters, and a MATLAB code was used to further refine the values

using a non-linear least squares fit. Using metric units at first, the MATLAB code yielded

values of S = 1.32 MPa and s = 56.9. However, due to the oddity of such a high exponent

value (s = 56.9), other values for the damage parameters were experimented with, and it was

discovered that, since the S-N curve was so flat (dropping less than 10% in fatigue strength

over the course of 10,000,000 cycles), just about any values of the damage parameters would

give a good fit (see Figure 5.13). So, values of S = 2.88 MPa (0.42 ksi) and s = 6 were chosen.

However, the two calibration codes mentioned above assumed two things not applicable

to our case. The first was that the micro-defects closure parameter, h (see section 4.2.2 and

equation 4.94 above), was assumed to be equal to one (i.e., equal damage during compression

and tension). This is not realistic since h ≈ 0.2 for metals (Lemaitre and Desmorat (2005),

p.16; Desmorat et al. (2007), p.912). The second assumption was that the S-N curve used for

calibration was produced using triangular or “saw-tooth” loading. The curve taken from the

Handbook, however, was created using smooth, rotating beam tests which generate sinusoidal

loading (Welsch et al. (1994), p.362). Thus, when the parameters were run through the

C++ code mentioned in section 5.1 above (which did use sinusoidal loading), the resulting
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Figure 5.14. S-N Curve with C++ Results Using MATLAB Parameters

Table 5.6. Material Parameters for Ti-6242S at 900°F

ρ
(

lbf· s2

in4

)
E (ksi) ν Cy (ksi) σu (ksi) σ∞f (ksi) εpD

4.244E-4 11,548 0.353 188.1 108.8 63.7 0.125

h Dc S (ksi) s α
(

in/in
°F

)
k
(

Btu
in·s·°F

)
cp

(
Btu·in

lbf·s2·°F

)
0.2 0.3 0.0725 0.5 5.423E-6 1.725E-4 61.39

number of cycles did not match the MATLAB values (see the orange and grey curves in

Figure 5.14). So, the C++ code was used to further correct the parameters. Again, given

the flatness of the Handbook’s S-N curve, changing the parameters proved fruitless until

the value of the plastic strain damage threshold, εpD (i.e., the amount of plastic strain a

material undergoes by the time it reaches its ultimate strength in monotonic tension), was

changed. While the new value of εpD = 0.125 differs greatly from the value calculated from

the Handbook (εpD = 0.15), it provides a very good fit to the S-N data (see the grey and

blue curves in Figure 5.15). Since this variable is only used in the damage subroutine whose

sole purpose is to give an estimation of fatigue failure, εpD = 0.125 was used. See Table 5.6

for the complete listing of the material parameters used in the simulation.
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Figure 5.15. S-N Curve with C++ Results Using Corrected Parameters

5.3.4 Simulation and Results

Using the mesh and the material parameters mentioned above, the plate and hat stiffener

model was simulated in the XTFEM code. The AFRL stated that the peak temperature

during the thermal cycle should be about 1,510 Rankine (1,050°F ) while using a heat flux

amplitude of 0.0018 Btu
in2·s . To achieve these parameters, a trial-and-error approach was taken

using Abaqus, and it was determined that the frequency of the cyclic heat flux should be

f = 0.00025 Hz or a period of 4,000 seconds with an initial temperature throughout the

model of Tref = 765 Rankine (305°F). The mechanical loading to the edge of the plate was

5 Hz as in the experiment. To simplify matters, the pressure amplitude was made to be

5,120 psi with a mean pressure of zero rather than 5,120 psi as the mean pressure and 512

psi as the amplitude as in the experiment. Likewise, the initial temperature for the whole

model was set to zero with any rise or fall in temperature being understood as a change in

temperature, ∆T , from the initial temperature of 765 Rankine.

A regular space-time temperature vector was used instead of the extended version in

the previous example since we are solving for the nodal temperature values using a TFEM
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formulation instead of applying the temperatures directly. To calculate the extended space-

time thermal “force” term (equation 5.3), the spatial thermal “force” as a function of time,

Θ (x, t), was approximated using a quadratic polynomial. To do this, the spatial thermal

“force,” Θ, was calculated at the three time-nodes, and a polynomial was fitted to the three

data points by solving for the three coefficients, a0, a1, and a2:

Θi (x, ti) =

ˆ
Ω

BT
x D α∆T (x, ti) I dΩ (5.5)

Θ (x, t) = a0 + a1 t+ a2 t
2 (5.6)

Θ1 (x, t1)

Θ2 (x, t2)

Θ3 (x, t3)

 =


1 t1 t21

1 t2 t22

1 t3 t23



a0

a1

a2

 (5.7)


a0

a1

a2

 =


1 t1 t21

1 t2 t22

1 t3 t23


−1 

Θ1 (x, t1)

Θ2 (x, t2)

Θ3 (x, t3)

 (5.8)

EIN1Θ ⊗Θ =

ˆ
In

[
Ṅ t

˙̃N t

]T (
a0 + a1 t+ a2 t

2
)
dt (5.9)

This procedure was done for each mechanical degree of freedom in the model.

The simulation was run on TACC’s Lonestar5 high-performance computer using 4 compute

nodes and 96 processors. Unfortunately, it became apparent after 24 hours that the simulation

would not finish within Lonestar5’s 48 hour maximum run time. So, the pressure amplitude

was increased to 9,000 psi, and the simulation was re-run. It completed in about 28.8 hours

CPU run time with the first element failing after about 36,600 cycles and completely finishing

the simulation shortly thereafter at about 36,650 cycles.

The first point of interest in the simulation was the nonlinear accumulation of the stored

energy density, ws. As seen in Figure 5.16, the energy plateaus then rises repeatedly over the

course of the simulation while the sharp rise in energy at the end was due to the accumulation
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Figure 5.16. Maximum Stored Energy Density, ws, vs. Time

of damage (see equation 4.24 above). In purely mechanical simulations, this value rises

linearly up until damage accumulation begins. By plotting the temperature of a node in the

stress concentration area of the first weld, we can see why the nonlinear accumulation occurs

(see Figure 5.17). The energy seems to increase at a greater rate whenever the magnitude of

the slope of the temperature curve is largest. We hypothesize that this is due to the relatively

large temperature gradients present in the model during these times which generate extra

mechanical stresses on top of those created by the pressure load (see Figure 5.18).

The second point of interest is the failure of the material at the end of the simulation.

As seen in Figure 5.19, the stress concentrates at the first spot weld which was known from

our static simulations. Once the damage reached the critical value in these elements, Dc,

the elements were deleted. This created stress singularities due to the newly formed sharp,

reentrant corners where the deleted elements used to be, a drawback of the element deletion

method of crack modeling. Thus, the stress contour in Figure 5.20 was capped at 250,000 psi

to show the stress distribution elsewhere. After a few more time steps, the ‘crack’ reached
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Figure 5.17. ws and 1st Weld Nodal Temperature Change, ∆T , vs. Time

Figure 5.18. Temperature Distribution in the Model
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Figure 5.19. Stress Concentrated at 1st Spot Weld

Figure 5.20. First Element Deletion at ∼36,600 Cycles Creating Stress Singularities
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Figure 5.21. Fatigue ‘Crack’ Tearing Through the Surface of the Hat

the surface of the hat stiffener causing more stress singularities (see Figure 5.21). Figure 5.22

shows what remains of the first spot weld just prior to the end of the simulation. At the

same time, Figure 5.23 shows the large stresses in the remaining spot welds. Within a few

cycles of this frame, the remaining spot welds delete causing the hat stiffener to separate

from the plate. This makes the stiffness matrix singular causing the simulation to stop.
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Figure 5.22. Section Cut Showing the Remains of the First Spot Weld

Figure 5.23. High Stresses on Other Spot Welds Before Failure
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We have proven the effectiveness of the XTFEM code by simulating three different models of

increasing complexity. In the single element model, we showed that the XTFEM formulation

is superior to the standard, finite-difference time-integration methods by contrasting the user

runtime of both formulations. The XTFEM formulation was several orders of magnitude

faster even while using more interpolation points to give it greater accuracy. In the beam

model, we simulated an academic problem of a beam constrained at both ends subjected to a

cyclical temperature variation. We showed how the XTFEM code could accurately translate

the temperature variation into an equivalent “force” which, due to the constraint, translated

into stress. The minor differences in cycles to failure between the C++ code used as a

control and the XTFEM code were most likely due to the round-off in calculated temperature

values used to create the equivalent stresses. Lastly, we simulated a truly pertinent problem

that is of interest to the Air Force: the thermo-mechanical high cycle fatigue of hypersonic

aircraft structures. After performing a mesh convergence study and calibrating the material

parameters, we simulated the fatigue of the plate and hat stiffener using similar conditions

to the AFRL experiment as best we could. We saw that the relatively high temperature

gradient decreased the fatigue life of the component by creating mechanical stresses on top of

those made by the pressure load. We also saw the failure of the material initiating at the

first spot weld and propagating up to the surface of the hat stiffener.
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6.2 Future Work

While we have demonstrated the XTFEM formulation’s capabilities, there is still more work

to be done in order to simulate the full range of fatigue problems. These are just a few of the

many possible developments that could be made to the code:

1. Plasticity: Currently, the only mesoscale (finite element level) material model the code

is capable of running is for a linear-elastic, isotropic material. However, there are

many high cycle fatigue cases which have a small amount of plasticity at the mesoscale,

and this can make a difference in the fatigue life. In fact, the two scale progressive

fatigue damage model (Desmorat et al. (2007)) is designed to allow for small amounts

of mesoscale plastic strains.

2. Low Cycle Fatigue: Related to the previous proposal, plasticity would open up the

possibility of simulating low cycle fatigue conditions. This would, of course, necessitate

having another fatigue damage model either alongside the HCF two scale model or as

a separate option in which the two scale model is turned off. This would allow the

XTFEM code to simulate the full range of fatigue loading. This is especially pertinent

for thermo-mechanical fatigue (TMF) since most TMF situations are either LCF or

mixed LCF and HCF (see section 1.2.2 above).

3. Mixed Element Meshes: At this time, the XTFEM code is limited to either eight node

brick elements (C3D8 in Abaqus) or twenty node brick elements (C3D20). However,

many industrial components have a complicated geometry that necessitates a mesh

consisting of several element types such as brick, tetrahedral, wedge, and shell. A mixed

mesh allows one to create quality meshes without greatly multiplying the number of

elements and nodes. The plate and hat stiffener model, for instance, could have been

meshed and simulated much more efficiently if the spot welds were meshed with solid

elements while shell elements were used for the plate and hat stiffener.
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4. Multiple Materials: At present, the XTFEM code can handle only one material in the

entire component. On the other hand, most industrial components are comprised of

multiple materials. This is especially germane for many thermal fatigue situations such

as electronic surface-mount devices where mismatches between coefficients of thermal

expansion create cyclic stresses and, thus, fatigue damage.

5. Thermal Convection and Radiation: Currently, the only types of boundary conditions

available in the code for the thermal TFEM are surface heat flux and fixed temperature

boundary conditions. On the other hand, many cases of thermo-mechanical fatigue

involve convection and thermal radiation. The plate and hat stiffener model in section

5.3 above is an excellent example. When the AFRL first simulated the experiment in

Abaqus, they included both convection and thermal radiation since both modes of heat

transfer were significant.

6. No Temperature Boundary Condition: Unlike Abaqus which can simulate a transient,

thermal model without a prescribed temperature boundary condition (i.e., it can assume

all surfaces are insulated), the XTFEM code cannot handle such conditions since it

would make the space-time stiffness matrix singular. Removing this constraint would

allow the modeling of problems for which there is no prescribed temperature surface, a

condition which, at times, can be more realistic.

7. Contact Nonlinearity: Many thermo-mechanical problems involve surfaces which start

out separated from each other but, due to thermal expansion, come into contact and

transmit forces. Again, the case of the plate and hat stiffener comes to mind. The

original spot welds were actually much thinner than they were modeled in section 5.3.1.

In reality, the plate and the hat stiffener would have come into contact, transmitted

forces, and conducted heat.
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8. XFEM for Crack Growth: Currently, the XTFEM code implements crack growth

by way of element deletion. This method has the problem of lost energy due to the

disappearance of mass (Belytschko et al. (2014), p.644). Furthermore, one would have

to know where the crack would initiate and grow beforehand in order to properly

mesh the component for crack growth (Belytschko et al. (2014), p.644), but for most

industrial components, one does not know that apart from expensive experimentation

or other fatigue algorithms which the XTFEM code seeks to replace (see chapter 3).

Lastly, element deletion can generate stress singularities by creating sharp, reentrant

corners where an element used to be (see section 5.3.4 above). Therefore, the best way

to implement crack initiation and propagation is the extended finite element method

(XFEM) which was discussed briefly in section 2.4.1. The chief advantage of XFEM is

that the accurate modeling of a crack is independent of the mesh. Furthermore, there

is no loss of mass/energy during crack growth and no stress singularities. XFEM would

thus avoid the major pitfalls of element deletion.

9. Random Loading: Actual components in the field rarely undergo constant amplitude,

constant frequency loading. Rather, the loading history is more often than not random,

and being able to simulate random loading would allow the XTFEM code to tackle the

vast majority of common fatigue problems seen in industry.
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APPENDIX

PROOFS IN THE TWO-SCALE MODEL

This appendix gives proofs for some of the assertions made in chapter 4.
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Since 〈x〉+ 〈x〉− ≡ 0, the middle term of equation A.1 becomes zero leaving us with:
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Using forward slashes to indicate either/or with the value to the left of the slash being either

zero or the variable if positive and the value to the right of the slash being either zero or the

variable if negative:
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Using the fact that 〈x〉+ 〈x〉− ≡ 0, the middle term of equation A.6 becomes zero leaving us

with:
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Ph. D. thesis, Scientifique et Technologique l’Armement, Paris.

Dang Van, K. (1993). Macro-micro approach in high-cycle multiaxial fatigue. In D. McDowell
and R. Ellis (Eds.), Advances in Multiaxial Fatigue, ASTM STP 1991, pp. 120–130.
Philadelphia: ASTM International.

Dang Van, K., B. Griveau, and O. Message (1989). On a new multiaxial fatigue limit criterion:
theory and application. In M. Brown and K. Miller (Eds.), Biaxial and Multiaxial Fatigue,
Volume EGF, London, pp. 479–496. Mechanical Engineering Publications.

120



Delfour, M., W. Hager, and F. Trochu (1981). Discontinuous galerkin methods for ordinary
differential equations. Mathematics of Computation 36, 455–473.

Desmorat, R., A. Du Tertre, and P. Gaborit (2015, June). Multiaxial haigh diagrams from
incremental two scale damage analysis. AerospaceLab (9), 1–15.

Desmorat, R., A. Kane, M. Seyedi, and J. P. Sermage (2007). Two scale damage model and
related numerical issues for thermo-mechanical High Cycle Fatigue. European Journal of
Mechanics A/Solids 26, 909–935.

dos Santos, H. A., F. Auricchio, and M. Conti (2012). Fatigue life assessment of cardiovascular
balloon-expandable stents: A two-scale plasticity–damage model approach. Journal of the
Mechanical Behavior of Biomedical Materials 15, 78–92.

Dowling, N. E. (2013). Mechanical Behavior of Materials: Engineering Methods for Deforma-
tion, Fracture, and Fatigue (4th ed.). Upper Saddle River, NJ: Pearson.

Downing, S. and D. Socie (1982). Simple rainflow counting algorithms. International Journal
of Fatigue 4 (1), 31–40.

Dufailly, J. and J. Lemaitre (1995). Modeling very low cycle fatigue. International Journal
of Damage Mechanics 4 (2), 153–170.

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and
related problems. Proceedings of the Royal Society of London Series A 241, 209–229.

Flaceliere, L., F. Morel, and A. Dragon (2007a). Competition between mesoplasticity and
damage under HCF–Elasticity/damage shakedown concept. International Journal of
Fatigue 29 (12), 2281–2297.

Flaceliere, L., F. Morel, and A. Dragon (2007b). Coupling between mesoplasticity and damage
in high-cycle fatigue. International Journal of Damage Mechanics 16 (4), 473–509.

Fried, I. (1969). Finite-element analysis of time-dependent phenomena. AIAA Journal 7,
1170–1173.

Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions
of the Royal Society of London 221, 163–198.

Hertzberg, R., R. Vinci, and J. Hertzberg (2013). Deformation and Fracture Mechanics of
Engineering Materials (5th ed.). Hoboken, NJ: John Wiley & Sons.

Ho, S.-Y. (2010). Structural Failure Analysis and Prediction Methods for Aerospace Vehicles
and Structures, Chapter Aerothermal and Structural Dynamic Analysis of High-Speed
Flight Vehicles, pp. 54–84. Bentham eBooks.

121



Hughes, T. J. R. and J. R. Stewart (1996). A space-time formulation for multiscale phenomena.
Journal of Computational and Applied Mathematics 74, 217–229.

Hulbert, G. M. and T. J. R. Hughes (1990). Space-time finite element methods for second-
order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering 84,
327–348.

Hult, J. (1972). Iutam symposium gothenburg 1970. In J. Hult (Ed.), Creep in Structures
1970, Berlin. Springer-Verlag.

Irwin, G. (1957). Analysis of stresses and strains near to the end of crack traversing a plate.
ASME Journal of Applied Mechanics 24, 361–364.

Jiang, H., X. Gao, and T. S. Srivatsan (2009). Predicting the influence of overload and
loading mode on fatigue crack growth: A numerical approach using irreversible cohesive
elements. Finite Elements in Analysis and Design 45 (10), 675–685.

Johnson, C. (1984). Error estimates and automatic time step control for numerical methods for
stiff ordinary differential equations 1984-27. Technical report, Department of Mathematics,
Chalmers University of Technology and the University of Goteborg, Goteborg, Sweden.

Kachanov, L. (1958). Time of the rupture process under creep conditions. Izvestiia Akademii
Nauk SSSR, Otdelenie Teckhnicheskikh (8), 26–31.

Karpanan, K. (2016). Critical plane search method for biaxial and multiaxial fatigue analysis.
In Proceedings of the ASME 2016 Pressure Vessels & Piping Conference, Volume 5, pp.
V005T05A011. American Society of Mechanical Engineers.

Kim, K. (2013). High-cycle fatigue simulation for aluminium alloy using cohesive zone law.
Journal of Mechanical Engineering Science 227, 683–692.

Kim, K. and M.-J. Yoon (2014). Fretting fatigue simulation for aluminium alloy using cohesive
zone law approach. International Journal of Mechanical Sciences 85, 30–37.
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