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The fast-moving digital-driven very large scale integration (VLSI) development enables the 

implementation of complex and sophisticated digital signal processing (DSP) algorithm and 

stimulates the generic structure of “analog-to-digital converter (ADC) plus DSP” to be applied in 

many application scenarios. Benefits from this general trend, the frontend electronics in the 

readout system and the backend DSP algorithms for the next phase ATLAS experiment at large 

hadron collider (LHC) is under evaluation and design for high-precision detection. This research 

focused on the backend DSP algorithms and the related ADC design, which is required to be 

error-tolerant to convey high-performance analog-to-digital (A/D) conversion in the radiation 

environment. 

Based on the seminal work of liner optimal filter (LOF) by W. Cleland et al., this research 

devised a sequence detection algorithm with the extended LOF and decision feedback 

equalization (DFE) technique to remove the increasing pileup effects in the high-luminosity 

environment. Various Monte Carlo simulations validate the effectiveness of this proposed 

algorithm – neither missing detection nor false alarm is observed for medium- to high-energy 
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particles. The proposed algorithm maintains the same detection efficiency in the upgrade phase 

as that of the LOF in the current phase, demonstrating its superior performance to that of the 

LOF for high-luminosity detection. 

As required by the proposed algorithm, high-resolution and throughput ADCs are in demand to 

deliver large dynamic range, high SNR and fast sample rate. The operation environment also 

requires the ADC to be radiation-tolerant. A two-step split successive-approximation register 

(SAR) ADC is proposed and implemented in 65-nm CMOS to fulfill the above requirements. 

The prototype measures 78.5 dB peak SNDR and over 100 dB peak SFNR at 35 MS/s sample 

rate and >70 dB SNDR and >88 dB SFDR up to Nyquist frequency at 75 MS/s sample rate. 

Besides, multiple new error detection techniques are developed and implemented. Combining 

with the redundancies allocated in each circuit hierarchy, the prototype demonstrated 100% error 

correction rate in the single event effect (SEE) test with proton beam. Less than 1 dB maximum 

degradation of SNDR and SFDR in the total ionizing dose (TID) with X-ray proves its long-term 

radiation-tolerant feature. The prototype consumes 22.2 mW at 40 MS/s and 24.9 mW at 75 

MS/s sample rate. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

In the past few decades, benefit from the scaling advantage of complementary metal oxide 

semiconductor (CMOS) technology, digital driven very-large-scale integration (VLSI) designs 

were moving fast in term of operation speed, integration density and power efficiency, boosting 

the computational performance dramatically. This trend and progress enables the implementation 

of complex and sophisticated digital signal processing algorithms. To the contrary, analog 

integrated circuit (IC) designs experience increasing difficulties and challenges with technology 

scaling, especially in the nowadays ultra-deep submicron CMOS process nodes. The intrinsic 

gain of single metal oxide semiconductor (MOS) transistor decreases; and the shrink of supply 

voltage also reduces the signal level, resulting in deteriorate signal-to-noise ratio (SNR). 

Therefore, the inherent robustness of the digital circuits together with its increasing 

computational powers stimulates the bloom of digital-assist analog circuit designs to mitigate the 

impairments of analog circuit. Moreover, the “analog-to-digital (A/D) conversion plus digital 

signal processing” becomes a generic structure in many application scenarios, which in turn, 

pushes the cutting-edge analog-to-digital converter (ADC) designs advancing rapidly. 

All these transformations and advancements impact and benefit the high-energy physics 

community the same way, for the elevated performance of electronic devices and sophisticated 

digital algorithms provide the basis for accurate measurements and observations in particle 

collision experiments. 
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One example is the large hadron collider (LHC) [1], as shown in Figure 1.1, operated at 

European Organization for Nuclear Research (CERN
1
), an international collaborative project 

aiming to extend the frontier of particle physics research. Constructed on the boarder of France 

and Switzerland, the LHC consists of a 27-kilometer ring of superconducting magnets with a 

number of accelerating structures to boost the energy of the particles. Inside the accelerator, two 

high-energy proton beams travel at close to the speed of light before they are made to collide. 

To detect the collision and the associated physics activities, several large detectors such 

as ATLAS
2
 and CMS

3
 are deployed along the ring. All the facilities are built underground on an 

average of 100 meter deep, so they can take advantage of the crust as a shield to stop radiations 

                                                 

1 CERN is the acronym from its predecessor’s French name – Conseil Européen pour la Recherche Nucléaire. 

2 ATLAS is the acronym of “A Toroidal LHC ApparatuS”. 

3 CMS is the acronym of “Compact Muon Solenoid”. 

 

Figure 1.1.  An overview diagram of the LHC [2] 
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from the space. Those detectors are usually comprised of multiple layers of detector cells and 

signal readout system. In the readout, after the necessary signal conditioning, the analog signal is 

immediately sampled and quantized, having its digitized form transmitted to the backend for 

further processing. In the backend, digital signal processing algorithm is applied to estimate the 

energy of the particles that involved in the collision with those digitized data and the physical 

events are further reconstructed using these recovered energy information. Figure 1.2 is the 

diagram illustrates the ATLAS detector. 

To create more interested physical events for study, the LHC is scheduled to boost the 

particle’s energy for collision (higher luminosity) in each of its upgrade phase [3], whereas the 

upgrade put tighter requirements for the readout electronics and the increased physical events in 

each collision introduce more signal pileups, challenging the current digital signal processing 

 

Figure 1.2.  The ATLAS detector [4] 
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method. New or revised digital signal processing algorithm is in demand to accommodate the 

LHC upgrade for non-degrading detection efficiency. Meanwhile, the upgrades of the readout 

electronics should also be performed accordingly and considering the backend digital signal 

processing needs, where the A/D interface – the ADCs are the bottleneck. Large dynamic range 

of the detected signal and high operation speed of the LHC as well as the needs from the backend 

dictates the ADC to have high resolution and fast sample rate and the radiation environment 

requires the ADC to be error-tolerant, adding another layer of difficulties. 

1.2 Research Goal 

The goal of this research is to develop an optimum digital signal processing algorithm to perform 

high-resolution estimation on the particle’s energy (in the form of signal amplitude) in high-

luminosity environment after the LHC upgrade. Although the parameters used in this dissertation 

are from (and set for) the ATLAS experiment, the proposed algorithm can be generalized for 

similar readout applications. 

Secondly, a high-speed, high-resolution and power efficient Nyquist ADC is aimed to be 

designed and implemented to accommodate the stringent LHC upgrade needs as well as the 

signal processing demands. More importantly, the ADC is desired to have additional radiation-

tolerant feature to survive in the radiation environment. 

1.3 Dissertation Outline 

The dissertation is organized as follow. In chapter 2, the system configuration and model will be 

first briefly discussed, followed by the signal processing needs for the electronic upgrades in the 

system evolution. Chapter 3 reviews different estimation methods and makes a comparison. 
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Based on the prior arts, a sequence detection algorithm is proposed in Chapter 4 and verified by 

various Monte Carlo simulations. According to the signal processing requirements, a high-speed, 

high-resolution radiation-tolerant ADC design is presented in Chapter 5 to Chapter 7, which, in 

Chapter 5, error-tolerant techniques are discussed; followed by the general design issues covered 

in Chapter 6; and measurement results in Chapter 7. A conclusion is drawn in Chapter 8. 
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CHAPTER 2 

SYSTEM CONSIDERATIONS 

In this chapter, the current system configuration of the signal readout in the ATLAS liquid argon 

(LAr) calorimeter (an energy measurement apparatus) will be given firstly, followed by the LHC 

evolution road map. This background information will help to clarify the origin of the problems. 

Then, the proposed readout architecture for Phase-II upgrade [5] is presented for system 

modeling and all the noise and interference sources and mechanism is discussed toward the end 

of this chapter. 

2.1 Current Readout System Configuration 

Liquid ionization calorimeter is an energy-measurement detector widely deployed in many 

particle physics experiments [6]. In the ATLAS experiment, the medium in the calorimeter is 

liquid argon. The simplified readout frontend of the calorimeter is sketched in Figure 2.1, which 

consists of preamplifiers, shapers, switched-capacitor array (SCA), mux and ADCs. The output 

signal of the detector is amplified and filtered by the frontend analog circuitries and stored in the 

SCA. A trigger system selects part of the analog samples produced by potential “interested” 

physical events and those samples are digitized by the ADCs. The LHC operates at 40 MHz, i.e. 

 

Figure 2.1.  Simplified block diagram of the current readout frontend [7] 
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there is a collision (called bunch crossing, BC) in every 25 ns. The ADC operates at 5 MHz, and 

compared to that of the LHC, it does not fast enough to digitize all the analog samples at each 

BC. The SCA and trigger system becomes a necessity. 

2.2 LHC Evolution Road Map 

As described in the previous chapter, in order to obtain more “materials” for study, namely the 

physical events in each BC, the LHC is scheduled to increase its luminosity in each of the 

upgrade phase. Figure 2.2 depicts the LHC and high-luminosity LHC (HL-LHC) evolution road 

map. It can be seen that there are three long stops (LS1, LS2 and LS3) for the installations of 

electronics in each upgrade. This research focuses on the Phase-II upgrade. After this experiment 

upgrade, the luminosity of the LHC is intensively boosted. 

2.3 Readout Frontend in Phase-II Upgrade 

A simplified block diagram of the proposed Phase-II readout frontend board (FEB) [5] is shown 

in Figure 2.3. The FEB will include a bunch of preamplifiers, analog shapers, ADCs, and 

serializer/deserializer (SerDes). 

One major difference to Figure 2.1 is the removal of the SCA, which reduces the analog 

design complexity, but requires the ADC to be clocked at higher sampling frequency to 

synchronize with the LHC operation frequency. Besides, the three-gain scheme (of the shapers as 

in Figure 2.1) is under evaluations to reduce to the two-gain scheme in the Phase-II upgrade, 

which translates to higher dynamic range for the ADCs. On the other hand, the removal of the 

SCA enables the continuous sampling, with more samples available, elaborate digital signal 

processing algorithm can be devised. 
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2.4 Signal Model and Interference Sources 

In the LAr calorimeter, since the liquid gap between the electrode plates is narrow, about 2 mm, 

the ionization triggered by the electromagnetic shower is instantaneous and the process is 

followed by a drift of the electrons towards the anode plate. Thus, the detector output signal is 

modeled as a triangular current pulse as shown in Figure 2.3. Liquid ionization calorimeter 

usually exhibits a long drift time, dependent on the drift velocity and the gap size [9]. For 

ATLAS liquid argon calorimeter, the drift time is about 450 ns, much longer than the bunch 

crossing time which is 25 ns. To avoid long dead time and to reduce noise in the measurement, a 

CR-RC
2
 pulse shaper – a chain of integrator (RC) and differentiator (CR) circuits – is employed 

in the analog front-end after the preamplifiers [10]. The general transfer function of a CR
m

-RC
n
 

shaper is given as follows. 

 ( ) ( )
( )1

m

s

m n

s

s
H s

s

τ

τ +=
+

 (2.1) 

where τs is the time constant of the shaper. An intuitive way of understanding the functionality of 

the shaper is that the integrator limits the input bandwidth and slows down the rising edge of the 

current pulse for analog-to-digital conversion (ADC) while the differentiator restores the 

Figure 2.3.  Simplified block diagram of the frontend board (FEB) in Phase-II upgrade 
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baseline quickly by removing the long tail of the pulse to reduce the possibility of signal pileup. 

Carefully choosing the time constant τs gives a smooth shaper output waveform with minimal 

pedestal recovering time, which can largely relax the ADC sample rate while retaining sufficient 

samples for post-processing. 

Figure 2.4 sketches the shaped waveform as well as the triangular current pulse from the 

detector. The parameters used for modeling waveforms in Figure 2.4 are extracted from [7] for 

ATLAS liquid argon calorimeter, e.g., a CR-RC
2
 shaper with τs set to 13 ns, and the output 

peaking time is approximately 50 ns. 

While detection is a general signal-processing topic that has been well studied, what we 

are most interested in particle physics experiments is how to precisely measure the amplitude and 

timing information of the sampled waveform of the detector output – the amplitude A represents 

 

Figure 2.4.  Signal waveform at the output of the detector (black) and the shaper (blue) 
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the energy of the incident particle shower and the timing signifies the arrival time τ of the 

particle thus our ability to correlate signals and events in time. 

Two leading noises are typically considered in the estimation process, the electronic 

noise and the pileup noise. At their origin, the dominant electronic noises, e.g., thermal noise and 

shot noise, are white. Temporal correlation however is introduced by the detector front-end 

processing, particularly the pulse shaper, and needs to be considered in the optimization 

procedure. Unlike the stochastic deteriorating effect of the electronic noise, the signal pileup by 

nature is deterministic and should be treated as inter-event interference (IEI). In particle detectors 

operating at high luminosity levels, many events are produced at each bunch crossing. The 

densely packed calorimeter cells and the long tail of the detector current pulse tend to aggravate 

the IEI problem, leading to an equivalent model termed pileup noise to highlight the statistical 

property of the effect rather than its deterministic physical origin. Besides, the random pulse 

arrival delay at the sampling instant of the ADC introduces new errors in timing, which should 

be also taken into considerations. 
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CHAPTER 3 

ESTIMATION ALGORITHMS 

In line with the differing physical origins of the electronic noise, pileup noise and their effects on 

the detection process, we will concentrate on the amplitude and timing estimation for LAr 

calorimeters considering electronic noise only in the rest of this chapter. Pileup effect will be 

included in the discussion in Chapter 4. 

3.1 χ
2
 Exhaustive Search 

Considering the correlation between the noise samples introduced by the shaper, the χ
2
 function 

can be defined as follows [11]:  

 ( ) ( )( ) ( )( )2 , i i ij j j

i j

A S Ag t V S Ag tχ τ τ τ= − − − −∑  (3.1) 

where Vij is the weight matrix for the measured samples. V is the inverse of the noise 

autocorrelation matrix R with Rij = <ni·nj> and ni is the noise sample. 

The χ
2
 function defines a non-negative quadratic error surface as a function of A and τ 

between the noisy samples Si and the known pulse shape g(ti) as sketched in Figure 3.1. A 

straightforward approach to determine the best estimate for A and τ is to perform an exhaustive 

search on the error surface. Albeit not computationally efficient, the exhaustive search result 

establishes a baseline for the estimation approaches covered in the subsequent sections. 

The Monte Carlo simulation results of the χ
2
 exhaustive search are shown in Figure 3.2 

and Figure 3.3 – the performance of the method is limited by the finite step size employed by the 

search algorithm. No obvious trend for the estimation error is observed. 
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Figure 3.1.  The quadratic error surface of the χ
2
 function in terms of A and τ. 

 

Figure 3.2.  Histogram of 100 Monte Carlo runs for amplitude (left) and arrival time (right) 

estimation using the χ
2
 exhaustive search method. The standard deviation of the detector noise is 

set to 10% the peak value of the detector current pulse. The sample period T = 25 ns, A0 = 

4.1134×10
-7

, and τ0 = 3 ns. 
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Figure 3.3.  The χ
2
 versus the least-square search results of 1000 Monte Carlo runs: the mean 

estimation error and standard deviation for amplitude Aest (left) and arrival time τest (right). τ0 = 

[−T/2, T/2]. Other simulation parameters are identical to those of Figure 3.2. 

3.2 Least-Square Exhaustive Search 

The derivation of the weight matrix V (or the noise autocorrelation matrix R) requires precise 

knowledge of the impulse response of the detector front-end. The computation of the χ
2
 function 

in Equation (3.1) also dictates N
2
 multiplications for N samples when the off-diagonal entries of 

V are nonzero. In practice, the magnitude of the off-diagonal entries of R can be small relative to 

the main diagonal entries. In such cases, the V matrix can be well approximated by the identity 

matrix. Thus, Equation (3.1) reduces to 

 ( ) ( )( )22 , i i

i

A S Ag tχ τ τ= − −∑  (3.2) 

This is identical to the least-square metrics to fit N samples to the known pulse shape g(t). 

In the Monte Carlo simulation, the above argument is confirmed with a CR-RC
2
 pulse 
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shaper. Again, an exhaustive search is employed to determine the optimal fit of the five samples 

to g(t). The estimation errors for A and τ are plotted in Figure 3.3 and overlaid with the χ
2
 

exhaustive search results – the two results are nearly identical. 

3.3 χ
2
 with First-Order Taylor Expansion 

Taylor expansion can be performed on g(t) in the vicinity of τ = 0 to reduce the computation 

complexity of the χ
2
 function, i.e.,  

 ( ) ( ) ( )'
i i i

Ag t Ag t A g tτ τ− ≈ −  (3.3) 

where g'(t) is the first-order derivative of g(t). Thus,  

 ( ) ( )2

1 2 1 2' 'i i i ij j j j

i j

S g g V S g gχ α α α α= − + − +∑  (3.4) 

where α1 = A and α2 = Aτ. 

Compared to Equation (3.1), Equation (3.4) defines a first-order approximated quadratic 

error surface in terms of A and τ, which can be used to perform a search or to directly derive a 

closed-form analytical solution to the problem. The latter has been done in [11] and results are 

quoted as follows 

 

( )1 2 4 3 5

1
Q Q Q Qα = −

∆  

( )2 1 5 3 4

1
Q Q Q Qα = − −

∆  

(3.5) 

where 
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1 i ij j

ij

Q g V g=∑
 

2 ' 'i ij j

ij

Q g V g=∑
 

3 'i ij j

ij

Q g V g=∑
 

4 i ij j

ij

Q g V S=∑
 

5 'i ij j

ij

Q g V S=∑
 

2

1 2 3Q Q Q∆ = −
 

(3.6) 

3.4 Linear Optimal Filtering 

A linear optimal filtering technique was proposed in [11] to minimize the computing effort 

involved in determination of the amplitude and arrival time information. The formulation of the 

optimal filter is quoted as follows 

 

i i

i

A u a S= = ∑  

i i

i

A v b Sτ = = ∑  

(3.7) 

The coefficients of ai and bi are given as 

 

λ κ= +a Vg Vg'  

µ ρ= +b Vg Vg'  
(3.8) 

where λ = Q2/Δ, κ = −Q3/Δ, μ = Q3/Δ, ρ = −Q1/Δ, and Q and Δ are defined in Equation (3.6). 
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The advantage of this technique is that the filter tap values are pre-calculated. Thus, the 

computation can be performed on the fly when data samples arrive, suitable for continuously 

operated detectors such as the proposed upgrade for ATLAS. It is also useful in resource-

constrained implementation, e.g., FPGA or DSP, or latency-sensitive applications. 

It can be shown that linear optimal filtering is equivalent to the χ
2
 method of first-order 

approximation [11]. The simulation results of both for A and τ are illustrated in Figure 3.4. It is 

interesting to note that the estimation error exhibits a quadratic dependence on τ as predicted by 

Equations (3.3) and (3.4) for truncating the second- and higher-order terms in the Taylor 

expansion. 

 

Figure 3.4.  The simulation results of 100 Monte Carlo runs for the first-order χ
2
 exhaustive 

search, linear optimal filtering, and second-order χ
2
 exhaustive search: the mean estimation 

error and standard deviation for amplitude Aest (left) and arrival time τest (right). Simulation 

parameters are identical to those of Figure 3.3. 
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3.5 χ
2
 with Second-Order Taylor Expansion 

The first-order Taylor expansion of the χ
2
 function leads to a rather large estimation error or bias 

when τ is large – −4.9% for amplitude and 12% for arrival time when τ reaches ±T/2 in Figure 

3.4. One way to mitigate the large error is to iterate the series expansion and Equation (3.4) by 

recalculating the g' and Q or, in the linear optimal filtering case, re-derive the filter tap values ai 

and bi and iterate Equation (3.7). Simulation results are shown in Figure 3.5 for linear optimal 

filtering with two iterations. There is computing overhead in either case. Another solution is to 

resort to a second-order Taylor expansion,  

 ( ) ( ) ( ) ( )21
' ''

2
i i i iAg t Ag t A g t A g tτ τ τ− = − +  (3.9) 

where g''(t) is the second-order derivative of g(t). 

 

Figure 3.5.  The simulation results of 100 Monte Carlo runs for the linear optimal filtering case 

with two iterations. Simulation parameters are identical to those of Figure 3.3. 
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The error surface of the second-order approximation can be similarly defined as of 

Equation (3.4). However, the nonlinearity of the second-order term excludes the possibility of a 

closed-form analytical solution. Thus, an exhaustive search is performed instead and the 

simulation results are shown in Figure 3.4 as well. We note that the estimation error in this case 

exhibits a cubic dependence on τ as the truncation error in Equation (3.9) is dominated by the 

third order. 

Table 3.1.  Efficiency comparison between gradient-descent and exhaustive search methods 

Method Gradient Descent Exhaustive Search 

Iterations 680* 603201 

Computations 

per 

iteration 

90 multiplications 

18 additions 

3 comparisons 

30 multiplications 

6 additions 

1 comparison 

*Averaged over different delay times. 

3.6 Gradient Descent Approach 

As simulation results evidenced so far, the exhaustive search approach produces the best 

estimation accuracy at the cost of high computation complexity. To improve the efficiency of the 

search, a gradient-descent approach is devised. As illustrated in Figure 3.1, the bowl-shaped 

error surface of the χ
2
 function exhibits a global minimum. Starting from a random initial point 

on the surface, a search direction can be derived by comparing the value of the function at the 

current position to those offset by a step size away in both A and τ direction. The current position 

is then advanced in the direction that minimizes the function value. The process is iterated until 

convergence at the bottom of the surface. Simulations for the gradient-descent approach were 

performed with four random starting point and the resulting search paths are plotted in Figure 

3.6. Comparing to the exhaustive search method in which the whole error surface is evaluated, 
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the gradient-descent approach significantly reduces the computation involved. Table 3.1 

compares the typical required number of iterations for the two cases. 

 

Figure 3.6.  Simulated gradient-descent search paths for four random starting point on the error 

surface of the χ
2
 function. The x-axes are delay (in ns) and the y-axes are amplitude. 

3.7 Other Shapers 

The amplitude and timing estimation techniques covered in the above section are also tested with 

CR-RC
3
 and CR

2
-RC

2
 pulse shapers. For the 40-MHz sample rate, the peak of g(t) falls in the 

middle between two samples in contrast to the case of the CR-RC
2
 shaper in which the peak is 

very close to a sample point. Figure 3.7 plot the simulation results for the amplitude and timing 

estimation along with the input and output waveforms of the shaper. The skewed error curve 

reveals the asymmetry of the series expansion at off-peak sample points. 
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(a) (b) 

Figure 3.7.  (a) The simulation results of 100 Monte Carlo runs for CR-RC
3
 shaper. Simulation 

setup is identical to that of Figure 3.3. Standard dev. bars are not shown for clarity. (b) The 

simulation results of 100 Monte Carlo runs for CR
2
-RC

2
 shaper. Simulation setup is identical to 

that of Figure 3.3. Standard deviation bars are not shown for clarity. 

3.8 Wiener Filter
1
 

Another approach to address the same estimation problem involves the application of Wiener 

filter [12], whose principle is demonstrated in Figure 3.8. The objective of the Wiener filter is 

processing the input signal x(n) to maximally approximate a known signal d(n) by suppressing 

any uncorrelated noise in the input x(n). If a linear FIR filter is adopted, then the tap values of the 

Wiener filter can be learned adaptively by minimizing the mean square error (MSE) in Equation 

(3.10). 

                                                 

1 © 2014 IEEE. Portions adapted in section 3.8 to section 3.11, with permission. H. Xu, et. al., “On the performance of linear 

optimal filter and Wiener filter for signal detection in liquid ionization calorimeters,” IEEE Nuclear Science Symposium and 

Medical Imaging Conference (NSS/MIC), Seattle, WA, 2014. 
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( ) ( ) ( )

( ) ( ) ( )

22

2

E e n E d n y n

E d n h k x n k

  = −   

 = − − ∑
, (3.10) 

where, h(n) is the impulse response of the Wiener filter. 

In contrast to the method of LOF, the Wiener approach does not offer a closed-form 

expression for the optimum filter such as that of Equation (3.7). However, it also does not 

require information about the noise statistics, i.e., the matrices V and R, in devising the optimal 

estimation filter. Once the precise information of physics from training samples is known, the 

only data necessary to determine the optimum filter structure are a large number of training 

samples, which may dictate some upfront training cycles for the filter to operate properly. In 

addition, there is no approximation like that of Equation (3.3) involved to arrive at a final 

solution, albeit the filter often still takes a linear FIR form at the end for implementation or 

adaptation reasons. Because of these properties, the Wiener technique of estimation does not 

suffer from the non-zero Δt (using Δt and τ interchangeably, same below) problem experienced 

by the LOF approach – the Wiener training result is actually in situ, i.e., it will adapt to whatever 

operating condition it encounters, resulting in an unbiased estimation as long as it is properly 

trained a priori. 

 

Figure 3.8.  Conceptual diagram illustrating the working principle of the Wiener Filter. 
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Different training algorithms can be implemented to learn the filter tap values in the 

Wiener approach; for instance, the least mean square (LMS) algorithm or the least squares (LS) 

algorithm. For the single pulse case (i.e., not a sequence of pulses) examined in this chapter, the 

LS algorithm is adopted to exercise the learning of tap values, as described in Equations (3.11) 

and (3.12). 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

11 1 1

22 2 2

1 2 1

1 2 2

1 2

     
     
     =
     
     

    

⋯

⋯

⋮⋮ ⋮ ⋱ ⋮ ⋮

⋯ mm m m

AS S S n h

AS S S n h

AS S S n h n

, (3.11) 

 ( ) 1
T T

L L L L

−
=h S S S A , (3.12) 

A total of m sets of signal samples produced by m sets of corresponding amplitudes 

A1,…Am and arrival time delays Δt1,…Δtm are organized in the matrix of SL for the learning 

process. In each set of signal samples (each row of SL), n samples are collected for the learning 

of the n tap weights of the filter, which are obtained in one shot given by (3.12). 

The constraint on the form of H(s) to be invertible will pose some technical difficulty for 

studying the shaper function used in the ATLAS experiment, as will be seen in Section 3.11. 

3.9 (Whitening + Matched) Filter 

According to the optimal signal detection theory in presence of noise [13], the maximum SNR at 

the detection filter output is achieved when the impulse response of the filter is matched to the 

input signal (strictly speaking, matched to the complex conjugate of the time reversal of the input 

signal) when the noise is white. This gives rise to the matched filter (MF) approach in practice. 
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When the input noise is not white, a so-called whitening filter (WF) can be placed in 

front of the MF to flatten the spectrum of the shaped noise. The MF can then still be employed to 

treat the post-whitening samples to obtain a similar result as in the white noise case. However, 

the approach inherently makes the assumption that the colored noise can be whitened with a WF 

(that often also takes a linear FIR form). This may not be true if the transfer function of H(s) 

contains zeros in the right half plane (RHP) or on the jω-axis – the WF thus constructed may not 

be stable. For the cases when H(s) is invertible, we term the cascade of WF and MF the WMF in 

this dissertation, which is shown in the diagram of Figure 3.9. 

 

Figure 3.9.  Conceptual diagram for optimal signal detection with colored noise. The optimum 

filter is formed by the cascade of a whitening filter (WF) and a matched filter (MF). 

3.10 Equivalence between the Methods 

If we recognize that the optimum estimation of the pulse amplitude is unique, then we must and 

should be able to relate the three filtering approaches outlined in Section 3.4, 3.8 and 3.9, 

namely, the LOF, the Wiener filter, and the WMF (for the case when H(s) is invertible). In other 

words, some equivalence must be established in between the three methods. This is especially 

true when considering the fact that in practice the three filters all take a linear FIR form, as given 

in Equation (3.13). 
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 =∑ i i

i

A a S , (3.13) 

where ai is the filter tap value and Si is the signal sample. 

All three filters share the same FIR form and they are all constructed to optimize certain 

statistics of the filtered signal samples. For the LOF, the best estimate of A in the WLS sense is 

obtained by minimizing the χ
2
 [11]; for the Wiener filter, its tap weights are trained with the 

MMSE criterion [14]; while for the WMF, the combined effect of the MF and WF is to 

maximize the SNR of the filtered signal [9, 10]. In the following section, we resort to Monte 

Carlo simulations to further examine this equivalence. 

3.11 Monte Carlo Simulation 

3.11.1 Simulation Setup 

As mentioned in Section 3.9, zeros located on the jω-axis of the shaper transfer function H(s) 

pose problems for inversion by the WF. Unfortunately, the actual shaper employed in the 

ATLAS LAr calorimeter of (3.14) has four LHP poles and one zero at DC. 

 ( )
( ) ( )3

0 1 1

τ

τ τ
=

+ +

s
H s

s s
, (3.14) 

Once inverted, an integrator is created as part of the WF, which cannot be efficiently modeled by 

a time-domain simulator. To resolve this technical difficulty, we introduced another shaper, in 

addition to the ATLAS shaper, with the zero relocated to a non-zero position on the negative real 

axis such that we have a minimum-phase transfer function that is invertible. This is given in 

Equation (3.15). 
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 ( )
( ) ( )3

0

0.25

1 1

s
H s

s s

τ

τ τ

+
=

+ +
, (3.15) 

Note that the shaper function of (3.15) is totally fictitious, with the sole purpose of establishing 

equivalence between the three estimation methods outlined in Section 3.4, 3.8 and 3.9. 

Meanwhile, the ideal triangular input waveform (depicted in Figure 2.4) of the ATLAS 

experiment also displays a wide spectrum due to the piece-wise linear approximation. In 

addition, at the transition points the curve is also not differentiable. To avoid aliasing and a 

differentiation problem, a smoother, slow-varying Gaussian waveform is introduced, in addition 

to the original triangular waveform, for comparison. Figure 3.10 depicts this Gaussian pulse and 

its post-shaping waveform produced by the modified shaper of (3.15). 

 

Figure 3.10.  Input (solid) and post-shaping (dashed) signals of Case-II. 

To summarize, with the original ATLAS shaper, signal waveform, and the newly 

introduced ones, we altogether have four combinations of cases as listed in Table 3.2. Out of the 

four, the non-invertible shaper with triangular waveform is denoted as Case-I, the most realistic 
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case that represents the ATLAS experiment most faithfully. In contrast, the invertible shaper 

with Gaussian waveform represents a fictitious but benign case, denoted as Case-II, used as a 

control group to compare with Case-I. Lastly, the other two combinations are not very 

meaningful and not considered further. 

Other parameters of the simulation setup include a sample rate of 80 MSPS, a white noise 

added to the input of the shaper with varying power to be detailed shortly, neglected ADC 

quantization noise. Also, 100 signal samples are employed for estimation of A to avoid any 

waveform truncation error. 

Table 3.2.  The Four Combinations of Signal and Shapers 

 
Shaper with a Zero at DC 

(Non-invertible) 

Shaper with a finite Zero 

(Invertible) 

Triangular 

Waveform 
Case-I Not Considered 

Gaussian 

Waveform 
Not Considered Case-II 

3.11.2 Simulation Results 

The input (pre-shaping) and output (post-shaping) signals of Case-I are depicted in Figure 3.11 

and the filter tap values of the LOF and the Wiener filter are plotted in Figure 3.12. The LOF 

taps are calculated with (3.8) and the Wiener filter taps are learned with one million sets of 

training data with random A and Δt produced by Monte Carlo simulation. When Δt is set to zero, 

the two filter taps coincide with each other, representing a good agreement between the two 

approaches. Figure 3.13 displays the histogram of the estimate errors for these two cases – it is 

not surprising that the two curves overlap each other nearly exactly. For one million Monte Carlo 
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runs, the two methods give close mean values of 1.04×10
-5

 and 1.66×10
-5

, respectively, and the 

same standard deviation of 1.11×10
-2

 for the estimate error of A under the condition of a 74-dB 

SNR measured at the filter input (or the ADC output). 

However, when the Wiener filter is trained with non-zero Δt values (from −1 ns to +1 ns 

and other conditions the same), its filter taps start to deviate from the LOF ones. The histogram 

of one million Monte Carlo runs with the same setup of the training data shows an unbiased 

characteristic for the Wiener method and a biased one for the LOF, as depicted in Figure 3.14. 

The bias of the LOF, as the analysis predicted, originates from the truncated Taylor series 

approximation of (3.3). 

 

Figure 3.11.  Simulated input and output signal waveforms of the shaper of the ATLAS 

experiment (Case-I). 
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Figure 3.12.  Tap values of the LOF (calculated) and of the Wiener filter (trained). The Wiener 

filter is trained with one million sets of events of Monte Carlo simulation with Δt = 0 and SNR 

= 74 dB. 

 

Figure 3.13.  Histogram of the estimation errors of one million Monte Carlo runs using the two 

filters with tap values shown in Figure 3.12. 
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Figure 3.14.  Histogram of estimation errors by repeating the simulation in Figure 3.13 with a 

non-zero Δt ∈ U [−1 ns, +1 ns]. 

Another simulation is conducted to demonstrate the equivalence and difference between 

the Wiener and LOF, as shown in Figure 3.15. The Wiener taps are learned in two situations. In 

the first situation, Δt = 0 holds, and the filter is applied to the testing data sets with a non-zero Δt. 

The estimation results of this case display nearly identical statistic characteristics—both mean 

(µ) and standard deviation (σ) – as that of the LOF. Repeating the simulation with different noise 

power (SNR set to 62, 74, and 86 dB) does not seem to change the general behavior of the two 

results, proving the equivalence between the two methods with a zero arrival time delay. In the 

second situation, the Wiener filter is trained in situ with a non-zero Δt and tested with the same 

setup subsequently. In this case, no bias was observed in the Wiener results, and both the mean 

and standard deviation are much more superior to that of the LOF counterpart, as indicated in 

Figure 3.15. 
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Figure 3.15.  Comparison of the estimation results (mean and standard deviation) between the 

LOF and Wiener for two situations: 1) trained at Δt = 0 and then applied to varying cases of 

non-zero Δt (dashed line with round markers) and 2) in situ training (solid line with round 

markers). 

Interestingly, once the Wiener filter is trained with a large Δt spread, the resulting filter 

can be applied to the estimation of cases with smaller Δt spreads, without degrading the 

estimation accuracy much (i.e., the mean and standard deviation of the estimation error are both 

well behaved). Figure 3.16 plots the simulation results obtained for such cases. Compared to the 

LOF results, although the mean and standard deviation are slightly larger for the case of Δt = 0, 

the estimation results are uniformly acceptable for all Δt values. Figure 3.17 depicts the 

evolution of the Wiener filter taps vs. Δt – we can clearly conclude that the Wiener taps can 

automatically adjust themselves to accommodate any non-zero Δt statistics once they are 

properly trained. 
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Figure 3.16.  Estimation results (mean (absolute value) and standard deviation) of Wiener filter 

trained with fixed Δt statistics of Δt ∈ U [−3 ns, +3 ns]. Five sets of data with different Δt 

statistics, Δt ∈ U [−tx ns, +tx ns] with tx = {0, 0.5, 1, 2, 3}, respectively, were tested. Each set 

contains one million Monte Carlo runs. 

 

Figure 3.17.  Evolution of the first ten taps of the Wiener filter as a function of the Δt of the 

training data for Δt ∈ U [−tx ns, +tx ns] with tx = {0, 0.5, 1, 2, 3}. 
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For the more benign Case-II (the waveforms are shown in Figure 3.10), the tap values of 

the Wiener, LOF and WMF are all plotted and compared in Figure 3.18 for Δt = 0. Again, all 

three filters highly agree to each other in this case. 

For non-zero Δt values, similar simulations as those of Figure 3.15 were conducted and 

results are summarized in Figure 3.19. A less biased mean value and a smaller variation of the 

standard deviation were observed over Δt variations. This indicates that a smooth signal 

waveform and an invertible shaper all helped to minimize the discrepancies; however, the 

truncation error of (3.3) still exists, resulting in a biased estimation of the LOF. The WMF results 

are identical to those of the LOF. 

 

Figure 3.18.  Plot of tap values of the LOF, Wiener and WMF of Case-II. 
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Figure 3.19.  Results of the repeated simulation of Figure 3.15 for Case-II. 
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CHAPTER 4 

SEQUENCE DETECTION ALGORITHM 

4.1 Extended Linear Optimal Filter
1
 

Without loss of generality, we consider the two-tuple out-of-time pileup case in which two 

shaped pulses with amplitude Ac and Ap arrive at the times 0T + τc and nT + τp, respectively, 

where T is the bunch crossing time (or the calorimeter sample period), τc and τp are the fractional 

part of the arrival times that satisfy τc, τp << T, and n is a positive integer (n = 1, 2, …). An 

example of two-tuple pileup is illustrated in Figure 4.1 for n = 3. 

 

Figure 4.1.  Two-tuple pileup with two pulses separated by 3T (= 75 ns). For this example, τc = 

τp = 0. A bipolar CR-RC
2
 shaper with a time constant of 13 ns is assumed. A total of 10 signal 

samples are processed. 

 

                                                 

1 © 2013 IEEE. Portions adapted, with permission. See reference [16]. 
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Following the convention of [11], the χ
2
 function for the two-tuple pileup can be defined as 

 ( )2

, 1 , ,

, , , ,
m

c p c p i i ij j j

i j c p c p

A A S Ag V S Agχ τ τ
=

   
= − −   

   
∑ ∑ ∑  (4.1) 

where Si is the digitized sample acquired by the calorimeter, gi or g(ti) is the sampled pulse shape 

known a priori, Vij is the entry of the weight matrix V, the inverse of the autocorrelation matrix 

R of the sampled noise ni (Rij = <ni·nj>), and m is the number of samples employed. ΣAgi 

contains two signal pulses and we identify the former as the current pulse and the latter as the 

pileup pulse, i.e., 

 ( ) ( )
,

.i c i c p i p

c p

Ag A g t A g t nTτ τ= − + − −∑  (4.2) 

The χ
2
 function defines a non-negative quadratic surface in the four-dimensional space 

spanned by Ac, Ap, τc, and τp. Its 2D projection in (Ac, Ap) subspace is sketched in Figure 4.2. 

 

Figure 4.2.  χ
2
 surface versus Ac and Ap for τc = 1.016 ns, τp = -1.009 ns. 

0.5

1

1.5

2

0.5
1

1.5
2
0

1

2

3

4

5

6

x 10
-12

A
p
 [ *10

-6
 ]

A
c
 [ *10

-6
 ]

χ
2
 S

u
rf

a
ce



 

37 

In the vicinity of integer bunch-crossing time points, i.e., τc ≈ 0 and τp ≈ 0, a Taylor 

expansion can be performed to linearize g(t), yielding 

 
( ) ( ) ( )

( ) ( ) ( )

' ,

' ,

c i c c i c i

p i p p i p i

A g t A g t g t

A g t nT A g t nT g t nT

τ τ

τ τ

⋅ − ≈ − ⋅  

 ⋅ − − ≈ − − ⋅ −   

(4.3) 

where g'(t) is the first-order derivative of g(t), g'c (= g'(t)) and g'p (= g'(t-nT)) are to be evaluated 

at τc = 0 and τp = 0, respectively. Thus, 

 
( ) ( )

( )

2

1 4 1 2 3 4

, 1

1 2 3 4

, , ' '

' ' ,

m

i ci ci pi pi

i j

ij j cj cj pj pj

S g g g g

V S g g g g

χ α α α α α α

α α α α

=

≈ − + − + ⋅

⋅ − + − + 

∑⋯

 (4.4) 

where we define α1 = Ac, α2 = Acτc, α3 = Ap, and α4 = Apτp. Note that gp and g'p are in practice to 

be evaluated for different values of n in (4.4). Four linear equations can be obtained by setting 

the partial derivatives of χ
2
 to αi to zero, i.e., 2 / 0,iχ α∂ ∂ =  

 ,T
Qα = G VS  (4.5) 

where the column vector α = (α1 α2 α3 α4)
T
, the column vector S contains m measured samples, 

and the 4×4 matrix Q and the m×4 matrix G are given in Equation (4.6) and (4.7). 

 

' '

' ' ' ' ' '

' '

' ' ' ' ' '

i ij j i ij j i ij j n i ij j n

i ij j i ij j i ij j n i ij j n

i ij j n i ij j n i n ij j n i n ij j n

i ij j n i ij j n i n ij j n i n ij j n

gV g gV g gV g gV g

gV g g V g g V g g V g

gV g g V g g V g g V g

gV g g V g g V g g V g

− −

− −

− − − − − −

− − − − − −

 − −
 − − =
 − −
 
− −  

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

Q ,  (4.6) 

 

1 1 1 1

2 2 2 2

' '

' '
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' '

n n

n n
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− −
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− −

 
 
 =
 
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G
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Equation (4.5) reveals that the amplitudes and arrival times of the two pulses can be estimated by 

a set of linear FIR filters, 

 ( ) ,-1 T
α = Q G V S  (4.8) 

where Q
-1

G
T
V defines the LOF tap values. 

4.1.1 Simulations 

Single shot and Monte Carlo simulations are performed and the results are summarized in this 

section to validate the extend LOF approach described above and to present the estimation 

performance of the technique. The parameters used in the Monte Carlo simulation are extracted 

from the ATLAS experiment reports [7], [15]. 

Setup 

Three functional blocks are established to model the behavior of the detection system: the input 

signal generator, the CR-RC
2
 shaper, and the sampler. 

The input current signal from the detector is modeled as an approximate right triangular 

waveform with the amplitude of 3µA/GeV―the steep rising edge is due to the rapid ionization 

and the slow falling ramp of 450 ns captures the charge drift process inside the electromagnetic 

barrel (EMB). A bipolar CR-RC
2
 shaper follows the detector with a time constant of 13 ns for 

the differentiator and two integrators. The peaking time of the shaped output signal is thus 50 ns 

when the input arrives at time 0. The primary function of the shaper is to slow down the rising 

edge of the input pulse (by integration) for easy subsequent sampling and to shorten the slow tail 

of the pulse for fast baseline recovery (by differentiation). The band-pass frequency response of 

the shaper also rejects a large portion of the out-of-band noise. The post-shaping signal is 
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sampled at 40 MHz, namely, one sample per bunch crossing. Ten discrete-time signal samples 

are fed to the LOF, which is a ten-tap digital FIR filter, for amplitude and arrival time estimation. 

Additive white Gaussian (AWG) noise is imposed at the input of the shaper to imitate the 

thermal noise of the analog front-end circuitry for simplicity. Recovered amplitude and arrival 

time of the post-shaping signal is obtained at the output of the LOF. 

A basic assumption in the LOF approach is that we have precise knowledge of the 

impulse response h(t) of the shaper, and thus the post-shaping function g(t) is known a priori. In 

the simulation, we will focus on the two-tuple pileup case only, and assume that the current pulse 

arrives approximately at t = 0, namely, 0T + τc, and the pileup pulse arrives at any subsequent 

bunch crossing times ranging from 1T to 4T (i.e., n = 1 to 4) with a small arrival time uncertainty 

τp. 

Single shot simulation 

From Equation (4.6) – (4.8), it can be seen that the coefficients of the LOF are in part determined 

by gi, g'i, gi-n, and g'i-n, which are g(t) and g'(t) sampled at ti and ti-n. Since Taylor expansion is 

only accurate in the vicinity of the expansion point, the LOF coefficients should be evaluated for 

g(t) and g'(t) at the corresponding t = 0 and t = nT bunch crossings of the actual arrival times of 

the two pulses. However, n (= 1 to 4) is not known a priori. 

To resolve this issue, one approach is to employ four filters in parallel to process the 

same set of input samples, each assuming a different value of n from 1 to 4. For every set of the 

samples, one of the four filters will deliver the most accurate estimates, for instance, when the 

pileup pulse arrives at 3T, the estimation results will be the most accurate for the third filter. 

Quality Factor (QF), defined as the reciprocal of the χ
2
 value, can be utilized to gauge the 
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estimation accuracy of the four filter outcomes. In our simulation, the one with the highest QF is 

selected to produce the final estimates. Figure 4.3 depicts the input and outputs of the four LOFs 

and displays the QF of the outcomes. 

While parallelization presents a straightforward solution, it consumes much hardware 

resource, especially when thousands of calorimeter channels are processed with the same 

  

  

Figure 4.3.  Evaluation of (4.8) for n = 1, 2, 3, 4 of the case illustrated in Figure 4.1 for τc = -1.276 

ns and τp = 2.015 ns without electronic noise. The solid curves are the actual waveform of the 

shaper output, the dashed curves are the recovered waveforms. The processed input samples by the 

LOF are marked in squares. 
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configuration. An alternative approach is to serialize the algorithm with only one filter, i.e., 

through iteration. In our simulation, a two-step coarse-fine estimation process is devised, in 

which the arrival time of the pileup pulse is decomposed into two terms, n0T and (n-n0)T + τp, 

and n-n0 is estimated during the coarse step and τp is estimated during the fine step. 

 

Figure 4.4.  Feasibility evaluation of the coarse-fine estimation scheme. When n0 is set to 2 in 

the coarse estimation, the absolute value of the estimation error of (n-n0)T + τp is less than 0.5T 

when the arrival time of the pileup pulse traverses from 1T to 4T. 

Figure 4.4 depicts the coarse estimation outcome of n-n0 of the pileup pulse when τc = 0 

and n0 is set to 2. Even though estimation error occurs when n-n0 ≠ 0, the error is bounded and 

deterministic when n ranges from 1 to 4. Thus, a lookup table (LUT) can be constructed to 

accurately determine the value of n-n0. When τc ≠ 0, some small deviation will arise, slightly 

degrading the precision of the arrival time estimation of the pileup pulse (n-n0)T + τp; however, 

the integer part n-n0 is intact, and the exact value of n can be reliably determined accordingly. In 
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the fine step, with reloaded LOF coefficients (pre-calculated for the correct bunch crossing time 

nT), highly accurate results of Ac, τc, Ap and τp are produced. With this two-step iterative 

approach, 75% of the hardware is saved at the cost of a slightly more than doubled estimation 

time due to the iteration. The following section describes the results of Monte Carlo simulation 

conducted in this manner. 

Monte Carlo Simulation 

A 5000-run Monte Carlo simulation is performed using the two-step iterative estimation method. 

The amplitudes of the current and pileup pulses are uniformly distributed in the range of [0, 

10×10
-6

]. The fractional parts of the arrival times are uniformly distributed between -3ns and 3ns. 

The integer part of the arrival time of the pileup pulse n is a uniform discrete random variable 

taking on a value from {1, 2, 3, 4}. The standard deviation σ of the AWG noise is set to 5×10
-7

. 

Figure 4.5 graph the Ac, Ap estimation results, in which the x-axis is the actual input 

signal amplitude and the y-axis is the estimated amplitude. In both figures, the estimation points 

are closely and uniformly scattered around the line y = x, revealing an accurate and unbiased 

estimation of the LOF approach. No estimation outcome falls on either x-axis or y-axis in either 

plot, indicating that no false alarm or missing detection occurs in all 5000 runs of this Monte 

Carlo simulation. 

Figure 4.6 graphs the correlation between the Ac, Ap estimation errors. A negative 

correlation is observed, which indicates that when the estimation of Ac experiences a positive 

error, say, due to noise, the estimation of Ap will likely experience a complementary negative 

error, and vice versa. This is not difficult to justify as the goal of the LOF is to minimize the 

overall value of the χ
2
 function. In addition, it is also noticed that when ΔAp decreases negatively 
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(ΔAc increases positively), the correlation slightly deviates from the line y = -x, which probably 

stems from the truncation error of the first-order approximation of the LOF due to the asymmetry 

of the leading and trailing edges of g(t). 

 

Figure 4.5.  Estimated vs. actual input signal amplitudes for Ac (left) and Ap (right). 
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4.1.2 Further Analysis 

Further analysis is conducted to examine the quality of the LOF estimation in this section. 

Figure 4.7, Figure 4.8, and Figure 4.9 show the mean of the estimation errors for Ac, Ap, τc 

and τp, respectively, of 100 Monte Carlo runs, when τc and τp vary from -T/4 to T/4. The 

quadratic error profile reflects the fact that the truncation error of a first-order Taylor expansion 

is dominated by second-order terms. The asymmetry of the profile is due to the asymmetry of the 

g(t) function, which exhibits a fast rising edge and a slow falling edge. With a small τ, the 

amplitude estimation errors of Ac and Ap are typically less than 0.5% in this simulation. 

 

Figure 4.7.  Estimation error of Ac vs. τc (left) and τp (right) from -T/4 to T/4. The σ of the 

Gaussian detector noise is set to 10% the peak value of the detector current pulse. 
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Figure 4.8.  Estimation error of Ap vs. τc (left) and τp (right) from -T/4 to T/4 with the same 

detector noise assumed in Figure 4.7. 

 

Figure 4.9.  Estimation error of τc vs. τc from -T/4 to T/4 (left) and estimation error of τp vs. τp 

from -T/4 to T/4 (right). Simulation parameters are identical to those of Figure 4.7 and Figure 

4.8. 
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Figure 4.10 illustrates the estimation errors of Ac, Ap, τc, and τp as a function of nT + τp 

with a coarse-fine iterative approach of the LOF (n0 = 3 in this case). The periodic error pattern 

with exactly zero estimation error at integer multiples of T verifies the first-order approximation 

of the χ
2
 function. A proximity effect of the error behavior is also observed in that the error 

ripple asymptotically dies out when the two pulses are further separated, i.e., as nT → ∞. The 

amplitude and thus the energy resolution of the estimation will degrade when the two pulses are 

closely spaced, i.e., for n < 2 cases. 

  

  

Figure 4.10.  Coarse-fine iterative estimation results of Ac (top left), τc (top right), Ap (lower left), and 

τp (lower right) vs. nT + τp for n0 = 3. The LOF yields accurate estimation results for nT. 
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4.2 Decision Feedback Equalization 

After the pulse amplitude in the current BC is correctly estimated by the extended LOF, the 

algorithm will proceed to the next BC that has signal pulse existed. At this point, the previous 

amplitude estimate can be used to remove its pulse’s impact on the current one under estimation 

as the normalized waveform is known. Thus, the decision feedback technique is carried out 

naturally. 

Before the samples fed into the extended LOF, the signal residues from all the prior BCs 

will be subtracted from the current signal samples through the feedback path depicted in Figure 

4.11. Therefore, all the history will be removed. 

 

Figure 4.11.  M-tuple LOF with decision feedback techniques. 

There are two additional issues that need to be addressed. As mentioned before, each time 

after the joint estimation is performed, the algorithm will advance to the next BC that exist a 

signal pulse (physical event occurs). Therefore, it is necessary to identify the BC with signal 

pulse first. There are different ways to complete this task [16]. In this research, a 2-tap LOF is 

employed to provide a coarse estimation for each BC to determine the existence of the signal 

pulse. This coarse estimation also aided with the decision feedback scheme to avoid the pileup 

effect from the previous BCs. 

Due to the linearization of the signal model, the estimation results also suffer a systematic 

error and become biased. This bias is strongly depend on the arrival time delay Δt [17] and will 
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become larger as the distribution of Δt spreads out. In order to mitigate this problem, an iterative 

estimation procedure [11], [16] is performed as illustrated in Figure 4.12. After extended LOF 

gives the amplitude and timing estimation, the signal model will be linearized at this estimated 

pulse arrival time instant and the coefficients of the iterative LOF will re-calculated with this 

updated signal model. Thus, the approximation error will be greatly reduced. 

 

Figure 4.12.  Diagram of iterative LOF. 

4.3 Sequence Detection Algorithm 

As the digitization module samples the post-shaping signal continuously in the future LAr 

calorimeter upgrade, the availability of sequence detection opens up for high precision amplitude 

estimation. 

A typical waveform of the pulse train produced at the output of the shaper is depicted in 

Figure 4.13. This waveform is generated according to the occurrence of physical event at each 

BC from the simulation results of AREUS, an ATLAS LAr calorimeter simulation platform. The 

effect of arrival time delay Δt that regulates the exact peaking time of each pulse is also included 

with a presumption of Gaussian distribution for Δt with mean µ = 0 ns and standard deviation σ 

= 0.6 ns. In addition, a shaped noise of SNR = 74 dB is superposed on the waveform. 

As stated before, the normalized individual pulse shape g(t) is known. The unknown 

parameters to be determined are the amplitude A and arrival time delay Δt for each pulse 

corrupted by the frontend electronic noise. 
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Figure 4.13.  The time domain waveform of a segment of pulse sequence. 

Several algorithms can be implemented to treat IEI problems in a noisy sequence, such as 

equalizations and maximum likelihood detection. In this research, the extended LOF with 

decision feedback equalization (DFE) is applied for amplitude estimation in the sequence. 

Although the DFE technique suffers from the error propagation effect, theoretically, it can 

completely remove the interference of the current event to the future one without much noise 

enhancement as the zero-forcing equalizer does. 

4.3.1 Basic Setups 

The LHC is running at a speed of 40 MHz [1] and at each BC spacing 25 ns to each other, the 

detector will potentially capture a physical event and produce a current pulse. For each pulse, 

there are two parameters, A and Δt, to be estimated. Therefore, every 25 ns, at least two samples 

are required for the linear system to deliver valid estimates as shown in Figure 4.14. Otherwise, 
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it will become an underdetermined system that gives arbitrary solutions. This fundamental rule 

of the linear system set a lower limit for the sampling rate of the digitization modules to be at 

least 80 MS/s. On the other hand, to ensure uniform sampling during each BC, the sampling rate 

is required to be 40∙x MS/s (x≥2). Constrained by the realization complexity of the ADCs to 

multiple specifications, such as resolution and power consumption, the sampling rate cannot be 

too fast. Therefore, a sampling rate of 80 MS/s is adopted throughout the analysis below, i.e. at 

each BC, two samples are taken for processing. 

 

Figure 4.14.  Illustration for sample rate discussion. 

Another important setup is the selection of the total number of samples for the joint 

estimation by the LOF. Fewer samples obviously will result in deficient estimation precision, 

while too many samples, on the contrary, will introduce large estimation latency, which is also 

an undesired effect. Usually, 5 samples are chosen ([7], [11], and [14]) in a 40-MS/s sampling 

rate, corresponding to a 5 BCs latency. Thus, 10 samples are used in this analysis under the 80-

MS/s sampling rate assumption, which has the equivalent latency to the previous work. 
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4.3.2 The Algorithm 

To ensure valid estimates given by the extended LOF applied in the pulse sequence, several 

aspects should be considered in advance. First of all, LOF demands the pulse position 

information of an incoming pulse train, i.e. the presence of pulse in each BC; therefore, a trigger 

needs to be devised to fulfill this task. Secondly, the LOF does not remove any effect or impact 

of the previous pulse to the current one automatically, thus, the history of the pulse sequence 

should be subtracted based on the previous estimates. Thirdly, the estimation errors will drop off 

when more data samples are involved in the estimation process. Then, the estimation accuracy of 

the first pulse is always higher than that of the following pulse when the joint estimation is 

performed in a pileup event, for the first pulse includes more effective samples. 

According to the above discussion, three main procedures of the proposed algorithm are 

carried out naturally. 

The first step is to examine the presence of pulse in each BC with a simple trigger and 

this process need to iterate n = 5 times (i.e. 5 BCs) to determine the pulse pattern corresponding 

to the m = 10 samples that will be further processed by the extended LOF later. 

The trigger is constructed by a 2-tap LOF processing 2 samples each time for A and Δt 

estimations of a single pulse in each BC. A decision feedback will also be applied to subtract the 

impact of the previous pulse to the current one. Due to the equality between the number of 

unknown parameters and the number of constrains (the samples), no more freedom exists to 

suppress noise. Therefore, the filtered results by the trigger would have the same SNR as the 

processed samples. Noise and interference superposed on the samples are considered the same 

way as the signal by the trigger and completely propagate to the estimated amplitude. The 
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estimation precision is insufficient. However, the purpose of the trigger employed at this step is 

only to detect the presence of the pulses and only 1-bit true-or-false information is demanded; 

thus, large errors can be tolerant by setting a proper threshold according to the noise level. 

In the second step, a specific LOF will be selected first based on the pulse pattern 

provided by the trigger to estimate the amplitudes of the k (k≤n) pulses precisely in n BC periods 

with m samples. Four possible cases encountered in a pulse sequence are illustrated in Figure 

4.15 conceptually. Each stick represents a physical event happened in that BC with its height 

revealing the ideal amplitude that should be recovered. 

 

Figure 4.15.  Pulse patterns 

For instance, when the trigger detect a pulse pattern of [1 0 0 0 1] for 5 consecutive BC 

periods (Case C. 1 refers the presence of pulse in current BC and A ≠ 0; 0 refers to no pulse in 

current BC and A = 0), LOF10001 will be picked up for amplitude estimation, whose filter taps can 

be calculated by (4.9). 
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 ( ) 1

10001 10001 10001 10001 ,T T
−

=C G VG G V  (4.9) 

where, G10001 is a four-column matrix. The first two columns are g(n) and g′(n) for the first pulse, 

and the last two columns are g(n+4T) and g′(n+4T) for the fifth pulse. T is the bunch crossing 

time. 

If the trigger gives a pattern of [1 0 1 0 1] (Case B), then the coefficients of LOF10101 are 

given by (4.10). 

 ( ) 1

10101 10101 10101 10101 ,T T
−

=C G VG G V  (4.10) 

where, G10101 is a six-column matrix with each two columns being g(n) and g′(n) delayed 0T, 2T 

and 4T respectively for the first, third and fifth pulses. 

If each of the five BCs has incoming pulse (Case D), then G11111 is a ten-column matrix 

and C11111 is a corresponding ten-row matrix with each of the two rows being the filter taps for A 

and Δt estimation for one pulse. This extreme represents the worst case that would potentially 

occur in the pulse sequence, which, the extended LOF will not gain any performance 

improvement for amplitude estimation compared to the 2-tap LOF used in the trigger. However, 

luminosity of the calorimeter in the future upgrade dictates that this extreme case happens in a 

rare possibility. 

In the third step, the influence from the previous pulse will be diminished by subtracting 

the previous pulse sample values from the current samples. Then the extended LOF will conduct 

the estimations on the amplitudes and timings of these triggered pulses with the pre-processed 

samples. 

It is worth to mention that for n BCs joint estimation, there are altogether (2
n
-1) extended 
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LOFs corresponding to (2
n
-1) pulse patterns. When n = 5, then, there are 31 LOFs. However, as 

stated previously, more effective samples involved will boost the estimation accuracy. 

In this paper, each time, trigger will pass five BCs events and the joint estimation by the 

LOF will only determine the first pulse’s amplitude, by which, the maximum number of samples 

are involved for estimation, attenuating the noise power by this maximum number of samples. 

And always keep the current pulse for estimation in the first place, then for five BCs, there are 

2
5
/2-1 = 15 patterns in total. 

 

Figure 4.16.  Diagram of the FSM 

These estimation procedures can be easily programmed with a finite state machine (FSM) 

and assisted with a pointer pointing to the position of the current pulse. The states transfer 

diagram is shown in Figure 4.16. 
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4.3.3 Error accumulation and the solution 

At this point, the DFE sequence detection algorithm is ready for use. But, during the simulation, 

it is found that the mean of the estimation errors gradually increase, leading to a non-zero mean 

estimation as depicted in Figure 4.17. This will make the algorithm not practical for use. 

 

Figure 4.17.  Error accumulation 

Review the filter in s-domain or z-domain, the reason is revealed. It is caused by the 

shaper. The shaper has a CR-RC
2
 form, where there is a zero at DC in the expression. All the 

algorithm do, is inverse the system including the shaper. Thus, to complete this task, the 

algorithm has to have a pole at DC to cancel the effect of zero in the shaper. Therefore, the 

decision feedback process in fact keeps integrating the noise and estimation errors from the 

previous iteration. A conceptual diagram in Figure 4.18 illustrates this noise accumulation 

process. 
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Figure 4.18.  A conceptual diagram illustrating the reason of noise accumulation 

 
Figure 4.19.  Shaper modification for the removal of noise accumulation 

A simple and effective way to eliminate the problem is to modify the shaper. As long as the zero 

is moved off DC in the shaper, then the system inverse will no longer be an integrator. The error 
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accumulation effect will be removed as shown in Figure 4.19, which is verified by the 

simulations shown in Figure 4.20. 

  

Figure 4.20.  Removal of the noise accumulation with modified shaper 

This modification on shaper is also easy for circuit implementation. We can add only one 

resistor to the current active RC shaper to get a lossy differentiator. And the resistor value is 

within hundred kilo-ohm range for a reasonable low frequency zero. 

 

Figure 4.21.  One possible circuit implementation for the shaper modification 

4.3.4 Simulation Results 

A set of Monte Carlo (MC) Simulations are performed to verify the algorithm proposed in the 

previous section. 
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The waveform of the input pulse sequence is depicted in Figure 4.13 and the amplitudes 

and noise settings are the same as them in Figure 4.13, except the arrival time delay is set to 0. 

The MC data length is 10
4
 and µ = 200 MeV, which indicates a high luminosity of the 

calorimeter. 

 

Figure 4.22.  Pulse train 

The amplitude estimation results (blue) overlapping on the ideal amplitudes (red) plot in 

the time domain is displayed in Figure 4.22. It can be observed that these condensed two color 

sticks well match each other, demonstrating the functionality of the proposed algorithm. 

A correlation plot between ideal and estimated amplitudes is showcased in Figure 4.23, 

where all the dots represent the estimates. They sit closely on the x = y line, revealing the high 

precision of the estimation qualitatively and intuitively. Missing detection and false alarming 

only happen at very small amplitude case; as E > 30 MeV, there is no missing detection or false 

alarming. 
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Figure 4.23.  Energy Correlation 

 

Figure 4.24.  Estimation Error Distribution 
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A histogram displayed in Figure 4.24 measures the amplitude estimates quantitatively. 

The x-axis is the absolute differences between the estimates and ideal values and y-axis is the 

statistics over each bin. The profile of the curve has a Gaussian shape with the mean µ = -0.034 

and standard deviation σ = 0.149. Thus, it is an unbiased estimation and it can be concluded that 

99.7% amplitude estimation errors will fall into the segment within ±0.45, results in a maximum 

SNR of 84 dB and also a large dynamic range (DR). 

4.3.5 Comparison to LOF and Wiener filter 

In [11], pileup effect is treated as noise and it is in necessity in low luminosity. As the 

pileup happens more frequently, it is no longer suitable to treating pileup as noise. Left figure in 

Figure 4.25 plots the results obtained only by applying LOF [11] to the input sequence with 780 

MeV to 18.5 GeV energy from the EM middle layer of the calorimeter in Phase-II luminosity 

and 150 MeV RMS white noise. Ideal trigger is assumed. It can be seen that under high-rate 

pileup condition, LOF generally fails to provide reliable amplitude estimates. A bias is observed. 

The rate of false alarms and missing detections is much higher than that of the proposed 

detection scheme (results are plotted in the right-hand-side figure). The deteriorate performance 

of the LOF encounters problem in this situation to provide high-precision estimations. 

A comparison with Wiener filter [14] is also conducted. Same signal and noise conditions 

are applied in the simulation: 0 – 80 GeV flat energy spectrum and 200 MeV RMS white noise. 

From the two figures in Figure 4.26, we can see that the propose sequence detection algorithm 

gives more accurate estimation results with smaller deviation and no false alarm nor missing 

detections under the same simulation conditions. 
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Figure 4.25.  A Comparison to LOF results 

Figure 4.26.  A comparison to Wiener filter results 

In a summary, the proposed algorithm demonstrates good performance for high-precision 

energy estimation, especially under high-luminosity environments compared to the current 

methods. It is a potential candidate for the future readout upgrades of LHC and other similar 

applications in particle physics experiments. 
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CHAPTER 5 

ERROR TOLERANT TECHNIQUES IN ADC DESIGN 

5.1 Introduction 

For this analog-to-digital converter (ADC) prototype design, beside the nominal specs, radiation 

tolerance introduced another layer of complexity. To effectively and successfully deal with this 

task, a basic understanding toward the error mechanism due to radiations should be first 

established. In this section, two categories of the radiation effects will be first briefed, followed 

by the ADC architecture comparisons. 

5.1.1 Requirements on Radiation-Tolerant Electronics 

Radiation effects categorized as single event effect (SEE) and total ionizing dose (TID) 

challenge the prototype design. 

SEE is caused by a single, energetic particle, and can take on different forms. As stated in 

[18], [19], when particle traversing a silicon device, ionizing current will be induced and flow 

between the active region and substrate, an event such as a register bit flip or transient may 

occur. This will cause the malfunction of a circuit block or logic fails. 

Meanwhile, in the oxide gate, electron-hole pairs keep creating over time as the radiation 

lasts. Electrons with higher mobility leave the oxide, while holes with lower mobility are mostly 

trapped in the oxide, leading to net positive charges trapped in the oxide. This cumulative 

ionizing, also known as TID, the total ionizing dose, will create permanent damage to the device, 

such as the shift of threshold voltage and gate leakage [19]. 
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However, as the technology keeps scaling down, the thickness of the oxide is shrinking. 

This helps to ease the TID effect [20], [21] and the later on measurement results proved that. In 

this design, we are mainly focus on dealing with SEEs. 

5.1.2 SAR vs. Pipelined ADC [22] 

Some efforts were invested in the development of dedicated ADC for the high-energy physics 

(HEP) experiments ([23] – [27]). In this research, there are two principal ADC architecture 

choices for HEP applications. One is the SAR ADC and the other is the pipelined ADC. Both 

can operate at medium-to-high resolutions, while the pipeline usually displays a higher 

throughput than the SAR. 

One challenge of implementing a pipelined ADC in scaled CMOS is that the low supply 

voltage in these processes makes the design of the high-gain, high-speed residue amplifier (RA) 

– necessary for inter-stage residue voltage transfer – difficult, thus degrading the linearity and 

noise performance of the ADC, which usually translate into high power consumption, large die 

size, and high cost ([28] – [32]). 

In contrast, due to the series conversion process, a SAR ADC ([33] – [37]) is much more 

power and area efficient – it only contains three main components, a switched-capacitor (SC) 

digital-to-analog converter (DAC), a zero-crossing comparator, and some SAR logic and 

registers, leaving ample room for redundancy circuits to be implemented for radiation tolerance. 

We will show in Section II that with technology advancement, CMOS SAR ADCs now meet the 

conversion speed requirement for ATLAS LAr application. The characteristics of advanced 

CMOS technologies (e.g., a 40-nm or 65-nm process) under irradiation, showing significant 

decrease of the radiation-induced charge trapped in the oxide and interface states [38], also 
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greatly benefit the TID tolerance of the circuits. The improved conversion speed, combined with 

the prominent advantage in power and area consumptions, makes the CMOS SAR a suitable and 

perhaps preferred candidate for future HEP applications. 

5.1.3 Design Challenges 

The radiation operation condition coupled with the large dynamic range (>12b ENOB), 40-

80MS/s sample rate and low power (for cooling system requirement) specs [39] make the design 

of such ADCs a very challenging task. 

From the speed aspect, to realize a >50MSPS operation with 12-14 bits resolution is quite 

demanding (pushing the limit) for a straight SAR architecture in 65nm process. On the other 

hand, low power requirement rules out the multi-stage power-consuming pipelined structure. 

Therefore, a hybrid two-step SAR was proposed to balance the above design trade-offs. Besides, 

radiation tolerance spec demands additional techniques to be applied for protection. 

5.2 Split Architecture and Redundancies
1
 

To tolerate errors, no matter caused by radiations or metastabilities, we always incorporate some 

kind of redundancies to assist. TMR, triple modular redundancy is a widely used technique for 

the digital circuit protection. Three identical digital blocks process the same logic input and 

produce a final digital bit by majority voting as depicted in Figure 5.1. 

Similarly, we can also apply this TMR technique in the system level [40]. Three identical 

sub-ADCs sample and quantize a same analog input and produce the final digital code by a 

                                                 

1 © 2017 IEEE. Portions adapted in section 5.2, 5.3 and chapter 6 and 7, with permission. See reference [41]. 
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voter. The error probability of this voted output will largely drop compared to that of the output 

generated by a single ADC. However, there are area and power penalties. We have to triple the 

number of all devices, which in turn, lower the input bandwidth. Although we have method to 

address these issues, which we will discuss in the later, matching between the three ADCs as 

well as the time skew in clock distribution are much tougher tasks to deal with. 

 

Figure 5.1.  TMR in digital design (left) and in system-level design (right). 

To retain the redundancies, but get rid of the short comes of the TMR in system level; the 

double modular redundancy (DMR) is applied in the system level design. Therefore, split ADC 

is proposed naturally [41], [42]. The two identical conversion paths work independently on the 

same input. Each sub-ADC can be the backup of the other one. If both ADCs are correct, their 

outputs will be averaged and taken as the final output. Figure 5.2 displays the system diagram of 

the proposed split SAR ADC architecture. 

On the other hand, a bunch of detection circuits is invented and designed to monitor the 

internal nodes of each sub-ADC to identify the erroneous sub-ADC and control the ‘select’ 

signal of the MUX to output the correct one or the averaged one. To determine whether there is a 
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sub-ADC encountered problem, we simply subtract one ADC’s outputs from the other one and 

monitor this difference delta Do. If both ADCs are working fine, this delta Do should be close to 

zero. Otherwise, the digital logics will be activated to do the selection according to those 

detection bits. 

Besides, with the injection of the pseudo-random binary sequence (PRBS), the two 

transfer curves of the sub-ADCs will be slightly differed to each other, then we can take 

advantage of this split structure to enable the digital bit-weight calibration. 

 

Figure 5.2.  Radiation-tolerant split SAR ADC architecture. 
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Figure 5.3.  Intra- (left) and Inter-stage (right) redundancies. 
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Beside the architectural redundancy, there are extensive redundancies allocated in each 

stage and between stages. Figure 5.3 shows the intra- and inter-stage redundancies for dynamic 

error tolerance. 

Within each stage, sub-binary DAC is used to cover wrong bit decisions caused by 

incomplete DAC settling or reference voltage bouncing. On the other hand, by scaling the 

reference voltage, gain of the residue amplifier is relaxed and inter-state redundancy is created. 

5.3 Error Detection Circuits 

To effectively identify the errors induced by the incident particles, the critical internal nodes of 

each sub-ADC are monitored by a bunch of dedicated detection circuits. 

 

Figure 5.4.  Summing node charge corruption caused by SET current and the detection circuits 

5.3.1 Substrate Current Detection 

Summing node is one of the most critical nodes in SAR ADC. During bit cycling, if the 

drain of an off summing-node switch is hit by an ionizing particle, the SET current shown in 

Figure 5.4 flows from the drain to the substrate. This current will irreversibly alter the total 

charge stored on the capacitors that represents the original input sample to be converted, 

resulting in a large conversion error. For a total deposited charge of 100 fC and total DAC 
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capacitance of 2 pF, the error voltage can be as large as 50 mV, or equivalently 340 LSB at 14-

bit level. 

To detect the summing nodes SEE error, the circuits shown in Figure 5.4 (right) is 

proposed. Two resistors are added to the substrate paths of the two summing node switches (M1 

and M2), respectively. If the drain of M1 or M2 is hit, the SET current will flow through one of 

the two resistors, creating a temporary voltage difference between the two resistors. An amplifier 

then brings this voltage up to a resolvable logic level. A high threshold (VH) and a low threshold 

(VL) can be set to detect the amplifier output voltage—the comparison outcome thus reveals 

whether there is a hit. The comparison is performed by two inverters with their trip points 

skewed in two opposite directions by sizing as the exact value of VH and VL are not critical. To 

prevent latch up, a diode connected low threshold voltage (LVT) NMOS is connected in parallel 

with the resistor to clamp the substrate voltage to the threshold level. 

5.3.2 Sampling Clock Protection 

Sampling clock is also monitored to prevent potential timing errors. Two D-flip-flops (DFFs) are 

serial connected with their clock from the sampling clock. Within one sample period, if the 

sampling clock accidentally toggles twice, a triggering signal from the backend DFF will be 

produced to indicate the incorrect sampling operation. 

5.3.3 Over- and Under-flow Detection 

In the over or underflow detection, no additional circuits are designed or added. Any out-of-

range errors can be identified by observing the output digital codes of the 2
nd

 stage. If all “1”, we 
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know there is an overflow and if all “0” we know there is an underflow. Then the erroneous sub-

ADC is pinpointed. An illustrative diagram is shown in Figure 5.5. 

 

Figure 5.5.  Residual curve when the bit error made by the 1
st
 stage comparator/logics is within 

(blue) or out of the redundancy (red). 

5.3.4 Extra Bit Cycle Detection 

The second technique, also as one of the key technique we incorporated in this prototype, is the 

extra bit cycle for the 2
nd

-stage residue detection. Figure 5.6 sketches the second stage DAC. 

Towards the end, an extra DAC capacitor is attached to the 2
nd

 stage summing node for an extra 

bit cycle [43]. Its value is set as 6 times the value of the LSB capacitor according to the statistics 

of ΔDO in simulations. 

The principle is illustrated in Figure 5.7. Under normal condition as the left figure shows, 

toward to the LSB cycle, the summing node voltage is close to zero. No matter the LSB decision 

is 1 or 0, after the extra switch, it will always give a decision that is opposite to the LSB 

decision. 
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Figure 5.6.  Second stage DAC including the extra capacitors for residue detection. 

 

Figure 5.7.  Detection principle for the extra DAC capacitors in the 2
nd

-stage. 

Even with noise, like this middle figure shows, The LSB decision should be 1, but due to 

the noise affection, the actual decision is 0. Then, according to this actual decision, the summing 

node voltage will switch to a higher positive value, which produces a “1”, still opposite to the 

LSB decision. 

However, if due to some reason, say a striking particle disturbed the conversion process 

somewhere before the LSB cycle, the summing node voltage is likely to be far away from zero. 

Then the extra comparison tends to give an identical decision as the LSB did. Then we can take 
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advantage of this good property to detect the 2
nd

 stage residue. In the later measurement, this 

detection produced near 100% correction rate. 

5.3.5 Parity Bit Protection 

For digital circuits, TMR is applied for protection. But, there is an exception in this prototype. 

All the data latches in the SAR loop are not TMR-protected due to the speed consideration. All 

the data latches are loading the comparator. If again we triple the number of latches, the SAR 

loop will be significantly slow down (labeled in Figure 5.8 left). 

 

 

 

Figure 5.8.  SAR loop (left) and illustrative residue transfer waveforms (right). 

But if leave those latches untreated, radiations may flip the bits stored in those latches 

and corrupt the conversion results, because those latches directly control the DAC. However, in 

most cases, if the summing node voltage is disturbed by the status change of those latches, the 

residue voltage is likely go over the second stage searching range like the grey curve shown. 
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Then, by observing the second stage digital codes, we can still tell whether the sub-ADC is intact 

or not. 

But, there is one case. If one data latch is hit toward the end of residue amplification 

phase, then as this red curve shows on the right of Figure 5.8, the residue may still within the 

redundancy, and the second stage will still converge. But, the final digital output may be far 

away from its correct value. 

To treat this specific case, parity bit is employed for detection (Figure 5.9). The parity bit 

circuit follows the comparator and counts the number of 1’s as soon as the comparator gives a 

decision. By the end of the 1
st
 stage bit cycles, the parity bit will done its work and be stored. 

After the residue amplification, all the data bits are pour out. By comparing the parity bit and the 

actual data parity, it can be verified whether there is something wrong during the amplification 

phase, or whether there is status change since the digital bits are stored in the data latches. 

 

Figure 5.9.  SAR loop (left) and illustrative residue transfer waveforms. 
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5.4 Summary 

Various error detection techniques are proposed and described in this chapter. The critical 

internal nodes of each SAR ADC, including the summing node, the second-stage residue, 

sampling clock, data latch in the SAR loop, etc. are under surveillance. When one sub-ADC 

reports error, the digital logics will be activated to select the results from the other sub-ADC for 

the final output. 
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CHAPTER 6 

PROTOTYPE DESIGN 

Error detector techniques and circuit designs is discussed in the previous chapter. In this chapter, 

some of the ADC design considerations will be covered to increase the operation speed while 

maintain the resolution of the ADCs. 

6.1 Two-Step Pipelined SAR 

Within each sub-ADC, a 10-bit plus 8-bit two-step pipelined SAR is implemented with one bit 

intra-stage redundancy within each stage and two bits inter-stage redundancy. Figure 6.1 plots 

the block diagram of the two-step SAR sub-ADC. By pipelining the two moderate-resolution 

SAR, the throughput is boosted. More bits are allocated to the first stage to resolve, which helps 

relax the residue amplifier design and also relax the noise and linearity requirement for the 

second stage. 
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Figure 6.1.  Two-step pipelined SAR ADC architecture. 
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6.2 RA-Comparator Offset Removal 

Offset between 1
st
 stage comparator and the residue amplifier should also be taken into 

considerations. For example, for a 1.2V reference voltage and the 9b + 7b configuration, the 

second stage full scale is 150 mV and with 2-bit inter-stage redundancy the signal would be 

bounded within ±VFS/4 in the ideal case as the blue curve shown. If the residue curve goes 

beyond 3VFS/4 like the grey curve shown in Figure 6.2, the residue will saturate the second stage, 

and large conversion errors would occur. The inter-stage gain is 16, so we can calculate that the 

maximum allowed offset between the first stage comparator and the RA is only 7mV, which is 

too small to only rely on the device matching. 

Figure 6.3 shows a Monte Carlo simulation on the Δ offset between the comparator and 

residue amplifier. It can be seen this Δ offset can easily go beyond 7mV. 

 

Figure 6.2.  2
nd

 stage residue curve with (gray) and without offset (blue). 
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Figure 6.3.  Monte Carlo simulation of offset between 1
st
 stage comparator and RA. 

Therefore, a preamp sharing scheme is proposed as sketched in the diagram of Figure 6.4. 

Residue amplifier is a three-stage fully differential amplifier with its first stage reused as the 

preamplifier for the comparator. So, the dominant part of the offset is removed by this sharing. 

Any offset from the second and third stage of the RA to the comparator can be viewed as the 

offset residue, as it will be divided by the first stage gain when input-referred. 

And from the Figure 6.5, it can be observed that the Δ offset is consistently confined 

within ±5mV after this preamp sharing. 

 

Figure 6.4.  Preamplifier and residue amplifier sharing. 
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Figure 6.5.  Monte Carlo simulation for offset before (green) and after (blue) the preamplifier 

sharing. 

 

Figure 6.6.  Diagram of the two-step SAR residue offset calibration circuit. 

To treat the offset residue, a small unit-element DAC is attached to the first-stage summing node 

to combat this effect. As discussed in the previous slides, the residue voltage should be confined 

within ±VFS/4 in the ideal case and if it goes beyond +3VFS/4 or -3VFS/4, then an overflow or 

underflow will occur. Thus, by monitoring the first two MSBs of the second stage, D<11> and 
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D<12>, these two cases can be identified. When two of such cases continuously show up, then a 

small voltage will be injected into the summing node through the calibration DAC to compensate 

the offset as shown in Figure 6.6. Therefore, the offset residue will be removed too by this 

calibration circuits, leaving an offset free residue transfer. 

6.3 Calibration for DAC Mismatch and RA Gain Errors 

The split-ADC architecture not only provides system redundancy for SEE tolerance, but also 

enables digital calibration for capacitor mismatch [42]. As shown in Figure 6.7, the difference 

between the two digital outcomes is used as an error signal to direct the adaptation of bit weights 

[44]. The least mean square (LMS) equations that are used to update the bit weights can be 

written as follows: 

 ( ) ( ), , ,
1A i A i O A iW n W n D Dµ+ = − ⋅∆ ⋅  

(6.1) 

 ( ) ( ), , ,
1B i B i O B iW n W n D Dµ+ = + ⋅∆ ⋅  

where WA,i/WB,i and DA,i/DB,i are the bit weight and bit value of the i
th

 bit respectively for ADCA/ 

ADCB; μ is a constant which determines the convergence speed; n is the number of update. Once 

the radices are correctly identified for both ADCs, the two calibrated outcomes dA and dB must be 

identical, leading to a zero difference ΔDO (which halts the radix update). 

The residual curves of the split-ADC must be different from each other to rule out the 

scenario when the two ADCs commit errors in the same way and the output difference is still 

zero. This is realized by injecting a small offset voltage to the summing node through a small 

capacitor CCAL, as shown in Figure 6.8. The two residual curves are shifted in different directions 

near the transition points. 
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= ⋅∑A A i A i
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d W D
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d W D= ⋅∑

 

Figure 6.7.  LMS digital calibration scheme. 

 

Figure 6.8.  Offset injection for residual curve differentiation. 

 

Figure 6.9.  Learning curve of SNDR and SFDR. 

The calibration technique has been verified by the behaviour simulation. The split-ADC 

model used in the simulation includes capacitor mismatches, inter-stage gain error, offset and 
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noise of the comparator and the amplifier. The simulation result is shown in Figure 6.9. The 

SNDR and SFDR increase from below 60 dB to about 79 dB and 97 dB respectively. The 

calibration converges fast in less than 1 million samples, corresponding to 12.5 ms under 80 

MSPS conversion rate. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

Measurement results are presented in this chapter, which includes both electronic test results and 

the irradiation test results. 

7.1 Regular Electronic Test Results 

The prototype is fabricated in 65-nm CMOS process. The core is 600 µm by 570 µm, occupying 

0.342 mm
2
 active area. As shown in Figure 7.1, clock generation circuits and reference buffers 

sit in the center and the two sub-ADCs are laid out symmetrically on the side. 

 

Figure 7.1.  Die Photo 
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7.1.1 Static Linearity 

Figure 7.2 shows the DNL and INL plots at 35M sample rate. DNL is within plus and minus 0.4 

LSB and INL is within about plus and minus 0.5 LSB. Both indicate the good linearity of the 

prototype design. 

 

Figure 7.2.  DNL and INL plots with 5-MHz input sine signal at 35MS/s sample rate. 

7.1.2 Dynamic Performance 

These are measured FFT spectra at 35MSPS and 40MSPS for a 5MHz sine-wave input. It 

demonstrates 78.5dB SNDR and 103dB SFDR after a foreground calibration of DAC mismatch 

and RA gain errors under 35MSPS. This results is after the averaging of the two sub-ADCs’ 

outputs and same for the results shown in the following slides. This measurement at the low 

sample frequency is for comparison purpose with other work. 

At 40MSPS, it demonstrates 78dB SNDR and 95dB SFDR after a foreground calibration 

of DAC mismatch and RA gain errors. And this sample rate is used in the ATLAS experiment. 
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Figure 7.3.  FFT spectra with 35MS/s (left) and 40MS/s (right) sample rate with 5-MHz input. 

 

Figure 7.4.  ADC Dynamic Performance 

This figure plots the ADC dynamic performance at 35, 40 and 75MS/s. The amplitude of 
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>75dB SNDR and a >90dB SFDR up to the Nyquist frequency. At 75MS/s, it measures a >70dB 

SNDR and a >88dB SFDR up to the Nyquist. 

7.1.3 Power Consumptions 

Here is a power breakdown measured at 40 MSPS sample rate and also the power consumption 

versus sample rate plot. Most of the powers are consumed by the residue amplifiers and the 

reference buffer, while the digital circuit only consumes 14% of the total power in spite of the 

TMR applied. The total power consumption is only 24.9 mW at 75 MSPS sample rate and 22.2 

mW at 40 MSPS. 

 

 

 

Figure 7.5.  Power consumption vs. sample rate (left) and power breakdown at 40 MS/s sample 

rate. 

7.1.4 Summary 

Table 7.1 summarizes this work and compares it with other the state-of-the-art 14-bit SAR ADCs 
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It can be seen that in each corresponding sample frequency, this prototype measures the 

highest peak SNDR and peak SFDR as well as the lowest power consumption, which includes all 

the redundant circuits for radiation tolerance and two on-chip reference buffers. It also achieves 

the highest Schreier FoM and the best Walden FoM. 

Table 7.1.  Summary and Comparisons 

 This work 
ISSCC15 

Kramer 

JINST13 

Kuppambatti 

ISSCC13 

Kapusta 

Process [nm] 65 40 130 65 

Resolution [bits] 14 14 12 14 

fs [MS/s] 35 40 75 35 40 80 

SNDR 

[dB] 

@ DC 78.5 78.0 77.8 75 67.8 73.6 

@ Nyquist 75.1 74.4 70.8 74.4 67 71.3 

SFDR 

[dB] 

@ DC 103.1 95.0 92.1 99 77.8 85.7 

@ Nyquist 94.3 98.9 89.6 90 78 ≥80.3 

Power [mW] 21.8 22.2 24.9 54.5 55 31.1 

Aera [mm
2
] 0.342 0.236 n/a 0.55 

FoM1 

[dB] 

@ DC 170.6 170.6 172.6 163.1 156.4 167.7 

@ Nyquist 167.2 167.0 165.6 162.5 155.6 165.4 

FoM2 

[fJ/c.-s.] 

@ DC 90.6 85.5 52.3 338.8 685.4 99.4 

@ Nyquist 134.0 129.4 117.2 363.1 751.6 129.5 

7.2 Irradiation Test results 

The irradiation tests are performed in two parts. One is the SEE test with proton beams and the 

other one is the TID test with X-ray. 
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7.2.1 SEE test results 

Setup 

In the SEE test, proton beam is aligned to the center of the chip. The beam has a spread and the 

spread is in Normal distribution with its sigma of about 5mm. But the die size is only 1.5mm by 

1mm, so, it is completed covered by the beam. FPGA board, power boards, and DC power 

supply are about 2 meters away from the beam, and three signal generators for clocks and input 

are also about 2 meters away from the beam. But there is no additional shielding for these 

instruments. Then the FPGA output is connected to the computer in the control room through a 

150-feet Ethernet cable. 

Table 7.2.  Radiation Dose 

 
Time Duration 

(s) 

Approximate Flux 

(protons/cm
2
/s) 

TID Effects 

Run 1 4700 3×10
8
 120 Krad 

Run 2 5394 6×10
8
 240 Krad 

Run 3 470 10×10
8
 40 Krad 

Total 10564 - 400 Krad 

Table 7.2 lists the radiation plan and the actual dose and dose rate in the experiment. The 

goal is reach a total fluence of 3.8×10
12

 protons/cm
2
 which is the ATLAS LAr calorimeter spec. 

The experiment was divided into 3 separate runs in order to start with a low dose rate, which is 

the flux shown in the third column of the above table. (Flux is in the unit of protons/cm
2
/s.) After 

these three runs, the chip actually received 5.05×10
12

 protons/cm
2
 fluence. The proton energy is 

120MeV. 



 

87 

Measured Results 

Figure 7.6 shows the error records before correction and after correction when beam is on. 

The x- and y-axis labeled with ΔDOA and ΔDOB, represent the error of ADCA and ADCB, 

respectively. It can be seen from the left figure, all the large errors are located along x- or y-axis, 

indicating the uncorrelated characteristics of those errors and when one sub-ADC encounters 

problem, the results from the other ADC are always usable. This is a good sign and just as 

expected: the probability of both ADCs being wrong is significantly low. And not one single 

case was observed during the 3-4 hours test. 

  

Figure 7.6.  Error plot of ADCA and ADCB before (left) and after (right) the correction. 

The right figure is the results after applied extra bit cycle and parity bit detections. In 

order to plot in the same figure with the same scale, the erroneous results were enforced to equal 

to the correct one. Therefore, the blue squares lie on the diagonal. From the right-hand-side 

figure, first of all, all the errors are successfully detected, reaching a 100% detection rate and 
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secondly, after correction, all the errors are bounded within ±4 LSBs, producing a 100% 

correction rate. 

 

Figure 7.7.  Error rate at 25 MS/s and 50 MS/s and fitted line (blue). 

Another test is conducted with the same setup but no radiations. Under this condition, 

most of the errors should be generated by metastability.  

The ADC was set to run for about 9 hours at 50MHz sample frequency for a phase-

locked 10MHz sine-wave input and the experiment was repeated with 25MHz sample clock and 

a phase-locked 5-MHz sine-wave input. All the errors were recorded and counted. Figure 7.7 

reflects the huge difference of the raw error rates under the two different sample rates. 

After perform the detection and correction logic, all the errors are successfully corrected 
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-12
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Theoretically speaking, after the correction is performed, the error rate will be lowered to 

p
2
 if the raw error rate of each sub-ADC is p. So, Figure 7.8 showcases this p to p

2
 relationship 

and interprets it into the “time domain”, which is the average time to observe one error on the y-

axis. The red and blue curves are the error rate to time one-on-one correspondence line of 25M 

and 50M sample rates respectively. Two stars represent the raw error rates before correction, 

which is p; and the two squares represent the error rates after correction, which is p
2
. 

 

Figure 7.8.  Error rate to observation time mapping 

From the figure, it’s clear that due to the observation time limit, we did not see one single 

error after the correction, because the error rate is around 10
-12

. And if we want to observe one 

error after the correction is performed, then we have to wait 7 years at 50MS/s sample rate and 

35 million years at 25MS/s sample rate on average, which indicates the very high reliability of 

the prototype with the split structure and all the detection circuits involved. 
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Figure 7.9 shows the raw error rate versus error threshold. It can be seen that the curve is 

nearly flat, indicates the weak dependence of the error rate on the threshold. 

 

Figure 7.9.  Error rate vs. error threshold 

7.2.2 TID Test Results 

Setup 

The second part of the irradiation test is the total ionization dose test. The prototype ADC was 

exposed under the X-ray. During the exposure, the chip was powered up and clock was turned on 

but no input signal was fed in. We exposed the chip with a certain dose of X-ray each time and 

after the irradiation is done, we brought back the chip and measured its performance. 

Measured Result 

Figure 7.10 shows the TID test results. Left-hand-side figure shows the measured SNDR 
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total power consumption of the chip after each exposure. Up to 1 Mrad, the maximum SNDR 

and SFDR degradation is less than 1 dB and maximum power variation is less than 1 mW. And 1 

Mrad is a ten years TID with a safety factor of 25. 

  

Figure 7.10.  SNDR and SFDR (left) and power consumption (right) variation vs. dose rate. 
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CHAPTER 8 

CONCLUSION 

Theoretical Analysis extended from [11] to construct the extended LOF for m-tuple joint 

estimation is present. Decision feedback technique is employed for pileup removal. The 

systematic estimation error due to the first-order truncation on the signal model is mitigated by 

the iterative LOF. Results from Monte Carlo simulation validate the proposed algorithm and a 

comparison with LOF and Wiener filter is also conducted, demonstrating the superior 

performance of the proposed sequence detection algorithm. Error accumulation issue in the 

feedback equalization system is addressed with modification of the shaper in the readout system, 

with no significant revision on circuit implementations. 

On the other hand, to accommodate the above digital signal processing needs, a low-

power 14-bit radiation-tolerant ADC is proposed. Measurement results prove that redundant split 

SAR ADC with built-in SEE detection circuits not only provides an architecture and circuit 

solution to radiation tolerance, but also reduces the ADC metastability errors (both improved 

from p to p
2
). The prototype measured 78dB SNDR and 90-100dB SFDR with less than 25mW 

power for 0-75MS/s. The prototype also measured a 100% correction rate for SEE and 

metastability errors. 
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