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APPLICATION OF MACHINE LEARNING

IN DRUG DISCOVERY

Susmitha Sri Kadiyala, MS
The University of Texas at Dallas, 2018

Supervising Professor: Dr. Mehrdad Nourani, Chair

Drug Discovery is a highly complicated process. On average, it takes 6 to 12 years to

manufacture a drug and have the product released in the market. Even after a huge

investment of money, time and hard work, one cannot assure the success of the drug after its

release. The recent advancement in the field of machine learning helps us to reduce the risk

in this field of science. This thesis aims at analyzing the applications of machine learning

in the field of bio-medical science. Usage of a simpler organism for the implementation

of the experiments is highly convenient. Therefore, a machine learning model to predict

the chemical compounds effect on aging of Caenorhabditis elegans was proposed using the

Drug Age database. This database includes the features of Molecular Descriptors and Gene

Ontology.

In this work, a new feature selection scheme is proposed for an efficient classification task

using random forests. We explain the benefits of our feature selection method in comparison

with the base-line support vector machine and artificial neural network classifiers. Secondly,

another application of machine learning which is presented in the work is the prediction of

Drug-Target Interaction using Weisfeiler-Lehman Neural Machine. Prediction of a possible

interaction between a drug and a target enables the biochemists to speed up the process of

target validation and discovery. A public-domain data set which corresponds to four different
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target protein types is used for the analysis purpose. The algorithm aims at creating a

subgraph from the network formed by the drugs and targets which is then taken through

graph labeling, resulting in the formation of an adjacency matrix. This matrix defines the

presence of an interaction used for training a model. The results of the proposed method out

performed the standard state of art approaches like the similarity based methods in terms of

AUC.

vii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Drug Discovery Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Machine Learning in Drug Discovery . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contribution and Thesis Organization . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 FEATURE SELECTION TO PREDICT COMPOUND’S EFFECT ON
AGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Feature Selection for Molecular Descriptors . . . . . . . . . . . . . . . 11

2.2.2 Feature Selection for GOs . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 3 WEISFEILER-LEHMAN NEURAL MACHINE FOR DRUG-TARGET
LINK PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

viii



3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 WLNM Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Performance Measurement . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 4 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . . . 40

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CURRICULUM VITAE

ix



LIST OF FIGURES

1.1 Process of Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Schematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Feature encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The ROC curves and AUC values for different methods. . . . . . . . . . . . . . 25

3.1 Work Flow of WLNM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

x



LIST OF TABLES

2.1 Impact of feature selection on classification performance (RF classifier). . . . . . 24

2.2 Performance of classifiers for selected features. . . . . . . . . . . . . . . . . . . . 24

2.3 Performance of classifier (RF) with different feature selections for three feature
sets (MD, GO, MD+GO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Top 15 MD feature selected by Binary PSO. . . . . . . . . . . . . . . . . . . . . 26

2.5 Top 15 GO feature selected by CFS. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Specifications of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 AUC for Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 AUC for Credible Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 AUC for Similarity Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



CHAPTER 1

INTRODUCTION

1.1 Drug Discovery Process

Drug discovery is a very complicated process as it involves a huge investment of time and

money. On average, it takes 6 to 12 years with an investment of 500 million to 1 billion

(in US dollars) to identify a drug for fighting against a target. However, even after a huge

struggle, the success rate is very low. Many long-term research projects may end up fruitless

resulting in wastage of enormous efforts. Blockbuster drugs are the drugs that are prescribed

for the common medical problems like cold, diabetes, high blood pressure, asthma and flu.

They are extremely profitable in the pharmaceutical industry. They bring revenues greater

than 1 billion per year and a profit of more than 1 million a day (in dollars). However, it

can also result in problems for the company if the drug shows any side effects. Usually, the

patents on drugs expire resulting in competition from less expensive equivalents. The process

of drug discovery is therefore highly complicated and risky activity but is always motivated

by the benefits it could do to millions of people suffering from various diseases. The detailed

process of drug discovery, illustrated, in Figure 1.1 is as follows:

1. The first stage is the target discovery. In this stage, we decide on the target on which

the drug in development should act upon to suppress the growth of the disease. The

target gives us the deeper understanding of the genes, proteins, Ribonucleic Acid (RNA)

or anything that get effected when attacked by a parasite.

2. The second stage is the target validation phase. In this phase, the discovered target is

validated to make sure that the drug in development deals with the correct target.

3. The third stage is the lead discovery. This phase involves in synthesizing and isolating

the designed chemical compounds meant to interact with the specified targets. This stage

involves the use of chemistry, assay development for screening the selected compounds.
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Figure 1.1. Process of Drug Discovery

4. The fourth stage is the vitro study phase where testing of the drug identified is done

prior to testing on animals. This study analyzes the affinity of the drug towards the

target. The mechanism in which the drug acts is studied.

5. The fifth stage is the vivo study in which testing on animals is involved. Frequently

used animals are rats or mice. This allows the chemists to understand the working

of the drug in a biological model. It provides an understanding of drug metabolism,

clearance, immune response, etc. giving a detailed information back to the chemist. It

provides a deeper understanding of the behavior and functional imaging of the response

of the disease to the drug developed.

6. The sixth stage is the clinical trial phase where the drug is tested on humans. If the

drug shows efficiency and meets the required purpose, it proceeds with the last step.

7. The seventh stage is the manufacturing stage. Once the drug successfully clears all the

tests on it, the chemists then start manufacturing it for usage by people.

8. The final stage in the process is commercialization. Once the drug passes the review, and

approved by Food and Drug Administration (FDA), it can be prescribed by physicians

clinically. This drug is then made commercially available for people to purchase.

The successful completion of all these phases takes many years. Research is going on to

improve the speed in this process with higher efficiency to fight against a disease by the drug.
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1.2 Applications of Machine Learning

Machine Learning is a field of computer science which focuses on creating computational

algorithms that can learn complex patterns for a given set of inputs with their corresponding

labels and predict and classify the new samples into any of the existing labels. The input

data is referred to as training data and the new sample set is the test data. We use this data

to train a model for classifying the new data into a predefined class label. The ultimate goal

of the various computational methods is to classify and to predict the behavior of test data

using the train data with higher accuracy.

There exists a procedural similarity with data mining and predictive modeling in machine

learning. Both data mining and predictive modeling require a search through data to identify

various possible patterns for modeling. The usage of machine learning by the shopping

related websites, where there will be suggestions related to the activity of the customers, is

an application of machine learning in the daily life. Other applications of machine learning

include spam filtering, social networking, online advertising, etc. (Guzella and Caminhas,

2009) (Benchettara et al., 2010) (Goodfellow et al., 2016).

Machine learning algorithms can be classified as supervised, unsupervised, semi-supervised

or reinforcement learning (Pedregosa et al., 2011). Supervised learning requires the provision

of input data as well as the desired output. It also takes care of providing the accuracy

predictions during training phase. The features, instances and the model to be used are

to be determined prior to application of the algorithm on new test data. On achieving the

acceptable performance level, the learning can be halted. The supervised learning problems

can be grouped as either classification or regression problems. A classification problem is the

one in which the output is a category. For example, YES or NO. The regression problem has

a real valued output like weight, length, etc. On the other hand, unsupervised algorithms do

not require to be trained with desired outcome. They use an iterative approach to model the

underlying distribution providing a scope to learn more about the data.
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These problems are grouped as clustering or association problems. In clustering, we define

the inherent groups in the data and in association we try to define the rules for understanding

the large data (Domingos, 2012). There is also semi-supervised learning in which we have

an input data and a part of it is labeled. Many of the real-world problems fall into this

category. To solve these problems, both supervised and unsupervised learning methods

are employed. Reinforcement learning uses the observations gathered from environmental

interaction. Reinforcement learning algorithm learns from the environmental setup iteratively

until it is sure of a reduced risk. It uses a feedback signal called reinforcement signal to learn

the behavior of environment.

There are various machine learning algorithms (Learning, 2012), some of the popular ap-

proaches are,

• Decision Trees: It uses a tree like graph model consisting of observations about certain

decisions and their possible outcomes. Pruning can help improve the performance of a

tree by removing the branches with low importance. This reduces the complexity of

the tree as well as the over-fitting.

• Naive Bayes Classification: These classifiers are based on the Bayes theorem and are

particularly used when the dimensionality of inputs is high. It is the simplest model

outperforming many complicated classification methods.

• K-means Clustering: This algorithm helps in grouping the data, with the group number

denoted by K. It assigns each data point to a group by iteration based on features

provided. These data points are then clustered based on the similarity of the feature.

The results of K-means clustering are the centroids of the K clusters and labels for the

data.

• Logistic Regression: It is a statistical analysis method for analyzing the data set with

one or more than one independent variable helping in determining an outcome. Logistic
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regression is a predictive analysis used to describe data for explaining the relation

between a binary variable and other independent variables.

• Support Vector Machines: It classifies the training data by trying to model it into a

decision boundary while maximizing the margin between classes. It uses kernel function

when there is no possibility for linear separation of data.

• Neural Networks: It is a parameterized non-linear algorithm consisting of multi-layer per-

ceptrons at each layer for classification of input data. The numeric value of perceptrons

and hidden layers in the model decide the accuracy.

1.3 Machine Learning in Drug Discovery

Machine learning methods have been used in the area of drug discovery since 1962. Machine

learning methods help in understanding the complex biological systems by enabling us to

capture all the relevant features. Usage of various prediction models to improve the speed

in process of drug discovery is recently extensive in this area of research. The algorithms,

used by various computational methods, enable us to reveal answers to questions that pose

a greater challenge to the chemists. They help the chemists to analyze, predict and model

many biological responses for an accurate drug design. The machine learning algorithms

learn complicated patterns with the help of the annotated data to predict the annotations

of new test data samples (Burbidge et al., 2001). Machine learning is used in protein

structure prediction, protein function prediction, genome association and so on. It helps in

understanding the properties of various compounds like solubility, binding and assays related

to targets, etc.

Despite the success, implementing machine learning in the area of drug discovery is never

an easy task. Contrary to the other fields, drug discovery poses many challenges related to

identifying the right representation for the subjects in a drug, like the molecules and their
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complexes which play a major role in achieving the goal. One of the major challenges is the

shortage in the description of the bio-activity. The way to use the available data for reaching

the goal is highly important.

So, figuring out the correct representation is always the most challenging. The machine

learning methods are data dependent; especially the training data. This is even more

challenging as the data obtained for most of the predictions has high noise levels, uncertainty

and most of the times they are inconsistent. The chemical experiments performed may result

in a data that is sparse and unbalanced making it even more difficult. In the recent times,

computational methods to address these difficulties are being developed. There are many

possibilities for expanding the help of machine learning in understanding the bio-activity

data leading to an acceleration in the process of drug discovery and development

1.4 Contribution and Thesis Organization

This work mainly focuses on the target discovery stage of the drug discovery process. Chapter

2 of the thesis is about an efficient feature selection method for the determination of chemical

compounds effect on aging of C.elegans, an organism that is used for testing purposes by

biochemists. Selection of most important features among Molecular Descriptors and Gene

Ontology is done using Particle Swarm Optimization and Correlation Based Feature Selection

method respectively. The results obtained through the proposed method are better than the

previous techniques.

Chapter 3 focuses on the methodology for prediction of a possible interaction between a

drug and target. In this work, we use the data of the four different target protein types. We

use Weisfeiler-Lehman Neural Machine algorithm for DTI prediction. The work is mainly on

the selection of the negative unknown samples of the DTI. We use two different sampling

techniques for this purpose. Finally, in Chapter 4, we outline the conclusion of the work and

its future prospective.
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CHAPTER 2

FEATURE SELECTION TO PREDICT COMPOUND’S EFFECT ON AGING

Acknowledgement: The main part of this chapter has been reported in this paper: Eslami

Manoochehri Hafez, Susmitha Sri Kadiyala, Javad Birjandtalab, and Mehrdad Nourani.

”Feature Selection to Predict Compound’s Effect on Aging”, In Proceedings of the 2018 ACM

International Conference on Bioinformatics, Computational Biology, and Health Informatics,

pp. 419-427. ACM, 2018.

2.1 Overview

The process of aging results in many age-related disorders. Investigating the changes due

to aging at cellular level and understanding the chemical impacts among the anti-aging

compounds is of high interest in drug discovery and in personalized drugs research. In this

work, a model to predict the effect of chemical compounds on lifespan of Caenorhabditis elegans

is proposed. The data from DrugAge database was used for analysis (Eslami Manoochehri

et al., 2018). This data includes chemical compounds that affect the lifespan of model

organisms by using the chemical descriptors and gene ontology as features. We used a new

feature selection scheme based on particle swarm optimization and correlation-based feature

selection for selecting the most relevant features for classification. This method achieved

higher performance compared to the existing methodologies. The advantages of the proposed

feature selection method over the other methodologies are discussed and the results obtained

by random forest with base-line support vector machine artificial neural network classifiers

are compared with the previous methodologies.

A wide range of molecular and cellular changes over time results in the biological process

of aging. The declination in biological function due to aging leads to gradual decrease in

physical and mental capacity. This could increase the risk of diseases like cancer and other
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neuro-generative diseases. These biological changes are not monotonic, so understanding

their impacts can be very challenging. exploring the aging processes and understanding them

would enable us to promote healthy aging preventing many age-related diseases. Anti-aging

drug discovery is a biggest challenge that can help us to fight against the advancement of

diseases. Intra-cellular signaling pathways modulated by dietary, nutraceutical, genetic and

pharmacological interventions can be considered to slow down the aging process.

2.1.1 Prior Works

Aging studies are made on organisms such as Caenorhabditis elegans (C. elegans) worm,

yeast, mice and fly (Buffenstein et al., 2008). Among them, C. elegans is highly used

for conducting assessments on anti-aging and drug intervention due to its short lifespan,

stereotypical development and small size (Kaletta and Hengartner, 2006) (Lucanic et al.,

2013) (Carretero et al., 2017). There has been a decent increase in the number of works

done on the identification of compounds that increase the lifespan. Latest research enabled

us to develop compounds that enhance the longevity of caloric restriction (Fontana et al.,

2010). In (Calvert et al., 2016), a pharmacological network is constructed by Ye et al. with

the help of a connectivity map to identify drugs with overlapping gene expression profiles.

It helped to identify 60 compounds that improve longevity for C. elegans (Ye et al., 2014).

Ranking of drug like compounds to modulate aging in C. elegans has been proposed in

(Ziehm et al., 2017). This ranking method is based on genetic information, information on

proteins associated with aging in an organism, 3D protein structure, homo-logy and sequence

conversation between them and compound activity information. In (Ding et al., 2017) and

(Carretero et al., 2015), a review on anti-aging and pharmacological compound classification

on C. elegans lifespan has been discussed.

The process of drug discovery includes several steps from selecting chemical compound

candidates to clearing all drug requirement tests. It is also time consuming, expensive and
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labor-intensive. Recent advancements in machine learning is helping out in prediction of the

chemical properties in drug discovery community. In (Zernov et al., 2003), Support Vector

Machine is used for predicting the drug-likeness and agrochemical-likeness for large number

of compounds. In (Putin et al., 2016), human chronological age was predicted using Deep

Neural Network. In (Fabris et al., 2018), prediction of aging related genes was done using

random forests.

Different possibilities of involvement of machine learning and artificial intelligence in

longevity and anti-aging discoveries was discussed in (Batin et al., 2017). Machine learning

was not greatly used for compound prediction on longevity. To the best of our knowledge,

only a few studies tried to identify chemical compounds that effects longevity (Putin et al.,

2016)(Barardo et al., 2017) (Fabris et al., 2017). Barardo et al. worked on classification

of chemical compounds into two classes which are the ones that effect longevity and the

ones that do not, using random forests (Barardo et al., 2017). They used random forest

feature importance as a parameter to select the most important features among the two types

of features which are chemical descriptors, gene ontology terms. Then, they implemented

random forests for classification. Their results showed that impact of chemical descriptors

was high compared to GO. However, using both chemical descriptors and Gene Ontology

slightly improves the classification accuracy.

2.1.2 Feature Selection

Information provided by features in a data set play a major role in classifying each instance

into different classes. In many cases, a compromise on relevant and redundant features is

observed in the data. Redundant features slow down the process of learning resulting in a

decrease in accuracy. Feature selection helps us to identify and eliminate these redundant

features helping us to improve the performance of the classification (Dash and Liu, 1997)

(Xue et al., 2013). Exponential increase in the size of search space with the size of features
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makes feature selection much more challenging. Due to this, search methods such as greedy

search or heuristic-based search have been proposed (Mao and Tsang, 2013). But these

methods are prone to suffer from the local optima problem. Feature selection can be done

using two approaches: 1) methods that are independent of a learning algorithm and do not

consider classifier performance (Moradi and Rostami, 2015), and 2) wrapper methods which

learns an algorithm in the feature selection process (Gasca et al., 2006) (Wang et al., 2008).

Wrapper methods can enable us to achieve higher predictive accuracy (Dash and Liu, 1997).

2.1.3 Key Contributions

This work focuses on analyzing the effect of chemical compound on lifespan of C. elegans.

DrugAge data set (Barardo et al., 2017) has molecular descriptors and gene ontology terms

as features for building a machine learning model that enables us to classify a new chemical

compound based on its capability to affect the lifespan. Two different feature selection

methods, a swarm-based wrapper method for molecular descriptors and a correlation-based

feature selection method for Gene Ontology (GO) features were used. Feature selection

is highly important, and it mainly serves two objectives 1) maximizing the classification

performance and 2) minimizing the number of features. To satisfy the above two objectives,

the feature selection methods were modified to select a proper feature subset. We applied

Random Forest classifier on the selected features and a good prediction performance is

measured using Area Under the Curve (AUC) score and accuracy was achieved. This work

was compared with the existing work in (Barardo et al., 2017) and it showed a better

performance with similar number of MD features and lesser GO features. The results were

also compared with two other classification methods, Artificial Neural Network and Support

Vector Machine.

The organization of the chapter is as follows. We present our main methodology in Section

2.2 which includes pre-processing, feature selection and classification steps. Then, in Section

2.3, we present the experimental results of our approach.
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2.2 Methodology

The aim of the work is to identify the effect of chemical compounds on longevity of C. elegans.

The two features used in this work are evaluated using different measures. The Molecular

Descriptors are calculated from the chemical structure enabling us to define the relation

between chemical structure of the compound and its biological properties. There are a total

of 268 MD’s and they are real values. The GO features on the other hand are derived from

the proteins which interact and get targeted by each of the compounds. The Feature size of

GO is 13,338 and they take binary values of 0 or 1 representing the presence of an annotation

of the instance with the corresponding GO term. (see Subsection 2.3.1 for more information

about the data).

Figure 2.1, shows the methodology followed for the work. In the work, the raw data is

first normalized followed by the feature selection which is done for the selection of appropriate

features to feed the classifier. Two different feature selection methods are proposed for the two

types of features. A wrapper method, modified Particle Swarm Optimization (PSO) is used

for subset selection of Molecular Descriptors (MD) features. Since this method is expensive

computationally, it was not applied on GO features as they are very high in number compared

to the MD’s. To work with the large size of GO features, a filter method Correlation-Based

Feature Selection (CFS) is used. The advantage of filter methods is that they are independent

of the classifier performance. Once the features are selected, they are fed to a random forest

classification block which helps us to build a predictive model.

2.2.1 Feature Selection for Molecular Descriptors

Initially, we normalize the data of the MDs re-scaling it to a value between [0, 1]. This

eliminates the scaling effect. We normalize only the MDs and not the GOs as they already

take binary values 0 or 1.
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Raw Data

Pre-Processing (Normalization)

Classification (RF Method)

Classification Output
(Compound’s effect on longevity based on their impact)

MD Feature  Selection
(Binary PSO Method)

GO Feature Selection
(CFS Method) 

+

Figure 2.1. Schematic Model

Exhaustive search is not suggested as the selection of most appropriate feature subset

becomes challenging with increase in size of the feature space. Thus, heuristic methods or

optimization methods are better for the feature selection. Despite the higher performance

compared to filter methods, wrapper methods suffer from the drawback of high computational

costs. Swarm based Evolutionary Computation (EC) techniques like Genetic Algorithm (GA)

(Siedlecki and Sklansky, 1993), Ant Colony Optimization (ACO) (Tabakhi et al., 2014) and

PSO (Moradi and Gholampour, 2016) are known for their global search potential. PSO

among them is computationally economic (Xue et al., 2016).
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Particle Swarm Optimization(PSO)

(Kennedy, 2011) (Shi and Eberhart, 1998) is a less expensive recent EC technique, it can

converge faster than some other EC algorithms such as GA. Thus, PSO is being used as an

effective technique for the process of feature selection, specially when the number of features

are large (Xue et al., 2013). In addition to PSO’s convergence speed, it offers better results

compared with those of the other stochastic optimization methods (Kennedy, 2011)(Xue

et al., 2016).

Representing each candidate as a particle in swarm is the basic principle of PSO method.

Each particle i has a position in the search space, which is represented by a vector xi =

(x1i , x
2
i , ..., x

D
i ), where D denotes the dimensionality of the search space. These particles move

in the search space in search of the optimal solutions. The velocity of each particle i is

represented by vi = (v1i , v
2
i , ..., v

D
i ). During the movement, each particle updates its position

and velocity according to its own and neighbors’ experiences. The best of the particle i’s

previous state is given a the personal best xbesti , and the best position based on the population

is denoted by xbestg . Based on xbesti and xbestg , PSO works by searching a valid solution for the

position and velocity for each particle by following the equations given below:

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (2.1)

vdi (t+ 1) = wvdi (t) + c1r1i(x
best
i − xdi (t)) + c2r2i(x

best
g − xdi (t)) (2.2)

where the tth iteration in the process of evolution is denoted by t. d ∈ D is the dth dimension

in the given search space and i denotes the ith particle. w is inertia coefficient used to

control the effect of earlier velocities on the current one. If w < 1, we give more importance

to exploitation over exploration and then to the positions. Conversely, if w > 1, we give

more importance to current best positions of particles. c1 and c2 are acceleration coefficients

(learning factors) where c1 implies the degree of self-confidence of particle while c2 implies
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Figure 2.2. Feature encoding.

the degree of confidence in candidate solution of the swarm. r1 and r2 are random values

uniformly distributed in [0, 1]. Note that xbesti and xbestg are local best position for xi and

global best positions, respectively, for dth dimension up to iteration t. Usually to keep

the coherence of the swarm, the velocity is kept within limits by a predefined maximum

velocity, vmax, so vdi (t+ 1) ∈ [−vmax, vmax]. Typically, in PSO a fitness function F (in case of

feature selection, classification error or performance) is defined. The algorithm stops when

a predefined criterion is met, which could be an appropriate fitness value or a predefined

maximum number of iterations.

Binary PSO Feature Selection

A special case of PSO (i.e Binary PSO) can be applied for feature subset selection. Let’s

assume x is a vector of binary variable so x ∈ {0, 1}. The length of vector x must be equal

to the size of feature space. Now an encoding scheme can be done by corresponding each

variable x ∈ x to a feature f ∈ f. Thus, if a feature fi is to be selected then xi = 1, otherwise

xi = 0. This encoding is shown in Figure 2.2. The binary PSO feature selection method

keeps executing the following steps until it meets the stopping criteria, either convergence or

reaching to a predefined iteration limit:

• Initialization: In this step, parameters such as number of iterations and number of

particles are set. Additionally, each particle’s position and velocity vectors as well as

parameters in Eqn. 2.2 are initialized.
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• Particle evaluation: In this step, each particle which represents a potential feature

subset, is evaluated by a fitness function. In the basic PSO, a single objective function

is used to minimize the classification error. This function is usually provided by a

supervised classification method and does not take into account minimizing the number

of features. Elimination of redundant features can help attaining the same performance

when smaller number of features are considered. However, reducing the number of

features and having higher performance are conflicting. We define the objective function

based on (Vieira et al., 2013) as follows:

F (X) = α(1− P ) + (1− α)(1− Nf

Nt

) (2.3)

where P is the classifier performance (see Section 2.2.3) on the selected feature subset

and Nf and Nt are the size of tested feature subset and total feature size, respectively.

Various measures have been designed to evaluate the classifier performance such as

accuracy, precision, Hamming loss and etc. (Zhang and Zhou, 2014). To deal with the

skewed sample distribution of the data toward negative class, instead of accuracy which

typically is used as a classifier performance metric, we chose Area Under the Curve

(AUC) score for P (see section 2.3.2). α ∈ [0, 1] is a hyper-parameter to control the

trade-off between performance and size of feature subset.

• Computing local and global best: After computing the fitness value for each particle,

at this step, xbest
i and xbest

g are updated as follows:

xbest
i ←− xi, if F (xi) > F (xbest

i ) (2.4)

xbest
g ←− xi, if F (xi) > F (xbest

g ) (2.5)

which means xbest
i is the best position of particle i that had best fitness F in all iterations.

Similarly, xbest
g is the best position obtained in all iterations among all particles in

population.
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• Update phase: At this step, based on the updated xbest
i and xbest

g at the previous step,

particle velocity is updated by Eqn. 2.2. However, Eqn. 2.1 cannot be applied to

update the particles’ positions because of binary nature of the problem. Instead, the

positions is calculated by the sigmoid function of the velocity as follows:

S(vi) =
1

1 + e−vi
(2.6)

The position of particle i can be updated by:

xi ←−

 0, if Rand() > S(vi)

1, otherwise
(2.7)

where Rand is a random generator function that randomly selects a value from a

uniform distribution in [0, 1] range.

2.2.2 Feature Selection for GOs

Feature selection for the GO features sizing of over 10,000 is not practical with the Evolutionary

Computation techniques. Thus a filter feature selection method, correlation-based measure is

used to identify the highly correlated features. It means, features with greater predicting ability

for a class are selected. We simultaneously eliminate the redundant features. Correlation-

based feature selection method first calculates the correlation matrices of feature-class and

feature-feature and searches the complete feature subset space. The main part of CFS is the

heuristic evaluation of the selected feature subset described below (Hall, 2000)(Hall, 1999):

US =
krcf√

k + k(k − 1)rff
(2.8)

where US is a heuristic utility of a feature subset S which includes k feature, rcf is the average

feature-class correlation for all f ∈ S, and rff is the average inter-correlation between features

in S. U is the utility metric that indicates the usefulness of every feature subset. The subset
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with higher merit is used in order to reduce the dimensionality problem in the data. This

reduced data set is then passed to machine learning scheme for training and testing purposes.

Exhaustive search for huge number of features (2n for n feature) is not tractable as

mentioned in Section 2.1.2. Therefore, to identify a feature subset with highest utility value,

various search techniques have been used. Best first search was used as it is a highly effective

search mechanism in CFS. Best first search method can start with either all features or with

no features at all. Best first search with no features progresses in the search space by adding

single feature at a time. When searching with all features, it moves backward through the

search space by eliminating one feature at a time. The former was employed in this work.

We initially used the set with no GO features. Then as the search moves forward, single GO

feature is considered at a time. It can also backtrack and follow the backward path to a more

promising previous subset in the feature space if the current search path is not found to be

relevant. A stopping criterion is required to prevent the best first search from exploring the

entire feature subset search space. The search converges if there is no improvement for the

previous consecutive subsets compared to the current one.

There are different correlation metrics that can be used to compute correlations in Eqn.

2.8. Linear correlation techniques can be used to measure the correlation between two

random variables (Yu and Liu, 2003). Even the non-linear methods using information theory

can be used (Hall, 1999). Most popular correlation metrics used for CFS are Symmetric

Uncertainty(SU), Minimum Description Length (MDL) and Relief (Hall, 1999). In this work,

SU was implemented. SU is an entropy-based method. Entropy helps in capturing the purity

of distribution of a random variable. For a random variable Y , entropy is calculated as:

H(Y ) = −
∑
y∈Y

p(y)log2p(y) (2.9)
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and after observing value of another variable X, the value of the entropy of Y given X is

defined as:

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x)log2p(y|x) (2.10)

where p(x) is the prior probabilities for all values of X, and p(y|x) is the likelihood probability.

The amount of reduction in the entropy of X gives additional information about X is given

by Y and is called Information Gain (IG) (Destrero et al., 2009), defined by:

IG(X, Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) = H(Y ) +H(X)−H(X, Y ) (2.11)

IG should be normalized with their corresponding entropy values to favor the features

with more information. Therefore, Symmetrical Uncertainty (SU) measure is used as follows:

SU(X, Y ) = 2× IG(X, Y )

H(X) +H(Y )
(2.12)

To compute rcf in Eqn. 2.8, X and Y in SU (Eqn. 2.12) are features (f ∈ S) and classes

and similarly features and features to compute rff .

Once the feature selection is done, to further reduce the size of features, we try to fit the

data points provided by classifier into a polynomial function on the first important feature to

all the features selected by CFS. Then, the top features are selected based on the knee point

chosen by Kneedle method (Satopaa et al., 2011). The top number features can vary based

on degree on fitted curve on the data points.

2.2.3 Classification

This work focuses on classifying if a chemical compound has a positive or negative impact

on lifespan extension for a given values of features for the compound. This problem can be

considered as a binary classification problem where 1 indicates an impact and 0 indicates the

absence of an impact.

18



Each sample si in the data can be defined as si = [fi, yi] where f = [f 1
i , f

2
i , ..., f

d
i ] is

the d dimensional feature vector for sample si and yi is the class label of si . The goal of

classification here approximate a function f : f → y to estimate the class label of a new

sample sj based on its feature vector fj. For comparison, we consider three classification

methods, namely support vector machine, artificial neural network and random forest.

• Support Vector Machine (SVM) is a supervised machine learning algorithm for

classification modeling. It frames a decision boundary for classifying all the training

data while maximizing the margin between the classes. If there is no possibility for linear

separation of data, then it uses a kernel function for realizing the non-linear mapping

to new feature space. The hyper-plane in feature space found by SVM corresponds to

non-linear boundary in the input space.

• Artificial Neural Network (ANN) is a parameterized supervised non-linear algorithm

which consists of multi-layer perceptron with different number of perceptrons at each

layer for the classification of input data. The numeric value of perceptrons, hidden

layers in the model and the activation function used can decide the accuracy of the

model.

• Random Forest (RF) is a well-known ensemble of decision trees and is widely used

for classification and regression tasks. In RF, each tree contributes a vote for the

assignment of most frequent class to input data (Breiman, 2001). When a tree grows, a

random subset of features is selected for dividing a node with different bootstrap sample

of data unlike the conventional decision tree methods. Thus, in a random forest, a node

is split using the best among the subset of predictors which are randomly chosen at

that node. Ultimately, the prediction is done by voting or averaging over all the trees.
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2.3 Experimental Results

2.3.1 Data Set

From the DrugAge database (Barardo et al., 2017) found in Human Aging Genomic Resources

website (Tacutu et al., 2012), the chemical compounds that improve the longevity on C.

elegans were extracted. These compounds were considered as positive and were assigned a

positive class label. Additionally, compounds that reduce or does not affect the lifespan were

considered negative and were put under the negative class label. The data set consists of 229

positive samples and 1,166 negative samples.

Two types of features were used:

1. Molecular descriptors (MD): Chemical structure of a compound enables us to estimate

a molecular descriptor. They help us in building the predictive models to study the

relation between compounds chemical structure and its biological properties. The size

of MD features is NMD = 268 each of which takes up a numerical value. Among these

268 MDs, PSO feature selection algorithm selected a feature subset with 87 MDs. An

example of molecular descriptor feature used in this work is a nN. It defines the number

of nitrogen atoms.

2. Gene Ontology (GO): the proteins that interact and get targeted by various compounds

enables us in understanding the GO terms. They are classified into 3 categories: a)

Biological Process b) Molecular Function and c) Cellular Components. The GO terms

under biological process category are of utmost importance. Mitochondrial genome

maintenance is an example of a biological process which defines about the maintenance

of structure and integrity of mitochondrial genome including the replica and segregation

of mitochondrial chromosome. Molecular Function GO terms reveal information about

the molecular activities. A molecular function by name acyl binding describes the
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activity of interacting selectively and non-covalently with an acyl group or any other

group which is derived by removing the hydroxyl group from the acid function of

carboxylic acid. The cellular component GO defines the location in the cell. Nuclear

chromosome is a cellular component that is found in the nucleus of eukaryotic cell

during the cell cycle phases when the nucleus is intact. It encodes the nuclear genome.

An example of GO:0001941 is a biological process defined as a post synaptic membrane

organization which is a process which results in the assembly, arrangement of constituent

parts, or dis-assembly of a post synaptic membrane. In this work, a total of 13, 338 GO

features were used. Thus, the size of GO features is NGO = 13, 338 Each feature takes

a binary value. CFS selected a feature subset with 165 features. To further reduce

the size of features, a polynomial function was used to fit the data points provided by

the classifier accuracy by using one feature to 165 features. Then, top 16 features are

selected based on the knee point chosen by Kneedle method (Satopaa et al., 2011). The

number of features selected is inversely proportional to the degree of the polynomial

function. Thus, number of features selected can be varied with the degree of fitting

curve.

2.3.2 Performance Measurements

10-fold cross validation was implemented on DrugAge data. In this method, the data gets

divided into 10 non-overlapping subsets and 9 among these 10 sets are used for training

and the remaining subset is used for testing. Area Under the Curve (AUC) scores of the

Receiver Operating Characteristic (ROC) are also reported in addition to the classification

accuracy. As its the case of imbalanced data, AUC represents a better metric for performance

estimation.

ROC represents a curve against True Positive Ratio (TPR) and False Positive Ratio (FPR)

at different thresholds. The ways to estimate the accuracy, TPR and FPR are mentioned

21



below:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.13)

TPR =
TP

TP + FN
(2.14)

FPR =
FP

FP + TN
(2.15)

where TP , TN , FP and FN denote true positive, true negative, false positive and false

negative, respectively. The ratio of the positive data points that are correctly classified as

positive with respect to all positive data points is the True Positive Ratio (TPR). False

Positive Ratio (FPR) on the other hand denotes the ratio of negative data points that are

wrongly considered as positive with respect to all negative points. The accuracy and AUC

scores are obtained by averaging the results of 10-fold cross validation.

For PSO, we choose particle size as P = 120, maximum velocity vmax = 0.9 and maximum

iteration T = 150. The inertia weight is w = 0.9, the local coefficient c1 = 2 and global

coefficient c2 = 2. These values are taken from literature (Xue et al., 2013)(Moradi and

Gholampour, 2016). In Eqn. 2.3, α is given a value 0.75 as classification performance is more

important compared to number of features. But we chose α = 0.6 as it gives a lower number

of features with similar accuracy than with a value between (0.6, 1]. The initial position of

particles is defined by (Vieira et al., 2013):

xij =

 1, if Rand() > 0.5

0, otherwise

Here Rand is a random generator function that selects values from [0, 1] randomly. For

CFS, a stopping criterion is imposed in best first search to avoid exploring the feature subset

search space in its entirety. The search terminates if there is no considerable improvement

observed on five consecutive, fully expanded subsets over the current best subset. Grid

search and random search methods were used to find parameters for the classifiers to get a
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better performance. Grid search checks for every combination of parameters and the one

that maximizes the performance is taken into consideration. Randomized search on the other

hand samples each setting from a distribution over possible parameter value. Radial Basis

Function is used for SVM and for random forest. The maximum number of trees and features

used in (Barardo et al., 2017) which are 900 and 210 are replaced with 300 and 152 as they

gave better accuracy. ANN uses three hidden layers with 100, 300 and 100 neurons in each

of the layers. Parameters are chosen based on the randomized search. Classification and

wrapper feature selection methods were implemented on python 3. Random Forests and

SVM were implemented using Scikit Learn and ANN was implemented using Tensorflow

(Pedregosa et al., 2011). Filter Feature selection methods were implemented using Waikato

Environment for Knowledge Analysis (WEKA) (Hall et al., 2009).

2.3.3 Results and Discussion

This section compares the performance of our feature selection method with the different

available feature selection methods with a fixed classifier. PSO and Genetic Algorithm

(GA) were combined to form a swarm-based wrapper for MD feature selection. CFS and

Information Gain (IG) were combined to form a filter feature selection method for GO

features. The classification results of mean of 10-fold cross validation in terms of accuracy

and AUC are presented in Table 2.1. The results show an improvement in the accuracy and

AUC score when used with the combination of PSO and CFS compared to other feature

selection methods.

The performance of our feature selection method with different classifiers mentioned in

section 2.2.3 was also analyzed and results are shown in Table 2.2. These results show that

using the best features from our feature selection methods, the Random Forests perform

better in terms of accuracy and AUC score compared to SVM and ANN.

The results were then compared with (Barardo et al., 2017) which uses Feature Importance

(FI) for feature selection and classifies using a random forest classifier. The median of AUC
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Table 2.1. Impact of feature selection on classification performance (RF classifier).
10-fold cross validation

Methods Accuracy AUC-ROC
PSO+CFS 0.866 0.833
PSO+IG 0.827 0.805
GA+CFS 0.841 0.816
GA+IG 0.819 0.803

Table 2.2. Performance of classifiers for selected features.
10-fold cross validation

Classifiers Accuracy AUC-ROC
ANN 0.792 0.713
SVM 0.801 0.702
RF 0.866 0.833

Table 2.3. Performance of classifier (RF) with different feature selections for three feature
sets (MD, GO, MD+GO).

Performance
FI+RF (previous) PSO+CFS+RF (Ours)

MD GO MD+GO MD GO MD+GO
Accuracy 0.845 0.851 0.852 0.855 0.852 0.866
AUC-ROC 0.777 0.701 0.791 0.794 0.831 0.835

of 10-fold cross validation is shown as the performance measure in (Barardo et al., 2017).

The mean of AUC and accuracy on 10-fold cross validation in (Barardo et al., 2017) and

in our work were compared. For a proper comparison, we chose similar parameters for RF

as in (Barardo et al., 2017). They included the number of trees and maximum number of

features that can affect the performance of RF classification. To compute the performance of

(Barardo et al., 2017), we picked the top 20 GO features and 73 MD features as the most

important features and fed them to random forest classifier. Table 2.3 shows these results.

It can be seen that MD features provide better AUC and accuracy over the GO features.

Including both together slightly increases the performance. Table 2.3 shows the results which

indicate an increase in the AUC and accuracy in our method. The AUC scores with standard

deviation of 10 folds of cross validation along with the ROC curves of our approach, the
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Figure 2.3. The ROC curves and AUC values for different methods.

approach in (Barardo et al., 2017), ANN and SVM classifiers are illustrated in Fig. 2.3. The

grey area shows the standard deviation of our approach.

List of top 15 MD features (out of 268) provided by PSO and top 15 GO features (out of

165 features) selected by CFS, respectively, are provided in Table 2.4 and 2.5. In Table 2.5,

the ontology (domain) of each GO term is represented by different colors. Red, green and

blue colors represent, GOs belong to cellular component, molecular function and biological

processes, respectively.

25



Table 2.4. Top 15 MD feature selected by Binary PSO.
Name Description
a nCl Number of chlorine atoms
PEOE VSA+4 Sum of vi where qi is in the range [0.20,0.25)
apol Sum of the atomic polarizabilities
Q RPC- Relative negative partial charge
a IC Atom information content (total)
PEOE VSA FPPOS Fractional positive polar van der Waals surface area
chi0v Atomic valence connectivity index
SMR Molecular refractivity (including implicit hydro-

gens)
a nN Number of nitrogen atoms
PEOE PC- Total negative partial charge
Q VSA HYD Total hydrophobic van der Waals surface area
a nBr Number of bromine atoms
weinerPol Wiener polarity number
ASA+ Water accessible surface area of all atoms with

positive partial charge
a nO Number of oxygen atoms

Table 2.5. Top 15 GO feature selected by CFS.
Accession Name
GO:0000164 protein phosphatase type 1 complex
GO:0000247 C-8 sterol isomerase activity
GO:0000506 GPI-GnT complex
GO:0001094 TFIID-class transcription factor binding
GO:0001510 RNA methylation
GO:0001546 preantral ovarian follicle growth
GO:0001869 negative regulation of complement activation
GO:0001941 postsynaptic membrane organization
GO:0002058 uracil binding
GO:0002059 thymine binding
GO:0002317 plasma cell differentiation
GO:0002762 negative regulation of myeloid leukocyte ...
GO:0003253 cardiac neural crest cell migration ...
GO:0003831 beta-N-acetylglucosaminylglycopeptide ...
GO:0003844 1,4-alpha-glucan branching enzyme activity
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CHAPTER 3

WEISFEILER-LEHMAN NEURAL MACHINE FOR DRUG-TARGET LINK

PREDICTION

Acknowledgement: The main part of this chapter will be utilized in the future work

authored by Susmitha Sri Kadiyala, Eslami Manoochehri Hafez and Mehrdad Nourani.

3.1 Overview

Drug-Target Interactions:

Determining Drug-Target Interaction (DTI) is a major part in the area pharmaceutical

sciences (Fakhraei et al., 2014). The process of drug discovery involves costs around $1.8

billion with a duration which may extend beyond 10 years (Ciociola et al., 2014). Thus,

the drug-target interactions prediction helps in narrowing down the search area helping out

the biologists. The main step in the process of drug discovery is to recognize the targets

related to the drugs. These targets are mostly the proteins that can be drugged, and the ones

related to diseases. The prediction of drug-target interactions aims at identifying the possible

new targets for the existing drugs. It basically guides us through a proper experimentation

process. There are many types of protein targets which include enzymes, ion channels, G

protein-coupled receptors (GPCRs) and nuclear receptors. These classes can modulate their

function by interacting with various ligands. Thus, analyzing the genomic space produced by

these classes of proteins, helps us to accurately estimate the possibility of an interaction.

DTI can be used either for drug discovery or for re-positioning which is reusing available

drugs for new targets. Approaches to predicting DTI can be classified into one of three

categories: 1) Ligand-based, 2) Docking-based and 3) Chemogenomic approach. Prediction

of DTI based on target proteins’ ligand similarity is the Ligand-based approach (Keiser

et al., 2007) (Keiser et al., 2009). 3D structure information of a target protein can help
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in estimating the likelihood of its possible interaction with certain drug. This is based on

their binding capacity and strength (Cheng et al., 2007) (Morris et al., 2009). This method

is the Docking-based approach. Lastly, if the chemical information of the drugs, genomic

information from proteins and already identified DTIs are used, then this is the chemogenomic

approach (Mousavian and Masoudi-Nejad, 2014) (Ding et al., 2013).

A target with small number of binding ligands often leads to poor DTI predictions in a

ligand-based method. This is a drawback in this method. Similarly, docking-based method is

based on availability of 3D structures for target proteins and is also time consuming. These

disadvantages made the chemogenomic approach more popular for identification of DTI in

the recent times. This approach models the DTI problem as a machine learning problem and

often builds a classifier which is trained by an available interaction data. This classifier is

used to predict the unknown interactions (Ding et al., 2013).

Different techniques are employed in chemogenomic approach. Some of these include

bipartite graph (Bleakley and Yamanishi, 2009)(Lu et al., 2017), recommendation systems

(Alaimo et al., 2016) and supervised classification problem (Wen et al., 2017). But considering

the data, we can see that there will be only a few positive interactions and the remaining

possible interactions are unknown. For example, of the 35 million drug compound possible

candidates, total number of positive drug interactions could just be 7000 (Bolton et al., 2008).

Computational chemogenomic approaches can be classified into feature-based and similarity-

based methods. Feature-based methods have features as inputs for a set of instances defined

by a particular class label. The instances are generally the drugs and the features are the

targets. The class label is a binary value indicating the presence of a possible interaction.

Some of the feature-based methods like decision trees, random forests (Breiman, 2001) and

support vector machines (Cristianini and Shawe-Taylor, 2000) are used for classification pur-

poses. Generally, Random Forest and Support Vector Machine are used for the classification

of drug-target interactions (Yu et al., 2012).
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Similarity-based methods take the similarity matrices of drugs and targets as inputs

including the interaction matrix which indicates the drug-target pairs that most likely

interact with each other. These approaches assume the common features among the drugs

and targets can determine the presence of an interaction between a drug and target. The

main focus is on the structural similarity between the drugs and targets leaving out the

remaining unknown attributes. This gives an opportunity for easy implementation of the

similarity indices on the networks without any prior information.

To implement the similarity-based algorithms, many similarity indices were used by (Lu

et al., 2017). There are two ways to classify the similarity indices as local similarity indices

and global similarity indices. The local similarity indices are node-dependent i.e. they require

information related to neighbourhood of the network. On the other hand, global similarity

indices are dependent on the path through the entire network topology (Lu et al., 2017). Use

of the similarity indices outperform many random link predictors. A few examples of the

similarity indices include Common Neighbours (CN), Jaccard Index, Preferential Attachment

(PA) and Katz Index (Lu et al., 2017). These indices are described in the following:

• Common Neighbours: This defines the link by finding out if two nodes x and y share

many common neighbours. If they do, then there is a high probability of having a link

between them.

• Jaccard Index: This index measures the probability of having a common feature between

two nodes x and y. The higher the probability, the higher is the possibility of a link

between them. Its normalized version of common neighbours.

• Preferential Attachment: This is calculated according to the degree of nodes. The

higher the degree, the more is the possibility for a link irrespective of the neighborhood

of the nodes.
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• Katz Index: This is a global similarity index and is therefore path dependent. It sums

up the paths in the network and these paths are exponentially damped to result in

shorter path. Longer the path, least is the Katz index value. It is basically a convergence

method.

3.1.1 Prior Works

Drug-target link prediction is of high interest in the recent times. The application of machine

learning in this challenging field of study makes it more promising and researchers have been

trying to explore in depth in this field. (You et al., 2018) developed a lasso-based regularized

linear classification method to predict the DTI overcoming the high-dimensional nature of the

drug target data with huge number of features and small number of samples. A recent use

of stacked auto encoder from the drug molecular structure and protein sequence to extract

sufficient information was given by (Wang et al., 2018). DINES, a web server defined as

drugtarget interaction network inference engine based on supervised analysis is used to predict

unknown DTI for different biological data. It predicts with the help of machine learning

methods integrating with the heterogeneous biological data in compatibility with the KEGG

data (Yamanishi et al., 2014).

A framework was proposed by (Fakhraei et al., 2014) to work with a bipartite graph of

drug-target interactions along with similarity measures. This used probabilistic soft logic to

make predictions based on triad and tetrad structures. Enhancing the similarity measures to

involve the non-structural information and to handle the possible missing interactions was

done by (Shi et al., 2015). Matrix-factorization has been used in many research to identify

new drug-target interactions (Gönen, 2012) (Eslami Manoochehri and Nourani, 2018) (Zheng

et al., 2013). (Liu et al., 2016) used matrix-factorization method to focus on determining the

probability of a drug-target interaction. In this method, the properties of drugs and targets

were represented using their specific latent vectors. A modification to this method which
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uses Bayesian optimization was developed by (Ban et al., 2017). It uses the neighborhood

regularized logistic matrix factorization for DTI prediction. A multiple kernel link prediction

on bipartite graphs was proposed by (Nascimento et al., 2016). In this method, relevant

kernels are selected based on the weights which define the importance of a drug-target link.

Bipartite Local Model (BLM) was extended to DTI prediction with hubness-aware

regression in (Buza and Peška, 2017). It builds a projection-based ensemble of BLMs using

similarity space of drugs and targets. In (Lan et al., 2016), the unknown links are treated as

unlabeled samples. A majority voting method is used to decide on the label of these unlabeled

samples using the method of Positive-unlabeled learning for drugtarget prediction (PUDT).

This unlabeled data is divided into reliable negative samples and likely negative samples with

the help of their similarity information. Weighted SVM is used to then classify this data. We

can also have positive unlabeled data similar to negative unlabeled data. To deal with this

data, two group of approaches were proposed. One identifies the reliable negatives among the

data and use the positives and these negatives to build the model. The other group directly

predicts the positive unlabeled data (Liu et al., 2017).

Typically, there is a lot of unbalanced data in the drug-target interaction database.

Weighted profile can be used to determine the drug profiles with defines weights as similarities

between drug-drug (Yamanishi et al., 2008). The nearest profile is an approach that predicts

the interaction profile of new drugs. (van Laarhoven and Marchiori, 2013) developed a simple

weighted nearest neighbor procedure for predicting the interacting pairs with high accuracy.

A network based inference helps in building a predictive model similar to a network where

the nodes are represented by drugs and targets. Interacting drugs and targets are represented

as edges (Cheng et al., 2012).

3.1.2 Key Contributions

Link prediction has found a noticeable place in many applications as social networking,

e-commerce, etc. (Wang et al., 2015). Heuristic approaches have been mostly used for the
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identification of any possible links. In the field of medicine, to predict a possible DTI, (van

Laarhoven and Marchiori, 2013) has used common weighted nearest neighbors method. Some

methods used shortest path analysis between the drugs and targets. These heuristic methods

generally, do not reveal much information about the in-depth relations between drugs and

targets.

In this work, a bipartite graph was first constructed with the available data. Then we

worked on proper sampling of the huge number of negative samples in the data sets. We

have used Weisfeiler-Lehman Neural Machine (WLNM) algorithm for creating the adjacency

matrix which represents the interactions between potential drugs and targets. This adjacency

matrix is fed to a machine learning model. We used 10-fold cross validation and AUC to

estimate the efficiency. We compared the performance between Neural Network, Support

Vector Machine and logistic regression models.

The chapter is organized as follows. We discuss our methodology in Section 3.2. It

includes problem statement, pre-processing and the WLNM procedure. In Section 3.3 we

present the experimental results of the work.

3.2 Methodology

3.2.1 Problem Statement

The interactions between drugs and targets can be represented using a bipartite graph. To

attain higher stability with the efficiency in prediction of an interaction between drug and

target, inclusion of drug-drug similarity and target-target similarity is beneficial. Moreover,

for an imbalanced data with more negative samples, application of a sampling technique can

help to deduct the unimportant data based on some scores. This helps a lot in improving the

efficiency of the machine learning model.

We construct a bipartite graph for the prediction of Drug-Target link. The nodes in

this graph represent the drugs and targets. The edges in this graph represent the links or
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Figure 3.1. Work Flow of WLNM.

interactions between the drug and target. This interaction network can be represented using

an adjacency matrix. Thus, for m drugs and n targets, m × n adjacency matrix X can

represent the interactions as follows.

xij =


1, if there is an interaction between drugi and targetj

0, otherwise.

(3.1)

where xij denotes the < i, j >th element of matrix X (1 ≤ i ≤ m, 1 ≤ j ≤ n). The aim of

this work is to predict if xij is a possible interaction or not. The elements of the adjacency

matrix with xij = 0 represent ”unknown” interactions and xij = 1 represent the ”positive”

interactions i.e. drug di positively impacts target tj.
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3.2.2 Pre-processing

The main challenge of training a machine learning model for prediction of DTI is the data.

Though the positive interactions (samples) between the drugs and targets are known, the

negative samples representing the drugs and targets that surely do not interact with each

other are not known. Most of the approaches in (Li et al., 2017) (Meng et al., 2017) (Wan

et al., 2018) (Luo et al., 2017) and many more have selected the negative samples from the

data set randomly. Random selection of negatives is not reliable. Study by Liu et. al. (Liu

et al., 2015) proved that proper choice of negatives can greatly improve the performance of

few major approaches like Bayesian Matrix Factorization (Gönen, 2012), bipartite local model

(Bleakley and Yamanishi, 2009) and Gaussian kernel profile (van Laarhoven and Marchiori,

2013). In this work, we first identify reliable negatives using the following approach and then

use the positives and the identified negatives for training the model.

Credible Negative Sampling: Using the converse negative proposition principle, we can

say that a target which is dissimilar to set of predicted or known targets has higher probability

of being dissimilar with a drug which is associated with an available interaction with this set

of predicted or known targets. Similarly, a drug that is not similar to any of the predicted or

known drugs that has interaction with a particular target, is less likely to interact with this

target (Liu et al., 2015). These directives can be respectively called as target dissimilarity and

drug dissimilarity rules. Using these two directives, we can find out the most reliable negatives

among the possible DTIs. This method of negatives selection uses both the predicted and

validated DTIs.

The process of identifying the negative samples among potential negatives is as follows:

• The similarity between a drug dj and drug di is denoted by SD
ji and the similarity

between target k and target l is denoted by ST
kl.

• The values of these similarities can be assumed as a combined score. They are added

over the entire range for each drug and for each target (Liu et al., 2015). Let them be
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denoted as SD
j , ST

k .

SD
j =

m∑
i=1

SD
ji (3.2)

ST
k =

n∑
l=1

ST
kl (3.3)

• The final score which is basically assumed to be the distance between drug and target

is denoted as Djk and is calculated using the formula below:

T = SD
j + ST

k (3.4)

Djk = e−T (3.5)

• Now rank the potential negatives according to the score Djk in the decreasing order

and those with highest values of the score are considered to be the potential negatives.

• The number of negatives is equal to the number of positives in our work.

• Once we have the positives and negatives, we can feed them to any classifier for

classification purposes.

We used both random and credible methods for identification of negative samples in this

work.

3.2.3 WLNM Process

The Weisfeiler-Lehman Neural machine (WLNM) is implemented for prediction of a Drug-

Target Interaction. It follows three stages in accomplishing this task. These include extraction

of the enclosing subgraph, pattern encoding of the extracted subgraph and neural network

training. These steps are discussed below:
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• Extraction of Enclosing Subgraph: For a deeper understanding of the, the WLNM

algorithm extracts a subgraph for a drug-target link. The neighborhood’s size is defined

by the number of nodes in the enclosed subgraph. The number of nodes is defined by N

given by the user. This subgraph defines the enclosing environment of the drug-target

link. These topological details provided helps in determining the existence of a link.

The process of extraction is as follows. For a given link x− y, the subgraph first starts

adding the 1-hop neighbors into the node list VN . Then, the hop is gradually increased

to add the vertices into this list. Once the value of the number of vertices reaches N ,

the extraction of this subgraph stops (Zhang and Chen, 2017).

• Pattern Encoding of the Extracted Subgraph: The main step in the process of

pattern encoding the subgraph is the graph-labeling part. Once the graph labeling is

done, the subgraph chosen is made into an adjacency matrix. Then, this matrix is fed

to a neural network in wlnm. Graph labeling should be properly and consistently done

for getting a better accuracy in the algorithm. The vertex labeling using the graph

labeling gives similar labels for the nodes with structural similarity. Using this along

with maintaining the directionality in the topology for identifying the target link, a

new graph labeling technique Palette WL algorithm was proposed by (Zhang and Chen,

2017).

The normal WL graph labeling algorithm doesn’t consider the directionality. These

enclosed subgraphs developed by palette WL algorithm have the target link in the

middle and the neighbors are added by iteration based on their distance to the link.

The nodes close to the link get lower labels compared to the ones far away from the

link. These vertices are sorted in ascending order and then nodes with redundant labels

are removed with the help of a canonization tool called nauty (Zhang and Chen, 2017).

Then, these subgraphs are represented as an upper triangular matrix and this adjacency

matrix is fed to the classifier.
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Table 3.1. Specifications of data sets
IC Enzyme GPCR NR

Drugs (D) 204 445 95 54
Targets (T) 210 664 223 26

Total DT Interactions 1476 2926 635 90

• Training the Classifier: As a final step, we trained a neural network with the

positives and negatives represented by the enclosing adjacency matrix. The matrix is

fed vertically to the feed forward neural network. We have also used SVM and Logistic

Regression model along with the neural network.

3.3 Experimental Results

3.3.1 Data Sets

In this work, we used a public-domain data set (van Laarhoven and Marchiori, 2013) that

corresponds to four different target protein types, namely nuclear receptors (NR), G protein-

coupled receptors (GPCR), ION Channels (IC) and Enzymes (E). The number of drugs, targets

and interaction among them is shown in Table 3.1. Each data set contains three matrices:

X ∈ Rm×n representing the DT interactions, SD ∈ Rm×m and ST ∈ Rn×n representing the

similarities.

3.3.2 Performance Measurement

We have evaluated the given algorithm by starting with the pre-processing step. The data is

inconsistent making it more challenging. Even though the positive samples are known, the

negative samples representing the drugs and targets that do not interact with each other are

not known. So, in this work, we used two methods for the selection of these negative samples.

One is a random selection of negatives and the other is the credible sampling of the negatives.

37



Table 3.2. AUC for Random Sampling
Data Set WL-NN WL-LR WL-SVM
IC 0.878 0.889 0.875
E 0.923 0.929 0.916
GPCR 0.805 0.858 0.823
NR 0.711 0.767 0.726

Table 3.3. AUC for Credible Sampling
Data Set NN LR SVM
IC 0.972 0.929 0.935
E 0.966 0.943 0.935
GPCR 0.971 0.956 0.959
NR 0.869 0.951 0.932

Table 3.4. AUC for Similarity Based Methods
Data Set CN KI JI PA
IC 0.438 0.788 0.44 0.84
E 0.484 0.837 0.484 0.783
GPCR 0.47 0.75 0.473 0.759
NR 0.467 0.615 0.47 0.641

The AUC values obtained by using the Random Sampling method and Credible Sampling

methods for the four data sets IC, GPCR, NR and E are shown in tables 3.2, 3.3, respectively.

Table 3.4 represents the AUC results for the standard similarity-based methods. We have

evaluated this on four indices Jaccard Index (JI), Common Neighbours (CN), Preferential

Attachment (PA) and Katz Index (KI) on the four data sets available.

3.3.3 Results and Discussion

The above experiments prove that using a proper sampling for gathering the reliable nega-

tives highly improves the accuracy compared to the random selection of negative samples.

Comparing the values of AUC for different models like Neural Network, SVM and Logistic

Regression for the two negative sampling methods, we can infer that the AUC values have

greatly improved by the credible sampling compared to the random selection method. Hence,
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usage highly important unknowns for classification, improves the reliability of the classifier

to a greater extent. Thus, we analyze the Weisfeiler-Lehman Neural Machine for learning the

links in the network formed between the drugs and targets by constructing subgraphs.

Palette-WL algorithm was used to efficiently implement the graph labeling technique

which considers the directionality of the nodes along with the structural similarity. Then,

we built Neural Network, Logistic Regression and Support Vector Machine models for the

training purpose for link prediction. Thus, the usage of proper negative sampling technique

on the WLNM resulted in a better performance compared to the existing similarity-based

methods.
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CHAPTER 4

CONCLUSION AND FUTURE DIRECTIONS

The main focus of this research is on speeding up the target discovery stage of the drug

discovery process. Application of machine learning in this stage eases up the process to a

greater extent. We have proposed a model to predict compounds which are likely to improve

the lifespan of C. elegans is created. This model is built using chemical molecular descriptors

and gene ontology features. A feature subset was selected using a modified binary PSO

algorithm for MD features and CFS method was used to select GO terms. Different classifiers

were tested on the selected features and results show that the random forests achieve better

results compared to SVM and ANN. This work can be extended by using some techniques

which helps in dealing with the imbalanced data.

• As negative samples are high in number, they result in higher accuracy compared

to positive samples. PSO has premature local minima. This performance can be

improved by setting a proper value for inertia weight to balance its local search and

global search. Classification performance for GO data can be enhanced using a different

feature selection method.

• This method can be used to identify the unknown effect of drug compounds on lifespan

on various other model organism like yeast, mouse and fly.

In the second work, we demonstrated that while predicting a possible link between a

drug and target, consideration of highly important negative samples for training will result

in construction of a highly efficient model. This DTI prediction helps the pharmaceutical

industry in a very large scale. It helps in easing the process of drug discovery by a considerable

factor. Usage of different subgraphing techniques in the algorithm proposed, will definitely

improve the reliability of the training model. The following can be investigated as a future

work:
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• We can use the drug-drug and target-target similarities for the construction of subgraph

and then implement a graph labeling technique for training a model.

• Moreover, this work is implemented on unbalanced data set as it has more negatives

compared to the positives. In future we intend to apply few techniques to deal with

this issue.

• Finally, this method can be applied to various data sets to predict the presence of any

drug target interaction.

As a conclusion, identifying the aging effect of various drugs on the C. elegans can be

extended to human beings due to genetic structural similarity between humans and C.elegans.

Once the biochemists know about the drugs that improve the longevity, it will be helpful for

the preparation of relevant medicines. On the other hand, efficient prediction of a drug-target

link can definitely help in preparation of high-quality medicines. Thus, this research work

adds many benefits in the field of drug discovery.
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