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Background/Objective: Non-invasive neuromodulation techniques, such as repetitive
Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation
(tDCS), have increasingly been investigated for their potential as treatments for
neurological and psychiatric disorders. Despite widespread dissemination of these
techniques, the underlying therapeutic mechanisms and the ideal stimulation site
for a given disorder remain unknown. Increasing evidence support the possibility
of non-invasive neuromodulation affecting a brain network rather than just the local
stimulation target. In this article, we present evidence in a clinical setting to support
the idea that non-invasive neuromodulation changes brain networks.

Method: This article addresses the idea that non-invasive neuromodulation modulates
brain networks, rather than just the local stimulation target, using neuromodulation
studies in tinnitus and major depression as examples. We present studies that support
this hypothesis from different perspectives.

Main Results/Conclusion: Studies stimulating the same brain region, such as the
dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders
and studies using different stimulation sites for the same disorder have shown
similar results. These findings, as well as results from studies investigating brain
network connectivity on both macro and micro levels, suggest that non-invasive
neuromodulation affects a brain network rather than just the local stimulation site
targeted. We propose that non-invasive neuromodulation should be approached from a
network perspective and emphasize the therapeutic potential of this approach through
the modulation of targeted brain networks.

Keywords: transcranial magnetic stimulation, transcranial direct current stimulation, stimulation target, brain
hubs, brain networks

INTRODUCTION

The use of invasive and non-invasive neuromodulation for the treatment of neurological
and psychiatric disorders has grown exponentially in recent years, with increasing interest
in non-invasive neuromodulation. In neurorehabilitation, non-invasive neuromodulation
techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial
Direct Current Stimulation (tDCS), have been proven to ameliorate symptoms in depressive
disorders, pain, aphasia, movement disorders, motor stroke, multiple sclerosis, epilepsy, disorders
of consciousness, Alzheimer’s disease, tinnitus, schizophrenia, substance abuse, addiction and
craving, amongst others (e.g., Fregni et al., 2008; Benninger et al., 2010; Van den Eynde et al., 2010;
Zyss, 2010; Freitas et al., 2011; Avenanti et al., 2012; Borckardt et al., 2012; Brunelin et al., 2012;
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Brunoni et al., 2012; Sun et al., 2012; Berlim et al., 2013; Li et al.,
2013;Marangolo et al., 2013; Villamar et al., 2013b; Donnell et al.,
2015; Douglas et al., 2015; Shekhawat et al., 2016).

RTMS and tDCS are assumed to induce neuroplastic changes
through the application of magnetic or electrical stimuli,
respectively, directly to a brain area. For rTMS, brief high-current
pulses are produced in a coil of wire, called the magnetic coil
(Shapira-Lichter et al., 2013). The magnetic field is produced
with the line of flux passing perpendicular to the plane of the
coil, which is usually placed tangentially to the scalp (Shapira-
Lichter et al., 2013). RTMS modulates cortical excitability
using either inhibitory, low-frequency (≤1 Hz) or facilitatory
high-frequency (≥5 Hz) stimulation. Furthermore, there are
recently developed rTMS paradigms aimed at modifying cortical
excitability, such as theta burst stimulation (TBS), delivered
as a continuous (i.e., cTBS) or an intermittent theta burst
stimulation (i.e., iTBS) train. cTBS is suggested to be similar
to 1 Hz-rTMS, mimicking the long-term depression (LTD) of
synaptic plasticity, whereas iTBS is suggested to be excitatory
(Di Lazzaro et al., 2005; Huang et al., 2005; Noh et al., 2015).
More specifically for cTBS, Ji et al. (2017) have demonstrated
that low frequency (LF; 1 Hz) rTMS and cTBS share similar
short-term aftereffects in both topographical and temporal
profiles, suggesting a similar underlying mechanism (Ji et al.,
2017). TDCS influences brain excitability by using a low
level of continuous electrical current. For tDCS, two (or
more) electrodes are placed on the scalp with the current
going from the anode to the cathode. As opposed to rTMS,
the electrical currents delivered by tDCS are not strong
enough to fire an action potential (Radman et al., 2009).
The actual plastic effects of both techniques, however, are
also dependent on the state of the stimulated cortex. It has
been suggested that the stimulation can potentially interact
with the prior state of the cortex (Filmer et al., 2014).
Several factors can influence excitatory/inhibitory changes of
brain stimulations (Filmer et al., 2014), including the state of
the brain during stimulation (at rest or paired with a task;
Horvath et al., 2014), any intake of substances such as nicotine
(Thirugnanasambandam et al., 2011) and even the time of
the day (Sale et al., 2007). This sliding of the modification
threshold for increased excitation (or long-term potentiation,
LTP) and decreased excitation (or LTD), depending on the
previous history of neural activity is referred as ‘‘metaplasticity’’
or ‘‘homeostatic plasticity’’ (Abraham and Bear, 1996; Desai,
2003; Lang et al., 2004; Siebner et al., 2004; Abraham, 2008;
Cosentino et al., 2012; Hulme et al., 2013; Bocci et al.,
2014).

Currently, behavioral manifestations of neurological and
psychiatric diseases are seen as a result of alterations in a brain
network and its connectivity as opposed to an abnormality in
one isolated brain region (Fox et al., 2012b; Shafi et al., 2012;
Luft et al., 2014; Fornito and Bullmore, 2015). Neuroscientific
research has shifted focus from the properties of individual
brain regions to the interactions and connections between brain
regions (Fox et al., 2012b). Even in a recent reappraisal of historic
cases, such as Phineas Gage, Louis Victor Leborgne, and Henry
Gustave Molaison, researchers indicated that the disruptions

extended to areas far from the site of the lesions themselves
(Thiebaut de Schotten et al., 2015).

Neuromodulation research has also shifted its approach from
targeting individual brain regions to targeting entire brain
networks (Sale et al., 2015). Increasing evidence points to
the influence of neuromodulation on whole brain networks
by stimulating just one brain region (or brain hub; Grefkes
and Fink, 2011; Fox et al., 2012b). Furthermore, the positive
clinical effects of non-invasive neuromodulation in various
disorders are presumably caused by the complex interactions
between the associated brain network and the stimulation
target (Kunze et al., 2016). Interestingly, studies stimulating
one important brain hub involved in different processes and
disorders, such as the dorsolateral prefrontal cortex (DLPFC),
have shown to be effective for several conditions, which is
expected since this core hub is involved in general cognitive
and emotional processing. On the other hand, studies using
different target locations (i.e., various brain areas in the
altered brain network) for the same disorder have shown to
have similar results, as in the case of tinnitus and major
depression. Evidence for the effectiveness of different stimulation
targets for one neuropathology as well as evidence for the
effectiveness of one stimulation target for different pathologies
may indicate an underlying neural network for disorders
and may consequently suggest network stimulation as a new
stimulation protocol.

In this review we discuss non-invasive neuromodulation
techniques, namely rTMS and tDCS and their possible effects
on functional connectivity in the brain. We briefly describe
the basic brain network models and their hubs. Then, we
pursue confirmation for possible functional network effects of
rTMS and tDCS across different levels of the central nervous
systems, i.e., a whole-brain functional connectivity level as well
as a neurometabolite concentration level. Lastly, we present
further evidence in clinical studies demonstrating possible effects
on the functional connectivity of the brain for rTMS and
tDCS on different stimulation sites and different disorders by:
(1) presenting various effective stimulation sites for one disorder;
and (2) presenting one effective stimulation site for different
disorders.

BRAIN NETWORKS AND THEIR HUBS

The human brain is a complex network of interlinked regions
(van den Heuvel and Sporns, 2011; Fornito et al., 2013).
This network can be mathematically represented as graphs,
comprised of nodes (neuronal elements) and edges (their
connections) that describe the brain’s structural connectivity
(Fornito et al., 2013; van den Heuvel and Sporns, 2013a). A
subset of nodes (brain regions) with strong internal interaction
and relatively weak external associations are represented as
modules (van denHeuvel and Sporns, 2013b; Cocchi et al., 2015).
Communication between modules is supported by brain hubs,
which are regions that are densly interconnecteds with other
brain areas and play an important role in the integration of
information between different parts of the network (van den
Heuvel and Sporns, 2011; Cocchi et al., 2015; see Figure 1).
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FIGURE 1 | Brain networks can be represented as a graph comprising of a set of nodes (black dots) and a collection of edges (black lines in between the black
dots). A subset of nodes of the network that show strong interaction among each other than other nodes in other subset of nodes are represented as modules
(colored communities). Provincial hubs are highly connected nodes that primary connect nodes in the same module (e.g., green node). Connector hubs are highly
connected nodes that has a diverse connectivity profile because it is connecting to several different modules within the brain network (e.g., red node).

In addition to the classification of hubs on the basis of
anatomical or structural connectivity, numerous studies have
also investigated the existence of ‘‘functional hubs’’ derived
from networks of dynamic interactions between brain regions
(van den Heuvel and Sporns, 2013a). Connectivity in brain
networks can indeed be assessed in different ways (Friston, 2011).
Anatomical or structural connectivity, the stable direct physical
pathways linking spatially distinct brain areas, is distinguished
from dynamic functional connectivity and effective connectivity
(Friston, 2011; Shafi et al., 2012; Fornito et al., 2013; Luft et al.,
2014). Effective connectivity refers to the directional flow of
information or the causal relationships between (Friston, 2011;
Shafi et al., 2012; Fornito et al., 2013; Luft et al., 2014) nodes,
whereas functional connectivity simply computes measures of
statistical independence (correlation) between nodes (Friston,
2011; Shafi et al., 2012; Fornito et al., 2013; Luft et al.,
2014).

Conceptualizing the brain as a network (Sporns et al., 2005)
might have important implications for understanding clinical
brain disorders (Bullmore and Sporns, 2012; Menon, 2013;
Rubinov and Bullmore, 2013; van den Heuvel and Sporns,
2013a; Crossley et al., 2014). A generic property of a network
is that dysfunction can spread easily between linked elements,
leading to pathological cascades that include large parts of the
system (Buldyrev et al., 2010; Huang et al., 2011). Fornito

et al. (2015) have proposed different versions of a maladaptive
response that can mediate the spread of pathology throughout
the connectome, as well as the resources and processes that
enable adaptation. Studies have suggested that damage to
‘‘provincial’’ hubs—those that are the primary link to other
nodes in the same module and have an important role in
functional specialization—will lead to specific clinical deficits,
whereas damage to ‘‘connector’’ hubs—those that have links
that are distributed across multiple different modules and
have a central role in functional integration—will result in
more complex and pervasive dysfunction and is proposed to
impair multiple behavioral domains (Fornito et al., 2015). In
general, it has been suggested that brain hubs are indeed
involved in the anatomy of various brain disorders (Crossley
et al., 2014). Studies have further found extensive anatomical
overlap between structural abnormalities or lesions in various
brain disorders (Crossley et al., 2014), with a similar result
reported in another study of a subgroup of psychiatric disorders
(Goodkind et al., 2015). For example, a recent meta-analysis
of structural and functional neuroimaging studies found a
collective core of brain regions affected by most psychiatric
disorders, centered on dorsal anterior cingulate cortex (dACC)
and the insula (Goodkind et al., 2015; Downar et al., 2016).
These nodes correspond to an anterior cingulo-insular or
‘‘salience’’ network and are suggested to stand at a crossroads
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within the functional architecture of the brain, acting as a
switch to deploy other major functional networks according to
motivational demands and environmental constraints (Downar
et al., 2016). The authors proposed these regions as promising
targets for brain stimulation in psychiatric disorders. With more
advanced designs of non-invasive neuromodulation, studies
have shown the possibility of targeting these deeper brain
structures using, for example, double cone coil rTMS (Hayward
et al., 2007; De Ridder et al., 2011; Deng et al., 2014;
Kreuzer et al., 2015) or high definition tDCS (DaSilva et al.,
2015).

INFLUENCE OF NON-INVASIVE
NEUROMODULATION IN FUNCTIONAL
BRAIN NETWORKS

The effects of non-invasive neuromodulation on network-
based connectivity can be observed and investigated across
different levels of the central nervous system, such as
a whole-brain functional connectivity level as well as a
neurometabolite concentration level. In this section, studies
adopting both a ‘‘macro’’ as well as a ‘‘micro’’ perspective of
the brain’s neural structure will be examined to understand the
distributed processing of neuromodulation in functional brain
networks.

MACRO-Level: Assessing Network
Connectivity With Task-Independent and
Task-Related Neuroimaging
Recent studies have shown that non-invasive neuromodulation
techniques affect brain connectivity patterns both while
performing tasks and while at rest (Grefkes et al., 2010; Alon
et al., 2011; Keeser et al., 2011a; Polanía et al., 2011a, 2012;
Vanneste and De Ridder, 2011; Meinzer et al., 2012, 2013;
Peña-Gómez et al., 2012; Chib et al., 2013; Park et al., 2013; Stagg
et al., 2013; Ding et al., 2014; Weber et al., 2014), suggesting
that stimulation is not influencing the target area in isolation,
but rather a brain network (Alon et al., 2011). These techniques
enable the perturbation of large-scale neural systems and
may facilitate in testing whole brain models (Breakspear,
2017). Most studies examined the effects of tDCS or rTMS
on brain connectivity by analyzing changes in functional
networks during task-independent (resting-state) or task-related
neuroimaging (e.g., EEG, fMRI). Therefore, in this article, only
studies combining neuroimaging with tDCS and rTMS will be
presented.

Task-independent or resting-state neuroimaging studies have
investigated the effect of tDCS or rTMS on short term
reorganization in functional networks in healthy subjects (for
review see Luft et al., 2014) and in patients (e.g., tinnitus patients,
Vanneste and De Ridder, 2011) using fMRI (for review see Luft
et al., 2014) or EEG (Polanía et al., 2011a; Vanneste and De
Ridder, 2011). The studies varied in how they defined the nodes
of the network (Luft et al., 2014). Most studies identified specific
regions of interest to look into brain connectivity.

For tDCS studies, the specific brain regions of interest
varied from M1 (Polanía et al., 2011a,b, 2012) to DLPFC
(Vanneste and De Ridder, 2011; Park et al., 2013; Stagg
et al., 2013; Weber et al., 2014). These studies all combined
tDCS with either resting-state EEG or resting-state fMRI to
examine for example whether tDCS induces increased or
decreased functional connectivity between specific brain areas
(e.g., intrahemispheric or interhemispheric connectivity changes;
e.g., Polanía et al., 2011b; Sehm et al., 2013) or whether tDCS
modulates functional connectivity of certain circuits (e.g., Alon
et al., 2011; Polanía et al., 2012) in a non-clinical population.
For instance, studies using tDCS to target the left DLPFC
in healthy subjects have been shown to influence regional
electrical activity in both surface level and deeper structures
using resting-state EEG (Keeser et al., 2011b) and resting-state
fMRI (Keeser et al., 2011a; Peña-Gómez et al., 2012; Park
et al., 2013; Stagg et al., 2013). Keeser et al. (2011b) used
resting-state EEG and sLORETA to demonstrate that tDCS on
the left DLPFC influences electrical activity in both during
surface areas measured by EEG and deeper structures in the
prefrontal lobe, such as the medial frontal gyrus, the anterior
cingulate cortex and the subgenual anterior cingulate cortex.
They further suggested that tDCS might influence this whole
network during resting state, making it easier to activate the
network during consecutive cognitive task performances, as a
positive impact of tDCS was seen on a following n-back task (on
error rate, accuracy and reaction time). Park et al. (2013) used
resting-state fMRI to demonstrate that tDCS on the left DLPFC
increased interhemispheric connectivity, suggesting that this
mechanism may enhance cognitive functioning. Using resting-
state fMRI, Keeser et al. (2011a) further assessed resting-state
connectivity after left DLPFC and found significant changes in
the default mode network (DMN) and the right and left frontal
parietal network (FPN), both close to the primary stimulation
site and in connected brain areas. In addition, Peña-Gómez
et al. (2012) revealed increased synchrony in the anticorrelated
network—a network of brain areas revealing strong negative
activity correlation with the DMN and associated with cognitive
processing—components and reduced synchrony in the DMN
after tDCS over the left DLFPC, assessed with resting-state fMRI.
This finding suggests that tDCS over the DLPFC may enhance
the flexible balance between brain networks by enhancing
network connectivity for cognitive demands while reducing
DMN activity. Interestingly, Stagg et al. (2013) focused on
brain perfusion changes during left DLPFC tDCS (using whole-
brain arterial spin labeling) and found decreased functional
connectivity between the left DLPFC and the bilateral thalami
after tDCS, possibly offering a mechanistic explanation for
the analgesic effects of tDCS in pain studies while adding
weight to the hypothesis that the DLPFC modulates pain via
a decrease in thalamic activity. In patient populations, one
study in tinnitus patients, combining tDCS with resting-state
EEG, had demonstrated that bifrontal DLPFC tDCS was able to
suppress tinnitus by modulating the pregenual anterior cingulate
cortex, the parahippocampal area, and the right primary auditory
cortex in resting-state spontaneous brain activity (Vanneste
and De Ridder, 2011). This study is the first conducted in a
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patient population to provide support that tDCS has an impact
not only on the underlying DLPFC, but also indirectly on
functionally connected brain areas relevant for tinnitus distress
and tinnitus intensity in tinnitus patients. For rTMS studies,
more specifically theta burst transcranial stimulation (TBS),
only a few resting-state studies have explored whether TBS
would lead to changes in resting-state functional connectivity
in healthy subjects. The specific brain regions of interest
encompassed a broad range including: (1) the occipital cortex
(Rahnev et al., 2013); (2) anterior insula/frontal operculum
(Gratton et al., 2013); (3) the primary somatosensory cortex
(Valchev et al., 2015); (4) the primary motor cortex (Cárdenas-
Morales et al., 2014; Cocchi et al., 2015; Noh et al., 2015);
(5) the precuneus (Mancini et al., 2017); and (6) the DLPFC
(Gratton et al., 2013; Mastropasqua et al., 2014; Iwabuchi et al.,
2017). These studies all combined TBS with either resting-state
EEG or resting-state fMRI to investigate whether TBS can
induce increased or decreased functional connectivity between
specific brain areas (e.g., intrahemispheric or interhemispheric
connectivity changes; e.g., Rahnev et al., 2013; Noh et al.,
2015; Valchev et al., 2015; Mancini et al., 2017) in healthy
subjects. For example, studies targeting the left DLPFC in healthy
subjects using TBS have demonstrated influence on regional and
more remote functions using resting-state fMRI (e.g., Gratton
et al., 2013; Iwabuchi et al., 2017). Gratton et al. (2013)
demonstrated that left DLPFC cTBS increased connectivity
with regions in the frontal, parietal, and cingulate cortices,
suggesting that acute disruption by TBS to cognitive control
regions can cause widespread changes in network connectivity
not limited to the targeted networks. Iwabuchi et al. (2017)
further explored whether prefrontal iTBS targeting the left
DLPFC can modulate crucial limbic structures such as the insula,
which can explain the therapeutic effects of DLPFC rTMS in
depression. They have found that iTBS significantly dampened
fronto-insular connectivity, demonstrating that left DLPF iTBS
was able to modulate the right anterior insula (Iwabuchi et al.,
2017).

Task-related neuroimaging studies have also examined
short-term reorganization in healthy subjects (e.g., O’Shea et al.,
2007; Andoh and Paus, 2011; Chib et al., 2013; Weber et al.,
2014) after non-invasive neuromodulation. These studies all
combined non-invasive neuromodulation such as tDCS or rTMS
with neuroimaging such as EEG or fMRI, while performing a
task, allowing for more process-specific findings. These studies
demonstrate that non-invasive neuromodulation can modulate
specific task functions, regions, and network interactions. Studies
differ in the task performed, the neuromodulation technique
used (e.g., tDCS or rTMS), the neuroimaging technique used
(e.g., EEG or fMRI), and the specific brain region of interest.
For example, Andoh and Paus (2011) combined off-line
10 Hz rTMS targeting the left and right posterior temporal
area of Wernicke (LTMP; performed outside the magnetic
resonance scanner) with fMRI, acquired during the performance
of a word recognition task. Following the hypothesis that
some brain functions operate in a state of interhemispheric
compensation (i.e., recruiting homologous regions in the
contralateral hemisphere) to recover after a virtual lesion

(O’Shea et al., 2007), Andoh and Paus (2011) hypothesized
that rTMS applied over the LTMP area will induce changes
in the task-related fMRI response both locally and distally,
namely in the homologous area in the contralateral hemisphere
(RTMP). Similarly, they predicted that rTMS applied over the
RTMP area would induce changes in the task-related fMRI
response in the contralateral hemisphere (LTMP). Their result
showed that rTMS increased task-related fMRI response in the
homolog areas contralateral to the stimulated areas, consistent
with the hypothesis regarding the role of homolog areas
in the contralateral hemisphere for preserving behavior after
neural interference. Interestingly, studies have also combined
non-invasive neuromodulation with simultaneous task-based
neuroimaging (e.g., Meinzer et al., 2012, 2013). For example,
Meinzer and Colleagues have used fMRI during overt semantic
word generation and simultaneous intrascanner anodal tDCS
on the left inferior frontal gyrus (IFG) to investigate its
effects on performance and task-related activity in healthy
young adults (Meinzer et al., 2012) and in healthy older
adults (Meinzer et al., 2013). The study in healthy young
adults showed improved word-retrieval during anodal tDCS
paralleled by selectively reduced task-related activation in the
left ventral IFG, indicative of more efficient neural processing.
In healthy older adults, anodal tDCS significantly improved
performance up to the level of the younger controls and
task-related fMRI showed reduced task-related hyperactivity
in the bilateral prefrontal cortices, the anterior cingulate
gyrus, and the precuneus (brain areas that were ‘‘hyperactive’’
in older compared to younger adults). Thus, this study
showed that one single session of tDCS can temporarily
reverse some age-associated changes in brain activity and
connectivity.

MICRO-Level: Assessing Network
Connectivity With Chemical Markers of
Neural Plasticity/Neurometabolites
While the induced effects of non-invasive neuromodulation
have been investigated using neuroimaging techniques that
provide information of the brain’s neural structure on a
‘‘macro’’ network-based connectivity level, tDCS studies have
also been examining the effects of the brain’s neural structure
on a ‘‘micro’’ neurometabolites level, in an attempt to explain
local and distributed processing in functional brain networks
(Hunter et al., 2013). TDCS has been known to influence
neurophysiological mechanisms responsible for neuroplasticity
by modulating the excitability of glutamatergic pyramidal
neurons in the underlying cortex (Radman et al., 2009). These
mechanisms involve the potentiation of synaptic glutamatergic
receptors (Liebetanz et al., 2002; Nitsche et al., 2005) and
decreased neurotransmission of GABA (Nitsche et al., 2004;
Stagg et al., 2009; Stagg and Nitsche, 2011; Hunter et al.,
2015; for a review, see Medeiros et al., 2012). Since there
is evidence that the sum of glutamate and glutamine (Glx)
levels are increased by tDCS (Clark et al., 2011) and that
there is a strong relationship between Glx and functional
connectivity (Horn et al., 2010; Kapogiannis et al., 2013),
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studies have been investigating whether tDCS-evoked changes
in Glx may predict variations in functional connectivity
within and between both local and distributed brain networks
(e.g., Hunter et al., 2015). Hunter et al. (2015) found evidence
that the after-effects of right parietal tDCS on glutamatergic
signaling and network connectivity contribute to local, cross-
hemispheric, and subcortical alterations. They found increases
in baseline glutamatergic signaling that originate from the
parietal site of the stimulation, with the precuneus possibly
acting as an intermediate node that modulates glutamatergic
signaling in other pathways that include the bilateral superior
parietal lobule, ACC, salience, left frontal-parietal network,
and the basal ganglia networks. They further suggest that
cross-hemispheric connectivity, specifically for the bilateral
inferior parietal network, may be more readily influenced by
other neurotransmitter pathways, such as GABA. Recently,
studies have been conducted to investigate the involvement
of GABAergic signaling pathways that may influence network
connectivity. Stagg et al. (2014) showed that tDCS on
M1 decreased GABA levels within M1 and increased resting
motor network connectivity. They suggested that the network-
level connectivity within the motor system is related to the
degree of inhibition in M1, a major node within the motor
network. Bachtiar et al. (2015) replicated this tDCS experiment
and confirmed the decreased GABA levels within M1 and

increased resting motor network connectivity. However, they
did not find a relationship between the change in GABA
levels in M1 and the change in functional connectivity,
suggesting that it might be driven by distinct underlying
mechanisms.

VARIOUS STIMULATION TARGETS FOR A
SPECIFIC DISORDER

Non-invasive neuromodulation studies targeting different brain
areas to treat one specific disorder have shown to have
similar positive results. In this section, we provide support to
demonstrate that rTMS and tDCS targeting different nodes
of the dysfunctional brain network of a specific disorder can
have similar positive effects, using tinnitus and depression
as illustrative examples. See Tables 1, 2 for a summary of
non-invasive brain stimulation (NIBS) targets for tinnitus and
depression.

Tinnitus
Tinnitus is a common and distressing disorder that is
characterized by the perceived sensation of a sound in the
absence of an external sound source (Langguth et al., 2012;
De Ridder et al., 2014). Like other disorders, tinnitus can

TABLE 1 | Non-invasive brain stimulation (NIBS) targets in tinnitus.

Stimulation target References

Repetitive transcranial magnetic stimulation
HF rTMS to the left auditory cortex e.g., Plewnia et al. (2003) and Fregni et al. (2006)
LF rTMS to the left auditory cortex e.g., Eichhammer et al. (2003) and Langguth et al. (2003)
LF to the right DLPFC e.g., De Ridder et al. (2013)
Combined modulation of HF left DLPFC then LF left temporal cortex e.g., Kleinjung et al. (2008)
Combined modulation of HF left DLPFC then LF left and right temporoparietal cortex e.g., Lehner et al. (2013)

Transcranial direct current stimulation
Anode left auditory cortex—cathode contralateral supraorbital region e.g., Fregni et al. (2006), Garin et al. (2011), Shekhawat et al. (2013) and

Forogh et al. (2016)
Anode right DLPFC—cathode right DLPFC e.g., Vanneste et al. (2010), Vanneste and De Ridder (2011),

De Ridder and Vanneste (2012), Faber et al. (2012) and Frank et al. (2012)
Simultaneuos 1 anode prefrontal cortex—2 cathode left and right auditory cortex e.g., Pal et al. (2015)

HF, high frequency; rTMS, repetitive Transcranial Magnetic Stimulation; LF, low frequency; DLPFC, dorsolateral prefrontal cortex.

TABLE 2 | NIBS targets in depression.

Stimulation target References

Repetitive transcranial magnetic stimulation
HF rTMS to left DLPFC e.g., Pascual-Leone et al. (1996), Berman et al. (2000), Rossini et al. (2005),

Loo et al. (2007), Bretlau et al. (2008), George et al. (2010) and
Baeken et al. (2013, 2014)

LF rTMS to the right DLPFC e.g., Klein et al. (1999), Januel et al. (2006), Fitzgerald et al. (2008),
Bares et al. (2009) and Aguirre et al. (2011)

Combined modulation of HF left DLPFC then LF right DLPFC during same session e.g., Hausmann et al. (2004), Fitzgerald et al. (2006a, 2012), Garcia-Toro et al. (2006),
McDonald et al. (2006), Pallanti et al. (2010) and Blumberger et al. (2012a)

Combined modulation of HF left than right DMPFC e.g., Downar et al. (2014), Salomons et al. (2014) and Bakker et al. (2015)

Transcranial direct current stimulation
Anode left DLPFC—cathode right supraorbital region e.g., Boggio et al. (2008a,b), Loo et al. (2012), Palm et al. (2012) and

Bennabi et al. (2015)
Anode left DLPFC—cathode right DLPFC e.g., Ferrucci et al. (2009), Brunoni et al. (2013, 2014),

Valiengo et al. (2013, 2016, 2017)

HF, high frequency; rTMS, repetitive Transcranial Magnetic Stimulation; DLPFC, dorsolateral prefrontal cortex; LF, low frequency; DMPFC, dorsomedial prefrontal cortex.
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be perceived as a phenomenological unified coherent percept,
binding separable clinical characteristics, such as the tinnitus
loudness, the tinnitus sidedness, the tinnitus type (pure, tone,
noise), the associated distress and so on (De Ridder et al., 2014).
Based on neuroimaging studies, a group of tinnitus researchers
have proposed a tinnitus brain model consisting of multiple
parallel, dynamic, and partially overlapping subnetworks each
representing a specific aspect of tinnitus (see De Ridder
et al., 2014). However, the revealed subnetworks encoding
the different aspects of the tinnitus percept, e.g., the distress
network, can be similar to other pathologies, such as pain
(Moisset and Bouhassira, 2007; De Ridder et al., 2013,
2014). Communication between these different subnetworks is
proposed to occur at brain hubs, brain areas that are involved
in multiple subnetworks simultaneously (De Ridder et al.,
2014).

In non-invasive neuromodulation studies, researchers mostly
targeted the left auditory cortex (temporal or temporoparietal
cortical areas), but some have investigated the DLPFC as a
target both in isolation and in a multisite stimulation approach,
to suppress tinnitus. The left auditory cortex and the DLFPC
are believed to be part of a neural network that appears to
play a significant role in tinnitus perception (Shekhawat et al.,
2016). The auditory cortex has become a common stimulation
target for tinnitus, as past neuroimaging studies have shown
over-activation of the left auditory cortex in tinnitus patients
(Arnold et al., 1996; Lockwood et al., 1998). Repetitive TMS
(Fregni et al., 2006), as well as anodal tDCS to the auditory
cortex (left temporal or temporoparietal cortices areas; Fregni
et al., 2006; Garin et al., 2011), were found to suppress tinnitus.
For TMS, LF and high frequency (HF) were investigated to
interrupt the tinnitus percept. The first rTMS case studies (sham-
controlled) in tinnitus mostly investigated LF rTMS targeting the
left auditory cortex in an attempt to inhibit the hyperactivity
in this area (Eichhammer et al., 2003; Langguth et al., 2003).
Eichhammer et al. (2003) found considerable improvement in
tinnitus in two out of three patients after 1 week (five consecutive
days) with LF (1 Hz) rTMS with 2000 stimuli per day, measured
by the Tinnitus Questionnaire (assessing different tinnitus
complaints e.g., distress, auditory perceptual difficulties, sleep
disturbance; Eichhammer et al., 2003). Langguth et al. (2003)
described a 4-week case study involving LF (1 Hz) rTMS
treatment (5 days of treatment per week with 2000 stimuli/day)
targeting the left auditory cortex. This treatment resulted in
remarkable effects, enduring for several weeks, measured by the
Tinnitus Questionnaire (assessing different tinnitus complaints
e.g., distress, auditory perceptual difficulties, sleep disturbance)
and paralleled by altered cortical excitability. Later on, HF rTMS
was applied to the left auditory cortex with the belief that a
virtual temporary lesion of this area can induce a transient
reduction in tinnitus (Plewnia et al., 2003). Plewnia et al. (2003)
applied HF (10 Hz) via five stimulation trains at different scalp
positions in 14 tinnitus patients and found only a significant
reduction in tinnitus when targeting the left temporal and left
temporoparietal cortex (targeting the DLPFC did not yield in
significant results) using a self-rating tinnitus reduction scale.
Fregni et al. (2006) replicated the findings of Plewnia et al. (2003)

applying HF (10 Hz) via nine stimulation trains of 30 stimuli
and found transient tinnitus reduction, measured by the same
self-rating tinnitus reduction scale, as well as a self-rating
tinnitus intensity scale (Fregni et al., 2006). Moreover, they tested
whether tDCS targeting the left auditory cortex would yield in
similar effects. Their results showed that even 3 min of 1 mA
anodal tDCS targeting the left auditory cortex induces similar
transient tinnitus reduction as with HF rTMS (Fregni et al.,
2006). TDCS, as well as other transcranial electrical stimulation
(tES) techniques, such as transcranial random noise stimulation
(tRNS) and transcranial alternating current stimulation (tACS),
targeting the left auditory cortex has been further investigated
by other researchers. Garin et al. (2011) showed that a single
session 20-min session of 1 mA anodal tDCS significantly
reduced tinnitus intensity, as measured by a Visual Analogue
Scale. Although, Shekhawat et al. (2013) have demonstrated that
2 mA anodal tDCS for 20 min targeting the left auditory cortex
was the most effective stimulation parameter for one session
(measured by the Clinical Global Improvement measure and
the Tinnitus Loudness Visual Analogue Scale), Forogh et al.
(2016) did not find any significant effects when they applied
the same for five sessions in patients with tinnitus (measured by
the Clinical Global Improvement measure, the Tinnitus loudness
Visual Analogue Scale, Tinnitus related-distress Visual Analogue
Scale, and the Tinnitus Handicap Inventory). Interestingly,
electrical stimulation where the stimulation current is varied
randomly, i.e., tRNS was found to be superior both to tDCS
(where stimulation current is held constant) and tACS (where
stimulation current is time dependent with a sinusoidal shape)
when applied bilaterally over the temporal cortex (Vanneste et al.,
2013a; Van Doren et al., 2014). More recently, the introduction
of High-Definition tDCS (HD-tDCS) has improved the spatial
accuracy of conventional tDCS by using arrays of smaller ‘‘high-
definition’’ electrodes instead of two large pad electrodes (Datta
et al., 2009; Dmochowski et al., 2011; Guleyupoglu et al., 2013;
Villamar et al., 2013a; Heimrath et al., 2015; Shekhawat et al.,
2016). Shekhawat et al. (2016) have investigated the effect of
stimulation location (left auditory cortex or DLPFC), stimulation
duration (10 min or 20 min), and stimulation intensity (center
anode 1 mA or 2 mA) on tinnitus loudness and annoyance using
4 × 1 HD-tDCS (Shekhawat et al., 2016). They concluded that
a higher intensity (2 mA) and a longer duration (20 min) of
stimulation were more effective, but either stimulation location
was equally effective for suppressing tinnitus loudness and
annoyance (Shekhawat et al., 2016).

The other common stimulation target investigated for
transient tinnitus suppression is the DLPFC. The prefrontal
cortex is believed to play a vital role in tinnitus, since it is
critically involved in the integration of sensory and emotional
aspects of tinnitus, as first mentioned by Jastreboff (1990;
Kleinjung et al., 2008) and confirmed by recent studies as an
essential part of the tinnitus distress network (Vanneste et al.,
2010). Additionally, electrophysiological studies suggest that
tinnitus occurs as a result of dysfunctional top-down inhibitory
mechanisms originating in the prefrontal lobe (Norena et al.,
1999), indicating that the prefrontal cortex does not only color
tinnitus perception, but may efficiently switch the perceived
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signal on and off (Rauschecker et al., 2010; Frank et al., 2012),
therefore being able to influence both tinnitus distress and
intensity. Bifrontal tDCS where the anode is placed over the
right DLPFC and the cathode over the left DLPFC, has been
investigated in several tinnitus studies (Vanneste et al., 2010;
Vanneste and De Ridder, 2011; De Ridder and Vanneste, 2012).
The first clinical study conducted in 478 tinnitus patients by
Vanneste et al. (2010) revealed that one 20-min session of 1.5 mA
tDCS with a right anode and left cathode set up (and not left
anode, right cathode) modulated tinnitus perception in 29.9% of
the tinnitus patients. For these responders, a significant reduction
was found for both tinnitus intensity and tinnitus-related distress
(Vanneste et al., 2010). These results were further confirmed in a
follow up study in which resting-state EEG was added before and
after tDCS to unravel the mechanism by which tDCS suppresses
tinnitus (Vanneste and De Ridder, 2011). This study provides
evidence that bifrontal tDCS can suppress tinnitus intensity
and tinnitus-related distress by modulating the pregenual ACC,
the parahippocampal area, and the right primary auditory
cortex in resting-state spontaneous brain activity (Vanneste and
De Ridder, 2011). Furthermore, the study by De Ridder and
Vanneste (2012) also supports bifrontal tDCS as a technique to
reduce tinnitus intensity and distress, as one session of bifrontal
tDCS elicited a larger reduction in tinnitus intensity and distress
compared to EEG driven tDCS. TACS targeting the DLPFC
has also been investigated (Vanneste et al., 2013b), as it could
theoretically normalize alpha power, which is known to decrease
in tinnitus (Lorenz et al., 2009). However, tACS did not modulate
tinnitus loudness and annoyance like bifrontal tDCS was able
to (Vanneste et al., 2013b). Therefore, repetitive sessions of
bifrontal tDCS was investigated as a potential treatment (De
Ridder and Vanneste, 2012; Faber et al., 2012; Frank et al., 2012).
Frank et al. (2012) found that six 30-min sessions of 1.5 mA
tDCS (right anode and left cathode) only resulted in a small
clinical impact on tinnitus loudness and discomfort. Faber et al.
(2012) investigated six sessions of tDCS for left and right anodal
DLPFC and found that both active conditions (irrespective of the
anodal position) were able to reduce tinnitus annoyance but not
tinnitus intensity. For magnetic stimulation, LF (1 Hz) rTMS on
the right DLPFC also resulted in a reduction in the perceived
loudness of tinnitus after one session (200 pulses), as well as
after 10 sessions of rTMS (600 pulses), which is mediated by
the functional connections between the DLPFC, and a network
consisting of the ACC, the parahippocampus, and the auditory
cortex (De Ridder et al., 2013).

An increasing amount of studies are investigating the
stimulation the two common stimulation targets in tinnitus
patients, the auditory cortex and the DLPFC, simultaneously or
one stimulation after the other. One tDCS study simultaneously
targeted the auditory cortex with the DLPFC by placing
the cathode on the auditory cortex and the anode over the
prefrontal cortex for five sessions (Pal et al., 2015). However,
this stimulation set up did not yield in an improvement in
any tinnitus measures (Pal et al., 2015). Two studies suggest
that the efficacy of rTMS in tinnitus can be enhanced by
stimulating prefrontal cortical areas in addition to the auditory
cortex (Kleinjung et al., 2008; Lehner et al., 2013). A study

by Kleinjung et al. (2008) combined HF prefrontal and LF
temporal rTMS. Patients received either LF temporal rTMS
or a combination of HF prefrontal and LF temporal rTMS.
Directly after therapy they found an improvement for both
groups, but no differences between the groups. An evaluation
after 3 months revealed a remarkable benefit from the use
of combined prefrontal and temporal rTMS treatment. These
findings suggest that auditory and non-auditory brain areas
are involved in tinnitus psychopathology. Another study by
Lehner et al. (2013) combined HF prefrontal with LF left
and right temporal rTMS (left DLPFC, left temporoparietal
cortex, and right temporoparietal cortex). Patients received
either LF temporal rTMS or a combination of HF prefrontal
and LF temporal rTMS. They found that multisite rTMS
is significantly superior to temporal rTMS and represents a
promising strategy for enhancing treatment effects of rTMS in
tinnitus. Several authors have (e.g., Vanneste and De Ridder,
2012) already stated that the perception of tinnitus involves
large and complex interconnected networks and that tinnitus
can be a result of a dysfunction in any part of the system.
Thus, modulation of any part of this network may interfere with
tinnitus perception (Vanneste and De Ridder, 2012). However,
stimulating the auditory cortex alone might not be sufficient to
achieve long lasting improvement of tinnitus severity (Lehner
et al., 2013). Accordingly, the idea of network stimulation as a
new stimulation protocol is promising and needs to be further
investigated.

Depression
Depression is clinical disorder known to result from a
disruption of brain neurochemistry (Akhtar et al., 2016).
It is a neuronal abnormality characterized by disorders
of mood, cognitive function, and neurovegatative functions
and has a wide range of causes (Akhtar et al., 2016).
Previous neuroimaging studies have demonstrated structural
and functional abnormalities in distributed networks of cortical
and limbic brain regions including the DLPFC, ventromedial
prefrontal cortex, amygdala, hippocampus and subgenual
cingulate amongst others (Campbell et al., 2004; Mayberg,
2007; Drevets et al., 2008; Koenigs and Grafman, 2009).
Structural and functional abnormalities in these brain regions
have also been suggested to be associated with negative
affective and cognitive processing bias of depressed patients (Liu
S. et al., 2017). Studies have suggested that during the affective
processing of depressive individuals, network abnormalities,
manifested as enhanced affective processing and decreased
cognitive control function, might lead to a more intense
experience of negative emotion, inducing depression (Liu S. et al.,
2017).

In non-invasive neuromodulation studies, researchers have
mostly targeted the left and right DLPFC for depression, as
conventional tDCS or traditional rTMS coils were not able to
directly and selectively target deeper limbic regions such as
the subgenual ACC (Fox et al., 2012a). Deeper limbic regions
such as the subgenual ACC have been targeted with invasive
neuromodulation, such as deep brain stimulation (e.g., Mayberg
et al., 2005; Drevets et al., 2008; Mayberg, 2009; Fox et al.,
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2012a) to decrease hyperactivity in this brain region as this
has been associated with antidepressant response in depressed
patients (Mayberg et al., 2005; Drevets et al., 2008). Regarding
more superficial brain areas, researchers have mostly targeted
the left DLPFC, but the right DLPFC has also been investigated
both in isolation and in a multisite stimulation approach, to
suppress depression. The left DLPFC has been found to be
hypoactive in patients with depression and an increase in activity
is associated with antidepressant response (Fitzgerald et al.,
2006b; Koenigs and Grafman, 2009). Besides the hypoactivity
found in the left DLPFC, neuroimaging studies have also
demonstrated hyperactivity in the right DLPFC in depressive
disorder (Bench et al., 1995; Lefaucheur et al., 2014). One of the
first FDA-approved clinical uses of rTMS is HF stimulation to
the left DLPFC for the treatment of depression (George et al.,
1995; Pascual-Leone et al., 1996; O’Reardon et al., 2007; Padberg
and George, 2009). In general, the efficacy of HF rTMS to the
left DLPFC using a variety of parameters has been established
(For review, see Lefaucheur et al., 2014; e.g., Pascual-Leone et al.,
1996; Berman et al., 2000; Rossini et al., 2005; Loo et al., 2007;
Bretlau et al., 2008; George et al., 2010; Baeken et al., 2013, 2014).
LF rTMS to the right DLPFC has also been found effective in
several studies (for a review, see Lefaucheur et al., 2014; e.g., Klein
et al., 1999; Januel et al., 2006; Fitzgerald et al., 2008; Bares
et al., 2009; Aguirre et al., 2011) and there seems to be no
difference in antidepressant effect between HF of the left DLPFC
and LF rTMS of the right DLPFC (Lefaucheur et al., 2014). For
tDCS, earlier studies have mostly targeted the left DLPFC using
the electrode montage where the anode is placed over the left
DLPFC and the cathode over the right orbitofrontal cortex (for
a review, see Lefaucheur et al., 2017; e.g., Boggio et al., 2008a;
Loo et al., 2012; Palm et al., 2012; Bennabi et al., 2015). More
recently, studies have applied bilateral tDCS, placing the anode
electrode over the left DLPFC and the cathode over the right
DLPFC instead of the right supraorbital region (e.g., Ferrucci
et al., 2009; Brunoni et al., 2013, 2014; Valiengo et al., 2013, 2016,
2017). Several rTMS studies have also investigated a combined
modulation of HF left DLPFC rTMS and LF right DLPFC rTMS
during the same sessions in the same patients (e.g., Hausmann
et al., 2004; Fitzgerald et al., 2006a; Garcia-Toro et al., 2006;
McDonald et al., 2006; Pallanti et al., 2010; Blumberger et al.,
2012a; Fitzgerald et al., 2012). Lefaucheur et al. (2014), however,
do not recommend of using this bilateral rTMS, because of
contradictory results across studies.

NIBS has been proposed to normalize the interhemispheric
imbalance of neuronal activity by excitatory stimulation of
the left DLPFC and inhibitory stimulation over the right
DLPFC (Palm et al., 2016; Lefaucheur et al., 2017). According
to the ‘‘valence hypothesis’’ the affective processing exhibits
hemispheric lateralization, with the right hemisphere specializing
in negative emotional processing and the left hemisphere
specializing in positive emotional processing (Prete et al., 2015;
Liu S. et al., 2017). To further investigate how rTMS of the
DLPFC exerts its antidepressant effect, Fox et al. (2012a) have
investigated why some left DLPFC rTMS targets are more
effective than others by examining differences in functional
connectivity of these sites to deeper limbic regions, using

resting-state fMRI. They have found that the DLPFC TMS
sites with better clinical efficacy were negatively correlated
(anticorrelated) with the subgenual ACC. This might suggest a
role for intrinsically anticorrelated brain networks in depression
implying that the clinical efficacy of focal brain stimulation
could be optimized by targeting based on connectivity (Fox
et al., 2012a). Depression has indeed been associated by altered
intrinsic functional connectivity within and between three
intrinsic connectivity networks (ICNs), such as the DMN, the
central executive network (CEN) and the salience network (SN;
Manoliu et al., 2013; Anderson et al., 2016; Liu S. et al., 2017).
Abnormally increased DMN connectivity has been found in
association with depression (Anand et al., 2005; Greicius et al.,
2007; Broyd et al., 2009; Sheline et al., 2010; Liston et al., 2014;
Kaiser et al., 2015), more specifically related to rumination and
deficits in emotion regulation (Sheline et al., 2009; Hamilton
et al., 2011). The CEN or the task-positive network, with the
DLPFC as a one of the primary nodes, has been found to be
hypoconnected in patients with depression (Liston et al., 2014;
Kaiser et al., 2015), which may contribute to deficits in memory
and attention and other cognitive symptoms in depression
(Liston et al., 2014). Furthermore, the SN has shown decreased
connectivity in patients with depression, with this aberrant
connectivity also demonstrating a significant relationship to
depressive symptom severity (Manoliu et al., 2013). Furthermore,
these large-scale functional networks have been found to be
interacting with each other, with dysfunction in these dynamics
associated with depressive symptomatology (Menon, 2011;
Manoliu et al., 2013; Anderson et al., 2016). For instance, in
depression unusual connectivity has been reported between
networks, including abnormal hyperconnectivity between the SN
and DMN, and between the DMN and CEN (Manoliu et al.,
2013; Liston et al., 2014; Kaiser et al., 2015). In depressed
individuals a dominance of DMN over CEN was found which
correlated with maladaptive rumination (Hamilton et al., 2011;
Wang et al., 2016). Moreover, the aberrant switching between
the DMN and CEN in depression has been suggested as a
mechanism underlying the preoccupation with self-referential
processes related to DMN hyperactivity, and deficits in cognitive
functioning, associated with CEN hypoconnectivity (Menon,
2011; Manoliu et al., 2013; Kaiser et al., 2015; Anderson et al.,
2016; Wang et al., 2016). The SN has been found to play a causal
role in mediating this switching between the DMN and CEN
activity (Wang et al., 2016), with specifically the right anterior
insula associated with the aberrant DMN/CEN interactions and
severity of depressive symptoms (Manoliu et al., 2013). Overall,
this evidence demonstrates that dysfunction in connectivity
within large-scale functional networks and the interactions
in connectivity between these networks are associated with
depression (Anderson et al., 2016). Moreover, Liston et al. (2014)
have examined the effect of non-invasive neuromodulation in
affecting these large-scale brain networks and their relation to
treatment response using HF (10 Hz) TMS targeting the left
DLPFC during a 5-week period (25 sessions). The treatment
normalized the depression-related subgenual hyperconnectivity
in the DMN, but did not alter the diminished connectivity in the
CEN (Liston et al., 2014). TMS also induced an anticorrelated
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connectivity between theDLFPC and themedial prefrontal DMN
nodes (Liston et al., 2014).

Another brain region that has been considered a key region
in emotion regulation (Mayberg et al., 1999) and that has
recently been investigated as a new rTMS target for depression
is the dorsomedial prefrontal cortex (DMPFC; i.e., DMN node;
Downar and Daskalakis, 2013; Anderson et al., 2016; Liu S. et al.,
2017; Liu W. et al., 2017). Studies have suggested that rTMS
targeting the DMPFC could show similar antidepressant findings
in patients with depression and is a safe procedure (e.g., Downar
et al., 2014; Salomons et al., 2014; Bakker et al., 2015). HF rTMS
applied bilaterally over the DMPFC demonstrated increased
anticorrelation between the DMPFC (DMN node) and the insula
(SN node), and increased connectivity with the thalamus (CEN
node) to be associated with a greater clinical response in patients
with depression (Salomons et al., 2014; Anderson et al., 2016).
However more research is needed to investigate the DMPFC as a
target for clinical application of rTMS in depression (Liu S. et al.,
2017).

ONE STIMULATION TARGET FOR
DIFFERENT DISORDERS

Non-invasive neuromodulation studies stimulating one specific
brain region have demonstrated efficacy for various disorders. In
this section, we gather evidence to show that tDCS and rTMS
over an important brain hub involved in different processes
and disorders, i.e., the DLPFC, can have an effect on healthy
subjects as well as on various patient populations. The DLPFC
is an important brain hub for general cognitive and emotional
processing and stimulation of this brain area is expected to
influence different processes and disorders.

The DLPFC has been the most common stimulation target
in clinical literature to date (Downar et al., 2016). The DLPFC
has been the target in several tDCS studies. Anodal tDCS to
the left DLPFC has been studied in healthy subjects as well
in patient populations. Studies in healthy subjects targeting the
DLPFC using anodal tDCS have reported to transiently improve
working memory (e.g., Fregni et al., 2005) and attention in
healthy subjects (e.g., Nelson et al., 2014). In patient populations,
tDCS targeting the DLPFC has been found to show transient
improvement in attention in patients with traumatic brain injury
(e.g., Kang et al., 2012), in working memory in patients with
Parkinson’s disease (e.g., Boggio et al., 2006), in recognition
memory in patients with Alzheimer disease (e.g., Ferrucci et al.,
2008), in signs of consciousness in patients in a minimally
conscious state (e.g., Angelakis et al., 2014; Thibaut et al., 2014,
2017), in mood in patients with depression (e.g., Blumberger
et al., 2012b; Loo et al., 2012; Palm et al., 2012), in auditory
hallucinations in patients with schizophrenia (e.g., Brunelin et al.,
2012) and in craving in substance abusers (e.g., Boggio et al.,
2008b, 2009; Fregni et al., 2008). In rTMS studies, the left and
right DLPFC have been the target for LF and HF rTMS studies
in depression (e.g., George et al., 2010; Triggs et al., 2010; Ray
et al., 2011; Baeken et al., 2013, 2014), post-traumatic stress
disorder (e.g., Boggio et al., 2010; Watts et al., 2012), panic
disorder (e.g., Mantovani et al., 2013), schizophrenia targeting

the negative symptoms (e.g., Rollnik et al., 2000; Hajak et al.,
2004; Cordes et al., 2010; Prikryl et al., 2013) and in addiction
disorders—more specifically food (e.g., Van den Eynde et al.,
2010; Barth et al., 2011), alcohol (e.g., Mishra et al., 2010) and
cigarettes (e.g., Li et al., 2013; Prikryl et al., 2014).

These studies support the idea that neuromodulation of
important brain hubs such as the DLPFC can have an
effect on different processes in healthy subjects and on
different disorders through its influence on a functional
brain network. In patient populations, studies have associated
the (dorsolateral) prefrontal cortex with top-down prefrontal
control, important in various disorder including tinnitus
(Mitchell et al., 2005), substance use disorder (Bradshaw
et al., 2017), pain (Martinez et al., 2017), depression (Ochsner
and Gross, 2005) and schizophrenia (Mayer et al., 2015). A
recent study by Tik et al. (2017) further demonstrated that
stimulation of the left DLFPC modulates ACC connectivity in
a specific meso-cortico-limbic network, which might explain
the treatment mechanism of psychiatric disorders such as
depression.

In healthy subjects, studies have focused on cognitive
processing. Tremblay et al. (2014) have concluded that prefrontal
tDCS targeting the DLFPC has the potential to modulate
numerous cognitive functions simultaneously and that the effect
of prefrontal tDCS on a given task is probably associated with
the extensive modulation of a wide range of cognitive functions.
Using resting state functional connectivity, Krishnamurthy
et al. (2015) further suggest that tDCS might prime not just
the underlying neocortex, but an extended network that can
be recruited according to the task demands. According to
the authors, these priming effects might explain why similar
montages have yielded tDCS-induced effects across multiple
motor and cognitive tasks. Luft et al. (2014) suggest that
the DLPFC can be considered a functional ‘‘flexible hub’’. A
flexible hub is defined as a brain region that rapidly updates
its pattern of global functional connectivity according to the
task demands (Luft et al., 2014). These flexible hubs play an
important role in switching from one state to the other in
order to attend to the necessary task demands (Luft et al.,
2014). Thus, there are indications that modulating an important
brain hub using neuromodulation can influence a whole brain
network.

DISCUSSION

The brain is a complex network and, therefore, studying and
treating brain disorders using non-invasive neuromodulation
techniques should be approached as a network phenomenon.
In this article, we have presented support from different
perspectives to demonstrate that non-invasive neuromodulation
techniques, such as rTMS and tDCS modulate brain networks
rather than just local stimulation targets. Evidence for the
effectiveness of different stimulation targets for one disorder
as well as evidence for the effectiveness of one stimulation
target for different disorders indicates an underlying neural
network for disorders and, thus, points to the idea of network
stimulation as a novel stimulation protocol. Moreover, studies

Frontiers in Human Neuroscience | www.frontiersin.org 10 April 2018 | Volume 12 | Article 128

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


To et al. NIBS Changing Brain Networks

assessing network connectivity on both the macro and micro
levels help describe and explain the distributed processing
of neuromodulation in functional brain networks. However,
there are some limitations to connectivity assessed with NIBS
in a clinical context. First, NIBS, e.g., tDCS and rTMS,
stimulates neuronal tissues exogenously and artificially and,
thus, connectivity revealed by stimulation may be different
than connectivity present under more physiological conditions
(Fox et al., 2012b). Also, connectivity measured with rTMS
alone can only be assessed in the cortex with a clear output
effect, such as the motor or the visual cortex; investigating
other brain areas or the connectivity between other structures
needs the addition of neuroimaging techniques. For tDCS,
as the electrical currents delivered by tDCS are not strong
enough to fire an action potential, connectivity can only be
assessed using neuroimaging techniques. Further, non-invasive
measurements of human brain activity are highly susceptible
to noise and remote changes observed in response to NIBS by

neuroimaging techniques and could reflect other factors besides
propagation of NIBS activity along the cortical connection
creating interpretative ambiguity (Fox et al., 2012b). These
factors could include behavioral and cognitive consequences of
NIBS leading to changes in brain activity, or neural adaptation
to the NIBS (Fox et al., 2012b). Combining non-invasive
neuromodulation with neuroimaging and brain network theories
will further elucidate the impact of neuromodulation on
brain connectivity and will assist in the development of
stimulation protocols to target brain networks, and not just brain
regions.
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