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Cognitive aging research has traditionally studied the inevitable cognitive decline in older adults
as a group. Recently, more research has recognized the importance of understanding the
individual variability in cognitive aging trajectories. Some individuals show superior
performance and better preservation of cognition relative to others at their age, termed “prime”
agers in the present dissertation. By contrast, some individuals may exhibit substantial cognitive
deficits and greater decline representing a suboptimal cognitive aging profile, termed
“nonprime’” individuals. Many neuroimaging research efforts have been made to explore the
neural mechanisms associated with these individual differences. Two possible patterns of
functional activity, youth-like activation and compensatory recruitment, have been proposed to
be particularly related to individual variability in cognitive changes. However, there is still a lack
of consensus on what brain activity patterns may represent optimal aging in prime individuals.
The present dissertation investigated this question in two studies. Because one major source of
difficulty in this topic is the challenge in identifying prime agers, Study 1 implemented an
exploratory data-driven approach to classify participants based on their cognitive performance

and longitudinal cognitive change across multiple cognitive domains. Using two waves of
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longitudinal cognitive data (with a four-year interval) in episodic memory, inductive reasoning,
working memory, processing speed from the Dallas Lifespan Brain Study, Study 1 in Chapter 2
examined the cognitive aging profiles in middle-aged, young-old and very old participants, and
successfully identified two distinct cognitive aging profiles among participants, representing
prime and nonprime individuals. Study 2 in Chapter 3 then utilized this classification of
subgroups and compared their patterns of functional activity using a subsequent memory fMRI
task collected at the second wave of DLBS. The analyses revealed several functional activity
pattern differences between prime and nonprime individuals. First, prime individuals showed
greater subsequent memory effect than nonprime individuals across core task-related regions
associated with successful encoding. In addition, the higher subsequent memory effect in prime
individuals, compared to nonprime individuals, was most evident in the young-old group,
because prime agers exhibited better preservation of higher effect comparable to in younger
adults, until very old age. In contrast, nonprime agers showed reduced subsequent memory effect
starting in young-old age. Finally, prime young-old adults also recruited additional frontal
regions, including left superior frontal and right orbitofrontal cortex, compared to young adults.
This additional recruitment showed a trend of relationship to better memory performance,
possibly suggesting a compensatory nature of this activation. In conclusion, the present
dissertation demonstrated the use of a data-driven, multivariate approach and successfully
identified prime and nonprime agers with distinct cognitive aging profiles. Comparison of their
patterns of functional brain activity revealed that prime agers show a preservation of higher

activation until very late in the lifespan and additional frontal recruitment in young-old age.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Aging has been historically characterized by substantial cognitive decline in many older
adults (D. C. Park et al., 2002; Salthouse, 2003; Schaie, 1996), but recent literature has
recognized the considerable inter-individual variability in the maintenance of cognitive ability
throughout the lifespan (Goh, An, & Resnick, 2012; Hoogendam, Hofman, van der Geest, van
der Lugt, & Tkram, 2014; Kramer et al., 2007; Lindenberger, 2014; Mella, Fagot, Renaud,
Kliegel, & De Ribaupierre, 2018; Mungas et al., 2010; Nyberg, Lovden, Riklund, Lindenberger,
& Backman, 2012; Royall, Palmer, Chiodo, & Polk, 2005; Wilson et al., 2002), suggesting that
some people are more vulnerable to age-related cognitive decline while some may be resistant to
cognitive change. As 20 percent of the total U.S. population will be over the age of 65 by 2030
(Ortman, Velkoff, & Hogan, 2014), there is a pressing need for promoting cognitive health and
delaying age-related decline in older adults. Many interventional studies are targeting at
improving older adults’ cognition (Mewborn, Lindbergh, & Miller, 2017), and their success
depends on a thorough knowledge of what constitutes “optimal aging” (Cabeza et al., 2018;
Daftner, 2010; Nyberg et al., 2012; Nyberg & Pudas, 2018). In the present dissertation,
individuals across the adult lifespan who have superior cognitive performance and better
longitudinal preservation in cognition, relative to their peers, are termed as “prime’ agers,
representing a group of individuals exhibiting a more optimal cognitive aging profile. The
overarching goal of the present dissertation aims to explore two challenging questions in this

topic: (1) how can we identify prime individuals? and (2) how do they differ from other



individuals who represent average or nonprime trajectories of aging in brain functional
activities?

Many research efforts have been made to identify and characterize individuals into
groups who show “better” or “worse” patterns of cognitive aging (Albert et al., 1995; Baltes &
Baltes, 1993; Depp & Jeste, 2006; Nyberg & Pudas, 2018). However, operationally identifying
prime individuals with optimal aging has always been challenging (Bowling & Dieppe, 2005;
Depp & Jeste, 2006; Fiocco & Yaffe, 2010; Rogalski et al., 2013; Rowe & Kahn, 1997).
Previous studies have mainly classified individuals on their memory performance (Harrison,
Weintraub, Mesulam, & Rogalski, 2012; Olaya et al., 2017; Pietrzak et al., 2015), or a coarse
measure of mental status (e.g., Mini-mental State Exam; MMSE) (Han, Gill, Jones, & Allore,
2015). As a result, these studies divide individuals based on one specific cognitive domain. But
cognition is comprised of multiple domains. An ideal classification should be holistic and
comprehensive that summarizes cognitive aging status across domains, as one of the key
elements proposed to define optimal aging conceptually is the preservation of functioning in
“multiple cognitive domains” (Depp, Harmell, & Vahia, 2011). Particularly, in addition to
memory, speed of processing (Salthouse, 1996b), inductive reasoning (Tucker-Drob, Johnson, &
Jones, 2009), and working memory (Salthouse & Babcock, 1991) have also shown evidence of
age-related decreases in cognitively normal older adults, and should be incorporated when
identifying prime versus nonprime agers.

In the first study of this dissertation (Chapter 2), I will investigate cognitive aging as a
broader system that reflects an integrated totality of cognitive performance and changes across

multiple domains of the individual, using data from the Dallas Lifespan Brain Study (DLBS).



DLBS is a large-scale longitudinal study that aims to characterize cognitive and brain aging in
cognitively normal individuals across the adult lifespan (aged 20-90 years old). It includes a
cohort that is very well characterized in not only cognition but also other aspects that are related
to aging, including brain function (Chan, Park, Savalia, Petersen, & Wig, 2014; Kennedy,
Rodrigue, Devous, et al., 2012; H. Park, Kennedy, Rodrigue, Hebrank, & Park, 2013; Rieck,
Rodrigue, Kennedy, Devous, & Park, 2015), brain structure (Song, Farrell, Chen, & Park, 2018),
amyloid deposition (Farrell et al., 2017; Rodrigue et al., 2013; Song, McDonough, Liu, Lu, &
Park, 2016), tau deposition, cerebrovascular assessment (Peng et al., 2018), genetic information
(Rodrigue et al., 2013), and comprehensive surveys of psychosocial measures (Chan et al., 2018;
Festini, McDonough, & Park, 2016).

I will take advantage of this rich dataset and the wide age range of participants. I will use
a data-driven approach -- latent mixture modeling (Muthén, 2001; Ram & Grimm, 2009) -- that
is specifically designed for separating individuals based on the heterogeneity in the data, and
explore the differential cognitive aging patterns in this well-characterized cohort. Specifically, I
will examine the longitudinal changes over four years in four cognitive domains — episodic
memory, inductive reasoning, working memory, and speed of processing. Then, I will explore
the existence of different subgroups in middle-aged (35-54 years old), young-old (55-69 years
old) and very old adults (70-89 years old) based on their cognitive performance and longitudinal
change in all four domains. These subgroups may reflect different cognitive aging profiles (e.g.,
prime, average, nonprime, etc). Finally, I will characterize and compare their longitudinal
change in the four cognitive domains to further understand which of these cognitive domains

contribute to distinct profiles between individuals. This data-driven approach may prove to be



useful for future studies to classify participants. A multivariate, unbiased approach may be
particularly appropriate for aging and clinical research to develop classification with little a
priori knowledge about the characteristics of subgroups.

Another puzzle in understanding optimal aging is what patterns of brain activation may
be related to better cognitive aging. In the second study of the dissertation (Chapter 3), I will
specifically investigate this question. I will relate the classification of cognitive aging profiles
(obtained in Study 1 in Chapter 2) to brain functional activities to understand brain activity
differences in individuals who have evidenced different cognitive changes.

One of the first findings in early neuroimaging studies of aging was that older adults who
showed similar levels of task accuracy as young adults had decreased occipital activity as well as
additional recruitment in prefrontal regions (Grady et al., 1994). Later research replicated the
patterns of increased activity in prefrontal regions in older adults across a wide range of tasks
and found that this additional recruitment was observed in older adults with better performance
(Cabeza, Anderson, Locantore, & MclIntosh, 2002; Eyler, Sherzai, Kaup, & Jeste, 2011; Reuter-
Lorenz, Stanczak, & Miller, 1999). Based on these findings, researchers interpreted this
increased prefrontal activation as a compensatory recruitment, often featured in high-functioning
older adults, and suggested that such ability to recruit additional regions is indicative of
successful adaptive aging (Cabeza, 2002; Craik & Rose, 2012; Davis, Dennis, Daselaar, Fleck, &
Cabeza, 2008).

In contrast to the compensation view showing age-related increases in activation, older
individuals have also shown age-related decreases in task-related activation, which may reflect

reduced neural responsiveness in older brains (H. J. Li et al., 2015). Presumably, older



individuals with little age-related change, structurally and functionally, are speculated to have
better-preserved cognitive functions (Nyberg et al., 2012). Indeed, recent evidence has shown
that older adults who maintained the ability to activate specific task-related regions as in young
adults had better memory performance and little memory decline (Persson, Pudas, et al., 2011).
Moreover, longitudinal fMRI evidence suggests that older individuals who declined in memory,
not those who managed to maintain their memory, had increased prefrontal activity
longitudinally (Pudas, Josefsson, Rieckmann, & Nyberg, 2018). Researchers have therefore
proposed the concept of brain maintenance and suggested that “maintaining a youthful brain,
rather than responding to and compensating for changes, may be the key to successful memory
(cognitive) aging” (Nyberg et al., 2012; Nyberg & Pudas, 2018).

The majority of previous investigations on functional brain activity in older adults have
interpreted their findings based on one of the two aforementioned views of successful brain
aging (compensatory recruitment, brain maintenance). The two different accounts may seem
contrary but are not necessarily contradictory, and may operate at different stages of the lifespan
to cope with age-related changes (Cabeza et al., 2018). For example, the Scaffolding Theory of
Aging and Cognition (STAC) suggests that the brain is a dynamic system with both positive and
negative changes with age (D. C. Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014). As
illustrated in Figure 1, as age increases, individuals are affected by depletion factors such as
“neural challenges” and “functional deterioration”. According to STAC, the individual
variability in aging is, at least partly, a consequence of these changes: brains appearing to have
low maintenance will perform worse than intact brains with better preservation. Critically,

another important contributor to individual differences in cognitive aging is “compensatory



scaffolding” that represents the engagement of supplementary neural function in response to
neural degradation. This compensatory support helps to counteract the adverse changes in the
face of neural challenges and deteriorations with aging. Overall, STAC integrates these different
perspectives and views the brain as a dynamically adaptive system and suggests that
compensatory activation may counteract the effects of neural degrading and leads to better

cognitive aging.
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Figure 1. A conceptual model of the scaffolding theory of aging and cognition (STAC)

Therefore, to better understand the patterns of functional activity related to optimal
cognitive aging, [ will directly compare individuals with different cognitive aging profiles and
examine whether there are distinguishable functional activity features related to successful
cognitive aging. Taking the view of STAC, I suggest that optimal cognitive aging may be related
to better preservation of youth-like activity pattern, while additional recruitment outside task-

related regions may compensate and help with task performance in old age when brain



maintenance is reduced. I will use a subsequent memory task and compare the brain activity
during successful encoding between individuals who established a superior pattern of cognitive
aging and those who did not, as will be defined in Study 1 (Chapter 2), in middle-aged (35-54
years old at baseline), young-old (55-69 years old at baseline), and very old adults (70-89 years
old at baseline). I will first focus on any brain activity difference in task-related regions of
subsequent memory (Kim, 2011; Maillet & Rajah, 2014) and then explore activity differences
outside the core task-related regions.

In summary, the present dissertation examines individual cognitive differences in aging
and classifies individuals representing distinct cognitive aging profiles in middle-aged, young-
old, and very old individuals (Study 1 in Chapter 2), and then relates the classification to
differences in their brain activity (Study 2 in Chapter 3). Specifically, in Study 1 of Chapter 2, I
explore a data-driven approach that holistically classifies cognitive aging based on cognitive
performance and longitudinal change across multiple cognitive domains. Then, using the
classification, I directly compare brain activity during successful encoding between individuals
who have evidenced differential cognitive aging profiles, and examine what brain activity

features may be related to successful cognitive aging in Study 2 of Chapter 3.



CHAPTER 2

USING A DATA-DRIVEN APPROACH TO CLASSIFY COGNITIVE AGING

2.1. Introduction
2.1.1. Overview of individual differences in cognitive aging

Cognitive aging research has been traditionally focusing on the inevitable cognitive
declines in older adults, including slower speed of processing (Salthouse, 1996b), lower working
memory (Salthouse, 1994), lower inductive reasoning ability (Tucker-Drob et al., 2009), and
worse episodic memory (Ronnlund, Nyberg, Backman, & Nilsson, 2005). In these studies, the
older population is often viewed as a homogeneous group whose mean performance is depicted
as the representation of cognitive level in older adults and how it typically worsens with age.

Recently, studies have started to recognize the individual variability in age-related
changes (Lindenberger, 2014; Rapp & Amaral, 1992). For example, Figure 2 illustrates the great
inter-individual variability in longitudinal changes in memory (Nyberg, 2017). Each line
represents an individual from the Betula study (Nilsson et al., 1997). The direction of the line
represents if the individual has shown increases (going up) or decreases (going down) in their
memory performance. The figure shows the mean change function (red curve) overlaid on
individual patterns of change (black lines). The diverse patterns of the individual lines represent
the massive inter-individual differences in the sample. This great variability in longitudinal
change has also been reported in many independent samples with different measures of cognition
(e.g., Baltimore Longitudinal Study of Aging (Goh et al., 2012); Seattle Longitudinal Study
(Schaie, 1996); Religious Order Study (Wilson et al., 2002)), including the Dallas Lifespan Bran

Study. The notion that cognitive aging does not follow homogenous declining trajectories



challenges the historical view of inevitable cognitive decline with age (Salthouse, 2010a), and
offers the opportunity to explore factors that may contribute to different cognitive trajectories.
Correctly characterizing and isolating the group of individuals presenting different cognitive
aging profiles now becomes essential for ultimately understanding cognitive aging, and

identifying modifiable factors that may lead to better cognitive aging.
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Figure 2. [llustration of mean change in episodic memory across the adult lifespan (red curve)
and patterns of individual change (black lines) observed in the Betula study.
Comp EM=composite score of episodic memory (adapted from Nyberg, 2017).

However, there has not been a consensus on how to best separate individuals based on
how their cognition changes with age. Thus, operationally identifying and studying different
aging profiles has always been challenging (Fiocco & Yaffe, 2010; Rowe & Kahn, 1997). The

proportion of individuals who may represent successful agers also varied dramatically across

samples for this reason (Cosco, Prina, Perales, Stephan, & Brayne, 2014; Depp & Jeste, 2006).



2.1.2. Traditional approaches to classify different cognitive aging patterns

To study cognitive aging, some researchers use a cross-sectional design that collects data
from individuals at different ages at the same time and examines the inter-individual differences
to make inferences about age-related change. Cross-sectional classification of cognitive aging
relies on the assessed performance at one time point and often defines superior agers, who appear
to represent successful aging, based on the performance level relative to younger cohorts. An
important assumption of such cross-sectional classification is that older adults performed the
same as young adults when they were at the younger age and that the observed difference
between older and younger groups reflects cognitive aging over the years. However, older people
grew up in a very different socio-cultural and educational environment compared to the younger
generation today, which may lead to different developmental trajectories beyond the effect of
aging (Salthouse, 2014b). In addition, older adults recruited in healthy aging studies are often
more selective, compared to young adults (Ronnlund et al., 2005; Singh-Manoux et al., 2012).
Therefore, an optimal classification of agers who have better or worse cognitive aging
trajectories should consider the intra-individual change that tracks their cognitive development
related to aging using a longitudinal design where the same individual is tested repeatedly and
compared to oneself.

Even among the studies using longitudinal data, various analytic approaches have been
implemented when isolating individuals with different cognitive patterns (e.g., Australian
Imaging, Biomarkers, and Lifestyle study (Pietrzak et al., 2015); Betula study (Josefsson, de
Luna, Pudas, Nilsson, & Nyberg, 2012; Persson et al., 2005); Geneva Variability Study (Mella et

al., 2018); Health Aging and Body Composition study (Yaffe et al., 2009)). Some researchers
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took a theory-driven approach and separated individuals based on an a priori definition of
successful or unsuccessful older adults by comparing their longitudinal cognitive change to zero
(Mella et al., 2018; Persson et al., 2005; Yaffe et al., 2009). For example, Yaffe and colleagues
(2009) studied 2509 older adults from the Health, Aging and Body Composition study over 8
years and separated participants into three groups based on the estimated rates of their
longitudinal change in mental status: maintainers with 0 change or greater (30%), minor
decliners with slopes less than 0 but no more than one SD below the mean change (53%), and
major decliners with slopes more than one SD below the mean (16%). However, this approach
relies on the prior knowledge of number of subgroups in the sample and the cut-off score for
separating subgroups, which is inconclusive and even controversial in aging research.

2.1.3. Latent mixture modeling explores different cognitive aging profiles

Some recent studies, on the other hand, used data-driven approaches that specifically
explore whether subgroups of individuals could be identified representing statistically different
cognitive aging profiles (Downer, Chen, Raji, & Markides, 2017; Han et al., 2015; Hayden et al.,
2011; Olaya et al., 2017; Pietrzak et al., 2015). Mixture modeling (Muthén, 2001; Nagin, 1999;
Ram & Grimm, 2009) is particularly designed for this purpose.

Mixture modeling refers to the family of exploratory techniques that discover the optimal
clustering solution and classify individuals into different groups based on the heterogeneity in
the data. Mixture modeling includes pattern mixture modeling (R. J. Little, 1993), group-based
trajectory modeling (Nagin, 1999), latent variable mixture modeling (Muthén, 2001; Ram &
Grimm, 2009), latent growth mixture modeling (Muthén & Muthén, 2000), etc. Mixture

modeling is very appropriate for studies where the aim is to separate individuals, because its
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main objective is to cluster participants into different groups based on the variability in the data
distribution. For example, Figure 3a represents an observed distribution of longitudinal change
scores, consisting of two hidden distributions with different means. Mixture modeling examines
this possibility and looks for the best solution to separate the subgroups by specifying a latent
class, ¢, where the group difference between ¢=0 and c=1 is maximized and the within-group
variability is minimized. For example, in the case of a mixture modeling of longitudinal change,
the class variable, ¢, may offer a two-class solution which suggests that it detects two groups of
individuals whose longitudinal changes follow two different distributions with different center

values: one group with change scores around zero, and a group with negative values (Figure 3b).
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Figure 3. Illustration of mixture modeling. (a). Mixture modeling explores the presence of
subpopulations within the whole population that is distinguishable and can be separated by a
latent class variable, c. (b). Different distributions of longitudinal change scores may represent
subpopulations with different developmental trajectories: class c=1 shows little longitudinal
change whereas class ¢c=0 shows a greater longitudinal decline.

Longitudinal studies using mixture modeling techniques have often identified two to five
subgroups of individuals with different cognitive aging patterns (Downer et al., 2017; Han et al.,
2015; Hayden et al., 2011; Mella et al., 2018; Olaya et al., 2017; Pietrzak et al., 2015; Zammit,
Hall, Lipton, Katz, & Muniz-Terrera, 2018). For example, Hayden and colleagues (Hayden et al.,

2011) studied 1049 older adults who were followed up to 15 years and classified three subgroups
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based on a single measure of global function. They identified that the majority (65%) of old
adults as a “slow decline” group that did experience some, but not substantial, cognitive decline,
about 27% experienced moderate decline, and that 8% belonged to a group experiencing very
rapid decline. Similarly, Pietrzak et al. (2015) followed 333 cognitively normal older adults for
54 months in the Australian Imaging Biomarkers and Lifestyle Study of Aging (AIBL), and also
found three subgroups with different patterns of longitudinal change based on memory
performance: subtly declining (30.9%), rapidly declining (3.6%), and stable (65.5%).

One feature of mixture modeling, as a data-driven approach, is that it explores the
between-individual variability with no specific assumption regarding its heterogeneity.
Traditional approaches separate individuals based on an a priori decision of the group number
and the cut-off scores, and most studies examining cognitive aging divided participants into two
to three groups (e.g., maintainer/decliner (Persson et al., 2005); successful/average/unsuccessful
agers (Josefsson et al., 2012)). However, the number of meaningfully different subgroups may
not be valid before exploring the data, particularly in an aging population (Ardila, 2007; Ylikoski
et al., 1999). Mixture modeling allows for an unbiased examination of this heterogeneity and
reveals whether the data indeed suggest meaningful differences between groups in the sample.

Another feature of mixture modeling is that it provides a person-oriented view of
cognitive aging. That is to consider the structure and dynamics of behavior across different
measures are, at least in part, specific to the individual (Bergman, 2001; Bergman & Magnusson,
1997). Traditional approaches, which are referred to as variable-oriented, are more appropriate in
investigating theoretical questions regarding the relationships between variables. Mixture

modeling, on the other hand, is a goal-directed process. Although it lacks mechanistic
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implication, it identifies subpopulations at the individual level across variables (Bergman &
Trost, 2006; von Eye & Bogat, 2006). In the current study, mixture modeling will classify
participants simultaneously based on multiple variables, so it allows for classifications beyond
the performance in a single cognitive domain, which offers a holistic profile of cognitive aging
(Muthén & Muthén, 2000; Ram & Grimm, 2009). This is an important advantage of the current
study as most research on optimal aging in older adults only based their classifications on either
memory (Harrison et al., 2012; Olaya et al., 2017; Pietrzak et al., 2015) or a coarse measure of
global mental function (Yaffe et al., 2009). Little is known as to the individual differences in
cognitive aging when a wider range of cognitive measures is taken into account. The question
was raised more than 25 years ago (Rabbitt, 1993) and still remains open now (Nyberg & Pudas,
2018), suggesting the need for investigation with a broader view of cognitive aging beyond a
single cognitive domain.

Despite its strengths, mixture modeling is essentially an exploratory analysis. It may not
be proper for hypothesis-driven studies where researchers have strong predictions for the number
of groups or the separating patterns that ought to be observed. However, it is a suitable strategy
for the current study where I aim to explore the DLBS longitudinal cognitive data and separate
these individuals into different groups that may represent differential aging profiles. The Dallas
Lifespan Brain study includes a cohort of individuals that are thoroughly studied with rich
individual difference information in many aspects related to aging. An exploration of
heterogeneity and the development of subgroups in this well-characterized sample will be
beneficial for further examinations where other characteristics between groups can be compared

(e.g., functional differences in Chapter 3).

14



2.1.4. Advantages of using structural equation modeling for mixture modeling

As already alluded to, mixture modeling can be conveniently integrated into structural
equation modeling (Muthén, 2001; Muthén & Muthén, 2000). Structural equation modeling can
directly model longitudinal change with all available information and, different from traditional
approaches relying on repeated analyses, does not require all measures to be repeatedly
administrated across different waves in the longitudinal tests. Particularly, structural equation
modeling estimates /atent scores, as opposed to observable scores, which represent variables that
are not directly observed but inferred from available information. It can also account for
invariance across time and reliability of the tests (T. D. Little, 2013). A recent study specifically
compared latent scores and a composite of observable scores that both estimated longitudinal
cognitive change in older adults, and found that latent modeling is better at providing accurate
inferences of change estimates with lower type-I error rates, and that latent variables are
especially necessary when lower-performing individuals had more missing values (Proust-Lima
et al., 2019). Therefore, the current study adopts the latent change score model to estimate
cognitive performance and change in all cognitive domains.

Another advantage of using structural equation modeling in longitudinal studies is that
drop-out individuals can be included and help to generate more precise estimates of longitudinal
change. A common issue in observational longitudinal studies is that people who drop out of the
study may be different from those who stay to participate (Lindenberger, Singer, & Baltes, 2002;
Schaie, Labouvie, & Barrett, 1973). Often, the drop-out participants are the low-performing
individuals at baseline (Salthouse, 2014a) who may be at a higher risk for rapid cognitive

decline. Conventional longitudinal analyses based on repeated comparison only allow for the

15



inclusion of remaining longitudinal individuals with complete data. This limits the interpretation
of study findings, however, because the longitudinal participants may not be representative of the
recruited sample, and the change score may be underestimated using such an elite sample.
Structural equation model as a whole, and latent mixture modeling in particular, on the other
hand, can use full information maximum likelihood estimation (R. J. Little & Rubin, 2019),
which is a statistical method of estimating the parameters. It uses all available information — even
the limited information from drop-outs -- to estimate a model that would most likely produce the
estimates from the sample data that are analyzed. This method allows for the estimation to take
into account the performance of drop-out individuals. When some cases (e.g., drop-out
individuals) have missing values at a follow-up wave, the model factors the likelihood function
so that it is computed separately for those cases (e.g., drop-out individuals) and those with
complete data on both waves (e.g., remaining individuals). These two likelihoods are maximized
together to eventually find the most precise estimates. This method of estimating the most
precise parameters does not include an imputation of generated data. In most cases, structural
equation modeling with maximum likelihood estimation is preferred to estimate the longitudinal
change in a sample like DLBS with possible selective attrition (Newman, 2003). Therefore, in
the first study in this chapter, I will implement mixture modeling using structural equation
modeling (i.e., latent mixture modeling). Specifically, I will estimate participants’ cognitive
performance and change using latent change score model (McArdle, 2009) with maximum
likelihood function, and then classify participants based on the heterogeneity in their latent
scores of cognitive performance and change in all four domains (Muthén, 2001; Ram & Grimm,

2009).
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2.1.5. Cognitive aging in middle-aged adults

Finally, aging is a continuous process throughout the lifespan, beginning in early to
middle adulthood (Hartshorne & Germine, 2015; Salthouse, 2009). Many recent studies have
suggested that the slope of cognitive change is nonlinear and varies across the lifespan. For
example, cross-sectional studies suggest that different cognitive abilities peak at different ages
(Hartshorne & Germine, 2015) and may follow different developmental trajectories (for a meta-
analysis, see (Verhaeghen & Salthouse, 1997)). Longitudinal studies have also shown that older
adults exhibited the largest decline (Hedden & Gabrieli, 2004; Schaie, 1994; Singer,
Verhaeghen, Ghisletta, Lindenberger, & Baltes, 2003), compared to middle-aged individuals,
even after adjustment for practice effects (Ronnlund et al., 2005). Therefore, the operational
definition of optimal cognitive aging may be different at different ages (Garfein & Herzog, 1995;
Salthouse, 2010b; Zelinski & Burnight, 1997). Optimally, studies should include participants
across a wide age range and compare possible differences across the lifespan in cognitive aging
profiles in middle-aged, younger older adults, and very old adults.

But few studies have studied a sample including middle-age adults regarding their
longitudinal changes in different cognitive constructs (e.g., (Baltes & Lindenberger, 1997;
Tucker-Drob, 2011; Zelinski, Gilewski, & Schaie, 1993)), and even fewer have examined their
individual variability in cognitive aging. One study (Gunstad et al., 2006) used a cross-sectional
design and also adopted a data-driven approach that classified middle-aged and old individuals
based on their cognitive performance in multiple domains. They identified three clusters of
cognitive performance profiles in both middle-aged and older groups and thus suggested that

heterogeneity in age-related cognitive may begin to manifest in middle adulthood. However, this

17



study only investigated the cross-sectional performance level, and could not provide direct
inferences for cognitive aging. The current study will use the two waves of longitudinal
cognitive data from the Dallas Lifespan Brain Study and explore the differences and
consistencies in identified cognitive aging profiles in middle-aged, young-old and very old adults
(e.g., number of classes identified; distribution of class; contributing cognitive domain).
2.1.6. Summary

In Study 1 of this chapter, I will use a longitudinal design to examine cognitive changes
over four years in four cognitive domains including episodic memory, inductive reasoning,
working memory, and speed of processing. A data-driven latent mixture modeling will explore
subgroups of individuals in middle-aged (35-54 years old at baseline), young-old (55-69 years
old at baseline) and very old (70-89 years old at baseline) groups, based on their cognitive
performance and change scores in all four domains. Due to the exploratory nature of the
analyses, the prediction of results is tentative and made based on the similarity and differences
between the current study and previous literature. Previous studies using mixture modeling in
cognitive aging literature have detected two to five groups with different longitudinal change
patterns (Mella et al., 2018; Olaya et al., 2017; Pietrzak et al., 2015). The DLBS data are
different from other longitudinal datasets in a way that it has a relatively short period of testing
interval (4 years) and includes a healthy sample. These factors may contribute to reduced
variability in the data that leads to a smaller number of groups compared to other studies. I,
therefore, hypothesize that the latent mixture modeling will reveal no more than three groups of
individuals showing different longitudinal change pattern in this study: a group of prime agers

who appear to have superior performance with cognitive maintenance, a group of average agers
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who represent the general population with some performance variability across domains, and a
group of nonprime agers who may present suboptimal profiles with lower performance and
greater decline in most cognitive domains.

2.2. Methods

2.2.1. Participants

The study included all participants from the Dallas Lifespan Brain Study, aged from 20 to
89 years old at baseline. A total of 464 participants were initially tested. Four years later, 337
came back for the second wave (72.63% of the initial sample; 84.25% of those who could be
contacted). Among the 127 drop-out participants, 18 were deceased, 46 could not be contacted,
29 were too busy, 33 withdrew from the study, and 1 was involved in a clinical trial.

All participants were recruited locally from the community and were right-handed with
normal or corrected to normal vision. Participants were screened for neurological and psychiatric
disorders, loss of consciousness for more than ten minutes, a history of drug or alcohol abuse,
and a history of major heart surgery or chemotherapy within five years. This study was approved
by The University of Texas Southwestern and The University of Texas at Dallas institutional
review boards. All participants provided written informed consent and were debriefed according
to human investigations committee guidelines.

2.2.2. Cognitive measures

Four cognitive domains were measured in the DLBS cognitive battery. The cognitive
indicators used in the study are shown in Table 1. Specifically, to measure the speed of
processing, participants completed Digit Comparison (Salthouse & Babcock, 1991) and Digit

Symbol Substitution Test (Wechsler, 1997) in wave 1, and an additional measure from the NIH
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Toolbox (NIHTB) Pattern Comparison (Casaletto et al., 2015) in wave 2. Working memory was
measured by CANTAB Spatial Working Memory (Robbins et al., 1994), CANTAB Spatial
Recognition Memory (Robbins et al., 1994), CANTAB Delayed Match to Sample (Robbins et
al., 1994), Operation Span (Turner & Engle, 1989), and Letter Number Sequencing (Wechsler,
1997) in wave 1, and measured by CANTAB Spatial Working Memory (Robbins et al., 1994),
Letter Number Sequencing (Wechsler, 1997) and the NIHTB List Sorting Task (Casaletto et al.,
2015) in wave 2. Reasoning was measured by Raven’s Progressive Matrices (Raven, Raven, &
Court, 1998), ETS Letter Sets (Ekstrom, French, Harman, & Dermen, 1976), and CANTAB
Stockings of Cambridge (Robbins et al., 1994) in both waves. Episodic memory was measured
by CANTAB Verbal Recognition Memory (Robbins et al., 1994) with immediate free-recall and
delayed recognition, and Hopkins Verbal Learning Test with immediate free-recall, delayed free-
recall, and delayed recognition (Brandt, 1991) in wave 1. All these memory measures were also
included in wave 2. Woodcock-Johnson III Memory for Names immediate and delayed
recognition (Woodcock & Johnson, 1989) was added in the middle of wave 1 testing, and a
subset of participants (N=158) had these measures in wave 1. An examination of missing values
in longitudinal participants reveals missingness not completely at random (Little’s MCAR: y?
=1174.08, p<.001). To address this issue, imputation was first conducted for the missingness in
the longitudinal participants (about 4% of total data) (Rubin, 2004) and maximum likelihood
estimation was used to precisely estimate latent factors for the whole sample (R. J. Little &
Rubin, 2019). This procedure provides adequate information for full information maximum
likelihood estimation while avoiding possible convergence failure (Enders & Bandalos, 2001;

Newman, 2003).
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Table 1. Cognitive measures used in the current study. Tasks/indicators in bold are included in
both waves. Abbreviations are in parentheses.

Cognitive Domain

Wave 1

Wave 2

Digit Comparison (DC1)

Processing Speed Digit Symbol Substitution Test (DS)

Digit Comparison (DC2)
Digit Symbol Substitution Test (DS2)
NIHTB Pattern Comparison (NIHPS2)

Raven's Progressive Matrices (RAV1)
ETS Letter Sets (ETSLS1)
CANTAB Stockings of Cambridge (SOC1)

Raven's Progressive Matrices (RAV2)
ETS Letter Sets (ETSLS2)
CANTAB Stockings of Cambridge (SOC2)

Letter Number Sequencing (LNS1)
CANTAB Spatial Working Memory (SWM1)

Working Memory CANTAB Spatial Recognition Memory (SRM1)

CANTAB Delayed Match to Sample (DMS1)
Operation Span (OSPANT1)

Letter Number Sequencing (LNS2)
CANTAB Spatial Working Memory (SWM2)
NIHTB List Sorting Task (NIHLS2)

Hopkins Immediate Free-recall (HOPF1)
Hopkins Delayed Free-recall (HOPDF1)
Hopkins Delayed Recognition (HOPDR1)

Hopkins Immediate Free-recall (HOPF2)
Hopkins Delayed Free-recall (HOPDF2)
Hopkins Delayed Recognition (HOPDR2)

Episodic Memory WJIII Memory for Names Immediate (WJIM1)
WJIII Memory for Names Delayed (WJD1)
CANTAB Verbal Recognition Memory
Immediate Free-recall (VRM1)

WJIII Memory for Names Immediate (WJIM2)
WJIII Memory for Names Delayed (WJD2)
CANTAB Verbal Recognition Memory
Immediate Free-recall (VRM2)

2.2.3. Data analysis
2.2.3.1. Estimate performance and longitudinal change for each cognitive domain

A latent change score model was used to estimate the longitudinal cognitive change in the
sample. Figure 4 illustrates a simplified version of a latent change score model (McArdle, 2009;
Raykov, 1992). The measurement (bottom) portion of the model specified for a given cognitive
domain, Y, measured by multiple indicators (e.g., Ya, Yb, and Yc) on two occasions (Y1 and
Y?2). Each indicator was specified to load on the occasion-specific domain factor with a loading.
Loadings of the same measure at different times set to equal. Cross-time residual
autocorrelations were allowed for each indicator from a repeated task (Y 1a and Y2a), but not
depicted in diagrams for simplicity. In addition, when measures were from the same task (e.g.,

Immediate Free-recall and Delayed Free-recall in Hopkins Verbal Learning Test), I also
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specified them to be correlated at each time point. Then, in the change score (top) portion of the
model, a key latent factor, latent change score (Y Change), is constructed to represent the
unexplained change in Y2, which is allowed to be correlated with Y.

The current study modeled four cognitive domains (episodic memory, inductive
reasoning, working memory, and speed of processing) simultaneously. The latent change score
model was constructed and explored using Mplus Version 7.4 (Muthén & Muthén, 2012-2015).
Maximum log-likelihood estimation was used, and goodness of model fit was examined based on
comparative fit index (CFI), Tucker-Lewis Index (TLI), and root-mean-square error of
approximation (RMSEA). A value greater than 0.9 for the CFI and TLI indicates a reasonable fit,
as does an RMSEA less than 0.08. Given the sample size in this study, the complexity of the
longitudinal model tested, and the sensitivity of chi-square test to sample size, it is recommended

to not focus on the chi-square test but more on CFI, TLI, and RMSEA (Kline, 2015).

Y Change
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Figure 4. Latent change score model of cognitive domain Y.
2.2.3.2. Identify different cognitive aging profiles

Latent mixture models (Muthén, 2001; Muthén & Muthén, 2000) were used to examine
the differential patterns of cognitive aging based on the estimates of cognitive performance and

change in four cognitive domains. Individuals who completed both wave 1 and wave 2 were
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included for the classification so I would not over-interpret the classification for drop-out
individuals who did not provide any information regarding their aging trajectories and were no
longer in this study. Latent mixture modeling was conducted for three age groups separately
(middle-aged: 35-54 years old; young-old: 55-69 years old; very old: 70-89 years old) so the
classification would not be primarily driven by age-related differences, which does not
contribute to our understanding of unobserved heterogeneity in the sample. Adults below 35
years old were not included in this classification because these healthy young individuals are not
expected to show “cognitive aging” over a relatively short period of four years.

Latent mixture modeling explored a class solution to explain the heterogeneity in
cognitive performance and change patterns in all four cognitive domains. If the data suggested a
subgroup showing a distinct pattern from the rest of the group, those individuals would be
associated with a higher probability of belonging to a class that represents their cognitive aging
profile. The final model with the optimal number of subgroups was iteratively determined based
on suggested procedures for implementing mixture modeling analysis in Ram and Grimm (Ram
& Grimm, 2009). Specifically, I looked for parameter estimates that were are out of bounds (e.g.,
negative variances), checked entropy, compared information criteria (e.g., Bayesian Information
Criteria, Akaike Information Criteria), inspected likelihood ratio test results (e.g., Lo-Mendell-
Rubin adjusted test), examined the number of members in the smallest class to avoid data over-
extraction (Berlin, Williams, & Parra, 2014), and finally ensured that the selected model can
provide empirical justification and interpretation for the data.

Post-hoc visualization of group patterns of cognitive aging profile determined the class

labels (e.g., prime, average, nonprime). Finally, I compared the longitudinal change in four
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domains between different classes to understand which cognitive domain played an important
role in separating the individuals.
2.3. Results
2.3.1. Demographic and attrition information

Table 2 shows the demographic information of participants separated by age groups.
Attrition analysis revealed no significant difference in age and sex, but drop-out participants
were less educated. Moreover, participants who dropped out had significantly or marginally
significantly lower performance in most cognitive measures, compared to those who continued
to participate (Table 3). This further supports the a priori decision that drop-out participants
should be included to avoid an underestimate of longitudinal change, and that maximum
likelihood estimation should be used for more precise estimates.

Table 2. Demographic information of participants in different age groups.

Y oung (reference) Middle-aged Y oung-old Very old p

N=73 N=106 N=138 N=147
Retention rate 0.64 0.75 0.77 0.71 262
Baseline age range 20-34 35-54 55-70 70-90 <.001
Follow-up age range 25-38 40-59 59-74 74-93 <.001
Female (N) 46 61 91 89 581
MMSE 28.73 28.67 28.51 2791 <.001

2.3.2. Longitudinal estimates of cognitive performance and change
Before the latent change score model is specified, the construct reliability of all cognitive
domains was first examined based on the Cronbach’s a of each domain for each wave. All four

domains had high internal reliability (processing speed: standardized Cronbach’s a is .865 for
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Table 3. Attrition analysis compares baseline characteristics in drop-out and remaining
participants (see Table 1 for definitions of task abbreviation).

Drop-out (N=127) Stay (N=337)
Mean SD Mean SD p
Baseline age 57.66 20.05 58.55 17.38 0.638
Female (N) 71 216 0.105
Education 15.42 2.32 1590 2.29 0.047
Blood Pressure (sys)  127.72 17.62 125.65 17.43 0.228
Blood Pressure (dia) 80.17 9.62 80.68  9.70 0.595
MMSE 28.33 1.23 2842  1.24 0.487
DC 59.89 14.26 62.56 14.47 0.057
DS 51.89 13.89 54.65 13.67 0.041
RAV 0.74 0.17 0.81 0.14 <.001
ETSLS 14.83 6.31 16.95  6.32 0.001
SOC 7.91 2 8.49 1.93 0.002
LNS 10.24 2.68 11.08 3.14 0.003
SWM 34.19 22.27 31.39  22.06 0.194
SRM 16.1 2.61 16.81  2.06 0.003
DMS 34.48 3.5 34.69  3.58 0.548
OSPAN 12.41 7.17 1446 798 0.005
HOPF 6.66 1.82 6.97 1.98 0.095
HOPDF 4.58 2.5 5.43 2.63 0.001
HOPDR 19.89 2.5 2049 231 0.013
WIIM 49.71 11.77 51.97 10.81 0.123
WID 18.03 8.74 20.68  8.92 0.023
VRM 6.73 1.89 7.12 1.97 0.037

wave 1 and .869 for wave 2; working memory: standardized Cronbach’s a is .784 for wave 1

and .810 for wave 2; inductive reasoning: standardized Cronbach’s a is .865 for wave 1 and .869
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for wave 2; episodic memory: standardized Cronbach’s a is .826 for wave 1 and .885 for wave
2). The latent change score model estimated four domains simultaneously. Figure 5 presents the
specified multivariate latent change score model. Overall, this model was an excellent fit to the
data, y%(417) = 899.826, p<0.001, CFI1=0.949, TLI= 0.943, RMSEA=0.050, 90% CI=[.045,
.054], suggesting a good quality of cognitive constructs specified using this model.

Based on the estimates from the above model, Figure 6 depicts the longitudinal cognitive
change in each cognitive domain using spaghetti plots. Each line in the graph represents one
individual in the study. The starting point is the estimated wave 1 performance for that domain,
and the ending point is the estimated wave 2 performance. The direction of the line represents
the trajectory of the longitudinal change pattern. Lines are coded based on the retention status of
the individual: black solid lines represent participants who continued to participate, and gray
dashed lines represent participants who dropped out of the study. Visualization of the two types
of participants also confirmed the finding that drop-out participants were more often to be low
performing individuals at baseline. Across four cognitive domains, despite the visually
overwhelming age-effects on cross-sectional and longitudinal differences, there is great
individual variability that permits further investigation of possible heterogeneity using the latent
mixture model.

2.3.3. Latent mixture modeling identified two different cognitive aging profiles

Latent mixture models were fit to classify individuals based on latent baseline and latent
change scores, separately in middle-aged, young-old, and very-old adults. Explored models
ranged from 1-class to 3-class solutions for all groups. Table 4 presents the model fit indices for

the three models. For all three groups, the 2-class model was the best fit based on the
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Figure 5. Latent change score model estimates cross-sectional performance and longitudinal
change in four cognitive domains. All coefficients are standardized using the variance of the
observed, outcome, and latent variables. In the measurement portion of the model (bottom), the
coefficients between time 1 or time 2 latent factor and indicators represent the loadings of the
variables to the construct. In the latent structural model (top), the path from time 1 factor to
change factor was estimated while fixing the two paths to time 2 factor to be 1 (see Figure 4).
Overall, this model was an excellent fit to the data, CFI=0.949, TLI= 0.943, RMSEA=0.050,
90% CI=[.045, .054], suggesting a good quality of constructs specified using this model.
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Table 4. Latent mixture model fit indices in three age groups. Two-class solution (in bold) was
chosen for all three groups.

Middle-aged One Class  Two Classes  Three Classes
(N=79) Log-likelihood -956.78 -845.73 -786.28
BIC 1983.47 1800.71 1721.12
Entropy 0.90 0.95
BLRT (Lo-Mendell-Rubin) p 0.57 0.04
Number of smallest class 25 1
Young-old One Class  Two Classes  Three Classes
(N=105) Log-likelihood -1292.32 -1105.02 -1017.77
BIC 2659.10 2326.38 2193.78
Entropy 0.93 0.96
BLRT (Lo-Mendell-Rubin) p 0.04 0.06
Number of smallest class 41 11
Very old One Class  Two Classes  Three Classes
(N=105) Log-likelihood -1731.01 -1139.34 -1068.14
BIC 34541.87 2395.02 229451
Entropy 0.93 0.96
BLRT (Lo-Mendell-Rubin) p 0.05 0.32
Number of smallest class 51 23

recommended procedure in Ram & Grimm (2009), confirming the existence of subgroups
representing differential cognitive aging profiles in our sample across all age groups. Note that
middle-aged data fit the 2-classification nicely (entropy = .90) but yielded a non-significant
Bootstrapped likelihood ratio test (BLRT) indexed by Lo-Mendell-Rubin p-value (p = .57),
which may suggest that both single and 2-class solutions could be appropriate for the data. In
fact, the 3-class solution had a significant BLRT (p = .04) suggesting the data did show evidence
of heterogeneity. However, one of the three classes had only one participant, which invalidated
this solution (Berlin et al., 2014). Therefore, the final model was iteratively determined as the 2-

class model. Figure 7 shows the distribution of the number of participants in each class for the
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three groups. Specifically, in middle-aged adults, one class had 25 participants and the other had
54. In young-old adults, one had 41 participants, and the other had 64. In very-old adults, one
class had 51 participants, the other had 54. The distribution of class was not statistically different
among the three groups (¥*> = 5.43, p = .066), with a trend that the majority of younger groups

(middle-aged, young-old) tended to be classified as class 1.

100%
80%
60%
40%

20%

0%
Middle aged  Young old Very old

Class 1 ®Class 2

Figure 7. Distribution of class 1 and class 2 individuals in middle-aged, young-old and very old
groups. The number represents the number of participants in each class for middle-aged, young-
old and very old groups based on results from the latent mixture modeling.

I predicted in the introduction that one of the identified cognitive aging profiles may
represent prime individuals who have superior and preserved cognitive function compared to
their peers. To understand what patterns of cognitive aging each class represents (prime vs
nonprime), I again used the spaghetti plot (as in Figure 6) to depict individuals using different

colors representing the two classes. Figure 8 presents the cognitive performance for the two

classes in four domains. Each line in the plot presents an individual in a young reference group
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(blue), class 1 (green), or class 2 (red). Age groups are also depicted with different shades and

shapes: young referenced with blue circles, middle-aged with squares, young-old with triangles,
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and very old with diamonds. A surprisingly clear separation of the two classes suggests that most
individuals in class 1 seem to have superior performance and better cognitive maintenance,
compared to class 2 individuals. This observation is overall consistent in middle age, young-old
and very old group. I hypothesized three groups may emerge and tentatively termed them as
“prime”, “average”, and “nonprime” agers. The results showed a clear separation of two groups.
Class 1 individuals who have superior cognitive aging profiles are labeled as “prime” agers.
Class 2 individuals are termed as “nonprime” agers.

Finally, I illustrated the cognitive aging profiles of the identified classes (Figure 9). The
group means of longitudinal change, as standardized z-scores, for all four domains were depicted
together for visualization of differential longitudinal change profiles in class 1 and class 2. In
middle-aged adults, class 1 had better change scores in all domains, especially in episodic
memory, inductive reasoning, and working memory, which particularly separated them form the
class 2 individuals. In young-old adults, class 1 also had high change scores in episodic memory
and reasoning. Their superior pattern of longitudinal change was comparable to, if not better
than, the class 2 of the middle-aged group. Lastly, both classes in very old age showed low
longitudinal scores in all domains, suggesting the inevitable worsening cognition in advanced
age across all domains. Particularly, class 2 of the very old age group had a substantially worse
profile of low change scores in memory and reasoning.

2.3.4. Comparison of cognitive change in four cognitive domains between classes in three
age groups

In addition to the characterization of the two cognitive aging profiles in three age groups

separately, in post hoc exploration, I compared the mean longitudinal change in the four
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a. Mean (SE) profiles of longitudinal cognitive change in two classes of middle-aged adults
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Figure 9. Cognitive aging profiles of class 1 (prime agers, green) and class 2 (nonprime agers,
red) in middle age (a), young-old age (b), and very old age (c).
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cognitive domains between the two classes of individuals in each age group (Figure 10). This
analysis examined what cognitive domains have indeed contributed to the holistic classification.
The results suggested that episodic memory and inductive reasoning showed significant

differences in longitudinal change between class 1 (prime agers) and class 2 (nonprime agers) in
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Figure 10. Longitudinal cognitive change (z-score) over four years in two classes of individuals.
Mean change in the young group presented as a reference.
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all three groups (episodic memory: middle age, =-9.307, p<.001; young-old, /=-11.59, p<.001;
very old, =10.167, p<.001; inductive reasoning: middle age: =-3.143, p=.003, young-old: =
6.296, p<.001, very old: =-5.410, p<.001), suggesting their predominant role in the holistic
classification of prime versus nonprime agers across the adult lifespan. The differences between
the two classes in the two domains also seem to reflect the high practice effect in prime agers
who benefit more from the repeated exposure of the same tasks used. Working memory
presented a diminishing effect in separating prime and nonprime agers from significant
differences between classes in middle age (7=-5.002, p<.001) and young-old (+=-2.627, p=.010)
adults, to nonsignificant difference in very old adults (r=-1.676, p=.097). Speed of processing, on
the other hand, did not show any significant change difference between classes for any age group
(p’s>.47).
2.4. Discussion
2.4.1. Potential of using mixture modeling to identify subgroups in aging populations

The purpose of this study is to use a data-driven approach to classify individuals with
different cognitive aging profiles. Two classes were identified based on four different cognitive
domains (episodic memory, inductive reasoning, working memory, and processing speed),
representing prime agers, defined as individuals who had superior cognitive performance and
better cognitive preservation relative to their peers, and nonprime agers in the current study.

Identifying individuals showing optimal aging has been well recognized as one of the
challenges in the field. Previous studies have often identified prime individuals (also referred to
as successful agers (Driscoll et al., 2008), super-agers (Rogalski et al., 2013), etc. in other

studies) using a traditional approach where either cut-off scores or the number of participants
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needs to be predefined. Those approaches are also based on one cognitive domain or a single
measure, which cannot capture the complex picture of cognitive aging (Gunstad et al., 2006).
The current study implemented latent mixture modeling on a wide range of cognitive measures
and successfully isolated individuals, offering some demonstration of this viable approach for the
development of a person-oriented, holistic identification of prime individuals with optimal aging.
As illustrated in this study, this approach is data-driven and does not require a specific
operational definition of the subgroups before exploring the data. Thus, it may be very useful
when the definition of subgroups is unknown or controversial, which is a common challenge in
aging and some clinical population.

Future studies may continue exploring this approach in different samples with different
cognitive measures, particularly in studies where the purpose is to identify a subgroup of
diverging participants. The current study only included cognitively normal individuals.
Presumably, in samples with larger variance (e.g., where clinical groups may also be present),
latent mixture modeling is more powerful in detecting systematic differences underlying
subgroups and can offer unbiased insights into the data.

2.4.2. Longitudinal changes in episodic memory and inductive reasoning, but not speed, as
primary contributors in separating cognitive aging profiles

Episodic memory showed significant differences in longitudinal change between prime
individuals with optimal cognitive aging and nonprime agers through the lifespan, confirming
the validity of using the stability of episodic memory as a marker of overall cognitive status in
many studies (Nyberg & Pudas, 2018). Inductive reasoning also had similar effects, where prime

agers in all three groups had better longitudinal change scores than nonprime agers. Both
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cognitive domains require complex mental processes and may be particularly sensitive in
revealing individual differences in cognitive aging trajectories.

On the other hand, changes in speed of processing were not different between prime and
nonprime agers. This is likely because speed of processing is one of the most vulnerable
cognitive domains affected by aging: an early meta-analysis on cross-sectional studies suggested
that speed drops approximately 20% by age 40 (Salthouse, 1982), suggesting an inevitable
performance decrease starting early in lifespan. The majority of individuals experienced the
inevitable decline in speed, which limits its variability and its ability to separate participants,
even in middle-aged adults.

Moreover, tests of processing speed often require less strategy and rely on maximum
processing capacity, and thus may be less affected by practice effects. In fact, practice effects
could be one of the contributors to the superior trajectory of prime agers for episodic memory
and inductive reasoning in middle-aged and young-old groups (Figure 8) (Salthouse, 2010b),
given that same measures were used for these two domains. Therefore, speed of processing may
be precisely revealing the expected age-related cognitive decline, whereas domains of episodic
memory and inductive reasoning may also capture cognitive resilience in some individuals who
can benefit more from practice effects.

Additionally, the difference in working memory change between prime and nonprime
individuals seemed to be diminishing in advanced age, revealed by the finding that the
significant difference in middle-aged and young-old groups became nonsignificant in the very
old group. This may reflect a consistent decrease in working memory in very old age across

individuals (Salthouse, 1994), possibly due to diminished frontal function with aging (Hedden &
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Gabrieli, 2004; Nyberg et al., 2010). Like speed, the inter-individual variability in working
memory change may also be limited in advanced age. In addition, speed and working memory
have both been suggested underlying age-related worsening in many other cognitive domains
(Salthouse, 1994, 1996a). Our study suggests that it may be less informative about individual
differences in cognitive aging than other higher-order domains (e.g., reasoning, memory) that are
more reflective of the functioning and mentality of the individual overall.

2.4.3. Limitations

One limitation of the study is that it is exploratory, and thus findings are mostly
descriptive. Inferences from the results are limited. However, as not many studies have used this
approach to examine the patterns in cognitive aging, this is one of the first efforts to use a
longitudinal design to examine differential cognitive aging patterns in middle-aged, young-old
and very old adults. In fact, this approach has revealed interesting cognitive aging profiles, and
can also be further explored to understand how different profiles may be related to other
individual difference variables.

Although tempting to consider the classified individuals as “successful” versus
“unsuccessful” agers, it is important to note that all participants were functioning independently,
and the two classes may be indistinguishable in everyday settings. Also, the classification is
based on latent scores which only reflect how they performed relative to others. Therefore, I
refrain from defining these individuals as “successful/unsuccessful” agers, which may limit the
interpretation of what being a class 1 (or class 2) member means.

In the present study, the baseline performance and longitudinal change were not

independent. Although this is expected as high-performing individuals often present better
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cognitive stability (Tuokko, Garrett, McDowell, Silverberg, & Kristjansson, 2003), it is hard to
disentangle the sources that protect one from showing cognitive decline. For example, a high-
performing individual may exhibit little longitudinal cognitive change simply because he/she is
good at the task and thus able to master the particular task better at the second time, despite age-
related cognitive decline. This should be acknowledged in the present study where longitudinal
change score was allowed to correlate with baseline performance for more precise estimates in
the latent change score model. But in studies focusing on isolating the individual difference in
longitudinal change beyond cross-sectional performance, researchers may consider using the
baseline performance as covariates to control for its effect.

Finally, the present study only included two waves of longitudinal testing. It is vulnerable
to common issues in longitudinal designs such as regression toward the mean, inability to test
nonlinear change, and practice effects. Indeed, we observed better performance at time 2 in
middle-aged and young-old groups, particularly for episodic memory and inductive reasoning.
Thus, it is possible that prime agers showed a better aging trajectory because they benefited more
from practice effects (rather than due to their resistance to age-related decline). Although it
would still reflect interesting inter-individual differences, the interpretation of prime and
nonprime agers would be different. Nevertheless, the present study adopted latent change score
model that is specifically designed for two waves of longitudinal testing. It overcomes some
flaws of two-wave longitudinal data by using latent constructs. Ideally, three or more waves of
data will allow for examinations of nonlinear trajectory, as well as change estimates after the
second time point, since practice effects are most pronounced in the early phase of repetitive

testing (Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010). As the DLBS project is
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currently collecting wave 3 data, future studies may use the same technique and examine
whether an additional pattern of cognitive aging may emerge with a longer interval and more

reliable estimates.
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CHAPTER 3
BRAIN ACTIVITY DIFFERENCES BETWEEN PRIME

AND NONPRIME INDIVIDUALS

3.1. Introduction

Many individual difference factors may be related to disparate trajectories in cognitive
aging, and the research progress on identifying these factors has been accumulating. Studies have
examined demographic, psychosocial, genetic, and neurological features related to different
cognitive trajectories in aging (Rogalski et al., 2018; Yaffe et al., 2009). For example, carriers of
APOE e4 have been found to show greater cognitive decline (Albrecht et al., 2015).
Neuroanatomical features, such as thicker anterior cingulate and less hippocampal atrophy, are
also linked to better cognitive performance in older adults (Gefen et al., 2015; Gorbach et al.,
2017; Harrison et al., 2012; Raz, Gunning-Dixon, Head, Dupuis, & Acker, 1998; Rogalski et al.,
2013; Salthouse, 2011). White matter hyperintensities and worse network integrity are also
linked to worse cognitive aging (Persson et al., 2005; Wang et al., 2017). The neocortical
deposition of AD biomarker (e.g., amyloid and tau) are also related to cognitive deficits and
accelerated age-related decline in memory (amyloid: (Farrell et al., 2017; Hedden, Oh, Younger,
& Patel, 2013); tau: (Maass et al., 2018; Sperling et al., 2019)). One key question remaining open

is whether prime! and nonprime individuals have differential patterns of functional brain activity.

' As defined in Study 1, prime agers refer to individuals who have superior performance and better
longitudinal change scores relative to their peers. Operationally, prime and nonprime individuals were
classified in Study 1, using a data-driven, holistic approach (latent mixture modeling) based on
cognitive performance and change scores in four cognitive domains (episodic memory, inductive
reasoning, working memory and speed of processing).
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3.1.1. Baseline fMRI activity predicting longitudinal cognitive change

Some studies attempted to understand the role of brain activity in cognitive aging by
using baseline fMRI activity to predict cognitive change, but the directionality of the findings
has been inconsistent (Bookheimer et al., 2000; Hantke et al., 2013; Leal, Landau, Bell, &
Jagust, 2017; Lind et al., 2006; Woodard et al., 2010). Bookheimer et al. (2000) found
individuals with APOE e4 allele had greater memory-related activation in multiple regions and
that this pattern of greater brain activation was predictive of memory decline in the next 2 years.
Similarly, Leal et al. (2017) found that higher hippocampal activation was related to greater
amyloid accumulation that was predictive of greater clinical decline. Both suggest that higher
baseline activity may be related to an adverse longitudinal change in cognition.

On the other hand, Lind et al. (2006) studied 18 normal older participants with APOE e4
allele and found that reduced functional activity during encoding in the left inferior parietal
region was related to longitudinal cognitive decline, suggesting that insufficient functional
activity, rather than higher activity, may be predictive of worse cognitive outcome in older
adults. Hantke et al. (2013) using two memory tasks (semantic memory, episodic memory) found
that greater functional activation was predictive of better longitudinal cognitive stability for both
memory tasks. Woodard et al. (2010) using a semantic memory task also found that higher fMRI
activity during the task was predictive of less cognitive decline longitudinally and that the
magnitude of task activation was a stronger predictor than hippocampal volumes.

Functional MRI may be a promising tool to detect early abnormalities in the brain and
relate to longitudinal cognitive change (Sperling, 2011; Wagner, 2000), but baseline neural

activity can only offer limited information of the brain before age-related changes in cognition
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occur. A thorough exploration of functional brain activity related to better cognitive aging should
examine brain functional activation in people who have already shown evidence of better or
worse cognitive aging.

3.1.2. FMRI activity differences in individuals with different cognitive trajectories

Some previous studies related retrospective longitudinal change to functional activity
differences to examine patterns of functional activation features in people exhibiting different
longitudinal cognitive trajectories. For example, Persson et al. (Persson et al., 2005) used a
semantic categorization task and found that the individuals who had lower baseline performance
and greater memory decline over ten years had higher activity in the right prefrontal regions
during semantic processing. In addition, they also found smaller hippocampal volumes and
decreased anterior white matter integrity in these declining older adults. Overall, the study
suggested evidence of increased functional activation in declining older adults, which may
reflect structural disruptions and functional upregulations in frontal regions.

However, Pudas and colleagues (Pudas et al., 2013) using a face-name associative
learning task and found that older adults who managed to maintain their memory ability across
15-20 years (referred to as successful older adults in the study) had higher hippocampal activity,
compared to both average older adults and young adults, during the encoding block. They also
found the same pattern in four prefrontal clusters where successful older adults had the highest
functional activity (Figure 11a). This finding suggests the importance of recognizing the
individual differences in cognitive aging when examining brain function in older adults.

Two longitudinal fMRI studies attempted to examine how brain functional changes may

correspond to cognitive changes. They compared brain activity in individuals with different
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longitudinal cognitive trajectories and found longitudinal functional reduction in hippocampal
activation (O'Brien et al., 2010) and increased PFC recruitment (Pudas et al., 2018) related to
cognitive decline in declining older adults. Specifically, O’Brien and colleagues (2010) studied
51 non-demented older adults using a face-name associative memory encoding task. Researchers
contrasted the activation during novel versus repeated trials, and found that older individuals
with rapid longitudinal decline had higher hippocampal activation at baseline, but a greater loss
of hippocampal activation over time, compared to those who maintained their cognition. A
recent longitudinal fMRI study (Pudas et al., 2018) in older adults also used a face-name
associative encoding task and analyzed the activation during encoding block. They reported that
declining older adults recruited additional PFC regions over time as their memory worsened and
their hippocampus shrank. Interestingly, this pattern of results was seemingly inconsistent with
their finding in 2013 (Pudas et al., 2013) where it was the maintaining individuals with less
cognitive decline who had higher frontal activity. The authors noted that the longitudinal
findings were found in a set of prefrontal regions outside the memory network which were not
activated in the task in wave 1 (Figure 11b). They, therefore, interpreted this follow-up finding as
functional re-organization in those additional frontal regions which may represent a
compensatory response in attempt to cope with age-related cognitive decline. However, whether
this altered activation in frontal regions is indeed beneficial was not directly investigated in the

study, and this question still remains highly controversial.
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3.1.3. Brain maintenance and functional compensation in high-performing individuals with
better cognitive aging

Several accounts have been proposed to help interpret the findings of the patterns of
functional activity related to better cognitive aging (Morcom & Johnson, 2015; Nyberg et al.,
2012; Nyberg & Pudas, 2018; D. C. Park & Reuter-Lorenz, 2009). Two major views, brain
maintenance (Nyberg et al., 2012; Nyberg & Pudas, 2018) and compensation (Cabeza, 2002;
Davis et al., 2008), interpret the brain activity related to optimal cognitive aging from different
perspectives and have suggested different brain function patterns are expected in individuals with

better cognitive aging (Morcom & Henson, 2018; Nyberg et al., 2010).
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Figure 11. Better cognitive aging (less memory decline) was associated with evidence of
increased (a) and decreased (Pudas et al., 2013) (b) prefrontal activity during encoding (Pudas et
al., 2018).
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3.1.3.1. Brain maintenance

The theory of brain maintenance suggests that cognitive performance difference is largely
due to the between-subject variability in “brain maintenance”, or the presentation of a lack of
brain pathology. The theory suggests that “the individual differences in the manifestation of age-
related brain changes and pathology allow some people to show little or no age-related cognitive
decline” (Nyberg et al., 2012). Studies have shown that older adults tended to have reduced task-
related activity in temporal and occipital regions, compared to younger adults (H. J. Li et al.,
2015; Maillet & Rajah, 2014), and that this reduction was associated with age-related grey matter
changes and white-matter hyperintensity (Nordahl et al., 2006). On the other hand, older adults
also exhibited greater difficulty to suspend task-unrelated activity, compared to young adults
(Grady, Springer, Hongwanishkul, McIntosh, & Winocur, 2006; Persson, Lustig, Nelson, &
Reuter-Lorenz, 2007). Moreover, high-performing older adults had comparable functional
activation and deactivation as in younger adults (Duverne, Habibi, & Rugg, 2008; Nagel et al.,
2009; Samu et al., 2017), supporting the idea that maintaining youth-like activation patterns may
be a sign of optimal brain aging.

Stronger evidence comes from longitudinal studies. Persson et al. (Persson, Pudas, et al.,
2011) found that the reduction in hippocampal activity was only found in individuals who had
memory declines, but not in those whose memory was stable over 20 years. Nyberg et al.
(Nyberg et al., 2010) found that older adults’ brain function decreased longitudinally in frontal
regions, suggesting that aging was associated with under-recruitment, not over-recruitment, of
the frontal cortex, and questioned the findings of compensatory over-recruitment in high-

performing older adults.
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Another observation in older adults is reduced neural specificity or selectivity (Carp,
Park, Polk, & Park, 2011; Dennis & Cabeza, 2011; Koen & Rugg, 2019; D. C. Park et al., 2004;
J. Park, Carp, Hebrank, Park, & Polk, 2010; Voss et al., 2008). For example, an early study
found that ventral visual cortex, which selectively responded to certain categories of visual
stimuli (e.g., face, house, word) in young adults, showed reduced differences in activity when
responding to different visual categories in older adults (D. C. Park et al., 2004). Recent studies
suggest that reduced neural distinctiveness in older adults is also evidenced in MTL and striatum
(Dennis & Cabeza, 2011) and in PFC (Morcom & Friston, 2012) for memory tasks, and that the
greater regional distribution of brain activity in older adults, indicating reduced functional
specificity, was associated with poorer memory performance (Morcom & Friston, 2012). The
idea of reduced functional specificity may reflect the general broadening of responsive neurons,
or it may be due to decreased activity of the category-sensitive neurons (J. Park et al., 2012). The
former may be presented as a diffused increased in activity outside the task-related regions
suggesting neural inefficiency. This increased activity reflects a general elevation of signals in
response to multiple task conditions that do not typically involve these regions in young adults.
And the latter may be presented as a decreased activity in task-related regions, suggesting
reduced neural reactivity and responses. Both may be observed in the same task (Koen & Rugg,
2019; J. Park et al., 2012), and both are in agreement with the conceptual idea of brain
maintenance that aging is accompanied by a series of brain changes, a lack of which may suggest

better brain maintenance in successful aging.
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3.1.3.2. Compensatory recruitment

In contrast, several cognitive neuroimaging theories of aging have proposed that there is
age-related increase in functional brain activity in high-performing older adults that is
compensatory for age-related degradation, emphasizing that such adaptive changes in brain
function are favorable to better cognitive aging (Cabeza, 2002; Cabeza et al., 2018; Davis et al.,
2008; Reuter-Lorenz et al., 1999). For example, the scaffolding theory of aging and cognition
(STAC, (D. C. Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014)) suggests that brain is
an adaptive system with neuroplasticity. Older adults are often affected by age-related neural
degradation, including neural challenges (e.g., shrinkage, cortical thinning, white matter changes,
etc.) and functional deterioration (e.g., decreased neural specificity, decreased functional
recruitment, dysregulation of the default mode network). Critically, older adults may also exhibit
“compensatory scaffolding” which represents the adaptive changes with age in brain function
that may counteract the adverse effects of neural challenges and functional deterioration. For
example, high-performing older adults may exhibit additional recruitment of novel prefrontal
areas, which allows them to overcome atrophy to meet task demands (Cabeza, 2002). Moreover,
studies have found decreased activation in posterior regions along with increased activation in
frontal regions, and posited the theory that older adults may shift their functional reliance from
posterior regions to anterior regions (Davis et al., 2008), which is believed to be one of the
compensatory mechanisms underlying increased prefrontal activity. The STAC model integrates
both the “negative” and the “positive” changes with age and suggests that functional

compensation (only) occurs when brain integrity is reduced, proposing different and

48



complementary roles of brain maintenance and compensation in helping older adults to preserve
cognitive function in aging.

Consistent with the compensatory view of age-related changes in functional activation,
researchers have reported increased functional activity in cognitively normal individuals
harboring early markers of AD and suggested that the activation was a compensatory response to
the neural insults from pathology. For example, cognitively healthy older adults with elevated
amyloid and tau burden (Elman et al., 2014; Huijbers et al., 2019; Mormino et al., 2012) or
subjective memory complaints (Hayes et al., 2017; Rodda, Dannhauser, Cutinha, Shergill, &
Walker, 2009) had increased hippocampal and/or prefrontal activity during encoding, compared
to controls. This increased activity was beneficial for participant’s memory performance. This
pattern of increased activity was interpreted as a functional compensation in response to early
deficits in these individuals helping them stay cognitively healthy and may diminish as AD
progresses (Delli Pizzi, Punzi, Sensi, & Alzheimer's Disease Neuroimaging, 2019; Foster,
Kennedy, Horn, Hoagey, & Rodrigue, 2018).

Altogether, the evidence of compensatory recruitment in older brains suggests that
increased activity reflects brain adaption in relatively high-functioning older adults in response to
inevitable age-related changes. Therefore, increased functional activation, particularly in
prefrontal regions, may be a beneficial feature related to successful aging and help older adults to

maintain cognitively better.
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3.1.4. Factors to consider when examining functional activity related to cognitive aging
3.1.4.1. Age as a potential moderator of what activity pattern is expected

The majority of previous investigations on brain activation and successful aging of prime
individuals have interpreted their findings based on one of the two aforementioned views (brain
maintenance, compensatory recruitment). Although seemingly contrary to each other, they are
not necessarily contradictory, and may operate concurrently to cope with age-related changes
(Cabeza et al., 2018; D. C. Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Park, 2014). Prime
agers may indeed rely on better maintenance of youth-like activity pattern, while additional
recruitment may also be compensatory in nature and helpful when their brain maintenance is
reduced (Burianova, Lee, Grady, & Moscovitch, 2013; Duzel, Schutze, Yonelinas, & Heinze,
2011). Resisting age-related decline ideally relies on an intact brain with no neurodegeneration
and thus no compensation, though this is less likely with increasing age. Middle-aged brains may
be relatively well-preserved and rely on brain maintenance to perform well. Therefore, a youth-
like pattern of brain function may be sufficient for prime agers in middle age. However, in older
adults, age-related neurodegeneration may be so prevalent that additional recruitment is more
beneficial than no recruitment. Even then, the compensation may still only be partially effective
(Cabeza & Dennis, 2012). Successful cognitive aging in older age may require better adaption
and re-organization by compensatory upregulating.

However, little is known about how functional activation may differ in prime and
nonprime individuals across the lifespan, as only a few fMRI studies have included middle-aged
adults (Ankudowich, Pasvanis, & Rajah, 2017; Ankudowich, Pasvanis, & Rajah, 2016; de

Chastelaine, Mattson, Wang, Donley, & Rugg, 2015; Grady et al., 2006; Kennedy, Boylan,
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Rieck, Foster, & Rodrigue, 2017; Kennedy et al., 2015; H. Park et al., 2013; Rieck, Rodrigue,
Boylan, & Kennedy, 2017; Rieck et al., 2015; Vidal-Pineiro et al., 2018). Even fewer has
investigated the specific functional activity related to successful encoding (de Chastelaine et al.,
2015; de Chastelaine, Mattson, Wang, Donley, & Rugg, 2016; Kwon et al., 2015; H. Park et al.,
2013; Vidal-Pineiro et al., 2018), a critical mental process of memory that is particularly
vulnerable to aging.

For example, de Chastelaine et al. (de Chastelaine et al., 2015) used an associative
memory task and found increased frontal recruitment during successful associative encoding in
older adults, but not in the middle-aged, and that the increased recruitment was related to better
memory performance in these older adults. This suggests that the additional frontal recruitment
may not occur until later in the lifespan, and this recruitment may be compensatory for older
adults. Similarly in a recent study (Vidal-Pineiro et al., 2018), researchers examined the activity
related to subsequent associative memory success and found that middle-aged and high-
performing old individuals showed similar brain activity as in young adults, whereas low-
performing old adults showed reduced activation in frontal regions. On the other hand, Park et al
(H. Park et al., 2013) studied a subset of participants from the Dallas Lifespan Brain study and
found, for negative subsequent memory effect (i.e., forget > high-confidence remember), age-
related decrease was particularly evident in low memory performers beginning in middle age,
whereas high memory performers did not show these differences until old age, suggesting the

importance of studying middle-aged adults in revealing different functional trajectories with age.
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3.1.4.2. Different interpretations for different regions

The interpretations of functional results are also largely dependent on the region of
findings. It is especially critical when inferring activity differences related to better outcomes of
cognitive aging. Pudas and colleagues (2013) found that maintainers, who were defined as
individuals with minimal longitudinal declines, had greater activity in prefrontal and
hippocampal regions, compared to decliners. However, in their follow-up study (Pudas et al.,
2018) with longitudinal fMRI data, they found the seemingly-opposite pattern: decliners had
longitudinal functional increases in prefrontal activity, whereas the maintainers showed stability
in activity magnitude with a similar level as observed in younger adults. This interesting
inconsistency may be due to the difference in regions where the observation was detected.
Although both effects were found in prefrontal regions, the recent study (Pudas et al., 2018)
specifically noted that the findings were outside typical mnemonic regions. The regions activated
in decliners in wave 2 also did not show significant activation in wave 1, suggesting that this
region may be additionally recruited in decliners, in an attempt to compensate for their lower
level of activity in task-related regions.

The role of a region during a task is essential to understand the meaning of any
significant observation in task-related functional MRI. Analyzing task-related and task-unrelated
regions separately is not only helpful but necessary for an appropriate interpretation of what the
activity differences actually reflect.
3.1.4.3. Brain-behavioral correlation

In addition to the age of participants and the region of findings, the interpretation of

functional differences in successful and unsuccessful aging is closely related to whether the
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activity is beneficial for task performance. Increased functional activity in low-performing older
adults may be interpreted as inefficient and detrimental neural over-recruitment because it was
not observed in maintainers (J. Park et al., 2012). However, it is also possible that the increased
activity is compensatory in nature: cognitively declining individuals are the ones in need of such
compensation but the attempted compensation could not offset the age-related deficits (Cabeza &
Dennis, 2012). Careful investigations should not only compare declining and maintaining
individuals, but also examine how the activity is directly related to task performance. One way to
help interpret the brain functional activity is to examine the relationship between activity
magnitude and task performance. This examination is particularly critical for activations that are
outside task-related regions because the function of the activation may be unclear. For example,
recruitment outside task-related regions that is beneficial to task performance may suggest
“compensatory upregulation”. Additional recruitment outside task-related regions that is harmful
to task performance, although not diagnostic, may suggest “decreased inhibition”, “decreased
neural efficiency”, or “loss of neural specificity”, reflecting age-related neural deficits.

But as pointed out in a recent review (Cabeza et al., 2018), the examination of brain-
behavior correlation across participants often faces what is known as Simpson’s paradox -- the
relationship among subgroups may be different (Kievit, Frankenhuis, Waldorp, & Borsboom,
2013), and the examination of the brain-behavior correlation often ignores this potential problem.
Researchers should consider the possibility that brain-behavioral relationship may be dependent
on the behavior: low-performing individuals may show a positive brain-behavioral correlation
attempting to utilize brain compensation, whereas the relationship may not be present or even

opposite in high-performing individuals. Therefore, the present study will consider this
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possibility and examine whether the brain-behavioral correlation differed in prime and nonprime
individuals. If the evidence suggests a significant difference in the pattern of brain-behavioral
correlations, the relationships should be interpreted separately (Cabeza et al., 2018).

Another way to separate brain activation that are truly helpful in task performance from
those that are unrelated is using an event-related design that could separate trials with better
performance and worse performance. One example of studying memory encoding is a
subsequent memory paradigm (e.g.,(Gutchess et al., 2005)). In subsequent memory tasks,
participants are presented with stimuli in the scanner and usually instructed to make a judgment
related to some features of the stimulus so that they fully encode the stimulus. After they come
out of the scanner, they complete a memory recognition test for the encoded stimuli. Researchers
can then back trace participants’ successful and unsuccessful encoding trials based on the
accuracy of participants’ responses. This bypasses Simpson’s paradox and allows for separate
analyses on successful encoding and unsuccessful encoding, and more importantly, on
distinguishable brain activities only involved during successful encoding that indeed support
better task performance.

3.1.5. Summary

The present study compares the functional activation between individuals exhibiting
different cognitive aging profiles, defined in Study 1 in Chapter 2 as prime and nonprime
individuals, in middle, young-old and very old age. Prime individuals refer to participants with
superior cognitive performance and relatively less longitudinal decline over past four years in
multiple cognitive domains (episodic memory, inductive reasoning, working memory, and

processing speed). Nonprime individuals, on the other hand, overall present a suboptimal
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cognitive aging pattern over past four years with worse performance and greater longitudinal
decline across cognitive domains. In the present study, I compare functional brain activity in
these prime and nonprime individuals in order to explore patterns of brain activation specifically
related to better cognitive aging in middle, young-old and very old age. I use a subsequent
memory task that separates successful encoding and forgotten trials. Functional imaging analyses
will focus on the subsequent memory effect (high-confidence remembered > forgotten) which is
the classic contrast of this paradigm representing the specific activation that distinguishes
successful encoding from unsuccessful encoding. Additionally, the present study also explores
the negative subsequent memory effect (forgotten > high-confidence remembered) as a
secondary analysis, which contrast is less investigated but may show inter-individual differences
between high and low performing individuals (H. Park et al., 2013). The study specifically
examines three questions: (1) are there activity differences during successful encoding
(subsequent memory effect) between prime and nonprime individuals in core regions related to
successful memory encoding? (2) is the subsequent memory effect in prime and nonprime
individuals different from healthy young adults? and (3) is there any additional recruitment
outside core regions?

Successful encoding usually activates temporal regions in the memory network
(hippocampus, fusiform gyrus) and occipital regions in tasks with visual stimuli (Eichenbaum,
2017; Gutchess et al., 2005; Kim, 2011) (Figure 12). In the present study, to examine the task-
related effects, I focus on the regions common to participants, regardless of age, and compare the
activity between prime and nonprime individuals in those regions for middle-aged, young-old

and very old adults. To explore additional recruitment outside task-related regions, I explore
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Figure 12. Regions found in (Kim, 2011) that are related to subsequent memory effect.

activity differences in the whole brain between prime and nonprime individuals in middle age,
young-old age and very old age. Prefrontal regions may be a great source of compensation
b