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ABSTRACT 

 
 
 Supervising Professor:  Denise C. Park, Chair 
 
 
 
 
Cognitive aging research has traditionally studied the inevitable cognitive decline in older adults 

as a group. Recently, more research has recognized the importance of understanding the 

individual variability in cognitive aging trajectories. Some individuals show superior 

performance and better preservation of cognition relative to others at their age, termed “prime” 

agers in the present dissertation. By contrast, some individuals may exhibit substantial cognitive 

deficits and greater decline representing a suboptimal cognitive aging profile, termed 

“nonprime” individuals. Many neuroimaging research efforts have been made to explore the 

neural mechanisms associated with these individual differences. Two possible patterns of 

functional activity, youth-like activation and compensatory recruitment, have been proposed to 

be particularly related to individual variability in cognitive changes. However, there is still a lack 

of consensus on what brain activity patterns may represent optimal aging in prime individuals. 

The present dissertation investigated this question in two studies. Because one major source of 

difficulty in this topic is the challenge in identifying prime agers, Study 1 implemented an 

exploratory data-driven approach to classify participants based on their cognitive performance 

and longitudinal cognitive change across multiple cognitive domains. Using two waves of 
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longitudinal cognitive data (with a four-year interval) in episodic memory, inductive reasoning, 

working memory, processing speed from the Dallas Lifespan Brain Study, Study 1 in Chapter 2 

examined the cognitive aging profiles in middle-aged, young-old and very old participants, and 

successfully identified two distinct cognitive aging profiles among participants, representing 

prime and nonprime individuals. Study 2 in Chapter 3 then utilized this classification of 

subgroups and compared their patterns of functional activity using a subsequent memory fMRI 

task collected at the second wave of DLBS. The analyses revealed several functional activity 

pattern differences between prime and nonprime individuals. First, prime individuals showed 

greater subsequent memory effect than nonprime individuals across core task-related regions 

associated with successful encoding. In addition, the higher subsequent memory effect in prime 

individuals, compared to nonprime individuals, was most evident in the young-old group, 

because prime agers exhibited better preservation of higher effect comparable to in younger 

adults, until very old age. In contrast, nonprime agers showed reduced subsequent memory effect 

starting in young-old age. Finally, prime young-old adults also recruited additional frontal 

regions, including left superior frontal and right orbitofrontal cortex, compared to young adults. 

This additional recruitment showed a trend of relationship to better memory performance, 

possibly suggesting a compensatory nature of this activation. In conclusion, the present 

dissertation demonstrated the use of a data-driven, multivariate approach and successfully 

identified prime and nonprime agers with distinct cognitive aging profiles. Comparison of their 

patterns of functional brain activity revealed that prime agers show a preservation of higher 

activation until very late in the lifespan and additional frontal recruitment in young-old age.  
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 
Aging has been historically characterized by substantial cognitive decline in many older 

adults (D. C. Park et al., 2002; Salthouse, 2003; Schaie, 1996), but recent literature has 

recognized the considerable inter-individual variability in the maintenance of cognitive ability 

throughout the lifespan (Goh, An, & Resnick, 2012; Hoogendam, Hofman, van der Geest, van 

der Lugt, & Ikram, 2014; Kramer et al., 2007; Lindenberger, 2014; Mella, Fagot, Renaud, 

Kliegel, & De Ribaupierre, 2018; Mungas et al., 2010; Nyberg, Lovden, Riklund, Lindenberger, 

& Backman, 2012; Royall, Palmer, Chiodo, & Polk, 2005; Wilson et al., 2002), suggesting that 

some people are more vulnerable to age-related cognitive decline while some may be resistant to 

cognitive change. As 20 percent of the total U.S. population will be over the age of 65 by 2030 

(Ortman, Velkoff, & Hogan, 2014), there is a pressing need for promoting cognitive health and 

delaying age-related decline in older adults. Many interventional studies are targeting at 

improving older adults’ cognition (Mewborn, Lindbergh, & Miller, 2017), and their success 

depends on a thorough knowledge of what constitutes “optimal aging” (Cabeza et al., 2018; 

Daffner, 2010; Nyberg et al., 2012; Nyberg & Pudas, 2018). In the present dissertation, 

individuals across the adult lifespan who have superior cognitive performance and better 

longitudinal preservation in cognition, relative to their peers, are termed as “prime” agers, 

representing a group of individuals exhibiting a more optimal cognitive aging profile. The 

overarching goal of the present dissertation aims to explore two challenging questions in this 

topic: (1) how can we identify prime individuals? and (2) how do they differ from other 
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individuals who represent average or nonprime trajectories of aging in brain functional 

activities? 

Many research efforts have been made to identify and characterize individuals into 

groups who show “better” or “worse” patterns of cognitive aging (Albert et al., 1995; Baltes & 

Baltes, 1993; Depp & Jeste, 2006; Nyberg & Pudas, 2018). However, operationally identifying 

prime individuals with optimal aging has always been challenging (Bowling & Dieppe, 2005; 

Depp & Jeste, 2006; Fiocco & Yaffe, 2010; Rogalski et al., 2013; Rowe & Kahn, 1997). 

Previous studies have mainly classified individuals on their memory performance (Harrison, 

Weintraub, Mesulam, & Rogalski, 2012; Olaya et al., 2017; Pietrzak et al., 2015), or a coarse 

measure of mental status (e.g., Mini-mental State Exam; MMSE) (Han, Gill, Jones, & Allore, 

2015). As a result, these studies divide individuals based on one specific cognitive domain. But 

cognition is comprised of multiple domains. An ideal classification should be holistic and 

comprehensive that summarizes cognitive aging status across domains, as one of the key 

elements proposed to define optimal aging conceptually is the preservation of functioning in 

“multiple cognitive domains” (Depp, Harmell, & Vahia, 2011). Particularly, in addition to 

memory, speed of processing (Salthouse, 1996b), inductive reasoning (Tucker-Drob, Johnson, & 

Jones, 2009), and working memory (Salthouse & Babcock, 1991) have also shown evidence of 

age-related decreases in cognitively normal older adults, and should be incorporated when 

identifying prime versus nonprime agers. 

In the first study of this dissertation (Chapter 2), I will investigate cognitive aging as a 

broader system that reflects an integrated totality of cognitive performance and changes across 

multiple domains of the individual, using data from the Dallas Lifespan Brain Study (DLBS). 
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DLBS is a large-scale longitudinal study that aims to characterize cognitive and brain aging in 

cognitively normal individuals across the adult lifespan (aged 20-90 years old). It includes a 

cohort that is very well characterized in not only cognition but also other aspects that are related 

to aging, including brain function (Chan, Park, Savalia, Petersen, & Wig, 2014; Kennedy, 

Rodrigue, Devous, et al., 2012; H. Park, Kennedy, Rodrigue, Hebrank, & Park, 2013; Rieck, 

Rodrigue, Kennedy, Devous, & Park, 2015), brain structure (Song, Farrell, Chen, & Park, 2018), 

amyloid deposition (Farrell et al., 2017; Rodrigue et al., 2013; Song, McDonough, Liu, Lu, & 

Park, 2016), tau deposition, cerebrovascular assessment (Peng et al., 2018), genetic information 

(Rodrigue et al., 2013), and comprehensive surveys of psychosocial measures (Chan et al., 2018; 

Festini, McDonough, & Park, 2016).  

I will take advantage of this rich dataset and the wide age range of participants. I will use 

a data-driven approach -- latent mixture modeling (Muthén, 2001; Ram & Grimm, 2009) -- that 

is specifically designed for separating individuals based on the heterogeneity in the data, and 

explore the differential cognitive aging patterns in this well-characterized cohort. Specifically, I 

will examine the longitudinal changes over four years in four cognitive domains – episodic 

memory, inductive reasoning, working memory, and speed of processing. Then, I will explore 

the existence of different subgroups in middle-aged (35-54 years old), young-old (55-69 years 

old) and very old adults (70-89 years old) based on their cognitive performance and longitudinal 

change in all four domains. These subgroups may reflect different cognitive aging profiles (e.g., 

prime, average, nonprime, etc). Finally, I will characterize and compare their longitudinal 

change in the four cognitive domains to further understand which of these cognitive domains 

contribute to distinct profiles between individuals. This data-driven approach may prove to be 
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useful for future studies to classify participants. A multivariate, unbiased approach may be 

particularly appropriate for aging and clinical research to develop classification with little a 

priori knowledge about the characteristics of subgroups.  

Another puzzle in understanding optimal aging is what patterns of brain activation may 

be related to better cognitive aging. In the second study of the dissertation (Chapter 3), I will 

specifically investigate this question. I will relate the classification of cognitive aging profiles 

(obtained in Study 1 in Chapter 2) to brain functional activities to understand brain activity 

differences in individuals who have evidenced different cognitive changes. 

One of the first findings in early neuroimaging studies of aging was that older adults who 

showed similar levels of task accuracy as young adults had decreased occipital activity as well as 

additional recruitment in prefrontal regions (Grady et al., 1994). Later research replicated the 

patterns of increased activity in prefrontal regions in older adults across a wide range of tasks 

and found that this additional recruitment was observed in older adults with better performance 

(Cabeza, Anderson, Locantore, & McIntosh, 2002; Eyler, Sherzai, Kaup, & Jeste, 2011; Reuter-

Lorenz, Stanczak, & Miller, 1999). Based on these findings, researchers interpreted this 

increased prefrontal activation as a compensatory recruitment, often featured in high-functioning 

older adults, and suggested that such ability to recruit additional regions is indicative of 

successful adaptive aging (Cabeza, 2002; Craik & Rose, 2012; Davis, Dennis, Daselaar, Fleck, & 

Cabeza, 2008).  

In contrast to the compensation view showing age-related increases in activation, older 

individuals have also shown age-related decreases in task-related activation, which may reflect 

reduced neural responsiveness in older brains (H. J. Li et al., 2015). Presumably, older 
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individuals with little age-related change, structurally and functionally, are speculated to have 

better-preserved cognitive functions (Nyberg et al., 2012). Indeed, recent evidence has shown 

that older adults who maintained the ability to activate specific task-related regions as in young 

adults had better memory performance and little memory decline (Persson, Pudas, et al., 2011). 

Moreover, longitudinal fMRI evidence suggests that older individuals who declined in memory, 

not those who managed to maintain their memory, had increased prefrontal activity 

longitudinally (Pudas, Josefsson, Rieckmann, & Nyberg, 2018). Researchers have therefore 

proposed the concept of brain maintenance and suggested that “maintaining a youthful brain, 

rather than responding to and compensating for changes, may be the key to successful memory 

(cognitive) aging” (Nyberg et al., 2012; Nyberg & Pudas, 2018). 

The majority of previous investigations on functional brain activity in older adults have 

interpreted their findings based on one of the two aforementioned views of successful brain 

aging (compensatory recruitment, brain maintenance). The two different accounts may seem 

contrary but are not necessarily contradictory, and may operate at different stages of the lifespan 

to cope with age-related changes (Cabeza et al., 2018). For example, the Scaffolding Theory of 

Aging and Cognition (STAC) suggests that the brain is a dynamic system with both positive and 

negative changes with age (D. C. Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014). As 

illustrated in Figure 1, as age increases, individuals are affected by depletion factors such as 

“neural challenges” and “functional deterioration”. According to STAC, the individual 

variability in aging is, at least partly, a consequence of these changes: brains appearing to have 

low maintenance will perform worse than intact brains with better preservation. Critically, 

another important contributor to individual differences in cognitive aging is “compensatory 
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scaffolding” that represents the engagement of supplementary neural function in response to 

neural degradation. This compensatory support helps to counteract the adverse changes in the 

face of neural challenges and deteriorations with aging. Overall, STAC integrates these different 

perspectives and views the brain as a dynamically adaptive system and suggests that 

compensatory activation may counteract the effects of neural degrading and leads to better 

cognitive aging.  

Figure 1. A conceptual model of the scaffolding theory of aging and cognition (STAC) 

Therefore, to better understand the patterns of functional activity related to optimal 

cognitive aging, I will directly compare individuals with different cognitive aging profiles and 

examine whether there are distinguishable functional activity features related to successful 

cognitive aging. Taking the view of STAC, I suggest that optimal cognitive aging may be related 

to better preservation of youth-like activity pattern, while additional recruitment outside task-

related regions may compensate and help with task performance in old age when brain 
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maintenance is reduced. I will use a subsequent memory task and compare the brain activity 

during successful encoding between individuals who established a superior pattern of cognitive 

aging and those who did not, as will be defined in Study 1 (Chapter 2), in middle-aged (35-54 

years old at baseline), young-old (55-69 years old at baseline), and very old adults (70-89 years 

old at baseline). I will first focus on any brain activity difference in task-related regions of 

subsequent memory (Kim, 2011; Maillet & Rajah, 2014) and then explore activity differences 

outside the core task-related regions.  

In summary, the present dissertation examines individual cognitive differences in aging 

and classifies individuals representing distinct cognitive aging profiles in middle-aged, young-

old, and very old individuals (Study 1 in Chapter 2), and then relates the classification to 

differences in their brain activity (Study 2 in Chapter 3). Specifically, in Study 1 of Chapter 2, I 

explore a data-driven approach that holistically classifies cognitive aging based on cognitive 

performance and longitudinal change across multiple cognitive domains. Then, using the 

classification, I directly compare brain activity during successful encoding between individuals 

who have evidenced differential cognitive aging profiles, and examine what brain activity 

features may be related to successful cognitive aging in Study 2 of Chapter 3.  
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CHAPTER 2 

USING A DATA-DRIVEN APPROACH TO CLASSIFY COGNITIVE AGING 

 
2.1. Introduction 

2.1.1. Overview of individual differences in cognitive aging 

 Cognitive aging research has been traditionally focusing on the inevitable cognitive 

declines in older adults, including slower speed of processing (Salthouse, 1996b), lower working 

memory (Salthouse, 1994), lower inductive reasoning ability (Tucker-Drob et al., 2009), and 

worse episodic memory (Ronnlund, Nyberg, Backman, & Nilsson, 2005). In these studies, the 

older population is often viewed as a homogeneous group whose mean performance is depicted 

as the representation of cognitive level in older adults and how it typically worsens with age.  

 Recently, studies have started to recognize the individual variability in age-related 

changes (Lindenberger, 2014; Rapp & Amaral, 1992). For example, Figure 2 illustrates the great 

inter-individual variability in longitudinal changes in memory (Nyberg, 2017). Each line 

represents an individual from the Betula study (Nilsson et al., 1997). The direction of the line 

represents if the individual has shown increases (going up) or decreases (going down) in their 

memory performance. The figure shows the mean change function (red curve) overlaid on 

individual patterns of change (black lines). The diverse patterns of the individual lines represent 

the massive inter-individual differences in the sample. This great variability in longitudinal 

change has also been reported in many independent samples with different measures of cognition 

(e.g., Baltimore Longitudinal Study of Aging (Goh et al., 2012); Seattle Longitudinal Study 

(Schaie, 1996); Religious Order Study (Wilson et al., 2002)), including the Dallas Lifespan Bran 

Study. The notion that cognitive aging does not follow homogenous declining trajectories 
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challenges the historical view of inevitable cognitive decline with age (Salthouse, 2010a), and 

offers the opportunity to explore factors that may contribute to different cognitive trajectories. 

Correctly characterizing and isolating the group of individuals presenting different cognitive 

aging profiles now becomes essential for ultimately understanding cognitive aging, and 

identifying modifiable factors that may lead to better cognitive aging. 

Figure 2. Illustration of mean change in episodic memory across the adult lifespan (red curve) 
and patterns of individual change (black lines) observed in the Betula study. 
Comp_EM=composite score of episodic memory (adapted from Nyberg, 2017). 

 
However, there has not been a consensus on how to best separate individuals based on 

how their cognition changes with age. Thus, operationally identifying and studying different 

aging profiles has always been challenging (Fiocco & Yaffe, 2010; Rowe & Kahn, 1997). The 

proportion of individuals who may represent successful agers also varied dramatically across 

samples for this reason (Cosco, Prina, Perales, Stephan, & Brayne, 2014; Depp & Jeste, 2006). 
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2.1.2. Traditional approaches to classify different cognitive aging patterns 

To study cognitive aging, some researchers use a cross-sectional design that collects data 

from individuals at different ages at the same time and examines the inter-individual differences 

to make inferences about age-related change. Cross-sectional classification of cognitive aging 

relies on the assessed performance at one time point and often defines superior agers, who appear 

to represent successful aging, based on the performance level relative to younger cohorts. An 

important assumption of such cross-sectional classification is that older adults performed the 

same as young adults when they were at the younger age and that the observed difference 

between older and younger groups reflects cognitive aging over the years. However, older people 

grew up in a very different socio-cultural and educational environment compared to the younger 

generation today, which may lead to different developmental trajectories beyond the effect of 

aging (Salthouse, 2014b). In addition, older adults recruited in healthy aging studies are often 

more selective, compared to young adults (Ronnlund et al., 2005; Singh-Manoux et al., 2012). 

Therefore, an optimal classification of agers who have better or worse cognitive aging 

trajectories should consider the intra-individual change that tracks their cognitive development 

related to aging using a longitudinal design where the same individual is tested repeatedly and 

compared to oneself.  

Even among the studies using longitudinal data, various analytic approaches have been 

implemented when isolating individuals with different cognitive patterns (e.g., Australian 

Imaging, Biomarkers, and Lifestyle study (Pietrzak et al., 2015); Betula study (Josefsson, de 

Luna, Pudas, Nilsson, & Nyberg, 2012; Persson et al., 2005); Geneva Variability Study (Mella et 

al., 2018); Health Aging and Body Composition study (Yaffe et al., 2009)). Some researchers 
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took a theory-driven approach and separated individuals based on an a priori definition of 

successful or unsuccessful older adults by comparing their longitudinal cognitive change to zero 

(Mella et al., 2018; Persson et al., 2005; Yaffe et al., 2009). For example, Yaffe and colleagues 

(2009) studied 2509 older adults from the Health, Aging and Body Composition study over 8 

years and separated participants into three groups based on the estimated rates of their 

longitudinal change in mental status: maintainers with 0 change or greater (30%), minor 

decliners with slopes less than 0 but no more than one SD below the mean change (53%), and 

major decliners with slopes more than one SD below the mean (16%). However, this approach 

relies on the prior knowledge of number of subgroups in the sample and the cut-off score for 

separating subgroups, which is inconclusive and even controversial in aging research.  

2.1.3. Latent mixture modeling explores different cognitive aging profiles 

Some recent studies, on the other hand, used data-driven approaches that specifically 

explore whether subgroups of individuals could be identified representing statistically different 

cognitive aging profiles (Downer, Chen, Raji, & Markides, 2017; Han et al., 2015; Hayden et al., 

2011; Olaya et al., 2017; Pietrzak et al., 2015). Mixture modeling (Muthén, 2001; Nagin, 1999; 

Ram & Grimm, 2009) is particularly designed for this purpose.  

Mixture modeling refers to the family of exploratory techniques that discover the optimal 

clustering solution and classify individuals into different groups based on the heterogeneity in 

the data. Mixture modeling includes pattern mixture modeling (R. J. Little, 1993), group-based 

trajectory modeling (Nagin, 1999), latent variable mixture modeling (Muthén, 2001; Ram & 

Grimm, 2009), latent growth mixture modeling (Muthén & Muthén, 2000), etc. Mixture 

modeling is very appropriate for studies where the aim is to separate individuals, because its 
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main objective is to cluster participants into different groups based on the variability in the data 

distribution. For example, Figure 3a represents an observed distribution of longitudinal change 

scores, consisting of two hidden distributions with different means. Mixture modeling examines 

this possibility and looks for the best solution to separate the subgroups by specifying a latent 

class, c, where the group difference between c=0 and c=1 is maximized and the within-group 

variability is minimized. For example, in the case of a mixture modeling of longitudinal change, 

the class variable, c, may offer a two-class solution which suggests that it detects two groups of 

individuals whose longitudinal changes follow two different distributions with different center 

values: one group with change scores around zero, and a group with negative values (Figure 3b).  

 

Figure 3. Illustration of mixture modeling. (a). Mixture modeling explores the presence of 
subpopulations within the whole population that is distinguishable and can be separated by a 
latent class variable, c. (b). Different distributions of longitudinal change scores may represent 
subpopulations with different developmental trajectories: class c=1 shows little longitudinal 
change whereas class c=0 shows a greater longitudinal decline. 

 
Longitudinal studies using mixture modeling techniques have often identified two to five 

subgroups of individuals with different cognitive aging patterns (Downer et al., 2017; Han et al., 

2015; Hayden et al., 2011; Mella et al., 2018; Olaya et al., 2017; Pietrzak et al., 2015; Zammit, 

Hall, Lipton, Katz, & Muniz-Terrera, 2018). For example, Hayden and colleagues (Hayden et al., 

2011) studied 1049 older adults who were followed up to 15 years and classified three subgroups 

time 

b. a. 
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based on a single measure of global function. They identified that the majority (65%) of old 

adults as a “slow decline” group that did experience some, but not substantial, cognitive decline, 

about 27% experienced moderate decline, and that 8% belonged to a group experiencing very 

rapid decline. Similarly, Pietrzak et al. (2015) followed 333 cognitively normal older adults for 

54 months in the Australian Imaging Biomarkers and Lifestyle Study of Aging (AIBL), and also 

found three subgroups with different patterns of longitudinal change based on memory 

performance: subtly declining (30.9%), rapidly declining (3.6%), and stable (65.5%).  

One feature of mixture modeling, as a data-driven approach, is that it explores the 

between-individual variability with no specific assumption regarding its heterogeneity. 

Traditional approaches separate individuals based on an a priori decision of the group number 

and the cut-off scores, and most studies examining cognitive aging divided participants into two 

to three groups (e.g., maintainer/decliner (Persson et al., 2005); successful/average/unsuccessful 

agers (Josefsson et al., 2012)). However, the number of meaningfully different subgroups may 

not be valid before exploring the data, particularly in an aging population (Ardila, 2007; Ylikoski 

et al., 1999). Mixture modeling allows for an unbiased examination of this heterogeneity and 

reveals whether the data indeed suggest meaningful differences between groups in the sample.  

Another feature of mixture modeling is that it provides a person-oriented view of 

cognitive aging. That is to consider the structure and dynamics of behavior across different 

measures are, at least in part, specific to the individual (Bergman, 2001; Bergman & Magnusson, 

1997). Traditional approaches, which are referred to as variable-oriented, are more appropriate in 

investigating theoretical questions regarding the relationships between variables. Mixture 

modeling, on the other hand, is a goal-directed process. Although it lacks mechanistic 
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implication, it identifies subpopulations at the individual level across variables (Bergman & 

Trost, 2006; von Eye & Bogat, 2006). In the current study, mixture modeling will classify 

participants simultaneously based on multiple variables, so it allows for classifications beyond 

the performance in a single cognitive domain, which offers a holistic profile of cognitive aging 

(Muthén & Muthén, 2000; Ram & Grimm, 2009). This is an important advantage of the current 

study as most research on optimal aging in older adults only based their classifications on either 

memory (Harrison et al., 2012; Olaya et al., 2017; Pietrzak et al., 2015) or a coarse measure of 

global mental function (Yaffe et al., 2009). Little is known as to the individual differences in 

cognitive aging when a wider range of cognitive measures is taken into account. The question 

was raised more than 25 years ago (Rabbitt, 1993) and still remains open now (Nyberg & Pudas, 

2018), suggesting the need for investigation with a broader view of cognitive aging beyond a 

single cognitive domain.  

Despite its strengths, mixture modeling is essentially an exploratory analysis. It may not 

be proper for hypothesis-driven studies where researchers have strong predictions for the number 

of groups or the separating patterns that ought to be observed. However, it is a suitable strategy 

for the current study where I aim to explore the DLBS longitudinal cognitive data and separate 

these individuals into different groups that may represent differential aging profiles. The Dallas 

Lifespan Brain study includes a cohort of individuals that are thoroughly studied with rich 

individual difference information in many aspects related to aging. An exploration of 

heterogeneity and the development of subgroups in this well-characterized sample will be 

beneficial for further examinations where other characteristics between groups can be compared 

(e.g., functional differences in Chapter 3).  
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2.1.4. Advantages of using structural equation modeling for mixture modeling 

As already alluded to, mixture modeling can be conveniently integrated into structural 

equation modeling (Muthén, 2001; Muthén & Muthén, 2000). Structural equation modeling can 

directly model longitudinal change with all available information and, different from traditional 

approaches relying on repeated analyses, does not require all measures to be repeatedly 

administrated across different waves in the longitudinal tests. Particularly, structural equation 

modeling estimates latent scores, as opposed to observable scores, which represent variables that 

are not directly observed but inferred from available information. It can also account for 

invariance across time and reliability of the tests (T. D. Little, 2013). A recent study specifically 

compared latent scores and a composite of observable scores that both estimated longitudinal 

cognitive change in older adults, and found that latent modeling is better at providing accurate 

inferences of change estimates with lower type-I error rates, and that latent variables are 

especially necessary when lower-performing individuals had more missing values (Proust-Lima 

et al., 2019). Therefore, the current study adopts the latent change score model to estimate 

cognitive performance and change in all cognitive domains.  

Another advantage of using structural equation modeling in longitudinal studies is that 

drop-out individuals can be included and help to generate more precise estimates of longitudinal 

change. A common issue in observational longitudinal studies is that people who drop out of the 

study may be different from those who stay to participate (Lindenberger, Singer, & Baltes, 2002; 

Schaie, Labouvie, & Barrett, 1973). Often, the drop-out participants are the low-performing 

individuals at baseline (Salthouse, 2014a) who may be at a higher risk for rapid cognitive 

decline. Conventional longitudinal analyses based on repeated comparison only allow for the 
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inclusion of remaining longitudinal individuals with complete data. This limits the interpretation 

of study findings, however, because the longitudinal participants may not be representative of the 

recruited sample, and the change score may be underestimated using such an elite sample. 

Structural equation model as a whole, and latent mixture modeling in particular, on the other 

hand, can use full information maximum likelihood estimation (R. J. Little & Rubin, 2019), 

which is a statistical method of estimating the parameters. It uses all available information – even 

the limited information from drop-outs -- to estimate a model that would most likely produce the 

estimates from the sample data that are analyzed. This method allows for the estimation to take 

into account the performance of drop-out individuals. When some cases (e.g., drop-out 

individuals) have missing values at a follow-up wave, the model factors the likelihood function 

so that it is computed separately for those cases (e.g., drop-out individuals) and those with 

complete data on both waves (e.g., remaining individuals). These two likelihoods are maximized 

together to eventually find the most precise estimates. This method of estimating the most 

precise parameters does not include an imputation of generated data. In most cases, structural 

equation modeling with maximum likelihood estimation is preferred to estimate the longitudinal 

change in a sample like DLBS with possible selective attrition (Newman, 2003). Therefore, in 

the first study in this chapter, I will implement mixture modeling using structural equation 

modeling (i.e., latent mixture modeling). Specifically, I will estimate participants’ cognitive 

performance and change using latent change score model (McArdle, 2009) with maximum 

likelihood function, and then classify participants based on the heterogeneity in their latent 

scores of cognitive performance and change in all four domains (Muthén, 2001; Ram & Grimm, 

2009). 
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2.1.5. Cognitive aging in middle-aged adults 

Finally, aging is a continuous process throughout the lifespan, beginning in early to 

middle adulthood (Hartshorne & Germine, 2015; Salthouse, 2009). Many recent studies have 

suggested that the slope of cognitive change is nonlinear and varies across the lifespan. For 

example, cross-sectional studies suggest that different cognitive abilities peak at different ages 

(Hartshorne & Germine, 2015) and may follow different developmental trajectories (for a meta-

analysis, see (Verhaeghen & Salthouse, 1997)). Longitudinal studies have also shown that older 

adults exhibited the largest decline (Hedden & Gabrieli, 2004; Schaie, 1994; Singer, 

Verhaeghen, Ghisletta, Lindenberger, & Baltes, 2003), compared to middle-aged individuals, 

even after adjustment for practice effects (Ronnlund et al., 2005). Therefore, the operational 

definition of optimal cognitive aging may be different at different ages (Garfein & Herzog, 1995; 

Salthouse, 2010b; Zelinski & Burnight, 1997). Optimally, studies should include participants 

across a wide age range and compare possible differences across the lifespan in cognitive aging 

profiles in middle-aged, younger older adults, and very old adults.  

But few studies have studied a sample including middle-age adults regarding their 

longitudinal changes in different cognitive constructs (e.g., (Baltes & Lindenberger, 1997; 

Tucker-Drob, 2011; Zelinski, Gilewski, & Schaie, 1993)), and even fewer have examined their 

individual variability in cognitive aging. One study (Gunstad et al., 2006) used a cross-sectional 

design and also adopted a data-driven approach that classified middle-aged and old individuals 

based on their cognitive performance in multiple domains. They identified three clusters of 

cognitive performance profiles in both middle-aged and older groups and thus suggested that 

heterogeneity in age-related cognitive may begin to manifest in middle adulthood. However, this 
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study only investigated the cross-sectional performance level, and could not provide direct 

inferences for cognitive aging. The current study will use the two waves of longitudinal 

cognitive data from the Dallas Lifespan Brain Study and explore the differences and 

consistencies in identified cognitive aging profiles in middle-aged, young-old and very old adults 

(e.g., number of classes identified; distribution of class; contributing cognitive domain). 

2.1.6. Summary 

In Study 1 of this chapter, I will use a longitudinal design to examine cognitive changes 

over four years in four cognitive domains including episodic memory, inductive reasoning, 

working memory, and speed of processing. A data-driven latent mixture modeling will explore 

subgroups of individuals in middle-aged (35-54 years old at baseline), young-old (55-69 years 

old at baseline) and very old (70-89 years old at baseline) groups, based on their cognitive 

performance and change scores in all four domains. Due to the exploratory nature of the 

analyses, the prediction of results is tentative and made based on the similarity and differences 

between the current study and previous literature. Previous studies using mixture modeling in 

cognitive aging literature have detected two to five groups with different longitudinal change 

patterns (Mella et al., 2018; Olaya et al., 2017; Pietrzak et al., 2015). The DLBS data are 

different from other longitudinal datasets in a way that it has a relatively short period of testing 

interval (4 years) and includes a healthy sample. These factors may contribute to reduced 

variability in the data that leads to a smaller number of groups compared to other studies. I, 

therefore, hypothesize that the latent mixture modeling will reveal no more than three groups of 

individuals showing different longitudinal change pattern in this study: a group of prime agers 

who appear to have superior performance with cognitive maintenance, a group of average agers 
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who represent the general population with some performance variability across domains, and a 

group of nonprime agers who may present suboptimal profiles with lower performance and 

greater decline in most cognitive domains. 

2.2. Methods 

2.2.1. Participants 

The study included all participants from the Dallas Lifespan Brain Study, aged from 20 to 

89 years old at baseline. A total of 464 participants were initially tested. Four years later, 337 

came back for the second wave (72.63% of the initial sample; 84.25% of those who could be 

contacted). Among the 127 drop-out participants, 18 were deceased, 46 could not be contacted, 

29 were too busy, 33 withdrew from the study, and 1 was involved in a clinical trial.  

All participants were recruited locally from the community and were right-handed with 

normal or corrected to normal vision. Participants were screened for neurological and psychiatric 

disorders, loss of consciousness for more than ten minutes, a history of drug or alcohol abuse, 

and a history of major heart surgery or chemotherapy within five years. This study was approved 

by The University of Texas Southwestern and The University of Texas at Dallas institutional 

review boards. All participants provided written informed consent and were debriefed according 

to human investigations committee guidelines.  

2.2.2. Cognitive measures 

Four cognitive domains were measured in the DLBS cognitive battery. The cognitive 

indicators used in the study are shown in Table 1. Specifically, to measure the speed of 

processing, participants completed Digit Comparison (Salthouse & Babcock, 1991) and Digit 

Symbol Substitution Test (Wechsler, 1997) in wave 1, and an additional measure from the NIH 
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Toolbox (NIHTB) Pattern Comparison (Casaletto et al., 2015) in wave 2. Working memory was 

measured by CANTAB Spatial Working Memory (Robbins et al., 1994), CANTAB Spatial 

Recognition Memory (Robbins et al., 1994), CANTAB Delayed Match to Sample (Robbins et 

al., 1994), Operation Span (Turner & Engle, 1989), and Letter Number Sequencing (Wechsler, 

1997) in wave 1, and measured by CANTAB Spatial Working Memory (Robbins et al., 1994), 

Letter Number Sequencing (Wechsler, 1997) and the NIHTB List Sorting Task (Casaletto et al., 

2015) in wave 2. Reasoning was measured by Raven’s Progressive Matrices (Raven, Raven, & 

Court, 1998), ETS Letter Sets (Ekstrom, French, Harman, & Dermen, 1976), and CANTAB 

Stockings of Cambridge (Robbins et al., 1994) in both waves. Episodic memory was measured 

by CANTAB Verbal Recognition Memory (Robbins et al., 1994) with immediate free-recall and 

delayed recognition, and Hopkins Verbal Learning Test with immediate free-recall, delayed free-

recall, and delayed recognition (Brandt, 1991) in wave 1. All these memory measures were also 

included in wave 2. Woodcock-Johnson III Memory for Names immediate and delayed 

recognition (Woodcock & Johnson, 1989) was added in the middle of wave 1 testing, and a 

subset of participants (N=158) had these measures in wave 1. An examination of missing values 

in longitudinal participants reveals missingness not completely at random (Little’s MCAR: χ2 

=1174.08, p<.001). To address this issue, imputation was first conducted for the missingness in 

the longitudinal participants (about 4% of total data) (Rubin, 2004) and maximum likelihood 

estimation was used to precisely estimate latent factors for the whole sample (R. J. Little & 

Rubin, 2019). This procedure provides adequate information for full information maximum 

likelihood estimation while avoiding possible convergence failure (Enders & Bandalos, 2001; 

Newman, 2003). 
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Table 1. Cognitive measures used in the current study. Tasks/indicators in bold are included in 
both waves. Abbreviations are in parentheses. 

 
Cognitive Domain Wave 1   Wave 2 

Processing Speed 
Digit Comparison (DC1)   Digit Comparison (DC2) 
Digit Symbol Substitution Test (DS)   Digit Symbol Substitution Test (DS2) 
    NIHTB Pattern Comparison (NIHPS2) 

Reasoning 
Raven's Progressive Matrices (RAV1)   Raven's Progressive Matrices (RAV2) 
ETS Letter Sets (ETSLS1)   ETS Letter Sets (ETSLS2) 
CANTAB Stockings of Cambridge (SOC1)   CANTAB Stockings of Cambridge (SOC2) 

Working Memory 

Letter Number Sequencing (LNS1)   Letter Number Sequencing (LNS2) 
CANTAB Spatial Working Memory (SWM1)   CANTAB Spatial Working Memory (SWM2) 
CANTAB Spatial Recognition Memory (SRM1)   NIHTB List Sorting Task (NIHLS2) 
CANTAB Delayed Match to Sample (DMS1)     
Operation Span (OSPAN1)     

Episodic Memory 

Hopkins Immediate Free-recall (HOPF1)   Hopkins Immediate Free-recall (HOPF2) 
Hopkins Delayed Free-recall (HOPDF1)  Hopkins Delayed Free-recall (HOPDF2) 
Hopkins Delayed Recognition (HOPDR1)   Hopkins Delayed Recognition (HOPDR2) 
WJIII Memory for Names Immediate (WJIM1)   WJIII Memory for Names Immediate (WJIM2) 
WJIII Memory for Names Delayed (WJD1)   WJIII Memory for Names Delayed (WJD2) 
CANTAB Verbal Recognition Memory 
Immediate Free-recall (VRM1)  

CANTAB Verbal Recognition Memory 
Immediate Free-recall (VRM2) 

 
2.2.3. Data analysis 

2.2.3.1. Estimate performance and longitudinal change for each cognitive domain 

A latent change score model was used to estimate the longitudinal cognitive change in the 

sample. Figure 4 illustrates a simplified version of a latent change score model (McArdle, 2009; 

Raykov, 1992). The measurement (bottom) portion of the model specified for a given cognitive 

domain, Y, measured by multiple indicators (e.g., Ya, Yb, and Yc) on two occasions (Y1 and 

Y2). Each indicator was specified to load on the occasion-specific domain factor with a loading. 

Loadings of the same measure at different times set to equal. Cross-time residual 

autocorrelations were allowed for each indicator from a repeated task (Y1a and Y2a), but not 

depicted in diagrams for simplicity. In addition, when measures were from the same task (e.g., 

Immediate Free-recall and Delayed Free-recall in Hopkins Verbal Learning Test), I also 
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specified them to be correlated at each time point. Then, in the change score (top) portion of the 

model, a key latent factor, latent change score (Y Change), is constructed to represent the 

unexplained change in Y2, which is allowed to be correlated with Y1.  

The current study modeled four cognitive domains (episodic memory, inductive 

reasoning, working memory, and speed of processing) simultaneously. The latent change score 

model was constructed and explored using Mplus Version 7.4 (Muthén & Muthén, 2012-2015). 

Maximum log-likelihood estimation was used, and goodness of model fit was examined based on 

comparative fit index (CFI), Tucker-Lewis Index (TLI), and root-mean-square error of 

approximation (RMSEA). A value greater than 0.9 for the CFI and TLI indicates a reasonable fit, 

as does an RMSEA less than 0.08. Given the sample size in this study, the complexity of the 

longitudinal model tested, and the sensitivity of chi-square test to sample size, it is recommended 

to not focus on the chi-square test but more on CFI, TLI, and RMSEA (Kline, 2015). 

Figure 4. Latent change score model of cognitive domain Y. 
 

2.2.3.2. Identify different cognitive aging profiles 

Latent mixture models (Muthén, 2001; Muthén & Muthén, 2000) were used to examine 

the differential patterns of cognitive aging based on the estimates of cognitive performance and 

change in four cognitive domains. Individuals who completed both wave 1 and wave 2 were 

Y1 

Y Change 

Y1a Y1b Y2a 

Y2 

Y2b Y2c 

1 

1 
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included for the classification so I would not over-interpret the classification for drop-out 

individuals who did not provide any information regarding their aging trajectories and were no 

longer in this study. Latent mixture modeling was conducted for three age groups separately 

(middle-aged: 35-54 years old; young-old: 55-69 years old; very old: 70-89 years old) so the 

classification would not be primarily driven by age-related differences, which does not 

contribute to our understanding of unobserved heterogeneity in the sample. Adults below 35 

years old were not included in this classification because these healthy young individuals are not 

expected to show “cognitive aging” over a relatively short period of four years. 

Latent mixture modeling explored a class solution to explain the heterogeneity in 

cognitive performance and change patterns in all four cognitive domains. If the data suggested a 

subgroup showing a distinct pattern from the rest of the group, those individuals would be 

associated with a higher probability of belonging to a class that represents their cognitive aging 

profile. The final model with the optimal number of subgroups was iteratively determined based 

on suggested procedures for implementing mixture modeling analysis in Ram and Grimm (Ram 

& Grimm, 2009). Specifically, I looked for parameter estimates that were are out of bounds (e.g., 

negative variances), checked entropy, compared information criteria (e.g., Bayesian Information 

Criteria, Akaike Information Criteria), inspected likelihood ratio test results (e.g., Lo-Mendell-

Rubin adjusted test), examined the number of members in the smallest class to avoid data over-

extraction (Berlin, Williams, & Parra, 2014), and finally ensured that the selected model can 

provide empirical justification and interpretation for the data.  

Post-hoc visualization of group patterns of cognitive aging profile determined the class 

labels (e.g., prime, average, nonprime). Finally, I compared the longitudinal change in four 
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domains between different classes to understand which cognitive domain played an important 

role in separating the individuals. 

2.3. Results 

2.3.1. Demographic and attrition information 

Table 2 shows the demographic information of participants separated by age groups. 

Attrition analysis revealed no significant difference in age and sex, but drop-out participants 

were less educated. Moreover, participants who dropped out had significantly or marginally 

significantly lower performance in most cognitive measures, compared to those who continued 

to participate (Table 3). This further supports the a priori decision that drop-out participants 

should be included to avoid an underestimate of longitudinal change, and that maximum 

likelihood estimation should be used for more precise estimates.  

Table 2. Demographic information of participants in different age groups. 
 

 
Young (reference) Middle-aged Young-old Very old p 

 
N=73 N=106 N=138 N=147 

 
Retention rate 0.64 0.75 0.77 0.71 .262 

Baseline age range 20-34 35-54 55-70 70-90 <.001 

Follow-up age range 25-38 40-59 59-74 74-93 <.001 

Female (N) 46 61 91 89 .581 

MMSE 28.73 28.67 28.51 27.91 <.001 

 

2.3.2. Longitudinal estimates of cognitive performance and change 

Before the latent change score model is specified, the construct reliability of all cognitive 

domains was first examined based on the Cronbach’s α of each domain for each wave. All four 

domains had high internal reliability (processing speed: standardized Cronbach’s α is .865 for  
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Table 3. Attrition analysis compares baseline characteristics in drop-out and remaining 
participants (see Table 1 for definitions of task abbreviation). 

 
  Drop-out (N=127)   Stay (N=337)     

 
Mean SD 

 
Mean SD 

 
p 

Baseline age 57.66 20.05 
 

58.55 17.38 
 

0.638 

Female (N)  71 
 

216 
 

0.105 

Education 15.42 2.32 
 

15.90 2.29 
 

0.047 

Blood Pressure (sys) 127.72 17.62  125.65 17.43  0.228 

Blood Pressure (dia) 80.17 9.62  80.68 9.70  0.595 

MMSE 28.33 1.23   28.42 1.24   0.487 

DC 59.89 14.26 
 

62.56 14.47 
 

0.057 

DS 51.89 13.89 
 

54.65 13.67 
 

0.041 

RAV 0.74 0.17 
 

0.81 0.14 
 

<.001 

ETSLS 14.83 6.31 
 

16.95 6.32 
 

0.001 

SOC 7.91 2 
 

8.49 1.93 
 

0.002 

LNS  10.24 2.68 
 

11.08 3.14 
 

0.003 

SWM 34.19 22.27 
 

31.39 22.06 
 

0.194 

SRM 16.1 2.61 
 

16.81 2.06 
 

0.003 

DMS 34.48 3.5 
 

34.69 3.58 
 

0.548 

OSPAN 12.41 7.17 
 

14.46 7.98 
 

0.005 

HOPF 6.66 1.82 
 

6.97 1.98 
 

0.095 

HOPDF 4.58 2.5 
 

5.43 2.63 
 

0.001 

HOPDR 19.89 2.5 
 

20.49 2.31 
 

0.013 

WJIM 49.71 11.77 
 

51.97 10.81 
 

0.123 

WJD 18.03 8.74 
 

20.68 8.92 
 

0.023 

VRM 6.73 1.89   7.12 1.97   0.037 

 

wave 1 and .869 for wave 2; working memory: standardized Cronbach’s α is .784 for wave 1 

and .810 for wave 2; inductive reasoning: standardized Cronbach’s α is .865 for wave 1 and .869 
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for wave 2; episodic memory: standardized Cronbach’s α is .826 for wave 1 and .885 for wave 

2). The latent change score model estimated four domains simultaneously. Figure 5 presents the 

specified multivariate latent change score model. Overall, this model was an excellent fit to the 

data, c2(417) = 899.826, p<0.001, CFI=0.949, TLI= 0.943, RMSEA=0.050, 90% CI=[.045, 

.054], suggesting a good quality of cognitive constructs specified using this model.  

Based on the estimates from the above model, Figure 6 depicts the longitudinal cognitive 

change in each cognitive domain using spaghetti plots. Each line in the graph represents one 

individual in the study. The starting point is the estimated wave 1 performance for that domain, 

and the ending point is the estimated wave 2 performance. The direction of the line represents 

the trajectory of the longitudinal change pattern. Lines are coded based on the retention status of 

the individual: black solid lines represent participants who continued to participate, and gray 

dashed lines represent participants who dropped out of the study. Visualization of the two types 

of participants also confirmed the finding that drop-out participants were more often to be low 

performing individuals at baseline. Across four cognitive domains, despite the visually 

overwhelming age-effects on cross-sectional and longitudinal differences, there is great 

individual variability that permits further investigation of possible heterogeneity using the latent 

mixture model. 

2.3.3. Latent mixture modeling identified two different cognitive aging profiles  

Latent mixture models were fit to classify individuals based on latent baseline and latent 

change scores, separately in middle-aged, young-old, and very-old adults. Explored models 

ranged from 1-class to 3-class solutions for all groups. Table 4 presents the model fit indices for 

the three models. For all three groups, the 2-class model was the best fit based on the  
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Figure 5. Latent change score model estimates cross-sectional performance and longitudinal 
change in four cognitive domains. All coefficients are standardized using the variance of the 
observed, outcome, and latent variables. In the measurement portion of the model (bottom), the 
coefficients between time 1 or time 2 latent factor and indicators represent the loadings of the 
variables to the construct. In the latent structural model (top), the path from time 1 factor to 
change factor was estimated while fixing the two paths to time 2 factor to be 1 (see Figure 4). 
Overall, this model was an excellent fit to the data, CFI=0.949, TLI= 0.943, RMSEA=0.050, 
90% CI=[.045, .054], suggesting a good quality of constructs specified using this model.    
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Figure 6. Spaghetti plot of longitudinal cognitive change over four years. The latent change score 
model uses the fixed marker approach so the unit of the specified latent variables is the same as 
the marker indicator. The marker indicator for each cognitive domain used is listed as follow: 
Episodic memory -- Hopkins Verbal Learning (Immediate Free Recall); Inductive reasoning -- 
ETS Letter Sets; Processing speed -- Digit Comparison; Working memory -- Letter Number 
Sequencing. 
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Table 4. Latent mixture model fit indices in three age groups. Two-class solution (in bold) was 
chosen for all three groups. 

 

 

recommended procedure in Ram & Grimm (2009), confirming the existence of subgroups 

representing differential cognitive aging profiles in our sample across all age groups. Note that 

middle-aged data fit the 2-classification nicely (entropy = .90) but yielded a non-significant 

Bootstrapped likelihood ratio test (BLRT) indexed by Lo-Mendell-Rubin p-value (p = .57), 

which may suggest that both single and 2-class solutions could be appropriate for the data. In 

fact, the 3-class solution had a significant BLRT (p = .04) suggesting the data did show evidence 

of heterogeneity. However, one of the three classes had only one participant, which invalidated 

this solution (Berlin et al., 2014). Therefore, the final model was iteratively determined as the 2-

class model. Figure 7 shows the distribution of the number of participants in each class for the 

Middle-aged   One Class Two Classes Three Classes 
(N=79) Log-likelihood -956.78 -845.73 -786.28 

 BIC 1983.47 1800.71 1721.12 
 Entropy  0.90 0.95 
 BLRT (Lo-Mendell-Rubin) p   0.57 0.04 
 Number of smallest class  25 1 
          

Young-old   One Class Two Classes Three Classes 
(N=105) Log-likelihood -1292.32 -1105.02 -1017.77 

 BIC 2659.10 2326.38 2193.78 
 Entropy  0.93 0.96 
 BLRT (Lo-Mendell-Rubin) p   0.04 0.06 
 Number of smallest class  41 11 
          

Very old   One Class Two Classes Three Classes 
(N=105) Log-likelihood -1731.01 -1139.34 -1068.14 

 BIC 34541.87 2395.02 2294.51 
 Entropy  0.93 0.96 
 BLRT (Lo-Mendell-Rubin) p   0.05 0.32 
 Number of smallest class  51 23 
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three groups. Specifically, in middle-aged adults, one class had 25 participants and the other had 

54. In young-old adults, one had 41 participants, and the other had 64. In very-old adults, one 

class had 51 participants, the other had 54. The distribution of class was not statistically different 

among the three groups (χ² = 5.43, p = .066), with a trend that the majority of younger groups 

(middle-aged, young-old) tended to be classified as class 1.  

Figure 7. Distribution of class 1 and class 2 individuals in middle-aged, young-old and very old 
groups. The number represents the number of participants in each class for middle-aged, young-
old and very old groups based on results from the latent mixture modeling. 
 

I predicted in the introduction that one of the identified cognitive aging profiles may 

represent prime individuals who have superior and preserved cognitive function compared to 

their peers. To understand what patterns of cognitive aging each class represents (prime vs 

nonprime), I again used the spaghetti plot (as in Figure 6) to depict individuals using different 

colors representing the two classes. Figure 8 presents the cognitive performance for the two 

classes in four domains. Each line in the plot presents an individual in a young reference group 

54 64 54

25 41 51
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(blue), class 1 (green), or class 2 (red). Age groups are also depicted with different shades and 

shapes: young referenced with blue circles, middle-aged with squares, young-old with triangles,  

 
Figure 8. Spaghetti plot of longitudinal cognitive change over four years in two classes of 
individuals with visually distinct patterns of cognitive aging profiles. Age groups are depicted 
with different symbols. 
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and very old with diamonds. A surprisingly clear separation of the two classes suggests that most 

individuals in class 1 seem to have superior performance and better cognitive maintenance, 

compared to class 2 individuals. This observation is overall consistent in middle age, young-old 

and very old group. I hypothesized three groups may emerge and tentatively termed them as 

“prime”, “average”, and “nonprime” agers. The results showed a clear separation of two groups. 

Class 1 individuals who have superior cognitive aging profiles are labeled as “prime” agers. 

Class 2 individuals are termed as “nonprime” agers. 

Finally, I illustrated the cognitive aging profiles of the identified classes (Figure 9). The 

group means of longitudinal change, as standardized z-scores, for all four domains were depicted 

together for visualization of differential longitudinal change profiles in class 1 and class 2. In 

middle-aged adults, class 1 had better change scores in all domains, especially in episodic 

memory, inductive reasoning, and working memory, which particularly separated them form the 

class 2 individuals. In young-old adults, class 1 also had high change scores in episodic memory 

and reasoning. Their superior pattern of longitudinal change was comparable to, if not better 

than, the class 2 of the middle-aged group. Lastly, both classes in very old age showed low 

longitudinal scores in all domains, suggesting the inevitable worsening cognition in advanced 

age across all domains. Particularly, class 2 of the very old age group had a substantially worse 

profile of low change scores in memory and reasoning. 

2.3.4. Comparison of cognitive change in four cognitive domains between classes in three 

age groups 

In addition to the characterization of the two cognitive aging profiles in three age groups 

separately, in post hoc exploration, I compared the mean longitudinal change in the four  
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Figure 9. Cognitive aging profiles of class 1 (prime agers, green) and class 2 (nonprime agers, 
red) in middle age (a), young-old age (b), and very old age (c). 
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cognitive domains between the two classes of individuals in each age group (Figure 10). This 

analysis examined what cognitive domains have indeed contributed to the holistic classification. 

The results suggested that episodic memory and inductive reasoning showed significant 

differences in longitudinal change between class 1 (prime agers) and class 2 (nonprime agers) in 

 

Figure 10. Longitudinal cognitive change (z-score) over four years in two classes of individuals. 
Mean change in the young group presented as a reference. 
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all three groups (episodic memory: middle age, t=-9.307, p<.001; young-old, t=-11.59, p<.001; 

very old, t=10.167, p<.001; inductive reasoning: middle age: t=-3.143, p=.003, young-old: t=-

6.296, p<.001, very old: t=-5.410, p<.001), suggesting their predominant role in the holistic 

classification of prime versus nonprime agers across the adult lifespan. The differences between 

the two classes in the two domains also seem to reflect the high practice effect in prime agers 

who benefit more from the repeated exposure of the same tasks used. Working memory 

presented a diminishing effect in separating prime and nonprime agers from significant 

differences between classes in middle age (t=-5.002, p<.001) and young-old (t=-2.627, p=.010) 

adults, to nonsignificant difference in very old adults (t=-1.676, p=.097). Speed of processing, on 

the other hand, did not show any significant change difference between classes for any age group 

(p’s>.47). 

2.4. Discussion 

2.4.1. Potential of using mixture modeling to identify subgroups in aging populations 

The purpose of this study is to use a data-driven approach to classify individuals with 

different cognitive aging profiles. Two classes were identified based on four different cognitive 

domains (episodic memory, inductive reasoning, working memory, and processing speed), 

representing prime agers, defined as individuals who had superior cognitive performance and 

better cognitive preservation relative to their peers, and nonprime agers in the current study.  

Identifying individuals showing optimal aging has been well recognized as one of the 

challenges in the field. Previous studies have often identified prime individuals (also referred to 

as successful agers (Driscoll et al., 2008), super-agers (Rogalski et al., 2013), etc. in other 

studies) using a traditional approach where either cut-off scores or the number of participants 
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needs to be predefined. Those approaches are also based on one cognitive domain or a single 

measure, which cannot capture the complex picture of cognitive aging (Gunstad et al., 2006). 

The current study implemented latent mixture modeling on a wide range of cognitive measures 

and successfully isolated individuals, offering some demonstration of this viable approach for the 

development of a person-oriented, holistic identification of prime individuals with optimal aging. 

As illustrated in this study, this approach is data-driven and does not require a specific 

operational definition of the subgroups before exploring the data. Thus, it may be very useful 

when the definition of subgroups is unknown or controversial, which is a common challenge in 

aging and some clinical population. 

Future studies may continue exploring this approach in different samples with different 

cognitive measures, particularly in studies where the purpose is to identify a subgroup of 

diverging participants. The current study only included cognitively normal individuals. 

Presumably, in samples with larger variance (e.g., where clinical groups may also be present), 

latent mixture modeling is more powerful in detecting systematic differences underlying 

subgroups and can offer unbiased insights into the data. 

2.4.2. Longitudinal changes in episodic memory and inductive reasoning, but not speed, as 

primary contributors in separating cognitive aging profiles 

Episodic memory showed significant differences in longitudinal change between prime 

individuals with optimal cognitive aging and nonprime agers through the lifespan, confirming 

the validity of using the stability of episodic memory as a marker of overall cognitive status in 

many studies (Nyberg & Pudas, 2018). Inductive reasoning also had similar effects, where prime 

agers in all three groups had better longitudinal change scores than nonprime agers. Both 
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cognitive domains require complex mental processes and may be particularly sensitive in 

revealing individual differences in cognitive aging trajectories.  

On the other hand, changes in speed of processing were not different between prime and 

nonprime agers. This is likely because speed of processing is one of the most vulnerable 

cognitive domains affected by aging: an early meta-analysis on cross-sectional studies suggested 

that speed drops approximately 20% by age 40 (Salthouse, 1982), suggesting an inevitable 

performance decrease starting early in lifespan. The majority of individuals experienced the 

inevitable decline in speed, which limits its variability and its ability to separate participants, 

even in middle-aged adults.  

Moreover, tests of processing speed often require less strategy and rely on maximum 

processing capacity, and thus may be less affected by practice effects. In fact, practice effects 

could be one of the contributors to the superior trajectory of prime agers for episodic memory 

and inductive reasoning in middle-aged and young-old groups (Figure 8) (Salthouse, 2010b), 

given that same measures were used for these two domains. Therefore, speed of processing may 

be precisely revealing the expected age-related cognitive decline, whereas domains of episodic 

memory and inductive reasoning may also capture cognitive resilience in some individuals who 

can benefit more from practice effects.  

Additionally, the difference in working memory change between prime and nonprime 

individuals seemed to be diminishing in advanced age, revealed by the finding that the 

significant difference in middle-aged and young-old groups became nonsignificant in the very 

old group. This may reflect a consistent decrease in working memory in very old age across 

individuals (Salthouse, 1994), possibly due to diminished frontal function with aging (Hedden & 
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Gabrieli, 2004; Nyberg et al., 2010). Like speed, the inter-individual variability in working 

memory change may also be limited in advanced age. In addition, speed and working memory 

have both been suggested underlying age-related worsening in many other cognitive domains 

(Salthouse, 1994, 1996a). Our study suggests that it may be less informative about individual 

differences in cognitive aging than other higher-order domains (e.g., reasoning, memory) that are 

more reflective of the functioning and mentality of the individual overall. 

2.4.3. Limitations 

One limitation of the study is that it is exploratory, and thus findings are mostly 

descriptive. Inferences from the results are limited. However, as not many studies have used this 

approach to examine the patterns in cognitive aging, this is one of the first efforts to use a 

longitudinal design to examine differential cognitive aging patterns in middle-aged, young-old 

and very old adults. In fact, this approach has revealed interesting cognitive aging profiles, and 

can also be further explored to understand how different profiles may be related to other 

individual difference variables. 

Although tempting to consider the classified individuals as “successful” versus 

“unsuccessful” agers, it is important to note that all participants were functioning independently, 

and the two classes may be indistinguishable in everyday settings. Also, the classification is 

based on latent scores which only reflect how they performed relative to others. Therefore, I 

refrain from defining these individuals as “successful/unsuccessful” agers, which may limit the 

interpretation of what being a class 1 (or class 2) member means. 

In the present study, the baseline performance and longitudinal change were not 

independent. Although this is expected as high-performing individuals often present better 
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cognitive stability (Tuokko, Garrett, McDowell, Silverberg, & Kristjansson, 2003), it is hard to 

disentangle the sources that protect one from showing cognitive decline. For example, a high-

performing individual may exhibit little longitudinal cognitive change simply because he/she is 

good at the task and thus able to master the particular task better at the second time, despite age-

related cognitive decline. This should be acknowledged in the present study where longitudinal 

change score was allowed to correlate with baseline performance for more precise estimates in 

the latent change score model. But in studies focusing on isolating the individual difference in 

longitudinal change beyond cross-sectional performance, researchers may consider using the 

baseline performance as covariates to control for its effect.  

Finally, the present study only included two waves of longitudinal testing. It is vulnerable 

to common issues in longitudinal designs such as regression toward the mean, inability to test 

nonlinear change, and practice effects. Indeed, we observed better performance at time 2 in 

middle-aged and young-old groups, particularly for episodic memory and inductive reasoning. 

Thus, it is possible that prime agers showed a better aging trajectory because they benefited more 

from practice effects (rather than due to their resistance to age-related decline). Although it 

would still reflect interesting inter-individual differences, the interpretation of prime and 

nonprime agers would be different. Nevertheless, the present study adopted latent change score 

model that is specifically designed for two waves of longitudinal testing. It overcomes some 

flaws of two-wave longitudinal data by using latent constructs. Ideally, three or more waves of 

data will allow for examinations of nonlinear trajectory, as well as change estimates after the 

second time point, since practice effects are most pronounced in the early phase of repetitive 

testing (Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010). As the DLBS project is 
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currently collecting wave 3 data, future studies may use the same technique and examine 

whether an additional pattern of cognitive aging may emerge with a longer interval and more 

reliable estimates.  
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CHAPTER 3 

BRAIN ACTIVITY DIFFERENCES BETWEEN PRIME 

AND NONPRIME INDIVIDUALS 

 
3.1. Introduction 

Many individual difference factors may be related to disparate trajectories in cognitive 

aging, and the research progress on identifying these factors has been accumulating. Studies have 

examined demographic, psychosocial, genetic, and neurological features related to different 

cognitive trajectories in aging (Rogalski et al., 2018; Yaffe et al., 2009). For example, carriers of 

APOE e4 have been found to show greater cognitive decline (Albrecht et al., 2015). 

Neuroanatomical features, such as thicker anterior cingulate and less hippocampal atrophy, are 

also linked to better cognitive performance in older adults (Gefen et al., 2015; Gorbach et al., 

2017; Harrison et al., 2012; Raz, Gunning-Dixon, Head, Dupuis, & Acker, 1998; Rogalski et al., 

2013; Salthouse, 2011). White matter hyperintensities and worse network integrity are also 

linked to worse cognitive aging (Persson et al., 2005; Wang et al., 2017). The neocortical 

deposition of AD biomarker (e.g., amyloid and tau) are also related to cognitive deficits and 

accelerated age-related decline in memory (amyloid: (Farrell et al., 2017; Hedden, Oh, Younger, 

& Patel, 2013); tau: (Maass et al., 2018; Sperling et al., 2019)). One key question remaining open 

is whether prime1 and nonprime individuals have differential patterns of functional brain activity.  

 

1 As defined in Study 1, prime agers refer to individuals who have superior performance and better 
longitudinal change scores relative to their peers. Operationally, prime and nonprime individuals were 
classified in Study 1, using a data-driven, holistic approach (latent mixture modeling) based on 
cognitive performance and change scores in four cognitive domains (episodic memory, inductive 
reasoning, working memory and speed of processing). 
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3.1.1. Baseline fMRI activity predicting longitudinal cognitive change 

Some studies attempted to understand the role of brain activity in cognitive aging by 

using baseline fMRI activity to predict cognitive change, but the directionality of the findings 

has been inconsistent (Bookheimer et al., 2000; Hantke et al., 2013; Leal, Landau, Bell, & 

Jagust, 2017; Lind et al., 2006; Woodard et al., 2010). Bookheimer et al. (2000) found 

individuals with APOE e4 allele had greater memory-related activation in multiple regions and 

that this pattern of greater brain activation was predictive of memory decline in the next 2 years. 

Similarly, Leal et al. (2017) found that higher hippocampal activation was related to greater 

amyloid accumulation that was predictive of greater clinical decline. Both suggest that higher 

baseline activity may be related to an adverse longitudinal change in cognition. 

On the other hand, Lind et al. (2006) studied 18 normal older participants with APOE e4 

allele and found that reduced functional activity during encoding in the left inferior parietal 

region was related to longitudinal cognitive decline, suggesting that insufficient functional 

activity, rather than higher activity, may be predictive of worse cognitive outcome in older 

adults. Hantke et al. (2013) using two memory tasks (semantic memory, episodic memory) found 

that greater functional activation was predictive of better longitudinal cognitive stability for both 

memory tasks. Woodard et al. (2010) using a semantic memory task also found that higher fMRI 

activity during the task was predictive of less cognitive decline longitudinally and that the 

magnitude of task activation was a stronger predictor than hippocampal volumes.  

Functional MRI may be a promising tool to detect early abnormalities in the brain and 

relate to longitudinal cognitive change (Sperling, 2011; Wagner, 2000), but baseline neural 

activity can only offer limited information of the brain before age-related changes in cognition 
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occur. A thorough exploration of functional brain activity related to better cognitive aging should 

examine brain functional activation in people who have already shown evidence of better or 

worse cognitive aging.  

3.1.2. FMRI activity differences in individuals with different cognitive trajectories  

Some previous studies related retrospective longitudinal change to functional activity 

differences to examine patterns of functional activation features in people exhibiting different 

longitudinal cognitive trajectories. For example, Persson et al. (Persson et al., 2005) used a 

semantic categorization task and found that the individuals who had lower baseline performance 

and greater memory decline over ten years had higher activity in the right prefrontal regions 

during semantic processing. In addition, they also found smaller hippocampal volumes and 

decreased anterior white matter integrity in these declining older adults. Overall, the study 

suggested evidence of increased functional activation in declining older adults, which may 

reflect structural disruptions and functional upregulations in frontal regions. 

However, Pudas and colleagues (Pudas et al., 2013) using a face-name associative 

learning task and found that older adults who managed to maintain their memory ability across 

15-20 years (referred to as successful older adults in the study) had higher hippocampal activity, 

compared to both average older adults and young adults, during the encoding block. They also 

found the same pattern in four prefrontal clusters where successful older adults had the highest 

functional activity (Figure 11a). This finding suggests the importance of recognizing the 

individual differences in cognitive aging when examining brain function in older adults.  

Two longitudinal fMRI studies attempted to examine how brain functional changes may 

correspond to cognitive changes. They compared brain activity in individuals with different 
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longitudinal cognitive trajectories and found longitudinal functional reduction in hippocampal 

activation (O'Brien et al., 2010) and increased PFC recruitment (Pudas et al., 2018) related to 

cognitive decline in declining older adults. Specifically, O’Brien and colleagues (2010) studied 

51 non-demented older adults using a face-name associative memory encoding task. Researchers 

contrasted the activation during novel versus repeated trials, and found that older individuals 

with rapid longitudinal decline had higher hippocampal activation at baseline, but a greater loss 

of hippocampal activation over time, compared to those who maintained their cognition. A 

recent longitudinal fMRI study (Pudas et al., 2018) in older adults also used a face-name 

associative encoding task and analyzed the activation during encoding block. They reported that 

declining older adults recruited additional PFC regions over time as their memory worsened and 

their hippocampus shrank. Interestingly, this pattern of results was seemingly inconsistent with 

their finding in 2013 (Pudas et al., 2013) where it was the maintaining individuals with less 

cognitive decline who had higher frontal activity. The authors noted that the longitudinal 

findings were found in a set of prefrontal regions outside the memory network which were not 

activated in the task in wave 1 (Figure 11b). They, therefore, interpreted this follow-up finding as 

functional re-organization in those additional frontal regions which may represent a 

compensatory response in attempt to cope with age-related cognitive decline. However, whether 

this altered activation in frontal regions is indeed beneficial was not directly investigated in the 

study, and this question still remains highly controversial.  
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3.1.3. Brain maintenance and functional compensation in high-performing individuals with 

better cognitive aging 

Several accounts have been proposed to help interpret the findings of the patterns of 

functional activity related to better cognitive aging (Morcom & Johnson, 2015; Nyberg et al., 

2012; Nyberg & Pudas, 2018; D. C. Park & Reuter-Lorenz, 2009). Two major views, brain 

maintenance (Nyberg et al., 2012; Nyberg & Pudas, 2018) and compensation (Cabeza, 2002; 

Davis et al., 2008), interpret the brain activity related to optimal cognitive aging from different 

perspectives and have suggested different brain function patterns are expected in individuals with 

better cognitive aging (Morcom & Henson, 2018; Nyberg et al., 2010). 

 
Figure 11. Better cognitive aging (less memory decline) was associated with evidence of 
increased (a) and decreased (Pudas et al., 2013) (b) prefrontal activity during encoding (Pudas et 
al., 2018). 

b. a. 
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3.1.3.1. Brain maintenance  

The theory of brain maintenance suggests that cognitive performance difference is largely 

due to the between-subject variability in “brain maintenance”, or the presentation of a lack of 

brain pathology. The theory suggests that “the individual differences in the manifestation of age-

related brain changes and pathology allow some people to show little or no age-related cognitive 

decline” (Nyberg et al., 2012). Studies have shown that older adults tended to have reduced task-

related activity in temporal and occipital regions, compared to younger adults (H. J. Li et al., 

2015; Maillet & Rajah, 2014), and that this reduction was associated with age-related grey matter 

changes and white-matter hyperintensity (Nordahl et al., 2006). On the other hand, older adults 

also exhibited greater difficulty to suspend task-unrelated activity, compared to young adults 

(Grady, Springer, Hongwanishkul, McIntosh, & Winocur, 2006; Persson, Lustig, Nelson, & 

Reuter-Lorenz, 2007). Moreover, high-performing older adults had comparable functional 

activation and deactivation as in younger adults (Duverne, Habibi, & Rugg, 2008; Nagel et al., 

2009; Samu et al., 2017), supporting the idea that maintaining youth-like activation patterns may 

be a sign of optimal brain aging.  

Stronger evidence comes from longitudinal studies. Persson et al. (Persson, Pudas, et al., 

2011) found that the reduction in hippocampal activity was only found in individuals who had 

memory declines, but not in those whose memory was stable over 20 years. Nyberg et al. 

(Nyberg et al., 2010) found that older adults’ brain function decreased longitudinally in frontal 

regions, suggesting that aging was associated with under-recruitment, not over-recruitment, of 

the frontal cortex, and questioned the findings of compensatory over-recruitment in high-

performing older adults.  
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Another observation in older adults is reduced neural specificity or selectivity (Carp, 

Park, Polk, & Park, 2011; Dennis & Cabeza, 2011; Koen & Rugg, 2019; D. C. Park et al., 2004; 

J. Park, Carp, Hebrank, Park, & Polk, 2010; Voss et al., 2008). For example, an early study 

found that ventral visual cortex, which selectively responded to certain categories of visual 

stimuli (e.g., face, house, word) in young adults, showed reduced differences in activity when 

responding to different visual categories in older adults (D. C. Park et al., 2004). Recent studies 

suggest that reduced neural distinctiveness in older adults is also evidenced in MTL and striatum 

(Dennis & Cabeza, 2011) and in PFC (Morcom & Friston, 2012) for memory tasks, and that the 

greater regional distribution of brain activity in older adults, indicating reduced functional 

specificity, was associated with poorer memory performance (Morcom & Friston, 2012). The 

idea of reduced functional specificity may reflect the general broadening of responsive neurons, 

or it may be due to decreased activity of the category-sensitive neurons (J. Park et al., 2012). The 

former may be presented as a diffused increased in activity outside the task-related regions 

suggesting neural inefficiency. This increased activity reflects a general elevation of signals in 

response to multiple task conditions that do not typically involve these regions in young adults. 

And the latter may be presented as a decreased activity in task-related regions, suggesting 

reduced neural reactivity and responses. Both may be observed in the same task (Koen & Rugg, 

2019; J. Park et al., 2012), and both are in agreement with the conceptual idea of brain 

maintenance that aging is accompanied by a series of brain changes, a lack of which may suggest 

better brain maintenance in successful aging.  
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3.1.3.2. Compensatory recruitment 

In contrast, several cognitive neuroimaging theories of aging have proposed that there is 

age-related increase in functional brain activity in high-performing older adults that is 

compensatory for age-related degradation, emphasizing that such adaptive changes in brain 

function are favorable to better cognitive aging (Cabeza, 2002; Cabeza et al., 2018; Davis et al., 

2008; Reuter-Lorenz et al., 1999). For example, the scaffolding theory of aging and cognition 

(STAC, (D. C. Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014)) suggests that brain is 

an adaptive system with neuroplasticity. Older adults are often affected by age-related neural 

degradation, including neural challenges (e.g., shrinkage, cortical thinning, white matter changes, 

etc.) and functional deterioration (e.g., decreased neural specificity, decreased functional 

recruitment, dysregulation of the default mode network). Critically, older adults may also exhibit 

“compensatory scaffolding” which represents the adaptive changes with age in brain function 

that may counteract the adverse effects of neural challenges and functional deterioration. For 

example, high-performing older adults may exhibit additional recruitment of novel prefrontal 

areas, which allows them to overcome atrophy to meet task demands (Cabeza, 2002). Moreover, 

studies have found decreased activation in posterior regions along with increased activation in 

frontal regions, and posited the theory that older adults may shift their functional reliance from 

posterior regions to anterior regions (Davis et al., 2008), which is believed to be one of the 

compensatory mechanisms underlying increased prefrontal activity. The STAC model integrates 

both the “negative” and the “positive” changes with age and suggests that functional 

compensation (only) occurs when brain integrity is reduced, proposing different and 
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complementary roles of brain maintenance and compensation in helping older adults to preserve 

cognitive function in aging.  

Consistent with the compensatory view of age-related changes in functional activation, 

researchers have reported increased functional activity in cognitively normal individuals 

harboring early markers of AD and suggested that the activation was a compensatory response to 

the neural insults from pathology. For example, cognitively healthy older adults with elevated 

amyloid and tau burden (Elman et al., 2014; Huijbers et al., 2019; Mormino et al., 2012) or 

subjective memory complaints (Hayes et al., 2017; Rodda, Dannhauser, Cutinha, Shergill, & 

Walker, 2009) had increased hippocampal and/or prefrontal activity during encoding, compared 

to controls. This increased activity was beneficial for participant’s memory performance. This 

pattern of increased activity was interpreted as a functional compensation in response to early 

deficits in these individuals helping them stay cognitively healthy and may diminish as AD 

progresses (Delli Pizzi, Punzi, Sensi, & Alzheimer's Disease Neuroimaging, 2019; Foster, 

Kennedy, Horn, Hoagey, & Rodrigue, 2018).  

Altogether, the evidence of compensatory recruitment in older brains suggests that 

increased activity reflects brain adaption in relatively high-functioning older adults in response to 

inevitable age-related changes. Therefore, increased functional activation, particularly in 

prefrontal regions, may be a beneficial feature related to successful aging and help older adults to 

maintain cognitively better.  
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3.1.4. Factors to consider when examining functional activity related to cognitive aging 

3.1.4.1. Age as a potential moderator of what activity pattern is expected 

The majority of previous investigations on brain activation and successful aging of prime 

individuals have interpreted their findings based on one of the two aforementioned views (brain 

maintenance, compensatory recruitment). Although seemingly contrary to each other, they are 

not necessarily contradictory, and may operate concurrently to cope with age-related changes 

(Cabeza et al., 2018; D. C. Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014). Prime 

agers may indeed rely on better maintenance of youth-like activity pattern, while additional 

recruitment may also be compensatory in nature and helpful when their brain maintenance is 

reduced (Burianova, Lee, Grady, & Moscovitch, 2013; Duzel, Schutze, Yonelinas, & Heinze, 

2011). Resisting age-related decline ideally relies on an intact brain with no neurodegeneration 

and thus no compensation, though this is less likely with increasing age. Middle-aged brains may 

be relatively well-preserved and rely on brain maintenance to perform well. Therefore, a youth-

like pattern of brain function may be sufficient for prime agers in middle age. However, in older 

adults, age-related neurodegeneration may be so prevalent that additional recruitment is more 

beneficial than no recruitment. Even then, the compensation may still only be partially effective 

(Cabeza & Dennis, 2012). Successful cognitive aging in older age may require better adaption 

and re-organization by compensatory upregulating.  

However, little is known about how functional activation may differ in prime and 

nonprime individuals across the lifespan, as only a few fMRI studies have included middle-aged 

adults (Ankudowich, Pasvanis, & Rajah, 2017; Ankudowich, Pasvanis, & Rajah, 2016; de 

Chastelaine, Mattson, Wang, Donley, & Rugg, 2015; Grady et al., 2006; Kennedy, Boylan, 
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Rieck, Foster, & Rodrigue, 2017; Kennedy et al., 2015; H. Park et al., 2013; Rieck, Rodrigue, 

Boylan, & Kennedy, 2017; Rieck et al., 2015; Vidal-Pineiro et al., 2018). Even fewer has 

investigated the specific functional activity related to successful encoding (de Chastelaine et al., 

2015; de Chastelaine, Mattson, Wang, Donley, & Rugg, 2016; Kwon et al., 2015; H. Park et al., 

2013; Vidal-Pineiro et al., 2018), a critical mental process of memory that is particularly 

vulnerable to aging.  

For example, de Chastelaine et al. (de Chastelaine et al., 2015) used an associative 

memory task and found increased frontal recruitment during successful associative encoding in 

older adults, but not in the middle-aged, and that the increased recruitment was related to better 

memory performance in these older adults. This suggests that the additional frontal recruitment 

may not occur until later in the lifespan, and this recruitment may be compensatory for older 

adults. Similarly in a recent study (Vidal-Pineiro et al., 2018), researchers examined the activity 

related to subsequent associative memory success and found that middle-aged and high-

performing old individuals showed similar brain activity as in young adults, whereas low-

performing old adults showed reduced activation in frontal regions. On the other hand, Park et al 

(H. Park et al., 2013) studied a subset of participants from the Dallas Lifespan Brain study and 

found, for negative subsequent memory effect (i.e., forget > high-confidence remember), age-

related decrease was particularly evident in low memory performers beginning in middle age, 

whereas high memory performers did not show these differences until old age, suggesting the 

importance of studying middle-aged adults in revealing different functional trajectories with age.  
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3.1.4.2. Different interpretations for different regions 

The interpretations of functional results are also largely dependent on the region of 

findings. It is especially critical when inferring activity differences related to better outcomes of 

cognitive aging. Pudas and colleagues (2013) found that maintainers, who were defined as 

individuals with minimal longitudinal declines, had greater activity in prefrontal and 

hippocampal regions, compared to decliners. However, in their follow-up study (Pudas et al., 

2018) with longitudinal fMRI data, they found the seemingly-opposite pattern: decliners had 

longitudinal functional increases in prefrontal activity, whereas the maintainers showed stability 

in activity magnitude with a similar level as observed in younger adults. This interesting 

inconsistency may be due to the difference in regions where the observation was detected. 

Although both effects were found in prefrontal regions, the recent study (Pudas et al., 2018) 

specifically noted that the findings were outside typical mnemonic regions. The regions activated 

in decliners in wave 2 also did not show significant activation in wave 1, suggesting that this 

region may be additionally recruited in decliners, in an attempt to compensate for their lower 

level of activity in task-related regions.  

The role of a region during a task is essential to understand the meaning of any 

significant observation in task-related functional MRI. Analyzing task-related and task-unrelated 

regions separately is not only helpful but necessary for an appropriate interpretation of what the 

activity differences actually reflect.  

3.1.4.3. Brain-behavioral correlation  

In addition to the age of participants and the region of findings, the interpretation of 

functional differences in successful and unsuccessful aging is closely related to whether the 
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activity is beneficial for task performance. Increased functional activity in low-performing older 

adults may be interpreted as inefficient and detrimental neural over-recruitment because it was 

not observed in maintainers (J. Park et al., 2012). However, it is also possible that the increased 

activity is compensatory in nature: cognitively declining individuals are the ones in need of such 

compensation but the attempted compensation could not offset the age-related deficits (Cabeza & 

Dennis, 2012). Careful investigations should not only compare declining and maintaining 

individuals, but also examine how the activity is directly related to task performance. One way to 

help interpret the brain functional activity is to examine the relationship between activity 

magnitude and task performance. This examination is particularly critical for activations that are 

outside task-related regions because the function of the activation may be unclear. For example, 

recruitment outside task-related regions that is beneficial to task performance may suggest 

“compensatory upregulation”. Additional recruitment outside task-related regions that is harmful 

to task performance, although not diagnostic, may suggest “decreased inhibition”, “decreased 

neural efficiency”, or “loss of neural specificity”, reflecting age-related neural deficits.  

But as pointed out in a recent review (Cabeza et al., 2018), the examination of brain-

behavior correlation across participants often faces what is known as Simpson’s paradox -- the 

relationship among subgroups may be different (Kievit, Frankenhuis, Waldorp, & Borsboom, 

2013), and the examination of the brain-behavior correlation often ignores this potential problem. 

Researchers should consider the possibility that brain-behavioral relationship may be dependent 

on the behavior: low-performing individuals may show a positive brain-behavioral correlation 

attempting to utilize brain compensation, whereas the relationship may not be present or even 

opposite in high-performing individuals. Therefore, the present study will consider this 



 

54 

possibility and examine whether the brain-behavioral correlation differed in prime and nonprime 

individuals. If the evidence suggests a significant difference in the pattern of brain-behavioral 

correlations, the relationships should be interpreted separately (Cabeza et al., 2018).  

Another way to separate brain activation that are truly helpful in task performance from 

those that are unrelated is using an event-related design that could separate trials with better 

performance and worse performance. One example of studying memory encoding is a 

subsequent memory paradigm (e.g.,(Gutchess et al., 2005)). In subsequent memory tasks, 

participants are presented with stimuli in the scanner and usually instructed to make a judgment 

related to some features of the stimulus so that they fully encode the stimulus. After they come 

out of the scanner, they complete a memory recognition test for the encoded stimuli. Researchers 

can then back trace participants’ successful and unsuccessful encoding trials based on the 

accuracy of participants’ responses. This bypasses Simpson’s paradox and allows for separate 

analyses on successful encoding and unsuccessful encoding, and more importantly, on 

distinguishable brain activities only involved during successful encoding that indeed support 

better task performance.  

3.1.5. Summary 

The present study compares the functional activation between individuals exhibiting 

different cognitive aging profiles, defined in Study 1 in Chapter 2 as prime and nonprime 

individuals, in middle, young-old and very old age. Prime individuals refer to participants with 

superior cognitive performance and relatively less longitudinal decline over past four years in 

multiple cognitive domains (episodic memory, inductive reasoning, working memory, and 

processing speed). Nonprime individuals, on the other hand, overall present a suboptimal 
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cognitive aging pattern over past four years with worse performance and greater longitudinal 

decline across cognitive domains. In the present study, I compare functional brain activity in 

these prime and nonprime individuals in order to explore patterns of brain activation specifically 

related to better cognitive aging in middle, young-old and very old age. I use a subsequent 

memory task that separates successful encoding and forgotten trials. Functional imaging analyses 

will focus on the subsequent memory effect (high-confidence remembered > forgotten) which is 

the classic contrast of this paradigm representing the specific activation that distinguishes 

successful encoding from unsuccessful encoding. Additionally, the present study also explores 

the negative subsequent memory effect (forgotten > high-confidence remembered) as a 

secondary analysis, which contrast is less investigated but may show inter-individual differences 

between high and low performing individuals (H. Park et al., 2013). The study specifically 

examines three questions: (1) are there activity differences during successful encoding 

(subsequent memory effect) between prime and nonprime individuals in core regions related to 

successful memory encoding? (2) is the subsequent memory effect in prime and nonprime 

individuals different from healthy young adults? and (3) is there any additional recruitment 

outside core regions?  

Successful encoding usually activates temporal regions in the memory network 

(hippocampus, fusiform gyrus) and occipital regions in tasks with visual stimuli (Eichenbaum, 

2017; Gutchess et al., 2005; Kim, 2011) (Figure 12). In the present study, to examine the task-

related effects, I focus on the regions common to participants, regardless of age, and compare the 

activity between prime and nonprime individuals in those regions for middle-aged, young-old 

and very old adults. To explore additional recruitment outside task-related regions, I explore  
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Figure 12. Regions found in (Kim, 2011) that are related to subsequent memory effect. 
 

activity differences in the whole brain between prime and nonprime individuals in middle age, 

young-old age and very old age. Prefrontal regions may be a great source of compensation 

because it is involved with executive control and working memory (Yuan & Raz, 2014). This 

allows this region to be flexibly helpful with a wide variety of tasks. Older adults may also show 

decreased activation in the occipital and medial temporal lobe (fusiform gyrus, bilateral 
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parahippocampal gyri, hippocampal regions) (H. J. Li et al., 2015; Maillet & Rajah, 2014; 

Spreng, Wojtowicz, & Grady, 2010). 

I hypothesize that nonprime individuals who have shown suboptimal changes in 

cognition over four years may present decreased subsequent memory effect in task-related 

regions, particularly in temporal regions, reflecting the importance of preserving youth-like 

patterns of brain activation in successful aging. There may be additional recruitment outside 

task-related regions in middle-aged and young-old prime individuals who have shown better 

cognitive aging profile, compared to nonprime and young adults. Greater recruitment outside 

task-related regions may be positively correlated with subsequent memory performance, 

suggesting its compensatory nature.  

3.2. Methods 

3.2.1. Participants 

The fMRI data were collected during the second wave of DLBS data collection. These 

individuals also completed the same subsequent memory task during the first wave of data 

collection four years earlier with a different set of scene pictures. As introduced earlier, the 

purpose of the present study is to characterize functional activity features in people who have 

already shown evidence of different cognitive trajectories. Therefore, the present study using the  

classification from Study 1 in Chapter 2 specifically examines the functional activation at time 2. 

Initially, 464 participants were recruited at baseline in DLBS. Four years later, 337 participants 

came back for the second wave of DLBS testing. Among them, 297 DLBS participants 

completed the fMRI scan with the scene-encoding task. The three age groups in Study 1 in 

Chapter 2 also applied in Study 2 in this chapter. Among all participants, six did not have any 



 

58 

forgotten trials and were removed from analyses. One participant that had extremely low 

memory performance (high-confidence false alarm rate = 0.625; high-confidence hits rate = 

0.302) was also removed. Table 5 shows the demographic information of participants. 

 

Table 5. Age, sex and education information of participants. 
 

 

3.2.2. MRI acquisition  

Participants were scanned using a 3T Philips Achieva scanner with an 8-channel head 

coil. High-resolution anatomical images were collected with a T1-weighted magnetization-

prepared rapid gradient-echo sequence with 160 sagittal slices, field of view (FOV) = 

204 × 256 × 160 mm; voxel size: 1 × 1 × 1 mm3; time to repetition: 8.1 milliseconds (ms); echo 

time: 3.7 milliseconds; flip-angle: 12°. Blood Oxygen Level Dependent (BOLD) fMRI data were 

acquired using a T2* weighted echo-planar imaging sequence with TR/TE/flip-

angle=2000ms/25ms/80° and FOV = 220 x 220 mm2. In each volume, 43 interleaved axial slices 

were acquired parallel to the AC-PC line covering the whole brain, voxel size 3.4 × 3.4 × 3.5 

 
Young reference 

N=41 

 
Middle-aged 

N=71 

 
Young-old 

N=96 

 
Very old 

N=82  

 
Mean (SD) 

 
Mean (SD) 

 
Mean (SD) 

 
Mean (SD) p 

Mean Age  
(at MRI) 31.29 (4.29) 

 
51.25 (5.74) 

 
66.73 (4.50) 

 
80.17 (5.49) <.001 

Sex 
(Female%) 70.7% 

 
57.7% 

 
65.5% 

 
63.4% .547 

Education 
(yrs) 16.79 (2.04) 

 
16.08 (2.22) 

 
15.90 (2.15) 

 
15.25 (2.47) .004 
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mm3. Five additional volumes collected at the beginning of each run for T1 stabilization were 

discarded.   

3.2.3. FMRI task  

Participants viewed 96 pictures of outdoor scenes and responded if there was water in the 

scene by pressing yes/no button. Half of them contained water and half did not. Stimuli were 

presented using E-prime software (Psychology Software Tools, Pittsburgh, PA, USA). Each 

picture was presented for 3s in an event-related design with jittering range from 4 to 14 seconds 

(Figure 13a). 

 
Figure 13. (a). Presentation of the scene pictures in the scanner during the encoding phase. (b). 
Example of encoded and matching lure pictures. 

 
Approximately 20 minutes after the end of the presentation of the pictures, a recognition 

test was administered outside of the scanner. Participants were presented with a total of 192 

pictures, 96 were target pictures that were presented in the scanner and 96 were lure pictures that 

were closely matched to the target pictures for similar content and composition (e.g., both the 

target and the corresponding lure consisted of ocean with palm trees; Figure 13b). Participants 

were instructed to indicate whether they remembered seeing the exact picture by making one of 

three judgments: 1. “high-confidence remember” indicating that the participant was confident the 
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same picture was presented; 2. “low-confidence remember” indicating that the participant 

remembered seeing the picture with low confidence; 3. “new item” indicating that the participant 

judged that it was a new picture not previously presented. This recognition task was self-paced 

with a maximum of 4s for each trial.  

This subsequent memory task was also one collected in the baseline of DLBS so all 

participants have performed this task four years ago in wave 1. For this reason, we used a 

different set of pictures in wave 2 for all participants so that none of the scene pictures were 

presented before in either encoding or recognition in wave 1. This avoids possible memory for 

pictures from last wave while the task procedure was not unfamiliar to participants. 

3.2.4. FMRI data processing  

Statistical Parametric Mapping (SPM12, University College London, UK) was used for 

imaging processing and data analysis. For preprocessing, functional images were corrected for 

motion and realigned to the mean image across all the runs for each participant, which was then 

used for co-registering the anatomical scan. The anatomical scan was segmented to allow the 

estimation of deformation parameters for different tissues. Next, all functional images were co-

registered to the MNI template via the anatomical image. Finally, spatial smoothing was 

implemented with a full-width-half-maximum (FWHM) kernel of 8mm. Artifact Detection Tools 

(ART) was used to detect outliers due to movement or signal intensity spikes (Mazaika, 

Whitfield, & Cooper, 2005). Time points of movement outliers were dummy coded in the first-

level analysis and used to regress out the artifact. Runs that had more than 15% outlier volumes 

(~17 vol) due to intensity shift (>3% deviation from the mean in global intensity) or motion 

(>2mm motion displacement would be excluded. Participants with more than one run (out of 
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three) excluded would be removed from the analyses. None of the runs in any participants were 

removed based on this criterion. 

At the individual level, a canonical hemodynamic response function was modeled by 

convolving the signal time course with the stimulus event. Eight nuisance regressors were 

included: six movement regressors, one artifact regressor, and the difference in the mean signal 

across runs. An autoregressive model, AR(1), was used to estimate and correct for the temporal 

autocorrelation. Additionally, the residual variance for each GLM was calculated for each 

individual. This measure reflects the remaining variance in the functional signal that is not 

attributable to the model and is the largest variance contributor (Friedman, Glover, & Fbirn, 

2006; Suckling et al., 2008). It includes, in addition to random error, unexplained variance 

related to regional variability across the brain within individuals. Given the spatial heterogeneity 

of this measure, it is suggested to take additional efforts to account for its variability and use this 

piece of information in the second level statistics (Gonzalez-Castillo, Chen, Nichols, & 

Bandettini, 2017). Therefore, I calculated the regional residual variance for each ROI and 

included as an additional covariate in the supplementary analyses. The present study focused on 

a primary contrast of interest of subsequent memory effect (i.e., activity during high-confidence 

remembered greater than forgotten trials). A secondary negative subsequent memory effect 

(forgotten > high-confidence remembered) was also examined. 

3.2.5. FMRI data analysis 

3.2.5.1. Define task-related regions 

Task-related regions were first defined. For subsequent memory effect and negative 

subsequent memory effect, two second-level general linear models (GLM) were created 
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separately in all participants with age as a covariate. The resulting images represent task-related 

regions underlying the specific processing (subsequent memory, negative subsequent memory) 

controlling for age. A voxel-wise correction with family-wise error (FWE) rate at p < .05 was 

used to define task-related ROI. The significant clusters were used as the masks for the task-

related regional of interest (ROI) analyses.  

3.2.5.2. Task-related ROI analysis 

ROI analysis was performed in each of the task-related clusters. The mean activity 

estimate within each ROI was extracted. The analysis of covariance (ANCOVA) examined the 

effect of class (prime, nonprime), age (middle-aged, young-old, and very old), and their 

interaction while controlling for sex and education. Then, to compare the activity to young 

individuals in prime and nonprime individuals, two sets of ANCOVA was performed in prime 

and nonprime individuals separately that examined the specific difference between young and 

the other age group while controlling for sex and education.  

3.2.5.3. Whole-brain analysis 

In addition to ROI analysis, a whole-brain analysis explored if there were any activity 

differences between prime and nonprime individuals that may exist outside the core task-related 

regions. For any significant cluster that does not overlap with task-related ROI, the regional 

activity in prime and nonprime individuals was compared with young adults. Then, brain-

behavioral correlations were performed to help interpret the meaning of the activity difference.  
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3.3. Results 

3.3.1. Behavioral performance of subsequent memory task 

Mean memory performance of each age is presented in Table 6. Participants overall 

performed similarly on the accuracy in recognizing the old pictures. There was only a trend of 

significance in the ability to distinguish new pictures: older adults less often correctly identified  

 
Table 6. Behavioral performance of subsequent memory task in different age groups. 

 

new pictures as new (p = .073) but were more likely to falsely recognize new pictures as old (p = 

.077). To measure subsequent memory behavior, two indicators were used. First, to parallel the 

approach taken in the fMRI analyses, d’ of high confidence trials was calculated from the z-

transformed proportion of high-confidence remembered trials versus the proportion of high-

confidence false alarms (H. Park et al., 2013). An analysis of variance (ANOVA) test showed 

significant differences in d’ (ZPr(HiC-hit) – ZPr(HiC-FA)), which occurred because very old 

adults differed from the other three groups (p’s <.05), despite equivalent performance in all other 

three age groups (p’s >.1). Figure 14 presents the subsequent memory behavior, indexed by d’ as  

  Young reference 
N=41 

 Middle-aged 
N=71 

 Young-old 
N=96 

 Very old 
N=82 

 

  
Mean (SD)  Mean (SD)  Mean (SD)  Mean (SD) p 

Old 
item Hits 0.709 (0.154)  0.714 (0.146)  0.719 (0.136)  0.708 (0.145) .954 

      High confidence 0.410 (0.124)  0.502 (0.137)  0.546 (0.152)  0.523 (0.155) <.001 

      Low confidence 0.299 (0.024)  0.212 (0.121)  0.173 (0.123)  0.184 (0.121) <.001 

Misses 0.289 (0.153)  0.282 (0.145)  0.276 (0.136)  0.275 (0.136) .948 

New 
item Correct Rejection 0.473 (0.189)  0.501 (0.166)  0.491 (0.161)  0.441 (0.164) .073 

False Alarm 0.525 (0.188)  0.492 (0.166)  0.494 (0.160)  0.549 (0.163) .077 

d’: ZPr(HiC-hit) – 
ZPr(HiC-FA) 0.796 (0.465)  0.793 (0.428)  0.731 (0.330)  0.511 (0.310 <.001 
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Figure 14. Subsequent memory performance in prime and nonprime agers in different age 
groups. ** p <.01. 
 

a function of prime and nonprime agers in different age groups. The difference in memory 

performance was significant between prime and nonprime agers in both young-old and very old 

groups (p’s < .05). In the secondary analyses where negative subsequent memory effect 

(subsequent forgetting effect) was examined, miss rate was also examined as an additional  

behavioral indicator of subsequent forgetting performance. 

3.3.2. Brain activity differences of subsequent memory effect 

3.3.2.1. Define task-related activity 

In all participants, four regions related to subsequent memory were identified using the 

contrast of high-confidence remember greater than forget. Regions included the left and right 

fusiform/parahippocampal, and left and right lateral/mid occipital regions (Table 7; Figure 15).  

3.3.2.2. Subsequent memory effect differences between prime vs nonprime individuals 

To compare the subsequent memory effect between prime and nonprime individuals in 
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Table 7. Four subsequent memory effect regions. 
 

Regions 
Peak Coordinates 

p (FWE) t Cluster Size 
(x y z) 

Left fusiform/parahippocampal gyrus -30 -40 -19 <.001 9.07 300 

Right fusiform/parahippocampal gyrus 33 -34 -22 <.001 9.5 195 

Left lateral/mid occipital cortex -36 -88 20 <.001 6.11 81 

Right lateral/mid occipital cortex 39 -82 14 <.001 6.72 92 
 
 

Figure 15. Brain regions showing significant subsequent memory effect (high-confidence 
remember > forget). Voxel-wise FWE corrected at p < .05. 

 
 

middle-aged, young-old and very old adults, an ANCOVA was performed for each ROI to test 

the effects of age (middle-aged, young-old, very old), class (prime, nonprime), and their 

interaction while controlling for sex and education. Overall, prime individuals had higher 

subsequent memory effect, compared to nonprime individuals, and this difference in temporal 
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clusters was most evident in young-old adults (Figure 16). Specifically, left fusiform showed a 

significant main effect of class (F(1, 241)= 7.073, p=.008) where prime individuals had higher 

activation than nonprime individuals, and a significant age x class interaction (F(2, 241)=5.026, 

p=.007) such that the activation difference between prime versus nonprime individuals was most 

evident in young-old group. Right fusiform showed a similar but weaker pattern of results with a 

marginally significant interaction between age x class (F(2, 241)=2.43, p=.09) that prime 

individuals in young-old age had greater subsequent memory effect than nonprime individuals. 

Left lateral/middle occipital cluster showed a significant age effect (F(2, 241)=4.585, p=.011), 

revealing that older adults had reduced occipital effect, and a marginally significant class effect 

(F(1,  241)=3.337, p=.069) such that prime individuals overall had greater subsequent memory 

effect than nonprime individuals. There was no significant age x class interaction (p=.511). 

Lastly, right lateral/middle occipital cluster also showed a significant age effect (F(2, 241)=4.74, 

p=.01) with older groups showing decreased subsequent memory effect, and a significant class 

effect (F(1, 241)=6.053, p=.015) with prime individuals showing greater subsequent memory 

effect. There was no significant age x class interaction in the right occipital either (p=.201).  

Then, I repeated all analyses to additionally control for regional residual variance for 

each ROI. Including regional residual variance did not change results for the left and right 

fusiform/parahippocampal gyrus. For the occipital clusters, the marginally significant effect of 

class in the left lateral/middle occipital region became non-significant, but the non-significant 

interaction in the right lateral/middle occipital region became significant. Overall, the pattern of 

results remained unchanged: prime individuals had greater subsequent memory effect across core 

task-related regions, and this difference was most evident in young-old adults. 
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Figure 16. Estimated marginal means of subsequent memory effect, adjusted for sex and 
education, in prime and nonprime individuals (defined in Study 1 in Chapter 2) in middle-aged, 
young-old, and very old adults for four task-related ROIs. 
 

Finally, to offer an overall representation of activity differences, an ANCOVA examined 

the mean subsequent memory effect in all task-related voxels for the effect of age, class, and 

their interaction while controlling for sex and education. I found a significant main effect of class 
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(F(2, 241)=5.330, p=.022) that prime individuals had greater subsequent memory effect across 

task-related voxels than nonprime individuals. I also found a significant class x age group 

interaction (F(2, 241)=3.574, p=.03) that occurred because the higher subsequent memory effect 

difference was most evident in young-old individuals (Figure 17). 

Figure 17. Mean subsequent memory effect across task-related voxels in prime and nonprime 
individuals (defined in Study 1 in Chapter 3) in middle-aged, young-old, and very old adults for 
four task-related ROIs. 
 

3.3.2.3. Subsequent memory effect differences compared to young adults 

Next, to answer the question of whether the activation in prime and nonprime individuals 

is different from young adults, the subsequent memory effect in middle-aged, young-old and 

very old adults was compared to the young reference group using ANCOVA while controlling 

for sex and education, for prime and nonprime individuals separately. I specifically focused on 



 

69 

the tests with the young reference group as it is the only relevant comparison. The results showed 

that prime individuals demonstrated youth-like activation until very old age, whereas nonprime 

individuals showed the difference starting in young-old age (Figure 18). Specifically, for left  

Figure 18. Mean subsequent memory effect in middle-aged, young-old and very old group, 
compared to the young reference group, separately for prime and nonprime individuals. † p<.1. * 
p<.05. ** p<.01. 
 

fusiform/parahippocampal gyrus, the analyses of prime individuals revealed a tendency of 

reduced subsequent memory effect only in very old group comparing to the young reference 
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group (p=.097). Nonprime individuals, however, showed a significant reduction in both young- 

old (p=.003) and very old groups (p=.007) compared to young adults. A similar pattern was also 

found for right fusiform/parahippocampal gyrus: the analysis of prime individuals revealed 

significant reduction in subsequent memory effect only in very old group, compared to young 

(p=.008), whereas nonprime individuals showed significant reduction in both young-old (p=.003) 

and very old adults (p=.007). The two occipital regions also revealed the same patterns: in the 

left lateral/middle occipital region, very old group were the only group that showed significantly 

reduced effect, comparing to young (p=.025). In nonprime individuals, in addition to the very old 

group who had significantly reduced subsequent memory effect (p=.005), young-old also had 

marginally significant reduction compared to young adults (p=.056). For the right lateral/middle 

occipital region, in prime individuals, only the very old group had significant lower subsequent 

memory effect compared to young (p=.016), whereas nonprime individuals showed significant 

reduced effect in both young-old (p=.008) and very old groups (p=.001) compared to young 

adults. All results remained unchanged when the regional residual variance was also included.  

3.3.2.4. Result summary of ROI analysis  

In summary, prime individuals overall had higher subsequent memory effect than 

nonprime individuals. Across all core regions supporting successful encoding, results showed a 

consistent pattern that prime individuals were featured with maintenance in youth-like pattern of 

significant subsequent memory effect until very old age. Nonprime individuals showed reduced 

effect starting at a younger age in late adulthood. 
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3.3.2.5. Whole brain exploration of subsequent memory effect differences  

To explore activity differences between prime and nonprime individuals which may be 

outside task-related regions, whole-brain analyses were performed in middle-aged adults, young-

old adults, and very old adults contrasting the subsequent memory effect in prime and nonprime 

individuals. The only group where the significant effect was observed is in the young-old group, 

where six clusters showed significantly higher subsequent memory effect in prime individuals 

than nonprime individuals, after FWE cluster-wise correction at p < .05. Five cortical clusters are 

illustrated in Figure 19, primarily overlapping with regions that have been previously reported to 

be associated with subsequent memory or memory processing in general (Kim, 2011). Some of 

these clusters were also identified in the ROI analysis (e.g., left and right occipital, left fusiform), 

and some are novel clusters outside the core task-related regions, including frontal regions (e.g., 

left inferior frontal, left superior frontal, right orbitofrontal cortex).  

Figure 19. Five cortical regions show significant subsequent memory effect in prime individuals 
than nonprime individuals in young-old adults. Cluster wise FWE corrected at p<.05. 
 

To specifically examine outside task-related regions, before comparing the activity 

differences in these clusters, the voxels belonging to task-related regions (identified in the 

previous section) were masked out. This removed 199 voxels in the left lingual/fusiform cluster, 
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reducing its cluster size from 886 to 687 voxels, and 64 voxels in the bilateral occipital cluster, 

reducing its size from 1389 to 1325 voxels. Then, to better interpret the activity differences 

between prime and nonprime young-old adults revealed in the whole brain analysis, their 

subsequent memory effect was compared to the young reference group. The results showed that 

prime young-old individuals appeared to have additional recruitment than young adults in left 

superior frontal cortex (p=.009; Figure 20a) and marginally in the right orbitofrontal cortex 

(p=.079). Importantly, the brain-behavioral correlation between activation magnitude and d’ 

suggested a trend that individuals with greater additional recruitment seemed to have a better 

subsequent memory (left superior frontal: r=.182, p=.078, Figure 20b; right orbitofrontal: r=.234, 

p=.022). These two prefrontal regions were distant from the core task-related regions, suggesting 

that there may be additional frontal recruitments outside task-related regions in prime young-old 

adults, and that the individuals who were able to recruit these regions had better subsequent 

memory performance.  

Figure 20. (a). Subsequent memory effect in prime and nonprime young-old individuals differ 
from young adults. (b). Additional recruitment showed a trend of association with better 
subsequent memory performance in young-old individuals.   
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In the other four clusters (left lingual/fusiform, left inferior/middle frontal, left and right 

parieto-occipital, cerebellum), prime individuals showed comparable activations as in young 

adults (p’s >.1), whereas nonprime individuals showed reduced activation (p’s <.003). This 

pattern is consistent with the observation in task-related regions, suggesting the importance of 

preservation of functional activation in prime adults in young-old age.  

I did not find any region that showed significantly greater activation in nonprime 

individuals compared to prime individuals. And no significant activity differences between prime 

and nonprime individuals was found in other two age groups. 

3.3.3. Activity analysis of negative subsequent memory effect 

In addition to subsequent memory effect, I also explored activity differences between 

prime and nonprime individuals for negative subsequent memory effect. The negative 

subsequent memory effect reflects regions showing lower activation during encoding of high-

confidence remembered items than forgetting items, representing suppression of certain regions 

during successful encoding. Across all participants, seven clusters were identified mainly 

covering large areas in the default mode network (Figure 21).  

Figure 21. Brain regions showing significant negative subsequent memory effect (forget > high-
confidence remember). Voxel-wise FWE corrected at p < .05. 
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Then, for each cluster, the negative effect in prime and nonprime individuals was 

compared. The results showed that, in the midline DMN region, there was a significant age x 

class interaction (F(2, 241)=4.649, p=.01; Figure 22a) because nonprime individuals of young-

old age had greater negative effect (p=.011) than prime individuals. This pattern was unexpected 

and warranted a further brain-behavioral analysis. The activity magnitude in the DMN cluster 

and the subsequent memory index, d’, showed no significant relationship (r=.097, p=.347). 

Using the behavioral measure of subsequent forgetting (miss rate), the analysis revealed a 

negative relationship between negative subsequent memory effect and miss rate (r=-.237, p=.02; 

Figure 22b), suggesting that this over-suppression was more frequent in individuals with higher 

miss rate and may reflect maladaptive suppression related to worse subsequent memory 

performance. Additionally, the left inferior temporal region showed a significant age x class 

interaction (F(2, 241)=3.853, p=.023) such that the nonprime individuals in the middle-aged 

group failed to show disengagement, but the comparison to young adults suggested neither class 

showed statistically significant differences from young adults (p’s>.1).  

Figure 22. (a). Negative subsequent memory effect of prime and nonprime individuals in middle-
aged, young-old and very old adults in the midline DMN cluster. (b). Brain-behavioral 
correlation in the DMN cluster. Greater negative subsequent memory effect in the midline DMN 
cluster was related to higher miss rate. Removing the potential outlier who had the highest miss 
rate did weaken the relationship but did not change the significance (r=-.212, p=.040).  
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Finally, the whole-brain analysis for negative subsequent memory effect did not find any 

cluster showing differences between prime and nonprime individuals in any age group. 

3.4. Discussion 

This study using a subsequent memory fMRI task found that prime individuals overall 

showed higher activation than nonprime individuals in task-related regions including left and 

right temporal and occipital regions. The prime individuals showed better preservation of high 

task-related activation until very old age. The nonprime agers, on the contrary, showed reduced 

task-related activation starting in young-old age. Additionally, the present study also found 

evidence of additional neural recruitment outside the core task-related regions in young-old 

prime individuals: prime adults recruited additional prefrontal regions, including the left superior 

frontal cortex and right orbitofrontal cortex, and individuals with greater activation had better 

subsequent memory performance, suggesting a compensatory nature of this frontal recruitment. 

Overall, the findings suggest that higher activation during successful encoding, both within task-

related regions and in additional frontal regions, was present in prime individuals with less 

retrospective decline. 

3.4.1. Fusiform, parahippocampal, and occipital regions in successful encoding 

The present study used a subsequent memory task to investigate brain activity patterns 

that are sensitive to successful encoding. Some researchers have explored functional activities 

during encoding between older individuals with different cognitive aging trajectories (e.g., 

Persson et al., 2011; Pudas et al., 2013; Pudas et al., 2018), but those studies did not separate 

successful encoding from unsuccessful encoding. Activities during unsuccessful encoding may 

not involve the mental processes leading to memory, but may be more reflective of general 
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perceptual processing of the stimuli. As I alluded to in the introduction, those studies may be 

limited in the interpretation of differences in functional brain activity between individuals 

because the nature of the compared activation is unclear. The present study specifically focused 

on subsequent memory effect that distinguishes successful and unsuccessful encoding. The 

results, in fact, converge with those previous findings and clearly presents functional activity 

differences between prime and nonprime individuals highlighting the importance of functional 

integrity in core memory regions in aging.  

The present study found subsequent memory effect in left and right temporal and 

occipital clusters including fusiform, parahippocampal and lateral/middle occipital regions, 

which are essential for successful encoding in the across lifespan sample. The results suggest the 

higher-order visual processing, particularly involved in occipital regions (Grill-Spector, Kourtzi, 

& Kanwisher, 2001), is essential for successful memory of the pictorial stimuli in this study. 

Moreover, parahippocampal gyrus and fusiform gyrus have both been linked to successful 

memory encoding, particularly for colorful visual information and environmental information 

(Aguirre, Detre, Alsop, & D'Esposito, 1996; Gutchess et al., 2005). It has been frequently 

reported that fusiform and parahippocampal activation is critical for subsequent memory during 

processing of pictorial stimuli in young adults (Kim, 2011). A meta-analysis on the age-related 

differences in subsequent memory effect showed age equivalent activation in young and old 

adults in medial temporal lobe and left fusiform gyrus (Maillet & Rajah, 2014). Similarly, Park 

et al. (2013) used a subset of DLBS participants and also found left parahippocampal and 

fusiform areas were among the subsequent memory effect regions common to all individuals 

from young to old age. Overall, our study substantiates prior findings that activity in temporal 
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regions including fusiform and parahippocampal gyrus is commonly critical for successful 

encoding regardless of age. 

3.4.2. People who aged better longitudinally have higher task-related activations 

The direct comparison between prime and nonprime agers revealed a pattern that prime 

individuals overall had higher activation than nonprime individuals, particularly in young-old 

adults. Higher task-related neural activity has been found positively correlated with cognitive 

performance cross-sectionally (Eyler et al., 2011). And typical aging is often accompanied by 

age-related loss of neural responses or neural modulation, particularly in temporal and occipital 

regions (Koen & Rugg, 2019; S. C. Li, Lindenberger, & Sikstrom, 2001; McDonough, 

Cervantes, Gray, & Gallo, 2014). The present study demonstrated that this age-related neural 

decline may not be universal in older adults and that people with less longitudinal cognitive 

decline have higher activations than those with suboptimal patterns of cognitive aging. 

Typical age-related decline in decreased functional activation may reflect age-related 

adverse effects of accumulated neural depletion factors on functional alterations. For example, 

gray matter atrophy , white matter integrity (Lucas, Wagshul, Izzetoglu, & Holtzer, 2019; Webb, 

Rodrigue, Hoagey, Foster, & Kennedy, 2019), amyloid deposition (Kennedy, Rodrigue, Devous 

Sr, et al., 2012; Song et al., 2016), decreased dopamine availability (Backman, Lindenberger, Li, 

& Nyberg, 2010) have all been liked to age-related differences in brain activity differences. 

These factors may also contribute to differences in cognitive aging trajectories, directly or 

indirectly through brain function (Hedden & Gabrieli, 2004; Nyberg & Pudas, 2018). As a 

consequence, higher task-related activation may reflect better maintenance in structural integrity 



 

78 

(Nyberg et al. 2012; Cabeza et al., 2018) and is prevalent in individuals who also present better 

cognitive aging profiles.  

3.4.3. High functional activation in prime individuals until very old age 

By examining fMRI data in a large sample across the adult lifespan, the present study 

provides evidence that better cognitive aging is associated with better preservation of patterns of 

higher task-related activation. This conclusion is supported by two interconnected findings. First, 

prime agers demonstrated task-related activations at a similar magnitude as in young adults, until 

very old age. On the contrary, nonprime agers showed reduced task-related activation starting in 

young-old age. This finding suggests that expected age-related functional reduction is delayed in 

prime individuals, compared to nonprime individuals. The task-related activation appears to be 

well preserved throughout most of the adult lifespan in individuals showing better cognitive 

aging trajectories. Second, nonprime young-old individuals also showed loss of activations 

widely outside task-related regions where prime individuals had comparable activations as in 

young adults. This pattern is also consistent with the prediction of brain maintenance theory 

(Nyberg et al., 2012; Cabeza et al., 2018) that the inability of recruiting proper activation is 

likely a consequence of age-related detrimental changes in the whole brain, not necessarily 

specific for a particular region.  

The importance of preserving high brain functional activation in older individuals has 

been suggested previously. Park et al. (2013) used a subset of participants that were included in 

this study and focused on the age-related differences in young, middle-aged, and old adults. They 

found that low-performing middle-aged adults started to show reduced deactivation for negative 

subsequent memory, whereas high-performing adults only showed the reduction when they were 
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at older age. Pudas et al. (2013) used a memory task and found successful older adults, defined 

by maintaining high memory performance over 15-20 years, had comparable medial temporal 

activation as in young adults, whereas the average older adults who showed typical memory 

decline had reduced activation. A longitudinal examination of functional activity changes also 

found that it was the declining older adults with greater memory decline showed greater 

activation reduction in the hippocampus with age (Persson, Kalpouzos, Nilsson, Ryberg, & 

Nyberg, 2011). The current study further provides stronger evidence of such characteristics by 

presenting a clear consistency across task-related regions of successful encoding (e.g., left and 

right temporal and occipital regions), as well as some extended clusters outside task-related 

regions. 

3.4.4. Compensatory recruitment in frontal regions 

In addition to the preservation of high task-related activation similar to young brains, the 

present study also showed some preliminary evidence that may be suggestive of neural 

compensation in prime individuals at young-old age. In two prefrontal clusters (left superior 

frontal and right orbitofrontal regions), prime individuals had additional recruitment, compared 

to young adults. Critically, individuals who additionally recruited the activation tended to show 

better subsequent memory, suggesting that the use of the additional regions indeed helped their 

memory performance.  

The critical role of the prefrontal lobe in brain compensation has been well documented. 

An early review examined 47 neuroimaging studies and found that greater frontal activation was 

one of the most evident patterns related to better cognitive aging in older adults (Eyler et al., 

2011). Prefrontal regions are actively involved in cognitive control processes that contribute to a 
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wide range of cognitive tasks, including memory encoding (Badre & Wagner, 2007). It has been 

suggested that individuals who showed the least parahippocampal activation recruited the most 

frontal regions (Gutchess et al., 2005) and the prefrontal functional capacity may be a mediator 

of encoding quality in aging (de Chastelaine et al., 2016), as it is one of the particularly 

vulnerable regions affected by age-related detrimental effects (Fjell et al., 2014; Rabbitt, 2005). 

The ability to activate additional prefrontal regions should be recognized as an important feature 

of desired activation patterns in prime individuals.  

3.4.5. Age as a potential moderator of what functional activity pattern is expected in 

successful aging 

Another important feature of the present study is that it relates the brain activity pattern to 

cognitive aging across the adult lifespan. It was suspected that functional characteristics related 

to better cognitive aging may depend on age. Indeed, the findings suggest that preservation of 

sufficient functional activation likely becomes most critical in young-old adults (55-69 years old 

as baseline age in the present study), and the pattern of compensatory recruitment also emerges 

in the same age.  

Middle-aged brains are likely relatively spared from age-related detrimental changes and 

present high levels of functional brain activity with little need for compensation. But as age 

increases, individual differences in preserving proper brain function become critical. Studies 

have suggested the ability to resist functional and structural decline relies on neural plasticity and 

cellular repair which may offset age-related pathology (Cabeza et al., 2018). For individuals who 

can no longer withstand the increasing neural deterioration, functional activity deficits in task-

related regions may start to be present. Not coincidently, this is also when compensatory 
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responses start to emerge, probably to cope with functional deteriorations according to the STAC 

model (D. C. Park & Reuter-Lorenz, 2009). The present study suggests that young-old age (55 to 

69 years old at baseline in the study), which represents the start of late adulthood, is when this 

critical divergence begins. Finally, very old brains likely lose the brain structural integrity, 

regardless of being a prime or nonprime individual, possibly due to “wear and tear” at cellular 

levels at an advanced age (Nyberg et al., 2012). Therefore, there is little neural resource for 

preserving high brain function or recruiting additional neural function. 

Previous studies on functional neuroimaging of aging often focus on functional activity 

changes as a function of age. The present study suggests that the individual difference in 

functional change is not exclusively related to age, but also a reflection of whether one is 

considered as a prime or nonprime individual, highlighting the importance of recognizing the 

individual differences in cognitive aging when examining brain function in older adults.  

3.4.6. Limitation and future direction 

One limitation of the present study is that functional inferences are based on a cross-

sectional comparison across age groups, which assumes that older groups had similar brain 

activation as the young when they were younger. However, studies using an across-lifespan 

sample sometimes have more selective older participants (Fjell et al., 2014; Rugg, 2016) who 

may represent a group of higher functioning individuals and would have exceeded the young 

reference individuals when they were younger. In that case, the inferences may reflect sample 

differences rather than developmental changes. In fact, the present study was not designed to 

provide direct proof regarding brain maintenance or compensation argument. Instead, it explores 

what brain activity may be specifically present in individuals with better cognitive aging and 
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found higher subsequent memory effect as well as additional frontal recruitment in prime 

individuals, which findings are better interpreted in the context of brain maintenance and 

compensation theories. Future studies may use longitudinal designs to examine the relationship 

between functional and cognitive changes in the same individual for a more definitive inference. 

Additionally, one interpretation of the results is that middle-aged adults have relatively 

better brain structure which enables better preservation of higher brain function and requires 

little need for compensation for age-related neural pathology. The current dissertation did not 

directly investigate the role of neural pathology, but used age as a proxy of the overall status of 

brain structure. Future studies may investigate specific moderators (e.g., hippocampal atrophy, 

(Persson et al., 2005)) that may determine the efficacy of brain maintenance and compensation.  

Another caveat to the interpretation of the findings is that individual differences in non-

neural factors, such as cerebrovascular reactivity, may be a confounding cause of the subsequent 

memory effect differences, as cerebrovascular reactivity is an important non-neural determinant 

of BLOD signal that changes with age (Liu, Jill, & Lu, 2019). For this particular reason, I 

refrained from directly contrasting between age groups and considered an additional covariate, 

signal residual variance, that is evidenced to reflect inter-individual biological variances like 

vascular differences (Gonzalez-Castillo et al., 2017; Kazan et al., 2016). The potential influence 

of cerebrovascular differences is also a common issue in most prior studies examining age-

related effects on fMRI activation. Future studies should consider incorporating measures of 

CVR that may correct for its effect on BOLD signal (Liu et al., 2019; Tsvetanov et al., 2015). 

As an investigation of functional differences between prime and nonprime individuals, 

the present study explored multiple regions in three age groups for each hypothesized question. 
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Although the regions investigated for each question should not be considered independent from 

each other, the conduction of multiple tests may still increase the Type I errors. This is partially 

addressed by performing an additional analysis for all task-related voxels, which nevertheless 

presented a consistent pattern similar to the regional results. However, the results should be 

interpreted with the acknowledgement of the potential multiple comparisons problem. 

Finally, it is important to note that the present study is correlational. The findings 

illustrate the patterns of brain activation that is present in individuals who have accomplished 

optimal cognitive aging retrospectively. It does not directly examine causation between brain and 

behavior. It is possible that functional activity patterns reflected a “snapshot” of neural functional 

features which indeed led to better cognitive outcomes. It is also possible that cognitive changes 

over the past years resulted in alterations in strategy, motivation, etc., which could also reflect in 

brain activity.  
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CHAPTER 4 

CONCLUDING REMARKS 

 
As 20 percent of the total U.S. population will be over the age of 65 by the year 2030 

(Ortman et al., 2014), a better understanding of the patterns of functional brain activity that are 

associated with successful aging has become increasingly necessary. It has become critically 

important to recognize what brain activity pattern is characteristic of individuals who show better 

trajectories of cognitive aging. The present dissertation investigated the brain activation features 

in prime individuals, who are defined in the present dissertation as individuals with superior 

cognitive performance and less longitudinal decline relative to their peers across multiple 

cognitive domains. The results from this dissertation heighten our understanding of the patterns 

of brain activity that are related to successful aging in many ways: 

First, Study 1 in Chapter 2 used a data-driven approach to identify individuals with 

distinct cognitive aging profiles based on cognitive performance and longitudinal change across 

multiple domains over four years. Although the existence of heterogeneity in cognitive aging has 

been well acknowledged, how to best distinguish individuals remains a complex issue (Nyberg & 

Pudas, 2018; Pruchno & Carr, 2017). Study 1 in Chapter 2 offered a novel and unique way to 

capture the heterogeneity in cognitive aging, which may be a useful method to classify 

individuals into prime and nonprime agers in future research. The use of a multivariate, unbiased 

approach may be particularly appropriate for aging and clinical research to develop classification 

with little a priori knowledge about the characteristics of subgroups. 

Second, Study 2 in Chapter 3 clearly demonstrated that prime individuals with less 

longitudinal cognitive decline exhibited better preservation of high brain activation until very old 
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age. On the contrary, nonprime agers showed reduced activation starting in young-old age. 

Previous literature on successful aging has largely been limited to brain function in older adults 

in contrast to young adults (Nyberg & Pudas, 2018; Mailet & Rajah, 2014). The present 

dissertation is one of the first efforts to use a lifespan sample to investigate brain activity features 

in successful agers who longitudinally aged better. The present dissertation suggested that the 

divergence of brain activation emerges in young-old adults. The longitudinal examination of 

cognitive change allows for a more confident classification of successful cognitive aging. The 

inclusion of participants with a wide age range helps to connect the existing observations in 

different age groups, and may reconcile some inconsistency in the literature. 

Third, Study 2 in Chapter 3 provided evidence of additional recruitment in frontal regions 

in prime individuals. Importantly, these regions were outside the core task-related regions, and 

individuals who recruited the regions to a higher degree had better subsequent memory. This is 

congruent with the historical views that the core source of neural compensation is frequently 

localized to the prefrontal cortex (Maillet & Rajah, 2014; Reuter-Lorenz & Park, 2014). Notably, 

some recent research has questioned the notion of neural compensation: some suggested no 

evidence of greater frontal activation longitudinally (Nyberg et al., 2010), and some questioned 

the interpretation of increased frontal activation (Morcom & Henson, 2018). Future studies with 

longitudinal neuroimaging data should examine the within-individual change in frontal 

activation, and between-individual differences related to better or worse cognitive aging. 

Nevertheless, the present study provides evidence of both preservation of youth-like activation 

and functional compensation in the same group of prime individuals, echoing the notion that the 
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two theories represent complementary, not competing, functional patterns related to superior 

cognitive aging (Cabeza et al., 2018; Park & Reuter-Lorenz, 2009).  

Finally, the present dissertation provides further characterization of functional brain 

patterns that represent successful cognitive aging. In the aging literature, much is known about 

structural brain aging, and researchers have agreed on the significant contribution of structural 

brain integrity to individual differences in cognition. However, functional contributors to 

differential cognitive aging has been controversial (Morcom & Henson, 2018; Nyberg et al., 

2010). This dissertation links the heterogeneity in cognitive aging to differences in brain 

function. Although an ideal investigation would implement a longitudinal design that follows 

individuals to track the brain function and cognitive development simultaneously, the present 

study provides important evidence that both brain maintenance and compensation characterize 

desired brain activation patterns that may be associated with better cognitive aging.  
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