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Spatial autocorrelation has been a popular research topic in spatial analysis for decades, mainly 

attributable to its frequent detection in georeferenced phenomenon. In addition, the presence of 

spatial autocorrelation complicates statistical analysis, because it violates the independence 

assumption in conventional statistics. However, most research, to date, focus on positive spatial 

autocorrelation while works about negative spatial autocorrelation relatively are scant. Negative 

spatial autocorrelation has long been neglected in literature, largely because of its rare 

observation in empirical data.  

 

This dissertation aims to contribute to the understanding of negative spatial autocorrelation with 

two major goals. One goal is to examine the impacts of spatial autocorrelation on statistical 

random variables with both positive and negative spatial autocorrelation being assessed and 

contrasted with each other. The literature is replete with acknowledgments that positive spatial 

autocorrelation inflates the variance of a random variable, and it also may alter other random 

variable distributional properties. Moreover, due to different quantifications of negative and 

positive spatial autocorrelation, their impacts on random variables are expected to differ. The 

other goal is to explore simultaneous materialization of negative spatial autocorrelation with 

positive spatial autocorrelation in empirical data, and a potential treatment of spatial 

autocorrelation mixture in spatial statistical analysis. Moran scatterplot and local Moran statistics 

can furnish efficient methods to uncover spatial autocorrelation mixture patterns. Other statistical 
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methodologies are also employed to identify and capture negative spatial autocorrelation, 

including a spatial autoregressive model with two-spatial autocorrelation-parameters, the mixed 

regressive spatial autoregressive moving average model, and Moran eigenvector spatial filtering 

method.  
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CHAPTER 1 

INTRODUCTION 

Spatial autocorrelation (SA) has been a popular research topic in spatial analysis for decades, 

mainly attributable to its frequent detection in georeferenced phenomenon. In addition, the 

presence of SA complicates statistical analysis, because it violates the independence assumption 

in conventional statistics (Griffith 1987). The literature (e.g., Griffith 2011) argues that SA 

distorts the distribution of a random variable (RV). One noticeable impact is that it dramatically 

inflates variance of RV. An improper treatment of a spatial correlated pattern would lead to 

underestimated error sum of squares, which increases the probability of rejecting the null 

hypothesis in statistical analysis (Griffith 1987).  

 

However, most research, to date, focus on positive SA while works about negative SA (NSA) 

relatively are scant. NSA has long been neglected in literature, largely because of its rare 

observation in empirical data. NSA refers to phenomenon that the values of a variable tend to be 

dissimilar when they are geographically proximate (Griffith 2019). By nature, NSA materializes 

with a spatial competitive process. For example, NSA has been discovered in federal grants 

competition among local governments (Boarnet and Glazer 2002), in forest competition for light 

(Montgomery and Chazdon 2001), and in research activities where researchers engaged in 

competition (Elhorst and Zigova 2014).  

 

NSA also is found in georeferenced data, in a mixed form with PSA regardless of a global SA 

pattern (that is, essentially is positive, negative, or appears to be absent. For example, Griffith 

and Arbia (2010) use a two-SA-parameter SAR specification to model ratios of actual 

municipality areas to Thiessen polygon areas of Puerto Rico, which exhibits significant and 

moderate global NSA. This model successfully uncovers hidden PSA that counterbalance a NSA 

component. Jacob et al. (2011) posit an MESF model specification to capture hidden PSA and 

NSA components in their georeferenced data. Their results reveal that PSA and NSA ESFs are of 

importance equally, and the data exhibit a trivial near-zero global SA. Griffith (2006) 
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summarizes three examples of hidden NSA, and suggests that a local Moran’s I plot can be used 

to uncover mixture patterns, where significant high-low/low-high local Moran’s I are detected 

along with high-high/low-low local Moran’s I values.  

 

This dissertation aims to contribute to understanding of negative SA with two major goals. One 

goal is to examine the impacts of SA on statistical RVs with both positive and negative SA being 

assessed and contrasted with each other. The literature is replete with acknowledgments that 

positive SA inflates the variance of a RV, and it also may alter other RV distributional 

properties. Moreover, due to different quantifications of negative and positive SA, their impacts 

on RVs are expected to differ. The other goal is to explore simultaneous materialization of 

negative SA with positive SA in empirical data, and a potential treatment of SA mixture in 

spatial statistical analysis. Moran scatterplot and local Moran statistic can furnish efficient 

methods to uncover SA mixture patterns (e.g., Griffith 2006). In the literature, other statistical 

methodologies are also employed to identify and capture negative SA, including a spatial 

autoregressive model with two-SA-parameters (e.g., Griffith and Arbia, 2010), the mixed spatial 

autoregressive moving average (SARMA) model (Kao 2016; Kao and Bera 2016), and Moran 

eigenvector spatial filtering (MESF) method (e.g., Jacob et al., 2011). Specifically, the below 

three research topics about negative SA are investigated in this dissertation. 

 

First, this dissertation examines the impact of SA on the beta and multinomial RVs. Its influence 

has been investigated for three popular distributions in geospatial data analysis: normal, Poisson, 

and binomial distributions. In contrast, much less is known about its effects on the two RVs that 

are utilized in GIScience research, i.e., the beta and the multinomial distributions. The beta 

distribution—which is considered to be very flexible because it can mimic a uniform, 

exponential, sinusoidal, and normal RV—can be utilized to analyze the radiance of a remotely 

sensed image, for example. The multinomial distribution, a generalization of the binomial 

distribution, has been widely used for land use classification in order to describe land use 

change. This dissertation extends the investigation about the effects of SA to beta and 

multinomial RVs. As it is indicated in the literature that RV impacts of negative SA may differ 

from those of positive SA, at least, for some RVs including Poisson RV (e.g., Chun and Griffith 
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2018), this dissertation evaluates and contrasts the impacts of both positive SA and negative SA 

through simulation experiments.  

 

Second, this dissertation investigates model specifications that can accommodate positive and 

negative SA simultaneously. In regression analysis, the presence of SA violates the principle 

assumption, i.e., independence of observations, which leads to biased model estimation if SA is 

not appropriately addressed. For example, in a spatial cancer data analysis, regression techniques 

frequently are utilized to investigate associations between cancer incidence rates and potential 

risk factors, a Poisson or negative binomial model is preferred over a linear regression model 

because the former can incorporate heterogeneous population sizes. However, conventional 

statistical model specifications for a Poisson or negative binomial model are unable to 

accommodate SA, and their popular extensions to model cancer rates (e.g., spatial autoregressive 

model) often fail to fully capture SA with a single SA parameter, especially when a SA mixture 

exists. This dissertation applies MESF methodology to investigate breast cancer incidences in 

Broward County, Florida. While the cancer rates are globally positively autocorrelated, the 

proposed spatial model results reveal that the model specification including both positive 

(filtering positive SA) and negative (filtering negative SA) eigenvectors yields the best model 

performance. This indicates the presence of a mixture SA pattern in the breast cancer data. 

 

Third, this dissertation assesses a SA mixture pattern with a random effect (RE) model and 

MESF methodology. A RE model furnishes an efficient alternative for a space-time analysis, and 

RE can capture unexplained SA in a model specification when relevant covariates that contains 

considerable SA are unavailable. This dissertation investigates geographic variation in Florida 

lung cancer incidence for the time period 2000-2011 using RE models. In doing so, a MESF 

technique also is utilized, which can allow a decomposition of RE terms into spatially structured 

(SSRE) and spatially unstructured (SURE) components. The analysis results confirm that RE 

models capture a substantial amount of variation in the cancer data. Furthermore, the results 

suggest that spatial pattern in the cancer data displays a mixture of positive and negative SA, 

although the global map pattern of the RE term may appear random. 
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The next three chapters are individual papers to investigate the three research topics. Chapter 2 is 

published in Geographical Analysis (Hu, Griffith, and Chun 2019). Chapter 3 has been  accepted 

for publication in  Journal of Geographical Systems (Hu, Chun, and Griffith 2020). Chapter 4 is 

published in International Journal of Environmental Research and Public Health (Hu, Griffith, 

and Chun 2018). Chapter 5 presents anticipated implications, limitations, and conclusions of this 

dissertation as well as a summary of the three chapters.  
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ABSTRACT 

The literature is replete with acknowledgments that spatial autocorrelation (SA) inflates the 

variance of a random variable (RV), and that it also may alter other RV distributional properties. 

In most studies, impacts of SA have been examined only for the three most commonly used 

distributions: the normal, Poisson (and its negative binomial counterpart), and binomial 

distributions; much less is known about its effects on two other RVs that are utilized in 

GIScience research: the beta and the multinomial. The beta distribution— which is considered to 

be very flexible because it can mimic a uniform, exponential, sinusoidal, and normal RV—can 

be utilized to analyze the radiance of a remotely sensed image, for example. The multinomial 

distribution, a generalization of the binomial distribution, has been widely used for land use 

classification, and to describe land use change. The literature also suggests that RV impacts of 

negative SA, a neglected topic in spatial analysis, may differ from those of positive SA, at least 

for some RVs (e.g., the Poisson RV). The purpose of this article is to extend the investigation of 

effects of SA to beta and multinomial RVs, with both positive SA and negative SA assessed and 

contrasted with each other, using simulation experiments. The simulation experiments are 

designed to support this assessment. One of the major discoveries is that impacts of positive SA 

and negative SA behave similarly when a RV conforms to a normal distribution; however, 

maximum negative SA is unable to materialize for asymmetric RV, whereas positive SA always 

converges upon its maximum. 
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2.1 Introduction 

In a statistical analysis, the identification of an underlying data distribution often is necessary 

and critical. Statisticians generally are interested in computing the first four statistical moments 

(the mean, variance, skewness, and kurtosis) because these moments help summarize the 

frequency distribution of data generated by a given random variable (RV). One complication is 

that spatial autocorrelation (SA) frequently is detected in georeferenced data, which is known to 

contribute to an inflated variance for normal RVs, and is a source of overdispersion for Poisson 

and binomial RVs. Impacts of SA on histograms of normal, Poisson and binomial RVs have 

been investigated systematically by Griffith (2011), and Chun and Griffith (2018). They observe 

that the mean tends not to be impacted by SA; however, SA inflates the variance, and may distort 

the skewness and/or kurtosis of a histogram.  

 

To date, impacts of SA on other RVs have not yet been explored in detail. The beta and 

multinomial distributions are two statistical distributions that have increasingly appeared in the 

literature of a number of disciplines, including ecology, sociology, epidemiology, and GIScience. 

For example, the beta distribution is applied to measure spatial heterogeneity of ecological 

objects (e.g., Shiyomi et al., 2000; Chen et al., 2008). It also is incorporated into a Bayesian 

setting to examine if time and geographic distance influence the evolution of disease (Branscum 

et al., 2007). The multinomial distribution commonly is utilized to model land cover/soil classes 

(e.g., Dendoncker et al., 2007; Debella-Gilo and Etzelmüller 2009). And this RV also is a 

popular descriptor of spatial pattern and the distribution of disease (e.g., Kazembe and 

Namangale 2007; Cordeiro et al., 2011).  

 

This paper summarizes research extending the investigation of SA impacts to beta and 

multinomial RVs with simulation experiments. This investigation was conducted for negative SA 

as well as positive SA, particularly because differences between them have been discussed in the 

literature. For example, in many cases, the range of the extreme Moran coefficient value for 

negative SA is between −0.5 and −1, whereas it often goes beyond 1 for positive SA (Griffith 

2017). Because negative SA is expected to have a different effect on a RV distribution, the 
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impacts of both positive SA and negative SA were investigated and are compared. In addition, 

this research also investigated impacts of SA on beta and multinomial RVs with different shapes; 

Chun and Griffith (2018) discuss that a distribution has an increasing ability to capture maximum 

SA as it increasingly better conforms to a normal distribution. The simulation experiments were 

designed employing a regular surface partitioning. 

2.2 Literature review 

SA measures correlation between values of a variable attributable to their relative geographical 

proximity (Griffith 1987). SA has drawn research attention for decades for three major reasons. 

First, SA describes the spatial pattern of a geographic phenomenon, such as hot spot analysis 

(e.g., Myers et al., 2000). Second, SA supports spatial prediction of unknown georeferenced 

values; accounting for SA also yields more reliable spatial prediction outcomes (Cressie 1991). 

For example, kriging, considered to be one of the most robust interpolation methods, is built 

upon the notion of SA. Third, the presence of SA violates the classical statistical assumption 

about independence of residuals (or observations in general). A major impact of this violation is 

that the error sum of squares is underestimated, therefore inflating standard errors, which 

increases the probability of rejecting the null hypothesis in a geospatial statistical analysis 

(Griffith 1987). 

 

To date, attention to SA has focused on positive SA, mainly because it is frequently observed in 

empirical georeferenced data. Positive SA has been detected in various geographic phenomena, 

including social variables such as crime (e.g., Murray et al., 2001), population migration (e.g., 

Gorman and Speer 2001; LeSage and Pace 2008), economic activities such as house prices, 

household income, and employment status (e.g., Can 1990; Conley and Topa 2002; Cohen and 

Paul 2004), and diseases (e.g., Jones et al., 2008). Griffith (1987) proposes that socio-economic 

phenomena tend to exhibit moderate positive SA due to the way they are geographically 

distributed and aggregated. Positive SA also is observed in remotely sensed data, in which the 

degree of SA tends to be very strong (Griffith and Chun 2016).  
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Because of its rare detection in empirical data, negative SA essentially has been neglected in 

spatial analysis work for a long time. The scant literature about negative SA is well summarized 

in Chun and Griffith (2018). Negative SA naturally materializes with a competitive spatial 

process (e.g., Montgomery and Chazdon 2001; Boarnet and Glazer 2002; Elhorst and Zigova 

2014); it also is found in georeferenced data, mixed with positive SA when global SA essentially 

is weakly positive, or negative, or appears to be absent. For example, Griffith (2006) summarizes 

three examples of hidden negative SA, and suggests a local Moran’s I plot can be used to 

uncover the mixture pattern, where the presence of significant high-low/low-high local Moran’s I 

coincides with high-high/low-low local Moran’s I values. Griffith and Arbia (2010) use a two-

SA-parameter spatial simultaneous autoregressive model (SAR) specification to model ratios of 

actual municipality and Thiessen polygon areas of Puerto Rico that exhibit significant and 

moderate global negative SA; this model successfully uncovers a SA mixture in which a positive 

SA counterbalances a negative SA component. Jacob et al. (2011) posit a Moran eigenvector 

spatial filtering (MESF) model specification to capture a mixture of positive SA and negative SA 

components in their georeferenced data; their results reveal that positive SA and negative SA 

spatial filters are of equal importance, with their data exhibiting trivial near-zero global SA.  

 

Beta regression has been applied to describe many socio-economic phenomena, such as the 

poverty (e.g., Do et al., 2013) and migration rates (e.g., Kalhori and Mohammadzadeh 2016), 

which are continuous variables and constrained to the interval [0, 1]. This list can be extended by 

rescaling any limited variable to the interval (0, 1). More specifically, a variable, Z, within an 

interval [a,b], can be transformed as Y=(Z-a)/(b-a) to the range [0, 1], and then treated as a beta 

RV (Cepeda-Cuervo and Núñez-Antón 2013). Griffith (2011) argues that the beta RV also is a 

good choice to analyze the radiance of a remotely sensed image. A beta RV can be mixed with 

other RVs (e.g., binomial and beta RVs)—either as a finite combination, or a parametric 

distribution—to model the underlying spatial process of an overdispersed event. For example, 

Kaiser et al. (2002) propose a spatial beta-binomial mixture to model the number of affected 

trees in forest-health monitoring. Griffith and Chun (2016) utilize a beta-beta mixture to model 

uncertainty of the SA parameter ρ, which is transformed to the range [0,  (1+ρ_max)/2]; this 
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transformed parameter exhibits some properties of an overdispersed beta RV that can be easily 

defined by the two shape parameters of the beta distribution. 

 

The multinomial distribution has been utilized extensively in epidemiology (e.g., Hedeker 2003; 

Blazer and Wu 2009), tourism (e.g., Lee et al., 2002), transportation (e.g., Bolduc 1999), and in 

land use change evaluation in geography (e.g., Verburg et al., 2004; Millington et al., 2007). 

Spatial multinomial models also have been applied to account for spatial effects. For example, 

Kavousi et al., (2011) introduce an auto-multinomial model to analyze multivariate lattice 

discrete data; their results suggest that the auto-model outperforms an aspatial model. Sinha 

(2017) uses a MESF multinomial specification to model land use change in Collin County, TX. 

2.3 Methodology 

The research summarized in this paper utilized a MESF to account for SA latent in beta and 

multinomial RVs. Simulation experiments were designed to assess how SA affects beta and 

multinomial RVs’ histograms; these experiments included 1,000 replications in order to exploit 

the Law of Large Numbers.  

2.3.1. The beta and multinomial distributions 

The beta RV is a family of continuous distributions bounded by the interval [0, 1]; it has two 

positive parameters that control the shape of its specific distribution. If these two parameters are 

equal and large, then it can be approximated by a univariate normal distribution. It is similar to a 

continuous version of a binomial distribution. The multinomial distribution is a generalization of 

the binomial distribution, it can be approximated by the multivariate normal distribution. Their 

probability density/mass function, and first four statistical moments appear in Table 2.1.  
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Table 2.1. The beta and multinomial distributions 

 The beta distribution The multinomial distribution 

Probability 

function 

𝑓(𝑥;  𝛼, 𝛽) =  
Γ(𝛼 +  𝛽)

Γ(𝛼)Γ(𝛽)
 𝑥𝛼−1(1 − 𝑥)𝛽−1, 

0 < 𝑥 < 1, 𝛼 > 0, 𝛽 > 0 

𝑓(𝑥1, ⋯ , 𝑥𝑘;  𝑛;  𝜋1, ⋯ 𝜋𝑘) =

 
𝑛!

𝑥1!,⋯ , 𝑥𝑘!
𝜋1
𝑥1⋯𝜋𝑘

𝑥𝑘, ∑ 𝑥𝑗 =
𝑘
𝑗=1

𝑛; ∑ 𝜋𝑗 = 1𝑘
𝑗=1  

The first 

two 

moments 

𝐸(𝑥) =  
𝛼

𝛼 +  𝛽
 𝐸(𝑥𝑗) = 𝑛𝜋𝑗 

𝑣𝑎𝑟(𝑥) =  
𝛼𝛽

(𝛼 +  𝛽)2 (𝛼 +  𝛽 + 1)
 

𝑎𝑟(𝑥𝑗) = 𝑛𝜋𝑗(1 − 𝜋𝑗) 

The third 

and fourth 

standardized 

moments 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑥) =  
2(𝛽 − 𝛼)√𝛼 + 𝛽 + 1

(𝛼 + 𝛽 + 2)√𝛼𝛽
 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑥𝑗) =

1 − 𝜋𝑗

√𝑛𝜋𝑗(1 − 𝜋𝑗)
 

𝑒𝑥𝑐𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑥)

=  
6[(𝛼 − 𝛽)2(𝛼 + 𝛽 + 1) − 𝛼𝛽(𝛼 + 𝛽 + 2)]

𝛼𝛽(𝛼 + 𝛽 + 2)(𝛼 + 𝛽 + 3)
 

𝑒𝑥𝑐𝑒𝑠𝑠. 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑥𝑗) =
1 − 6𝜋𝑗(1 − 𝜋𝑗)

𝑛𝜋𝑗(1 − 𝜋𝑗)
 

𝛼 and 𝛽 are the shape parameters, Γ(∙) is the gamma function. 𝑛 denotes the total number of cases, 𝑥𝑗 

denotes the number of cases with outcome 𝑗, 𝜋𝑗 denotes the probability for outcome 𝑗. 

 

The beta distribution is very flexible, and can mimic a uniform, exponential, sinusoidal, normal, 

and skewed RV by combining different values of 𝛼 and 𝛽 (Figure 2.1). When 𝛼 =  𝛽, and 𝛼 > 1,

𝛽 > 1, the beta distribution conforms to a symmetric distribution. When 𝛼 > 𝛽, the beta 

distribution is negatively skewed, and converges to a negative exponential RV when 𝛼 = 1, 𝛽 >

1. When 𝛼 < 𝛽, the beta distribution is positively skewed. When 𝛼 = 𝛽 = 1, the beta 

distribution reduces to a continuous uniform distribution. When 𝛼 < 1 and 𝛽 < 1, the beta 

distribution becomes a sinusoidal type distribution.  
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Figure 2.1. Probability densities of beta RVs with selected parameter values. (a=b=1: a 

continuous uniform distribution; a=b>1: a symmetric distribution; a=b<1: a sinusoidal 

distribution; a<b: a positively skewed distribution; a >b>1: a negatively skewed distribution) 

 

In statistical modeling, statisticians are interested in positing a connection between covariates 

and the mean of the beta RV (Ferrari and Gribari-Neto 2004). If a variable is assumed to follow a 

beta distribution with mean 𝜇, then the mean can be written as 

 

𝑔(𝜇𝑖) =  ∑ 𝒙𝑖𝑗
𝑛
𝑖=1 𝜸𝑗,                                                               (1) 

where 𝒙𝑖𝑗 denotes covariates, 𝜸𝑗 denotes unknown covariate coefficients, and 𝑔(∙) is a 

monotonic link function. Because the beta RV is restricted to the interval [0, 1], the logit link 

function: 𝑔(𝜇) = log ( 
𝜇

1−𝜇
), is popularly used; hence the mean can be rewritten as 

 

  𝜇𝑖 = 
𝑒
𝒙𝑖𝑗𝜸𝑗

1 + 𝑒
𝒙𝑖𝑗𝜸𝑗

.                                                                       (2) 

 

SA can be accounted for in the linear combination appearing in the exponent of e, similar to the 

auto-binomial specification.   

 

Like binary logistic regression, multinomial logistic regression is used to predict the probabilities 

of categories based upon multiple covariates (Greene 2003 pp. 720-723). Typically, one of the 

outcomes is picked as a reference, log-odds for all other outcomes are computed based on the 

selected reference, and then the log-odds are linked to covariates with a linear function such that 
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                                𝜂
𝑖𝑗
= log (

𝜋𝑖𝑗

𝜋𝑖1
) = 𝒙𝑖𝑗𝜸𝑗 , 𝑗 = 2,3,⋯ 𝑘; 𝜂

𝑖1
= 0,                              (3) 

The following probabilities for outcomes can be derived from eq (3): 

                                             𝜋𝑖1 = 
1

1+ 𝑒𝜂𝑖2+⋯ +𝑒𝜂𝑖𝑘
, 

                                                               𝜋𝑖2 = 
𝑒𝜂𝑖2

1+ 𝑒𝜂𝑖2+⋯ +𝑒𝜂𝑖𝑘
,                                                   (4) 

⋮ 

                                             𝜋𝑖𝑘 = 
𝑒𝜂𝑖𝑘

1+ 𝑒𝜂𝑖2+⋯ +𝑒𝜂𝑖𝑘
. 

Again, SA can be accounted for in the linear combination appearing in the exponent of e, similar 

to the auto-binomial specification.   

2.3.2. Moran eigenvector spatial filtering  

MESF is a spatial statistical methodology that introduces a set of proxy variables, which are 

eigenvectors extracted from a transformed n-by-n spatial weights matrix 𝐂, into a regression 

model specification to capture SA and transfer it from residuals to the mean response term. The 

transformed spatial weight matrix is expressed as 

 

𝐌𝐂𝐌 = (𝐈 − 𝟏𝟏𝑇/𝑛)𝐂(𝐈 − 𝟏𝟏𝑇/𝑛),                                                (5) 

 

where I is an n-by-n identity matrix, 1 is a n-by-1 vector of ones, 𝑛 is the number of areal units, 

and 𝑇 is the matrix transpose operator. MESF is sufficiently flexible to account for positive SA, 

negative SA, or a mixture of both. The 𝑛 eigenvectors represent distinct underlying map patterns, 

and their corresponding eigenvalues represent their levels of SA. These eigenvectors are 

mutually orthogonal and uncorrelated; the first eigenvector, 𝐸1, is the set of real numbers that has 

the maximum possible positive SA; the 𝑗𝑡ℎ, 𝐸𝑗, is the set of real numbers that has the 𝑗𝑡ℎ largest 

MC value of any vector that is uncorrelated and orthogonal with all of its 𝑗 − 1 preceding 

eigenvectors; and, the 𝑛th eigenvector, 𝐸𝑛, is the set of real numbers that has the largest negative 

SA (Griffith 2003).  

 

Eigenvectors are included as covariates in a regression model specification to account for SA. A 

linear MESF model without covariates is specified as 
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𝐘 = 𝛽0𝟏 + 𝐄𝑘𝛄 + 𝛜,                                                           (6) 

 

where Y denotes the n-by-1 response variable vector, 𝐄𝑘 denotes an n-by-k  matrix containing a 

set of selected eigenvectors, 𝛽0 and n-by-k vector 𝛄 denote regression coefficients, 𝐄𝑘𝛄 denotes a 

constructed eigenvector spatial filter (ESF) that captures SA, and 𝛜 is a n-by-1 vector of non-

spatial random errors. In addition, because the means of the eigenvectors (𝐄𝑘) are zero, the 

addition of the eigenvectors does not have an impact on mean responses. This specification 

filters SA out of the conventional residuals (𝐄𝑘𝛄 + 𝛜), and adds it to the mean response (𝛽0𝟏 +

𝐄𝑘𝛄); in other words, the model specification retains latent SA while constructing stochastic 

residuals that mimic independent ones. The 𝑘 eigenvectors can be identified from a candidate 

eigenvector set with a stepwise selection procedure, which selects considerably fewer 

eigenvectors than 𝑛 (Chun et al., 2016). MESF also is adopted by econometricians in their 

research (e.g., Eckey et al., 2006; Crespo and Feldkircher 2013; Pace et al., 2013), and 

furthermore, Paez (2018) discusses that MESF furnishes an effective approach to identify 

omitted but potentially substantive covariates. 

2.3.3. The simulation experiment design 

Simulation experiments are designed to fulfil research purposes. The following three important 

factors are considered before implementing the simulation experiments for this paper. First, 

simulation experiments are conducted using a 30-by-30 square tessellation (Figure 2.2), and the 

rook adjacency connectivity definition to produce the spatial weight matrix 𝐂. Second, a 

response variable with positive SA or negative SA only is generated with a simultaneous 

autoregressive model (SAR), such that  

 

𝐘 = (𝐈 − 𝜌𝐖)−1𝛆,                                                               (7) 

 

where 𝜌 is a spatial autocorrelation parameter, 𝐖 is a row standardized version of matrix 𝐂, 𝛆 is 

a vector of iid normal random errors MESF is used to approximate the SA component [see eq. 

(6)]. Third, the SA parameter 𝜌 is set to different values to cover weak, moderate, and strong 
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positive SA and negative SA: 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, and −0.1, −0.3, −0.5, −0.7, −0.9, −0.95. 

To stabilize the eigenvectors, the constructed ESF term can be adjusted as follows: 

 

𝐸𝑆𝐹𝑎𝑑𝑗  = 2 ∗ [
𝐸𝑆𝐹−𝐸𝑆𝐹min

𝐸𝑆𝐹max−𝐸𝑆𝐹min
]
𝛿

− 1,                                              (8) 

 

where  𝛿 = ln (
1

2
) ln (

−𝐸𝑆𝐹min

𝐸𝑆𝐹max−𝐸𝑆𝐹min
)⁄ , and  𝐸𝑆𝐹min and 𝐸𝑆𝐹max are the minimum and maximum 

values in an 𝐸𝑆𝐹. This adjustment rescales 𝐸𝑆𝐹𝑎𝑑𝑗  to the range [−1, 1], centering it around 0. As 

mentioned previously, the mean of beta RVs and the probabilities of multinomial outcomes can 

be linked to covariates through a link function [see eqs. (2) and (3)].   

 
Figure 2.2. A 30-by-30 square tessellation surface  

 

In the MESF specification in eq. (6), the two parameters (α, β) of a beta distribution can be 

estimated with the method of moments estimator as follows:  

 

α̂ = (
1

n
∑

1

1+e
−b0−ESF𝑖

𝑎𝑑𝑗
n
i=1 )

[
 
 
 
 (n−1)∑

e
−b0−ESF𝑖

𝑎𝑑𝑗

1+e
−b0−ESF𝑖

𝑎𝑑𝑗
n
i=1

n∑ (
1

1+e
−b0−ESF𝑖

𝑎𝑑𝑗)

2

n
i=1 −(∑

1

1+e
−b0−ESF𝑖

𝑎𝑑𝑗
n
i=1 )

2 − 1

]
 
 
 
 

,  

β̂ =

∑
e
−b0−ESF𝑖

𝑎𝑑𝑗

1+e
−b0−ESF𝑖

𝑎𝑑𝑗
n
i=1

∑
1

1+e
−b0−ESF𝑖

𝑎𝑑𝑗
n
i=1

 α̂. 

 

Accordingly, the empirical moments of a beta distribution with the ESF term need to be updated 

from the standard moments in Table 2.1. Similarly, the empirical moments of a multinomial 

distribution with embedded SA can be expressed as in Table 2.2.  
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Table 2.2. The empirical moments of a multinomial RV with SA embedded 

Mean of category j ∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗

n

i=1

 

Variance of category j (∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗

n

i=1

)

(

 
 
1 −

∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1

n

)

 
 

 

Skewness for category j 

1 − 2

∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1

n

√
  
  
  
  
 

(∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1 )

(

 
 
1 −

∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1

n

)

 
 

 

Excess kurtosis for category j 

1 − 6

(

 
 
∑

1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1

n

)

 
 

(

 
 
1 −

∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1

n

)

 
 

(∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1 )

(

 
 
1 −

∑
1

1 + e
−b0j−ESF𝑖𝑗

𝑎𝑑𝑗
n
i=1

n

)

 
 

 

 

In a specific analysis, weights are introduced to control the shape of the statistical distribution 

and the level of SA embedded. For beta RVs, Guolo and Varin (2014) propose a Gaussian copula 

regression to model serial dependence. MESF is adopted to introduce SA—which is far more 

complicated because it is two-dimensional and multidirectional—to the beta RVs; in keeping 

with mathematical statistical generalized linear model theory, essentially the covariates term is 

substituted with the adjusted 𝐸𝑆𝐹 term, eq. (2) becomes 

 

𝜇𝑖 = 
𝑎𝑒

𝑤0𝐸𝑆𝐹𝑖
𝑎𝑑𝑗

𝑎𝑐 + 𝑎𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗 , 

where 𝑎 and 𝑐 denote positive constants that are set to different values to control the shape of a 

resulting beta RV. The weight, 𝑤0, controls the level of SA embedded in a simulated beta RV. 

The two shape parameters can be specified as: 
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𝛼𝑖
𝑎𝑑𝑗

= 𝑎𝑒𝑤0𝐸𝑆𝐹𝑖
𝑎𝑑𝑗

, 𝛽 = 𝑎𝑐,                                                    (9) 

 

If 𝑐 = 1, the map mean of the generated RV is approximately 
1

2
 because the adjusted 𝐸𝑆𝐹 

contains both positive and negative values. If  𝑐 > 1, the generated RV conforms on a positively 

skewed distribution, and if 𝑐 < 1, generated RV conforms to a negatively skewed distribution.  

Multinomial RVs with three mutually exclusive outcomes are examined in this study. When 𝑘 =  

3, and if the probabilities for the first two outcomes are the same (e.g., 𝜋𝑖1 = 𝜋𝑖2), then 

specifications of probabilities (with the adjusted ESF term incorporated) can be expressed as  

 

                                 𝜋𝑖1 =
1

2+ 𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗, 𝜋𝑖2 =
1

2+ 𝑒𝑤0𝐸𝑆𝐹𝑖
𝑎𝑑𝑗, 𝜋𝑖3 =

 𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗

2+  𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗.                       (10) 

 

If probabilities vary among outcomes (e.g., 10 𝜋𝑖1 =  𝜋𝑖2), then they can be specified as: 

 

                                     𝜋𝑖1 =
1

11+ 𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗, 𝜋𝑖2 =
10

11+ 𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗, 𝜋𝑖3 =
 𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗

11+ 𝑒
𝑤0𝐸𝑆𝐹𝑖

𝑎𝑑𝑗.              (11) 

 

Equality or inequality of probabilities controls the frequency of randomly sampled observations 

occurring in each outcome class. 

2.4 Results 

For simulated beta RVs, the constant 𝑎 has a range spanning 0.01 to 100,000 so that all 

distributions that a beta RV can mimic are covered (see Figure 2.1). For simulated multinomial 

RVs, the total number of trials, 𝑁𝑡𝑟, ranges from 1 to 100,000 to treat the smallest through 

relatively large population size cases.  

2.4.1. Simulation results for beta RVs 

Figure 2.1a and 2.3b illustrate that when the mean of a beta RV is 0.5 (𝒄 = 𝟏), both positive SA 

and negative SA achieve their maximum levels as 𝒂 increases. This trajectory occurs because 

beta RVs converge to a normal RV as 𝒂 increases, allowing achievement of a full range of SA. 
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For positively skewed beta RVs (e.g., 𝒄 = 𝟏𝟎 and 𝒄 = 𝟏𝟎𝟎), positive SA starts to converge 

slightly sooner than for symmetric beta RVs. However, it experiences a delayed convergence for 

negatively skewed beta RVs (e.g., 𝒄 = 𝟎. 𝟏 and 𝒄 = 𝟎. 𝟎𝟏), and the delay becomes more 

pronounced as the level of negative skewness gets more severe. For both positively and 

negatively skewed beta RVs, maximum negative SA fails to materialize. The two sets of slightly 

skewed beta RVs (𝒄 = 𝟏𝟎 and 𝒄 = 𝟎. 𝟏) deviate less from their theoretical maximums, whereas 

gaps between the observed extremes and the theoretical maximums are larger for the more 

skewed RVs (𝒄 = 𝟏𝟎𝟎 and 𝒄 = 𝟎. 𝟎𝟏). These two figures suggest that positive SA and negative 

SA behave differently when beta RVs are skewed, with negative SA no longer converging. This 

result possibly can be explained by how they deviate from a normal distribution.   

 

 

 

Figure 2.3. The range of SA for beta RVs. Top left (a): PSA. Top right (b): NSA. Middle left (c): 

maximum PSA. Middle right (d): maximum NSA.  
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Figure 2.3. (Continued) Bottom left (e): the weights needed to achieve a maximum PSA. Bottom 

right (f): the weights needed to achieve a maximum NSA. 

 

Figures 2.3c and 2.3d indicate that relatively large weights for a SA component allow both 

maximum positive SA and negative SA to materialize with a small 𝑎, regardless of the shape of a 

beta RV. Figures 2.3e and 2.3f indicate that both positive SA and negative SA need large 

weights to converge on their maximums when 𝑎 is small. However, as 𝑎 increases, positive SA 

does not need a larger weight, whereas the weight for negative SA needs to increase in order to 

achieve its maximum. Symmetric and positively skewed beta RVs experience a rapid drop in 

their necessary weight levels for positive SA, whereas weights for negatively skewed beta RVs 

slowly decline, especially for the more skewed RVs. However, for negative SA, symmetric beta 

RVs display a similar weight growth pattern with negatively skewed RVs, whereas weights for 

positively skewed RVs dramatically increase first, and then level off.   

 

The impacts of SA upon the four statistical moments also are evaluated for three different 

scenarios: symmetric (𝑐 = 1), positively skewed (𝑐 = 5), and negatively skewed (𝑐 = 0.5). The 

plot label numbers appearing in Figure 2.4 are the theoretical values of the statistical moments. 

Figures 2.4a and 2.4c indicate that the first statistical moment (i.e., the mean) of a beta RV is not 

affected by SA. However, Figures 2.4b and 2.4d indicate that SA inflates the variance, and this 

inflation gets increasingly severe as 𝜌 increases. A comparison of Figures 2.4b and 2.4d suggests 

that the magnitude of inflation is more conspicuous for a larger 𝑎. Also, a pronounced difference 

is observed between positively and negatively autocorrelated beta RVs: a positively 

autocorrelated beta RV tends to deviate from its theoretical value. In addition, SA introduced in 
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symmetric beta RVs is more likely to inflate the variance. For example, Figure 2.4d implies that 

variance for a symmetric RV deviates more from its theoretical value (0.01) than for a negatively 

skewed RV.  

 

Figure 2.4. Summaries of statistical moments of simulated spatially autocorrelated beta RVs. 

Left: the mean of sample means [top (a): 𝑎 = 10, bottom (c): 𝑎 = 1,000]. Right: the mean of 

sample variances [top (b): 𝑎 = 10, bottom (d): 𝑎 = 1,000] 

 

A different impact upon the skewness is observed for symmetric, positively skewed, and 

negatively skewed beta RVs (Figures 2.5a and 2.5c): skewness is greater than the theoretical 

value with positively skewed RVs, and less with symmetric and negatively skewed RVs when 

the constant 𝑎 is relatively small. However, increasing 𝑎 to 1,000 does not affect skewness for 

symmetric RVs. Rather, deviations from the theoretical values still remain for both positively 

and negatively skewed RVs, and the degree of deviation increases. Figures 2.5a and 2.5c indicate 

that although skewness is distorted by SA, it stays constant across different SA levels. Excess 

kurtosis also experiences some degree of alteration in the presence of SA: it remains unchanged 

for positively skewed RVs, but is deflated for symmetric RVs, and inflated for negatively 

skewed RVs when the constant 𝑎 is relatively small (Figure 2.5b); small changes in this trend 
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occur across different 𝜌 values. However, increasing 𝑎 to 1,000 decreases excess kurtosis as the 

degree of SA increases (Figure 2.5d).  

 

Figure 2.5. Summaries of statistical moments of simulated spatially autocorrelated beta RVs. 

Left: the mean of sample skewness [top (a): 𝑎 = 10, bottom (c): 𝑎 = 1,000]. Right: the mean of 

sample excess kurtosis [top (b): 𝑎 = 10, bottom (d): 𝑎 = 1,000] 

2.4.2. Simulation results for multinomial RVs 

Figures 2.6a and 2.6b portray the distribution of probabilities simulated with eq. (10) for each 

outcome across the specimen tessellation surface. The first two outcomes (𝜋𝑖1 and 𝜋𝑖2) have 

fundamentally identical distributions, whereas the third outcome (𝜋𝑖3) displays a larger variance. 

However, the means of the probabilities approximately are the same, 0.33, for all three 

outcomes. Figures 2.6c and 2.6d illustrate distributions of probabilities generated with eq. (11).  

𝜋𝑖2  yields much larger probabilities. 𝜋𝑖3 also has a wider range of probabilities. A comparison of 

Figures 2.6a–2.6d indicates that probability distributions for the asymmetric RVs have 

substantially more skewness than their counterparts for the symmetric RVs, with 𝜋𝑖1 and 𝜋𝑖2 

negatively skewed, and 𝜋𝑖3 positively skewed.  
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Figure 2.6. Probability distributions of multinomial outcomes. Top left (a): symmetric with PSA 

embedded. Bottom left (b): symmetric with NSA embedded. Top right (c): asymmetric with PSA 

embedded. Bottom right (d): asymmetric with NSA embedded. 

 

Figure 2.7 portrays the simulation results for multinomial RVs where 𝜋𝑖1 and 𝜋𝑖2 have an 

identical distribution, hence the lines that represent 𝜋𝑖1 and 𝜋𝑖2 are almost identical. Figures 2.7a 

and 2.7b show that both positive SA and negative SA converge on their maximums as the total 

population size, 𝑁𝑡𝑟, increases. When SA is weighted, both maximum positive SA and negative 

SA do not materialize for 𝜋𝑖1 and 𝜋𝑖2 when 𝑁𝑡𝑟 is small. But they slowly materialize as 𝑁𝑡𝑟 gets 

larger. In contrast, SA converges on its extreme for 𝜋𝑖3 even for a small 𝑁𝑡𝑟 (Figures 2.7c and 

2.7d). This outcome more than likely is caused by the specification of probabilities [eq. (10)]: 

𝜋𝑖1 and 𝜋𝑖2 converge to 0, whereas 𝜋𝑖3 converges to 1, when the SA term is weighted. Figures 

2.7e and 2.7f display similar patterns with Figures 2.3e and 2.3f: that is, both positive SA and 

negative SA need large weights to achieve their potential extremes when 𝑁𝑡𝑟 is small. However, 

a large weight becomes unnecessary for positive SA, but remains important for negative SA, as 

𝑁𝑡𝑟 increases. 
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Figure 2.7. The range of SA for symmetric multinomial RVs. Top left (a): PSA. Top right (b): 

NSA. Middle left (c): maximum PSA. Middle right (d): maximum NSA. Bottom left (e): weights 

needed to achieve extreme PSA. Bottom right (f): weights needed to achieve extreme NSA.  

 

Figures 2.8a and 2.8b indicate that 𝜋𝑖1 experiences a delayed convergence for both positive SA 

and negative SA. They also show that 𝜋𝑖2 displays a convergence pattern similar to that for 𝜋𝑖3. 

However, a conspicuous gap occurs between the maximum negative SA achieved and the 

theoretical maximum, and this discrepancy most likely occurs because of the increased skewness 

of the asymmetric multinomial RVs (Figures 2.6c and 2.6d). Even with weights on a SA 



 

24 

component, the most extreme SA is unable to materialize for 𝜋𝑖1 and 𝜋𝑖2, although it converges 

as 𝑁𝑡𝑟 gets larger. 𝜋𝑖1 starts with an even lower absolute SA level compared with that for Figures 

2.7c-2.7d. However, SA converges on its extremes for 𝜋𝑖3 across a wide range of different 𝑁𝑡𝑟 

values. Figures 2.8e and 2.8f suggest an unstable pattern of the needed weights for 𝜋𝑖1, with 

more instability observed with small 𝑁𝑡𝑟. In contrast, 𝜋𝑖2 and 𝜋𝑖3 display stable patterns, which 

indicates that the needed weight decreases for positive SA but increases for negative SA as 𝑁𝑡𝑟 

increases. 

 

 

 

Figure 2.8. The range of SA for asymmetric multinomial RVs. Top left (a): PSA. Top right (b): 

NSA. Middle left (c): maximum PSA. Middle right (d): maximum NSA. Bottom left (e): weights 

needed to achieve extreme PSA. Bottom right (f): weights needed to achieve extreme NSA.  
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The effects of SA on the first four statistical moments of symmetric/asymmetric multinomial 

RVs also are assessed for the three outcomes, and the results are reported in Figure 2.9. The plot 

label numbers appearing in Figure 2.9 are the theoretical values of the statistical moments. 

Similar to Figure 2.7, the two lines representing 𝜋𝑖1 and 𝜋𝑖2 are nearly identical in Figures 2.9a 

and 2.9b, and Figures 2.10a and 2.10b, because of their undistinguishable specifications. Figures 

2.9a and 2.9c indicate that the mean of the simulated RVs for each outcome is consistent with its 

theoretical value, which means that SA does not impact the first statistical moment. Figures 2.9b 

and 2.9d suggest that the variance has substantial inflation, with more deviation observed for 𝜋𝑖3. 

In addition, positive SA contributes more than negative SA to this inflation, and the difference 

between positive SA and negative SA becomes more noticeable as 𝜌 increases. Moreover, 

variance inflation tends to increase as 𝜌 increases for both positive SA and negative SA. A 

comparison of Figures 2.9b and 2.9d suggests that variance is likely to inflate substantially more 

for a symmetric than for a skewed RV. For example, the standard deviation inflates from 15 to 

70 for 𝜋𝑖3 for a selected symmetric multinomial RV, whereas it inflates from 9 to 26 for a 

selected asymmetric multinomial RV. 

 
Figure 2.9. Summaries of statistical moments for simulated spatially autocorrelated multinomial 

RVs. Left: the mean of sample means [top (a): symmetric, bottom (c): asymmetric] Right: the 

mean of sample variances [top (b): symmetric, bottom (d): asymmetric] 
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Figures 2.10a and 2.10c indicate different impacts of SA on skewness. Specifically, for 

symmetric multinomial RVs, skewness is less than its theoretical counterpart for 𝜋𝑖1 and 

𝜋𝑖2 (negatively skewed), whereas it is greater for 𝜋𝑖3 (positively skewed). However, for 

asymmetric multinomial RVs, skewness remains unchanged for 𝜋𝑖1 , decreases for 𝜋𝑖2 

(negatively skewed), and increases for 𝜋𝑖3 (positively skewed). Figures 2.10b and 2.10d suggest 

that SA distorts excess kurtosis of a multinomial RV. For example, it slightly decreases for all 

outcomes of the simulated symmetric multinomial RVs, and it increasingly deviates from its 

theoretical counterpart as the degree of SA increases.  

 
Figure 2.10. Summaries of statistical moments for simulated spatially autocorrelated multinomial 

RVs. Left: the mean of sample skewness [top (a): symmetric, bottom (c): asymmetric] Right: the 

mean of sample excess kurtosis [top (b): symmetric, bottom (d): asymmetric] 

2.5 Summary and Conclusions 

The beta and multinomial distributions are of increasing importance in GIScience, with the 

multinomial distribution already having play a prominent role for years. However, work has not 

been done to investigate their distributional properties in the presence of SA. This research 
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examines the impact of SA upon histograms of beta and multinomial RVs, with regard to both 

PSA and NSA. The major findings of the research summarized in this paper are the following.  

 

First, PSA and NSA display similar impacts when a RV closely approximates a normal 

distribution (e.g., symmetric beta and multinomial RVs), which is consistent with the findings by 

Chun and Griffith (2018) for the binomial RV. However, PSA and NSA impacts behave 

differently when a RV is skewed (positively or negatively). NSA fails to converge on its 

maximum, and the gap between the maximum it achieves and the theoretical maximum becomes 

more conspicuous as skewness increases. In contrast, PSA always converges and is not impacted 

by skewness. A difference in performance between PSA and NSA also is reported by Chun and 

Griffith (2018) for Poisson RVs. Second, simulation results imply that a RV mean is unaffected 

by SA. However, SA inflates variance, with this inflation becoming more pronounced as the SA 

level increases. Meanwhile, PSA generally creates more inflation than NSA. These results 

corroborate findings in the literature. Additionally, this simulation output reveals more 

noticeable variance inflation for symmetric than for skewed beta/multinomial RVs. Third, SA 

distorts skewness and kurtosis (e.g., Griffith 2011; Chun and Griffith 2018). The simulation 

results in this paper indicate that skewness is impacted differently by SA, depending on the 

properties of a RV. Distortion becomes more severe as the degree of skewness increases. 

However, the degree of skewness remains constant across different SA levels. The fourth 

moment, excess kurtosis, also is altered by SA, decreasing as the SA level increases.  

 

The research summarized here can be further extended in future work. First, because this 

research is based on simulated data, an analysis of empirical georeferenced data involving the 

beta/multinomial distributions should be insightful. Second, a key discovery of this research is 

different behaviors attributable to PSA and NSA when a spatially autocorrelated RV is skewed, 

and, furthermore, skewness has different impacts on the second and third statistical moments. 

However, in-depth studies still need to be undertaken to further explore and understand this 

outcome. Third, as discussed in the literature, NSA commonly is found in a mixture with PSA in 

georeferenced data. Simulation experiments need to be extended to investigate the impacts of SA 

mixtures on a histogram, and to contrast the results with PSA and NSA only. Fourth, simulation 
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experiments designed for this research were based on a 30-by-30 square tessellation surface. 

Future research should examine whether or not results are consistent with different sizes and 

configurations of surface partitioning (e.g., a hexagonal/irregular tessellation). Moreover, 

because research results may be sensitive to the specification of a spatial weights matrix, SA 

impacts of beta and multinomial RVs based upon different spatial weight matrices (e.g., one 

based on a queen contiguity) merit evaluation. 
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2.6 Appendix A2. Map patterns of RVs 

    
a       Moran’s I : 0.859 b      Moran’s I : 0.454 c      Moran’s I : 0.383 d      Moran’s I : 0.282 

    
e      Moran’s I : -0.918 f      Moran’s I : -0.368 g     Moran’s I : -0.234 h       Moran’s I : -0.185 

Figure A2.1.Map patterns of beta RVs. [a: PSA with 𝜌 =0.95. b-d: beta RVs with PSA (b: positively skewed, c: symmetric, d: 

negatively skewed). e: NSA with 𝜌 =−0.95. f-h: beta RVs with NSA (f: positively skewed, g: symmetric, h: negatively 

skewed)] 
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a       Moran’s I : 0.861 b      Moran’s I : 0.727 c      Moran’s I : 0.728 d     Moran’s I : 0.822 

    
e    Moran’s I : -0.862 f       Moran’s I : -0.748 g      Moran’s I : -0.747 h     Moran’s I : -0.825 

Figure A2.2. Map patterns of symmetric multinomial RVs. [a: PSA with 𝜌 =0.95. b-d: multinomial RVs with PSA (b: 𝜋1, c: 

𝜋2, d: 𝜋3). e: NSA with 𝜌 =−0.95. f-h: multinomial RVs with NSA (f: 𝜋1, g: 𝜋2, h: 𝜋3)] 
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a     Moran’s I : 0.867 b     Moran’s I : 0.050 c      Moran’s I : 0.692 d       Moran’s I : 0.770 

    
e     Moran’s I : -0.888 f      Moran’s I : -0.061 g     Moran’s I : -0.652 h      Moran’s I : -0.747 

Figure A2.3. Map patterns of asymmetric multinomial RVs. [a: PSA with 𝜌 =0.95. b-d: multinomial RVs with PSA (b: 𝜋1, c: 

𝜋2, d: 𝜋3). e: NSA with 𝜌 =−0.95. f-h: multinomial RVs with NSA (f: 𝜋1, g: 𝜋2, h: 𝜋3)] 
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CHAPTER 3 
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ABSTRACT 

Spatial cancer data analyses frequently utilize regression techniques to investigate associations 

between cancer incidences and potential covariates. Model specification, a process of 

formulating an appropriate model, is a well-recognized task in the literature. It involves a 

distributional assumption for a dependent variable, a proper set of predictor variables (i.e., 

covariates), and a functional form of the model, among other things. For example, one of the 

assumptions of a conventional statistical model is independence of model residuals, an 

assumption that can be easily violated when spatial autocorrelation is present in observations. A 

failure to account for spatial structure can result in unreliable estimation results. Furthermore, the 

difficulty of describing georeferenced data may increase with the presence of a positive and 

negative spatial autocorrelation mixture, because most current model specifications cannot 

successfully explain a mixture of spatial processes with a single spatial autocorrelation 

parameter. Especially, properly accounting for a spatial autocorrelation mixture is challenging. 

This paper empirically investigates and uncovers a possible spatial autocorrelation mixture 

pattern in breast cancer incidences in Broward County, Florida during 2000 to 2010, employing 

different model specifications. The analysis results show that Moran eigenvector spatial filtering 

provides a flexible method to examine such a mixture. 
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3.1 Introduction 

Spatial data analysis has been widely used to describe georeferenced cancer data. It often 

involves understanding the spatial patterns of cancer incidences, and further examining factors 

that are potentially associated with cancer occurrences. The development of geographic 

information systems (GISs) and spatial statistical analytics, such as exploratory spatial data 

analysis tools, have fostered investigations of spatial patterns of cancer data. For example, a 

collection of studies in the spatial cancer data analysis literature focuses on detecting spatial 

clusters of cancer incidences in space (e.g., Timander and McLafferty 1998, Meliker et al. 2009). 

Furthermore, regression models are utilized to examine potential covariates that can have 

significant associations with cancer incidences, including socio-economic status and 

demographic factors (e.g., MacKinnon et al. 2007, Dai 2010, Wang et al. 2012).  

 

However, regression analysis results can be unreliable when spatial autocorrelation (SA) is 

present and it is not appropriately accounted for. For example, Dai (2010) uses linear regression 

and spatial lag models to evaluate the role of black residential segregation and spatial access to 

health care, with his results indicating that the spatial model outperforms the linear regression 

model by successfully addressing SA in the cancer data. In a spatial analysis, Moran’s I or 

Geary’s c are commonly used to test for SA in observed values and/or model residuals. 

However, a global measure of the underlying SA component may not reveal a complex spatial 

structure. For example, Hu et al. (2018) argue that the weak positive and (near-) zero SA that 

exist in a lung cancer dataset essentially are mixtures of positive and negative SA. The presence 

of a simultaneous SA mixture in a variable may lead to a failure of rejecting the null hypothesis 

for the SA parameter when positive SA (PSA) and negative SA (NSA) components cancel each 

other (Griffith 2006). When a SA mixture exists in data, a model specification should be able to 

accommodate both PSA and NSA properly to produce unbiased estimates. However, popular 

spatial regression model specifications (e.g., spatial autoregressive models) presently are not 

formulated to successfully account for a latent SA mixture in the geographic distribution of 

cancer incidences.  
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The purpose of this paper is to empirically investigate breast cancer incidences for females in 

Broward County, Florida (FL) with a focus on model specification issues. First, spatial patterns 

of age-adjusted breast cancer incidence rates are examined to determine whether or not a spatial 

pattern, including a mixture of PSA and NSA, is present. Next, potential risk factors for age-

adjusted breast cancer incidence rates are examined using Poisson and negative binomial (NB) 

regression. These models are specified with expected counts of breast incidences as an offset 

variable, which is calculated with age-specific breast cancer rates in the United States (US). 

Furthermore, Poisson and NB model specifications are extended with the Moran eigenvector 

spatial filtering (MESF) methodology to account for SA, the estimated results are compared with 

those estimated with Besag-York- Mollié (BYM) model specifications. Importantly, this paper 

addresses a mixture of PSA and NSA in georeferenced data, and employs MESF model 

specifications to account for the PSA-NSA mixture feature in Poisson and NB regression. 

3.2 Literature review 

Breast cancer is one of the most commonly diagnosed cancers among women, and also is the 

leading cause of cancer deaths worldwide (Parkin et al. 2001). Breast cancer has drawn 

tremendous research attention in epidemiology and the social sciences, geography being among 

them. Many studies investigate the spatial patterns of breast cancer incidences (e.g., Vieira et al. 

2008, Meliker et al. 2009), and examine associated risk factors (e.g., McPherson et al. 2000, 

Wang et al. 2012). Cancer rates are popularly utilized in these studies, and age-adjusted cancer 

rates generally are preferred over crude rates because they reflect different cancer risk levels 

among different population age cohorts (Anderson and Rosenber 1998, Ahmad et al. 2001). 

Commonly, age-adjusted rates are obtained by adjusting observed age-specific incidence rates 

based on the age structure of a reference population (Bray 2002). Although these cancer rates 

often are modeled with linear regression, a comparable model specification can be formulated 

with Poisson or NB regression for cancer counts using an offset variable (e.g., Sheehan 2004). 

This specification has the advantage that heterogeneous population sizes can be incorporated in 

the posited model (McCullagh and Nelder 1989). 
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Studies show that breast cancer incidences vary substantially over space; however, PSA in 

cancer incidences frequently is detected. For example, Zhou et al. (2015) identify significant 

clusters of breast cancer incidences in south-central Shenzhen in China, and Fukuda et al. (2005) 

report a spatially clustered pattern of breast cancer in Japan. Dai (2010) discusses PSA when 

modeling late-stage breast cancer in the Detroit metropolitan area, and Tian et al. (2011) show 

the presence of PSA in female breast cancer mortality rates in Texas. Some studies do not report 

significant SA. For example, Timander and McLafferty (1998) observe that breast cancer rates 

are fairly evenly distributed in West Islip, New York, and Muir et al. (2004) do not find spatial 

clusters among breast cancer incidences in Lincolnshire and Leicestershire in England. 

 

Although PSA in breast cancer incidences frequently is identified in the literature, NSA also is 

observed in some geographically distributed phenomena. One of the few situations exhibiting 

NSA is that of spatial competition (Haining 1984). Griffith (2006) argues that a mixture of PSA 

and NSA may mask significant SA in a global SA test because they can cancel each other. In 

addition, the possible presence of NSA suggested by local area statistics (e.g., Le Gallo and Ertur 

2003, Baumont et al. 2004, Odoi et al. 2003) appears in a mixture of both PSA and NSA latent in 

geographic distributions with a dominating global PSA.  

 

Studies reveal that the spatial variability of breast cancer incidences can be explained by 

established risk factors (e.g., Gumpertz et al. 2006, Meliker et al. 2009). For example, Gumpertz 

et al. (2006) discuss that although the geographic pattern of breast cancer incidence rates differs 

within Los Angeles County, its geographic variation can be well explained with a set of 

biological and sociodemographic covariates in a generalized linear mixed model. Much research 

utilizes Gaussian linear regression (e.g., Dai 2010, Wang et al. 2012) or generalized linear 

regression models (e.g., Robert et al. 2004, Yang et al. 2011) to examine risk factors for breast 

cancer. To date, several significant contributing influences have been uncovered, including 

genetic factors, [e.g., family history] (e.g., McPherson et al. 2000, Yang et al. 2011), 

reproductive factors, [e.g., nulliparity] (e.g., Kelsey et al. 1993, Yang et al. 2011), demographic 

factors, [e.g., race and age] (e.g., Dai 2010, McPherson et al. 2000), socio-economic factors, 

[e.g., poverty and education] (e.g., MacKinnon et al. 2007, Hussain et al. 2008), and geographic 
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factors [e.g., primary care access and urban/rural disparities] (e.g., Wang et al. 2012, MacKinnon 

et al. 2007). 

 

Although well-designed aspatial model specifications with associated explanatory variables can 

account for spatial variability in breast cancer incidences, most empirical studies suffer from 

ignoring SA in their regression model specifications. SA invalidates the independence 

assumption in conventional statistics; hence, it needs to be appropriately addressed in a spatial 

analysis (Griffith 1987). Spatial specifications that are commonly utilized in cancer research 

include spatial autoregressive models (e.g., Antunes et al. 2001, Keitt et al. 2002), Bayesian 

spatial models (e.g., Lawson 2013), and MESF (e.g., Tiefelsdorf 2007, Jacob et al. 2011). 

Bayesian spatial models have been popularly used in disease mapping (Lawson 2013). For 

example, Torabi and Rosychuk (2012) use the well-known intrinsic conditionally autoregressive 

(ICAR) approach to accommodate spatial random effects in cancer incidence ratios. An ICAR 

prior also is adopted by Kazembe and Namangale (2007) to capture the spatial structure in 

childhood co-morbidity. Lee (2011) compares four different CAR models (e.g., the ICAR) and 

utilizes them for mapping cancer incidence rates in Greater Glasgow, Scotland.  

 

The BYM model, an extension of the ICAR model specification that includes an additional 

random effect component for non-spatial heterogeneity, furnishes a useful approach to model 

areal count data of rare diseases (Gerber and Furrer, 2015). For example, López-Abente (2014) 

utilizes a BYM model to describe stomach cancer mortality rates in Spain, and reports that the 

geographical pattern is maintained across the study period. Although the random effect term in 

the BYM model can capture SA that is unexplained due to omitted covariates, it is considered 

not to be sufficiently flexible to account for the complex localized structure that possibly exists 

in residual SA because its random effects term exhibits a single global level of spatial 

smoothness determined by geographical adjacency, similar to the ICAR model (Lee et al., 2014; 

Hodges and Reich 2010). That is, the BYM and ICAR models are limited in their respective 

ability to accommodate a SA mixture pattern in georeferenced data. MESF, however, 

increasingly has been utilized with linear and generalized linear regression models to account for 

both PSA and NSA components simultaneously. For example, Jacob et al. (2011) posit an MESF 



 

38 

model specification to detect and adjust for hidden PSA and NSA components in their 

georeferenced data. Hu et al. (2018) use a MESF model to uncover a SA mixture pattern in lung 

cancer data.  

3.3 Methodology 

This research utilizes Poisson and NB models to describe cancer counts, which then are further 

extended to MESF and BYM specifications to uncover the underlying spatial pattern. This 

section briefly describes the MESF and BYM method specifications.   

3.3.1. MESF model specification 

This paper utilizes MESF methodology to account for SA in Poisson and NB regression. MESF 

utilizes a set of eigenvectors that are extracted from a transformed n-by-n spatial weights matrix, 

C, appearing in the numerator of the Moran Coefficient (e.g., Moran’s I), which can be 

expressed as: 

 

𝐌𝐂𝐌 = (𝐈 − 𝟏𝟏𝑇/𝑛)𝐂(𝐈 − 𝟏𝟏𝑇/𝑛), 

 

where I is an n-by-n identity matrix, 1 is a n-by-1 vector of ones, n is the number of areal units, 

and superscript T is the matrix transpose operator. These n eigenvectors are mutually 

uncorrelated and orthogonal, and represent underlying components of SA. MESF introduces a 

subset of these eigenvectors as independent variables in a regression model to capture 

unexplained SA with its model specification (Griffith 2003, Griffith et al. 2019). This subset can 

be identified from a candidate eigenvector set, which is considerably smaller than n, with a 

stepwise regression procedure (Chun et al. 2016). In this paper, the stepwise procedure is 

conducted with the Akaike information criterion (AIC). 

 

MESF can be flexibly specified to account for positive, negative, or a mixture of both types of 

SA. The n eigenvectors represent distinct underlying spatial patterns, and their corresponding 

eigenvalues represent their levels of SA when they are visualized with the spatial units used to 

generate the n-by-n spatial weight matrix C. Tiefelsdorf and Boots (1995) show that these 
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eigenvalues are equivalent to Moran’s I values for their respective map patterns. Hence, 

eigenvectors with positive eigenvalues portray PSA, and eigenvectors with negative eigenvalues 

portray NSA (hereafter they are called PSA eigenvectors and NSA eigenvectors, respectively). 

Whereas MESF often uses a subset of only PSA eigenvectors to account for PSA, a mixture of 

PSA and NSA can be explained with both positive and NSA eigenvectors. Selected PSA and 

NSA eigenvectors capture, respectively, observed PSA and NSA described by a model 

specification. These three different models are specified with different candidate eigenvector sets 

in the stepwise procedure: that is, only PSA eigenvectors, only NSA eigenvectors, and a 

combined set of PSA and NSA eigenvectors.  

 

A MESF model specification for a Poisson random variable (Griffith 2002) can be specified as: 

 

𝐸[𝐘] =  𝑔−1(𝐗𝛃 + 𝐄𝛄)+𝐎, 

 

where 𝑔 (∙)is a link function that is the natural logarithm in most Poisson cases, E [·] denotes the  

expectation operator, Y is a n-by-1 vector of the response variable assumed to follow a Poisson 

distribution, O is a n-by-1 vector of offset values. X is a n-by-k matrix that contains covariates 

and k is number of covariate, E is a n-by-p matrix eigenvectors and p represents the number of 

selected eigenvectors , and β and γ are 1-by-k and 1-by-p vectors to be estimated respectively. 

Empirical studies show that this Poisson MESF specification successfully accounts for SA (e.g., 

Chun 2008, Griffith 2009). Similarly, a MESF specification can be employed with NB 

regression, which often is preferred when overdispersion occurs in Poisson regression (e.g., 

Patuelli et al. 2011, Chun 2014). However, because SA is a well-known source of overdispersion 

in a Poisson random variable (Haining et al. 2009, Griffith 2011), overdispersion becomes 

negligible in a Poisson MESF model when SA is successfully accounted for. In such a case, the 

Poisson MESF model should be equivalent to a NB MESF model and, hence, a NB specification 

is unnecessary. 
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3.3.2. The BYM model specification 

The BYM model (Besag et al., 1991) includes an ICAR component to address SA and a non-

spatial random effect component to capture uncorrelated heterogeneity. A BYM model for a 

Poisson variable (Riebler et al. 2016) can be specified as: 

 

𝑌𝑖|𝑂𝑖, 𝜆𝑖~Poisson(𝑂𝑖𝜆𝑖) 

log(𝜆𝑖) = 𝑿𝑖𝜷 + 𝑈𝑖 + 𝑉𝑖 

 

where 𝑂𝑖 denotes the offset value for spatial unit 𝑖,  𝜆𝑖 denotes the mean value of a count for the 

𝑖𝑡ℎ unit. 𝑿𝑖 is a row vector of covariates for the 𝑖𝑡ℎ unit, 𝜷 denotes a vector of regression 

coefficients, and 𝑈𝑖 denotes a spatially correlated component for spatial unit 𝑖. This spatially 

correlated random effects term is normally distributed conditioned on its adjacent areas (Neyens 

et al., 2012). 𝑉𝑖 denotes a non-spatial random effect component for the 𝑖𝑡ℎ unit. This non-spatial 

component is normally distributed and independent between areas (Neyens et al., 2012; Lee 

2011); it is commonly used to account for overdispersion in count data modeling. This research 

utilizes an integrated nested Laplace (INLA) method to estimate the BYM model. INLA can 

produce comparable estimates in a short amount time compared to the Markov chain Monte 

Carlo (MCMC) approach (e.g., Gibbs sampler) (Rue et al., 2009; Gomez-Rubio et al., 2014). In 

this paper, the BYM model is estimated with the INLA package in R. 

3.4 Results 

This section reports spatial patterns of age-adjusted breast cancer rates in Broward County, 

Florida, and then presents Poisson and NB regression results for the census tract resolutions. In 

addition, MESF model results including a PSA component only, and a simultaneous mixture of 

PSA and NSA components, are compared with those from standard Poisson and NB regression. 

3.4.1. Breast cancer data and spatial patterns 

The breast cancer data were retrieved from the Florida Cancer Registry. This dataset contains 

18,905 cases of breast cancer in Broward County, FL for the 11-year period from 2000 to 2010. 
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These data underwent a data cleaning process by removing cases that are either unsuccessfully 

geocoded incidences (936), or duplicate registries (946), or male and unknown gender cases 

(249). Also, cases that are geocoded in census blocks with zero population in both the 2000 and 

2010 US decennial censuses (234) were removed. A total of 16,541 cases were used in the data 

analysis after this data cleaning process. Next, age-adjusted breast cancer incidence rates were 

calculated. The nationwide 2010 US Census population counts by age cohort were collected 

from the US Census Bureau (https://factfinder.census.gov) for adjustment purposes. Then these 

rates were transformed to improve their normality using a Box-Cox type power transformation 

(Yeo and Johnson 2000). 

 

Figure 3.1a depicts the spatial distribution of the age-adjusted breast cancer incidence rates. This 

map exhibits a pattern of PSA, confirmed by Moran’s I test (z-score = 6.481). For comparison 

purposes, crude rates are portrayed in Figure 3.1b. This map pattern shows stronger PSA visually 

as well as with the Moran’s I test (z-score = 7.62). This example empirically suggests that 

different rate calculations can lead to different spatial patterns, possibly due to the loss of some 

local PSA patterns: clusters of high rates in the upper middle area of the map and the coastal area 

are observed in Figure 3.1b, but not observed or weakened in Figure 3.1a Nevertheless, a visual 

inspection of Figure 3.1a and 3.1b suggests similar map patterns (e.g., a cluster of high rates at 

the southeastern corner, and a cluster of low rates in the middle and the western areas in Broward 

County). 
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(a) 

 

(b) 

Figure 3.1. The spatial pattern of breast cancer rates in Broward County, FL, 2000-2010. (a) age-

adjusted cancer rates for the census tract resolution [Moran’s I (z-score, p-value): 0.19 (6.48, 

<0.0001)], and (b) crude cancer rates for the census tract resolution [Moran’s I (z-score, p-

value): 0.22 (7.62, < 0.0001)]. (Note that the p-values are calculated for a two-tail test.) 

3.4.2. Regression results 

This section summarizes regression results for breast cancer incidences in Broward County, FL. 

Standard Poisson and NB regression results are compared with their MESF counterparts; these 

models are specified with the logarithmic values of expected cancer cases as offset variables to 

be comparable with the age-adjusted incidence rates. The expected breast cancer cases were 

computed by applying the Broward County population-by-age cohorts to the 2013 US age-

specific breast cancer incidence rates. The covariates included in the model specifications were 

identified from the literature, and summary statistics of ten covariates were reported in Table 3.1. 

These predictors mainly are socio-economic factors collected from US Census publications. The 

primary care access variable for the census tract resolution was created with 2013 primary care 

data retrieved from the US Department of Health and Human Service Administration 
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(https://www.hhs.gov/). Primary care availability has been identified as a significant risk factor 

for breast cancer; that is, people with poor primary care access are more likely to be diagnosed 

with breast cancer (e.g., Dai 2010, Wang et al. 2012). 

 

Table 3.1. Independent variables included in regression analyses 
Variables Minimum Mean S.D. Maximum 

Female population 464 2,504 1,401,099 12,022 

Female population density 0.0003 0.0055 0.0026 0.1738 

The percentages of black population 0.000 0.2445 0.2626 0.982 

The percentages of Hispanic population 0.002 0.219 0.132 0.638 

The percentages of female population younger than 45 0.009 0.3323 0.086 0.639 

The percentages of female-headed households 0.000 0.0541 0.030 0.207 

The percentages of females with college degrees or higher  0.547 0.869 0.0924 0.989 

Median household income 18,208 56,553 23,772 163,478 

Urban/rural disparities (dummy variable) --- ---            --- --- 

The percentages of foreign born population 0.028 0.296 0.112 0.629 

The number of physicians per 1,000 people 0.000 0.289 0.951 10.07 

Note: S.D. denotes standard deviation 

Table 3.2 reports Poisson and NB model specifications results. The standard Poisson model 

contains only covariates, and the two Poisson MESF models are specified with eigenvectors to 

account for SA. The first MESF model is specified with only PSA eigenvectors (MESF-Pos), 

with 41 PSA eigenvectors selected by a stepwise procedure. The second MESF model is 

specified with both PSA and NSA eigenvectors (MESF-Mix), with 53 eigenvectors selected by a 

stepwise procedure. These results show that the two MESF models perform better results, 

achieving smaller AIC and larger pseudo-R2 values, than the standard Poisson model. However, 

the MESF-Mix describes the data better, having the lowest AIC and the highest pseudo-R2 

values. In addition, overdispersion decreases from 1.88 (standard Poisson model specification) to 

1.2 (MESF-Pos), and then to 0.94 (MESF-Mix), becoming very close to its theoretical value of 

one.
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Table 3.2. Estimation results for Poisson and negative binomial model specifications with further extensions to the Moran 

eigenvector spatial filtering technique  
  Poisson Negative Binomial 
 

Standard Poisson MESF-Pos MESF-Mix Standard NB MESF-Pos MESF-Mix 

Variables coeff. std. 

error 

vif coeff. std. 

error 

coeff. std. 

error 

coeff. std. 

error 

vif coeff. std. 

error 

coeff. std. 

error 

Intercept 0.119   0.366 --- 0.332   0.367 -0.091   0.315 0.049   0.373 --- 0.332   0.335 -0.091   0.324 

Female population density -0.131 
 
5.402 1.64 -0.984 

 
4.870 -1.767 

 
4.292 -2.904 

 
5.365 1.63 -0.980 

 
4.442 -1.768 

 
4.418 

% of black population -0.045   0.079 3.14 -0.120 . 0.071 -0.055   0.063 -0.045   0.078 3.31 -0.120 
 

0.065 -0.055   0.064 

% of Hispanic population 0.039 
 
0.127 2.48 -0.493 *** 0.138 -0.223 * 0.112 0.010 

 
0.129 2.50 -0.490 *** 0.126 -0.223 

 
0.115 

% of females younger than 45  -0.499 *** 0.137 1.51 -0.408 ** 0.135 -0.214 
 

0.112 -0.463 ** 0.144 1.40 -0.410 *** 0.123 -0.214 
 

0.115 

% of female householders -0.712 
 
0.798 1.74 -0.645 

 
0.702 0.434 

 
0.488 -0.701 

 
0.779 1.76 -0.643 

 
0.697 0.432 

 
0.487 

% of well-educated females 0.410   0.211 2.71 0.361 
 

0.184 0.564 *** 0.168 0.406 * 0.205 2.71 0.361 * 0.168 0.564 ** 0.173 

Median household income -0.002 
 
0.039 2.44 -0.005 

 
0.037 -0.002 

 
0.033 0.006 

 
0.040 2.26 -0.010 

 
0.034 -0.002 

 
0.034 

Urban/rural disparities 0.085   0.052 1.12 -0.035   0.048 0.064   0.041 0.080   0.054 1.13 -0.040   0.044 0.064   0.043 

% of foreign born population -0.529 *** 0.141 2.03 -0.323 * 0.131 -0.387 *** 0.115 -0.498 *** 0.141 2.05 -0.320 ** 0.119 -0.387 ** 0.119 

Physicians per 1,000 people 0.012   0.014 1.02 -0.009   0.013 0.001   0.011 0.004   0.014 1.03 -0.010   0.011 0.001   0.012 

Psuedo-R2 0.176 0.511 0.625 0.185 0.511 0.625 

AIC 2671.9 2470.0 2402.4 2595.9 2472.0 2404.4 

Overdispersion 1.88 1.20 0.94 0.02 <0.001 <0.001 

Moran’s I p-value (one-tail test) <0.001 0.999 0.335 <0.001 0.999 0.531 

# selected eigenvectors --- 41/137 53/358 --- 41/137 53/358 

Significance codes: ***0.001, **0.01, *0.05 

Note: NB denotes negative binomial, MESF denotes Moran eigenvector spatial filtering, MESF-Pos denotes spatial eigenvector spatial filtering model 

with positive spatial autocorrelation eigenvector only, MESF-Mix denotes spatial eigenvector spatial filtering model with both positive and negative 

spatial autocorrelation eigenvector, and vif denotes variance inflation factor
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Moran’s I test based on the method by Lin and Zhang (2007) indicates the presence of SA in the 

standard Poisson model residuals, NSA in the MESF-Pos model residuals, and insignificant SA 

in the MESF-Mix model residuals. These Moran’s I statistics suggest that the standard Poisson 

model fails to account for SA in the cancer rates, and that the MESF-Pos model accounts for 

PSA components but still is unable to address a NSA component, leaving significant NSA in the 

residuals. In contrast, the MESF-Mix model successfully accounts for both PSA and NSA 

components. Hence, the MESF-Mix model is preferred to the other two models, especially from 

a SA perspective. This outcome suggests a possible mixture of PSA and NSA components in the 

data, although the global Moran’s I exhibits only PSA in the residuals of the standard Poisson. 

Figure 3.2 portrays the two spatial filter components of the MESF-Mix model. Figure 3.2a 

portrays a PSA-only spatial filter component that is a linear combination of selected PSA 

eigenvectors, and Figure 3.2b depicts a NSA-only spatial filter component that is a linear 

combination of selected NSA eigenvectors. 

 

Accounting for SA leads to significance level changes for estimated covariate coefficients. First, 

one independent variable is not significant in the standard Poisson specification, but becomes 

significant at the 5% level in both MESF model specifications; it is the percentage of Hispanic 

population. Second, two independent variables have different significance results between the 

two MESF model specifications. The percentage of younger female population is significant in 

the standard Poisson specification and the MESF-Pos model, but is not significant at the 5% 

level in the MESF-Mix model. The percentage of well-educated population is not significant at 

the 5% level in the standard Poisson and MESF-Pos models, but is significant in the MESF-Mix 

models at the 1% level.  
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(a) 

 

 

(b) 

 
(c) 
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Figure 3.2. Spatial filter components in the Poisson Moran eigenvector spatial filtering 

specifications for the census tract resolution: (a) the positive spatial autocorrelation spatial filter 

component [Moran’s I (z-score, p-value): 0.59 (20.02, < 0.0001)], (b) the negative spatial 

autocorrelation spatial filter component [Moran’s I (z-score, p-value): −0.25 (−8.14, <0.0001)], 

and (c) the spatial autocorrelation mixture spatial filter component [Moran’s I (z-score, p-value): 

0.37 (12.36, <0.0001)]. (Note that the p-values are calculated for a two-tail test.) 

 

Results for the three NB regression models align with those for the Poisson specifications. The 

NB MESF-Mix specification outperforms the others by having the smallest AIC and the largest 

pseudo-R2 values. Also, as for the Poisson specifications, the Moran’s I tests suggest the 

presence of PSA in the standard NB residuals, NSA in the first MESF model residuals, and no 

SA in the second MESF model residuals. This result indicates a potential misspecification of the 

standard NB model as well as the first MESF model, similar to the Poisson case. The three NB 

models have coefficients very similar to their Poisson counterparts, and the significance levels 

for these estimated covariate coefficients are almost the same. Especially, the Poisson and NB 

MESF-Mix models have almost identical coefficients and significance levels. This outcome 

confirms that a Poisson specification produces the same results as a NB model specification 

when overdispersion is successfully explained, and a NB specification with additional 

parameters that capture extra variance does not produce a better model description of SA for 

these particular breast cancer data. In other words, successfully accounting for SA renders a 

more parsimonious model specification.  

 

Table 3.2 also indicates that the following three significant covariates at the 5% level appear in 

the Poisson MESF-Mix model: the percentage of Hispanic population, the percentage of well-

educated population, and the percentage of foreign born population. The regression coefficient 

estimates suggest that, on average, the percentage of Hispanic population (−0.223) and foreign 

born population (−0.387) with less education (0. 564) is less likely to develop breast cancer. 

This observation is consistent with findings stated in the literature. For example, Hussain et al. 

(2008) state that increased risk for in situ and invasive breast cancer is significantly associated 

with highly educated females; however, better educated females are more likely to survive breast 

cancer. DeSantis et al. (2014) find that the Hispanic population has a relatively lower breast 

cancer incidence rate. Carrière et al. (2013) also use an area-based methodology identify an 
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inverse relationship between breast cancer incidence rates and the concentration of foreign-born 

population in Canada. However, they argue that this association is difficult to interpret due to 

limited information of the study area, such as socio-economic status and health behaviors. 

 

Table 3.3 summarizes the INLA estimation results for Poisson and NB model specifications. The 

INLA Poisson model results are comparable with those for the GLM standard Poisson model 

appearing in Table 3.2, identifying the same significant variables: the percentage of females 

younger than 45, and the percentage of foreign born population. In addition, the parameter 

estimates of the BYM Poisson (BYM-Pos) model are comparable with those for the Poisson 

MESF-Pos model in Table 3.2. Three variables appear significant in both of these specifications: 

the percentage of Hispanic population, the percentage of female population younger than 45, 

and the percentage of foreign born population. Similarly, a majority of the variables have almost 

identical coefficient estimates; one exception is the female population density. Figure 3.3 

illustrates the spatial pattern captured by the random effects terms with the BYM-Pos model 

(Figure 3.3a), and by eigenvectors with the Poisson MESF-Pos model (Figure 3.3b). These map 

patterns are very similar, with clusters of high values observed in the south, and clusters of low 

values in the north and the east coastal areas. A comparison of these model results indicate that 

the BYM-Pos and Poisson MESF-Pos model specifications produce very similar results. This 

outcome may indicate that the Bayesian model successfully accounts for PSA but not the SA 

mixture component in the data.  
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Table 3.3. Estimation results for Poisson and negative binomial model specifications with the Besag-York- Mollié algorithm  
  INLA Poisson Poisson-BYM INLA NB NB-BYM 

  coeff. std. error coeff. std. error coeff. std. error coeff. std. error 

Intercept 0.054   0.377 0.206   0.425 0.075   0.381 0.214   0.431 

Female population density -2.182   5.327 -4.384   5.325 -2.410   5.371 -4.541   5.421 

% of black population -0.047   0.079 -0.111   0.093 -0.050   0.079 -0.112   0.094 

% of Hispanic population 0.008   0.131 -0.342 * 0.166 0.002   0.132 -0.314   0.168 

% of females younger than 45  -0.456 ** 0.145 -0.408 ** 0.154 -0.455 ** 0.147 -0.400 ** 0.157 

% of female householders -0.665   0.672 -0.477   0.312 -0.683   0.689 -0.469   0.301 

% of well-educated females 0.402   0.206 0.388   0.217 0.397 * 0.208 0.362 * 0.220 

Median household income 0.005   0.040 0.000   0.041 0.004   0.040 0.001   0.042 

Urban/rural disparities 0.079   0.054 0.034   0.059 0.076   0.055 0.040   0.059 

% of foreign born population -0.513 *** 0.142 -0.387 ** 0.146 -0.505 *** 0.143 -0.413 ** 0.148 

Physicians per 1,000 people <0.001   <0.001 <0.001   <0.001 <0.001   <0.001 <0.001   <0.001 

Watanable AIC 2576.2 2529.3 2596.1 2541.4 

DIC 2573.7 2511.5 2593.8 2536.7 

Significance codes: ***0.001, **0.01, *0.05 

Note: NB denotes negative binomial, MESF denotes Moran eigenvector spatial filtering, BYM denotes Besag-York- Mollié, INLA denotes integrated 

nested Laplace, and vif denotes variance inflation facto
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(a) 

 

(b) 

Figure 3.3. Estimated spatial effects: (a) the random effects term estimated with the BYM-Pos 

model [Moran’s I (z-score, p-value): 0.66 (25.23, < 0.0001)], and (b) the positive spatial 

autocorrelation spatial filter component estimated with the Poisson MESF-Pos model [Moran’s I 

(z-score, p-value): 0.61 (20.60, < 0.0001)]. 

 

A comparison of the standard NB model estimates appearing in Tables 3.2 and 3.3 indicates that 

the estimated regression coefficients are almost identical for all variables, and significant 

variables in both models are the same. The estimated coefficients for the NB MESF-Pos and 

BYM NB (BYM-NB) models are very similar, except for two variables: female population 

density, and urban/rural disparities. Two variables are significant in both models; the percentage 

of females younger than 45 variable is significant in the NB MESF-Pos model, wheras it is 

nonsignificant in the BYM-NB model. These results indicate that the NB MESF-Pos model is 

comparable with the BYM-NB model because they yield similar results, which may suggest that 

the BYM-NB model, unlike the NB MESF-mix model, is unable to account for positive and 

negative SA simultaneously.    
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3.5 Conclusions 

This research utilizes the MESF methodology to uncover a SA mixture pattern in breast cancer 

data for Broward County, FL. Several conclusions can be drawn from an investigation of model 

specification issues with a breast cancer dataset for Broward County, FL. First, MESF model 

specifications successfully improve model performance. Specifically, the MESF-Pos models 

outperform the standard Poisson and NB models with a successful correction for PSA; however, 

the MESF-Pos model specifications leave significant NSA unexplained in the model residuals. 

The MESF-Mix models further improve model performance with the smallest AIC and the 

largest pseudo-R2 values by accounting for both latent PSA and NSA components, with the 

Moran’s I statistics suggest no SA in the MESF-Mix model residuals. These regression results 

and the spatial filter maps confirm a possible presence of a mixture of PSA and NSA in the age-

adjusted rates, although the Moran’s I suggests PSA only in the standard Poisson and NB model 

residuals, possibly because the PSA component outweighs the NSA component. This empirical 

analysis implies that the MESF-Mix model specification furnishes an efficient method to account 

for SA mixture components in georeferenced data.  

 

Second, the BYM-Pos model generates results very similar to those for the Poisson MESF-Pos 

model, although they have very different model structures, which indicates that both the MESF 

and BYM models can furnish useful approaches to accommodate PSA in georeferenced data. 

However, a BYM model is limited in its ability to explain the presence of a PSA-NSA mixture 

because it fails to account for the hidden NSA that may be partially or fully masked by a globally 

dominating PSA component. This paper shows that MESF can address PSA and NSA 

components simultaneously with a set of PSA and NSA eigenvectors. Essentially, the PSA 

eigenvectors capture the PSA component, whereas NSA eigenvectors capture the NSA 

component. The difference in structure between a MESF and BYM model is worth noting here 

because the latter is based on a conditional autoregressive model with a first order variance 

structure, whereas the former can represent either a first- or a second-order variance structure 

(e.g., a simultaneous autoregressive model). 
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Third, excess Poisson variation is successfully accounted for by the MESF model specifications. 

Overdispersion is observed in the standard Poisson specification, and decreases in the MESF-Pos 

model specifications. Furthermore, the estimate of the overdispersion parameter becomes very 

close to one when both positive and NSA eigenvectors are included in an MESF model 

specification. This outcome confirms the impact of SA on overdispersion, as reported in the 

literature (e.g., Griffith 2007, Haining et al. 2009, Chun and Griffith 2011). The NB model 

specifications are not necessary when overdispersion is properly explained, and the need for a 

NB specification may suggest that overdispersion in the standard Poisson and MESF-Pos models 

is an outcome of model misspecification in terms of mixtures of PSA and NSA. 

 

Fourth, the two different cancer rate measurements, crude rates and age-adjusted rates, reveal 

somewhat different spatial patterns of breast cancer incidence rates. Both the crude and age-

adjusted rates visually exhibit PSA patterns that also are confirmed by Moran’s I tests. However, 

the degree of PSA is stronger for the crude rates than for the age-adjusted rates; these 

discrepancies between the two rate measures may result from the generation of clusters of 

dissimilar rates while adjusting for cancer rates. For example, outliers (e.g., high adjusted cancer 

rates) can be triggered by small population counts in age cohorts, which potentially can distort 

the spatial structure of cancer rates. Although the Moran’s I statistics in Figure 3.1 indicate the 

age-adjusted rates display PSA, clusters of similar and dissimilar values are simultaneously 

observed in the maps. The results of MESF model estimations also imply the presence of SA 

mixtures in these data.  

 

Fifth, the MESF-Mix models are preferred to others because they yield the smallest AIC and the 

largest pseudo-R2 values. These model results suggest that, on average, a higher breast cancer 

risk is associated with better educated non-Hispanic and non-foreign born females, which 

corroborates findings from previous studies. Age is considered as a critical risk factor for breast 

cancer, but the younger female population variable is insignificant for both resolutions. This 

outcome may be because the impact of age is already addressed in age-adjusted cancer rates.  
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Findings summarized in this paper can be further leveraged with future research. Mixtures of 

PSA and NSA need additional theoretical investigations to better understand their impact on 

modeling georeferenced data. Because findings reported in this paper are based on a single 

empirical data analysis, subsequent data analyses for other cancer types and study areas would 

better illuminate general aspects of the geographic distribution of cancer cases, such as the data 

containing a mixture of PSA and NSA, and contribute to the replicability of findings reported 

here. 
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CHAPTER 4 

SPACE-TIME STATISTICAL INSIGHTS ABOUT GEOGRAPHIC VARIATION IN 

LUNG CANCER INCIDENCE RATES: FLORIDA, 2000-2011 
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ABSTRACT 

The geographic distribution of lung cancer rates tends to vary across a geographic landscape, and 

covariates (e.g., smoking rates, demographic factors, socio-economic indicators) commonly are 

employed in spatial analysis to explain the spatial heterogeneity of these cancer rates. However, 

such cancer risk factors often are not available, and conventional statistical models are unable to 

fully capture hidden spatial effects in cancer rates. Introducing random effects in the model 

specifications can furnish an efficient approach to account for variations that are unexplained due 

to omitted variables. Especially, a random effects model can be effective for a phenomenon that 

is static over time. The goal of this paper is to investigate geographic variation in Florida lung 

cancer incidence data for the time period 2000–2011 using random effects models. In doing so, a 

Moran eigenvector spatial filtering technique is utilized, which can allow a decomposition of 

random effects into spatially structured (SSRE) and spatially unstructured (SURE) components. 

Analysis results confirm that random effects models capture a substantial amount of variation in 

the cancer data. Furthermore, the results suggest that spatial pattern in the cancer data displays a 

mixture of positive and negative spatial autocorrelation, although the global map pattern of the 

random effects term may appear random. 
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4.1 Introduction 

Spatial scientists, practitioners, and policy makers are interested in understanding the spatial 

variation in cancer rates at various geographic scales and resolutions (e.g., d’Onofrio et al., 

2016). One commonly employed geographic resolution is the county, because aggregating 

especially counts of rare cancer cases by county for ecological analyses almost always preserves 

patient confidentiality (Wieland et al., 2008). This ethical and legal goal is at the expense of data 

analysis accuracy and precision, as well as data analytic complications such as the ecological 

fallacy. Meanwhile, depicting finer geographic resolution rates with choropleth or kernel density 

smoothed maps can maintain patient confidentiality while improving data analysis accuracy and 

precision (e.g., Lee et al., 2018), and help avoid or minimize such complications as the 

ecological fallacy. 

 

Often, one objective of such research is to investigate associations between cancer rates and 

socio-economic/demographic characteristics. The availability of such covariates, generally 

retrieved from government census publications, tends to be very limited for fine geographic 

resolutions (e.g., census blocks). Furthermore, as a rare event, many cancer rates are often zero 

in a sizeable number of areal units at a very fine geographic resolution. Because a spatial 

analysis of cancer rates defies conducting scientific human subject experiments on ethical 

grounds, and, hence, is observational/correlational in nature, researchers seldom have a priori 

information about covariates that would make significant contributions to the geographic 

variation in cancer rates. Quasi-experimental designs have uncovered selected surrogate 

covariates supportable by scientific rationales, such as income/poverty and access to cancer 

screening/diagnosis/treatment (e.g., Smith et al., 2017), age and increased risk of developing 

cancer (e.g., Roquette et al., 2018), and education and lifestyle cancer-prevention behaviors (e.g., 

Wang et al., 2018). 

 

A random effects (RE) model seeks to control for time-invariant unobserved heterogeneity in 

data. RE may be viewed as areal unit specific effects attributable to unknown latent variables. 

Although omitted variables influence a regression analysis of georeferenced cancer rates, 
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introducing a RE term can account for some of their effects. With regard to RE, Besag et al. 

(1991) specify that their geographic distributions comprise the following two components: 

spatially structured random effects (SSRE), and spatially unstructured random effects (SURE). A 

Bayesian hierarchical model, in which a prior distribution can substitute for repeated measures in 

a space-time series, can be specified to estimate both SSRE and SURE terms. In this Bayesian 

context, a SSRE component often is modelled with a conditional autoregressive (CAR) 

specification that captures spatial autocorrelation (SA) (SA refers to Tobler’s first law of 

geography: everything is related to everything else, but nearby phenomena are more related than 

distant phenomena. In other words, either similar (positive SA) or dissimilar (negative SA) 

attribute values tend to cluster together on a map. Georeferenced data rarely are void of map 

pattern (i.e., have no SA)) latent in georeferenced data, and a SURE component is specified with 

an independent normal distribution. In this specification, SA is accounted for directly through 

parameters. In contrast, for space-time data, a second-order model is specified in which SA is 

accounted for through correlations among observations. That is, repeated measures are furnished 

for each spatial unit over time in a space-time data series. In this paper, an estimated RE term 

represents omitted variables, indicating that geographic distributions of cancer rates contain a 

considerable amount of unexplained variation, particularly at the census tract resolution. This 

cancer data expectation is attributable to the lengthy exposure lag that characterizes many 

cancers (i.e., a cancer being triggered long before its actual diagnosis), combined with the 

movement of people, and the departure of carcinogenic sources over time. 

 

The specification of Besag et al. (1991) addresses only positive SA (PSA) situations. More 

recently accumulated empirical evidence indicates that a number of georeferenced phenomena 

seemingly exhibiting (near-) zero SA actually contain a mixture of PSA and negative SA (NSA) 

as two compensating components (Griffth and Arbia 2010). PSA arises from cooperative 

processes that involve intensifying spatial externalities, whereas NSA arises from competitive 

processes that involve abating spatial externalities. In this paper, a SSRE term consistently 

decomposes into a PSA-NSA mixture, which is barely investigated in the literature. Possible 

reasons for this mixed spatial pattern in cancer data include: (1) that geographic distributions of 

cancer cases display some degrees of global, regional, and local map patterns, which potentially 
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arise from a collocation of similar socio-economic/demographic characteristics in space (e.g., the 

Schelling model) (e.g., Mao et al., 2001); and (2) that these geographic distributions may display 

a degree of alternating map pattern trend because of local social networks that can induce an 

increasing cancer screening rate when someone in a neighborhood has a positive cancer 

diagnosis. 

4.2 Literature review 

A number of risk factors that are associated with lung cancer incidence have been examined and 

characterized in the literature (e.g., MacLennan et al., 1977; Mao et al., 2001; Molina et al., 

2008); cigarette smoking is the most well-known factor that can trigger lung cancer. Studies also 

show that nonsmokers exposed to secondhand tobacco have higher risks of developing lung 

cancer (e.g., Alberg and Samet 2003). Other life style related risk factors, such as an unhealthy 

diet and alcohol consumption, increase the risk of developing lung cancer (e.g., Feskanich et al., 

2000). Another suspicious contributor to human lung cancer burden is outdoor air pollution (e.g., 

fine particulate matter and a concentration of ozone); a number of studies examine, and the 

findings support, an association between air pollution and lung cancer risk (e.g., Pope et al., 

2002; Vineis et al., 2004). 

 

Indicators of socio-economic status also tend to be highly correlated with lung cancer risk. Due 

to their availability, the use of these variables has been popular amongst researchers to describe 

lung cancer incidence rates in the literature. For example, Mao et al. (2001) report a significant 

inverse relationship between high socio-economic status, and lung cancer risk. Socio-economic 

status reflects one’s lifestyle, including diet, working and living conditions, enabling them to be 

treated as surrogates, and assumed to be associated with lung cancer (Osler 1993; Pomerleau et 

al., 1997). Specifically, the part of the population with lower socio-economic status (e.g., less 

educated, below a poverty level, unemployed) tends to have a higher risk of developing lung 

cancer than their counterparts that are classified with higher socio-economic status (Alberg et al., 

2005). 
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In addition, the risk of developing lung cancer tends to vary across racial/ethnic, age, and sex 

groups. Alberg et al. (2005) argue that lung cancer incidence rates are similar for African and 

white Americans; however, a higher risk is observed for black American men than white 

American men. Haiman et al. (2006) comment that this difference is attributable to varying 

smoking behaviors among these ethnic/racial groups. Some case-control studies suggest higher 

risks of smoking-related lung cancer in women than men (e.g., Risch et al., 1993; Zang and 

Wynder 1996); however, this sex-difference in susceptibility to lung cancer still lacks supporting 

evidence. Age has been an important risk factor for most of cancers; the risk of lung cancer 

increases as age increases, seemingly as a part of the natural maturation process. Studies also 

report that immigration status plays a role in lung cancer risk; for example, United States (U.S.). 

Asian immigrants have higher lung cancer mortality rates than their U.S.-born counterparts; 

whereas the rates are lower among U.S. black immigrants than U.S.-born blacks (e.g., Singh and 

Miller 2004), This variation may be attributable to differences in smoking prevalence between 

the U.S. and the countries of origin, and differences across socio-economic classes (e.g., Blue 

and Fenelon 2011; Bosdriesz et al., 2013). 

 

Lung cancer incidence rates generally are observed to vary substantially across geographic 

space. The literature suggest that air pollution is one of the major contributors to this geographic 

variation (Alberg and Samet 2003). For example, Jacquez and Greiling (2003) observe clusters 

of significantly high lung cancer incidence rates in central Long Island coinciding with a 

concentration of air toxics. The spatial variation of risk for lung cancer also is attributable to the 

geographic distribution of population. For example, Kelsall and Diggle (1998) report that the 

prevalence of lung cancer incidence is higher in areas with high social deprivation, which may 

directly link to smoking behavior and eating habits. A range of spatial models, including 

Bayesian space-time joint models (e.g., Richardson et al., 2006), spatial multilevel regression 

models (e.g., Jerrett et al., 2005), and conditional autoregressive models (e.g., Jin et al., 2005), 

have been applied to account for the geographic variation present in geospatial cancer data 

analyses. 
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A RE model frequently is utilized for a longitudinal data analysis exploiting repeated measures 

over time (Verbeke et al., 2010). For example, it has popularly been applied to model 

economic/social phenomena. Frondel and Vance (Frondel and Vance 2010) specify a RE model 

to estimate fuel price elasticities with household data. Clarke et al. (2010) use a model with both 

fixed and random effects to analyze the determinants of pupil achievement in primary school, 

finding that a RE model outperforms a fixed effects only model, based on statistical efficiency. 

Chen and Tarko (2014) employ a RE model to investigate traffic safety in highway work zones, 

with their results indicating that a RE model furnishes a good option for that type of research.  

4.3 Data and methodologies 

Lung cancer cases were obtained from the Florida cancer registry. After a data cleaning process 

that led to removal of duplicates (e.g., patients were diagnosed with lung cancer as a secondary 

cancer), records containing missing information (e.g., age and sex), and unsuccessfully geocoded 

records (i.e., failed-to-be-geocoded cases were deleted for the entire state, and then subsets were 

extracted from the clean dataset for specific study areas), 172,495 cancer incidences were used in 

data analyses. Cancer points are distributed unevenly across the 67 counties of the state, sample 

size ranging from 13,918 (Broward County) to 31 (Liberty County), with a median of 1,277 

(Santa Rosa County). These lung cancer incidences occurred in a 12-year span, from 2000 to 

2011. At the block group resolution, a relatively fine geographic resolution, many block groups 

have zero cancer incidences. In contrast, only 1.98% of the census tracts, a coarser geographic 

resolution, have zero cancer counts. To avoid the issue of excessive zeros, this research focuses 

on two geographic resolutions, namely county and census tract, for comparison purpose. In 

addition, this paper limits its study area to six different metropolitan statistical areas (MSAs) 

focusing on relatively highly densely populated areas in the state: Pensacola, Tallahassee, 

Jacksonville, Orlando, Miami, and Tampa. 

4.3.1. Lung Cancer Incidence Rates 

The crude cancer incidence rate, the ratio of cancer counts and population size at risk, generally 

is considered as a limited measure because cancer generally occurs at different rates based on 
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age, gender, and even racial group composition of a population. A comparison of crude cancer 

rates over time or across different geographic areas is likely to be plagued by bias because of 

different local population compositions (Anderson and Rosenberg 1998). Standardization of 

disease rates has been proposed to control for changes in population structure. Adjustments of 

cancer rates for age is a frequently applied standardization (Ahmad et al., 2001). The Centers for 

Disease Control and Prevention (CDC) also adopts this approach for statistical report purposes. 

With the availability of age and sex information for lung cancer patients, this research adjusts 

lung cancer incidence rates for both age and sex. 

 

Figure 4.1 portrays the geographic distribution of adjusted lung cancer incidence rates across the 

State of Florida and its six MSAs. The Moran coefficient (MC) and Geary Ratio (GR) statistics 

suggest adjusted cancer rates exhibit a very weak PSA map pattern at the county resolution 

(Figure 4.1a), and random spatial patterns at the census tract resolution (Figures 4.1b–4.1g). 

Compared with the crude lung cancer incidence rates summarized in the Appendix 4A (Figure 

A4), the standardization process tends to reduce spatial clusters of similar cancer rates (i.e., 

clusters of high values or low values), and generate alternating patterns (i.e., a low lung cancer 

rate is surrounded by high rates for its neighbors, or a high lung cancer rate is surrounded by low 

rates for its neighbors) at both the county and census tract resolutions. In addition, due to 

relatively small populations at the census tract resolution, rate adjustment triggers outliers (e.g., 

high cancer rates). For example, the highest adjusted cancer rate in the Miami MSA reaches 

2.73%, whereas the highest crude rate is 0.36%. Also, more census tracts stand out with high 

adjusted cancer rates compared with their corresponding crude ones. To mitigate negative 

impacts of extreme outliers, census tracts with small populations but some cancer counts are 

aggregated with their neighboring tracts for the analyses summarized in this paper. Specifically, 

the Miami MSA has 19 such census tracts that were merged into their adjacent tracts; the Tampa 

and Orlando MSAs have, respectively, five and one such census tracts. Most of these merged 

census tracts involve commercial, industrial, or coastal land use.
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MC:0.17, GR:0.83 

 
MC:−0.01, GR:0.99 

 
MC:0.08, GR:0.87 

 
MC:0.02, GR:1.02 
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MC:0.04, GR:0.97 
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Figure 4.1. The spatial patterns of adjusted lung cancer incidence rates. (a) the State of Florida counties. Census tracts for: (b) 

the Jacksonville MSA; (c) the Orlando MSA; (d) the Miami MSA; (e) the Pensacola MSA; (f) the Tallahassee MSA; (g) the 

Tampa MSA
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4.3.2. Moran Eigenvector Spatial Filtering 

Moran Eigenvector spatial filtering (MESF) is a spatial statistical methodology that introduces a 

set of eigenvectors into a regression model specification to capture SA. Eigenvectors can be 

extracted from a transformed spatial weights matrix 𝐂, which can be expressed as: 

 

𝐌𝐂𝐌 = (𝐈 − 𝟏𝟏𝑇/𝑛)𝐂(𝐈 − 𝟏𝟏𝑇/𝑛), (1) 

 

where I is an 𝑛-by-𝑛 identity matrix, 1 is a 𝑛-by-1 vector of ones, 𝑛 is the number of areal units, 

and 𝑇 is the matrix transpose operator. This transformed spatial weights matrix generates 𝑛 

eigenvectors; however, only a subset of them serves as independent variables to be included in a 

model specification (Griffith 2003). This subset can be identified from a candidate eigenvector 

set with a stepwise regression procedure (Chun et al., 2016). 

A RE model can be specified as: 

 

Y = XβX + Z + ε, (2) 

 

where Y denotes a response variable, X denotes a matrix of covariates, βX denotes regression 

coefficients for covariates, Z denotes a RE term, and ε denotes a regression error term. The RE 

term, Z, is commonly assumed to be normally distributed and uncorrelated with both covariates 

and residuals, and to have a mean of zero. In order to estimate the RE term and separate it from 

the residual error ε, additional information (e.g., repeated measures furnished in a space-time 

series, or priors in a Bayesian analysis) are necessary (e.g., Griffith 2006). A RE model can be 

further extended with MESF, in order to accommodate both SSRE and SURE terms 

simultaneously, as: 

 

Y = XβX + EkβE + ZSURE + ε, (3) 

 

where Ek denotes a subset of eigenvectors, and βE are unknown coefficients for these 

eigenvectors. EkβE furnishes a SSRE term, and ZSURE denotes a SURE term. That is, the RE 

term, Z, is decomposed into the linear combination of EkβE and ZSURE. Furthermore, a separation of 
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the selected eigenvectors, Ek, into PSA and NSA eigenvectors, can furnish a way to investigate PSA 

and NSA components in a SSRE. 

 

In this paper, space-time lung cancer counts (e.g., n-by-T = 67-by-12 for the county resolution) 

furnish the repeated measures for the response variable. The count variable is described with a 

Poisson probability model by including the logarithmic values of expected lung cancer counts as 

an offset variable. After a RE term successfully is estimated using the Poisson RE model, a 

MESF model is specified to estimate the SSRE and SURE components, with the estimated RE 

term as the independent variable. Essentially, a linear combination of the selected eigenvectors 

constructs a SSRE term, which is further decomposed into a PSA-NSA mixture (Griffith 2006), 

and the MESF model residual constitutes the SURE term. Poisson RE and MESF models were 

implemented in R 3.4.2.; the glmer procedure (package lme4) was utilized to estimate the RE 

components. 

4.4 Results and discussion 

This section summarizes analysis results for both county and census tract resolutions. Regression 

results for quasi-Poisson and Poisson RE models are compared, and the estimated RE 

components are portrayed with maps. 

4.4.1. The State Scale and County Resolution 

Seven variables were retrieved to describe lung cancer incidence rates at the county resolution, 

including smoking rates from the Florida Department of Health, and socio-economic variables, 

which are median household income, the percentage of population with a college or higher 

degree, the percentage of population below a poverty threshold, the percentage of Hispanic 

population, the percentage of black population, and immigrants, from the U.S. Census Bureau. 

Table 4.1 summarizes the estimation results for a Poisson RE model, as well as the results of a 

quasi-Poisson model for comparison purpose. It shows that the lung cancer data has considerable 

overdispersion (i.e., excess Poisson variation). However, the extra-Poisson variation successfully 

is accounted for in the RE model, with the overdispersion parameter decreasing from 13.36 to 
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2.15. Moreover, an inclusion of the RE term leads to an increase in the pseudo-R2, increasing it 

from 0.30 to 0.74. The VIF values are all less than 10 (e.g., O’brien 2007; Craney and Surles 

2002), indicating no excessive multi-collinearity among the covariates. 

 

Table 4.1 also reports standard errors increase in the Poisson RE model specification, which 

results in significance level changes for some covariates, compared with the results of the 

covariates-only quasi-Poisson specification. For example, the ratio of population with a college 

or higher degree, the ratio of population under poverty, and the ratio of black population become 

insignificant in the RE model. The immigrant variable is included mainly because the State of 

Florida has gained a large number of immigrants, and papers in the literature argue that lung 

cancer risk may vary among U.S. residents and immigrants, as discussed in the preceding 

background. However, the immigrant variable does not have a significant association with lung 

cancer risk in both models. The only significant variable in the Poisson RE model is the smoking 

rate, which exhibits a positive relationship with lung cancer risk. The estimated RE term has a 

mean of zero, and is not correlated with the covariates, as expected. 

 

Table 4.1. Estimation results for Poisson models at the county resolution. 

Variables 
Quasi-Poisson Model Poisson Random Effects Model 

Coeff. Std. Error VIF Coeff. Std. Error Cor. † 

Smoking   4.060 *** 0.317 2.158  1.355 * 0.994 <0.001 

Income −0.262  0.262 2.763  0.191  0.617 −0.034 

Education −0.983 * 0.443 4.150  1.116  0.928 <0.001 

Poverty −4.368 *** 1.027 7.584  1.608  2.191 <0.001 

Hispanic pop −0.027  0.161 4.738   0.051  0.074 0.074 

Black pop  1.587 *** 0.284 6.005 −0.627  0.427 0.067 

Immigrants −0.015  0.013 2.449   0.033  0.050 0.021 

Overdispersion 13.02 2.12 

Pseudo-R2 0.30 0.75 

Significance codes: ***0.001, **0.01, *0.05, ∙ 0.1. 

† This represents correlation coefficients between the RE term and the covariates. 

 

Figure 4.2 portrays the geographic distributions of RE components at the county resolution. The 

counties with high/low adjusted lung cancer rates in Figure 4.1a also are conspicuous in Figure 

4.2a, which captures the major spatial pattern of lung cancer rates. However, the MC values 

suggest that both the RE and SSRE terms contain trace amounts of SA, which means inclusion of 
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the covariates in the Poisson mixed model explains some degrees of the PSA component 

observed on Figure 4.1a. The p-values of the Shapiro-Wilk (S-W) normal diagnostic statistic 

indicate that neither closely conforms to a normal distribution. The decomposition of the SSRE 

term yields a mixture of moderate-to-strong PSA (Figure 4.2c) and moderate NSA (Figure 4.2d). 

The p-values of the S-W statistic indicate that SSRE-PSA and SSRE-NSA are normally 

distributed. The MC suggests no significant SA in the SURE component, and that it deviates 

from a bell-shape curve. 

 

 

MC: 0.080, P(S-W): <0.001 

 

MC: 0.027, P(S-W): 0.035 

 

MC: 0.616, P(S-W): 0.758 

(a) (b) (c) 

 

MC: −0.506, P(S-W): 0.159 

 

MC: 0.104, P(S-W): 0.001 

(d) (e) 

Figure 4.2. Spatial patterns of RE components for the county resolution. (a) the RE term; (b) the 

SSRE term; (c) the SSRE-PSA term; (d) the SSRE-NSA term; (e) the SURE term. 
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4.4.2. The Metropolitan Statistical Area Scale and Census Tract Resolution 

Smoking prevalence data are not available at the census tract resolution. So only socio-economic 

and demographic variables were included to describe lung cancer incidence rates. Results for 

Poisson RE models for each MSA are compared with covariate-only quasi-Poisson regression 

results. The overdispersion values larger than one in Table 4.2 indicate the lung cancer counts 

are slightly overdispersed for all MSA cases. However, all of them get closer to one for the 

mixed models. The pseudo-R2 increases suggest improvements of model performance for all 

MSAs. A comparison of Tables 4.2 and 4.3 shows that standard errors get larger for the Poisson 

RE model specifications, which may have an impact on the significance level of independent 

variables. Including the RE terms also enhances model performance; all RE specifications have 

larger pseudo-R2 values. 

 

Tables 4.2 and 4.3 show that median household income is significant in all specifications, and 

has a negative association with lung cancer risk. Although the well-educated population variable 

is significant in some cases, exhibiting an inverse relationship, the population below poverty 

variable tends to be positively associated with lung cancer rates. The relationships between these 

socio-economic indicators and lung cancer risk corroborates the findings in the literature (e.g., 

Ward et al., 2004; Clegg et al., 2009). For demographic factors, the estimated results suggest 

lower lung cancer risks for Hispanics, blacks, and immigrants. Stellman et al. (2003) comment 

that the white and black populations have similar lung cancer risks if their smoking habits are 

similar. However, studies (e.g., Muscat et al., 2002) find that Caucasians are more likely to be 

heavier smokers than African-American, which makes them more susceptible to lung cancer. 

Singh and Miller (2004) observe that although lung cancer risk varies among different 

racial/ethical groups, it tends to be lower among U.S. immigrants due to a relatively lower 

smoking prevalence. 

 

Intercept-only RE models are specified for each study area to examine the spatial variation in 

lung cancer incidence rates. Table 4.4 summarizes the amount of variation explained by the RE 

terms. It indicates that the RE terms explain a substantially smaller amount of variations at the 
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census tract resolution than at the county resolution. In addition, this percentage varies across the 

six MSAs, with the Tallahassee MSA having the lowest statistical explanation (11.64%), and the 

Pensacola MSA having the highest statistical explanation (27.13%). The average percentage of 

variation accounted for by the RE terms is roughly 21%, indicating a tremendous amount of 

unexplained geographic variation in lung cancer rates, particularly at the census tract resolution. 

Figure 4.3 depicts the amount of variation accounted for by each RE component beyond that by 

the covariates. The SSRE and SURE components constituting a RE term explain almost the same 

amount of variation across all MSAs. Meanwhile, for the two sub-terms of the SSRE, the SSRE-

NSA term outperforms the SSRE-PSA term for the Orlando, Pensacola, Tallahassee, and Tampa 

MSAs. 

 

Figure 4.3. The amount of geographic variation in lung cancer incidence rates accounted for by 

the RE terms. The first bar is for Florida at the county resolution, and the other six are for the 

MSAs at the census tract resolution. 

 

Figure 4.4 portrays the spatial patterns of RE components for the six MSAs. Because the RE 

components account for relatively low percentages of the geographic variation at the census tract 

resolution, Figures 4.4a1–4.4a6 do not reflect the map patterns of adjusted lung cancer rates 

well; however, they capture high cancer rates in urban areas, and low rates in rural areas for most 

of the MSAs, which also are highlighted on their corresponding cancer rates maps. For example, 

Figure 4.4a3 highlights census tracts within Fort Lauderdale and Pompano Beach that have 

relatively high cancer rates, which also stand out in Figure 4.1d. The MCs imply a presence of 
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weak PSA in the RE components, except for the Pensacola and Tallahassee MSAs, and the p-

values of the S-W statistic indicate that they all barely conform to normal distributions. After a 

removal of the SURE components from the RE terms, stronger PSA is detected in the SSRE 

components, with increasing MC values for most MSAs (Figures 4.4b1–4.4b6). However, the 

SSRE components in the Pensacola and Tallahassee MSAs still exhibit (near-) zero SA. 

Similarly, a decomposition of these SSRE terms yields mixtures of moderate-to-strong PSA 

components (Figures 4.4c1–4.4c6) and weak-to-moderate NSA components (Figures 4.4d1–

4.4d6) for all MSAs. The p-values of the S-W statistic suggest that all of the SSRE-PSA and 

SSRE-NSA terms closely conform to normal distributions, except for the Jacksonville MSA. 

Map patterns displayed in Figures 4.4e1–4.4e6 appear random, an outcome confirmed by their 

insignificant MCs. All of the SURE components are normally distributed.
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MC: 0.693, P(S-W): 0.022 

 
MC: −0.332, P(S-W): 

0.010 

 
MC: 0.002, P(S-W): 0.125 
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MC: 0.100, P(S-W): 0.039 

 
MC: 0.173, P(S-W): 0.680 
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Figure 4.4. Spatial patterns of RE components at the census tract resolution. (a1-a6) the RE terms; (b1–b6) the SSRE terms; 

(c1–c6) the SSRE-PSA terms; (d1–d6) the SSRE-NSA terms; (e1–e6) the SURE terms. Rows from top to bottom: 

Jacksonville, Orlando, Miami, Pensacola, Tallahassee, and Tampa MSAs. 
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Figure 4.5. (Continued) Spatial patterns of RE components at the census tract resolution. (a1-a6) the RE terms; (b1–b6) the 

SSRE terms; (c1–c6) the SSRE-PSA terms; (d1–d6) the SSRE-NSA terms; (e1–e6) the SURE terms. Rows from top to 

bottom: Jacksonville, Orlando, Miami, Pensacola, Tallahassee, and Tampa MSAs. 
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Figure 4.6. (Continued) Spatial patterns of RE components at the census tract resolution. (a1-a6) the RE terms; (b1–b6) the 

SSRE terms; (c1–c6) the SSRE-PSA terms; (d1–d6) the SSRE-NSA terms; (e1–e6) the SURE terms. Rows from top to 

bottom: Jacksonville, Orlando, Miami, Pensacola, Tallahassee, and Tampa MSAs. 
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Table 4.2. Estimation results for quasi-Poisson model specifications at the census tract resolution. 

Variables 

Pensacola MSA Tallahassee MSA Jacksonville MSA Orlando MSA Miami MSA Tampa MSA 

Coeff. 
Std. 

Error 
Vif Coeff. 

Std. 

Error 
Vif Coeff. 

Std. 

Error 
Vif Coeff. 

Std. 

Error 
Vif Coeff. 

Std. 

Error 
Vif Coeff. 

Std. 

Error 
Vif 

Income −1.10 *** 0.19 3.25 −0.91 ** 0.17 2.68 −0.80 *** 0.09 2.46 −0.73 *** 0.07 1.75 −0.40 *** 0.03 1.75 −0.58 *** 0.05 1.77 

Education −0.62  0.33 2.80 0.43  0.40 2.32 −0.86 *** 0.20 2.56 −0.44 * 0.20 2.47 −0.35 *** 0.09 4.00 −0.56 *** 0.12 2.29 

Poverty 0.85 ** 0.31 3.15 0.94 * 0.37 3.15 0.12  0.19 2.66 1.23 *** 0.19 2.18 0.01  0.10 2.54 0.54 *** 0.11 2.24 

Hispanic pop 0.96  0.72 1.14 −0.68  0.54 1.14 0.81 *** 0.24 1.11 −0.58 *** 0.07 1.39 −0.51 *** 0.03 2.22 −0.17 *** 0.06 1.44 

Black pop −0.55 *** 0.13 2.56 −0.72 *** 0.16 2.15 −0.19 *** 0.06 2.10 −0.30 *** 0.07 1.95 −0.19 *** 0.03 1.92 −0.08 . 0.05 1.50 

Immigrants −6.61 * 3.12 1.16 −2.69  4.29 1.28 −3.07 . 1.60 1.06 −9.15 *** 1.32 1.29 10.21 *** 1.29 1.11 −6.06 ** 1.86 1.21 

Overdispersion 1.08 1.16 1.26 1.22 1.27 1.30 

Pseudo-R2 0.14 0.17 0.17 0.40 0.43 0.36 

Significance codes: ***0.001, **0.01, *0.05, ∙ 0.1. 

 

Table 4.3. Estimation results for Poisson RE model specifications at the census tract resolution. 

Variables 

Pensacola MSA Tallahassee MSA Jacksonville MSA Orlando MSA Miami MSA Tampa MSA 

Coeff. 
Std. 

Error 
Cor. † Coeff. 

Std. 

Error 
Cor. † Coeff. 

Std. 

Error 
Cor. † Coeff. 

Std. 

Error 
Cor. † Coeff. 

Std. 

Error 
Cor. † Coeff. 

Std. 

Error 
Cor. † 

Income −1.06 *** 0.27 0.02 −0.99 *** 0.23 0.08 −0.78 *** 0.12 <0.01 −0.79 *** 0.10 −0.02 −0.41 *** 0.05 <0.01 −0.65 *** −0.65 −0.04 

Education −0.79 * 0.48 0.01 0.53  0.56 −0.05 −0.86 *** 0.31 <0.01 −0.48 * 0.28 0.01 −0.47 *** 0.14 <0.01 −0.66 *** −0.66 <0.01 

Poverty 0.73  0.46 −0.01 0.91  0.48 −0.07 0.17  0.28 −0.01 1.02 *** 0.27 0.01 0.06  0.15 <0.01 0.30 * 0.30 0.05 

Hispanic pop 0.44  1.02 0.01 −0.61  0.79 0.10 0.86 *** 0.37 <0.01 −0.69 *** 0.10 0.01 −0.58 *** 0.04 <0.01 −0.17 *** −0.17 −0.02 

Black pop −0.50 *** 0.20 −0.01 −0.69 *** 0.22 −0.04 −0.17 *** 0.09 <0.01 −0.31 *** 0.10 <0.01 −0.27 *** 0.05 <0.01 −0.03  −0.03 −0.02 

Immigrants −7.82 * 4.52 0.02 −4.91  5.80 −0.05 −2.86  2.58 <0.01 −9.59 *** 1.95 <0.01 8.06 *** 2.13 <0.01 −9.33 *** −9.33 −0.02 

Overdispersion 1.03 1.12 1.10 1.06 1.09 1.07 

Pseudo-R2 0.19 0.23 0.22 0.44 0.51 0.45 

Significance codes: ***0.001, **0.01, *0.05, ∙ 0.1. 
† This represents correlation coefficients between the RE term and covariates. 

 

Table 4.4. The amount of variation accounted for by the RE terms. 

Models Florida 
Pensacola 

MSA 

Tallahassee 

MSA 

Jacksonville 

MSA 

Orlando 

MSA 

Miami 

MSA 

Tampa 

MSA 

RE models intercept-only 58.39% 27.13% 11.64% 25.14% 13.68% 24.46% 23.88% 

RE models with 

covariates 
58.19% 25.53% 9.91% 21.20% 11.14% 23.47% 22.98% 
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4.5 Conclusions 

This research examines the spatial patterns of lung cancer incidence rates at different geographic 

resolutions and scales in Florida, and also investigates factors that are associated with lung 

cancer risk. Major findings are as follows. First, lung cancer count data contain a substantial 

amount of overdispersion (13.36) at the county resolution, whereas they are much less 

overdispersed (less than 2) at the census tract resolution. A RE model specification successfully 

addresses this issue. Because the estimated overdispersion parameter is closer to 1 for the RE 

model specifications, substitution of a negative binomial model becomes unnecessary, which is a 

desirable outcome given reservations expressed by (Diggle and Milne 1983) concerning the 

suitability of this latter specification for SA situations. Second, a RE model furnishes an efficient 

method to correct for biased estimation (e.g., underestimated standard errors). Regression results 

indicate that an inclusion of a RE term, which can serve as a proxy for omitted variables, 

improves model performance (e.g., it increases pseudo-R2 values). Third, estimated results 

suggest that a risk of lung cancer is positively associated with smoking behavior, and the 

percentage of population with low socio-economic status (e.g., low household income, poor 

education), and negatively associated with the percentage of black/Hispanic population, and the 

percentage of immigrants. These positive/negative relationships corroborate findings already 

appearing in the literature.  

 

This research contributes to the literature in the following two ways. First, this research shows 

that the RE model specifications improve model performance by including a RE terms that 

successfully accounts for variation beyond that attributable to covariates. Here the RE terms 

account for 58.39% of the geographic variation in lung cancer incidence rates at the county 

resolution, and 21% of this variation, on average, at the census tract resolution. This outcome 

indicates that considerable unexplained variation exists in the lung cancer data at the census tract 

resolution. This poor statistical explanation probably is attributable to two major factors: one is 

aggregating cancer cases into a coarser resolution (e.g., county) averages out noises that present 

in a finer resolution (e.g., census tract) (Openshaw 1984). Second is due to the massive 

immigration to Florida. Generally speaking, population migration over time can contribute to a 
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change in cancer rates, and results in an introduction of a source of variation that is not well 

described with RE. A purposeful migration for health issues can have a large impact. For 

example, unhealthy immigrates would choose to move closer to health facilities, or move away 

from contaminated areas, whereas healthy people relocate to regions that are economically better 

off (e.g., Bentham 1988; Boyle et al. 2002).  Immigration, thus, may muddle disease rates in a 

region with rates increasing in some areas while decreasing in others (Hughes 2016). In addition, 

the State of Florida is a well-known destination for retired people. Such movement of elderly 

people can distort the age pyramid of the state, resulting in an impact on adjusted cancer rates.  

 

Second, the RE term comprises SSRE and SURE components; their MCs indicate the existence 

of weak-to-moderate PSA (e.g., the Miami MSA) or (near)-zero SA (e.g., the Tallahassee MSA) 

in the SSRE components. However, a decomposition of the SSRE terms explicitly shows that 

they essentially are mixtures of moderate-to-strong PSA and weak-to-moderate NSA. Griffith 

and Arbia (2010) utilize a two-SA-parameter spatial simultaneous autoregressive model to 

uncover a mixture of SA, where the PSA component counterbalances the NSA component. A 

discovery of SA mixtures has rarely been reported in literature, especially in epidemiology, and 

its detection can help researchers gain a better understanding of the geographic distribution of, 

geographic variation of, and risk factors for a disease. As discussed earlier, the moderate-to-

strong PSA largely is associated with the geographic distribution of socio-economic 

phenomenon (e.g., employment status, population migration), whereas the weak-to-moderate 

NSA likely is linked to mechanisms such as a decrease of lung cancer rates because of increasing 

cancer screening when lung cancer cases are detected in neighboring places.   

 

This study furnishes motivation for a number of future research efforts. First, a comparison of 

research outcomes at the county and census tract resolutions reveal a presence of substantial 

heterogeneity in lung cancer data, and more noise is expected if a spatial analysis is conducted at 

a finer resolution (e.g., block groups). Thus, extending current research to a finer resolution 

would be beneficial. Second, a comparison of crude and adjusted lung cancer incidence rates 

suggests the disappearance of some prominent spatial patterns (e.g., PSA) at both geographic 

resolutions. However, this observation has rarely been discussed in the literature, and hence a 
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further examination of rate standardization and/or more similar case studies is necessary. Third, 

to date, the literature about PSA-NSA mixtures is relatively scant. This study only explores the 

scenario that a weak-to-moderate PSA or (near)-zero SA can be partitioned into a mixture of 

moderate-to-strong PSA and weak-to-moderate NSA. Other scenarios (e.g., a global strong PSA; 

moderate NSA) remain to be investigated. Finally, SA mixtures are discovered in the lung cancer 

data in Florida. Similar research should be conducted to examine if consistent results would be 

obtained with different empirical data, or for different study areas.  
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4.6 Appendix A4. Crude Lung Cancer Incidence Rates Maps 
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Figure A4.1. The spatial patterns of crude lung cancer incidence rates. (a) the State of Florida 

counties. Census tracts for: (b) the Jacksonville MSA; (c) the Orlando MSA; (d) the Miami 

MSA; (e) the Pensacola MSA; (f) the Tallahassee MSA; (g) the Tampa MSA. 
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CHAPTER 5 

CONCLUSION 

This dissertation contributes to the understanding of negative spatial autocorrelation (SA), which 

has been largely neglected in the spatial analysis literature. It explores negative SA in two broad 

ways. First, it investigates the impacts of SA on the distributional characteristics of random 

variables (RVs), with a consideration of both negative SA and positive SA. This dissertation 

particularly focuses on the beta and multinomial RVs, which become increasingly important in 

GISciences but have not drawn a much attention in the literature. Second, this dissertation 

examines the presence of positive and negative SA mixture in empirical data and evaluates the 

capability of statistical model specifications in accommodating a mixture pattern of positive SA 

and negative SA. Detailed summaries and implications are discussed as below for each 

individual chapter. 

 

The second chapter evaluates the impact of SA upon the histograms of beta and multinomial 

RVs, considering both positive SA and negative SA. The most critical finding is that positive SA 

and negative SA behave differently when a RV is skewed Specifically, negative SA fails to 

converge on its maximum, and the gap between the maximum it achieves and the theoretical 

maximum becomes more conspicuous as a level of skewness increases. In contrast, positive SA 

always converges on its maximum and is not impacted by skewness. Second, the simulation 

results show that a RV mean is unaffected by SA. However, SA inflates variance, with this 

inflation becoming more pronounced as the SA level increases. Meanwhile, positive SA 

generally creates more inflation than negative SA. The third and fourth moments: skewness and 

excess kurtosis, can also be altered by SA. For example, while skewness remains unchanged 

when beta RV closely conforms on a normal distribution, it deviates from theoretical values 

when beta RV is positively or negatively skewed. 

 

The third chapter utilizes the Moran eigenvector spatial filtering (MESF) methodology to 

uncover a SA mixture pattern in breast cancer data for Broward County, FL. One major 

conclusion that can be drawn from it is that the MESF model specifications improve model 
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performance. Specifically, the MESF model that accounts for both positive and negative SA in 

the data is preferred. In contrast, both MESF with positive eigenvectors and Besag-York-Mollié 

(BYM) models successfully accommodate positive SA, but fail to address negative SA that may 

be hidden by a globally dominating pattern of positive SA. The analysis results confirm a 

possible presence of a mixture of positive and negative SA in the age-adjusted cancer rates, 

although the Moran’s I suggests positive SA only in the standard Poisson and negative binomial 

(NB) model residuals, possibly because the positive SA component outweighs the negative SA 

component. This empirical analysis implies that the MESF model specification with both 

positive and negative eigenvectors furnishes an efficient method to account for SA mixture 

components in georeferenced data.  

 

The forth chapter examines the spatial patterns of lung cancer incidence rates at different 

geographic resolutions and scales in Florida. There are two major contributions of this research. 

First, the results show that a random effects (RE) model furnishes an efficient method to correct 

for biased estimation (e.g., underestimated standard errors). The analysis results indicate that an 

inclusion of a RE term, which can serve as a proxy for omitted variables, improves model 

performance (e.g., it increases pseudo-R2 values). Second, the RE term comprises spatially 

structured RE (SSRE) and spatially unstructured RE (SURE) components; their Moran’s I 

statistics indicate the existence of positive SA (e.g., the Miami metropolitan statistical area 

(MSA)) or (near)-zero SA (e.g., the Tallahassee MSA) in the SSRE components. However, a 

decomposition of the SSRE terms explicitly shows that they essentially are mixtures of positive 

and negative SA. The positive SA largely is associated with the geographic distribution of socio-

economic phenomenon (e.g., employment status, population migration), whereas the negative 

SA likely is linked to mechanisms such as a decrease of lung cancer rates because of increasing 

cancer screening when lung cancer cases are detected in neighboring places. 

 

There are several limitations of this dissertation. First, a beta RV can mimic different RVs, 

however, this research only investigates three different RVs. For the multinomial RV, scenarios 

with only three categories are investigated in this study. Second, simulation experiments 

designed for this dissertation are based on a 30-by-30 square tessellation surface. Different 
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surface partitioning (e.g., a hexagonal/irregular tessellation) with different sizes and 

configurations are not evaluated. Third, the spatial analysis of lung cancer rates focuses on six 

MSAs which are relatively highly densely populated, spatial pattern and heterogeneity of cancer 

rates may differ in areas less populated. Overall, further theoretical investigations about negative 

SA and mixtures of positive and negative SA are necessary in order to better understand their 

impacts on modeling georeferenced data. Because findings reported in this dissertation are based 

on a simulation experiment and two empirical data analyses, subsequent and further data 

analyses would be insightful.  
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