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Band selection is a commonly used approach for dimensionality reduction in hyperspectral imagery.
Affinity propagation (AP), a new clustering algorithm, is addressed in many fields, and it can be used
for hyperspectral band selection. However, this algorithm cannot get a fixed number of exemplars during
the message-passing procedure, which limits its uses to a great extent. This paper proposes an adaptive
AP (AAP) algorithm for semi-supervised hyperspectral band selection and investigates the effectiveness
of distance metrics for improving band selection. Specifically, the exemplar number determination algo-
rithm and bisection method are addressed to improve AP procedure, and the relations between selected
exemplar numbers and preferences are established. Experiments are conducted to evaluate the proposed
AAP-based band selection algorithm, and the results demonstrate that the proposedmethod outperforms
other popular methods, with lower computational cost and robust results. © 2012 Optical Society of
America
OCIS codes: 100.2960, 100.5010, 300.6170.

1. Introduction

Hyperspectral image contains hundreds of spectral
bands with very fine spectral resolution, providing
a powerful data source for many applications. But
its high dimensionality and difficulty in a priori infor-
mation collection bring problems in data trans-
mission and supervised application, which also
presents a challenge to many traditional image anal-
ysis algorithms. To mitigate these problems, dimen-
sionality reduction technology,which eliminates band
numbers without decreasing critical information, has
been widely used in hyperspectral image analysis [1].

This reduction in the hyperspectral data could be
done by feature extraction or feature (band) selec-
tion [2–3]. In feature extraction, the original high-
dimensional data is projected into a low-dimensional
space with a certain criterion, but in band selection,
its objective is to find a small subset of bands contain-
ing important data information.

For feature extraction, since the data are
transformed, some critical information may be com-
promised and distorted, and the number of dimen-
sionality is difficult to estimate. Band selection is
preferable for hyperspectral image analysis because
the critical information is preserved from the original
data. In this paper, we focus on the band selec-
tion algorithm. However, band selection also suffers
from two similar issues encountered in the feature
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extraction. One is the number of bands that should
be selected in order to preserve necessary informa-
tion. Another is the criterion to be used for band se-
lection. For the first issue, the new concept of virtual
dimensionality has been proposed and used to esti-
mate the number of spectrally distinct signatures
in the hyperspectral image [4], and it has achieved
success in many hyperspectral applications [5]. For
the band selection criterion, because of the unavail-
ability of labeled information, many unsupervised
band selection algorithms have been addressed in
recent years. For example, liner prediction-based
band selection [6], maximum-variance principal com-
ponents analysis (MVPCA) and maximum-signal-
to-noise principal components analysis (MSNRPCA)
[7], linearly constrained minimum variance (LCMV)-
based band correlation minimization (BCM) [LCMV
(BCM)] and linearly constrained minimum variance
(LCMV)-based band correlation constraint (BCC)
[LCMV(BCC)] [8], particle swarm optimization [9],
and some distance metrics-based methods [10].

From the other perspective, band selection algo-
rithm can be viewed as a process of data clustering,
which partitions the dataset into groups (clusters)
and identifies the center of each cluster [11–12]. If
the cluster centers are the data that come from the
original space, they can be selected as the represen-
tative bands. All the representative bands are more
informative and independent than the other bands in
the original dataset by the clustering-based process
[12–13]. Hence, certain clustering algorithms can be
used for band selection under this assumption.
Recently, Frey and Dueck proposed a new cluster-
ing algorithm, affinity propagation (AP) [14–15].
AP is initiated by simultaneously considering all
data points as potential exemplars (cluster centers
that can be viewed as the interesting bands) and
exchanging real-valued messages between data
points, at last the clusters are formed by assigning
each data point to its most similar exemplar. Such
message-passing methods have been shown re-
markably efficient in hyperspectral unmixing and
band selection [16–17]. But for the AP algorithm,
an important problem to be addressed is that the
number of exemplars is influenced by the value of
preferences, that is, low preferences lead to a small
number of exemplars, while high preferences lead to
a large number of exemplars. So how to get a fixed
number of clusters (exemplars) is still an open
problem.

In this paper, we present an adaptive AP (AAP)
clustering algorithm with spectral angle mapper
(SAM) for hyperspectral band selection, in which
an AAP algorithm which provides a new way to get
the fix number of exemplars is addressed.

The rest of this paper is organized as follows. Sec-
tion 2 presents the proposed AAP algorithm for band
selection in detail and introduces some approaches
for performance evaluation. We present experimen-
tal results in Section 3 with three hyperspectral data,
and conclusions are drawn in Section 4.

2. Proposed Band Selection Method

A. AP Clustering

In order to use AP as the band selection algorithm,
we begin with a brief review of this model proposed
by Frey and Dueck for clustering data points [14].
Suppose that there is a dataset of centered random
vector x ∈ Rn withN observations xi, i ∈ �1;…; N�For
affinity propagation, the real-valued similarity col-
lection fs�i; k�g between data points was taken as in-
puts, where the similarity s�i; k� indicates how well
the data point with index k is suited to be the exem-
plar for data point i. Same as other clustering algo-
rithms, AP aims at finding a set of data points
C � fc1; c2;…; ckg in the original space X � fx1; x2;…;
xNg for each data point i as its exemplar. A value of
ci � k for i ≠ k indicates that data point i is assigned
to a cluster with point k as its exemplar, and ci � k
indicates that data point k serves as a cluster exem-
plar. When the goal is to minimize squared error,
the common negative Euclidean distance can be
computed by

s�i; k� � −‖xi − xk‖2: (1)

In s�k; k�, for each data point k, which with larger
values of s�k; k� are more likely to be chosen as exem-
plars, these values are referred to as “preferences,”
which play important roles in determining the num-
ber of exemplars; thus, low preferences lead to a
small number of exemplars, and high preferences
lead to a large number of exemplars. In most cases,
the value could be the median of the input similari-
ties or their minimum. Also, AP can be viewed as
searching through valid configurations of the labels
C � fc1; c2;…; cng to minimize the energy:

E�c� � −

XN
i�1

s�i; ci�: (2)

On the other hand, AP is a message-passing algo-
rithm. There are two kinds of messages: “responsibil-
ity” and “availability,” which are exchanged between
data points. In the algorithm, messages can be com-
bined at any stage to decide which points are exem-
plars and, for every other point, which exemplar it
belongs to. The responsibility r�i; k� is the message
sent from data point i to candidate exemplar point
k, reflecting the accumulated evidence for how well-
suited point k is as the exemplar for point i. The
availability a�k; k� is the message sent from candi-
date exemplar k to data point i, indicating how ap-
propriate it is that point i would choose candidate
k as its exemplar.

In the first place, all the availability initializes
from zero. Then, the responsibility and availability
will update by the following rules [14]:

r�i; k�←s�i; k� − max
k0s:t:k0≠k

fa�i; k0� � s�i; k0�g; (3)
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a�i;k�←min
�
0;r�k;k��

X
i0s:t:i0∈fi;kg

maxf0;r�i0;k�g
�
: (4)

It should be noted that, for k � i, the self-responsibil-
ity r�k; k� is set to the input preference at the point k
is chosen as an exemplar, s�k; k�, minus the largest of
the similarities between point i and all other candi-
date exemplars. The self-availability a�k; k� is up-
dated differently:

a�k; k�←
X

i0s:t:i0≠k

maxf0; r�r0; k�g: (5)

The above updating rules require only simple, local
computation and can be easily implemented with
Eq. (4), and messages need only be exchanged be-
tween pairs of points with known similarities. The
exemplar of each point i is determined by

c�i� � max
k

�a�i; k� � r�i; k��: (6)

The message-passing procedure may be terminated
by an iteration procedure, with changes in the mes-
sages falling below a threshold. However, in practice,
the updating rules in Eq. (3) and Eq. (4) often lead to
oscillations caused by “overshooting” the solution, so
the responsibility and availability messages are al-
ways “dumped” as follows:

M � λMold � �1 − λ�Mnew; (7)

where Mnew and Mold are the message values from
the previous and current iterations respectively;λ
is the damping factor ranging from 0 to 1. Frey and
Dueck suggest that the damping factor λ ≥ 0.5 is the
best value for experiments, which is considered as
the convergence of both speed and stability.

B. AAP as Band Selection

Suppose that a hyperspectral dataset consists of L
matrix Xi, 1 ≤ i ≤ L, where L is the number of wave-
bands, and each vector has M ×N dimensions. In or-
der to use the AP algorithm, the similarity matrix
S ∈ RL×L of hyperspectral image data should be pro-
vided, in which the element s�i; k��i ≠ k� measures
how well the band k can represent the band i. As
mentioned in the AP algorithm, different from other
clustering algorithms such as k-means, which re-
quires the number of clusters be prespecified, AP
takes a real number s�k; k� as input for each data
point k so that the preferences with larger values
of s�k; k� are more likely to be chosen as exemplars.
We can see that the value of preferences can deter-
mine the number of clusters. So in order to get the
identify band numbers, we established relations be-
tween the selected band number k and preferences:

pref � h − 10i�h − l�: (8)

First, we set i � −4; h and l are the highest and low-
est value in similarity matrix, respectively. Then we
execute the AP algorithm many times (i is increased
by 1 for each iteration, so the value of preference is
changed in each step) until the number of exemplars
is lower than k.

Second, we use the bisection method to find fixed
number k. The bisection method is a root-finding al-
gorithm that recursively bisects an interval, then for
further processing, selects a subinterval in which
a root must lie. This processing step is relatively
simple and robust. In the bisection method, the AP
algorithm was repeatedly executed by changed pre-
ferences using the following expression until we get
the exactly k clusters:

pref � 0.5h − 0.5l: (9)

Also, we set the damping factor as λ � 0.9. In the ex-
periments, the fixed numbers of exemplars from 5 to
25 were produced based on Eq. (8) and Eq. (9). So, a
novel band selection method that combines adaptive
k selection approach and the AP algorithm was put
forward as the following steps: AAP. The input, out-
put, and steps of the AAP are summarized as follows.

Input:

s�i; k�: Similarity of point i to point k.
k: How many bands are selected?
p�j�: Preferences array indicating the preference that
data point j is chosen as a cluster center.

Output:

idx�j�: Index of the cluster center for data point j.
dpsim: Sum of the similarities of the data points to
their cluster centers.
expref: Sum of the preferences of the identified clus-
ter centers.
netsim: Net similarity (sum of the data point simila-
rities and preferences).
pref: Final value of preferences for k bands.

Steps:

Step 1: Negative distance was used to compute the
similarity matrix S.
Step 2: All preferences are set to be the same value.
At first, the value of preferences is set by Eq. (8).
Step 3: Initialize the availabilities a�i; k� to zero.
Step 4: Update the responsibilities using the rule
in Eq. (3).
Step 5: Update the availability using the rule
in Eq. (4)
Step 6: After changes in the messages fall below a
threshold for some number of iterations, terminate
the iterations.
Step 7: Go to step 2, and change the preferences by
Eq. (8) and Eq. (9) to obtain more bands.
Step 8: Get the exemplars, i.e., the representative
bands of hyperspectral imagery.
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AAP takes a collection of real-valued similarities
between different bands as inputs, and in the AP, Eu-
clidean distance (EUD) is used as the initial input. In
the information field, the many metrics or informa-
tion distance can be used as similarity measures,
and all the similarities that are real and symmetric
distance can be used for the AAP algorithm. In fact,
there are significant differences when using different
distances for similaritymatrix.Other similarmetrics,
such as negative SAM, mutual information (MI),
Jeffreys-Matusita distance (JM), and spectral infor-
mation divergence (SID), are experimented and com-
pared in this paper. Because the similarity metric is
based on class signatures only, this AAP-based hyper-
spectral band selection is a semi-supervised method.

C. Computational Complexity and Methods for
Comparison

Table 1 lists the computational complexity of differ-
ent methods during the band selection process. For
the AAP, it is O�Kt�N�, compared to (O�N2 �Kt�
N� in the AP, O�Kt�N2� in the MVPCA and
MSNRPCA, where K is the number of bands and t
is the number of iterations. Obviously, the computa-
tional complexity of the AAP is smaller than MVPCA
and MSNRPCA, and it is also much lower than
LCMV(BCM) and LCMV(BCC), since N ≪ LN2.

In order to evaluate the performance of the AAP
algorithm, four widely used band selection algo-
rithms, MVPCA, MSNRPCA [7], LCMV(BCM) and
LCMV(BCC) [8], are used for the comparison.
MVPCA and MSNRPCA are two unsupervised band
selection methods derived from principal compo-
nents analysis (PCA). In these methods, the band
prioritization is based on an eigenanalysis, and ama-
trix is decomposed into an eigenform matrix, from
which a loading-factors matrix could be constructed
and used to prioritize bands. After all bands are
ranked in accordance with their associated priorities,
determined by the loading factors, a divergence-
based band decorrelation, which used the divergence
measure to remove redundant or insignificant bands,
are conducted for band prioritization. In LCMV
(BCM) and LCMV(BCC), they linearly constrain a
desired target signature while minimizing interfer-
ing effects caused by other unknown signatures.
BCM and BCC, which use LCMV to linearly con-
strain a band image, alsominimized band correlation

or dependence provided by other band images, by
interpreting a band image as a desired target signa-
ture vector while considering other band images as
unknown signature vectors.

D. Performance Evaluation

The selected bands are used for classification, and
the quality can be evaluated with classification accu-
racy. Because training and test samples are avail-
able, the support vector machine (SVM) is applied,
and the overall accuracy is used as the evaluation
criterion. The SVM classifier is selected due to its ex-
cellent performance when dealing with small-sized
training data. SVM discriminates two classes by fit-
ting an optional separating hyperplane to the train-
ing samples of two classes in a high-dimensional
feature space. In linearly inseparable cases, the in-
put space is mapped into a high-dimensional feature
space using a kernel function. Details of SVM are
available in [18].

3. Experiments and Discussion

A. Hyperspectral Digital Imagery Collection Experiment
(HYDICE) Washington, DC, Mall Experiments

A subscene of the Washington, DC, Mall image data,
Fig. (1), is used for a real data experiment. There are
210 bands from 0.4 to 2.4 μm in the visible and infra-
red wave range, and its spatial resolution is approxi-
mately 2.8 m. After removing some water absorption
bands, only 191 bands are used in the experiments.
Of the data, there are seven classes: roof, tree, grass,
water, road, trail, and shadow. Training and test
samples are available for this scene.

Figure 2 shows the overall classification accuracy
using SVM classifier from the DC Mall data. As we
can see, the proposed AAP-based band selection algo-
rithm significantly outperforms other methods. All
bands means classification accuracy using the origi-
nal data (before band selection), and its performance
is lower than that of the AAP (after band selection).
In this case, the performance of MVPCA and

Table 1. Computational Complexity of Band Selection
Methodsa

Methods Number of Multiplications

AAP O�Kt�N�
AP O�N2 �Kt�N�
MVPCA O�KL�N2�
MSNRPCA O�KL�N2�
LCMV(BCM) O�L� LN2�
LCMV(BCC) O�L� L2N � LN2�
aN is the number of pixels, L is the number of bands, K

is the number of bands, and t is the number of iterations.

Fig. 1. (Color online) Washington, DC, Mall data.
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MSNRPCA are higher than that of LCMV(BCM) and
LCMV(BCC).

Figure 3 presents classification maps when using
twelve bands. There was a substantial amount of
misclassification between trail (in yellow) and roof
(in orange) using all bands of original data. The
AP further enlarged the orange (roof) areas but
not significantly. The AAP using twelve bands could
significantly reduce the yellow (trail) areas.

B. HYMAP Purdue Campus Experiments

The dataset used in this experiment is a hyperspec-
tral remote sensed image of the Purdue University,
West Lafayette campus. The data was collected on
September 30, 1999, with the airborne mapper hy-
perspectral (HYMAP) system, providing image data
in the visible and infrared regions from 0.4 to 2.4 μm.
It includes six classes: road, grass, shadow, soil, tree,
and roof. The original image has 128 bands and about
3.5 m spatial resolution, and 126 bands participated
in band selection after bad-band removal. An image
of the scene is shown in Fig. 4.

Figure 5 illustrates the overall accuracy of classi-
fication based on SVM classifiers. From the results,
the proposed band selection algorithm performs bet-
ter than the others. MVPCA also performs better
when the feature number is larger, but the accuracy
of it is still lower than the proposed AAP method.
LCMV(BCM) and LCMV(BCC) generate the same
results, except in several band numbers; this is be-
cause the band selection results are almost the same,
and they get the worst results. In this experiment,
increasing the value of band numbers did not im-
prove the accuracy. Instead, the highest accuracy
appears when band number equals 12.

In order to evaluate the performance discrepancy
when using different similarity metrics for the AAP
algorithm, five distance metrics, such as SAM, EUD,
MI, JM, and SID, are conducted for the AAP-based
band selections. The experiment results are demon-
strated in Fig. 6; it is obvious that SAM provided

the best performance among all the metrics, such as
Euclidean distance, MI, JM, and SID, and JM metric
gives the worst results.

Fig. 3. (Color online) Classification maps of DC Mall data (with
twelve bands). (a) All bands (OA � 0.9340), (b) AP (OA � 0.8331),
and (c) AAP (OA � 0.9426)
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Fig. 2. (Color online) Classification comparison with different
band selection methods for DC Mall data.
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Figure 7 presents classification maps when using
twelve bands. The improvement in the vegetation
area (highlighted in the circles in pink) was obvious.
In the roof areas circled in blue, the AP could slightly

reduce the gray areas (for road) that were misclassi-
fied, but the AAP using twelve bands could more
significantly reduce the gray (and black) areas.

Fig. 4. (Color online) Purdue campus data.
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Fig. 5. (Color online) Classification comparison with different
band selection methods for Purdue campus data.
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Fig. 6. (Color online) Classification comparison with different
metrics in the AAP for Purdue campus data.

Fig. 7. (Color online) Classification maps of Purdue campus data
(with twelve bands). (a) All bands (OA � 0.8870), (b) AP
(OA � 0.8821), and (c) AAP (OA � 0.9379).
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C. Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Indian Pines Experiments

The AVIRIS subimage taken over northwest Indi-
ana’s Indian Pines, with 145 × 145 pixels and 202
bands (Fig. 8). In this dataset, sixteen different
land-cover classes were presented based on the
ground truth. Since training and test samples are
known, overall classification accuracy was computed
for evaluation using SVM outputs.

The purpose of this experiment is to demonstrate
the performance discrepancy on information changes
and computational complexity when using different
band selection methods. Figure 9 shows the informa-
tion preserved by the selected band using different
band selection approaches; the information wasmea-
sured by orthogonal projection divergence [19]. The
AAP contains the most information among all the al-
gorithms, and LCMV(BCM) takes second place. PCA
and LCMV variants performed quite similarly, while
LCMV(BCC) yielded the worst result when the band
number was larger. Once again, the performance of
the AAP could be better than MVPCA, MSNRPCA,
LCMV(BCM), and LCMV(BCC).

Table 2 tabulates the computing time when the al-
gorithms run in a personal computer with 2.26 GHz
CPU and 4.0 GB memory. We can see that the AAP
can save a significant amount of time, compared to
the traditional MVPCA, MSNRPCA LCMV(BCM),
and LCMV(BCC). Note that the running time of
the AAP does not include the time for similarity ma-
trix calculation, so it can approximately represent
the running time of the AAP algorithm; using differ-
ent similarity matrices based on signatures does not
have much impact on the convergence speed of
the AAP algorithms in these experiments. But the
similarity matrix based on original data will con-
sume much more time (AP).

Fig. 8. (Color online) Indian Pines data.
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Fig. 9. (Color online) Amount of information with different band
selection for Pines data.

Table 2. Computing Time of Different Algorithms for Indian Pines
Data (in Seconds)

K 5 10 15 20 25

AAP 44.37 32.70 50.57 36.50 47.30
AP 161.29 95.90 68.15 70.57 82.70
MVPCA 37.64 36.38 56.28 57.70 55.45
MSNRPCA 63.15 34.53 44.59 48.07 54.63
LCMV(BCM) 43.62 48.06 46.47 46.16 46.81
LCMV(BCC) 47.22 51.60 71.32 77.69 71.42

Table 3. Average Classification Accuracies Over 5–25 Selected
Bands with Different Techniques

DC Mall Purdue Pines

AAP 0.9375 0.9299 0.8125
AP 0.8240 0.8620 0.5330
MVPCA 0.8958 0.8948 0.6467
MSNRPCA 0.9182 0.8858 0.6590
LCMV(BCM) 0.8896 0.8427 0.7595
LCMV(BCC) 0.8914 0.8422 0.6185
All bands 0.9340 0.8870 0.7655
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Fig. 10. (Color online) Classification comparison with different
band selection methods for the Indian Pines data.
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D. Analysis and Discussion

For more details, Table 3 shows the average classifi-
cation accuracy over 5–25 selected bands with differ-
ent techniques for all datasets. Figure 10 represents
the average classification accuracy comparison of dif-
ferent band selection algorithms for all datasets.

From Table 3, for DC data, the AAP-based band
selection algorithm obtains the highest classification
accuracy (93.75% for SVM classifier), and LCMV is
about 5% lower than the proposed AAP algorithm;
MVPCA is 4.17% lower than the AAP. In the Purdue
campus data, the accuracy of the AAP is higher than
the LCMV by 8.77%, and higher than PCA variants
by 3.51% and 4.41%, respectively. In the Indian Pines
data, the AAP is higher than PCAvariants by 16.58%
and 15.35%, respectively; and LCMV variants are
lower than our method by 5.30% and 19.40%. We can
see that the original AP yielded the worst result.

Figure 10 illustrates classification comparison
with different band selection methods. It can be ob-
viously found that the proposed AAP algorithm out-
performs other band selectionmethods in these three
hyperspectral imagery data, especially in the Indian
Pines data. It is proved that SAM distance can be
an effective threshold to discriminate subset bands
and distinctive bands from the point of classification
tasks.

4. Conclusion

As one of the most important hyperspectral dimen-
sionality reduction methods, band selection has
received much attention for hyperspectral image
analysis. This paper presents a novel AAP-based
band selection algorithm for hyperspectral dimen-
sionality reduction; it also provides a novel procedure
for getting the fixed selected band numbers in the AP
algorithm. Different from the conventional methods
like k-mean and hierarchical clustering, the AAP
uses a message-passing procedure to search the ex-
emplars in the data points; it has several advantages
over other band selection methods. Experiments
have demonstrated that the proposed method can
provide robust and promising results and perform
better than other similar band selection algorithms.
In the experiment, we also found that SAM metric
outperforms other measures for hyperspectral im-
agery, and the computation complexity of the AAP
algorithm is much lower than other methods.

The authors would like to thank Dr. Qian Du at
Mississippi State University for providing the hyper-
spectral data used in the experiments. This work is
partially supported by the Program of National
Natural Science Foundation of China (nos. 40901200,

41171323, 41171321), the Priority Academic Pro-
gram Development of Jiangsu Higher Education
Institutions, and the Fundamental Research Funds
for the Central Universities (no. 2012B01614).
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