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INFLUENCE OPTIMIZATION PROBLEMS IN SOCIAL NETWORKS

Shuyang Gu, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Dr. Weili Wu, Chair

Online social networks have been developing and prosperous during the last two decades, my

dissertation focus on the study of social influence. Several practical problems about social

influence are formulated as optimization problems.

First, users of online social networks such as Twitter, Instagram have a nature of expand-

ing social relationships. Thus, one important social network service is to provide potential

friends to a user that he or she might be interested in, which is called friend recommendation.

Different from friend recommendation, which is a passive way for an user to connect with a

potential friend, in my work, I tackle a different problem named active friending as an opti-

mization problem about how to friend a person in social networks taking advantage of social

influence to increase the acceptance probability by maximizing mutual friends influence.

Second, the influence maximization problem has been studied extensively with the devel-

opment of online social networks. Most of the existing works focus on the maximization

of influence spread under the assumption that the number of influenced users determines

the success of product promotion. However, the profit of some products such as online

game depends on the interactions among users besides the number of users. We take both

the number of active users and the user-to-user interactions into account and propose the

interaction-aware influence maximization problem.
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Furthermore, due to the uncertainty in edge probability estimates in social networks, we

propose the robust profit maximization problem to have the best solution in the worst case

of probability settings.
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CHAPTER 1

INTRODUCTION

With the advancements in information science in the last two decades, online social networks

find important applications in viral marketing, under this circumstance, influence maximiza-

tion becomes a very popular research direction, which could be described as the problem

of finding a small set of most influential nodes in a social network so that the number of

influenced nodes under certain diffusion model in the network is maximized.

A large number of effort has been made in this research topic since Kempe et al. (Kempe

et al., 2003a) first defined the problem and obtained plentiful results in many ways. The topic

is also extended to other optimization problems other than influence maximization, the core

of this research is to study how to employ social influence in order to achieve some practical

goals. In this dissertation, we are going to study three influence optimization problems:

active friending, interaction-aware influence maximization, and robust profit maximization.

Active friending. friending in social networks is the activity of building new relation-

ships. In Chapter2, we will introduce the basics of friending. Active friending is a problem

that is to assist a user to build the relationships to a target user by sending invitations to

a set of intermediate users taking advantage of social influence, the goal is to maximize the

acceptance probability at the target node taking advantage of the social influence through

the network formed by the intermediate nodes. In this dissertation, we convert the original

formulated active friending problem of nonsubmodular maximization subject to cardinality

constraint into a submodular cost submodular knapsack problem in IC model, we show that

the two problems are equivalent. We similarly make the conversion on the active friending

in LT model. Then we give a general combinatorial optimization algorithm to solve active

friending problems in both IC model and LT model with a guaranteed approximation. We

analyze the computational complexity of the problem and the algorithm performance. The
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effectiveness of the generalized method is verified on real data sets. This method will be

shown in Chapter 4.

Interaction-aware Influence Maximization. This problem extends the classical in-

fluence maximization problem. Most of the existing work about influence maximization focus

on the maximization of influence spread under the assumption that the number of influenced

users determines the success of product promotion. However, the profit of some products

such as online game depends on the interactions among users besides the number of users. In

Chapter 3, we review the problems we discover about interaction-aware influence, where we

take both the number of active users and the user-to-user interactions into account and pro-

pose the interaction-aware influence maximization problem. . In this dissertation, to address

this practical issue, we analyze its complexity and modularity, propose the sandwich theory

which is based on decomposing the non-submodular objective function into the difference of

two submodular functions and design iterated sandwich algorithm which is guaranteed to

get data-dependent approximation solution. This problem will be demonstrated in Chapter

5.

Robust Profit Maximization. The goal of this problem is also interaction-aware

influence maximization, but it considers the uncertainty of influence propagation probability

in social networks, we propose the robust profit maximization problem to have the best

solution in the worst case of probability settings. We design a double sandwich algorithm

to this problem and further improve the algorithm with a sampling method such that it

increases the robustness of the output. Through real data sets, we verify the effectiveness of

our proposed algorithm. This part will be shown in Chapter 6.

The rest of the dissertation proceeds as follows: Chapter 2 gives the preliminaries to

friending, Chapter 3 discusses the interaction-aware social influence. Through Chapters 4 to

6, we study the problems of active friending, interaction-aware influence maximization, and

robust profit maximization respectively. Chapter 7 concludes this dissertation.
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CHAPTER 2

FRIENDING1

Authors – Shuyang Gu, Hongwei Du, My T. Thai and Ding-Zhu Du

The Computer Science Department, EC 31

The University of Texas at Dallas

800 West Campbell Road

Richardson, Texas 75080-3021

1 Reprinted by permission from Shuyang Gu, Hongwei Du, My T. Thai, Ding-zhu Du: Springer Nature,
Nonlinear Combinatorial Optimization, Friending, Shuyang Gu, Hongwei Du, My T. Thai, Ding-zhu Du,
c©2019
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2.1 Active Friending

If you have a LinkedIn or Facebook account, then you may frequently receive a message like

this ”Xuefei Zhang added connections you may know”, which reminds you that you may

know someone or someone is your friend’s friend. If you open the message, then you may

find a link to login your account and from your account, you may find some names who

invited you to be their friend and a list of names whom you may consider to invite for your

friends. These activities are called friending.

The active friending is the first optimization problem appeared in the literature (Yang

et al., 2013) about friending. The problem can be described as follows:

Definition 1 (Active Friending). Consider a social network represented as directed graph

G = (V,E) with an information diffusion model m. Suppose S is the list of existing friends of

a node s and t is a target node that s wants to include in his friend list. Given an integer r >

0, the problem is to find a subset R with at most r nodes to maximize the success probability

Prob(s, S,R, t), i.e., the probability that node t is activated through subgraph induced by

R ∪ S ∪ {s, t} when initially set up all nodes in S ∪ {s} to be active.

There are two popular information diffusion models studied in the literature, the in-

dependent cascade (IC) model and the linear threshold (LT) model. They are defined as

follows.

The IC model: Each node has two states, active and inactive. Every arc (u, v) is labeled

with a probability puv which means that if u is active and v is inactive, then the event that v

accepts the influence of u, i.e., v becomes active because of active u occurs with probability

puv. Before the process starts, all nodes are inactive. Initially, choose a subset of nodes,

called seeds, and activate them. In each subsequence step, every fresh-active node tries to

influence its inactive out-neighbors where a node is fresh-active if it becomes active in the

step right before the current step. If an inactive node v gets influenced by more than one,

4



say k, fresh-active nodes u1, u2, ..., uk at the same step, then all k events that ui influences v

successfully are treated as k independent events. This process ends if no fresh-active node

is produced.

The LT model: Each node has two states, active and inactive. Every arc (u, v) is

labeled with a positive weight wuv such that for any node v, Σu∈N−(v)wuv ≤ 1 where N−(v) =

{u|(u, v) ∈ E}. Before the process starts, all nodes are inactive. Initially, choose a subset

of nodes, called seeds, and activate them; meanwhile, each node u choose a threshold θu

uniformly and randomly from [0, 1]. In each of subsequence steps, every inactive node v

evaluates the total weight of wuv for u overall active in-neighbors. If this total weight is

at least θv, then v becomes active; otherwise, v keeps inactive. This process ends if no

fresh-active node is produced.

The following is proved in (Yang et al., 2013) by using dynamic programming.

Theorem 1. For an arborescence directed to t with the IC model, the active friending can

be solved in polynomial-time.

Using this result, they also designed a heuristic by, first, approximating the general

network with an in-arborescence with root t. This arborescence is the union of all the most

influential paths from each S ∪{s} to t where the most influential path from s′ ∈ S ∪{s} to

t is the shortest path when we consider -logpuv as the distance from node u to v and puv is

the probability that node v accepts the influence from u in the IC cascade model.

Kempe, Kleiburg, and Tardos (Kempe et al., 2003a) generalized the LT model and the

IC model to the general threshold model and the general cascade model, and proved that

every general threshold model is equivalent to a general cascade model, vice versa. For this

equivalence, the LT model is equivalent to a general cascade model, called the mutually-

exclusive cascade (MC) model. The MC model can be defined in the same way as that of

the IC model, except that when k fresh-active nodes u1, u2, ..., uk try to influence an inactive
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node v at the same step, this is considered as that k mutually-exclusive events occur. In the

equivalence relation between the LT model and the MC model, wuv = puv. The MC model

(of course, the LT model, too) has an important property. Consider a social network with

four nodes u, v, x, y and three arcs (u, x), (v, x), (x, y) in the MC model. Suppose u and v

are seeds. Then the probability that y becomes active is,

(pux + pvx)pxy = puxpxy + pvxpxy

that is, this probability is the sum of the probability that y accepts the influence of u through

the path from u to y and the probability that y accepts the influence of v through the path

from v to y. In general, this property can be stated in the following lemma.

Lemma 1. In the LT model, a node v accepts the influence from a seed set S with probability

equal to ∑
P∈P

Prob(P )

where P is the set of paths from S to v and Prob(P )is the probability that v accepts the

influence of a seed in S along path P .

This property makes that the problem in the LT model sometimes is easier than that in

the IC model. For example, the influence maximization in arborescence directed to the root

is polynomial-time solvable in the LT model (Wang et al., 2016), however NP-hard in the

IC model (Lu et al., 2017). (This result was first conjectured in (Bharathi et al., 2007) and

then proved in (Lu et al., 2017).)

With this special property of the LT model, Yuan et al. (Yuan et al., 2017) proved the

following result about Prob(s, S,R, t).

Theorem 2. Prob(s, S,R, t) is a monotone nondecreasing, supermodular function with re-

spect to R for social network G in the linear threshold model, that is, for any R′ ∈ R,

Prob(s, S,R′, t) ≤ Prob(s, S,R, t), and for any R and R′,

Prob(s, S,R, t) + Prob(s, S,R′, t) ≤ Prob(s, S,R ∪R′, t) + Prob(s, S,R ∩R′, t)
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Proof. It is easy to see the property of monotone nondecreasing. We next show the super-

modularity. Before doing so, let us first recall a special property proved in (Wang et al.,

2016) that the linear threshold model is equivalent to the mutually-exclusive cascade model

in which when k fresh-active nodes influence an inactive node, this event is considered as

a composed event of k mutually-exclusive events. This property yields that in the linear

threshold model, Prob(s, S,R, t) is equal to the sum of accepting probabilities each of which

is the probability that t accepts the invitation from anode s′ ∈ S ∪ {s} along a path p to

t where p is over all paths from a node in S ∪ {s} to t and with all nodes in R. Let P (R)

denote the set of all such paths p.

Now, we compare P (R)∪P (R′) with P (R∪R′) and P (R∩R′) . Clearly, both P (R) and

P (R′) are subsets of P (R ∪ R′). Moreover, if a path p appears in both P (R) and P (R′) ,

then p must appear in P (R ∩R′). Therefore,

Prob(s, S,R, t) + Prob(s, S,R′, t) ≤ Prob(s, S,R ∪R′, t) + Prob(s, S,R ∩R′, t)

By Theorem 5, the active friending with the LT model can be formulated into following

problem:

max Prob(s, S,R, t)

subject to |R| ≤ r,

that is, a monotone supermodular maximization with size constraint. This formulation

suggests that the discrete Lagrangian method (Shang and Wah, 1998) is suitable to solve

the active friending problem for the LT model. The greedy algorithm in (Bai and Bilmes,

2018) can also be used. However, the estimation of the curvature is trouble, which may be

done possibly only for some special networks, such as power-law graphs.

Next, we move our attention to the IC model. Let P be the set of all paths from

{s} ∪ S to t. Denote by Prob(R;P ) the probability that the randomized subgraph induced
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by R ∪ S ∪ {s, t} containing all paths in P . Denote Pi =
∑
|P |=i,P⊆P Prob(R;P ). By the

inclusive-exclusive formula,

Prob(s, S,R, t) = P1 − P2 + P3 − P4 + · · ·+ (−1)|P|P|P|

By an argument similar to that in the proof of Theorem 2, we can show following result.

Lemma 2. Prob(R;P ) is monotone nondecreasing supermodular with respect to R.

Proof. It is clear that Prob(R;P ) is monotone nondecreasing. Next, we show the supermod-

ularity. Consider two node subsets R1 and R2. Note that the randomized subgraph induced

by (R1∪R2)∪S∪{s, t} contains those paths contained by the randomized subgraph induced

by Rj ∪ S ∪ {s, t} for j = 1, 2. In addition, it also contains those paths contained by union

of these two randomized subgraphs. Therefore,

Prob(R1;P ) + Prob(R2;P ) ≤ Prob(R1 ∪R2;P ) + Prob(R1 ∩R2;P ),

that is, Prob(R;P ) is supermodular.

By above lemma, the following holds.

Theorem 3. In the IC model, Prob(s, S,R, t) can be represented as a difference of two

nonnegative monotone nondecreasing supermodular functions, i.e.,

Prob(s, S,R, t) = (P1 + P3 + · · · )− (P2 + P4 + · · · ).

By Theorem 6, we may employ the sandwich method (Lu et al., 2015a; Chen et al., 2016a;

Wang et al., 2017a; Tong et al., 2018), the submodular-supermodular method (Narasimhan

and Bilmes, 2005a), the modular-modular method (Iyer and Bilmes, 2012a), and the iterated

sandwich method (Wu et al., 2018) to solve the active friending problem for the IC model.
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2.2 Target Friending

The second optimization problem on friending is the target friending described as follows.

Definition 2 (Target Friending). Consider a social network represented as directed graph

G = (V,E) with an information diffusion model m. Suppose S is the list of existing friends

of a node s and t is a target node that s wants to include in his friend list. Given an integer

0 < ρ < 1, the problem is to find a minimum node subset R such that Prob(s, S,R, t) ≥ ρ.

By Theorem 5, the target friending for the LT model is a supermodular cover problem

as follows.

min |R|

subject to Prob(s, S,R, t) ≥ ρ,

The target friending for the IC model is a generalization of the well-known submodular

cover problem (Wolsey, 1982) the same as above except that Prob(s, S,R, t) is a nonsub-

modular and nonsupermodular function in the cover constraint. It is an interesting research

subject to see how to generalize the approximation analysis for the submodular cover prob-

lem. In fact, there are so many different proofs for the same theorem regarding to the

approximation performance ratio of a greedy algorithm for the submodular cover (Wolsey,

1982; Du et al., 2011; Wan et al., 2010). None of them is able to give a generalization for

above nonsubmodular cover problem so far.

2.3 Group Friending

The group friending was first studied in (Chen et al., 2014). They consider a romantic

scenario as follows: A boy found an attractive girl. However, they do not really know each

other. The boy worries that he may get rejected if he asks her directly. Hence, he wants
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to influence her friends at the first stage. Thus, her friends form target group for friending.

The objective in this problem is the expected number of her friends who become his friends

after friending process. This problem has no much difference from active friending.

Definition 3 (Active Group Friending). Consider a social network represented as directed

graph G = (V,E) with an information diffusion model m. Suppose S is the list of existing

friends of a node s and T is a set of target nodes that s wants to include in his friend list.

Given an integerr > 0, the problem is to find a subset R with at most r nodes to maximize

the expected number of active nodes in T , which are activated through subgraph induced by

R ∪ S ∪ {s, t} when initially set up all nodes in S ∪ {s} to be active.

The mathematical formulations are similar respectively to that of active friending in the

LT model and the IC model.

Shen et al. (Shen et al., 2015) proposed another formulation based on a quite different

scenario. Suppose we want to organize a social activity with at lease p persons, in order to

make new friendship between members in a big social organization. Two factors are very

important for us, the existing friendship between members and potential friendship between

numbers. To evaluate the success of the activity, we may give each potential friendship a

positive weight in (0, 1] and a measure of making new friends which is the ratio between the

total weight and group size.

Definition 4 (Hop-bounded Group Friending). Consider a heterogeneous social graph G =

(V,E,R) with edge weight w : R→ (0, 1], where V is the set of nodes, E is the set of friend

edges, and R is the set of potential friend edges. Given a hop constraint h and a group size

constraint p, find a subset of at least p nodes, H, such that every pair of nodes u and v

are within distance h in the graph with node set V and edge set E and σ(H) reaches the

maximum, where σ(H) = w(H)/|H| and w(H) is the total weight of potential friend edges

in the subgraph induced by H.
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This problem has been proved to be NP-hard and has no polynomial-time approximation

with a performance ratio ρ < 1 unless NP=P (Shen et al., 2015).

Finding a cohesive group from a social network with existing friend edges is an important

research topic in the literature. However, before (Shen et al., 2015), all efforts are based

on existing friendship (Wasserman and Faust, 1994; Feige et al., 2001; Mokken, 1979; Yang

et al., 2011, 2012; Zhu et al., 2014; Shuai et al., 2013; Surian et al., 2011) and no “friending”is

involved. In order to have “friending”involved, the potential friend edges are employed in the

hop-bounded group friending. How to know the potential friend edges? The link prediction

methods are used (Kashima and Abe, 2006; Liben-Nowell and Kleinberg, 2007; Clauset et al.,

2008; Kunegis and Lommatzsch, 2009; Leung et al., 2010). They analyze the features, the

similarity, and/or the interactive patterns to make recommendation for a potential friendship.

In the community expansion (Bi et al., 2014, 2013,?) , each community consists of all

customers for a certain business which always wants to expanse their service. Therefore, a

different type of “friending”problems are raised. They can all be formulated into nonlinear

combinatorial optimization problems.
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With the advancements in information science in the last two decades, online social

networks find important applications in viral marketing, under this circumstance, influence

maximization becomes a very popular research direction, which could be described as the

problem of finding a small set of most influential nodes in a social network so that the number

of influenced nodes under certain diffusion model in the network is maximized.

Kempe et al. (Kempe et al., 2003a) first formulate it as the influence maximization

problem: A social network is modeled as a graph with vertices representing individuals and

edges representing a relationship between two individuals. Influence is propagated in the

network according to a stochastic cascade model. One of the most popular cascade models

is independent cascade (IC) model: Each edge (u, v) in the graph is associated with a

propagation probability p(u, v), which is the probability that node u independently activates

node v at step t+1 if u is activated at step t. Given a social network graph, the IC model, and

a number k, the influence maximization problem is to find k nodes in the graph (referred

to as seeds) such that under the influence cascade model, the expected number of nodes

activated by the k seeds (referred to as the influence spread) is the largest possible. Kempe

et al. prove that the optimization problem is NP-hard, and they present a greedy algorithm

which guarantees that the influence spread is within (1 − 1/e − ε) of the optimal influence

spread, where e is the base of natural logarithm, and ε depends on the accuracy of their

Monte-Carlo estimate of the influence spread given a seed set.

A large number of effort has been made in this research topic since Kempe et al. (Kempe

et al., 2003a) first defined the problem and obtained plentiful results in many ways. Most of

the works focus on maximization of the spread of influence, which considers the number of

users influenced by viral marketing or the “word-of-mouth”effect in online social networks.

These works are based on the assumption that the number of influenced users determines

the profit of the product. However, some types of products earn profit in a continuous way

besides the sales of the product itself. The revenue model of online games is a good example,
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the sales of a game is just one source of a game company’s profit, another important part

of revenue depends on the participation and interaction of players who have already bought

the game.

The interactions among users contribute to game profit in several ways. First, the inter-

active users play games in an online manner, which will attract more in-game advertising.

In-game advertising allows advertisers to pay to have their name or products featured in

games, in 2017, $109 billion was spent on in-game advertising. Second, the virtual goods

transactions in games depend on players’ interactions. In 2009, the sale of virtual goods

brought in $1 billion.

We analyze such a revenue model and define a novel problem of interaction-aware influ-

ence maximization. Since the first part of revenue, sales of a game, depends on the spread

of influence, the objective is the same as the classical influence maximization. The second

part of revenue hinges on the interactions among users. We use interaction profit to repre-

sent such revenues related to the strength of interactions among players. We then define an

interaction-aware profit maximization problem, which is how to select a seed set to maximize

both the number of influenced users and the interaction profits among active nodes.

For the traditional influence maximization problem, since its submodularity, the greedy

algorithm can achieve a guaranteed approximation with 1−1/e. But unfortunately, interaction-

aware influence maximization problem is not submodular, thus the greedy strategy can’t be

directly applied to our problem to get a guaranteed approximate solution. To solve this

problem, we propose a new method called decomposition strategy in which we decompose

our objective function as a difference of two submodular functions. And based on the de-

composition we replace them with the modular functions which are upper or lower bound of

them to address the non-submodularity part of the problem and design an iterated sandwich

algorithm.
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3.1 Related Work

Influence maximization was first described as an algorithm problem by Domingos and Richard-

son (Domingos and Richardson, 2001a) (Richardson and Domingos, 2002a), they model the

problem using Markov random fields and propose heuristic solutions. Kempe et al. (Kempe

et al., 2003b) formulated the influence maxmization problem from the view of combinatorial

optimization and showed that the problem is NP-hard under both the IC and LT models,

they propose a simple greedy algorithm with an approximation ratio of 1 − 1/e. However,

a drawback of their work is the scalability of the greedy algorithm. Since then a number of

efficient heuristic algorithms have been proposed in many works to address the issue, one

direction is to improve the greedy algorithm, the other is to propose effective heuristics. In

(Leskovec et al., 2007), Leskovec et al. present a ”lazy-forward” optimization in selecting new

seeds, which exploits submodularity and greatly reduces the number of evaluations on the

influenced nodes, the main idea is that the marginal gain of a node in the current iteration

cannot be better than its marginal gain in the previous iterations.

In (Chen et al., 2009), Chen et al. improved the greedy algorithm by combining with

the CELF optimization proposed in (Leskovec et al., 2007), they also propose a degree

discount heuristics under the independent cascade model. The main idea of degree discount

heuristics is when selecting a node based on its degree, the degree does not include the

neighbors that are already activated. In(Chen et al., 2010a), they show that computing

influence spread in the independent cascade model is #P -hard, they propose a heuristic

algorithm to use local arborescence structures of each node to approximate the influence

propa- gation. The heuristic algorithm restricts computations on the local influence regions

of nodes. Moreover, by tuning the size of local influence regions, this heuristic can achieve

a tunable tradeoff between efficiency (in terms of running time) and effectiveness (in terms

of influence spread). In (Goyal et al., 2011a), Goyal et al. introduce CELF++ that further
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optimizes CELF by exploiting submodulairty, the advantage of the algorithm CELF++ is

that it avoids unnecessary re-computation of marginal gains incurred by CELF.

The influence maximization problem has also been extended to practical scenarios in

recent works. (Chen et al., 2015) studies the topic-aware influence maximization problem

which considers user interests. In real-world social networks, users have their interests (top-

ics) and are more likely to be influenced by their friends with similar topics. To address this

problem, they study topic-aware influence maximization, that is, given a topic-aware influ-

ence maximization (TIM) query, finds k seeds from a social network such that the topic-aware

influence spread of the k seeds is maximized.

In (Li et al., 2015), a keyword-based targeted influence maximization is proposed, where

users who are relevant to a given advertisement are targeted. In (Han et al., 2016), the

problem of privacy reserved influence maximization in both cyber-physical and online social

networks is studied, they propose a model that merges both GPS data and relationship data

from a social network. Bharathi et al.(Bharathi et al., 2007) study the game of innovation

diffusion with multiple competing innovations, for example, multiple companies market com-

peting for products using viral marketing. In (Chen et al., 2011), Chen et al. propose an

extension to the independent cascade model that incorporates the emergence and propaga-

tion of negative opinions, the new model has a quality factor to model the natural behavior

of people turning negative to a product due to product defects.

Most of the works only consider the number of activated users or the nodes of social

graphs but few work considers interactions among users in viral marketing. The interaction

activities between users is first processed by (Wang et al., 2017a). They consider a specific

problem of how one can stimulate the discussion about a topic in a social network as much

as possible within a budget. They model the problem as activity maximization. Given

a propagation network, which records user interaction activity strength along each edge,

the goal is to find an optimal set of seed users under a given budget, such that starting
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information propagation from the seed users leads to the maximum sum of activity strengths

among the influenced users. They show that the activity maximization problem is NP-hard

under IC model and LT model. The objective function of the problem is proved neither

submodular nor supermodular.

Activity maximization does not include maximizing the influence spread in the mean-

time and only count activity strength of the directly connected users. We propose a different

problem - interaction-aware influence maximization, which takes both parts into considera-

tion, in the following section we will go through the formulations of these two problems and

then we will discuss a method to solve interaction-aware influence maximization.

3.2 Problem Formulations

In this section, let us introduce the different formulations on influence maximization problems

that consider activity/interactions among users.

3.2.1 Activity Maximization

This problem was first processed by (Wang et al., 2017a). Consider a social network rep-

resented by a directed graph G = (V,E), together with an information diffusion model m.

In this model, each node has two states, active and inactive. Initially, all nodes are in an

inactive state. The influence diffusion consists of discrete steps. At the beginning, a set

of nodes are activated. Nodes in this set are called seeds. At each subsequent step, every

inactive node v evaluates its status and decides whether it should be activated or not, based

on the rule in the model m. The process ends at a step in which no more inactive node

becomes active.

Let S denote the set of seeds and Im(S) the set of active nodes at the end of the diffusion

process. Suppose that for each pair of active nodes u, v ∈ Im(S), if (u, v) is an edge of G,

17



i.e., (u, v) ∈ E, then an activity profit A(u, v) will be generated where A : E → R+ is a

nonnegative activity profit function. The activity maximization is the following problem:

maxα(S) =
∑

(u,v)∈E:u,v∈Im(S)

A(u, v) (3.1)

subject to |S| ≤ k

S ⊆ V

This problem has been proved to be NP-hard in (Wang et al., 2017a). There are also

counterexamples in (Wang et al., 2017a), which show that α(S) is neither submodular nor

supermodular. However, Wang et al. (Wang et al., 2017a) introduced two monotone nonde-

creasing submodular set functions β : 2V → R+ and γ : 2V → R+ such that for any S ∈ 2V ,

β(S) ≥ α(S) ≥ γ(S). These two set functions are defined as follows.

β(S) =
∑

(u,v)∈E:u∈Im(S)

A(u, v)

and

γ(S) =
∑
s∈S

∑
(u,v)∈E:u,v∈Im({s})

A(u, v).

By a theorem of Nemhauser and Wolsey (Nemhauser et al., 1978), there is a greedy algorithm

which can find (1− e−1)-approximation solutions for the following two problems.

max β(S) (3.2)

subject to |S| ≤ k,

S ⊆ V

max γ(S) (3.3)

subject to |S| ≤ k,

S ⊆ V.
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Let Sβ and Sγ be (1 − e−1)-approximation solutions for problem 3.2 and 3.3, respectively.

Let Sα be a feasible solution for problem 3.1. Choosing the best one from Sα, Sβ, and

Sγ, we would obtain a data-dependent approximation solution for problem (α), i.e., the

data-dependent approximation solution is

Sdata = argmaxS∈{Sα,Sβ ,Sγ}α(S).

3.2.2 Interaction-aware Influence Maximization

The goal of interaction-aware influence maximization is to find a set of initial users to max-

imize total profit related to both the number of the influenced nodes and the interaction

among the influenced nodes.

Again a social network is represented as directed graph G = (V,E) to represent a social

network, where V is the set of users and E is the set of social relations between users. Each

edge (u, v) ∈ E is assigned with a probability puv so that when u is active, v is activated by u

with probability puv. And the benefit related to the interaction between nodes is represented

by a nonnegative function b : V ×V → R≥0, in which b(u, v) = b(v, u) for the unordered pair

{u, v} of node u and v. Note that for each {u, v}, we only compute once the benefit between

them, i.e., b(u, v) or b(v, u) instead of b(u, v) + b(v, u).

Consider a moment in the propagation process under IC model, when node u has just

become active, and it attempts to activate its neighbor v, succeeding with probability pu,v.

We can view the outcome of this random event as being determined by flipping a coin of bias

pu,v. With all the coins flipped in advance, the edges in G for which the coin flip indicated

a successful n activation are declared to be live; the remaining edges are declared to be

blocked(Kempe et al., 2003a). We use g to represent the outcome of this process which is

called a live graph of G since it consists of all edges declared to be live. We denote as g ∼ D,

where D is the distribution of g. For any seed set S, denote by Ig(S) the set of all active
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nodes at the end of the cascade process in live graph g. Its cardinality is represented by

|Ig(S)|.

The total expected benefit would be defined as

f(S) = Eg∼D[α · |Ig(S)|+ β ·
∑
{u,v}⊆Ig(S) b(u, v)]

=
∑

g Prob[g] · (α · |Ig(S)|+ β ·
∑
{u,v}⊆Ig(S) b(u, v))

The benefit consists of two parts, the first part denoted as α·Ig(S) is related to the number

of nodes that are finally activated, and the second part β ·
∑
{u,v}⊆Ig(S) b(u, v) is related to

the strength of the interaction between the active nodes. The parameters α , β are used to

balance the weight of the two parts of the profits, and {u, v} ⊆ I(S) denotes the all unordered

pair in the set I(S). Note that for each unordered pair {u, v}, since b(u, v) = b(v, u), we

only compute once the benefit between them. The expectation is respected to g.

The interaction-aware influence maximization is the following problem: Given a social

network G = (V,E), a propagation probability puv for each edge (u, v) under the IC model,

a benefit function b : V × V → R≥0, and a positive integer k, find a set S of k seeds to

maximize the expected profit through influence propagation:

max f(S)

s.t.|S| ≤ k

This problem can be proved NP-hard by showing a special case of interaction-aware

influence maximization problem is NP-hard, where α = 0, since a problem being NP-hard

in a special case implies NP-hardness in the general case. The seeds size equals k. Then the

problem is transferred to seek k seeds that maximize the benefit between activated nodes.

Now we prove by reducing from the set cover problem, which is NP-complete (Alon et al.,

2003a). Given a ground set U = {u1, u2, . . . , un} and a collection of sets {S1, S2, . . . , Sm}
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Figure 3.1. Counter example

whose union equals the ground set, the set cover problem is to decide if there exist k sets

in S so that the union equals U . Given an instance of the set cover problem, we construct

a corresponding graph with m + 2n nodes as follows. For each set Si we create one node

pi, and for each element uj we create two nodes qj and q′j. If the Si contains the element

uj, then we create two edges (pi, qj) and (pi, q
′
j). Note that each edge is live which means

the probability is 1. Now we design the benefit function over pairs of nodes. For the pairs

{qj, q′j}, the benefit equals to 1, and the other pairs equal to 0. Then the set cover problem

is equivalent to deciding if there is a set S of k nodes such that the benefit of S equals to n.

The NP-hardness follows immediately.

There are also counter examples which show that f(S) is neither submodular nor super-

modular. We prove by the counter example shown in Fig.6.1. The first element in the tuple

tied on each edge represents the propogation probability, and the second one denote the ben-

efit between its two end nodes. For pairs {u, v} between which there is no edge set b(u, v) = 0

except pair {b, d}. In Fig.6.1, (0, 1) on edge (a, b) means propogation probability pab = 0 and

b(a, b) = 1, then we have f({a}) = 1+0 = 1, f({a, b}) = 2+1 = 3, f({a, d}) = 2+0 = 2 and

f({a, b, d}) = 3 + 3 = 6. Thus, f({a, d}) − f({a}) < f({a, b, d}) − f({a, b}), which implies

f(S) is not submodular. Also, we have f({c}) = 2+2 = 4, f({d, c}) = 2+2 = 4, f({d}) = 1.

Thus, f({c})− f(∅) > f({d, c})− f({c}) which implies f(S) is not supermodular.

3.3 A Method for Interaction-aware Influence Maximization

We have the following theoretical result leading us to a new method to solve our non-

submodular problem.
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Theorem 4. For any set function f : 2X → R and any set Y ⊂ X, there are two

modular/submodular/supermodular funtions mu
f : 2X → R and ml

f : 2X → R such that

mu
f (X) ≥ f(X) ≥ ml

f (X) and mu
f (Y ) = f(Y ) = ml

f (Y ).

We can apply the theorem as long as we have a decomposition of the objective function

into two submodular functions. This decomposition sometimes can be obtained trivially from

the set function structure (or problem structure). However, in general, it is conjectured to

be NP-hard(Narasimhan and Bilmes, 2012). In our case, it is not trivial, but we successfully

found a decomposition with a special technique and moreover, we made obtained submodular

functions computationally possible.

The following shows how we decompose our objective function f(S) as the difference of

f1(S) and f2(S) both of which are submodular proved as following, i.e., f(S) = f1(S)−f2(S).

Given a seed set S and a live graph g, we define the B1(S) as a benefit between activated

users Ig(S) and all users V , and define B2(S) as the benefit among all activated users Ig(S)

plus the benefit between the activated users Ig(S) and the non-activated users V \ I(S),

which are formulated as follows:

B1(S) =
∑

u∈Ig(S)

∑
v∈V

b(u, v)

=
∑
{u,v}⊆Ig(S) 2 · b(u, v) +

∑
u∈Ig(S)

∑
v∈V \Ig(S) b(u, v)

B2(S) =
∑
{u,v}⊆Ig(S) b(u, v) +

∑
u∈Ig(S)

∑
v∈V \Ig(S) b(u, v)

Thus we have

B(S) = B1(S)−B2(S)

=
∑
{u,v}⊆Ig(S) b(u, v)
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And given a seed set S, we define the following functions

f1(S) = Eg∼D[α · |Ig(S)|+ β ·B1(S)]

f2(S) = Eg∼D[β ·B2(S)]

Then we have

f(S) = Eg∼D[α · |Ig(S)|+ β ·
∑
{u,v}⊆I(S) b(u, v)]

= Eg∼D[α · |Ig(S)|+ β · (B1(S)−B2(S))]

= Eg∼D[α · |Ig(S)|+ β ·B1(S)]− Eg∼D[β ·B2(S)]

= f1(S)− f2(S)

Thus f(S) is decomposed as a difference between function f1 and f2, and both of them are

submodular. According to theorem 4 and our decomposed submodular functions, we can

design an iterated sandwich algorithm to solve the Interaction-aware Influence Maximization

problem. The main idea of our algorithm is to find the upper bound function and lower bound

function based on the current seed set, then solve three functions: the upper bound function,

the lower found function, and the objective function. then we choose the best solution from

those three solutions, this best solution is then the seed set for generation of upper and lower

bound functions in the next iteration. The procedure iterates until converged.
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4.1 Introduction

Online social networks have been developing and prosperous during the last two decades,

users of online social networks such as Twitter, Instagram have the nature of expanding social

relationships. Thus one important social network service is to provide potential friends to

a user that he or she might be interested in, such service is called friend recommendation.

Different from friend recommendation, which is a passive way for a user to connect with a

potential friend, in this paper, we tackle a different problem named active friending, which

is the first studied in (Yang et al., 2013) as an optimization problem about how to friend a

person in social networks. In short, the goal of the problem is how to assist a person to take

proactive actions to make friends online with a target person by sending multiple invitations

to a group of users, the probability that the target node is connected with the initiator is

influenced by the common friends of those two users.

4.1.1 Motivation

There are lots of scenarios that people is interested in making friends with a person who is

far away in his/her social network topology, a student may want to get connected with a

professional who just gave a talk on campus, a fan might want to make friends with her idol,

etc. Of course, a user has friending need can directly send an invitation to the target person,

however, since that person does not know him/her at all, the probability that the friending

request is accepted is low. Active friending exploits the social influence to maximize the

friending acceptance probability, it assumes that the number of common friends between the

initiator and a friending invitation receiver affects the probability that the receiver accepts

the invitation. For a user to friend a distant target, the initiator may approach the friending

target by making friends with a set of intermediate users, if the initiator succeed to friend

some target’s direct friends, the probability that the target accepts friending request is

increased, to make friends with target’s direct friends, the initiator might first get acquainted
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with their friend and so on. Since an individual user does not know the network topology

and the influence probability of the edges, the service provider will recommend two-hop away

users to the initiator at each step to help the initiator approach the target.

4.1.2 Problem Description

Suppose we have a directed graph G = (V,E) that represents a social network with an

influence propagation model m. (In the studies of the influence of social networks, two

influence propagation models are often adopted, which we will introduce in the following

section.) Given a friending initiator s and his target node t as well as the set S which is the

existing friends of s, the problem is to find a subset of nodes R to maximize the acceptance

probability at the target t with a constraint that |R| ≤ r, r is an integer. The acceptance

probability at t is the probability that t can be activated through the subgraph induced by

{s} ∪ S ∪R, at the beginning only the nodes in {s} ∪ S are active. We call a node active in

active friending problem if it is a friend of s or it accepts the friending invitation from s, and

the probability that a node is activated depends on both the number of his/her active friends

who influence him/her and the influence propagation probability in IC model or weight on

edges in LT model which will be specified later.

4.1.3 Related Work

Social networks are studied extensively as a platform for viral marketing, a most famous

problem in this area is influence maximization (Chen et al., 2009; Bharathi et al., 2007; Chen

et al., 2010a; Tang et al., 2014a; Goyal et al., 2011a,b), which studies under some propagation

model how to select the initial seed nodes such that the total number of influenced users

is maximized. Domings and Richardson (Domingos and Richardson, 2001b; Richardson

and Domingos, 2002b) first study the influence maximization as an optimization problem.

Later, (Kempe et al., 2003a) adopts Linear Threshold (LT) Model and Indepence Cascade
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(IC) Model as the influence propagation models and formulate influence maximization as

a discrete optimization problem. The active friending problem was studied under a single

propation model in previous studies, IC model studied in (Yang et al., 2013) and LT model

studied in (Yuan et al., 2017). In this paper we find a general method to solve it in both

models, in the meantime, we consider the general graph as input.

Active friending problem is first studied by (Yang et al., 2013), the problem is formulated

in IC model and an algorithm is proposed based on an abstraction of the social graph

structure between source and target as a tree and in-node aggregation, the abstraction

consists of the most influential paths from S to t, where S is the set of current friends of s,

setting log puv as the weight on edge (u, v), the abstracted graph contains the shortest path

for each s′ ∈ S to t. puv denotes the acceptance probability for a node v who is influenced

by node u, that is, the probability that the node v accepts the friending invitation from s

given u is a friend of s.

The algorithm proposed in (Yang et al., 2013) employs the tree structure for efficiency

but with a trade-off of effectiveness. The reason it sacrifices effectiveness is that for each

node v in S, which is adopted as a leaf node in (Yang et al., 2013), only the most influential

path between v and t is considered, however, in this case, if there exists a path that has a lot

of common nodes with a most influential path, and both of them have the same source and

destination, of course, such paths are not taken into account. Unfortunately, these paths are

valuable because if we send invitations to both the nodes on the most influential path and

a few extra nodes to form another path, we have two possible ways to friend the target yet

the cost is not increased much. In addition, the most influential path is the one that has the

most influential probability between v and t, however, the cost, the number of hops between

them is not taken into account, there might be some path has lower influential probability

but a small number of hops, this kind of paths deserve attention too. In this paper, we tackle

the same active friending problem with general graph structure.
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In (Yuan et al., 2017), the active friending with budget constraint under LT model is

studied, the objective function is proved supermodular, and then effective algorithms based

on superdifferentials are designed. Recently (Wu et al., 2018) studied a related problem under

LT model, the problem is to find a minimal set of nodes in the network to send invitations

to such that the acceptance probability at the target node could reach a threshold, the

authors explore there exists relationship between the minimum subset cover problem and

the formulated problem,, then they propose a randomized algorithm with an approximation

factor of O(
√
n). Another problem related to active friending is group friending, the problem

was proposed in (Chen et al., 2014), which studies the problem how to friend a group of

users at the same time, the objective is to maximize the average number of active nodes on

the list of target nodes.

The aforementioned studies are all on active friending, for the passive friending problem,

a major direction is friend recommendation. (Silva et al., 2010) proposes a system recom-

mending friends based on the topology of the network graphs. In (Wang et al., 2015), a

recommendation system for users according to their lifestyles rather than social graphs is

proposed. (Xie, 2010) explores interest-based features in friend recommendation. (Kwon and

Kim, 2010) proposes a friend recommendation scheme using physical and social information.

4.1.4 Our Contributions

For all we know, it is novel to tackle the active friending problem in both the independent

cascade model (IC) and the linear threshold model (LT) on general social graph. The

contributions of this paper are summarized as follows:

• In this paper, active friending problem on the general graphs is studied in both IC and

LT models. We prove the objective function of acceptance probability under the IC

model is monotone nondecreasing nonsubmodular. We further prove the problem in

LT model is NP-hard.
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• By defining the objective function with respect to set of paths instead of set of nodes,

we convert the problem in LT model from a supermodular maximization subject to

cardinality constraint problem into a modular maximization subject to submodular

knapsack constraint problem, and we convert the problem in IC model from a non-

submodular maximization subject to cardinality constraint problem into a submodular

maximization subject to submodular knapsack constraint problem.

• To solve these two problems, we propose a general method, the iterated submodular

cost knapsack algorithm, which iteratively solves the problem by replacing the submod-

ular knapsack constraint by a modular upper bound and then uses a greedy algorithm

to solve the submodular cost modular knapsack problem until convergence.

• The experiments on real data sets verify that our proposed algorithms are effective.

4.2 Problem Formulation

4.2.1 Acceptance Probability in LT Model

In a social graph G = (V,E), en edge (u, v) ∈ E represents that node v is a friend of u.

In LT model there is a positive weight wuv associated with the edge (u, v) , which indicates

the probability that node u could influence v. In active friending problem, wuv represents

the probability that node v would accept the invitation from a stranger s if node u is s’s

friend, and also u is a friend of v. Note that in LT model the sum of weights of all incoming

edges to a node is less than one, Σu∈N in(v)wuv ≤ 1 where N in(v) = {u|(u, v) ∈ E}. At the

beginning, only nodes in S are friends of s. Then node s sends invitations to all the nodes

in set R that are also friends of s’s friends and never received the friending invitation before,

as the number of s’s friends increases, the procedure continues until there are no nodes in

R left have not receive friending invitations or there are no nodes in R are two-hop friends

of s. In LT model, the friends of a node v has mutual exclusive social influence on the end
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Table 4.1. Notation
Notation Description

s The initiator who has friending needs.

t The target node that s is willing to friend.

S The initiator’s current friends set.

R
The intermediate nodes set selected for sending friending
invitations.

P The set of paths from s to t.

a(R, t)
The acceptance probability at t with invitations sent to
nodes in R in LT model.

b(R, t)
The acceptance probability at t with invitations sent to
nodes in R in IC model.

c(X, t)
The acceptance probability at t with invitations sent to
nodes on paths in X in LT model.

d(X, t)
The acceptance probability at t with invitations sent to
nodes on paths in X in IC model.

τp The vertices on path p which are not s’s direct friends.

Pi
The probability that exactly i paths are contained in the
random subgraph induced by {s, t} ∪ S ∪R.

Ω(X,A)
The probability that the randomized subgraph induced
by nodes in X containing all paths in A.

N in(v) The set of nodes that are incoming neighbors of v.

f(X)
The number of nodes on the paths in X which are not
in s ∪ S.

node v to accept the friending quest. For a node v, the sum of the weights on the edges

connecting any friend of s is the probability that v will accept the friending invitation. Note

that each node in R could only get one friending invitation, which prevents the acceptance

probabilities varies from cycling friending process. The formal definition of the acceptance

probability is as follows.
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Definition 5. In LT model, the acceptance probability at t given invitation set R is defined

as a(R, t) = 

1 if t ∈ S

0 if t /∈ R ∪ S or N in(t) = ∅∑
u∈N in(t)

a(R, u) · wut otherwise

(4.1)

For a set function f , let P be the ground set, f is submodular if it holds that ∆jf(S) ≥

∆jf(T ) for all S ⊆ T and j /∈ T , where ∆jf(S) = f(S ∪ j) − f(S) is defined as the gain

of j ∈ P added to a set S ⊆ P . On the other hand, f is considered supermodular if

and only if ∆jf(S) ≤ ∆jf(T ) for all S ⊆ T and j /∈ T . Function f is monotone when

∆jf(S) ≥ 0,∀j /∈ S, S ⊆ P . The following theorem is about the supermodularity of the

acceptance probability function proved in (Yuan et al., 2017).

Theorem 5. In LT model the acceptance probability function a(R, t) with respect to R is

monotone nondecreasing supermodular.

Definition 6. (Active Friending with Respect to Set of Intermediate Nodes in LT model,

AFIN-LT):

max a(R, t) (4.2)

s.t. |R| ≤ r, (4.3)

By Theorem 5, the active friending problem in LT model is maximizing a monotone

supermodular function with cardinality constraint.

4.2.2 Acceptance Probability in IC Model

In active friending problem, each node is in one of two states, either a friend of s or a stranger

for s. In IC model every edge (u, v) is associated with a real number puv indicating if u is
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Figure 4.1. Counter Examples

s’s friend, node v will accept the invitation from s influenced by u with the probability puv.

Before the friending invitations are sent, only nodes in S are s’s friends. Initially, we choose

a subset of nodes R to send invitation to, but instead of sending the invitations all at once, in

each step we send invitation to nodes in R that are two-hop friends of s. In each step, every

new-friend node is going to influence its out-neighbors who is not friend of s and also get

friending invitation at current step, where a node is new-friend if it accepts invitation from s

in the very last step. If a stranger node v is being influenced by multiple nodes u1, u2, ..., uk

at the same time, then those k events that ui influences v are considered to be independent.

Definition 7. In IC model, the acceptance probability at t is b(R, t) =

1 if t ∈ S

0 if t /∈ R ∪ S or N in(t) = ∅

1−
∏

u∈N in(t)

(1− b(R, u) · put) otherwise

(4.4)

We have the following result about the non-submodularity of the function b(R, t).

Theorem 6. b(R, t) is a monotone nondecreasing, neither submodular nor supermodular

with respect to R in IC model.

Proof. It is obvious b(R, t) is monotone nondecreasing. We prove it is non-submodular and

non-supermodular by counter examples. For the example in figure 1(a), in which the number
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on each edge indicates the weight associated with that edge. We consider a special case that

the probability of a node accepting the invitation is 1 given the previous node on the path

is friend of s. Initially, s only has one friend s1. b({t, v1} ∪ {v2}, t)− b({t, v1}, t) = 1− 0 =

1 > b({t} ∪ {v2}, t)− b({t}, t) = 0− 0 = 0, which proves b(R, t) is not submodular. For the

example in figure 1(b), initially, s has only two friends s1 and s2, the probability at the last

edge to the target t is 0.5. We have b({t, v1} ∪ {v2}, t) − b({t, v1}, t) = 3/4 − 1/2 = 1/4 <

b({t} ∪ {v2}, t)− b({t}, t) = 1/2− 0 = 1/2, which proves b(R, t) is not supermodular.

Now that we have the formal definition of the acceptance probability in IC, we define the

active friending problem based on this function as follows.

Definition 8. (Active Friending with respect to Set of Intermediate Nodes Problem in IC

model, AFIN-IC):

max b(R, t) (4.5)

s.t. |R| ≤ r, (4.6)

The active friending problem in IC model is monotone non-submodular maximization

with cardinality constrain by Theorem 6.

s1 𝑟11 𝑟12 𝑟1
𝑐1

s2 𝑟21 𝑟22 𝑟2
𝑐2

sn 𝑟𝑛1 𝑟𝑛2 𝑟𝑛
𝑐𝑛

s t

…

…

…

… …

Figure 4.2. Reduction for NP hardness in LT model

4.2.3 Hardness Results

Let us assess the computational complexity of the active friending problem in different dif-

fusion models.
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Theorem 7. Both AFIN-IC and AFIN-LT are NP-hard.

Proof. Active friending problem is NP-hard under the independent cascade (IC) model,

which was proved in (Yang et al., 2013). To prove it is NP-hard in LT model, we reduce 0-1

knapsack problem to our problem 4.2. The decision version of our problem is to determine if

a subset R of nodes with |R| ≤ r exists such that a(R, t) is at least δ. The decision version

of 0-1 knapsack problem is given a group of items U = {u1, u2, . . . , un}, each item ui has a

weight ci and a value vi, also we are given a maximum total weight W , to determine if there

exists a subset of the items U ′ ⊆ U such that total value of them achieves Q while the total

weight of these items is within W . Note that 0-1 means that one item can be used at most

once. We assume the weight ci is an integer, which does not affect the NP-hardness of the

problem. For an instance of 0-1 knapsack problem, we construct a graph as follows: create

an initiator node s and a target node t, for each item ui ∈ U create a direct neighbor si for

s, create a chain of ci nodes r1
i , r

2
i , . . . , r

ci
i between si and t. The weight on edge (rcii , t) is

assigned vi/
∑n

i=1 vi, the other edges are assigned weight 1. The construction is illustrated

as Figure 4.2. We show that there exists a subset U ′ of items that the total weight is at

most W and the total value is at least Q in the 0-1 knapsack problem if and only if there

exists a subset R ⊆ V with |R| ≤ W + 1 for s to send invitations to such that a(R, t) is at

least Q/
∑n

i=1 vi.

To show the sufficient condition holds, if there exists a subset U ′ that the corresponding

total weight is within W and total value is at least Q, selecting the set of nodes on the cor-

responding paths, denoted by R , will have the acceptance probability a(R, t) = Q/
∑n

i=1 vi

at target t under LT model, note that since t is always included on the invitation list, so the

total number of invitations is W+1. To show the ”only if” part, suppose there exists a subset

R ⊆ V with|R| ≤ W+1, to make the acceptance probability at t be at least Q/
∑n

i=1 vi, then

the nodes must be on some of the paths from s to t, since each path corresponds to an item

in U , choose the corresponding items to form a subset U ′, then the total weight is within
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W and the total value is at least Q. Thus finding a subset of nodes with size constraint at

the meantime maximizing acceptance probability at the destination node is NP-hard in LT

model. Thus the theorem follows.

4.3 Problem Conversion

4.3.1 Problem Conversion in LT Model

Kempe, Kleiburg, and Tardos (Kempe et al., 2003a) proved that LT model can be viewed as

a mutual-exclusive cascade (MC) model. MC model has similar definition to IC model, the

difference is that when multiple newly-active users try to activate one user at a certain step,

these events are considered mutual-exclusive, that is the total probability is the sum of prob-

ability of each event. The LT model is equivalent to the MC model when wuv = puv. In these

two models influence from different nodes to one node is mutual-exclusive, for example let us

consider a simple social network with V = {x, y, z, u, v} and E = {(x, u), (y, u), (z, u), (u, v)}.

Assume x, y and z are active. By the mutual-exclusive property the probability that v could

be activated is

(pxu + pyu + pzu)puv = pxupuv + pyupuv + pzupuv

which shows the activating probability at the end node v is the sum of the activation proba-

bilities from all active nodes along different paths. In general, we have the following lemma

about this property in LT model. Let Prob(p) be the probability that t is activated along

path p originated from a seed in S, let P be the set of all paths between nodes in S and the

target node t.

Lemma 3. In LT model, assume nodes in a set S is active at the beginning, then after the

propagation process ends a node t can be activated with probability equal to∑
p∈P

Prob(p).
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The property can simplify some problems in LT model. For instance, the influence

maximization problem in LT can be solved in polynomial time (Wang et al., 2016) if the

topology is arborescence, while this problem is NP-hard in IC model (Lu et al., 2017; Bharathi

et al., 2007). For active friending problem, we can get a similar property. Let P be the ground

set of all paths from s to t in G, let PR be the set of paths from s to t contained in the

subgraph induced by {s} ∪ S ∪ R, note that set R must include node t for t to accept the

friending quest in the end. Let τp be the vertices on path p which are not s’s direct neighbors

which results in cost in our constraint, and a({τp}, t) be the probability that t accepts the

invitation of s by s making friends with all nodes along path p. A path p can be viewed

as a sequence of nodes or edges, here we represent a path p as a set of edges, we have

a({τp}, t) =
∏

(u,v)∈p
wuv.

In LT model, given the initiator s, the neighbor set S of the initiator s, and the set

of nodes R that receive invitations from s, we have the following property for the active

friending problem.

Lemma 4. In LT model, the acceptance probability at t equals to the sum of the acceptance

probability along each path.

a(R, t) =
∑
p∈PR

a({τp}, t)

Let c(X, t) : (2P , t)→ [0, 1] be the acceptance probability function on subset X of paths

from s to t given ground set P , let f(X) : 2P → N be the function that maps a set of paths

from s to t to the number of vertices in the graph induced by the union of the selected paths

that are not in s∪ S. By lemma 4, we could convert the active friending problem 4.2 to the

problem as follows:

Definition 9. (Active Friending with Respect to Set of Paths in LT model, AFP-LT)

max c(X, t) (4.7)

s.t. f(X) ≤ r, (4.8)
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We can have the following theorem easily.

Theorem 8. AFP-LT is equivalent to AFIN-LT.

Proof. By lemma 4, only nodes that contribute to forming intact paths from s to t are effec-

tive in active friending problem, thus the problem of selecting a group of paths maximizing

the acceptance probability is equivalent to selecting a group of effective nodes that achieves

the same acceptance probability.

Theorem 9. The function c(X, t) is modular with respect to X.

Proof. Since c(X, t) =
∑
p∈X

c({p}, t), the linear combination of modular functions is still

modular, so c(X, t) is modular with respect to X.

Theorem 10. The function f(X) is monotone nonnegative submodular with respect to X.

Proof. To prove f(X) is submodular, let S ⊆ T ⊆ P , u ∈ V \T . We have f(S∪{u})−f(S) ≥

f(T ∪{u})−f(T ), the reason is the path u has more overlapped nodes with set T than with

S since S ⊆ T , thus the submodularity follows.

From the above two theorems, we have the problem 4.7 is a submodular cost knap-

sack(modular) problem.

4.3.2 Problem Conversion in IC Model

In IC model, the influences for a certain node on different edges are independent. Let

Prob(R;A) be the probability that the random subgraph induced by {s, t} ∪S ∪R contains

all paths in A, where A is a subset of paths. Let Pi =
∑
|A|=i,A⊆P Prob(R;A), which

is the probability that exactly i paths are contained in the random subgraph induced by

{s, t} ∪ S ∪ R. The acceptance probability can be obtained by probabilistic version of

inclusive-exclusive principle.
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Lemma 5. In IC model, given the subset of nodes R that receive the invitations, by inclu-

sion–exclusion principle, a node t accepts the friending invitation from node s who has a

direct friends set S with acceptance probability equal to

b(R, t) = P1 − P2 + P3 − P4 + · · ·+ (−1)|P |−1P|P |.

Let d(X, t) : (2P , t) → [0, 1] be the acceptance probability function on set X of paths

from s to t given ground set P . By lemma 5, we could convert the active friending problem

with respect to the set of intermediate nodes 4.5 to the problem as follows.

Definition 10. (Active Friending with respect to Set of Paths in IC model, AFP-IC)

max d(X, t) (4.9)

s.t. f(X) ≤ r, (4.10)

Similar to theorem 8, we have the following theorem and omit the proof.

Theorem 11. Problem AFP-IC is equivalent to problem AFIN-IC.

We have converted the problem from selecting a subset of intermediate nodes between

s to t to selecting a set of paths between s and t by the fact that only the nodes forming

paths contribute to acceptance probability. Now that the overall acceptance probability

is the probability that t is reachable from s in the randomized subgraph induced by the

nodes in X, let us denote by Ω(X,A) the probability that the randomized subgraph induced

by nodes in X containing all paths in A, then we can rewrite the formula of Pi as P ′i =∑
|A|=i,A⊆P Ω(X,A). Note that in the new problem 4.9, if Pi =

∑
|A|=i,A⊆P Prob(

⋃
p∈X

τp, A),

then Pi = P ′i, thus we have

d(X, t) = P1 − P2 + P3 − P4 + · · ·+ (−1)|P |−1P|P | (4.11)

Theorem 12. d(X, t) is monotone nonnegative submodular with respect to X.
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Proof. Let us denote d(X, t) as d(X) for short. To prove d(X) is submodular, we need to

prove d(A) + d(B) ≥ d(A ∪ B) + d(A ∩ B), given A,B ⊆ P . Let A \ B = X, B \ A = Y ,

A ∩ B = Z. Then d(A) + d(B) = d(X ∪ Z) + d(Y ∪ Z). Let PHi =
∑
|L|=i,L⊆P Ω(H,L) .

Then we have

d(X) = PX1 − PX2 + · · ·+ (−1)|X|−1PX|X| =
|X|∑
i=1

(−1)i−1PXi

d(Z) = PZ1 − PZ2 + · · ·+ (−1)|Z|−1P|Z|Z =

|Z|∑
i=1

(−1)i−1PZi

d(Y ) = PY1 − PY2 + · · ·+ (−1)|Y |−1PY|Y | =
|Y |∑
i=1

(−1)i−1PYi

And we have

d(X ∪ Z) = PX∪Z1 − PX∪Z2 + · · ·+ (−1)|X∪Z|−1PX∪Z|X∪Z|

=

|X∪Z|∑
i=1

(−1)i−1PX∪Zi

d(Y ∪ Z = PY ∪Z1 − PY ∪Z2 + · · ·+ (−1)|Y ∪Z|−1PY ∪Z|Y ∪Z|

=

|Y ∪Z|∑
i=1

(−1)i−1PY ∪Zi .

We have PX∪Z1 = PX1 + PZ1 because X and Z are disjoint sets of paths.

PX∪Z2 = PX2 + PZ2 +
∑

|L|=2,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L)

PX∪Z3 = PX3 + PZ3 +
∑

|L|=3,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L)

PX∪Zi = PXi + PZi +
∑

|L|=i,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L)

d(X ∪ Z) = PX∪Z1 − PX∪Z2 + · · ·+ (−1)|X∪Z|PX∪Z|X∪Z|

= d(X) + d(Z) + · · ·+ (−1)i−1
∑

|L|=i,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L) + . . .

+ (−1)|X∪Z|
∑

|L|=|X∪Z|,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L), i ≥ 2
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Similarly we have the formula for d(Y ∪ Z) and d(X ∪ Y ∪ Z). So we have

d(A) + d(B) = d(X ∪ Z) + d(Y ∪ Z) = d(X) + d(Y ) + 2d(Z) + . . .

+(−1)i−1[
∑

|L|=i,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L) +
∑

|L|=i,L\Y 6=∅,L\Z 6=∅

Ω(Y ∪ Z,L)]

And we have

d(A ∪B) + d(A ∩B) = d(X ∪ Y ∪ Z) + d(Z) = d(X) + d(Y ) + 2d(Z) + . . .

+ (−1)(i−1)[
∑

|L|=i,L\X 6=∅,L\Z 6=∅

Ω(X ∪ Z,L)+

∑
|L|=i,L\Y 6=∅,L\Z 6=∅

Ω(Y ∪ Z,L)+

∑
|L|=i,L\X 6=∅,L\Y 6=∅

Ω(X ∪ Y ∪ Z,L)+

∑
|L|=i,L\X 6=∅,L\Y 6=∅,L\Z 6=∅

Ω(X ∪ Y ∪ Z,L)].

(4.12)

From the previous equations for d(A ∪B) + d(A ∩B) and d(A) + d(B), we have

d(A ∪B) + d(A ∩B)− d(A)− d(B)

=

|P |∑
i=2

(−1)i−1[
∑

|L|=i,L\X 6=∅,L\Y 6=∅

Ω(X ∪ Y ∪ Z,L)

+
∑

|L|=i,L\X 6=∅,L\Y 6=∅,L\Z 6=∅

Ω(X ∪ Y ∪ Z,L)] ≤ 0

(4.13)

The reason is that the term with i = 2, 4, 6, . . . is negative and the absolute value is greater

than the term with i+ 1, which is positive, so the summation is always less than zero. The

key of the result is the probability that a set S of paths is contained in a randomized graph

is always greater than the probability that a superset of S is contained in a randomized

graph, and the difference between d(A∪B) + d(A∩B) and d(A) + d(B) contains the terms

with cardinality of paths set greater or equal to 2, by inclusion-exclusion principle, the term

with even cardinality is negative, and every other term is positive, but the overall value is
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always less than 0. Therefore we have d(A) + d(B) ≥ d(A ∪ B) + d(A ∩ B), which proves

the submodularity.

Hence, the problem 4.9 is a submodular cost with submodular knapsack constraint prob-

lem. Now we have converted the problem in LT model from a supermodular maximization

with cardinality constraint problem into a modular maximization with submodular knap-

sack constraint problem, and we converted the problem in IC model from a nonsubmodular

maximization with cardinality constraint problem into a submodular maximization with

submodular knapsack constraint problem. Of course both problems are NP-hard since when

both the objective function and constraint function are modular, the problem becomes knap-

sack problem which is NP-hard, thus the general form is also NP-hard. Since the modular

function can be treated as a special form of submodular function, the two problems might

be solved by a general method.

4.4 Algorithms

Before we propose our algorithm, we want to point out that in order to get the input of our

algorithm for the problem with respect to a subset of paths, we need to preprocess our data

which is a graph G = (V,E) to have the paths from the initiator to the target node. That

is to say, our first step is to have all paths from s to t as our ground set P for the problem

AFP-IC and AFP-LT. Note that finding one single path can be done by DFS in O(|V |+ |E|)

time, but the number of simple paths can be very large, e.g. O(n!).

Fortunately in our problem, we only need to search the paths whose lengths are less than

r + 2, the longer paths are not going to be selected since we have the constraint of nodes

number. And the path that visits multiple nodes in S are also not going to be selected, the

reason is as follows. Suppose we want to select a path that visit multiple nodes in S, i.e.

path1 = (s, s1, . . . , s2, . . . , t), then there always exists a path path2 = (s, s2, . . . , t), which is
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shorter and the overall probability along path 2 must be larger than path 1. Therefore, we

do not need to consider the paths whose length are larger or equal to r + 2.

4.4.1 Iterated Submodular Cost Knapsack Algorithm

Next we propose Iterated Submodular Cost Submodular Knapsack Algorithm (ISCK), which

is inspired by (Iyer and Bilmes, 2013). The main idea is iteratively choosing a modular upper

bound of the submodular constraint function f , which makes the problem become maximiz-

ing a submodular set function subject to a modular knapsack constrain, for such problem

we get in each iteration a greedy algorithm provides a 1 − e−1 approximation (Sviridenko,

2004). The iterations continue until convergence. Note that function g in the algorithm

stands for either c or d depending on the propagation diffusion model is LT or IC, function

c is modular, the submodular generalization can also handle it.

To have the modular upper bound function of the constraint function f , we use the

technique proposed in (Jegelka and Bilmes, 2011). For any subset Y , we can obtain the

modular function which is an upper bound of f tight at Y in the following two ways (when

referring either one, we use mf
Y ):

mf
Y,1(X) , f(Y )−

∑
j∈Y \X

∆jf(Y \ j) +
∑
j∈X\Y

∆jf(∅) (4.14)

mf
Y,2(X) , f(Y )−

∑
j∈Y \X

∆jf(P \ j) +
∑
j∈X\Y

∆jf(Y ) (4.15)

For the greedy algorithm to solve the problem max{g(X)|mf
Y (X) ≤ r} in each iteration,

we use the method in (Sviridenko, 2004) and propose Algorithm 2. This algorithm consists

of two parts. The first is to try all the subsets with cardinality of 1 or 2, store the set

which provides the best solution to the problem. The second part of the algorithm finds

all sets with cardinality of 3, and then for each set add elements to the set greedily with
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Algorithm 1 Iterated Submodular Cost Submodular Knapsack Algorithm

1: initialize t← 1, I0 ← ∅
2: repeat
3: compute a modular upper bound mf

It−1(X) for f

4: I t ← argmaxX{g(X)|mf
It−1(X) ≤ r};

5: t← t+ 1;
6: until converged, i.e., I t = I t−1

7: return It

Algorithm 2 Greedy Algorithm for Submodular Maximization subject to a Knapsack Con-
straint

Input: G(V,E), function g, mf
Y , integer r, paths set P .

initialize Zmax ← ∅
for ∀U ⊂ P, |U | = 1 or 2 do
Zmax ← argmax|U |=1or2g(U),mf

Y (U) ≤ r
end for
for ∀U ⊂ P, |U | = 3 do

let Z0 ← U, t← 1, P 0 ← P
repeat

it ← argmaxi∈P t−1\Zt−1
g(Zt−1∪{i})−g(Zt−1)

mfY (i)

if
∑

i∈Zt−1∪{it}m
f
Y (i) ≤ r then

Zt ← Zt−1 ∪ {it}, P t ← P t−1

else
Zt ← Zt−1, P t ← P t−1 \ {it}

end if
t← t+ 1

until P t \ Zt = ∅
Zmax ← argmax{g(Zmax), g(Zt)}

end for
return Zmax

43



the solution feasible with respect to the knapsack constraint, store the best solution to the

second part. Compare the two sets from the two parts, the algorithm outputs the one with

greater objective function value.

it is easy to see that to evaluate the submodular constraint function f is just to calculate

the cardinality of the corresponding nodes set from the union of paths sets, which is simple.

The greedy algorithm assumes that it can evaluate the underlying objective function exactly.

Note that the function c(X) in LT model could be evaluated efficiently and exactly since

it is a linear combination of probability product along a set of paths. However, for the

problem in IC model, the acceptance probability d(X) is difficult to evaluate. Fortunately,

by simulating the friending influence process and sampling the result of reachability between

s and t on the randomized subgraph formed by the selected nodes for sending invitations,

we are able to obtain very close approximations to the probability d(S).

Our approximation analysis for the proposed algorithm ISCK is based on the concept

of curvature, which was defined to tighten the approximation performance for submodular

maximization problems. The approximation ratio of the method of monotone submodular

maximization subject to a cardinality constraint proposed in (Conforti and Cornuéjols, 1984),

and monotone submodular maximization subject to matroid constraints (Vondrák, 2010), are

improved from (1− 1/e) to 1
κf

(1− e−κf ), where κf is the curvature of the objective function

f . Next let us give the definition of curvature. The total curvature κf of a submodular

function f and the curvature κf (S) with respect to a set S ⊆ V , as defined in (Iyer et al.,

2013) are following.

κf = 1−min
j∈V

∆jf(P \ j)
f(j)

(4.16)

κf (S) = 1−min
j∈S

∆jf(S \ j)
f(j)

(4.17)

We also define an alternate notion of curvature as (Iyer et al., 2013).

κ̂f (S) = 1−
∑

j∈S ∆jf(S \ j)∑
j∈S f(j)

(4.18)
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Note that these three curvatures have the following relation.

Proposition 1. Given that the set function f is monotone submodular, for set S ⊆ P we

have,

κ̂f (S) ≤ κf (S) ≤ κf

Proof. It is easy to see that κf (S) ≤ κf (P ) = κf , since κf (S) is a monotone-decreasing set

function. To prove that κ̂f (S) ≤ κf (S), note that

1− κf (S) = min
j∈S

∆jf(S \ j)
f(j)

≤ ∆jf(S \ j)
f(j)

,∀j ∈ S

Also note that

1− κ̂f (S) =

∑
j∈S ∆jf(S \ j)∑

j∈S f(j)

≥
∑

j∈S(1− κf (S))f(j)∑
j∈S f(j)

≥ 1− κf (S)

Hence, κ̂f (S) ≤ κf (S).

Therefore κ̂f (S) is the tightest notion of curvature. Intuitively, κf measures how close

the function f is to modular function. If curvature κf = 0, the function f is modular. We

further define a parameter that measures the maximum size of a feasible solution as

Kf = max{|X| : f(X) ≤ r}. (4.19)

Given the definition of curvature and the definition of the modular upper bound function

for a submodular function f . We have the following lemma for the relationship between the

value of modular upper bound function and the value of the original submodular function of

a feasible solution.
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Lemma 6. For a monotone submodular function f , and an modular upper bound function

defined as f̂m(X) ,
∑

j∈X f(j), assume X̃ is a feasible solution s.t. f̂m(X̃) ≤ r, it holds

that

f(X̃) ≤ f̂m(X̃) =
∑
j∈X̃

f(j) ≤ Kf

1 + (Kf − 1)(1− κf )
f(X̃).

Proof. We first show the inequality holds for κ̂f (X̃), and since κf ≥ κ̂f (X̃), the inequality

will hold for κf . By the property of submodularity and the curvature definition, we have

following two facts

Fact 1 : (1− κ̂f (X̃))
∑
j∈X̃

f(j) =
∑
j∈X̃

∆jf(X̃ \ j) (4.20)

Fact 2 : f(X̃)− f(k) ≥
∑
j∈X̃\k

∆jf(X̃ \ j),∀j ∈ X̃. (4.21)

Sum for all elements in arg maxX{|X| : f(X) ≤ r} in fact 1. Note that Kf = max{|X| :

f(X) ≤ r} by definition, then from Fact 1, we have

Kff(X̃)−
∑
k∈X̃

f(k)

≥
∑
k∈X̃

∑
j∈X̃\k

∆jf(X \ j)

≥
∑
k∈X̃

∑
j∈X̃

∆jf(X \ j)−
∑
k∈X̃

∆jf(X \ k)

≥ (Kf − 1)
∑
j∈X̃\k

∆jf(X \ j)

≥ (Kf − 1)(1− κ̂f (X̃))
∑
k∈X̃

f(k)

Therefore, we have ∑
j∈X̃

f(j) ≤ Kf

1 + (Kf − 1)(1− κ̂f (X̃))
f(X̃)

Since κ̂f (X̃) ≤ κf , we have,∑
j∈X̃

f(j) ≤ Kf

1 + (Kf − 1)(1− κf )
f(X̃).

46



We further obtain the following theorem about the performance of our proposed algorithm

ISCK based on lemma 6.

Theorem 13. Given X̃ as the optimal solution of max{g(X)|f(X) ≤ r(1+(Kf−1)(1−κf ))

Kf
}, it is

guaranteed that the ISCK algorithm obtains a solution X t such that g(X t) ≥ (1− 1/e)g(X̃),

where Kf = max{|X| : f(X) ≤ r}.

Proof. The algorithm starts with I0 = ∅, it chooses the upper bound of f as mf
I0(X) =∑

j∈X
f(j), and then solve the corresponding problem by the greedy algorithm and iteratively

continue this procedure until convergence. For the first iteration, the algorithm returns a set

X1 that g(X1) ≥ (1 − 1/e)g(X̃), where X̃ is the optimal solution of max{g(X)|
∑
j∈X

f(j) ≤

r}. By lemma 6, we are also guaranteed that X̃ is the solution of max{g(X)|f(X) ≤
r(1+(Kf−1)(1−κf ))

Kf
}. The following iterations would improve the solution since this is an ascent

algorithm.

4.4.2 Greedy Algorithm

The other algorithm we propose is greedy algorithm, which starts with an empty set and

then chooses path one by one j /∈ S : f(S ∪ {j}) ≤ r that maximizes ∆jg(S).

Algorithm 3 Greedy Algorithm for Submodular Cost Submodular Knapsack

1: initialize S ← ∅
2: u← argmaxj∈P\S∆jg(S);
3: while f(S ∪ {u}) ≤ r do
4: S ← S ∪ {u};
5: u← argmaxj∈P\S∆jg(S);
6: end while
7: return S

The algorithm obtains an approximation factor of 1
κg

(1− (
Kf−κg
Kf

)kf ) ≥ 1
Kf

, where Kf =

max{|X| : f(X) ≤ r} and kf = min{|X| : f(X) ≤ r,∀j /∈ X, f(X ∪ j) ≥ r} (Iyer and
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Bilmes, 2013). In the worst case when kf = 1 and Kf = n, the approximation factor can be

as bad as 1/n.
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(d) The number of paths selected in IC

Figure 4.3. Experimental Results for Random Pair of Nodes

4.5 Performance Evaluation

We use the dataset Adolescent health for experiments, which encodes the friendship relation

among adolescent students. The dataset is public available, which can be obtained from the

website KONECT (http://konect.uni-koblenz.de). We set the propagation probability on

each edge connecting node v for IC model as 1/degree(v), we adopt the same propagation

probability as the weight on each edge for LT model, both of the settings are widely used in

the simulations of other literature (Chen et al., 2010a; Kempe et al., 2003a).

We compare the two algorithms proposed and design a heuristic Shortest Path Greedy

algorithm for comparison. The Shortest Path Greedy algorithm(SP) first selects nodes on the
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(d) Number of paths selected in IC

Figure 4.4. Experimental Results for Random Pair of Nodes (node 1 to node 5)

shortest path to send invitations if it does not violate the constraint, and then the nodes on

the second shortest path but not ever been sent invitations to are selected if the invitations

are still within r, the greedy selection goes on until the total number of invitations reaches

the limit.

We implement the three algorithms In different influence propagation models LT and IC,

we compare the acceptance probability against the number of invitations constraint r for

different algorithms. We also record the number of paths selected by these three algorithms

respectively.

Figures 4.3 and 4.4 respectively demonstrate the results for two pairs of random nodes

selected as the initiator and the friending target. We can see that the acceptance probability

increases as the number of invitations increase for all three algorithms, which conforms to

the intuition. Our proposed algorithm ICSK and Greedy outperform SP significantly. The

reason ICSK is worse than Greedy in the acceptance probability since it uses the modular
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upper bound function as the knapsack constraint, which is stricter than the real submodular

knapsack constraint, however, Greedy has a poor worst case guarantee. In figure 4.4, the

ISCK has acceptance probability close to SP, the reason is that ISCK uses a stricter function

as the knapsack constraint, which makes the probability lower.

The number of the selected paths by Greedy is much greater than the other two algo-

rithms, however, the acceptance probability does not show that significant increase. This is

consistent with the submodularity of our objective function, which has a diminishing return

property, the increasing of the number of paths gains less on a larger set than on a small

set. The number of paths selected by ISCK and that selected by the shorted path greedy

algorithm is almost the same, in some cases, the shortest path greedy selects even slightly

more than ISCK, but ISCK still performs better than the shortest path greedy algorithm,

the reason is that ISCK selects path simultaneously considering the submodularity of the

path cost, which is how many new invitations a path might increase, however, the shortest

path greedy algorithm only considers the length of the path.
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5.1 Introduction

Viral marketing has long been acknowledged as an effective marketing strategy. The de-

velopment of online social networks such as Facebook and Twitter provide opportunities

for large-scale online viral marketing in social networks. Under this circumstance, influence

maximization (Kempe et al., 2003b) becomes a very popular research direction in the past

decade, which could be described as the problem of finding a small set of most influential

nodes so that the spread of influence in the network is maximized.

Most of the works focus on maximization of the spread of influence, which considers the

number of users influenced by “word-of-mouth”effect in online social networks. These works

are based on the assumption that the number of influenced users determines the profit of

product. However, some types of products earn profit in a continuous way besides the sales

of product itself. The online game is a good example. The game company’s revenue usually

comes from two parts, one is the revenue from selling the game product itself, and the other

is from the proceeds of advertising and virtual item products. For the first part of revenue,

the value of a single game product itself is fixed. The more game players buy game products,

the more they earn. For the second part of the revenue is related to the interaction of the

game player. When multiple people enter the same game scene online, the advertisement

will be displayed and browsed. The more frequent the interaction between players, the more

times an advertisement is presented and viewed, which will lead to more advertising revenue.

In addition, when players participate in the game, they will use some props to complete the

task. These items are virtual equipment, which can increase the experience and fun of the

game players. These virtual products will also bring certain benefits(Fox et al., 2018).

We analyze such revenue model and define the interaction-aware influence maximization

problem selecting a seed set to maximize the revenue dependent on the number of the in-

fluenced users and the interaction between activated nodes. The interaction-aware influence

maximization problem is not submodular, thus the greedy strategy can’t be directly applied
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to our problem to get a guaranteed approximate solution. To solve this problem, we propose

a sandwich theory which is based on the decomposition strategy that represents objective

function as a difference of two submodular functions. And based on the sandwich theory

and the decomposition we design two iterated sandwich algorithms.

The contributions of this paper are summarized as follows.

• We propose a new problem named interaction-aware influence maximization and we

prove it is NP-hard and non-submodular.

• To solve this non-submodular problem, we propose the sandwich theory that for any

set function there are a modular/submodular/supermodular upper bound and a mod-

ular/submodular/supermodular lower bound respectively. The sandwich theory is

mainly based on the fact that any set function can be expressed as a difference between

two submodular functions. And we successfully decompose our objective function into

the difference of two submodular functions which are monotone nondecreasing.

• Based on the sandwich theory and the decomposed submodular functions mentioned

above, we design two iterated sandwich algorithms to solve the interaction-aware in-

fluence maximization problem, which can get a data-dependent approximate solution.

• Through real data sets, we verify the effectiveness of our proposed algorithms.

5.2 Related Works

Influence maximization was first described as an algorithm problem by Domingos and Richard-

son (Domingos and Richardson, 2001a) (Richardson and Domingos, 2002a), they model the

problem using Markov random fields and propose heuristic solutions. Kempe et al. (Kempe

et al., 2003b) formulated the influence maximization problem from the view of combinatorial

optimization and showed that the problem is NP-hard under both the IC and LT models,
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they propose a simple greedy algorithm with an approximation ratio of (1−1/e). However, a

drawback of their work is the scalability of the greedy algorithm. Since then a number of effi-

cient heuristic algorithms have been proposed in many works (Chen et al., 2009) (Rodriguez

and Schölkopf, 2012) (Jung et al., 2012) (Chen et al., 2011)(Han et al., 2016)(Li et al., 2015).

In (Leskovec et al., 2007), Leskovec et al. present a ”lazy-forward” optimization in selecting

new seeds, in which submodularity is exploited.

The influence maximization problem has been extended to practical scenarios in recent

work. (Chen et al., 2015) studies the topic-aware influence maximization problem which

considers user interests. In (Li et al., 2015), a keyword-based targeted influence maximization

is proposed, where users who are relevant to a given advertisement are targeted. In (Han

et al., 2016), the problem of privacy reserved influence maximization in both cyber-physical

and online social networks is studied, they propose a model that merges both GPS data

and relationship data from a social network. Bharathi et al.(Bharathi et al., 2007) study

the game of innovation diffusion with multiple competing innovations, for example, multiple

companies market competing products using viral marketing. In (Chen et al., 2011), Chen et

al. propose an extension to the independent cascade model that incorporates the emergence

and propagation of negative opinions, the new model has a quality factor to model the

natural behavior of people turning negative to a product due to product defects.

Most of the works only consider the number of activated users, and the activities between

users are first processed by (Wang et al., 2017b). However, their work does not maximize the

influence spread in the meantime and only count activity strength of the directly connected

users. In this paper, we propose the interaction-aware influence maximization problem which

takes both parts into consideration.
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5.3 Problem Formulation

In this section, we formulate the interaction-aware influence maximization problem in IC

model formally and prove it is neither submodular nor supermodular by counter examples.

For complexity, we prove it is NP-hard by a special case of the problem.

5.3.1 Interaction-aware Influence Maximization

In this paper, we use the directed graph G = (V,E) to represent a social network, where V

is the set of users and E is the set of social relations between users. Each edge (u, v) ∈ E is

assigned with a probability puv so that when u is active, v is activated by u with probability

puv. And the benefit related to the interaction between nodes is represented by a nonnegative

function b : V × V → R≥0, in which b(u, v) = b(v, u) for the unordered pair {u, v} of node u

and v. Our goal is to find a set of initial users to maximize total profit related to both the

number of the influenced nodes and the interaction between influenced nodes.

Since the randomness of propagation proess in IC model, consider a point in the cascade

process when node u has just become active, and it attempts to activate its neighbor v,

succeeding with probability pu,v. We can view the outcome of this random event as being

determined by flipping a coin of bias pu,v. With all the coins flipped in advance, the edges

in G for which the coin flip indicated a successful activation are declared to be live; the

remaining edges are declared to be blocked(Kempe et al., 2003b). We use g to represent

the outcome of this process which is called a live graph of G since it consists of all edges

declared to be live. We denote as g ∼ D, where D is the distribution of g. For any seed set

S, denote by Ig(S) the set of all active nodes at end of the cascade process in live graph g.

It’s cardinality is represented by |Ig(S)|.
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Definition 11. The total expected benefit would be defined as

f(S) = Eg∼D[α · |Ig(S)|+ β ·
∑

{u,v}⊆Ig(S)

b(u, v)]

=
∑
g

Prob[g] · (α · |Ig(S)|+ β ·
∑

{u,v}⊆Ig(S)

b(u, v)) (5.1)

The benefit consists of two parts, the first part denoted as α·Ig(S) is related to the number

of nodes that are finally activated, and the second part β ·
∑
{u,v}⊆Ig(S) b(u, v) is related to

the strength of the interaction between the active nodes. The parameters α , β are used to

balance the weight of two parts of the profits, and {u, v} ⊆ I(S) denotes the all unordered

pair in the set I(S). Note that for each unordered pair {u, v}, since b(u, v) = b(v, u), we

only compute once the benefit between them. The expectation is respected to g.

In this paper, we study the following problem.

Definition 12 (Interaction-aware Influence Maximization Problem, IAIM). Given a social

network G = (V,E), a propagation probability puv for each edge (u, v) under the IC model,

a benefit function b : V × V → R≥0, and a positive integer k, find a set S of k seeds to

maximize the expected profit through influence propagation:

max f(S) (5.2)

s.t.|S| ≤ k (5.3)

5.3.2 Modularity of Objective Function

We say that g(·) is submodular if it satisfies a natural “diminishing returns” property: the

marginal gain from adding an element to a set X is at least as high as the marginal gain

from adding the same element to a superset of X. Formally, for every set X, Y such that

X ⊆ Y ⊆ V and every e ∈ V \ Y , it follows that

g(X ∪ {e})− g(X) ≥ g(Y ∪ {e})− g(Y )

And it is monotone if g(X) ≤ g(Y ) whenever X ⊆ Y .
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Figure 5.1. Counter example

Theorem 14. f(S) is neither submodular nor supermodular under IC model.

Proof. We prove by the counter example shown in Fig.6.1. The first element in the

tuple tied on each edge represents the propogation probability, and the second one denote

the benefit between its two end nodes. For pairs {u, v} between which there is no edge set

b(u, v) = 0 except pair {b, d}. In Fig.6.1, (0, 1) on edge (a, b) means propogation probability

pab = 0 and b(a, b) = 1, then we have f({a}) = 1 + 0 = 1, f({a, b}) = 2 + 1 = 3, f({a, d}) =

2 + 0 = 2 and f({a, b, d}) = 3 + 3 = 6. Thus, f({a, d})− f({a}) < f({a, b, d})− f({a, b}),

which implies f(S) is not submodular. Also, we have f({c}) = 2 + 2 = 4, f({d, c}) =

2 + 2 = 4, f({d}) = 1. Thus, f({c})− f(∅) > f({d, c})− f({c}) which implies f(S) is not

supermodular.

5.3.3 Hardness Result

Theorem 15. Interaction-aware influence maximization problem is NP-hard.

Proof. We prove by showing a special case of the interaction-aware influence maximiza-

tion problem is NP-hard, where β = 0, then it become the traditional influence maximization

problem which is NP − hard. Note that a problem is NP-hard in a special case implies NP-

hardness in general case.

5.4 Sandwich Theory

Since the interaction-aware influence maximization problem is not submodular, the greedy

strategy can’t be directly applied to our problem to get a guaranteed approximate solution.
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To solve this non-submodular problem, we propose the sandwich theory that for any set

function there are a modular upper bound and a modular lower bound respectively(Wu

et al., 2018). The sandwich theory is mainly based on the fact that any set function can

be expressed as a difference between two submodular functions (Narasimhan and Bilmes,

2005b).

5.4.1 Preliminary

Before proposing our sandwich theory, let’s first introduce a few important conclusions about

the submodular function and the set function(Iyer and Bilmes, 2012b; Narasimhan and

Bilmes, 2005b).

Lemma 7. For any submodular set function g(·) on ground set V , we have the following

two tight modular upper bounds that are tight at a given set Y (Iyer and Bilmes, 2012b):

U g
Y,1(X) , g(Y )−

∑
j∈Y \X

g(j | Y \ j) +
∑
j∈X\Y

g(j | ∅) (5.4)

U g
Y,2(X) , g(Y )−

∑
j∈Y \X

g(j | V \ j) +
∑
j∈X\Y

g(j | Y ) (5.5)

Lemma 8. For any submodular set function g(·), a modular lower bound of g(·) is tight at

a given set Y can be obtained as follows (Iyer and Bilmes, 2012b). Let σ be a permutation

of V and define P σ
i = {σ(1), σ(2), . . . , σ(i)} as σ’s chain containing Y , in which P σ

0 = ∅ and

P σ
|Y | = Y. Define

LgY,σ(σ(i)) = g(P σ
i )− g(P σ

i−1). (5.6)

Then

LgY,σ(X) ,
∑
v∈X

LgY,σ(v) (5.7)

is a tight lower bound of g(X), i.e., LgY,σ(X) ≤ g(X), ∀X ⊆ V, and LgY,σ(Y ) = g(Y ).
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Lemma 9. Every set function f : 2X → R can be expressed as the difference of two monotone

nondecreasing submodular functions f1 and f2, i.e f = f1 − f2, where X is a finite set

(Narasimhan and Bilmes, 2005b).

5.4.2 Sandwich Theory

Theorem 16. For any set function f : 2X → R and any set Y ⊂ X, there are two modular

funtions mu
f : 2X → R and ml

f : 2X → R such that mu
f (X) ≥ f(X) ≥ ml

f (X) and mu
f (Y ) =

f(Y ) = ml
f (Y ).

Proof. This theorem means that for any set function we can find a modular upper bound

and modular lower bound which are exact at some given point. By lemma 9, there exist

submodular function f1 and f2 such that f = f1−f2. By lemmas 7 and 8, there exist modular

functions U f1
Y , L

f1
Y such that U f1

Y (X) ≥ f1(X) ≥ Lf1Y (X), and U f1
Y (Y ) = f1(Y ) = Lf1Y (Y ) for

submodular function f1. By the same reason, there exist modular functions U f2
Y , L

f2
Y such

that U f2
Y (X) ≥ f2(X) ≥ Lf2Y (X), and U f2

Y (Y ) = f2(Y ) = Lf2Y (Y ) for submodular function

f2. We set mu
f = U f1

Y − Lf2Y , and ml
f = Lf1Y − U f2

Y , then mu
f (X) ≥ f(X) ≥ ml

f (X) and

mu
f (Y ) = ml

f (Y ) = f(Y ) = f1(Y ) − f2(Y ). Note that both mu
f and ml

f are modolar, since

the linear combination of modular functions is still modular.

Theorem 17. For any set function f : 2X → R and any set Y ⊂ X, there are two sub-

modular funtions huf : 2X → R and hlf : 2X → R such that huf (X) ≥ f(X) ≥ hlf (X) and

huf (Y ) = f(Y ) = hlf (Y ).

Proof. This theorem means that for any set function we can find a submodular upper

bound and submodular lower bound which are exact at some given point. By the lemma 9,

there exist submodular function f1 and f2 such that f = f1 − f2. By the lemmas 7 and 8,

there exist modular functions U f2
Y , L

f2
Y such that U f2

Y (X) ≥ f2(X) ≥ Lf2Y (X), and U f2
Y (Y ) =

f2(Y ) = Lf2Y (Y ) for submodular function f2. We set huf = f1 − Lf2Y , and hlf = f1 − U f2
Y , then
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huf (X) ≥ f(X) ≥ hlf (X) and huf (Y ) = hlf (Y ) = f(Y ) = f1(Y ) − f2(Y ). Note that both huf

and hlf are submodular.

Theorem 18. For any set function f : 2X → R and any set Y ⊂ X, there are two super-

modular funtions puf : 2X → R and plf : 2X → R such that puf (X) ≥ f(X) ≥ plf (X) and

puf (Y ) = f(Y ) = plf (Y ).

Proof. By the lemma 9, there exist submodular function f1 and f2 such that f = f1−f2.

By lemmas 7 and 8, there exist modular functions U f1
Y , L

f1
Y such that U f1

Y (X) ≥ f1(X) ≥

Lf1Y (X), and U f1
Y (Y ) = f1(Y ) = Lf1Y (Y ) for submodular function f1. We set puf = U f1

Y −f2, and

plf = Lf1Y −f2, then puf (X) ≥ f(X) ≥ plf (X) and puf (Y ) = plf (Y ) = f(Y ) = f1(Y )−f2(Y ).

5.4.3 DS decomposition

Since our sandwich theorem is based on the DS decomposition of a set function that express-

ing it as a difference between two submodular functions. Thus the key point is finding such

a decomposition. However, it is unknown whether there exists a polynomial-time algorithm

for finding such a pair of monotone nondecreasing submodular functions for every given set

function. Moreover, the DS decomposition in this paper is nontrivial and two constructed

monotone nondecreasing submodular functions are easily computable.

Give a seed set S and a live graph g, we define the B1(S) as benefit between activated

users Ig(S) and all users V , and define B2(S) as the benefit among all activated users Ig(S)

plus the benefit between the activated users Ig(S) and the non-activated users V \ I(S),

which are formulated as follows:

B1(S) =
∑

u∈Ig(S)

∑
v∈V

b(u, v) (5.8)

B2(S) =
∑

{u,v}⊆Ig(S)

b(u, v) +
∑

u∈Ig(S)

∑
v∈V \Ig(S)

b(u, v) (5.9)
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And given a seed set S, we define the following functions

f1(S) = Eg∼D[α · |Ig(S)|+ β ·B1(S)] (5.10)

f2(S) = Eg∼D[β ·B2(S)] (5.11)

Then we have

f(S) = Eg∼D[α · |Ig(S)|+ β ·
∑

{u,v}⊆I(S)

b(u, v)]

= Eg∼D[α · |Ig(S)|+ β · (B1(S)−B2(S))]

= Eg∼D[α · |Ig(S)|+ β ·B1(S)]− Eg∼D[β ·B2(S)]

= f1(S)− f2(S) (5.12)

Actually f(S) is decomposed as a difference between function f1 and f2, now we prove both

of them are submodular.

Lemma 10. B1(S) is submodular and monotone under the IC model.

Proof. According the definition of B1(S) shown in equation 5.8, we have

B1(S) =
∑

u∈Ig(S)

∑
v∈V

b(u, v)

=
∑

{u,v}⊆Ig(S)

2 · b(u, v) +
∑
u∈I(S)

∑
v∈V \Ig(S)

b(u, v) (5.13)

=
∑

v∈Ig(S)

w(v) (5.14)

where Ig(S) denotes the set of all active nodes in a live graph g, and w(v) is the weight of

the node v which is defined as follows

w(v) =
∑
u∈V

b(v, u) (5.15)

61



It is actually the sum of benefit between v and the remaining nodes in V . Thus, we can see

that the B1(S) is essentially a weighted version of influence spread. And the submodularity

follows immediately(Kempe et al., 2003b).

Since the profit function b : V × V → R≥0 is nonnegative which means the profit of

each pair of nodes is non-negative. Thus the weight of every node is non-negative and the

monotonicity of B1(S) follows immediately. For the submodularity, we need prove B1(M ∪

{v}) − B1(M) ≥ B1(N ∪ {v}) − B1(N), such that M ⊆ N ⊆ V and v ∈ V \ N . The left

side of inequality is the weight of nodes which can be activated by v but can not by M . The

right side is the weight of nodes which can be activated by v but can not by N . We have

Ig(v)− Ig(M) ⊇ Ig(v)− Ig(N), since M ⊆ N and Ig(M) ⊆ Ig(N). And the submodularity

follows immediately.

Theorem 19. f1(S) is submodular and monotone under the IC model.

Proof. According to the definition of f1(S) shown in equation 5.10, we have

f1(S) = Eg∼D[α · |Ig(S)|+ β ·B1(S)]

=
∑
g

Prob[g] · (α · |Ig(S)|+ β ·B1(S)) (5.16)

The first part |Ig(S)| of the f1(S) is the traditional influence maximization problem which

is submodular (Kempe et al., 2003b). Given α ≥ 0, β ≥ 0, Prob[g] ≥ 0 and B2(S) is

submodular prove and monotone proved by lemma 10, f1(S) is submodular and monotone

follows immediately since the fact that a non-negative linear combination of submodular

functions is also submodular.

Lemma 11. B2(S) is submodular and monotone under the IC model.

Proof. Let M,N to be any two seed sets such that M ⊆ N ⊆ V and x to be any element

such that x ∈ V \N . According the definition of B2(S) shown in equation 5.9, we have Then
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we have

B2(M ∪ {x})−B2(M)

=
∑

{u,v}⊆Ig(x)\Ig(M)

b(u, v) +
∑

u∈Ig(x)\Ig(M)

∑
v∈V \Ig(M)∪Ig(x)

b(u, v) (5.17)

Through the same analysis process, we can get

B2(N ∪ {x})−B2(N)

=
∑

{u,v}⊆Ig(x)\Ig(N)

b(u, v) +
∑

u∈Ig(x)\Ig(N)

∑
v∈V \Ig(N)∪Ig(x)

b(u, v) (5.18)

Comparing all terms on the right-hand sides of 5.17 and 5.18, since M ⊆ N ,we have Ig(M) ⊆

Ig(N). So Ig(x) \ Ig(M) ⊇ Ig(x) \ Ig(N) and V \ Ig(M) ∪ Ig(x) ⊇ V \ Ig(N) ∪ Ig(x) follows.

Thus both the first item and second item of 5.17 are greater than the first item and second

item of 5.18 respectively. Through above analysis, we obtain B2(M ∪ {x}) − B2(M) ≥

B1(N ∪ {x})−B2(N). Therefore, B2(S) is submodular.

For monotonicity, we need prove B2(M) ≤ B2(N), which is non-decreasing. According

to equation 5.9, we have

B2(M)

=
∑

{u,v}⊆Ig(M)

b(u, v) +
∑

u∈Ig(M)

∑
v∈V \Ig(M)

b(u, v)

=
∑

{u,v}⊆Ig(M)

b(u, v) +
∑

u∈Ig(M)

∑
v∈Ig(N)\Ig(M)

b(u, v)

+
∑

u∈Ig(M)

∑
v∈V \Ig(N)

b(u, v) (5.19)

B2(N)

=
∑

{u,v}⊆Ig(N)

b(u, v) +
∑

u∈Ig(N)

∑
v∈V \Ig(N)

b(u, v) (5.20)
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Since Ig(M) ⊆ Ig(N), we have ∀(i, j) ∈ {(u, v) | u ∈ Ig(M), v ∈ Ig(N) \ Ig(M)}, i ∈ Ig(N)

, j ∈ Ig(N). Thus the sum of first two items of B2(M) is less than the first item of B1(N).

By the same reason, we have the third item of B2(M) is less than the second item of B2(N).

Through above analysis, the monotonicity of B2(S) follows immediately.

Theorem 20. f2(S) is submodular and monotone under the IC model.

Proof. According the definition of f2(S) shown in equation 5.11, we have

f2(S) = Eg∼D[β ·B2(S)]

= β ·
∑
g

Prob[g] ·B2(S) (5.21)

Given β ≥ 0, Prob[g] ≥ 0 and B2(S) is submodular and monotone proved by lemma 11,

f2(S) is submodular and monotone follows immediately since the fact that a non-negative

linear combination of submodular functions is also submodular.

5.5 Algorithms

According to the sandwich theorem and our DS decomposition, we designed a iterated sand-

wich algorithm. The algorithm named iterated modular sandwich algorithm is based on the

modular upper and lower bounds of our objective function. Our algorithm are guaranteed

to gain data dependent approximation solutions.

5.5.1 Iterated Sandwich Algorithm

For algorithm 1 named Iterated Modular Sandwich Algorithm, we iteratively find the

optimal solutions for three functions: the modular upper bound functionmu
t (X), the modular

lower bound function ml
t(X) and the original objective function f(X), and then choose the

best solution from f(X) as the input of next iteration.

64



Algorithm 4 Iterated Modular Sandwich Algorithm

1: initialize ε > 0, an integer k, t← 0, St ← a random seeds of size k, Smax = S0

2: repeat
3: choose a permutation σt whose chain contains St

4: construct a modular upper bound U f1
St (X) (and, U f2

St (X)) and a modular lower bound

Lf1St,σt(X) (and, Lf2St,σt(X)) for f1 (and, f2)

5: Stu ← argmaxXm
u
t (X) = U f1

St (X)− Lf2St,σt(X);

6: Stl ← argmaxXm
l
t(X) = Lf1St,σt(X)− U f2

St (X);
7: So ← argmaxXf(X);
8: Let St+1 ← argmaxX(f(Stu), f(Stl ), f(So))
9: if f(St+1) ≥ (1 + ε)f(Smax) then

10: Smax ← St+1

11: t← t+ 1
12: end if
13: until converged, i.e., f(St+1) < (1 + ε)f(Smax)
14: return Smax

Algorithm 5 Iterated Submodular Sandwich Algorithm

1: initialize ε > 0, an integer k, t← 0, St ← a random seeds of k; Smax = S0

2: decompose the f as the difference between two submodular functions,i.e., f = f1 − f2

3: repeat
4: choose a permutation σt whose chain contains St;
5: compute a modular upper bound U f2

St (X) and a modular lower bound Lf2St,σt(X) for f2

6: Stu ← argmaxXh
u
t (X) = f1(X)− Lf2St,σt(X);

7: Stl ← argmaxXh
l
t(X) = f1(X)− U f2

St (X);
8: So ← argmaxXf(X);
9: St+1 ← argmaxX(f(Stu), f(Stl ), f(So))

10: if f(St+1) ≥ (1 + ε)f(Smax) then
11: Smax ← St+1

12: t← t+ 1
13: end if
14: until converged, i.e., f(St+1) < (1 + ε)f(Smax)
15: return Smax
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For algorithm 2 named Iterated Submodular Sandwich Algorithm, we iteratively find

the optimal solutions for three functions: the submodular upper bound function hut (X), the

submodular lower bound function hlt(X) and the original objective function f(X), and then

choose the best solution for f(X) from them as the input of next iteration.

Based on the decomposition of f which is a difference of two submodular functions

f1(X) − f2(X), we obtain mu
t (X) and ml

t(X) in each iteration as follows: we derive the

modular upper bound and modular lower bound for f1(X) and f2(X) with respect to current

seed set respectively, which are denoted as U f1
St (X), Lf1St(X) and U f2

St (X), Lf2St(X); the modular

upper bound function mu
f (X) for f(X) is then the difference between U f1

St (X) and Lf2St(X),

the modular lower bound function ml
t(X) for f(X) is the difference between Lf1St(X) and

U f2
St (X) as described in Theorem 16. Note that the solution So for the original function

f(X) can be calculated by a greedy algorithm. Since mu
t (X) and ml

t(X) are modular, Stu

is simply the set of the first k elements that maximize mu
t (X), Stl is simply the set of the

first k elements that maximize ml
t(X). At the end of each iteration, the algorithm updates

Smax if the solution obtained in the current iteration is better. The algorithm iterates until

converged, i.e. St = St−1.

We do not design an iterated supermodular sandwich algorithm which could be derived

from Theorem 18 of sandwich theory since the existing algorithms to the supermodular

maximization problem under the constraint of size k do not work efficiently in general.
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Figure 5.2. Iterated sandwich algorithms flow

The main idea of our algorithms is to find the upper bound function and lower bound

function based on the current seed set, then solve three functions: the upper bound function,

the lower bound function, and the objective functions. then we choose the best solution from
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those three solutions, this best solution is then the seed set for generation of upper and lower

bound functions in next iteration as shown in Fig 5.2. The procedure iterates until converged.

5.5.2 Analysis

We say a set S is local optimum solution of a submodular function f , if for any T ⊆ S or

T ⊇ S, we have f(S) ≥ f(T ). Similarly, we say set S is a (1+ ε)-approximate local optimum

solution of a submodular function f , if for any e ∈ V , we have (1 + ε)f(S) ≥ f(S ∪ {e})

and (1 + ε)f(S) ≥ f(S \ {e}). Consider iteration t, let Ft(X) = U f1
St (X)− Lf2St,σt(X) for any

X ⊆ V , we firstly give a notation approximation coefficient ηt = maxX⊆V
Ft(X)
f(X)

, which is

denoted as how the approximate extent of the replace function Ft(X) to the original function

f(X). Let η = maxt ηt. Now we can bound the value of set returned by the Iterative Modular

Sandwich algorithm by the following theorem.

Theorem 21. Let Smax be the returned set by Algorithm 4, then we have Smax either is

a (1 + ε)-approximate local maximum solution by justly checking O(n) permutations, or is

1
η(1+ε)

-approximation solution for the interaction-aware influence maximization problem.

Proof. For the case that the return set Smax is derived by the modular lower bound and set

t as the terminal iteration of Algorithm 4, then we have

(1 + ε)f(St) ≥ f(St+1) = f1(St+1)− f2(St+1)

≥ 1

η
· (U f1

St (S
t+1)− Lf2St,σt(S

t+1))

≥ 1

η
· (U f1

St (OPT )− Lf2St+1,σt(OPT ))

≥ 1

η
· (f1(OPT )− f2(OPT ))

=
1

η
· f(OPT )
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The first inequality is derived by the line 9 of Algorithm 4, the second inequality follows the

definition of approximation coefficient, the third inequality is derived by the optimality of

St+1 according to F (·) at iteration t+ 1, and last inequality is obtained by the construction

of the upper and lower bounds. Thus we have

f(St) ≥ 1

η(1 + ε)
f(OPT ).

The rest of our proof is to show that the set Smax is obtained from the lower bound is a ε-

approximate local maximum solution. We follow the ideas presented by Iyer and Bilmes (Iyer

and Bilmes, 2012b), who consider a general DS-decomposition minimization by an iterative

modular approximation algorithm. For one subcase, we need to show under the terminate

iteration t, if we add an element j, our local solution St will not increase an enough amount.

By the construction of bounds, and optimality condition, we have

(1 + ε)f(St) ≥ f(St+1) = f1(St+1)− f2(St+1)

≥ Lf1St,σt(S
t+1)− U f2

St (S
t+1)

≥ Lf1St,σt(S
t ∪ {j})− U f2

St (S
t ∪ {j})

= f1(St ∪ {j})− f2(St ∪ {j})

= f(St ∪ {j}).

Similarly, we can lower bound (1 + ε)f(St) ≥ f(St \ {j}) under the subcase that of deleting

a element j. By the definition of ε-approximate local maximum, we know St is the ε-

approximate local maximum solution.

Theorem 22. The Algorithm 1 terminates at most O(1/ε log(OPT/f(S0))) steps and the

total time complexity is bounded by O(C/ε log(OPT/f(S0))), where C is the upper bound of

time of computing optimal solution of modular function.
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Proof. Follows from the repeat process of Algorithm 1, we have f(Si+1) ≥ (1 + ε)f(Si) for

any iteration i(< t). It is easy to check out that the number of steps of the repeat process is

at most log1+ε
f(St)
f(S0)

(≤ O(1/ε log(OPT/f(S0)))). Assume the time of computing the optimal

solution of modular function is at most C, with a multiplicative factor C, we can bound the

total complexity of Algorithm 1.

The above claims also hold for the Iterative Submodular Sandwich algorithm by losing

a constant factor in approximation. The details are presented by the following theorem.

Theorem 23. For any given ε > 0, and set Smax as the returned set by Algorithm 5, then

we have Smax either is a (1 + (1/e − ε)/(1 − 1/e))-approximate local maximum solution by

checking O(n) permutations, or is 1−1/e
η(1+ε)

-approximation solution for the interaction-aware

influence maximization problem.

Proof. For any given iteration t, the Iterative Submodular Sandwich algorithm performs a

solution set St by greedy, then there is (1− 1/e) factor loss in approximation. As the proofs

of Theorem 21, we easily conclude the two cases and obtain the according to lower bounds

present by the theorem.

Theorem 24. The total time complexity of Algorithm 2 is bounded by O(D/ε log(OPT/f(S0))),

where D is the upper bound of time of computing greedy solution of submodular function.

Proof. Similarly, assume D is an upper bound of time of computing greedy solution of

submodular function, we can conclude that the total time complexity of Algorithm 2 is at

most O(D/ε log(OPT/f(S0))).

5.6 Experiment

5.6.1 Settings

We use four social networks in our experiments. All datasets are publicly available. Email,

DBLP can be obtained from SNAP website (htpp://snap.stanford.edu), while Facebook
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Figure 5.3. The relationship between profit and seed set size

Table 5.1. The statistics of the data sets
Network Vertices Edges
Email 1005 25571
Facebook 63731 817035
Douban 154908 327162
DBLP 317080 1049866

and Douban can be obtained from KONECT website (http://konect.uni-koblenz.de). The

details of datasets are shown in Table 5.1. The propagation probability for IC model is set

to 1
degree(v)

as widely used in other literature(Tang et al., 2014b; Chen et al., 2010b), and

the profit between nodes is proportional to propagation probability on corresponding edges.

The intuition is that there may be more interactions between u and v if u is more likely to

activate v. To balance the two parts of profits, we use two settings. In the first case we

uniformly set α = β = 1. In the second case, we set α = 1, β = 1.3. For comparison, we use

greedy algorithm and HighDegree algorithm (Tang et al., 2017) as baselines.
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5.6.2 Effectiveness

The results of profit computed by our proposed algorithms on four data sets are shown

in Fig.6.2 respectively. As the number of selected seeds increases, the performance of it-

erated sandwich algorithms denoted as IMS(Iterated Modular Sandwich Algorithm) and

ISS(Iterated Submodular Sandwich Algorithm) are always superior to the baseline algo-

rithms. The Degree algorithm’s performance is the worst since it does not consider the

network structure. The reason that IMS/ISS performs better than greedy is our proposed

iterated sandwich algorithm always choose the best solution from the solutions of upper

bound function, lower bound function and the objective function, this selection guarantees

the solution is at least as good as the greedy solution of the objective function. Apparently,

the iterated sandwich algorithm is also superior to a sandwich algorithm proposed in (Wang

et al., 2017b), since the returned solution is the best out of all the solutions calculated by

sandwich algorithm in many iterations. They perform quite well on both small-scale and

large-scale networks and demonstrate good scalability.
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TX, USA, 2019, pp. 1539-1548, July 2019

72



6.1 Introduction

With the proliferation of online social networks, considerable research on viral marketing

has been done, which shows that the ”word-of-mouth” effect plays a very important role

in spreading innovations and ideas in social networks. The influence maximization problem

with applications in viral marketing is one of the most important topics. In this problem, a

few individuals are provided with free products, hoping that the product will be recursively

recommended by each individual to his friends to create a large cascade of further adoptions.

Kempe et al. (Kempe et al., 2003b) first formulate it as a discrete optimization problem on

independent cascade (IC) model and linear threshold (LT) model. After that, a large body

of works has been performed on viral marketing to maximize the benefits associated with

the number of active nodes.

Although the existing works on influence maximization have obtained plentiful results in

many ways, these works are based on the assumption that the number of influenced users

determines the profit of a product. However, the number of influenced users may not reflect

the success of a promotion campaign, some types of products’ profit rely on the interactions

among the influenced users. The revenue model of online games is an example, the game

revenue depends on the participation and interaction of players.

The interactions among players contribute to game profit in several ways. First, the in-

teractive users play games in an online manner, which will attract more in-game advertising.

In-game advertising allows advertisers to pay to have their name or products featured in

games (Willis et al., 2014), in 2017, $109 billion was spent on in-game advertising. Second,

the virtual goods transactions in games depend on players’ interactions (Lehdonvirta, 2009).

In 2009, games played on social networks such as Facebook primarily derive revenue from

the sale of virtual goods, which brought in $1 billion. Therefore, in this paper we aim to

maximize game profit which depends on the interactions among influenced users in a broad

sense.
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The uncertainty of the influence probabilities on edges is another issue we want to tackle

in this paper. Due to inherent data limitation, the exact values of the edge probabilities could

not be obtained through learning method, what we can get is a probability range on each

edge, in other words, it might be an interval in which the true probability lies in for each edge

in the social network graph (He and Kempe, 2015). This motivates us to study the problem

of finding a seed set that maximizes the profit under the worst-case propagation probability

condition. Specifically, we propose the Robust Profit Maximization Problem (RPMP), which

maximizes the worst-case ratio between the total profit of the chosen seed set and the profit

with optimal seed set, given the uncertainty of the propagation probability.

The main idea of our double sandwich algorithm to solve the robust profit maximization

problem is as follows, it first solves the profit maximization problem on the minimum and

maximum parameter vectors respectively, then we choose one solution that has higher total

profit on the minimum parameter vector as the output seed set. The profit maximization

problem on the minimum/maximum parameter vector is non-submodular, to solve these

two non-submodular problems, our sandwich algorithm finds submodular lower and upper

bounds of the objective function and solves them with greedy algorithm, then choose the

solution with maximal total profit. We show that the double sandwich algorithm has a

solution-dependent bound on its performance, which means the robust ratio is bounded by

a selected seed set. In order to further improve the robustness of our algorithm, we study

sampling methods to tighten the parameter space of propagation probability. We provide

theoretical results on the uniform sample complexity for achieving a given robust ratio of the

output seed set. Then we extend the double sandwich algorithm with the uniform sampling

method to solve RPMP, the experimental results show that it significantly improves the

robustness of the profit maximization problem.

The contributions of this paper are summarized as follows.
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• We introduce the profit maximization problem (PMP), analyze its complexity and

prove it is non-submudular, and further define a robust profit maximization problem

(RPMP) given the propagation probabilities along social relations are uncertain and

prove it is NP-hard.

• We find the upper and lower bounds of PMP and prove both of them are submolu-

lar. Based on the two submodular bounds we design the sandwich algorithm with an

accelerated greedy method.

• For our major problem RPMP, we design a double sandwich algorithm using the sand-

wich algorithm for PMP as its subroutine and get a data-dependent approximate so-

lution.

• To further improve the robust ratio of RPMP, we study the uniform sampling method

and combine it into our double sandwich algorithm and give its theoretical guarantee.

• Through real data sets, we verify the effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. Sec. 6.2 is devoted to the related work. The

robust profit maximization problem and profit maximization problem are proposed in Sec.

6.3. The strategy for profit maximization problem is provided in Sec. 6.4. The strategy for

robust profit maximization problem is presented in Sec. 6.5, where we propose the double

sandwich algorithm and improve it with uniform sampling. The experiments are presented

in Sec. 6.6.

6.2 Related work

Kempe et al. (Kempe et al., 2003b) formulate the influence maximization problem under

IC and LT models and provide a greedy algorithm with an approximation ratio. Since then,

considerable work (Chen et al., 2010, 2016b; Lu et al., 2015b; Tang et al., 2014b, 2015;
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Nguyen et al., 2016,?; Tang et al., 2017, 2014b; Tong et al., 2017) has been devoted to

extending existing models to study influence maximization and its variants. Recently, Wang

et al. (Wang et al., 2017b) study the activity maximization problem to maximize the sum of

activity strengths among the influenced users. Different from their work, we study the profit

maximization problem, in which the profit is associated with the activity between any two

influenced users in social networks. The motivation for this problem is the activity between

two users without social relation may also contribute to the overall profit.

The robustness in the influence maximization problem has come into notice in recent

research. In (Jung et al., 2012), an algorithm that integrates influence ranking (IR) and

influence estimation (IE) methods for influence maximization in independent cascade (IC)

model is proposed, which is demonstrated robust on different structural properties. The

issue of uncertainty of propagation probability on social relations was addressed by Chen et

al. (Chen et al., 2016a) and He et al. (He and Kempe, 2015) in the influence maximization

problem. In (He and Kempe, 2015), an influence difference maximization problem is proposed

to maximize the additive difference between two influence spreads of the same seed set using

different parameter values. The problem proposed in (Chen et al., 2016a) aims to find a seed

set that maximizes the worst-case ratio between the objective function of the chosen seed set

and the objective function of the optimal solution, given the uncertainty of the propagation

probability. The main idea is similar to our paper.

Nonetheless, our work is different from it in two aspects. First, the robust ratio is defined

differently. Their robust influence maximization problem is to find the best possible seed set

for influence maximization purpose while considering the adverse effect of the uncertainty.

Our work is to find the best seed set that maximizes the overall profit among influenced

users. In a word, the maximization objective function is influence spread in their work,

while our maximization objective is the total benefit related to user-to-user interaction.

Second, influence spread, the maximization objective function in their work is monotone
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submodular, while our total profit function is neither submodular nor supermodular. To the

best of our knowledge, this paper is the first study on robust nonsubmodular optimization

problem in social networks.

6.3 Problem Formulation

In this section, we first define the robust profit maximization problem in IC model formally

to address the uncertainty of the propagation probability of the edge. As a strategy, we then

formulate profit maximization problem in social networks and prove it is neither submodular

nor supermodular by counter examples.

6.3.1 Robust Profit Maximization Problem

In IC model, every initial user who is selected as the seed starts to propagate the influence

to her neighbors according to propagation probability on the edge. The process consists of

discrete steps. In each step, each node which was newly activated at the last step would

try to influence its out-neighbors. An active node has only one chance to influence its

out-neighbors. The process ends when no node is activated in the current step.

In this paper, we use the directed graph G = (V,E) to represent a social network, where

V is the set of users and E is the set of social relations between users. Each edge (u, v) ∈ E is

assigned with a probability puv so that when u is active, v is activated by u with probability

puv. And the benefit related to the interaction between nodes is represented by a nonnegative

function b : V × V → R≥0, in which b(u, v) = b(v, u) for the unordered pair {u, v} of node

u and v. Note that for each {u, v}, we only compute once the benefit between them, i.e.,

b(u, v) or b(v, u) instead of b(u, v) + b(v, u).

Since the randomness of the propagation process in IC model, consider a point in the

cascade process when node u has just become active, and it attempts to activate its neighbor

v, succeeding with probability puv. We can view the outcome of this random event as being
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determined by flipping a coin of bias puv. With all the coins flipped in advance, the edges

in G for which the coin flip indicated a successful activation are declared to be live; the

remaining edges are declared to be blocked(Kempe et al., 2003b). We use g to represent the

outcome of this process which is called a live graph of G since it consists of all edges declared

to be live. We denote as g ∼ D, where D is the distribution of g. For any seed set S, denote

by Ig(S) the set of all active nodes at the end of the cascade process in live graph g. Its

cardinality is represented by |Ig(S)|.

The total expected benefit would be defined as

f(S) = Eg∼D[
∑

{u,v}⊆Ig(S)

b(u, v)]

=
∑
g

Prob[g] ·
∑

{u,v}⊆Ig(S)

b(u, v) (6.1)

The benefit
∑
{u,v}⊆Ig(S) b(u, v) is related to the strength of interaction between the active

nodes. The {u, v} ⊆ I(S) denotes the all unordered pair in the set I(S). Note that for each

unordered pair {u, v}, since b(u, v) = b(v, u), we only compute once the benefit between

them. The expectation is respected to g.

Due to inherent data limitation, the exact values of the edge probabilities could not be

obtained through the learning method, what we can get is a probability range on each edge.

Suppose for every edge e, we are given an interval [le, re] (0 ≤ le ≤ re ≤ 1) indicating the

range of the propagation probability, and the exact probability pe ∈ [le, re] of this edge is

unknown. Denote Θ = ×e∈E[le, re] as the parameter space of network G, and θ = (pe)e∈E

as the latent parameter vector. Specifically, let θ−(Θ) = (le)e∈E and θ+(Θ) = (re)e∈E as the

minimum and maximum parameter vectors, respectively, and when the context is clear, we

would only use θ− and θ+. For a seed set S ⊂ V and |S| = k, define its robust ratio under

parameter space Θ as

g(Θ, S) = min
θ∈Θ

fθ(S)

fθ(S∗θ )
(6.2)
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Given Θ and solution S, the robust ratio g(Θ, S) characterizes the worst-case ratio of game

profit of S and the underlying optimal one, when the true probability vector θ is unknown

(except knowing that θ ∈ Θ). Then, the Robust Profit Maximization Problem is defined as

follows.

Definition 13 (Robust Profit Maximization Problem, RPMP). Given a social network G =

(V,E), a propagation probability interval [le, re] for each edge e ∈ E under the IC model,

a benefit function b : V × V → R≥0, and a positive integer k, find a set S of k seeds to

maximize the robust ratio:

S∗Θ = argmax
S⊂V,|S|=k

g(Θ, S) = argmax
S⊂V,|S|=k

min
θ∈Θ

fθ(S)

fθ(S∗θ )
(6.3)

6.3.2 Profit Maximization Problem

To process the robust profit maximization problem, we first introduce the following problem.

Definition 14 (Profit Maximization Problem, PMP). Given a social network G = (V,E),

a propagation probability puv for each edge (u, v) under the IC model, a benefit function

b : V × V → R≥0, and and a positive integer k, find a set S of k seeds to maximize the

expected profit through influence propagation:

max f(S) (6.4)

s.t.|S| ≤ k (6.5)

We say that g(·) is submodular if it satisfies a natural “diminishing returns” property:

the marginal gain from adding an element to a set X is at least as high as the marginal gain

from adding the same element to a superset of X. Formally, for every set X, Y such that

X ⊆ Y ⊆ V and every e ∈ V \ Y , it follows that

g(X ∪ {e})− g(X) ≥ g(Y ∪ {e})− g(Y )

And it is monotone if g(X) ≤ g(Y ) whenever X ⊆ Y .
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Figure 6.1. Counter example

Theorem 25. f(S) is neither submodular nor supermodular under IC model.

Proof. We prove by the counter example shown in Fig.6.1. The first element in the

tuple tied on each edge represents the propogation probability, and the second one denotes

the benefit between its two end nodes. For pairs {u, v} between which there is no edge set

b(u, v) = 0 except pair {b, d}. In Fig.6.1, (0, 1) on edge (a, b) means propogation probability

pab = 0 and b(a, b) = 1, then we have f({a}) = 0, f({a, b}) = 1, f({a, d}) = 0 and

f({a, b, d}) = 3. Thus, f({a, d}) − f({a}) < f({a, b, d}) − f({a, b}), which implies f(S) is

not submodular. Also, we have f({b, d}) = 2, f({b}) = 0, f({b, c, d}) = 4, f({b, c}) = 4

Thus, f({b, d})−f({b}) > f({b, c, d})−f({b, c}) which implies f(S) is not supermodular.

Theorem 26. Profit maximization problem is NP-hard.

Proof. Now we prove by reducing from the set cover problem, which is NP-complete

(Alon et al., 2003b). Given a ground set U = {u1, u2, . . . , un} and a collection of sets

{S1, S2, . . . , Sm} whose union equals the ground set, the set cover problem is to decide if

there exist k sets in S so that the union equals U . Given an instance of the set cover

problem, we construct a corresponding graph with m + 2n nodes as follows. For each set

Si we create one node pi, and for each element uj we create two nodes qj and q′j. If the Si

contains the element uj, then we create two edges (pi, qj) and (pi, q
′
j). Note that each edge

is live which means the probability is 1. Now we design the benefit function over pairs of

nodes. For the pairs {qj, q′j}, the benefit equals to 1, and the other pairs equal to 0. Then

the set cover problem is equivalent to deciding if there is a set S of k nodes such that the

benefit of S equals to n. The theorem follows immediately.
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Note that the activity maximization problem proposed by Wang et al. (Wang et al.,

2017b) is similar to our problem. But they only consider the activity between active nodes

which are connected by edges, we consider the benefits among all active nodes, regardless

of whether there is an edge connecting them. For example, in online games, regardless

of whether they are friends in the social society, that is, they are connected in the social

network by edges, they can play games together and generate corresponding profit for the

game company, which means it generates profit whether they are friends or not. To this

end, our profit maximization problem can be viewed as a significant extension of the activity

maximization problem.

6.4 Strategy for Profit Maximization Problem

Since the profit maximization problem is not submodular, the greedy algorithm cannot be

directly applied to it to get a guaranteed approximate solution. To solve this non-submodular

problem, we use the sandwich algorithm that gains a data-dependent solution. The sandwich

algorithm is mainly based on submodular upper bound and submodular lower bound of the

original problem. In this section, we propose an upper and a lower bound of the profit

maximization problem PMP, and we prove that both of them are submodular. Thus, the

greedy algorithm can achieve a 1−1/e approximate solution for the bounds. Our idea for the

non-submodular problem mainly follows the paper(Wang et al., 2017b), but we make some

improvements and propose the sandwich strategy based on an accelerated greedy algorithm.

6.4.1 Upper bound

Given the seed set S, we define the upper bound U(S) of f(S) as the profit between nodes

both of which are active plus half of the profit between nodes which are active and nodes

which are not active. The former is exactly the profit we want to compute. And it can be

defined as

81



U(S)

=Eg∼D[
∑

{u,v}⊆Ig(S)

b(u, v) +
1

2

∑
u∈Ig(S),v∈V \Ig(S)

b(u, v)]

=Eg∼D[
∑

v∈Ig(S)

w(v)]

=
∑
g

Prob[g] ·
∑

v∈Ig(S)

w(v) (6.6)

where I(S) denotes the set of all active nodes, when S is the seed set and

w(v) =
1

2

∑
u∈V

b(v, u) (6.7)

Thus, we can see that the upper bound is essentially a weighted version of influence spread,

where the weight of node v is 1
2

∑
u∈V b(v, u), which equals to half of the sum of profit between

v and the other nodes in V .

Theorem 27. U(S) is monotone and submodular.

Proof. We just need to prove U(S) is monotone and submodular in a live graph, since

an non-negative linear combination of submodular functions is also submodular. Since the

profit function b : V × V → R≥0 is nonnegative which means the profit of each pair of nodes

is non-negative. Thus the weight of every node is non-negative and the monotonicity of

Uf (S) follows immediately. For the submodularity, we need to prove U(A ∪ {v})− U(A) ≥

U(B ∪ {v}) − U(B), such that A ⊆ B ⊆ V and v ∈ V \ B. The left side of inequality is

the weight of nodes which can be activated by v but can not by A in live graph g. The

right side is the weight of nodes which can be activated by v but can not by B. We have

Ig(v)−Ig(A) ⊇ Ig(v)−Ig(B), since A ⊆ B. And the submodularity follows immediately.
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6.4.2 Lower bound

For the lower bound L(S) of f(S), the major idea is that we only consider the profit between

nodes which are activated by the same seed node. Accordingly, the lower bound can be

defined as

L(S)

=Eg∼D[
∑
x∈S

∑
{u,v}⊆Ig({x})

b(u, v)]

=
∑
g

Prob[g] ·
∑
x∈S

∑
{u,v}⊆Ig({x})

b(u, v) (6.8)

where I({x}) are nodes activated by node x. It is easy to see that L(S) ≤ f(S) for any

S ⊆ V since we ignore the profit of pairs of nodes which are activated by different seeds.

Theorem 28. L(S) is monotone and submodular.

Proof. We just need to prove L(S) is monotone and submodular in a live graph, since

a non-negative linear combination of submodular functions is also submodular. As the profit

function b : V × V → R≥0 is nonnegative which means the profit of each pair of nodes is

non-negative, the monotonicity of L(S) follows immediately. For the submodularity, we need

prove L(A ∪ {e})− L(A) ≥ L(B ∪ {e})− L(B), such that A ⊆ B ⊆ V and e ∈ V \ B. We

have Ig(e) − ∪x∈AIg(x) ⊇ Ig(e) − ∪x∈BIg(x), since A ⊆ B. Thus the submodularity follows

immediately.

6.4.3 Sandwich Strategy

In this section, we design a sandwich strategy based on the submodular upper and lower

bounds of PMP which can get a data-dependent approximation solution. To address the

upper and lower bounds we propose an accelerated greedy algorithm with lazy evaluation

according to submodularity of them.
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Algorithm 6 Accelerated Greedy Algorithm, AG

1: Input: Seeds number k; G(V,E, P ), profit function f.
2: initialize S ← ∅;
3: for v ∈ V do
4: Qv ← +∞;
5: end for
6: for i = 1 to k do
7: δmax ← −∞; vmax ← Null;
8: while δmax < Q.max() do
9: v ←Max(Q); δ ←4(v|S); Qv = δ;

10: if δ > δmax then
11: δmax ← δ; vmax ← v;
12: end if
13: end while
14: S ← S ∪ vmax;
15: Delete vmax in Q;
16: end for
17: return S;

Lazy Evaluation

As we know, when greedy algorithm selects a seed in the round i, it computes ∆(v|Si) for

all v ∈ V and 0 ≤ i ≤ k, unless v ∈ S, where Si is the selected seeds after round i and k is

constraint on number of seeds. The key insight is that i 7→ ∆(v|Si) is nonincreasing for all

v ∈ V , because of the submodularity of the objective. Specifically speaking, in the round i

of selceting a seed, if we know ∆(v′|Sj) ≤ ∆(v|Si) for some items v′ and v and j ≤ i, then

∆(v′|Si) ≤ ∆(v|Si) follows, since ∆(v′|Sj) ≥ ∆(v′|Si) based on the submodularity. So there

is no need to compute ∆(v′|Si) in the round i.

Accelerated Greedy Algorithm

The pseudocode of the accelerated greedy algorithm with lazy evaluation is given in Algo-

rithm 1, AG for short. Its core idea is to choose the seed with the largest expected marginal

benefit at each step. S is used to store the seeds selected. The expected marginal gain of

each node is stored in the list Q. According to the strategy of lazy evaluation, the while loop
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Algorithm 7 Sandwich Algorithm, SA

1: SU ← a greedy solution to upper bound U(·) by calling AG;
2: SL ← a greedy solution to lower bound L(·) by calling AG;
3: Sf ← a greedy solution to the original problem f(·);
4: SSA = argmaxS∈{SU ,SL,Sf}f(S);
5: return SSA;

computes expected marginal benefit ∆(v|S) for node v in decreasing order of upper bounds

known on them, until it finds an item whose value is at least as great as the upper bounds

of all other nodes. Note the Q.max() returns max value in the marginal gain list Q, and

Max(Q) returns the node which has the maximum marginal gain. When a seed with the

greatest marginal benefit is found,we will delete node vmax as shown in line 15 since their

marginal gain will be 0 in the next round. The greedy policy will return the seeds.

Sandwich Algorithm

By adopting the sandwich strategy which is first proposed by (Lu et al., 2015b), and using the

proving technique introduced by (Wang et al., 2017b), we design an sandwich approximation

policy based on the submodular upper and lower bound for profit maximization problem,

which is given in Algorithm 2. The basic idea of the sandwich strategy is that we find greedy

solutions to the upper bound, the lower bound, and original function respectively. Then we

choose the best greedy strategy for the original problem as the solution. Specifically, the

sandwich approximation strategy works as follows. First, for the upper bound and lower

bound we find a greedy solution by calling Algorithm 1 respectively as shown in line 1 and

2. Since both the upper and lower bound are submodular, the accelerated greedy algorithm

could obtain an approximation solution with 1− 1
e
. Note that for original problem f(S) the

accelerated greedy algorithm cannot be used to solve it and get an approximation solution

since it is not submodular. Actually any useful algorithm can be used to solve it, we resort

to the normal greedy algorithm instead of accelerated greedy algorithm in our sandwich
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algorithm. Then, we choose the best solution among the three solutions for the original

problem as the solution of the sandwich algorithm as shown in line 4.

Approximation Ratio of Sandwich Algorithm

Theorem 29. Let SSA be the solution returned by Algorithm 2, then we have

f(SSA) ≥ max

{
f(SU)

U(SU)
,
L(S∗L)

f(S∗)

}
· (1− 1

e
) · f(S∗)

where S∗f , S∗U , S∗L is the optimal policy for f(·), Uf (·), Lf (·) respectively.

Proof. We have

f(SU)

=
f(SU)

U(SU)
U(SU) ≥ f(SU)

U(SU)
· (1− 1

e
) · U(S∗U)

≥ f(SU)

U(SU)
· (1− 1

e
) · U(S∗) ≥ f(SU)

U(SU)
(1− 1

e
) · f(S∗)

f(SL)

≥ L(SL) ≥ (1− 1

e
) · L(S∗L) ≥ L(S∗L)

f(S∗)
· (1− 1

e
) · f(S∗)

Let SSA = argmaxS∈{Sf ,SU ,SL}f(S), then

f(SSAf ) ≥ max

{
f(SU)

U(SU)
,
L(S∗L)

f(S∗)

}
(1− 1

e
)f(S∗).

Implementation Issues

To implement the proposed sandwich algorithm, the key step is to calculate the expected

marginal gain 4(v|S) for the upper bound, lower bound, and original function. Unfortu-

nately, all of them are ]P-hard. Due to space constraints, we could not show proof. Although
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they are difficult to calculate, we can employ the Monte Carlo simulation to obtain an accu-

rate estimation. By the Hoeffding’s Inequality, the error of the estimation can be infinitely

small when a sufficient number of simulations are performed. Or we can use the technique

of reverse set (Wang et al., 2017b) which will not be repeated here.

6.5 Strategy for Robust profit maximization problem

We deal with Robust Profit Maximization Problem in two situations. The first case is

to solve this problem in the given parameter space Θ. The double sandwich algorithm is

designed and its main idea is to apply the sandwich algorithm to solve the profit maximization

problem under the parameter settings θ− and θ+ respectively. So we call it the double

sandwich algorithm. In the second case, we shorten the width of the confidence interval

by sampling, within which the true propagation probability of each edge falls. We combine

the sampling technology of the new parameter space with the double sandwich and design a

double sandwich algorithm with sampling.

We first prove the complexity of RPMP as follows.

6.5.1 Complexity

Consider the problem of RPMP, parameter space Θ = ×e∈E[le, re] is given, and we don’t

know ture propagation probability of each edge, all we know is θ ∈ Θ.

Theorem 30. Robust profit maximization problem is NP-hard.

Proof. When Θ is a single vector which means le = re,∀e ∈ E, the Robust Profit

Maximization Problem is trivially reduced to the Profit Maximization Problem, which is

NP-hard according to Theorem 26. Therefore, the theorem follows immediately.
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Algorithm 8 Double Sandwich Algorithm, DS

1: Input: Seeds number k; G(V,E), profit function f, parameter space Θ = ×e∈E[le, re]
2: SSAθ− ← a sandwich solution to fθ− by calling SA;
3: SSAθ+ ← a sandwich solution to fθ+ by calling SA;
4: SDSΘ ← arg maxS∈{SSA

θ−
,SSA
θ+
} fθ−(S) ;

5: return SDSΘ ;

6.5.2 Double Sandwich Algorithm

For the first case that we are not allowed to make new samples on the edges to improve the

input interval, we utilize the sandwich algorithm as the subroutine to solve profit maximiza-

tion problem shown and propose the Double Sandwich algorithm that achieves reasonably

large robust ratio.

Given parameter space Θ = ×e∈E[le, re] with the minimum and maximum parameter

vectors θ− = (le)e∈E and θ+ = (re)e∈E, our Double Sandwich Algorithm is described in

Algorithm 8. First, we solve the Profit Maximization Problem under the setting of the

minimum parameter vector θ− = (le)e∈E, which is non-submodular as we demonstrated in

the Theorem 25. We find its upper and lower bounds both of which are submodular as

described in section 6.4, then we call sandwich algorithm to get a solutionSSAθ− for fθ−(·)

as shown in line 2. By the same way, under the setting of maximum parameter vector

θ+ = (re)e∈E, we get a solution SSAθ+ for fθ+(·) by call a sandwich algorithm as shown in line

3. Then, we output the best seed set SDSΘ for the minimum parameter vector θ− such that

SDSΘ = arg maxS∈{SSA
θ−

,SSA
θ+
}fθ−(S) (6.9)

To evaluate the performance of this output, we first define the gap ratio α(Θ) ∈ [0, 1] of

the input parameter space to be

α(Θ) :=
fθ−(SDSΘ )

fθ+(SSAθ+ )
(6.10)

88



Then, the Double Sandwich Algorithm achieve the following result:

Theorem 31. Given a graph G(V,E), parameter space Θ and budget limit k, Double Sand-

wich algorithm gain a seed set SDSΘ of size k such that

g(Θ, SDSΘ ) ≥ α(Θ) · β(θ+) · (1− 1

e
),

where

α(Θ) :=
fθ−(SDSΘ )

fθ+(SSAθ+ )

β(θ+) = max

{
fθ+(SUθ+ )

Uθ+(SUθ+ )
,
Lθ+(S∗Lθ+ )

fθ+(S∗θ+)

}
.

Proof. For any seed set S, the robust ration g(Θ, S) = minθ∈Θ
fθ(S)
fθ(S∗

θ )
by definition.

Obviously, it is a fact that fθ(S) is monotone on θ for any fixed seed set S. From the definition

of optimal solutions and the sandwich algorithm, we can get fθ(S
∗
θ ) ≤ fθ+(S∗θ ) ≤ fθ+(S∗θ+).

By the approximaiton ratio of sandwich algorithm shown in Therom 29, we have

fθ+(S∗θ+) ≤
fθ+(SSAθ+ )

max

{
fθ+ (SU

θ+
)

Uθ+ (SU
θ+

)
,
Lθ+ (S∗

L
θ+

)

fθ+ (S∗
θ+

)

}
· (1− 1

e
)

≤
fθ+(SSAθ+ )

β(θ+) · (1− 1
e
)

Moreover, it can be implied that

g(Θ, S) = min
θ∈Θ

fθ(S)

fθ(S∗θ )

≥ min
θ∈Θ

fθ(S)

fθ+(S∗θ+)

≥ min
θ∈Θ

fθ(S)

fθ+(SSAθ+ )
· β(θ+) · (1− 1

e
)

≥ fθ−(S)

fθ+(SSAθ+ )
· β(θ+) · (1− 1

e
)
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Use seed set SDSΘ gained from Double Sandwich Algorithm, and it follows immediately that

g(Θ, SDSΘ ) ≥ fθ−(SDSΘ )

fθ+(SSAθ+ )
· β(θ+) · (1− 1

e
)

≥ α(Θ) · β(θ+)(1− 1

e
)

Note that we have obtained a bound that depends on the solution of double sandwich

algorithm, named data-dependent bound. Specifically, the first parameter α(Θ) is related

to the solution of double sandwich algorithm, the second parameter β is only related to the

solution of sandwich algorithm for the profit maximizaiton problem under the θ+. Actually,

β(θ+)(1 − 1
e
) is the approximation ratio of the sandwich algorithm for the PMP fθ+ when

the parameter vector is θ+.

6.5.3 Double Sandwich Algorithm with Uniform Sampling

The worst ratio is affected by the confidence interval in which the true propagation prob-

ability of each edge falls. The larger interval is, the greater the uncertainty is, and the

corresponding robust ratio may not be guaranteed by a satisfied bound. A natural question

is how we can further improve this worst-case ratio by sampling techniques based on a given

probability space? This is the second case we are going to study. Our idea is to sample the

propagation probability of each edge to improve the accuracy of the estimate, since accord-

ing to Chernoff’s inequality, the more samples are taken, the shorter the confidence interval

becomes within which true propagation probability falls. Thus we can shorten the width of

the interval by sampling.

How to connect the width of confidence interval with the profit gained by influence spread

is a crucial issue. We apply the properties of additive confidence interval to this issue, and

incorporate into Double Sandwich Algorithm with theoretical justification. Based on this

idea, we design a sampling-based double sandwich algorithm as shown in algorithm 9. First,

90



Algorithm 9 Double Sandwich With Uniform Sampling, UDS

1: Input: Seeds number k; G(V,E), profit function b, (ε, γ)
2: Output: Parameter space Θout, seed set Sout
3: for e ∈ E do
4: Sample e for t times, and observe x1

e, · · · , xte
5: pe ← 1

t

∑t
i=1 x

i
e, and set δe according to Theorem 32

6: re ← min{1, pe + δe}, le ← max{0, pe − δe}
7: end for
8: Θout ← ×e∈E[le, re]
9: Sout ← a double sandwich solution by calling DS with parameter space Θout;

10: return (Θout, Sout);

the algorithm samples for each edge and generates a new parameter space as shown in line

3-7, then takes this parameter space as input and calls the double sandwich algorithm shown

in line 9. Our Double Sandwich Algorithm with Uniform Sampling has theoretical bound

which is presented in Theorem 32. In sampling for improving RPMP, the goal is to design

a sampling and maximization algorithm that outputs a parameter space Θout and Sout such

that with high probability the robust ratio of S in Θ is large.

To prove our theorem, we first establish the relationship between the propagation prob-

ability interval of the edge and the profit of active nodes, as shown by the following lemma.

Lemma 12. Given any graph G = (V,E,Θ, b), where Θ = ×e∈E[`e, re], b is the profit

function and B =
∑
{u,v}∈V b(u, v), m = |V |. Let SDSΘ be the returned set by Algorithm by

additive sampling, i.e., there exists δ > 0 such that re − `e ≤ δ for any e ∈ E, then the

difference of profit under parameter θ+ and θ− is upper bounded by

fθ+(SDSΘ )− fθ−(SDSΘ ) ≤ mB · ‖θ+ − θ−‖∞.

Proof. For any given seed subset S ⊆ V and parameter space Θ, our utility function fθ(S) =∑
g

Probθ[g]
∑

{u,v}⊆Ig(S)

b(u, v), where g is a random subgraph generated by setting each edge

e ∈ E with probability pe. For simplicity we denote g = (E(g), V (g)) and δ = ‖θ+ − θ−‖∞.

We firstly show a claim that for any random subgraph g and seed set S, we have fθ+(S) −

91



fθ−(S) ≤ δ ·B. Since for any fixed e0 ∈ E(g), we update θ+ to θ1 by setting

θ1 =


θ+
e − δ, if e = e0

θ+
e , o.w.

.

Then the difference of fθ+(S) and fθ1(S) is upper bounded by

fθ+(S)− fθ1(S) ≤ δ ·B. (6.11)

Repeat the above updates, until we obtain the first iteration t such that

θt =


θ+
e − δ, if e ∈ E(g)

θ+
e , o.w.

.

Inspired by inequality 6.11, we have

fθ+(S)− fθ−(S) ≤ fθ+(S)− fθt(S)

≤ tδB

≤ mδB,

where the first inequality follows from the definition of θt, the second inequality is obtained

by the process of update, and the last inequality is derived as t ≤ |E|. Thus, we have

fθ+(SDSΘ )− fθ−(SDSΘ ) ≤ mδB = mB · ‖θ+ − θ−‖∞.

Now we show our theoretical bound for Double Sandwich with Uniform Sampling as

follows.

Theorem 32. Given a graph G = (V,E,Θ, b), integer k, and parameters ε, γ > 0 and

bmin = min{u,v}⊆V b(u, v). Let δ = εbmin
2mB

and t =
2m2B2 ln 2m

γ

ε2b2min
, then under additive form

uninform sampling, Algorithm returns a pair (Θout, Sout) such that

g(Θout, Sout) ≥ (1− ε) · β(θ+
out) · (1−

1

e
),
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with a probability Prob[θ ∈ Θout] ≥ 1− γ, where

β(θ+
out) = max

 fθ+out(SUθ+out
)

Uθ+out(SUθ+out
)
,
Lθ+out(S

∗
L
θ+out

)

fθ+out(S
∗
θ+out

)

 .

Proof. To prove this theorem we have the following

g(Θout, Sout)

≥ β(θ+
out) · (1−

1

e
) · α(Θout)

= β(θ+
out) · (1−

1

e
) ·
fθ−out(S

DS
Θout

)

fθ+out(S
SA
θ+out

)

≥ β(θ+
out) · (1−

1

e
) ·
fθ−out(S

SA
θ+out

)

fθ+out(S
SA
θ+out

)

= β(θ+
out) · (1−

1

e
) ·

(
1−

fθ+out(S
SA
θ+out

)− fθ−out(S
SA
θ+out

)

fθ+out(S
SA
θ+out

)

)
.

(6.12)

The first inequality is obtained by Theorem 31, the second inequality follows from the mono-

tonicity. By the construction of parameter space Θout = ×e∈E[`e, re], for any e ∈ E, δ > 0, let

`e = 1
t

t∑
i=1

xie− δ and re = 1
t

t∑
i=1

xie + δ as the lower bound and the upper bound of probability

pe, respectively. Then we have max
e∈E
‖θ+

out− θ−out‖∞ = re− `e = 2 · δ. Follows from the Lemma

12, we have

fθ+out(S
SA
θ+out

)− fθ−out(S
SA
θ+out

) ≤ 2δmB.
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Thus we have

g(Θout, Sout)

≥ β(θ+
out) · (1−

1

e
) ·

(
1−

fθ+out(S
SA
θ+out

)− fθ−out(S
SA
θ+out

)

fθ+out(S
SA
θ+out

)

)

≥ β(θ+
out) · (1−

1

e
) ·

(
1− 2δmB

fθ+out(S
SA
θ+out

)

)

≥ β(θ+
out) · (1−

1

e
) ·
(

1− 2δmB

bmin

)
= β(θ+

out) · (1−
1

e
) ·
(

1− εbmin
2mB

· 2mB

bmin

)
= β(θ+

out) · (1−
1

e
) · (1− ε),

(6.13)

where the equality is obtained by setting δ = εbmin
2mB

. The rest of our proof is to show that the

inequality 6.13 holds with high probability Prob[θ ∈ Θout] ≥ 1 − γ by choosing the proper

sampling times t. For any given e ∈ E, our Algorithm samples t times, there are t random

variables which are denotes as x1
e, ..., x

t
e with xie ∈ [`e, re] for any e. Let p̄e = x1e+···+xte

t
as

average of theses variables. By the additive form of Chernoff-Hoeffding Inequality, we have

Prob[|p̄e − pe| > δ] ≤ 2exp

 −2δ2t2

t∑
i=1

(re − `e)2


≤ 2exp

(
−2tδ2

)
= 2exp

(
−2δ2 ·

ln 2m
γ

2δ2

)

=
γ

m
.
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Figure 6.2. The experiment results

The equality follows by setting t =
ln 2m

γ

2δ2
=

2m2B2 ln 2m
γ

ε2b2min
. Thus we have

Prob [θ ∈ Θout] = Prob

[
∀e ∈ E, |p̄e − pe| ≤

εbmin
2mB

]
≥ 1−

m∑
i=1

Prob

[
|p̄ei − pei | >

εbmin
2mB

]
= 1−m · Prob

[
|p̄e − pe| >

εbmin
2mB

]
≥ 1− γ.

An intuitive feeling is that when the number of samples is sufficient, the bound of the

double sandwich algorithm with sampling becomes an approximate guarantee for the sand-

wich algorithm under parameter settings θ+. This is also easy to understand, because when

the number of samples is sufficient, we get the real parameter vector. The double sandwich

algorithm becomes a sandwich algorithm.

6.6 Experiment

6.6.1 Settings

In the experimental part, we mainly study the effectiveness of the algorithm in two situations.

The first case is that we verify the double sandwich algorithm for a given probability space.

The second case is to verify the sample-based double sandwich algorithm. Actually, given a
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seed set S, it is hard to calculate the robust ratio g(Θ, S), since it contains solving the profit

maximization problem which is NP hard. In order to facilitate the experimental comparison,

we use two indicators following the idea of Chen et al. (Chen et al., 2016b). One is about

the upper bound of the solution, the other is about the lower bound of the solution. The

lower bound shown in Theorem 31 is,

α(Θ) · β(θ+) · (1− 1

e
),

where

β(θ+) = max

{
fθ+(SUθ+ )

Uθ+(SUθ+ )
,
Lθ+(S∗Lθ+ )

fθ+(S∗θ+)

}
,

Note that it can not be estimated since β(θ+) contains optimal solution corresponding to Lθ+

and fθ+ which are hard to find, when we gain the solution of Double Sandwich algorithm.

But a good idea is that we replace the β(θ+) with its lower bound
fθ+ (SU

θ+
)

Uθ+ (SU
θ+

)
. Thus we get

our new lower bound which is able to estimated as follows:

π(Θ) = α(Θ) ·
fθ+(SUθ+ )

Uθ+(SUθ+ )
· (1− 1

e
)

=
fθ−(SDSΘ )

fθ+(SSAθ+ )
·
fθ+(SUθ+ )

Uθ+(SUθ+ )
· (1− 1

e
)

And it is easy to obtain an upper bound γ(Θ, θ) of the robust ratio g(Θ, SDSΘ ) by

g(Θ, SDSΘ ) = min
θ∈Θ

fθ(S
DS
Θ )

fθ(S∗θ )

≤ fθ(S
DS
Θ )

fθ(S∗θ )
≤ fθ(S

DS
Θ )

fθ(SSAθ )
= γ(Θ).

We use two social networks in our experiments. All datasets are publicly available.

Email can be obtained from SNAP website (htpp://snap.stanford.edu), while Facebook can

be obtained from KONECT website (http://konect.uni-koblenz.de). The ground-truth prop-

agation probability for IC model is set to 1
degree(v)

as widely used in other literatures, and the
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profit between nodes is proportional to propagation probability on corresponding edges. In

the first case, given interval width w, we set le = min{pe − w/2, 0}, re = max{pe + w/2, 1},

∀e ∈ E, where pe is the ground-truth probability of e. Then we calculate the upper bound

γ(Θ) and lower bound π(Θ).

We implement all the algorithms in Python and the experiments run on a workstation

with an Intel Xeon 4.0GHz CPU and 64GB memory.

6.6.2 Effectiveness and Analysis

For the first case when the parameter space is given, the results of bounds about robust

ratio computed by our proposed algorithms on two data sets are shown in Fig.6.2 (a) and

(b) respectively. We will figure out the relationship between bounds and the width w. First,

we observe that as the parameter space Θ becomes wider, the values of both π and γ become

smaller, which matches our intuition that larger uncertainty results in worse robustness. The

overall trends of π and γ suggest that the robust ratio may be sensitive to the uncertainty

of the parameter space. Furthermore, when the interval width is less than 0.1, the two

boundaries fall faster. When the interval width is greater than 0.1, the two boundary change

slower as the interval width increases. When the interval span reaches a certain value,

the robust ratio bounds will become very poor, which is consistent with the definition of

robustness.

For the second case in which we use sampling technology, the results on all two networks

are shown in Fig.6.2 (c) and (d) respectively. First, as the number of samples increases, both

bounds π and γ become larger. It is reasonable because as the number of sampling becomes

larger, the corresponding confidence interval becomes shorter. In addition, the number of

sampling has a greater impact on the two bounds in the early period. As the number of

samples reaches a certain level, the effect will become smaller. It can be seen that the width

of the interval has a great influence on the robustness. For each pair of π and γ in two
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graphs, the trends are consistent. All these consistencies suggests that gap ratio could be

used as an indicator for the robustness of double sandwich algorithm.
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CHAPTER 7

CONCLUSION

In this dissertation we study three influence optimization problems in social networks. They

are active friending, interaction-aware influence maximization, robust profit maximization.

The first problem studied is active friending, in our work the active friending problems in

both IC model and LT model on the general social graph and convert the original problem

into an equivalent submodular cost submodular knapsack problem observing that only nodes

forming paths between the source and the target contributes to the acceptance probability,

we give a general algorithm ICSK to solve it under both models, which guarantees to obtain

1−e−1 solution with size constraint restrained by a factor depending on the curvature of the

submodular constraint function. In addition, we give a greedy algorithm to the problem. The

experimental results on real data set validate the effectiveness of the proposed algorithms.

For the interaction-aware influence maximization problem, we take the interaction among

users into consideration and prove the problem is NP-hard and the objective function is non-

submodular. To solve this non-submodular optimization problem, we propose the sandwich

theory based on decomposing the original function into the difference between two submod-

ular functions and design two iterated sandwich algorithms which iteratively finds a better

solution from the solution of a modular/submodular upper bound function, the solution of

a modular/submodular lower bound function as well as the solution of the original objective

function. Experiment results validate the effectiveness of our approach.

For the robust profit maximization problem, we address the issue of uncertainty of the

influence probability. Since the objective function of total profit is non-submodular, we

design a double sandwich algorithm which solves non-submodular problem by means of

finding the submodular upper and lower bounds of the original function. In order to further

improve the robustness of the algorithm, we study the uniform sampling method and enhance

the double sandwich algorithm.
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Kempe, D., J. Kleinberg, and É. Tardos (2003a). Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 137–146. ACM.

102



Kempe, D., J. Kleinberg, and E. Tardos (2003b). Maximizing the spread of influence through
a social network. In International Conference on Knowledge Discovery and Data Mining,
KDD ’03, pp. 137–146. ACM.

Kunegis, J. and A. Lommatzsch (2009). Learning spectral graph transformations for link pre-
diction. In Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 561–568. ACM.

Kwon, J. and S. Kim (2010). Friend recommendation method using physical and social
context. International journal of Computer science and network security 10 (11), 116–
120.

Lehdonvirta, V. (2009). Virtual item sales as a revenue model: identifying attributes that
drive purchase decisions. Electronic commerce research 9 (1-2), 97–113.

Leskovec, J., A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance (2007).
Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 420–429. ACM.

Leung, C. W.-k., E.-P. Lim, D. Lo, and J. Weng (2010). Mining interesting link formation
rules in social networks. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pp. 209–218. ACM.

Li, Y., D. Zhang, and K.-L. Tan (2015). Real-time targeted influence maximization for online
advertisements. Proceedings of the VLDB Endowment 8 (10), 1070–1081.

Liben-Nowell, D. and J. Kleinberg (2007). The link-prediction problem for social networks.
Journal of the American society for information science and technology 58 (7), 1019–1031.

Lu, W., W. Chen, and L. V. Lakshmanan (2015a). From competition to complementar-
ity: comparative influence diffusion and maximization. Proceedings of the VLDB Endow-
ment 9 (2), 60–71.

Lu, W., W. Chen, and L. V. S. Lakshmanan (2015b, October). From competition to comple-
mentarity: Comparative influence diffusion and maximization. Proc. VLDB Endow. 9 (2),
60–71.

Lu, Z., Z. Zhang, and W. Wu (2017). Solution of bharathi–kempe–salek conjecture for
influence maximization on arborescence. Journal of Combinatorial Optimization 33 (2),
803–808.

Mokken, R. J. (1979). Cliques, clubs and clans. Quality and quantity 13 (2), 161–173.

Narasimhan, M. and J. Bilmes (2005a). A submodular-supermodular procedure with appli-
cations to discriminative structure learning. In Proceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence, pp. 404–412. AUAI Press.

103



Narasimhan, M. and J. Bilmes (2005b). A submodular-supermodular procedure with appli-
cations to discriminative structure learning. In Proceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence, UAI’05, Arlington, Virginia, United States, pp.
404–412. AUAI Press.

Narasimhan, M. and J. A. Bilmes (2012). A submodular-supermodular procedure with
applications to discriminative structure learning. arXiv preprint arXiv:1207.1404 .

Nemhauser, G. L., L. A. Wolsey, and M. L. Fisher (1978). An analysis of approximations
for maximizing submodular set functions—i. Mathematical programming 14 (1), 265–294.

Nguyen, H. T., T. N. Dinh, and M. T. Thai (2016, April). Cost-aware targeted viral mar-
keting in billion-scale networks. In The 35th Annual IEEE International Conference on
Computer Communications, INFOCOM 2016, pp. 1–9.

Nguyen, H. T., M. T. Thai, and T. N. Dinh (2016). Stop-and-stare: Optimal sampling
algorithms for viral marketing in billion-scale networks. In International Conference on
Management of Data, SIGMOD ’16, pp. 695–710. ACM.

Richardson, M. and P. Domingos (2002a). Mining knowledge-sharing sites for viral market-
ing. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, pp. 61–70. ACM.

Richardson, M. and P. Domingos (2002b). Mining knowledge-sharing sites for viral market-
ing. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 61–70. ACM.

Rodriguez, M. G. and B. Schölkopf (2012). Influence maximization in continuous time
diffusion networks. arXiv preprint arXiv:1205.1682 .

Shang, Y. and B. W. Wah (1998). A discrete lagrangian-based global-search method for
solving satisfiability problems. Journal of global optimization 12 (1), 61–99.

Shen, C.-Y., D.-N. Yang, W.-C. Lee, and M.-S. Chen (2015). Maximizing friend-making like-
lihood for social activity organization. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 3–15. Springer.

Shuai, H.-H., D.-N. Yang, P. S. Yu, and M.-S. Chen (2013). Willingness optimization for
social group activity. Proceedings of the VLDB Endowment 7 (4), 253–264.

Silva, N. B., R. Tsang, G. D. Cavalcanti, and J. Tsang (2010). A graph-based friend recom-
mendation system using genetic algorithm. In IEEE Congress on Evolutionary Computa-
tion, pp. 1–7. IEEE.

104



Surian, D., N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos (2011). Recommending

people in developers’ collaboration network. In Reverse Engineering (WCRE), 2011 18th

Working Conference on, pp. 379–388. IEEE.

Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a knapsack

constraint. Operations Research Letters 32 (1), 41–43.

Tang, J., X. Tang, and J. Yuan (2017). Towards profit maximization for online social network

providers. CoRR abs/1712.08963.

Tang, Y., Y. Shi, and X. Xiao (2015). Influence maximization in near-linear time: A mar-

tingale approach. In International Conference on Management of Data, SIGMOD ’15, pp.

1539–1554. ACM.

Tang, Y., X. Xiao, and Y. Shi (2014a). Influence maximization: Near-optimal time com-

plexity meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD international

conference on Management of data, pp. 75–86. ACM.

Tang, Y., X. Xiao, and Y. Shi (2014b). Influence maximization: Near-optimal time com-

plexity meets practical efficiency. In International Conference on Management of Data,

SIGMOD ’14, pp. 75–86. ACM.

Thai, M. T. and P. M. P. M. Pardalos (2012). Handbook of optimization in complex networks.

Springer US.

Thai, M. T. and P. M. Pardalos (2012). Handbook of optimization in complex networks.

Springer US.

Tong, A., D.-Z. Du, and W. Wu (2018). On misinformation containment in online social

networks. In Advances in Neural Information Processing Systems, pp. 339–349.

Tong, G., W. Wu, S. Tang, and D.-Z. Du (2017). Adaptive influence maximization in dynamic

social networks. IEEE/ACM Transactions on Networking (TON) 25 (1), 112–125.
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