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Millions of people around the world suffer from epilepsy. Approximately 0.1 percent of

epileptic patients die from unexpected deaths. It is of a great value if technology can provide

a method to efficiently monitor the seizures and alert the caregivers to help patients. An

Electroencephalography (EEG) signal is able to discover any neuron’s misfiring or excessive

neural activity which can be a sign of a neurological disorder. It is proven that EEG signals

are the best markers for detection and diagnosis of the epileptic seizures. Frequency domain

features (like normalized in-band power spectral density) are known as most informative

attributes to extract meaningful information from EEG signals.

In this work, we addressed three main challenges in the area of epileptic seizure monitoring.

First, we proposed a channel selection method which selects the most informative EEG

channels out of full EEG channel set. We embedded high dimensional spectral features into

the low dimension space to improve the accuracy seizure detection. Second, we suggested two

novel imbalance learning techniques to address the problem of class imbalance in the seizure

dataset. Using this approach the classification models can better get trained and learn more

from seizure samples. Third, we proposed a personalized seizure prediction methodology

to extract footprint of seizure and identify pre-seizure attributes based on each patient’s

response that time. Using this approach, the accuracy of seizure prediction is improved since

only the most informative portion of pre-seizure data is used for prediction.

vi



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Epileptic Seizure Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State of knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 2 AUTOMATED SEIZURE DETECTION USING LIMITED-CHANNEL
EEG AND NON-LINEAR DIMENSION REDUCTION . . . . . . . . . . . . . . . 10

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Limited Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Motivation & Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Random Forest Based Technique . . . . . . . . . . . . . . . . . . . . 16

2.4 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Preservation Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 EEG Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.2 Study Design and Performance Evaluation . . . . . . . . . . . . . . . 27

2.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 3 IMBALANCE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Imbalance Learning Using Customized Neural Network . . . . . . . . . . . . 35

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 ANN architecture for imbalance learning . . . . . . . . . . . . . . . . 38

3.1.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Cluster based Imbalance Learning . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHAPTER 4 SEIZURE PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 EEG Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

CHAPTER 5 CONCLUSION AND FUTURE DIRECTION . . . . . . . . . . . . . 59

5.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CURRICULUM VITAE

viii



LIST OF FIGURES

1.1 Epileptic seizure monitoring methods. . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Overall architecture of our proposed method. . . . . . . . . . . . . . . . . . . . . . 12

2.2 Contribution of channels in a Random Decision Forest with 1000 trees. Taken from

patient 1’s data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 F1 measure accuracy of different iterations of exhaustive channel selection. The points

corresponding to the proposed channel selection are above the red line. . . . . . . . . 19

2.4 Precision and sensitivity of different iterations of exhaustive channel selection (black

points) versus proposed channel selection using random forest (red point). Note that

there are total of 1171 points here but many of them overlap each other. . . . . . . . 20

2.5 Patient 1 preservation ratio analysis (a) visualizing the seizure (red) and non-seizure

(blue) data points data points in two dimensional feature space using t-SNE. (b) visual-

izing the seizure (red dots) and non-seizure (blue dots) data points in two dimensional

feature space using PCA. (c) distribution of preservation ratio by t-SNE and PCA

during data mapping into 2D feature space. . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Per subject averaged nearest neighbor preservation ratio for 2D t-SNE (blue) and 2D

PCA (pink) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 International 10-20 system of EEG electrode replacement. . . . . . . . . . . . . . . . 29

2.8 2D t-SNE representation of seizure and non-seizure events for Patient 1 using different

channel selection techniques: single rule [61], information gain [20], mutual information

[5], variance [48], variance difference [25], and proposed random forest method. . . . . 30

2.9 A comparison between sensitivity of random forest based channel selection technique

and other techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Comparison of channel selection accuracy (F-measure). . . . . . . . . . . . . . . . . 34

3.1 The general view of our proposed methodology. . . . . . . . . . . . . . . . . . . . . 37

3.2 Overall view of our proposed methodology . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 2D visualization of seizure (red dots) and non-seizure (colorful dots) points. . . . . . 49

4.1 The general view of our proposed methodology. . . . . . . . . . . . . . . . . . . . . 52

4.2 Preictal Window Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Accuracy of seizure prediction as parameter of time to seizure for different window sizes

for patient 1 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Distribution of F-measure recorded for patient 1 . . . . . . . . . . . . . . . . . . . . 55

4.5 Number of patients for different accuracy target levels w.r.t different training window sizes 56

ix



LIST OF TABLES

2.1 EEG bandwidths and frequencies [58]. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Clinical Study Information (MIT dataset). . . . . . . . . . . . . . . . . . . . . 28

2.3 Average Sensitivity, Precision, FPR per hour and F-measure for different channel

selection techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Comparison of average F-measure for all subjects . . . . . . . . . . . . . . . . . . . 42

3.2 Top 6 patients for 100%, 50% and 33% of original IR . . . . . . . . . . . . . . . . . 43

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



CHAPTER 1

INTRODUCTION

1.1 Epileptic Seizure Monitoring

Epilepsy is a neurological disorder which can, if not controlled, potentially cause unexpected

injuries and even death. It is extremely crucial to have accurate automatic pattern recognition

and data mining techniques to detect the onset of seizures and inform care-givers to help the

patients. EEG signals are the preferred biosignals for diagnosis of epileptic patients [13]. If

possible, everyday monitoring and risk assessment of the approximately 1.3 million Americans

who suffer from intractable epileptic seizures would significantly improve their quality of

life. While Epilepsy Monitoring Units (EMUs) have been effective for pre-surgery evaluation,

and for identifying origin of seizure and proper anticonvulsants, priceless patient-specific

knowledge, buried within the large volume of EMU data, remain unused. This is attributed

to the challenges associated with traditional methods of analysis. In spite of recent advances

in noninvasive wearable devices, the critical barrier of developing reliable data analysis

still limits their clinical viability for providing early seizure alerts. New breakthroughs in

machine intelligence theory present an emerging opportunity to address this roadblock to

apply advanced data analytic, which we believe will allow us to successfully monitor epileptic

seizures.

1.2 State of knowledge

Figure 1.1 shows different epileptic seizure monitoring approaches. They can be grouped into

invasive and non-invasive categories. The invasive category is grouped into depth EEG and

subdural EEG. The depth EEG is implemented inside the brain while the subdural EEG

sits over the surface of the brain. The non-invasive category is grouped into Neuro-imaging,

Multi-channel EEG monitoring and wearable monitoring. Multi-channel EEG monitoring is

1
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the gold standard for seizure characterization and localizing changes within the brain which

is indicative of seizure focus. Such monitoring is, however, impractical for use in daily life

because it requires the use of either a special hat/headset worn in just the right way or sensors

implanted in the brain. The wearable monitoring itself is divided into non-EEG analysis and

limited channel analysis. Use of non-EEG signals to analyze seizures presents its own set of

challenges. The impact of seizures on biosignals differs among patients and seizure types;

consequently, no single modal system will be helpful for every patient. As shown in Figure

1.1, we advocate an EEG based analysis approach that utilizes the limited number of EEG

channels.

1.3 Motivation

Approximately 1 percent of world population suffer from the epilepsy. These neurological

disorders may cause permanent damages if they are not managed properly. It is crucial to

have techniques to accurately and automatically detect epileptic seizures. Many patients

gain control of their seizures with anti-convulsant or anti-epileptic drugs (AEDs); However,

approximately one-third of the patients prove intractable with medications [18]. Serious

physical injury and death (known as Sudden Unexpected Death of Epilepsy or SUDEP) occur

in patients with uncontrolled epilepsy. Risk of serious physical injury or even death is high

for such epileptic patients. There is a need, therefore, for accurate, automated detection of

seizures to alert patients/caregivers and to assist epileptologist provide effective therapeutic

solutions and to improve the quality of life of epileptic patients [46][13].

Electroencephalography (EEG) signals carry informative features which are able to explain

most of normal and abnormal brain activities, particularly epileptic seizures. Physicians use

EEG signals as the ground truth for epileptic seizure detection for years in order to find

the focal point of seizure and treat the injured brain tissues by medication and/or surgery.

Electroencephalography (EEG) signal analysis, as a diagnostic test, has had an enormous

3



impact on epileptic seizure detection [52]. EEG signal analysis can improve our understanding

of abnormal brain activities like neurons misfiring or excessive neural activity. However,

EEG-based seizure detection is relatively complex since it involves voluminous amounts of

recorded EEG samples coming from multiple scalp mounted electrodes [2].

Class imbalance problem is a well-known machine learning problem where the total

number of data points in one class is far less than the total number of points in another class.

In health-care, data is often predominately composed of normal samples with only a small

percentage of abnormal ones, leading to the so-called class imbalance problems. In class

imbalance problems, inputting all the data into the classifier to build up the learning model

will usually lead to a learning bias toward the majority class and thus low accuracy.

The seizure dataset is often heavily under-represented and extremely unbalanced because

such patients experience seizures only for a very short time. The overwhelming majority of

the instances belong to the non-seizure class. Actual data collected in Epileptic Monitoring

Unit (EMU) indicate more than 99.9% non-seizure and only 0.1% seizure. When the number

of instances in one class far exceeds the other (e.g. ×10 or more), many computational

problems can arise. So, we apply methods to balance the imbalanced dataset. Data balancing

prevent classification model to be overwhelmed by the majority (large) class and ignore

minority (small) class and consequently improve classifier robustness [13].

Andres M. Kanner in his books talks about patients with epilepsy experiencing psychiatric

and cognitive symptoms preceding and following the seizure, apart from the seizure event

itself. The period before the seizure event is called the preictal (pre-seizure) period and

after it is called the postictal (post-seizure) period. He observes that among all psychiatric

phenomena, preictal, ictal and postictal psychiatric symptoms are the least investigated

in our systematic research studies [26][33]. What we attempt to achieve in this work is to

recognize patterns in brain activity of each patient personalized to him or her. Personalization

for recognizing each patient’s preictal patterns is made possible by the adoption of neural

4



networks after having trained on the data available for each of 23 patients in MIT dataset.

Another reason for adoption of neural networks is ability to utilize more training data as

collected. Ultimately, there is a need for wearable devices capable of detecting both convulsive

and nonconvulsive seizures in everyday life. A wearable device, worn by a patient apart

from sending out alarm signals to a caregiver, could also collect data which can be used to

train the neural network and improve its performance over time. In addition, long term use

of wearable devices by large numbers of epileptic patients would provide biosignal data for

researchers seeking to better understand long term effects of seizures, and in particular the

causes and risk factors of SUDEP [20].

1.4 Contribution

In this work, three techniques are proposed to be used in a platform for EEG-based epileptic

seizure monitoring:

I. The first contribution is a new method to identify a limited number of EEG channels

from full set of EEG channels. This method enables us to identify EEG channels with

most informative profiles while avoiding those channels that may unnecessarily inject

more noise and ambiguities in our analysis. We propose to train a random forest model

using the spectral domain features and count the number of times that each channel is

repeated in the forest. We also employed a dimension reduction approach to visualize

the EEG data in low dimension. In comparison with others, the proposed method is

able to provide higher detection accuracy.

II. Most of epileptic seizure data sets suffer from insufficient number of seizure events. In

order to address this challenge, we advocate two techniques to improve the accuracy

of the seizure detection. First, we take into account the non-seizure class in the first

imbalance learning approach. This class is the majority class and practically includes

5



several normal activities itself. So, we proposed clustering the majority class and

consider the minority class separately with each majority class cluster. This approach

can decrease the imbalance ratio and ultimately improves the accuracy of seizure

detection. Second, we used a customized neural network to detect epileptic seizures.

We used the concept of weighted cost function taking into account the imbalance ratio

of each EEG dataset. So, the importance of correctly classifying seizure events is higher

that correctly classifying non-seizure events from neural network perspective. Using

this approach the configuration of neural network classifier is different from patient to

patient.

III. To address the issue of personalized seizure prediction, in the third part, we developed

a systematic technique to customize the pre-seizure data selection. Starting with a

fixed amount of pre-seizure data, we ended up with a specific amount of pre-seizure

data for each patient which are different from each other in terms of time-to-seizure

and window size. We will show how personalizing the pre-seizure data factors can

increase the quality of seizure prediction. Our proposed technique involves the concept

of sliding windows of different window sizes to squeeze in the shortest monitoring time

to accurately call an impending seizure. The proposed personalized method improves

the accuracy of seizure prediction.

1.5 Related Works

There are two different approaches to handling the problem of high-dimensionality in EEG

signals:

1) Channel Selection: These techniques select an effective subset of the original channels.

A filter-based channel selection technique based on maximum variance criteria has been

investigated in [48]. Authors used the difference in variance between seizure and non-seizure

6



events for selecting the best number of channels in [25]. The information gain of EEG

channels is used in [20] to find the most informative channels for seizure detection. Authors

calculated the accuracy of all individual EEG channels and selected the channels with the

highest accuracy for limited channel seizure detection in [61]. However, these techniques may

not always be efficient, particularly when there are a huge number of features extracted from

a noisy environment like scalp EEG.

2) Dimension Reduction: Researchers have investigated how to map an original feature

space into a smaller feature space representation in order to reduce the overwhelming number

of features. Authors presented a semi-automated patient-dependent unsupervised technique

using all EEG channels and Principal Component Analysis (PCA) as their dimension reduction

technique. Authors in [34] applied autocorrelation to extract features and used Common

Spatial Patterns (CSP) to decrease the feature space dimensionality. Authors in [61] extracted

26 features per channel and reduced the number to 8 using PCA. They reported the accuracy

of EEG channels individually using an LDA classifier. Although PCA is able to reduce the

number of features, it cannot properly preserve the distance relationships between data points

in low dimensions. The number of patients investigated in [61] is too small to be conclusive

(only six epileptic patients out of 23 available patients in the MIT database [30]). Moreover,

the number of non-seizure events selected is too small for adequate training.

Most popular epileptic seizure detection systems using Machine Learning have been based

on features extracted in time-frequency domain and classical classifiers like Support Vector

Machines and Artificial Neural Networks (ANN). Authors in [55] have used SVM to build

classifiers for seizure detection. Another work proposed using feature extraction on sample

entropy combined with Extreme Learning Machine (ELM) where high accuracy along with

fast learning speed are reported [56].

Coming to ANNs, researchers proposed a method for automatic seizure detection from

EEG signals using a multistage nonlinear pre-processing filter in combination with a diagnostic

7



Large Memory Storage and Retrieval (LAMSTAR) Neural Network [44]. Authors in [29] used

cosine Radial Basis Function Neural Network (RBFNN) for seizure detection. They have

performed time-frequency analysis on selected segments of EEG signals to extract features

and use them as input to ANN and achieved excellent results [59]. In all real patient’s

data, one of the problems is the high imbalance ratio between the majority and minority

classes. There are several ways proposed to address the class imbalance problem. Researchers

empirically employed oversampling, under-sampling, threshold-moving, hard-ensembling and

soft-ensemble techniques in training cost-sensitive neural networks [63].

Several works have demonstrated different techniques for mitigating the class imbalance

problem. The authors in [28] have provided an empirical comparison of a wide variety of

machine learning algorithms for solving class imbalance problem. Authors in [62] present a

new EEG classification approach based on the extreme learning machine (ELM) and nonlinear

dynamical features and demonstrate its superior performance. In another work, authors

investigated how different imbalance ratios affect clustering imbalanced data. Algorithm

represented in [39], under-sample class imbalance data used clustering technique. Authors

proposed an extension of Synthetic Minority Over-sampling Technique (SMOTE) for epilepsy

monitoring [24].

In order to predict the epileptic seizures, Acharya, et. al, employ a 13 layer Deep

Convolutional Neural Networks (CNN) with a 10-fold cross validation strategy all of which

requires significant resources to train and run. The authors claim that their research is the

first implementation of CNN for EEG signal processing in general and seizure detection in

particular. This work involves detection of normal, preictal and seizure EEG signals without

performing feature extraction and selection [1]. Another seizure prediction based machine

learning publication proposed the use of Cost-sensitive Support Vector Machines (CSVM)

which treats signals from preictal more significantly than those from interictal (the period

between seizures). Unlike the CNN proposal, this involves prepossessing the patient data,

8



extracting features before training the classifier. It uses the k-of-n analysis among consecutive

windows as part of post-processing in the 5 minute horizon to classify if the signals are

preictal or interictal [42]. This work also advocates loading an externally trained model on

the wearable or implantable device. However, it does not consider personalization for seizure

prediction parameters.

1.6 Dissertation Organization

In Chapter 2, the proposed method for limited channel epileptic seizures detection using EEG

signals is presented. This chapter describes the features extracted from EEG signals and the

proposed dimension reduction technique and classification method. Chapter 3 presents two

imbalance learning techniques based on clustering approach and customized neural network

for detecting epileptic seizures. These proposed techniques improve the class imbalance

problem in seizure data. A personalized technique is developed and explained in Chapter 4

to predict epileptic seizures. The proposed method customize the pre-seziure data for each

patient. Finally, Chapter 5 summarizes the dissertation and the key points and possible

future works. This chapter explains the limitations of proposed methods.
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CHAPTER 2

AUTOMATED SEIZURE DETECTION USING LIMITED-CHANNEL EEG

AND NON-LINEAR DIMENSION REDUCTION1

2.1 Overview

Electroencephalography (EEG) signals are the best indicators of epileptic seizures. Epilep-

tiform EEG patterns such as spikes and sharp waves can assist in the diagnosis and in

classifying seizures [27]. However, full-channel EEG signals recorded from 18-23 electrodes on

the scalp is neither wearable nor computationally effective. This work presents advantages

of both channel selection and nonlinear dimension reduction for accurate automatic seizure

detection. We first extract the frequency domain features from the full-channel EEG signals.

Then, we use a random forest algorithm to determine which channels contribute the most

in discriminating seizure from non-seizure events. Next, we apply a non-linear dimension

reduction technique to capture the relationship among data elements and map them in low

dimension. Finally, we apply a KNN classifier technique to discriminate between seizure

and non-seizure events. The experimental results for 23 patients show that our proposed

approach outperforms other techniques in terms of accuracy. It also visualizes long-term data

in 2D to enhance physician cognition of occurrence and disease progression.

2.1.1 Motivation

In order to tackle the problems related to the complexity of EEG-based seizure detection,

two techniques can be employed: First, select a limiting number of EEG channels instead

of using all EEG (often 18-23) electrodes. Full-channel EEG monitoring is only practical

in clinics since it is expensive, time consuming, uncomfortable and stigmatizing. Moreover,

1Birjandtalab, J., Pouyan, M. B., Cogan, D., Nourani, M., Harvey, J. (2017). Automated seizure detection
using limited-channel EEG and non-linear dimension reduction. Computers in biology and medicine, 82,
49-58.
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irrelevant channels add noise to the feature space and decrease the seizure detection accuracy.

Limited-channel configurations can be implemented with newly developed discrete wearable

patches (e.g., Epitel nodes [31]) which are able to record seizure activity in daily life using

individual nodes. There are recently developed techniques which make these wearable devices

more energy-efficient and practical for daily life applications [53]. Second, map the high

dimensional dataset into a lower dimension by preserving the neighborhood information of

data points. Since the feature space of EEG signals has a non-linear structure, non-linear data

embedding (that preserves distance information among neighboring data points) techniques

are the best option for reducing the number of feature space dimensions. In this work, we

combine both channel selection and dimension reduction to provide a low dimensional feature

space for epileptic seizure detection.

2.1.2 Main Contribution

To the best of our knowledge, our proposed method is the first work which combines channel-

selection and dimension reduction for EEG-based epileptic seizure detection. The general

view of our proposed epileptic seizure detection model is shown in Figure 2.1. First, we use

power spectral analysis to extract features per channel per subject for each time window.

Then, we use a random decision forest for selecting a limited number of channels. To do this,

we first generate a large number of random decision trees using features from all the EEG

channels. Next, we investigate the number of times each channel appears in the forest. The

channels with the highest contribution to the entire forest are chosen for limited channel

seizure detection. The best channels are selected by voting among all the decision trees in

the forest, thereby making our method robust against noisy channels - the most important

advantage of this technique. Next, we use t-distributed stochastic neighbor embedding

(t-SNE) to embed and represent data in a lower dimension by preserving the relationship

of data points in high dimensional feature space. Finally, we use a KNN classifier model to

differentiate between seizure and non-seizure events in a patient-specific manner.
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2.2 Feature Extraction

Feature Extraction is a critical step in EEG-based seizure detection since it extracts seizure

related characteristics. Researchers categorize EEG signals into unique bandwidths as shown

in Table 2.1. Both normal and abnormal brain functions are listed by bandwidth [58]. Note

that seizures affect most of the EEG frequencies. Consequently, frequency features are widely

used for EEG-based epileptic seizure detection [15].

In our method, we first segmented the EEG signals into 10 seconds windows. Next, we

calculated the power spectral density of all EEG channels for each window using Fourier

transforms. The results are divided into the frequency bands shown in Table 2.1, i.e.,

w = {δ, θ, α, β, γ}.

We calculate the Power Spectral Density (PSD) of a specific channel c recorded with

frequency fs as follows [13]:

P c(f) =
1

fsN

∣∣∣∣∣
N−1∑
n=0

xcne
−j2πfn

∣∣∣∣∣
2

−fs
2

< f <
fs
2

(2.1)

where xcn represents the nth sample of channel c (out of total N samples). We define P c
w to

calculate the normalized PSD of channel c in frequency band w = [w1, w2] as:

P c
w =

∑f=w2

f=w1
P c(f)∑f= fs

2
f=0 P c(f)

(2.2)

where w1 and w2 represent the starting and ending points of the frequency band. In order

to take full advantage of the power spectrum, the amount of power in each band is divided

by the overall spectral power of the window (i.e. fs = 256 Hz). The full channel feature

space includes five normalized in-band power spectral density features for each channel. For

example, a patient with 23 EEG channels provides a high-dimensional space of 115 features

[8][14].
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2.3 Limited Channel Selection

2.3.1 Motivation & Challenges

Limited-channel EEG epileptic seizure detection offers three advantages. First, it reduces the

computational complexity of seizure detection, leading to a faster run time and lower power

consumption, thereby making seizure detection models faster and more cost-effective (e.g.

for inexpensive embedded systems). Second, for some patients, it increases the detection

accuracy by avoiding redundancy of non-focal/unnecessary channels. Finally, reduction from

23 to 1-3 channels makes wearable EEG monitoring (e.g. for daily use) practical. In other

words, channel selection is a prerequisite for implementing wearable seizure detection systems.

In this section, we focus on a methodology for selecting the best few channels which reduces

the high dimensional feature space and yet provides accurate seizure information.

Most machine learning algorithms provide low accuracy when the number of irrelevant

features is notably high [35]. Therefore, it is quite important to select a subset of features

for the best classification results. Selecting the best feature subset that optimizes evalua-

tion criteria is an NP-hard problem [41]. The simplest way – an exhaustive search of all

combinations of M features (
∑M

i=1

(
M
i

)
= 2M) – is not computationally feasible for high

dimensional feature sets. An alternate method is estimating the best feature subsets in

a practical run time. The way that feature selection integrates search methods with the

structure of classification techniques divides feature selection techniques into two main classes:

scheme-dependent techniques (a.k.a wrapper techniques) and scheme-independent techniques

(a.k.a filter techniques).

1) Scheme-Dependent Techniques: In these techniques, every feature subset candidate

is evaluated using a classifier and the best feature subset is selected based on classification

accuracy. Such techniques have two main drawbacks. First, the selected features depend on

the classifier, which increases the chance of overfitting. Second, wrapper techniques are not

efficient for large number of features, when the classification model is complex [3].
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2) Scheme-Independent Techniques: These techniques filter out the irrelevant features

regardless of the classification model. They independently evaluate the effectiveness of

candidate features using various criteria. In most of the cases, features are sorted based of their

relevance using a search algorithm and irrelevant features are filtered out. Filter techniques

are computationally fast and simply scalable since they are classification independent [3].

2.3.2 Random Forest Based Technique

In this work, we propose the use of the random forest algorithm [17] to select the best EEG

channels. Random forest algorithm is proved to be robust in applications where there are

large numbers of irrelevant features [36]. The goal is to find the k most informative channels

out of all P channels. Algorithm 1 shows all the steps of our proposed technique in detail.

First, we generate a random forest with NT trees using all M spectral features extracted

from all original P channels (M = 5× P ). mtry defines the number of features randomly

nominated at each node split during tree generation. When growing an individual decision

tree, before each split, first we selected mtry of the M original features (mtry ≤ M) at

random as candidates for splitting. Next, we split that node at the feature which minimizes

the sum of impurities ([17]) associated with children of node-split. We repeated these steps

for all the nodes in each decision tree. Note that by random selection, all features have an

equal chance to be candidates in each node-split of each decision tree. However, only one

feature will be selected for a node-split on that node, i.e. the feature which minimizes the

sum of the child node impurities. If a feature is irrelevant, even if it gets selected randomly

for node splitting, it will not be selected in the final round because it cannot minimize the

sum of child nodes impurities compared to relevant features. We set mtry to the square root

of the number of features (mtry =
√
M) as suggested by researchers [17]. Next, we calculate

δi, the contribution of the ith spectral feature to the random forest by counting how many

times each spectral feature appears in the entire forest. Then, we sum the contribution of
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all five spectral features in the pth channel to find the total contribution of that channel,

µp. Next, we sort all the channels based on the total contribution of their spectral channels

and call it our list of sorted channels µ̄. Finally, we select the best k channels (largest RF

contribution) and call it our list of k selected channels, L.

As an example, Figure 2.2 shows the different EEG channel contributions in the random

forest (RF contribution) for Patient 1. For this patient, channels 17, 6, and 8 provide

the highest contribution and are selected for limited channel seizure detection with k = 3.

Incidentally, neurophysiologists suggest three channels for limited channels seizure detection

since this is often the number covering the epileptic focus [25]. The rational behind our

proposed channel selection method is that random forest randomly generates many trees and

we expect that relevant and informative features appear in those trees more frequently than

redundant features do.

In order to show the effectiveness of the model, we compared our proposed feature selection

model with the exhaustive feature selections for one example (patient #1). For this purpose,

we measured the performance of seizure detection using all the
(
23
3

)
= 1771 possible solutions

of selecting 3 channels out of 23 channels. Figure 2.3 shows the performance of all the

solutions exhaustively in terms of F1 measure. Since the overwhelming majority of the

instances belong to the non-seizure class. Therefore, performance metrics (i.e. sensitivity,

precision, and F1), which are not affected by the number of correctly classified non-seizure

instances class are selected to be more reliable parameters. The experiment is done for Patient

1. Please note that exhaustive feature selection is an NP-hard problem and the running time

increases exponentially with increasing number of features. Therefore, exhaustive search is

not practiced for the datasets with high number of features. Figure 2.4 shows the performance

of all the exhaustive points in terms of precision and sensitivity. Each black point represents

one of the possible iterations of 3 limited channels. The red point shows the performance

of the limited channels that is selected by proposed (random forest) method. Also note
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that we performed the channel selection in two steps. First, we select the most important

(discriminative) features in the entire dataset. Then, we combined the importance of features

per channel to see the effectiveness of each channel. Using the two-stage channel selection has

the advantage of observing the importance of in-channel features (spectral domain features

per channel).

Algorithm 1 Channel Selection

Inputs : (i) Number of trees in forest (NT ),
(ii) Number of limited channels (k),
(iii) Number of node split features (mtry),
(iv) Full channels feature set (F = {f1, ..., fM}).

Output : List of selected channels (L)
begin
{Tr1, ..., T rN}=CreateRandomForest (F,NT ,mtry) for 1 ≤ n ≤ NT do // All trees in
forest

for 1 ≤ i ≤M do // All features
if fi ∈ Trn then // Update feature contribution

δi = δi + 1

for 1 ≤ p ≤ P do // All channels

µp =
∑5

q=1 δ5p+q

Sort µ in ascending order µ̄ = {µ̄1, ..., µ̄P} L = {µ̄1, ..., µ̄k}

2.4 Dimension reduction

Using our technique, the total number of channels is significantly reduced (e.g. k = 3 vs.

originally 18-23 channels). Consequently, the number of spectral features is also reduced

(e.g. 15 vs. originally 90-115 features). However, 15 is still a high dimensional feature space

suffering from the curse of dimensionality. The main problem is the empty space phenomenon,

which means data points become more and more sparse as the feature space dimension

increases. This phenomenon does not allow classifiers to properly extract information hidden

in the data [37]. In order to tackle this problem, we use data embedding, which is a low

dimensional representation of high dimensional data points.
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Figure 2.2. Contribution of channels in a Random Decision Forest with 1000 trees. Taken from
patient 1’s data.

Figure 2.3. F1 measure accuracy of different iterations of exhaustive channel selection. The points
corresponding to the proposed channel selection are above the red line.
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Figure 2.4. Precision and sensitivity of different iterations of exhaustive channel selection (black
points) versus proposed channel selection using random forest (red point). Note that there are total
of 1171 points here but many of them overlap each other.

Recently, robust dimension reduction techniques are proposed to capture low dimensional

structures in a high dimensional data [51][50]. Dimension reduction techniques are categorized

as linear or non-linear based on the way they map data points into lower dimensions. Linear

techniques like PCA project the data points by preserving the maximum variance or minimum

reconstruction error of data points in a linear way [32] . However, these linear approaches

cannot preserve the distance relationship of instances from a system that generates datasets

with non-linear structures or features. On the contrary, non-linear dimension reduction

methods are able to capture pair-wise distances between data points in high dimensional

spaces [12]. We were inspired by t-distributed Stochastic Neighbor Embedding (t-SNE),

a state-of-the-art non-linear dimension reduction technique, to represent features of all

three selected channels in two dimensions [60]. Traditionally, t-SNE has been used in high

dimensional single-cell analysis [4] due to its ability to deal with large ( e.g. 13-31) dimensions.
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Figure 2.5. Patient 1 preservation ratio analysis (a) visualizing the seizure (red) and non-seizure
(blue) data points data points in two dimensional feature space using t-SNE. (b) visualizing the
seizure (red dots) and non-seizure (blue dots) data points in two dimensional feature space using
PCA. (c) distribution of preservation ratio by t-SNE and PCA during data mapping into 2D feature
space.
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2.4.1 t-SNE

t-SNE employs a pairwise differentiation to all the data points and efficiently minimizes the

high-dimension and low-dimension data joint distributions. More importantly, the initial

distance relationships among data points are reproduced during data embedding and are

thus presented in the transition to low dimension. Let us define X = [x1, x2, ..., xND
]T as our

initial high-dimensional dataset including ND data points where xi represents M-dimensional

(M-feature) xi = [xi,1, ..., xi,M ] instances. The final goal is estimating a two dimensional

yi = [yi,1, yi,2] representation in a way that pair-wise distances are preserved. Note that

the two new dimensions are completely different from any of the initial dimensions and are

defined to represent data points in low dimension such that the key similarity/dissimilarity

in high-dimension space is preserved.

pi,j =
pi|j + pj|i

2ND

(2.3)

Metric pi,j represents a pair-wise distance probability in original space. The objective is

to extract pi,j from each pair in a way that if xi and xj are close together, pi,j has a higher

value. The distance relationship between data points xi and xj is modeled by the conditional

probability pi|j. This relationship is modeled using a t-student distribution as follows:

pi|j =
e−d(xi,xj)

2/2σ2
i∑

k 6=i e
−d(xi,xk)2/2σ2

k

pi|i = 0 (2.4)

where σi represents the Gaussian distribution bandwidth centered at xi [60]. d(xi, xj) denotes

the Euclidean distance between two data points xi and xj in their original feature space. pi,j

is calculated from pi|j and pj|i as follows:

The original joint distribution set P = {p1,1, p1,2, ..., pND,ND
} contains all the pair-wise

probability pi,j values. Similarly, qi,j represents the distance relationship between two data

points xi, xj in low-dimensional feature space. Parameters qi,j are calculated as follows:

23



qi,j =
(1 + ||yi − yj||2)−1∑
k 6=l (1 + ||yk − yl||2)−1

qi,i = 0 (2.5)

All the individual qi,j values make the set of joint probability distributions in low dimension

Q = {q1,1, q1,2, ..., qND,ND
}. Note that ||.|| symbol indicates the Euclidean distance. The

Kullback-Leibler divergence (DKL) model is used to calculate information lost while estimating

Q using P [23]. We optimize DKL to minimize the difference between Q and P :

DKL(P |Q) =
∑
i,j

(pi,j × log
pi,j
qi,j

) (2.6)

The optimal DKL is calculated by the Gradient descent optimization (Equation 2.7) [60]:

∂DKL

∂yi
= 4

∑
j

(pi,j − qi,j)(yi − yj)(1 + ||yi − yj||2)−1 (2.7)

This iterative technique is able to find the optimum value yi = [yi,1, yi,2] per data point in

the new feature space, which minimizes the divergence between high and low dimensional

data.

2.4.2 Preservation Ratio

Quality assessment of dimension reduction helps us understand the degree of accuracy and

the extent of information loss caused by mapping high dimensional data points into a low

dimension feature space [38]. We ran a neighborhood preservation ratio experiment [19] to

evaluate the performance of t-SNE as a nonlinear dimension reduction technique in comparison

with a classic linear dimension reduction method like PCA. Consider KH
i and KL

i as our list

of λ nearest neighbors for each data point (1 ≤ i ≤ NS) in high and low dimensional feature

spaces, respectively. The preservation ratio PR is calculated as the percentage of common

neighbors in low and high dimensions over the total number of neighbors. The preservation

ratio is calculated by averaging the preservation of each individual data point:
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PR =
100

NS

×
N∑
i=1

|KL
i ∩KH

i |
|KH

i |
(2.8)

where we chose λ = |KH
i | = |KL

i | = 100 as suggested in [19] to be a reasonable number of

nearest neighbors for preservation ratio analysis. Note that the perfect value for preservation

ratio (PR) is 100, indicating that all the nearest neighbors are identical in both high and low

dimensions. In order to show the effectiveness of our proposed data-embedding technique, we

performed the per subject neighborhood preservation analysis for both t-SNE and PCA. We

extracted the preservation ratio after mapping the original feature space into two dimensional

feature spaces.

Figure 2.5 (c) compares the distribution of the preservation ratio by t-SNE and PCA

during data mapping into 2D feature space for Patient 1. It shows that t-SNE (blue curve)

provides a higher preservation values than does PCA (pink curve). Figures 2.5 (a) and (b)

visualize the data points in two dimensional feature space using PCA and t-SNE, respectively.

As is shown, seizure data points are distributed all around the non-seizure data points using

PCA dimension reduction. On the other hand, seizure data points are well-grouped at a corner

using t-SNE dimension reduction. This is because t-SNE preserves the local neighborhood

information much better than does PCA. Thus, non-linear dimension reduction techniques

for analysis of EEG data for epileptic patients works much better because the data has a

non-linear structure. As Figure 2.6 shows, t-SNE provides a higher preservation ratio value

than PCA for all the subjects. Although t-SNE needs a more complex model than PCA, it

achieves a high accuracy by preserving local information. A second advantage of using t-SNE

is that we will be able to visualize the data (i.e. the seizure/non-seizure windows). This

visualization can improve physician’s understanding of long-term data (e.g. progress/length

of seizures episodes) by a quick and effective visual inspection of 2D color-coded images like

Figure 2.5 (c).
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2.5 Classification

For each patient, we selected 8 hours of known nonseizure data that was at least 30 minutes

from the nearest seizure. For this group of patients, seizure duration varies from 10 to 120

seconds. We segmented EEG signals into 10 second windows to accommodate the shortest

seizures. We refer to data points (instances) as segmented windows, which are used for

spectral feature extraction. After channel selection and dimension reduction, each data point

is represented by only two features (2D t-SNE). We use a k-nearest neighbor classification

model (KNN) to differentiate seizure and non-seizure events in the new 2D feature space.

EEG signal response to seizure is different from patient to patient. So, we train the classifier

in a patient-specific style using each patient’s own data. This personalized approach increases

the seizure detection performance for each patient. Personalization can be implemented

by using flexible electrode positioning. Currently, some companies (e.g., Epitel [31]) are

developing single channel EEG nodes for real life data collection. Note that the proposed

method uses full channel EEG data, collected in a clinical setting (e.g in Epilepsy Monitoring

Unit), for channel selection. Since channel selection is completed prior to fitting the patient

with his/her personalized wearable device, the random forest algorithm will not run on the

wearable device. For each patient, our method requires a group of training seizures for channel

selection However, in some cases, there may not be sufficient data during the patients stay at

the EMU because, for example, the patient has seizures only once or twice a month. In this

case, channel selection will be done based on the patient’s limited data.

2.6 Experimental Result

2.6.1 EEG Dataset

Twenty three epileptic patients’ EEG manifestations from the open access scalp EEG database

is used in this work. The dataset was recorded from twenty three pediatric patients with
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intractable seizures at the Childrens Hospital Boston [54]. The dataset is available at the

PhysioNet website: www.physionet.org/pn6/chbmit [30]. Data collection was done while

patients were off anti-seizure medications to capture EEG responses to seizure and thereby

determine which patients were candidates for surgery. The data is collected based on the

international 10-20 system of EEG electrodes. The 10 and 20 indicate that the distances

between adjacent electrodes are either 10% or 20% of the total front to back or right to left

distance of the skull. The EEG waveforms were collected in a differential montage in which

each signal represents the difference between two adjacent electrodes in the 10-20 standard

system as shown by the connecting lines in Figure 2.7. For example, C3-P3 represents the

electrical potential between electrodes C3 and P3. EEG was sampled at 256 Hz and provides

16-bit resolution. The beginning and end of each seizure event was annotated by experts and

is used as ground truth in this work. Table 2.2 shows the Patients’ information including age,

gender, number of seizures, duration of seizure EEG, and number of channels used for data

collection.

2.6.2 Study Design and Performance Evaluation

In this study, we use cross-validation analysis to show how accurately our proposed limited

channel selection method detects seizures in practice. We divided the entire dataset into

complementary subsets, applied the analysis to each subset and validated the results on the

other subset. In order to decrease variability, we repeated cross-validation analysis multiple

times using different partitions, and averaged the results of the validation phase over all the

individual cross-validation analyses.

In order to report the performance of our proposed seizure detection technique we

used sensitivity, precision, False Positive Rate (FPR) per hour and F-measure parameters.

Sensitivity is the number of correctly detected seizure instances over all the instances detected

as seizure. Precision is the number of correctly detected seizures over all the seizure instances.
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Table 2.2. Clinical Study Information (MIT dataset).

Patient ID. Age Gender No. Channels No. Seizures Seizure (MM:SS)

1 11 F 23 7 7:10
2 11 M 23 3 2:50
3 14 F 23 7 5:40
4 22 M 23 4 4:00
5 7 F 23 5 9:00
6 1.5 F 21 10 2:00
7 14.5 F 21 3 5:10
8 3.5 M 23 5 15:10
9 10 F 21 4 4:00
10 3 M 21 7 6:50
11 12 F 23 3 13:20
12 2 F 23 27 14:50
13 3 F 18 12 8:10
14 9 M 23 8 2:30
15 16 F 22 20 27:20
16 7 F 23 8 1:20
17 12 F 23 3 4:40
18 18 F 23 6 4:50
19 19 F 23 3 3:40
20 6 F 23 8 3:30
21 13 F 23 4 3:10
22 9 F 23 3 3:10
23 6 F 21 7 6:40

FPR per hour is the number of non-seizure instances incorrectly detected as seizure over

the total duration of non-seizure EEG. F-measure is a harmonic mean of precision and

sensitivity metrics [47]. The seizure dataset is grossly unbalanced since each patient had

seizures for a relatively short time. So, the overwhelming majority of the instances belong to

the non-seizure class. Therefore, performance metrics (i.e. sensitivity, precision, FPR per

hour and F-measure), which are not affected by the number of correctly classified non-seizure

instances class are expected to be more reliable parameters [11].
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Figure 2.7. International 10-20 system of EEG electrode replacement.

2.6.3 Discussion

Figure 2.8 illustrates how effectively different channel selection techniques separate seizure

from non-seizure data for Patient 1. This 2D representation is obtained by applying t-SNE

dimension reduction to channels selected by different channel selection techniques. Figure 2.8

shows that seizure data points (red circles) are well-separated using our proposed random forest

based channel selection. Figure 2.9 shows the difference in sensitivity (∆S = Sfull − Sk=3)

between full channel and limited channel seizure detection for different channel selection

techniques. Figure 2.10 compares the F-measure of seizure detection among different channel

selection techniques. Note that the top, middle, and bottom horizontal lines in each boxplot

represent the first quartile, median, and third quartile of corresponding F-measure scores

among all the patients, respectively. Moreover, the vertical lines at the two ends of each

boxplots show the range of F-measure score variation among all the patients.
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Figure 2.8. 2D t-SNE representation of seizure and non-seizure events for Patient 1 using different
channel selection techniques: single rule [61], information gain [20], mutual information [5], variance
[48], variance difference [25], and proposed random forest method.
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(f) Random Forest

Figure 2.9. A comparison between sensitivity of random forest based channel selection technique
and other techniques.
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Table 2.6.3 represents the average accuracy of epileptic seizure detection calculated by

10-fold cross validation with 10 times reputation. It shows that the performance of random

forest channel selection and t-SNE (this work) for seizure detection is better than that of

other methods. The proposed two-stage, low dimension EEG based epileptic seizure detection

provides better performance. Note that the results reported in Table 2.6.3 are based on our

own implementation of works reported in [61], [48], [25], [20], and [5] in R environment [49].

The last column of Table 2.6.3 shows the accuracy obtained using dimension reduction

only. The results compare favorably with the results obtained using both RF channel selection

and dimension reduction for two key reasons. First, not all EEG channels are relevant to the

epileptic seizure. Although we missed some brain activity information using a limited number

of channels, the missing information is irrelevant or redundant in most cases and it does not

affect our ability to detect a patient’s seizures. Second, applying a linear classification (e.g.

KNN) to raw high dimensional data may not capture the similarity of seizure data points

very well since the notion of distance is very different in high dimensions. Although there is

always information loss in any reduction technique, t-SNE successfully preserves the local

neighborhood information between instance pairs. This characteristic of t-SNE enables it to

preserve accuracy during the dimension reduction process.

2.7 Summary

Full channel EEG analysis constrains the performance of seizure detection since it provides

extremely high dimensional feature spaces. Confounding effects of irrelevant EEG channels

can decrease the performance of seizure detection techniques. Generating a large number of

random decision trees using features coming from all the EEG channels is an efficient way to

select a small number of EEG channels that can most effectively detect the patient’s seizures.

Relevant and informative features appear in those trees more frequently than do redundant

features. We choose the channels with the highest contribution in the entire forest for use

32



T
ab

le
2.

3.
A

ve
ra

g
e

S
en

si
ti

v
it

y,
P

re
ci

si
on

,
F

P
R

p
er

h
ou

r
an

d
F

-m
ea

su
re

fo
r

d
iff

er
en

t
ch

an
n

el
se

le
ct

io
n

te
ch

n
iq

u
es

.

M
e
th

o
d

S
in

g
le

V
a
ri

a
n
ce

V
a
ri

a
n
ce

In
fo

rm
a
ti

o
n

M
u
tu

a
l

R
a
n
d
o
m

A
ll

R
u
le

D
iff

e
re

n
ce

G
a
in

In
fo

rm
a
ti

o
n

F
o
re

st
[6

1
]

[4
8
]

[2
5
]

[2
0
]

[5
]

[T
h
is

w
o
rk

]

S
en

si
ti

v
it

y
53

.4
3

60
.7

1
63

.7
5

63
.7

9
73

.0
4

80
.8

7
89

.8
0

P
re

ci
si

on
23

.2
3

28
.5

2
28

.2
8

36
.6

7
40

.4
7

47
.4

5
48

.9
8

F
P

R
p

er
h
ou

r
3.

5
3.

3
3.

2
2.

9
2.

8
2.

5
2.

2

F
-M

ea
su

re
30

.3
37

.0
1

36
.7

8
45

.0
7

50
.3

4
56

.2
3

61
.5

33



0.00

0.25

0.50

0.75

1.00

All RF MI IG VarDiff Var OneR
Method

F
−

M
ea

su
re

Figure 2.10. Comparison of channel selection accuracy (F-measure).

in limited channel seizure detection. After channels selection, the feature space is still large

since each channel provides multiple frequency domain features. Classifiers cannot properly

extract information hidden in the high dimensional feature space. Non-linear dimension

reduction techniques are good candidates for tackling this problem. We grouped seizure data

points using t-SNE, a non-linear dimension reduction technique, because it preserves the

data’s neighborhood information. The combination of our channel selection approach and

our nonlinear dimension reduction technique provides excellent seizure detection accuracy as

it effectively represents seizure and nonseizure data points as separable groups.
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CHAPTER 3

IMBALANCE LEARNING1

Around 1% of world’s population suffer from epileptic seizures which can lead to injuries and

even unexpected death. We used EEG signals, which are proven to be the best indicators of

seizures. However, the limited availability of seizure events in the EEG data makes it difficult

for the automatic classifiers in general to accurately classify seizure events. To improve this,

we propose two imbalance learning approach to improve accuracy of highly imbalanced seizure

dataset. First, since each patient provides a different response to the seizure, we personalize

the neural network classification models in terms of training data and model parameters.

Second, we used the notion of clustering to group the non-seizure class into different clusters

and consider the seizure class with each cluster separately. Both suggested imbalance learning

techniques improve the accuracy of seizure detection.

3.1 Imbalance Learning Using Customized Neural Network

3.1.1 Introduction

To confirm the diagnosis of epilepsy in patients, ElectroEncephaloGraphy (EEG) is used

to record electrical activity in the brain. EEG measures voltage fluctuations resulting from

ionic current within the neurons of the brain. Routine, non-invasive EEG requires placement

of electrodes on the scalp of the patient under observation. Epileptiform abnormalities like

spikes and sharp waves in the EEG support a propensity for epileptic seizures [43].

Often, even when the EEG recording is prolonged, EEG monitoring produces only a few

captured seizure events during the patient stay in the Epilepsy Monitoring Unit (EMU).

1Birjandtalab, J., Jarmale, V. N., Nourani, M., Harvey, J. (2018, October). Imbalance Learning Using
Neural Networks for Seizure Detection. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)
(pp. 1-4).

Birjandtalab, J., James, M., Nourani, M., Harvey, J. (2018, October). Learning from Non-Seizure Clusters
for EEG Analytics. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1-4).
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Therefore, the EEG data available to the Machine Learning (ML) algorithms, that attempt

to learn from the data, is dominantly one majority (non-seizure) class. So researcher’s main

challenge is to extract as much learning as possible from the minority (seizure) class. A

conventional method to achieve this would be to over-sample or under-sample data points of

minority and majority classes, respectively. A more effective way, that we advocate in this

work, would be to empower the learning part of popular ML algorithms to learn and respond

to the imbalance, without changing anything in the data.

In this chapter, we study the performance of Artificial Neural Networks (ANNs) while

training on the data extracted from the power spectral density of EEG signals. If an ANN

is trained on data where one of the classes is dominant compared to other classes, its

classification capabilities will not be very accurate. We address this issue by changing the

cost function, compare results between the old and the new cost functions and also juxtapose

the results when the system learns from imbalanced EEG data. Notice that we are not doing

anything to change (e.g. replicate) the data. Instead, we change the way we learn from the

imbalanced data. This is fundamentally different from oversampling and under-sampling

which inherently change the data that neural networks learn from.

3.1.2 Methodology

The general view of our proposed methodology is shown in Figure 3.1. A full-channel (often

18 to 24 electrodes) scalp EEG dataset is used as input of the model. We used a spectral

analysis to extract features from time domain EEG signals. The details of feature extraction

is explained in Section 2.2. Then, we modified the cost function of the artificial neural

network to address problem of imbalance dataset. Finally, we classify seizure and non-seizure

events for each patient [10].
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Artificial Neural Networks

ANNs are inspired from the networks in brains, which learn from examples and without the

requirement of task specific programming. ANNs consist of layers of artificial neurons which

are generally densely connected with each other. The connections between neurons in ANNs

are equivalent to the synapses between neurons in brain. When neural networks have more

than one hidden layer, i.e. more than three including the input and output layers, they are

often called Deep Neural Networks (DNNs) [40].

Considering the input layer to be the 0th layer of the DNN, the L hidden layers of a DNN

to be numbered from 1, . . . , L, and the output layer of DNN to the (L+ 1)th layer, we have

the following equation [40]:

vl = f(zl) = f(Wlvl−1 + bl) (3.1)

where vl is the output vector of layer l, zl is the activation vector of the lth layer with

predetermined number of neurons, W l ∈ IRNl×Nl−1 is the weight matrix and bl ∈ IRNl is the

bias vector. Function f here is the activation function in layer l of the ANN. The Softmax

activation function is used in the output layer of an ANN classifier to determine which of the

classes does the data-point under examination belong to [40].

3.1.3 ANN architecture for imbalance learning

ANN Architecture

For the number of neurons in the hidden layer in our neural network, we have used a

popular thumb rule for the number of neurons in the hidden layer, which is, to be somewhere

between the number of neurons in the input layer and the output layer [16], i.e. Nhidden =⌈
Ninput+Noutput

2

⌉
. So, in our experiments, we have 46 to 61 ((90 + 2)/2to(120 + 2)/2) hidden
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ReLU (Rectified Linear Unit) neurons in the single hidden layer of the network depending

upon the number of input features available for each patients’ data.

We have chosen to have only one hidden layer since adding just one hidden layer turns

a linear ANN (a linear ANN is one with no hidden layer) to a non-linear ANN [6], which

means, with just as little as one hidden layer, neural networks are capable of being a universal

approximator [22].

While training our ANNs, one of the most important steps is to back-propagate the cost

(error) accrued across N training data points in the batch. It is defined as a function of the

value predicted by the neural network and the target value, i.e. the value the ANN is trying

to learn and is generally denoted as J , called the cross-entropy cost function. When we have

K classes, it is defined in the following manner [40]:

J = − 1

N

N∑
i=1

K∑
k=1

ti,klog(ŷi,k) (3.2)

In a binary classification problem, for N training data points, the average cross-entropy

cost function is defined as:

J = − 1

N

N∑
i=1

[
tilog(ŷi) + (1− ti)log(1− ŷi)

]
(3.3)

where, for training example i, ti is the target class and ŷi is the value predicted by the ANN.

Imbalance Learning

Note carefully that in justifying Eqn. (4) and (5) researchers assumed that the classes are

not imbalanced, i.e. both classes in the training data get almost equal opportunity to be

learnt. However, in many applications this is not true. For example, the real world EEG data,

has more non-seizure points than seizure points. The imbalance ratio can be as high as 400,

meaning, the number of non-seizure (majority class) points is 400 times the number of the
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seizure points (minority) in the data. So, we modify the cross entropy cost function which

attempts to level the opportunity for the minority class to train with the majority class. One

of the way to do that is to punish the misclassifications of the minority class harsher than the

misclassifications in the majority class. To quantify this, we define Imbalance Ration (IR):

IR =
|M |
|m|

(3.4)

where |M | and |m| are number of data points (samples) in majority and minority classes in

the training dataset, respectively.

We multiply the minority class misclassification error by IR to give it proportional weight

during training [64]. After making these considerations, the weighted cross entropy cost

equation Jw becomes:

Jw = − 1

N

N∑
i=1

{tilog(ŷi) + IR[(1− ti)log(1− ŷi)]} (3.5)

By doing this, we are magnifying the error when the ANN misclassifies a datapoint of

the minority class, forcing the neural network to back-propagate the error to ensure that the

neural network adapts itself and ultimately gets the prediction of minority class correctly.

3.1.4 Experimental Results

In our work, we investigated the EEG dataset of 23 patients collected at the Childrens

Hospital Boston (also known as MIT/Physionet dataset) [54]. The details of this dataset is

explained in section 2.6.1.

We chose F-measure as the key metric to evaluate the training of the ANN. Note that,

F-measure (i.e. Fmeasure = 2×tp
(2×tp)+fn+fp) mixes true positives (tp), false positives (fp), and

false negatives (fn). It does not intentionally take into the account the number of true

negatives (tn), which, in our case, means we do not consider the number of non-seizure points

classified correctly. This is better in imbalance learning investigation as our main focus here
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is to classify the seizure points correctly. Table 3.1 lists the number of seizure points, the

Imbalance Ratio (IR) and the average F-measure values when two cost functions FJw and FJ

are used and the difference ∆F for each patient.

The values in Table 3.1 are the results of the following procedure carried out on each

patient’s dataset. We first shuffle the dataset and then divide it into 10 stratified folds

(preserving the class imbalance ratio of the original dataset in each fold of the dataset).

After performing 10-fold Cross Validation (CV) on ANN employing J , we obtain an average

F-measure value FJ which goes into Table 3.1, for that patient. Similarly, we obtain the

average F-measure value FJw using our improved cost function Jw. Finally, we calculate the

difference ∆F = FJw − FJ .

In Table 3.2, we consider the first six patients with the highest IR. For each of these

patients’ data, we separated the labeled seizure and non-seizure points. 100%, 50% or 33% of

the seizure points were randomly sampled and all the non-seizure points were taken, shuffled

to form a dataset. Just like the aforementioned procedure, we performed 10-fold CV on

each of the three datasets per patient (100%, 50% and 33% of seizure points respectively per

patient) to obtain an average F-measure value per dataset as listed in the table. For subjects

16 and 21, under the FJ column, we see values of average F-measure being 0.0 under high IR

(33%) scenario. An average of 0.0 indicates that for every test fold, the F-measure observed

was 0.0; which means, there were no true positive points predicted by the ANN. This happens

because the number of seizure points to learn from, for the ANN, were completely insufficient.

Note that in 11 out of 23 cases we have ∆F < 0 indicating that cost function J slightly

produces better results. However, average of these cases is ∆F = −0.05. On the other hand,

other 12 cases with ∆F > 0 produce ∆F = +0.082. The average of all 23 cases produced

∆F = +0.02. All together, Jw still is more effective in dealing with imbalance EEG data.

Observing Table 3.2, we see that as we superficially reduce the number of seizure points,

the F-measure performance of ANNs keeps going down, as expected. This is true for both Jw
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Table 3.1. Comparison of average F-measure for all subjects

Subject sz. pts. IR FJw FJ ∆F

16 8 360.00 0.70 0.40 0.30

6 12 240.00 1.00 0.80 0.20

14 15 192.00 0.80 0.83 - 0.03

2 17 169.41 0.90 0.77 0.13

21 19 151.58 0.67 0.53 0.14

22 19 151.58 0.87 0.82 0.05

20 21 137.14 0.94 0.88 0.06

19 22 130.91 0.90 0.91 - 0.01

9 26 110.77 0.90 0.93 - 0.03

17 28 102.86 0.66 0.78 - 0.12

18 29 99.31 0.79 0.76 0.03

7 31 92.90 0.75 0.80 - 0.05

3 34 84.71 0.90 0.92 - 0.02

5 35 82.29 0.87 0.90 - 0.03

4 36 80.00 0.85 0.83 0.02

23 40 72.00 0.97 0.96 0.01

10 41 70.24 0.99 0.97 0.02

1 43 66.98 0.96 0.97 - 0.01

13 49 58.78 0.84 0.93 - 0.09

11 80 36.00 0.99 0.99 0.00

12 89 32.36 0.69 0.84 - 0.15

8 91 31.65 0.87 0.84 0.03

15 180 16.00 0.89 0.90 - 0.01

Average 42 68.64 0.86 0.84 0.02

and J . However, we see that, even in case of limited availability of data to learn, FJw > FJ ,

sometimes giving significant values of ∆F . Except for subject 14, all cases show ∆F > 0.05,

in fact, by a large margin. This explains that using Jw can be important when we are

looking at a patient with a very few seizure points. An average of these six patients also

show significant improvement of ∆F i.e. 0.13, 0.17 and 0.19 when 100%, 50% and 33% of

the seizure-points are taken.

The classification accuracy is expected to be highly subjective. Yet, our method operates

very well. A remarkable example of this is of subject 6 where just 12 points are enough to
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Table 3.2. Top 6 patients for 100%, 50% and 33% of original IR

Subject sz. pts. % sz. pts #. IR FJw FJ ∆F

16
100 8 360.00 0.70 0.40 0.30
50 4 720.00 0.25 0.0 0.25
33 2 1440.00 0.11 0.0 0.11

6
100 12 240.00 1.00 0.80 0.20
50 6 480.00 0.57 0.29 0.28
33 4 720.00 0.31 0.01 0.30

14
100 15 192.00 0.80 0.83 - 0.03
50 7 411.43 0.49 0.46 0.03
33 5 576.00 0.35 0.31 0.04

2
100 17 169.42 0.90 0.77 0.13
50 8 360.00 0.64 0.43 0.21
33 5 576.00 0.39 0.06 0.33

21
100 19 151.58 0.67 0.53 0.13
50 9 320.00 0.37 0.33 0.04
33 6 480.00 0.14 0.0 0.14

22
100 19 151.58 0.87 0.82 0.05
50 9 320.00 0.77 0.61 0.16
33 6 480.00 0.46 0.23 0.23

Average
100 15 192 0.82 0.69 0.13
50 7 411.42 0.52 0.35 0.17
33 5 576 0.29 0.10 0.19

obtain an average F-measure of 1.00 (i.e. perfect classification). On the other hand, we have

an example of subject 15, where we have 180 seizure points and would expect similar results

(average F-measure nearing 1), but turns out the average F-measure in this case is 0.89.

3.2 Cluster based Imbalance Learning

EEG data collected in EMU is highly imbalanced and accuracy of automatic epileptic seizure

detection is naturally low. Our aim is to increase the accuracy by reducing the imbalance ratio

of seizure and non-seizure classes. We hypothesis that the non-seizure class itself includes

various daily brain activities and then the data points are distributed as clusters in this

class. In training phase, we propose a technique to cluster the majority (non-seizure) class
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Figure 3.2. Overall view of our proposed methodology

into k clusters. Then, we train k KNN classifiers using each of the k non-seizure clusters

plus seizure class. In the testing phase, we classify an incoming sample using this model

and the non-seizure cluster closest to the incoming sample. We employed a state-of-the-art

visualization technique to illustrate clusters of majority non-seizure class in two dimensions.

The results, applied to MIT EEG dataset, show that our technique provides a higher average

F-Measure accuracy.

3.2.1 Methodology

General view of our proposed model is shown in Figure 3.2. Inputs of this model are multi-

channel scalp EEG signals. A frequency domain feature extraction technique is used to

convert time domain EEG signals to meaningful features. The details of feature extraction

is explained in Section 2.2. Finally, a patient-specific clustering based imbalance reduction
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technique followed by K-Nearest Neighbour (KNN) classification technique detects seizure

and non-seizure events. We use t-SNE for visualizing the clustered data.

Clustering Based Imbalance Learning

This is a critical data prepossessing technique to reduce class imbalance by clustering the

majority class. The steps of the proposed algorithm are [9]:

• Majority-Class Clustering: The non-seizure data is clustered into k (k is subject

dependent determined practically) clusters using K-means clustering. A copy of the

remaining seizure data is assigned to each of the obtained clusters. The resultant

structure would be k groups of data, each containing one cluster of non-Seizure data

appended with all of the seizure data.

• Multi-Model Training: The input for training would be each of the k datasets, each

of them being a mixture of non-seizure and seizure data. Our objective for preparing k

models is to use them in the testing phase.

• Model Selection (During Test): To improve accuracy of classification, we would

have to test each samples in the testing set against the appropriate model. To find the

best model to test a data-point, we find the closest cluster to each sample in the test

set by calculating the Euclidean distance to the center of each cluster and select the

corresponding model. Algorithm 1 summarizes the steps of the proposed clustering

based imbalance learning technique.

Classification

After clustering the majority (non-seizure) class, we generate multiple KNN classifiers with

an aim to classify seizure and non-seizure events. EEG time series provide a different seizure

pattern which is highly patient dependent. This is the reason that we applied personalization
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(patient-specific approach) by using the patient’s own data for both clustering and classification

phases. Table 3.3 shows the original Imbalance Ratio (IR) of each patient in MIT dataset

[54]. For each patient, we use 8 hours of known non-seizure EEG data that was at least 30

minutes from the nearest seizure. For this group of patients, duration of seizure events varies

from 10 to 120 seconds. Finally, we applied patient dependent 10-fold cross-validation to

validate our suggested technique.

Visualization

The visualization of this data is done for the purpose of validation and development. It shows

how different clusters would form in the non-seizure data and for the depiction of seizure data

among them. As our data is in high dimension (90-115), t-Distributed Stochastic Neighbor

Embedding (t-SNE) for dimensionality reduction that is particularly well suited for the 2D

visualization of high-dimensional datasets is applied to the whole data [60]. Figure 3.3 shows

an example of non-seizure and seizure data points in 2D for a specific patient. The new

dimensions (V1 and V2 in Figure 3.3) are different from any of the original dimensions. In

fact, they represent two artificially built dimensions, which are modeled by distribution of

similar/dissimilar samples in high-dimensional feature space [12]. The non-seizure data is

clustered using K-means clustering with k=10. All seizure data are assigned to a separate

cluster. In the following subsection, we briefly discuss the t-SNE. The detailed explaintion of

t-SNE is mentioned in Section 2.4.1.
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Algorithm 2 Algorithm 1: Clustering Based Imbalance Learning

Data: Highly imbalanced EEG data
Result: Classified events
Divide the data into TRAIN and TEST
Separate Non-Seizure data N and Seizure data S in TRAIN
K-means Clustering(N ) into N1, N2, ...Nk

while for each of N1, N2, ...Nk in TRAIN do
Ci ← Ni

⋃
S

Model[i]← KNN(Ci)
end
for each record in TEST
for each cluster
d[j]←Find distance of data point from cluster centers
end
minIndex←Min(d[j])
Predict class for the record using Model[minIndex]
end
Calculate F-measure

3.2.2 Experimental Result

The EEG data of twenty three epileptic patients from the open access scalp EEG signals is

used in this work which are recorded at the Childrens Hospital Boston [54]. The details of

this dataset is explained in section 2.6.1.

Evaluation

For performance measurement, we calculate the confusion matrices for each fold. From this

the F-measure is calculated using the following formula:

Fm =
2TP

2TP + FN + FP
(3.6)

Here, TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative.

F-measure shows a harmonic mean of precision and sensitivity numbers. Even after applying

imbalance learning techniques, seizure dataset is highly imbalanced because each patient
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have seizures for only short amount of time. So, most instances still belong to the majority

class. This is the reason that we select F-measure as an appropriate metric for reporting the

accuracy. This metric is not affected by the number of correctly classified non-seizure class

are are considered more reliable metrics in this work.

Discussion

We performed both clustering and classification tasks using R-Studio software tool [57]. We

compared the seizure detection accuracy for different number of clusters. Since there is no

side information about number of clusters in the majority class, we set number of clusters

based on two scenarios. In the first scenario, we assumed that there are k = 10 clusters in the

non-seizure group. This number k = 10 is only an estimation on the number of typical daily

brain activities. In the second scenario, we ran the experiment for different number of clusters

in range between 1 to 10 clusters and found the best k comparing the classification accuracy.

Table 3.3 shows the Fm without clustering (3rd column) and with clustering non-seizure class

for each patient (both k = 10 and best k) in 4th and 6th columns, respectively. Our proposed

clustering based imbalance learning technique has improved the accuracy of seizure detection

from 0.58 to 0.74 (27% improvement) on average. The rationale is that by clustering the

non-seizure class, we potentially find different brain activities. So, the chance of correctly

classifying a seizure event against clusters of brain activities is higher than classifying it

against treating all non-seizure activities the same way.

3.3 Summary

While, EEG signal is known as the best indicator of epileptic seizures, there are classification

challenges. Specifically, the highly imbalanced nature of EEG signal which provides only

few seizure events compared to a large number of non-seizure events. We addressed this
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Figure 3.3. 2D visualization of seizure (red dots) and non-seizure (colorful dots) points.

issue by proposing a customized ANN with personalized cost function that learns from the

imbalanced data and achieves high accuracy in automated seizure detection.

Real world EEG data is highly imbalanced in a way that they suffer from lack of sufficient

seizure events. Since the non-seizure class contains various daily brain activities, we proposed

to cluster non-seizure class into k clusters in the training phase. Then, we train k KNN

classification models. In testing, we classify a new data point using the classifier which its

corresponding non-seizure cluster is the closest to the new data point. We used an efficient
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Table 3.3. Experimental Results

Sub IR
Fm

(KNN)

Fm
( KNN+k=10

Clusters)

Best
k

Fm
( KNN+best k

Clusters)

sub1 66.98 0.83 0.85 4 0.89
sub2 169.42 0.60 0.64 4 0.71
sub3 84.71 0.71 0.84 1 0.89
sub4 80.00 0.53 0.56 2 0.73
sub5 82.29 0.78 0.78 2 0.82
sub6 240.00 0.47 0.47 1 0.60
sub7 92.91 0.27 0.53 1 0.64
sub8 31.65 0.79 0.82 1 0.83
sub9 110.77 0.53 0.74 2 0.89
sub10 70.25 0.92 0.92 1 0.93
sub11 36.00 0.96 0.96 4 0.96
sub12 32.36 0.67 0.71 1 0.74
sub13 58.78 0.76 0.79 1 0.84
sub14 192.00 0.34 0.47 1 0.55
sub15 16.00 0.82 0.85 1 0.86
Sub16 180.00 0.40 0.67 8 0.73
sub17 102.86 0.56 0.62 3 0.69
sub18 99.32 0.33 0.43 1 0.43
sub19 130.91 0.40 0.40 7 0.62
sub20 137.15 0.39 0.48 7 0.62
sub21 75.79 0.07 0.17 8 0.35
sub22 151.58 0.54 0.62 2 0.83
sub23 72.00 0.69 0.75 3 0.85

Avg 100.56 0.58 0.65 ' 3 0.74

visualization technique to validate and visualize clusters of majority non-seizure class in 2D.

The results shows that dividing the non-seizure class into clusters reduces the imbalance ratio

and improves the seizure detection accuracy.
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CHAPTER 4

IMPACT OF PERSONALIZATION ON EPILEPTIC SEIZURE

PREDICTION1

The main contribution of this chapter is a personalization method which systematically selects

the algorithm’s parameters based on patient’s individual data. The conventional seizure

prediction techniques use a fixed set of parameters (like window size and time-to-seizure

of preictal data). In this work, we report how personalizing the preictal data parameters

improves the quality of seizure prediction. Experimental results show that using a personalized

small set of parameters increases the F-measure accuracy of seizure prediction.

4.1 Introduction

Research has been carried out in the field of seizure detection and prediction for a long

time in an attempt to improve the quality of life of epilepsy patients. Earlier, most of them

involved experts studying seizure patterns with the help of EEG and other data available and

formulating algorithms which would determine if a patient is going to experience a seizure

or not. Osorio et al. published one of the early algorithms that achieved sensitivity and

specificity over their entire dataset and allowed prediction of clinical onset of a seizure by a

mean of 15.5 seconds in 92% of seizures [45]. They clearly stated in their paper they have

not relied on training as a tool to develop, test and improve algorithmic performance. Their

algorithm had the ability to quantify signal changes rather than comparing to determine

whether or not the detected changes correspond to a seizure. The paper recommended

adapting it to individuals, seizure types or individual data channels can possibly improve the

speed of detection and the length of prediction times [45].

1Birjandtalab, Javad, V. Jarmale, and Mehrdad Nourani. ”Impact of Personalization on Epileptic Seizure
Prediction.” 2019 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE,
2019.
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Figure 4.1. The general view of our proposed methodology.

W1 W2 W3 WN

Tp=Preictal Duration

Seizure Starting Point

W=Window Size 

IctalPreictalNon-Ictal

S=Segment
Time to Seizure

Figure 4.2. Preictal Window Selection.

4.1.1 Main Contribution

The main contribution of this chapter is a personalization method which systematically selects

the seizure prediction parameters for each patient. When it comes to predicting the seizure,

the main question is how to select the data prior to the seizure. The conventional seizure

prediction techniques use a fixed set of parameters for pre-seizure data like window size and

time-to-seizure. In this work, we show how personalizing the pre-seizure data parameter can

improve the quality of seizure prediction. Our idea involves the concept of sliding windows

of various window sizes to squeeze in the shortest monitoring time to accurately call an

impending seizure. The general view of our proposed methodology is shown in Figure 4.1.
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A full-channel (often 18 to 24 electrodes) scalp EEG dataset is used as input of the model.

We used a spectral analysis to extract features from time domain EEG signals.The details of

feature extraction are explained in Section 2.2. Then, we employed a window selection step

to find the best portion of data for that particular patient to use for prediction. Finally, we

classify preictal and non-ictal events for each patient.

Algorithm 3 Personalizing seizure prediction parameters

Input (i): Set of preictal window size W1,W2, ...WN

Input (ii): Set of time-to-seizure T1, T2, ...TM
Output: Personalized preictal window size Wp and time-to-seizure Tp
Separate non-ictal data X and initial preictal data P
For each window size W1,W2, ...WN

For each time-to-seizure T1, T2, ...TM
Pi,j ← Extract preictal data using Wi and Tj parameters
Ci,j ← Pi,j

⋃
X

Train ANN classifier using Ci,j and report F-measure Fi,j
{imax, jmax} ← indices which maximize Fi,j
end
end
WP ← Wimax

TP ← Tjmax

4.2 Methodology

4.2.1 Personalization

We personalize the window size and time-to-seizure of preictal data. For this purpose, we

initially consider five minutes (300 seconds) of data before each seizure episode as preictal

window. Similar to Netoff, et. al, work [42], we have also chosen initial time period of five

minutes before the occurrence of seizures as the preictal period for each patient. Then, we

analyze smaller size windows, like 60, 90, 120, 180, 240 and 300 seconds (i.e, 1 minute to

5 minutes) to achieve the best performance on the data available for a particular patient.

Algorithm 3 shows how personalized values of window size WP and time-to-seizure TP in
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Figure 4.3. Accuracy of seizure prediction as parameter of time to seizure for different window
sizes for patient 1 data.

preictal data are calculated. Figure 4.2 shows how we employ different window sizes and

time-to-seizure for each patient. This process determines how long we should monitor, for

each patient, before we can predict that the patient may have a seizure in a few minutes. For

this, we have labeled the data points up to 5 minutes (300 seconds) before the actual seizure

as preictal period data points and tried to learn the pattern of brain waves in the preictal

period. So, we divided this preictal data before the seizure into various overlapping windows

of size 60, 90, 120, 180, 240 and 300 seconds.

4.2.2 Prediction

We used Artificial Neural Network (ANN) configured for each patient using the data they

recorded when put under observation in the Epileptic Monitoring Unit (EMU). The general

architecture of the ANN is standard since the focus here is to discuss the technique of issuing
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Figure 4.4. Distribution of F-measure recorded for patient 1

credible alerts with enough time for the patient/caregiver to respond. We have one hidden

layer where the number of neurons are calculated using the popular thumb rule that the

number of hidden neurons should be somewhere between number of neurons in the input

layer and number of neurons in the output layer [16], i.e. Nhidden =
⌈
Ninput+Noutput

2

⌉
. With

just one hidden layer, neural networks are capable of being universal approximators from a

linear ANN [6][22].

4.3 Experimental Results

4.3.1 EEG Dataset

In our work, we analyzed the EEG dataset of 23 patients collected at the Childrens Hospital

Boston (also known as MIT/Physionet dataset) [54]. In this dataset, each channel contains

the difference of two adjacent electrodes collected in the sequential format. The EEG signals

have a resolution of 16 bits and sampled with a sampling frequency of 256 Hz. The start and
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Figure 4.5. Number of patients for different accuracy target levels w.r.t different training window
sizes

end points of each seizure event are annotated on a document along with EEG files which

are used to indicate the ground truth.

We have marked the data points five minutes before the seizure as preictal period and

approximately 8 hours of the data is non-ictal data points, i.e, data points which were

recorded when the patient was not experiencing a seizure attack. We have used this to learn

the patterns during the preictal and non-ictal period for each patient using the patient’s data.

4.3.2 Discussion

To evaluate the performance of our models built on personalized preictal EEG data, we have

chosen F-measure (the harmonic mean of the precision and recall) since it intentionally does

not take into the account the number of true negatives, which, in our case, means we do not

consider the number of non-ictal points correctly classified. For evaluation, we used a 4-fold

cross validation technique. To see how the F-measure changed, as we learnt from different
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windows, we have Figure 4.3. This figure illustrates the value of F-measure observed for a

particular window size W and time-to-seizure T .

Figure 4.4 statistically summarized the F-measure values for the six window sizes, as

observed in Figure 4.3 using a box and whisker plot. The plot shows the distribution of

the values along with other statistics like maximums, minimums and quartile values as

whiskers for each window size. Both Figures 4.3 and 4.4 are for patient 1 in our dataset.

We carried out such analysis for each of the 23 patients’ data. Clearly, the window size

and time-to-seizure values affect the accuracy of seizure prediction. The box and whisker

plot (Figure 4.4) illustrates two points. First, the size of window affects the accuracy of the

prediction. Larger window sizes result in higher median values of accuracy in the box and

whisker plot. Second, for a fixed window size, the time-to-seizure impacts the accuracy of

the prediction. The inter-quartile range (IQR) of each box shows this effect. For example, a

window size of 60 seconds (blue plot) has a difference of 17.3 percent between the highest

(84.5 percent) and the lowest (67.2 percent) values.

To choose which window size that best serves the patient, we need to combine information

of both Figure 4.3 and Figure 4.4. Looking at the box plot and the time-to-seizure plot, an

informed decision must be made for each patient. Observing the values in the 120-seconds

window (green) and the 90-second window (orange), we see that both record good F-measure

values with significant time to spare. When the 120-seconds window detects the occurrence

of seizure, we can alert patient/caregiver 150 seconds before seizure and the 90-seconds one

similarly gives us 170 seconds. Since, the 120-seconds window gives us a higher value and the

variance of those values is less than the 90-seconds one, we pick the 120-seconds window as

the preferred window to predict seizures for this patient.

In order to show the impact of personalization on all the patients, we set some target

level for prediction accuracy: 0.525, 0.625, 0.725, and 0.825. At minimum, we would like

to alert the patient/caregiver at least a minute before the seizure occurs. If possible 120
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seconds is even better as we are able to issue an alert a whole two minutes before the seizure.

Therefore, we have tried values of 60 seconds, 90 seconds and 120 seconds as the thresholds for

time-to-seizure values. We consider the F-measure value for each of the windows to determine

the performance of the classifier (ANN) for that patient. This comparison is illustrated in

Figure 4.5. It shows that for each accuracy target level, as we decrease the window size, we

have a higher number of patients that satisfy that particular level threshold. This happens

because the data closer to seizure could potentially have more information about the seizure.

4.4 Summary

Prediction of seizure episodes is extremely important since it can save the lives of many

epileptic patients. Conventional seizure prediction techniques use a fixed set of parameters for

pre-seizure data for all the patients. Since each patient responds differently to the seizures,

this approach is not efficient. We proposed a personalized approach which finds the best

set of pre-seizure parameters for each patient. These parameters include window size and

time-to-seizure of pre-seizure data. This personalizing approach improves the accuracy of

seizure prediction.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTION

5.1 Summary of Findings

Monitoring seizures is an age-old struggle in the research community that seemed out of reach

for decades. Persons who suffer from epileptic seizures are safer if accompanied by a caregiver

when seizures strike. Consequently, there is a need for monitoring mechanisms capable of

both detecting and predicting epileptic seizures in everyday life. This work presents three

approaches for EEG-based analysis of epileptic seizures monitoring.

In the first algorithm, a hybrid low dimensional seizure detection methodology is developed

to distinguish seizure and non-seizure samples among 23 epileptic patients. The proposed

method shows a promising performance compared to the conventional techniques. The

algorithm works in two steps: At first, the original full set of EEG channels are fed into a

state-of-the-art channel selection model to select the most informative set of channels. Then,

the spectral domain features of those selected features are transformed in low dimension. The

computed information (in low dimension) is applied to a classifier model to detect seizure

samples from non-seizure samples.

In the second algorithm, we advocate the use of the imbalance learning technique to make

the seizure data more balanced in terms of percentage of seizure and non-seizure samples. We

propose two novel ideas. First, we classify seizure class against each of non-seizure clusters.

This approach increases the imbalance ratio and helps classifiers better understands the

seizure pattern. Second, we customized the cost function of a neural network regarding the

ratio of seizure class over the non-seizure class. The importance of seizure samples and non

seizure samples are the same from the conventional neural networks perspective. In our

approach, we modify the cost function of network in a way that gives a higher importance to

correctly classifying seizure samples. Both proposed imbalance learning approaches improve

that accuracy of seizure detection.
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In most of seizure prediction scenarios, when researchers extract pre-seizure data from

patients, they do not consider this fact that each patient responds differently to the occurrence

of seizure. The conventional seizure prediction techniques use a fixed timing for pre-seizure

data for all the patients. In the third part of this research, a personalized methodology is

presented to predict seizure using a neural network model. We tested the proposed technique

using two publicly available seizure datasets for 23 patients. The seizure prediction accuracy

is improved when we consider personalized pre-seizure data.

5.2 Limitations

There are two limitations of our methods when utilized for EEG based epileptice seizure

monitoring:

• Insufficiency of EEG data: Our methodology, like most of the techniques on seizure

monitoring focuses on EEG data. Although there are meaningful information inside the

EEG signal, many aspects of EEG-based neurological disease study are still unknown.

In order to deeply understand the normal and abnormal brain activities like seizures, it

is quite important to have access to more biological signals rather than EEG signals.

For instance, Non-EEG biological signals like heart rate, Spo2, EDA, accelorometer

and temperature are able to make significant differences and reveal new information

which may not be reflected in EEG [21][7]. Use of multiple biosignals (e.g. EEG and

non-EEG) can greatly decrease the false positive rate of seizure monitoring platforms.

• Lack of long-term seizure data-sets: Our seizure prediction technique relies on

personalized seizure model. This is a limitation for seizure prediction problem. This

issue limits our understanding about the mechanism leading to seizure occurrence.

With increasing the number of subjects and using real world data of patients, there is a

need for the new data collection and diary platforms that can save long term data to
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capture all events and facilitate knowledge extraction. In fact, to have an accurate and

robust monitoring both data from a large group of patient and long-term data for each

patient are needed.

5.3 Future Works

Recently, several algorithms have been introduced to extract new features from EEG signals.

Particularly, spectral domain features (i.e. of five unique frequency bands) which are

considered as the most popular characteristics of EEG signals. So, The spectral feature that

is used in this work can be expanded using other functions like Wavelet, short-FFT. Such

techniques add new information to the spectral domain features by adding the time dimension

to the features. This paves the way to comprehensively extract meaningful patterns from

EEG signals. Moreover, these features are able to improve the accuracy of seizure prediction

which requires more informative features comparing to seizure detection.

Epileptic seizure data is collected in EMUs and the cost of data collection is relatively

high. However, most of the seizure data-sets suffer from a very few number of seizure events.

This limited number of seizure events make the monitoring process very difficult since the

monitoring models are dominated by non-seizure events. In some cases, the imbalance ration

is very high such that even imbalance learning techniques cannot improve the accuracy of

seizure monitoring at all. This is the main limitation of applying imbalance learning in seizure

data-sets.Researchers in academia and their collaborators at medical centers need to collect

data from hundreds of epileptic patients to generate a large seizure dataset with more number

of seizure episodes. Although we addressed the imbalance learning approaches in this work,

there are other state-of-the-art imbalance learning techniques like auto-encoder networks and

GANs (Generative Adversarial Networks) models which can reproduce seizure events. These

two approaches use the notion of deep learning, can better get trained on the seizure event
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patterns and produce similar seizure data which ultimately improve the accuracy of seizure

monitoring.
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