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The brain is a complex network of interacting brain areas that can be further divided into 

segregated functional systems. Resting-state system segregation is a feature of brain network 

organization that has relevance to brain function in both health and disease across adult lifespan. 

It is unclear what gives rise to system segregation and the individual differences in this brain 

network measure. In this dissertation, two aspects of this important question are investigated: (1) 

Do vascular factors contribute to relationships between age and system segregation across the 

adult lifespan? and (2) Can sources of time-varying information help account for relationships 

between aging and system segregation? The interplay between these questions reveals how the 

temporal evolution of system re-configuration at a short time scale impacts more stable 

individual features of large-scale network organization, in the context of differences in vascular 

health of adult individuals. This dissertation was accomplished by incorporating data from a total 

of 894 unique participants, over 3 independent studies (age range: 20 – 100 years) and including 

multiple neuroimaging modalities and measures of participant health and demographics.  
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The contribution of vascular factors towards relationships between age and resting-state system 

segregation is first investigated. There exist relationships between age and vascular measures, 

including cardiovascular health (CVH) and cerebrovascular reactivity (CVR). Age-related 

decreases of system segregation persist after controlling for vascular-related variance. This is 

demonstrated by (i) computing system segregation regional CVR-corrected signals within each 

participant, and (ii) including CVH as a participant-level covariate in the models. These results 

demonstrate that age-related differences in system segregation cannot be fully attributed to 

differences in cerebrovascular and cardiovascular factors. 

To examine the contribution of time-varying information to system segregation, I examine the 

relationship between resting-state BOLD signal variability and system segregation. After 

controlling for vascular confounds by (i) estimating BOLD variability using CVR-corrected 

signals, (ii) including CVH as a covariate in the model, there is an absence of a relationship 

between age and BOLD variability, revealing that vascular factors serve as a major source of 

variance explaining previously reported relationships between age and resting-state BOLD signal 

variability. Further, with correction of vascular factors, BOLD variability does not relate to 

system segregation.  

An additional source of time-varying information is evaluated in relation to system segregation, 

focused on co-fluctuation amplitude of the resting-state time-series. Moments of greater co-

fluctuation pattern across edges are identified (events), during which functional brain networks 

are highly modular relative to non-event moments. I demonstrate that the number of events that 

are present in an individual’s resting-state time-series is related to their system segregation. 

However, I next demonstrate that age-accompanied decreases of system segregation are evident 
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across all the moments, irrespective of co-fluctuation amplitude of edges. Collectively, these 

findings reveal that while high co-fluctuation moments (events) may contribute towards 

establishing an individual’s system segregation, brain network re-organization exists across all 

time points of a resting-state scan. 

In sum, this dissertation provides important support that resting-state system segregation 

measures brain network re-organization across the adult lifespan. This measure is independent 

from vascular differences within individuals, and provides critical evidence of brain aging that is 

consistently evident across periods of rest. Serving as a biomarker of functional brain network 

integrity, system segregation further supports the application of this approach towards measuring 

individual brain health across the lifespan.  
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CHAPTER 1  

INTRODUCTION AND BACKGROUND 

 

 

The brain is a complex network of interacting brain areas that can be further divided into 

multiple sub-networks (i.e., functional systems [for review see Bullmore and Sporns, 2009; Wig 

et al., 2011]). Each of the systems is dedicated to sets of functionally dissociable cognitive 

processes (e.g., a visual system is involved in processing sensory information primarily from the 

visual modality; for review see Mesulam, 1990). Effective functioning of the brain networks 

requires this modular organization, wherein the systems remain segregated to maintain relative 

functional independence, while also allowing for necessary communications between distinct 

systems (Sporns and Betzel, 2016; Wig, 2017). 

Resting-state system segregation varies across individuals in both health and disease  

The segregation of the brain’s functional systems is evident even while participants are lying in 

resting wakefulness, and has been shown to be an important feature of the brain network function 

and organization in both healthy adults along the lifespan and the diseased populations (for 

review see Wig, 2017). Three lines of evidence are highlighted here to show the significance of 

system segregation in relation to the brain network organization and behavioral outcomes. First, 

studies using resting-state fMRI have revealed that a greater level of segregation between 

functional systems at rest is positively correlated with cognitive performance, such as working 

memory capacity (Stevens et al., 2012), visual attention (Yue et al., 2017), processing speed 

(Chan et al., 2014; Wang et al., 2021), and episodic memory (Chan et al., 2014). These 

observations suggest that functional systems with greater segregation may reflect an optimal 

organization of the brain networks, enabling superior behavioral performance across a variety of 
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cognitive domains. Second, older healthy adults have lower system segregation for both 

association systems (systems responsible for information integration at a higher level ) and 

sensory-motor systems (systems dedicated to processing incoming and outgoing sensory/motor 

information), indicating an aging-related decrease of segregation across multiple functional 

systems (Figure 1.1; Chan et al., 2014; Han et al., 2018).  

 

 

Figure 1.1. Aging-related decrease of system segregation at rest prevails in distinct types of 

functional systems. (A) Functional networks across healthy adult lifespan were revealed using 

age-specific parcels as node set. The topographical organization of the brain networks are highly 

similar across age. However, the degree to which the systems are segregated from one another 

(related to their network topology) exhibits an age-related decrease; this trend is consistent for all 

systems (B), association systems (C), sensory-motor systems (D) and association to sensory-

motor systems (E), despite different trajectories of decline. These observations suggest that 

system segregation could serve as a sensitive network measure capable of revealing altered 

topological organization of the brain networks across age. Figures adapted from Han et al. 

(2018).  

 

Third, functional systems are less segregated in participants suffering from neurological disease 

(e.g., Alzheimer’s disease [Brier et al., 2014] and schizophrenia [Yang et al., 2016]), suggesting 
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brain dysfunction and behavioral disorders may be associated with altered organization of the 

brain networks. Finally, declining brain system segregation predicts impending changes in 

dementia severity (Chan et al., 2021). These observations collectively suggest that resting-state 

system segregation is a measure that summarizes important features of the brain network 

organization and predicts behavioral outcomes in both healthy and diseased individuals. 

Critically, it is not clear what establishes an individual’s resting-state system segregation. One 

way to better understand resting-state system segregation is to better understand the signals that 

contribute to it, and properties that modify it.  

Vascular health is altered in older adults 

Aging is accompanied by changes of vascular health, including cardiovascular and 

cerebrovascular alterations. It has been revealed that vascular dysfunction is associated with 

structural alterations in the brain, including alterations of white matter (e.g., white matter lesions 

[Bots et al., 1993; Longstreth et al., 1996; Moroni et al., 2018], presence of white matter 

hyperintensities [Raz et al., 2007]), gray matter differences  (e.g., cortical thickness in the motor 

cortex [Marshall et al., 2017], volume of the primary visual cortex [Raz et al., 2007]), and 

subcortical atrophy (e.g., hippocampal shrinkage [Raz et al., 2005; Du et al., 2006; Debette et al., 

2011]). Vascular-related changes of brain structures across age are also linked to differences of 

cognitive performance (for review see Raz and Rodrigue, 2006; Salat, 2011). For instance, a 

longitudinal study reported that participants of higher vascular risk exhibited greater white matter 

hyperintensity progression and shrinkage of the fusiform cortex, and that these age-related 

changes were correlated with declines in working memory (Raz et al., 2007). As such, individual 
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difference of vascular health gives rise to structural variability of the brain across the adult 

lifespan, which plays unique roles towards aging-related changes in cognitive performance. 

Vascular health not only impacts brain structure, but also leads to differences in neural function 

and behavioral performance (for review see Zimmerman et al., 2021). Vascular impairments lead 

to cellular dysfunction (e.g., through ischemia that interrupts metabolic functions [Fricker et al., 

2018]), and reduced efficiency in neural processing (e.g., impaired timing of signaling in 

neuronal circuits due to aging-accompanied decline of cerebrovascular reactivity [Hutchison et 

al., 2013; Toth et al., 2017]). Consequently, the impacts of vascular health on neural function are 

also linked to age-related cognitive decline (Colcombe et al., 2004; Crichton et al., 2014, 

Abdelkarim et al., 2019; Hutchison et al., 2013; Tarantini et al., 2015; Toth et al., 2017; 

Yabluchanskiy et al., 2021). 

Aging-accompanied vascular changes can also lead to alterations in regional cerebral blood flow, 

which poses a challenge for estimating neural activity using functional MRI measures that are 

sensitive to properties of blood flow. Functional MRI reveals neural activity via BOLD signals 

that reflect the concentration of oxygenated hemoglobin in blood vessels varying with neural 

activity. Greater neural activity (e.g., higher neuronal firing rates) increase energy consumption, 

resulting in changes of the ratio of oxygenated hemoglobin to deoxyhemoglobin and altered 

cerebral blood flow. Critically, aging-related alteration of regional cerebral blood flow affects 

properties of BOLD signals (e.g., magnitude of activations), even when neural activity remains 

comparable (Cohen et al., 2002; Brown et al., 2003; Stefanovic et al., 2005).  

Indeed, measuring age-related changes of neural activity in humans has been challenging. One 

method is to examine the cerebral metabolic rate of oxygen (CMRO2) that measures 
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consumption of oxygen during neural metabolism. Studies have revealed different results with 

respect to the age-related differences of resting-state CMRO2 using distinct imaging methods; 

relatively consistent decreases in CMRO2 with aging in PET-based studies (Aanerud et al., 2012; 

Eustache et al., 1995; Goyal et al., 2017; Ibaraki et al., 2010; Kuhl et al., 1982; Yamaguchi et al., 

1986), but mixed finding using MRI-based methods (age-related increases [Lu et al., 2011; Peng 

et al., 2014], decreases [De Vis et al., 2015], or no change [Catchlove et al., 2018]). These 

differences in measured CMRO2 may be attributive to limitations of MRI-based methods that 

depend on blood flow to indirectly measure neural metabolism. As such, varying blood flow may 

not necessarily relate to metabolic changes but reflect differences in hematocrit (e.g., Aanerud et 

al., 2012) or other non-brain effects (e.g., scanning parameters [Liu et al., 2013]). 

Age-related differences in neurovascular coupling and neurovascular energetics could also lead 

to changes of BOLD signal across age. It has been shown that changes in BOLD signal with age 

is predicted by decreases of neurovascular coupling, and this relationship is independent from 

changes in metabolism (Fabiani et al., 2014). Changes in BOLD responses in older adults could 

lead to aging-accompanied differences of BOLD signals, such as signal timing changes (Taoka et 

al., 1998) and increased noise in image voxels (D’Esposito et al., 1999). More recent studies 

have been focusing on changes in neurovascular energetics and neurovascular coupling, which 

may confound interpretations of BOLD signals in older adults (Abdelkarim et al., 2019; Rypma 

et al., 2021; West et al., 2019; Wright & Wise, 2018; for review and discussion see Zimmerman 

et al., 2021). 

Collectively, these findings demonstrate that vascular factors can relate to altered brain structures 

and function in older adult individuals. As such, it is possible that there is a link between 



 

6 

 

vascular alterations and large-scale resting-state functional brain network re-organization 

observed in aging, especially as this property is based on the BOLD signal. In line with this 

possibility, Kong et al. (2020) reported that differences of cerebrovascular elasticity are related 

to differences in resting-state system segregation. The relationship between cerebrovascular 

elasticity and system segregation was weakened but persists after controlling for age, which 

suggests that vascular health explains at least some, but not all, of the aging effects on the 

segregation of resting-state brain networks. Notably, this study used a summary measure of 

cerebrovascular function. However, cerebrovascular reactivity maps reveal that there exists 

variation in cerebrovascular function across the cortex (Liu et al., 2013; Meng et al., 2008; 

McKetton et al., 2018) which might then have different impacts on the resting-state signals of 

different brain regions, an aspect which will be directly examined in the present dissertation.  

Resting-state correlations are dynamic 

While measures of brain network organization are typically defined over an extended period of 

time, corresponding to one or more resting-state scans collected in a given session, closer 

examination of resting-state signals reveals that functional segregation varies over short 

timescales during the fMRI scan (Betzel et al., 2016). The temporal variability of system 

segregation arises from the dynamics of resting-state BOLD signals. System segregation is 

estimated from resting-state functional connectivity (RSFC) based on the BOLD signals sampled 

from different brain locations. It has been shown that the resting-state BOLD signals are non-

stationary over time (e.g., Chang and Glover, 2010), leading to dynamic fluctuation of RSFC that 

may reflect moment-to-moment transitions between distinct brain states (Allen et al., 2014; 

Hutchison and Morton, 2015). These brain states may reflect reconfiguration of the brain 
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networks that can be associated with varying levels of vigilance, consciousness and executive 

function (Barttfeld et al., 2015; Nomi et al., 2017; Shine et al., 2016; Wang et al., 2016), as well 

as psychiatric disorders (Damaraju et al., 2014; Rashid et al., 2014; Su et al., 2016; Du et al., 

2016). As such, the non-stationary BOLD signals may reflect ongoing changes in information 

processing, which give rise to reconfiguration of brain networks as evident by changes of system 

segregation. However, recent studies have revealed that the non-stationarity of BOLD signals 

may not reflect ongoing changes of the brain networks. Rather, it may be largely attributed to 

data sampling error, head motion and fluctuating drowsiness (although the latter would still be 

considered a ‘state’ relevant to level of arousal; Laumann et al., 2015; Laumann et al., 2017). 

Irrespective of the source of dynamics of resting-state correlations, it seems clear that a deeper 

understanding of the temporal variability might contribute towards our understanding of the 

genesis of resting-state system segregation and its variability across individuals.  

Evidence that BOLD variability may relate to brain network organization and function. An 

important parallel body of work has provided clues relevant to the discussion above. In contrast 

to earlier studies that considered the variability of neural signals as a source of noise to nervous 

system, accumulating research has proposed that such variability could be necessary for optimal 

brain functioning. In support of this account, the brain has been shown to maintain metastable 

dynamics via a variable signal that facilitates switching between segregation and integration 

across brain networks (Tognoli and Kelso, 2014). Systems with adequate levels of variability 

may exhibit more flexible configurations, as evidenced by somewhat coupled but not completely 

phase-locked signals that show coexistence and shifting between integrative and segregation 

tendencies (Kelso, 2008; Kelso et al., 1990; Kelso and Haken, 1995; Kelso and Tognoli, 2007). 
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Another piece of evidence shows that the variability of neural signals may reflect a dynamic 

process in the nervous systems that copes with external uncertainty (e.g., Knill and Pouget, 2004; 

Ma et al., 2006; Beck et al., 2008; Garrett et al., 2013a; Garrett et al., 2013b). As such, greater 

variability of signal may reflect optimal tuning of functional systems with better adaptability to 

changes of the external environment. These observations collectively suggest that neural 

variability over time may facilitate the dynamic reconfiguration of brain networks in response to 

task-related processing demands which alter the connectivity within/between systems, and thus 

relate to task-related performance. 

Consistent with the above ideas, accumulating observations have revealed that resting-state 

BOLD variability (and BOLD variability more generally) is related to individual differences in 

cognitive ability and also varies across age. It has been shown that greater variability of BOLD 

signals at rest is related to better cognitive performance, such as flanker task performance 

(Mennes et al., 2011), fluid abilities and episodic memory (Burzynska et al., 2015). In addition, 

resting-state BOLD variability is positively associated with task-evoked BOLD signal magnitude 

(Mennes et al., 2011) and variability (Mennes et al., 2013; Grady and Garrett, 2018). When 

compared to younger adults, older adult’s cortical BOLD exhibit less variability during a variety 

of conditions (eye-fixation to a cross on screen [Garrett et al., 2010], cognitive tasks [Garrett et 

al., 2011; Grady and Garrett, 2018], and resting-state scans [Kielar et al., 2016; Grady and 

Garrett, 2018]). There is evidence that the relationship between age and BOLD variability during 

resting-state persists after controlling for motion and cardiovascular influences (e.g. Millar et al., 

2020), although there is also some evidence that it diminishes after controlling for  both 

cardiovascular and cerebrovascular estimates (Tsvetanov et al., 2020).  
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While the biological significance of BOLD variability has yet been fully understood, 

accumulating evidence has suggested that the variability of BOLD signals may summarize the 

moment-to-moment alterations of brain region signal processing relevant for task-related 

processing demands and that the variability supports behavioral outcomes which covary with 

age. The observations described also have clear parallels with those noted for resting-state 

system segregation (e.g., better cognitive performance is associated with greater system 

segregation and higher BOLD variability), although the two bodies of work have yet to be 

linked. A natural question is to ask whether there exists a direct relationship between measures of 

resting-state BOLD variability and summary measures of resting-state system segregation; 

overall BOLD signal variability may serve as a trait-like feature characterizing ongoing 

reconfigurations of brain network organization.  

Evidence that resting-state brain system segregation may be a product of highly modular ‘events’ 

that occur during rest. Evidence for a link between BOLD variability at rest and resting-state 

system segregation has emerged from recent work (Zamani Esfahlani et al., 2020). Esfahlani and 

colleagues examined co-fluctuating patterns of BOLD signals between sets of network nodes and 

identified brief moments that exhibited much stronger co-fluctuation amplitude across a variety 

of node pairs (termed as ‘event’) relative to other moments of weaker co-fluctuation (‘non-

event’). They found that the modular structure of brain networks is much more prominent during 

events relative to non-events. This interesting observation suggests that neural signals may 

consist of heterogeneous components (moments) that exhibit different patterns of connectivity. 

Critically, these events coincide with moments when BOLD signals exhibit greater amplitude 

across the brain relative to non-events (Zamani Esfahlani et al., 2020). This result further 
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suggests that the presence of events may directly relate to the temporal variability of BOLD 

signals for each individual.  

Summary 

Resting-state system segregation is a feature of brain network organization that has relevance to 

brain function in both health and disease across adult lifespan. It is unclear what gives rise to 

brain system segregation and the individual differences in this brain network measure. Here, I 

will explore two aspects of this important question: (1) Do vascular factors contribute to 

relationships between age and brain system segregation across the adult lifespan, and (2) Can 

sources of time-varying information help account for relationships between aging and brain 

system segregation? The interplay between these questions may further reveal how the temporal 

evolution of system reconfiguration at a short time scale impacts more stable features of large-

scale network organization as a function of cardiovascular health. I will describe my efforts to 

answer these questions, whereby I have studied multiple large healthy adult lifespan datasets 

which each contain unique features relevant towards the questions at hand. The investigation in 

the context of healthy adult lifespan may further provide new perspectives in understanding 

decreased system segregation and behavioral outcomes in an aging population, and its relevance 

to brain and cognitive decline in both health and disease. 
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CHAPTER 2 

DO VASCULAR FACTORS CONTRIBUTE TO RELATIONSHIPS BETWEEN AGE 

 AND BRAIN SYSTEM SEGREGATION ACROSS THE ADULT LIFESPAN? 
 
 

2.1. Introduction 

Functional brain network organization can be estimated using BOLD signals detected by fMRI 

(Power et al., 2011) and has been shown to differ and change with adult age (Chan et al., 2014; 

Han et al., 2018; for reviews see Wig, 2017, Damasioux, 2017). It is presumed that age-related 

BOLD differences are due to differences in neuronal activity, however, BOLD signals may vary 

across age because of aging-accompanied changes in vascular factors. Vascular differences have 

been linked to brain structure changes in aging, including white matter lesions (Bots et al., 1993; 

Longstreth et al., 1996; Moroni et al., 2018) and cortical thinning (e.g., Marshall et al., 2017). 

Importantly, as vascular changes in aging impact dynamics of regional blood flow (Ito et al., 

2002), this may lead to alterations of functional brain network organization that are measured 

using BOLD signals. 

Functional MRI has been widely used to reveal neural activity of the brain (Ogawa et al., 1990). 

This technique measures BOLD signals which reflect the relative concentration of oxygenated to 

deoxygenated hemoglobin in blood vessels (Ogawa et al., 1990, 1993; Bandettini et al., 1992; 

Kwong et al., 1992). Greater neural activity (e.g., higher neuronal firing rate) increases energy 

consumption, resulting in altered cerebral blood flow and disproportional changes of the ratio of 

oxy- to deoxyhemoglobin (Buxton and Frank, 1997; Buxton et al., 1998). As such, BOLD based 

fMRI measures are inherently sensitive to both vascular and neuronal factors.  
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Vascular health decreases with age and impacts multiple levels of brain organization (molecular, 

cellular and structural [Paneni et al., 2017; Abdelkarim et al., 2019]). A prominent feature of 

aging is the impaired regulation of blood vessels that leads to global decreases of baseline 

cerebral blood flow across the brain of older adult individuals (Leenders et al., 1990; Ambarki et 

al., 2015; Nagata et al., 2016). These aging-related alterations of cerebral blood flow can affect 

properties of BOLD signals (e.g., magnitude), even when neural activity remains comparable 

(Cohen et al., 2002; Brown et al., 2003; Stefanovic et al., 2005). 

Regulation failure can be a consequence of decreased flexibility of blood vessels to dilate and 

contract in order to adjust blood flow in response to neuronal activity (O’Rourke and Hashimoto, 

2007). This property of vascular health can be measured using cerebrovascular reactivity (CVR). 

CVR quantifies the response of blood vasculature to changes in cerebral perfusion under the 

presence of vasodilatory stimuli (e.g., changes in CO2 concentration via breath-holding or 

inhalation of CO2 enriched gases). 

There exist multiple methods to quantify CVR. BOLD-based CVR estimation relies on 

experimentally perturbing physiological states during functional MRI data acquisition, in which 

changes in BOLD signals are dominated by vascular factors while any apparent changes in 

neuronal activity are absent (Cohen et al., 2002; Brown et al., 2003; Stefanovic et al., 2005). 

With this approach, CVR values are derived as the ratio between BOLD signal changes and CO2 

level changes, reflecting local changes of venous functions with varying blood concentrations of 

CO2.  

CVR can also be estimated with imaging sequences sensitive to cerebral blood flow, such as 

arterial-spin labelling (ASL, Detre et al., 2009).  ASL uses blood water proton as a diffusible 
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tracer labeled in the magnetic field, and serves as a proxy for quantifying cerebral blood flow at 

different locations of the brain (for review see Alsop et al., 2014). Similar to BOLD-based CVR, 

this approach monitors levels of end-tidal CO2 but quantifies changes of cerebral blood flow 

(CBF) instead of BOLD signals. Specifically, increased pressure of CO2 (hypercapnia) results in 

dilation of vascular smooth muscle and increased regional cerebral blood flow, while decreased 

CO2 pressure (hypocapnia) causes vasoconstriction that leads to decreased regional blood flow 

(Mandell et al., 2008; Bright et al., 2009; Lu et al., 2011). 

There exist important distinctions between CBF-based and BOLD-based CVR. As mentioned, 

CBF-based CVR (e.g., ASL) uses blood water proton as tracers, so it directly measures changes 

of cerebral blood flow and reflects arterial perfusion (Lee et al., 2001). By contrast, BOLD signal 

reflects venous activities because the signal is sensitive to changes of deoxyhemoglobin that is 

primarily in veins (Ogawa et al., 1990, 1993; Lee et al., 2001; Zhou et al., 2015). Arterial blood 

contains diamagnetic oxyhemoglobin that does not contribute significantly to BOLD signals 

(Ogawa et al., 1990; Lee et al., 1999). As such, CVR estimated from BOLD signals largely 

exhibit flexibility of venous systems to dilate/contract and regulate blood flow. Altogether, it is 

critical to note that while the two have been found to be highly related, CBF-based and BOLD-

based CVR may reflect distinct aspects about the relationship between vascular functions and 

neural activities, and thus provide complementary information of brain activity in health and 

disease (Kastrup et al., 1999; Williams et al., 1992; Bright et al., 2009; Zhou et al., 2015). 

In keeping with the above, both BOLD- and ASL-based CVR measures have been used to 

correct BOLD signals and minimize vascular confounds. For instance, ASL-based CVR maps 

can reveal spatial variability of cerebral blood flow. ASL-based CVR decreases with age at 
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multiple distributed brain locations, including the prefrontal cortex, anterior cingulate cortex, 

insular cortex, and caudate nucleus (Lu et al., 2011). While the spatial information provided by 

ASL imaging renders a possible contribution of regional blood flow to correct BOLD signals 

(e.g., Krishnamurthy et al., 2020), there exist a number of constraints that impede using cerebral 

blood flow to normalize BOLD signals. One disadvantage is the low spatial resolution of ASL 

images. ASL imaging requires fast image acquisition to capture signals from magnetically 

labeled blood water protons before relaxing to equilibrium state. This process leads to lower 

spatial resolution of ASL data that possibly mix signals from distinct brain tissues, such as gray 

matter, white matter, and CSF (Asllani et al., 2008). In addition to this technical challenge, 

cerebral blood flow data from ASL imaging relies on weak signals of perturbed magnetization 

that are highly susceptible to signal fluctuation from head motion and other spurious sources 

(Alsop et al., 2014). As such, low spatial resolution, low signal-to-noise ratio and prolonged 

acquisition time make it less desirable to use ASL data to minimize confounding effects of 

vascular factors on fMRI signals (for review see Tsvetanov et al., 2020).  

In contrast BOLD-based CVR does not rely on tracers of blood water protons; accordingly, the 

images have been shown to exhibit higher signal-to-noise ratio in comparison to the ASL images 

(Alsop et al., 2014; Kassner et al., 2010). In addition, BOLD-based CVR is less susceptible to 

technical challenges in ASL imaging that are associated with shorter TR and lower SNR, 

rendering a higher spatial resolution of cerebrovascular reactivity images (Kassner et al., 2010; 

Tsvetanov et al., 2020).  

As mentioned earlier BOLD-based CVR provides information of vascular health reflecting 

dynamic vascular function, especially the integrity of vascular endothelium and smooth muscle 
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in the vessel wall (Kety and Schmidt, 1948; Kuschinsky, 1996). As such, BOLD-based CVR has 

been utilized as an important biomarker for brain disorders (e.g., arteriovenous malformation 

[Fierstra et al., 2011]) and normal aging (Lu et al., 2011). Based on these considerations and 

availability of BOLD-based CVR maps, this information was used in the present chapter to 

account for vascular contributions to BOLD signals in this report. 

In this chapter, a two-pronged approach was used to account for potential contributions of 

vascular factors on individual differences in brain system segregation across individuals.  First, 

overall cardiovascular health measures were included as individual participant trait variables to 

account for individual differences in health conditions of the heart and blood vessels contributing 

to estimates of system segregation. Second, individual CVR maps were used to specifically 

correct BOLD signals for differences in functional flexibility of blood vessels at individual 

cortical surface vertices (analogous to voxels). Finally, the two approaches were combined to 

determine whether the relationship between adult age and brain system segregation remains after 

controlling for variation in vascular health and regional cerebrovascular properties. Collectively, 

these steps provide a stringent means to examine potential vascular confounds in the estimation 

of aging-related alterations in brain system segregation and its relationship with adult age. 

 

2.2. Methods 

Participants 

This study included a large dataset consisting of healthy participants sampled from across adult 

lifespan. This dataset was comprised of data from 205 participants (age range: 24 – 93 years; 

female = 66.8%) from the Dallas Lifespan Brain Study (DLBS; 2nd timepoint of data 
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acquisition). Participants were recruited from the Dallas–Fort Worth community and were 

provided with written consent before participating. Study procedures were reviewed and 

approved by the Institutional Review Boards at The University of Texas at Dallas and The 

University of Texas Southwestern Medical Center. All participants were neurologically normal, 

right-handed, native English speaking healthy adults from DLBS. The exclusion criteria for 

participation are (i) disorders of the immune system, (ii) major substance abuse, (iii) coronary 

bypass surgeries, (iv) chemotherapy in the past 5 years, (v) loss of consciousness for more than 

10 minutes, and (vi) any MRI safety contraindications. In addition, all participants went through 

a rigorous screening procedure to ensure cognitive health (Mini-Mental State Examination 

[MMSE] ≥ 26) and physical health (SF-36 Physical Component Score [M = 87.49±16.23]; SF-36 

scores ranging from 0 to 100; higher scores indicate better health status, and 50 is a normative 

score). Participants with at least 150 frames of high-quality resting-state data (see RSFC 

Preprocessing) and CVR maps were included in the final sample (n = 102; female = 66.7%). 

Imaging data acquisition 

Brain images were acquired at the University of Texas Southwestern Medical Center, using a 

Philips 3T Achieva whole-body scanner (Philips Medical Systems, Bothell, WA) and a Philips 8-

channel head coil with the Philips SENSE parallel acquisition technique. Each participant 

underwent 1 session in this dataset. 

Anatomical Images. A T1-weighted sagittal magnetization-prepared rapid acquisition gradient 

echo (MP-RAGE) structural image was obtained (TR = 8.1 ms, TE = 3.7 ms, flip angle = 12°, 

FOV = 204 × 256 mm2, 160 slices with 1 × 1 × 1 mm3 voxels). 
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Functional Images. Functional magnetic resonance imaging (fMRI) used a blood oxygenation 

level-dependent (BOLD) contrast sensitive gradient echo echo-planar sequence (TR = 2000 ms, 

TE = 25 ms, flip angle = 80°, FOV = 220 mm, 43 interleaved axial slices per volume, 3.5/0 mm 

(slice-thickness/gap), in-plane resolution = 3.4 × 3.4 mm2). Two functional runs were acquired 

for each participant. In each functional run, the beginning 5 volumes were discarded to allow the 

MR signals reach a steady-state, and there were totally 180 volumes (acquisitions) left. During 

data acquisition, each participant was instructed to remain still while fixating on a white 

crosshair against a black background. Experimenters verified that participants complied with the 

instructions and did not fall asleep during the functional scan via verbal confirmation. 

Processing of anatomical MRI images, cortical surface and subcortical anatomy 

Anatomical images in their native space were first processed through FreeSurfer automated 

processing pipeline. (v5.3; Dale et al., 1999; Fischl et al., 1999; Ségonne et al., 2005). This 

pipeline includes sequential steps of processing, such as brain extraction, cortical and subcortical 

segmentation, generation of the gray matter-white matter boundary (white matter surface) and 

outer cortical surface (pial surface), inflation of the cortical surfaces to a spherical surface, and 

surface shape-based spherical registration of the participant’s native surface to atlas surface (fs-

average surface). 

Additional measures were adopted to minimize the influence of head motion and other possible 

age-related confounds. For each participant, FreeSurfer output from its automatic pipeline was 

were manually inspected and edited as necessary. Results of inspection and manual editing were 

verified by an independent researcher. Specifically, manual editing included removal of nonbrain 
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tissue misclassified as part of the cortical surface, and adjusting voxel intensity values of tissue 

that led to misclassification of gray and white matter (Savalia et al., 2017).  

A single deformation map was created for each participant by combining (i) the deformation map 

from native space to FreeSurfer’s fsaverage atlas and (ii) the deformation map from fsaverage-

aligned data to a hybrid left-right fsaverage surface (fs_LR; Van Essen et al., 2012). Each 

individual’s surface in native space were then registered to the 164k fs_LR atlas using this single 

deformation map in a one-step resampling procedure and down-sampled to 32k standard mesh 

(Van Essen et al., 2012). 

Due to age-related volume shrinkage of subcortical gray matter (Pfefferbaum et al., 1994; Good 

et al., 2001; Fox and Schott, 2004) and individual variability in change across age (Raz et al., 

2005), the subcortical structures and cerebellum were aligned across participants to enable more 

precise comparison of anatomical features between participants and to better align functional 

data. The volumetric subcortical structures and cerebellum labeled by FreeSurfer in native space 

were registered to the DLBS adult-lifespan atlas (Chan et al., 2014). Atlas transformation was 

computed for each participant using the atlas-registered anatomical image. 

Basic fMRI preprocessing 

To reduce artifacts in functional images, measures were adopted to (i) correct intensity 

differences between odd and even slices attributable to interleaved acquisition without gaps, (ii) 

correct head movement within runs, and (iii) normalize image intensity to a whole brain mode 

value of 1000 (Miezin et al., 2000). 
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RSFC preprocessing 

Functional volumes have been gone through additional preprocessing steps to reduce spurious 

variance unlikely to reflect neuronal activity in RSFC data (Power et al., 2014). These steps 

include (i) demeaning and detrending, (ii) multiple regression of the functional data to remove 

variance related to the whole brain gray matter signal (defined by each participant’s own 

anatomy), ventricular signal, white matter signal, six detrended head realignment parameters 

obtained by rigid-body head motion correction, and the first-order derivative terms for all 

aforementioned nuisance variables. Despite of different opinions toward global signal regression 

in RSFC data processing, it has been shown that this method is effective to minimize motion-

related artifacts (Satterthwaite et al., 2013; Power et al., 2017) and respiration-related artifacts 

when direct estimates of respiration are unavailable (Power et al., 2018). Because older adults 

are more prone to head movement [Van Dijk et al., 2012; Savalia et al., 2017] that leads to 

altered RSFC profiles [Satterthwaite et al., 2013; Power et al., 2014], it is critical to minimize the 

source of bias that may contribute to erroneous estimation of RSFC for the participants in this 

dataset. (iii) To reduce the effect of motion artifact, functional data were processed following a 

“scrubbing” procedure (Power et al., 2014). Motion-contaminated volumes were identified by 

frame-by-frame displacement (FD) that was calculated as the sum of absolute values of the 

differentials of the 3 translational motion parameters and 3 rotational motion parameters (Power 

et al., 2014). Volumes with excessive head motion (i.e., FD > 0.3 mm) were flagged. In addition, 

data between two motion-contaminated frames that were less than 5 frames were also flagged. 

These flagged motion-contaminated frames were removed and interpolated for the subsequent 

processing. (iv) Band-pass filtering (0.009Hz < f < 0.08Hz). (v) Removing the interpolated 
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frames that were used to preserve the time series during regression and bandpass filtering. 

Following RSFC preprocessing, 102 participants remained with 150 frames of clean data (female 

= 66.7%) for subsequent analyses.  

Mapping functional data to surfaces 

Connectivity Informatics Technology Initiative (CIFTI; Glasser et al., 2013) data files were 

created to integrate functional data from all possible locations of gray matter (such as the 

cerebral cortex, subcortical structures, and the cerebellum). Specifically, functional data of 

cortical surface were obtained by resampling functional volumes in “native” space to a 32k mesh 

surface using single deformation maps derived from surface data processing and smoothed on 

the surface with a Gaussian kernel (6 mm full width-half maximum [FWHM]). Functional data 

of each participant’s subcortical structures and cerebellum were resampled from native volumes 

to an isotropic 3 mm atlas volumetric space, combining movement correction and atlas 

transformation in a single cubic spline interpolation (Lancaster et al., 1995; Snyder, 1996). This 

single interpolation procedure eliminates blurring that would be introduced by multiple 

interpolations. Subcortical data were smoothed in volumetric space with a Gaussian kernel (6 

mm FWHM). Finally, functional data of the cortical surface, as well as volumetric time series of 

subcortical structures and the cerebellum (labeled by FreeSurfer pipeline) were combined to 

create the CIFTI files. 

Regional cerebrovascular reactivity data (CVR) 

Data were collected on a 3T MR system (Philips Healthcare, Best, The Netherlands). CVR was 

measured using a previously established hypercapnia paradigm (Liu et al., 2014; Lu et al., 2011; 

Marshall et al., 2014; Yezhuvath et al., 2009). For each participant, a plastic bag with a valve 
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was used to switch between room air and hypercapnic gas (5% CO2 mixed with 21% O2 and 

74% N2). The participant inspired room air and the hypercapnic gas in an interleaved manner (1-

minute room air inhalation, followed by1-minute hypercapnic gas inhalation, which were 

repeated three times with additional 1-minute room air inhalation at the end). The duration of this 

this experiment was 7 minutes. BOLD MR images were acquired during the experiment (field of 

view [FOV] = 220×220 mm2, matrix size = 64×64, 43 axial slices, thickness = 3.5 mm, no gap, 

TR = 200ms, TE = 25ms, flip angle = 80°, and single-shot EPI). Each participant’s physiologic 

data (end-tidal CO2, breathing rate, heart rate, and arterial oxygenation) were also recorded 

during this period (MEDRAD; Novametrix Medical Systems). 

A volumetric CVR map was derived for each participant (N = 131 [female = 65.9%]; provided 

by Dr. Hanzhang Lu [Lu et al., 2011; Liu et al., 2013; Peng et al., 2018]). Briefly, this map was 

estimated by a general linear model (SPM, University College London, UK) with dependent 

variable of BOLD time series and independent variable of EtCO2 measures, in which each 

resultant value represents %BOLD signal change per mm Hg of CO2 change (%BOLD/mm Hg 

CO2). For each participant, the CVR volumetric map was smoothed using a Gaussian filter with 

FWHM of 8 mm, and subsequently sampled to their 32k fs_LR surface (for additional details of 

generating these images, see Liu et al., 2013).  

Correction of resting-state fMRI BOLD time-series using regional measure of CVR 

Each participant’s resting-state BOLD data were corrected to account for their measure of CVR, 

at a vertex-wise level. To do so, the resting-state fMRI BOLD time-series for each vertex was 

divided by the smoothed CVR value at the same vertex location, resulting in a CVR-corrected 

resting-state BOLD time-series.  
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Cardiovascular health (CVH) scores 

For each participant, three measures were used to derive their cardiovascular health (CVH) 

scores: systolic blood pressure, diastolic blood pressure and body mass index (BMI). Each type 

of blood pressure was measured during participant’s cognitive session and MRI session, then 

averaged across the 2 sessions. BMI was measured during MRI session, calculated using the 

following formula: 

𝐵𝑀𝐼 =  
𝑊

𝐻2
 

where 𝑊 is the body weight and 𝐻 is the height of each participant. 

Cardiovascular health scores were calculated with these steps; (i) extracting the first principal 

component scores of the 3 variables, (ii) rescaling the scores to [0 1], (iii) subtracting scores by 1 

such that a higher CVH value indicates better cardiovascular health condition of a participant. 

Data analyses 

System segregation 

Using a published node set (333 nodes located on the cortical surface [Gordon et al., 2016]), a 

measure of brain system segregation will be computed to summarize values of within-system 

correlations in relation to between-system correlations (Chan et al., 2018; Chan et al., 2014). 

Without thresholding the correlation coefficients, this measure takes the differences in mean 

within-system and mean between-system correlation as the proportion of mean within-system 

correlation, as noted in the following formula (Chan et al., 2021): 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =

∑ 𝑍𝑤
𝑊
𝑤
𝑊 −

∑ 𝑍𝑏
𝐵
𝑏
𝐵

∑ 𝑍𝑤
𝑊
𝑤
𝑊
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where 𝑍𝑤 represents connections (Fisher z-transformed correlation coefficients) within the same 

system, 𝑍𝑏 denotes connections between nodes of one system and nodes of other systems, 𝑊 is 

the total number of within-system connections across all functional systems, and 𝐵 is the total 

number of between-system connections. In previous work from our lab (Chan et al., 2014), 

calculation of system segregation was reported using the following formula: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑍𝑤
̅̅ ̅̅ − 𝑍𝑏

̅̅ ̅

𝑍𝑤
̅̅ ̅̅

 

where 𝑍𝑤
̅̅ ̅̅  represents mean connectivity (Fisher z-transformed correlation coefficients) within the 

same system and 𝑍𝑏
̅̅ ̅ denotes mean connectivity between nodes of one system and nodes of other 

systems. For overall system segregation, 𝑍𝑤 is the mean within-system connectivity of each 

system and 𝑍𝑏 is the mean between-system connectivity of each system to all other systems 

regardless of system types. A comparison between the 2 equations revealed that the updated 

formula more accurately specifies the exact computation of the measure and minimizes 

ambiguity (Chan et al., 2021). 

 

2.3. Results 

2.3.1. Measures of cardiovascular health exhibit a strong age effect during adulthood 

To understand the relationship between vascular factors and brain system segregation, multiple 

measures of cardiovascular health (CVH) were investigated in this current report. Three related 

but independent variables were considered: systolic blood pressure, diastolic blood pressure and 

body mass index [BMI].  Systolic blood pressure exhibits an age-related increase (r = 0.47, p < 

0.001), while no aging effect was found for diastolic pressure (r = 0.146, p = 0.104) or BMI (r = 
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0.148, p = 0.097). (Figure 2.1 A – B). Importantly, additional covariates were considered, 

including sex and education that are important participant-level measures contributing to aging 

brain (e.g., Chan et al., 2021). Controlling for sex and educational years did not alter these 

overall relationships (systolic pressure: r = 0.483, p < 0.001; diastolic pressure: r = 0.138, p = 

0.125; BMI: r = 0.151, p = 0.092).  

Given the similar but potentially unique sources of variance across the variables of CVH, the 

three measures were combined to derive a composite cardiovascular health score for each 

individual (see Methods of this chapter). A higher CVH score suggests better cardiovascular 

health in a participant. As expected, CVH scores exhibit a strong relationship with participant’s 

age. CVH scores decrease with increasing age (r = -0.408, p < 0.001), indicating that 

cardiovascular health conditions are lower in older relative to younger adults (Figure 2.1 D). 

This relationship remains significant after controlling for sex and education (r = -0.418, p < 

0.001).  
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Figure 2.1. Cardiovascular health varies with increasing age. Cardiovascular health (CVH) 

scores were estimated from 3 separate measures related to cardiovascular health and function 

(systolic blood pressure, diastolic blood pressure and body mass index [BMI]). Using DLBS 

dataset 1, age-related increase has been revealed in (A) systolic blood pressure (r = 0.469, p < 

0.001), but not (B) diastolic blood pressure (r = 0.146, p = 0.104) and (C) BMI (r = 0.148, p = 

0.097). To derive a summary score quantifying CVH, first principal component scores were 

extracted from these 3 measures, rescaled to the range between 0 and 1, and subtracted by 1 to 

reverse the trend. A greater score suggests better cardiovascular health of this participant (for 

detailed computation see Methods). (D) CVH scores exhibits age-related decreases across the 

healthy adult lifespan in the DLBS dataset 1 (r = -0.408, p < 0.001). This demonstrates that older 

adults have less cardiovascular health relative to younger adults. Note that area between doted 

lines represents 95% confidence interval. 
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2.3.2. Cerebrovascular reactivity decreases with age across healthy adult lifespan 

Another important vascular factor is cerebrovascular reactivity (CVR) that reflects the flexibility 

of blood vessels to dilate/contract. To summarize CVR information for each participant, mean 

cortical CVR was first calculated by averaging across all the vertices of each participant’s CVR 

map. Mean CVR is negatively correlated with age (r = -0.576, p < 0.001), indicating that older 

participants have lower mean cortical CVR (Figure 2.2 A). This negative relationship remains 

after controlling for sex and education (r = -0.587, p < 0.001).  

While mean CVR declines with increasing age, the relationship between age and CVR exhibits 

distinct spatial patterns across cortical brain locations. The CVR value at each vertex was 

correlated with age across all the participants. This calculation resulted in a 64k × 1 vector, in 

which each value represents the correlation coefficient between age and CVR at a given vertex 

on the brain surface. These correlation coefficient values were thresholded using false discovery 

rate (FDR) correction at the significance level of p = 0.05. The resultant correlation maps suggest 

that age-associated decreases in CVR are evident across many locations in the brain and are 

particularly prominent at specific brain regions which include insular cortex, dorsal medial 

prefrontal cortex and anterior cingulate cortex (Figure 2.2 B).  
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Figure 2.2. Cerebrovascular reactivity decreases with age. (A) A mean cerebrovascular 

reactivity (CVR) score was computed for each participant by averaging CVR maps across all 

vertices. There is an age-related decline of CVR scores, indicating less flexibility of blood vessel 

dilation in older adults (r = -0.576, p < 0.001). (B) Relationship between participant age and 

vertex-wise CVR values reveal distinct regions that are particularly prone to age-related 

differences in CVR. Each value on the surface represents the correlation coefficient between 

CVR values at this vertex and age across all the participants. Correlation coefficient values were 

FDR-corrected at the significance level of p = 0.05. All the survived correlation coefficients are 

negative, indicating strong aging-related decrease evident at distributed cortical locations, which 

include insular cortex, dorsal medial prefrontal cortex (dmPFC) and ventral anterior cingulate 

cortex (vaCing). Lat: lateral view, Med: medial view. 

 

2.3.3. System segregation decreases with age across healthy adult lifespan, independent of 

vascular measures 

Resting-state brain system segregation quantifies the amount of partitioning between distinct 

communities (i.e., functional systems) of a network, and has been shown to exhibit aging-related 

decreases across the healthy adult lifespan (e.g., Chan et al., 2014, 2021; Han et al., 2018; for 

review see Wig, 2017). In line with these observations, consistent aging effects were observed in 
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the present project (r = -0.4, p < 0.001; Figure 2.3). This aging-accompanied relationship 

persists after controlling for sex and education (r = -0.392, p < 0.001). 

 

Figure 2.3. Brain system segregation decreases with age. Brain system segregation exhibits 

amount of partitioning between distinct functional systems of the brain. The result shows there is 

an aging-related decrease in system segregation (r = -0.4, p < 0.001), indicating less segregated 

functional systems in older adults.  

 

A primary goal of the present research aim is to determine whether the relationship between age 

and brain system segregation persists despite the age-accompanied differences in vascular health 

and vascular measures reported in the previous section. This hypothesis was tested by first 

including the participant-level measures of CVH into calculations of the relationship between 

age and brain system segregation. 

Controlling for CVH scores, relationship between age and resting-state brain system segregation 

is still significant (r = -0.265, p = 0.008; Figure 2.4). A comparison revealed that models before 

and after controlling CVH did not differ in ∆R2 (F(96) = 3.561, p = 0.062). Critically, the age-
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relationship with system segregation persists after further controlling for sex and education in the 

model (r = -0.271, p = 0.007). After all variables were included (age, sex, education), models 

before and after controlling CVH were not different (F(94) = 1.928, p = 0.168).  

 

Figure 2.4. Aging-accompanied decrease of system segregation is independent of cardiovascular 

influence. To rule out the contribution of cardiovascular factors, CVH variance was regressed 

out from segregation. Note that residuals were used to visualize relationships after removing 

confounding variance. In the main analysis I included covariates in the model to control for the 

confounds.  The result shows that residuals of segregation values are negatively correlated to age 

(r = -0.265, p = 0.008), indicating robust aging effect of segregation independent of 

cardiovascular influence. 

 

To further understand sources of variance contributing to individual differences of segregation, a 

multiple regression was performed to predict system segregation using independent variables of 

age, CVH scores, sex and education. Using DLBS dataset revealed a significant contribution of 

age (t(94) = -3.203, p = 0.002) to the prediction of segregation, while no effect was observed for 

other variables (CVH: t(94) = 1.388, p = 0.168; sex: t(94) = -1.231, p = 0.221; education: t(94) = 

0.462, p = 0.645). Including an age × CVH interaction in a second model along with the previous 
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variables (age, CVH scores, sex and education) also revealed a weak but significant interaction 

of the two on system segregation (t(93) = 2.22, p = 0.029) whereby older participants who had 

less cardiovascular health (lower CVH) exhibited lower system segregation than younger 

participants with similar level of cardiovascular health. These results indicated that CVH may 

contribute limited variance towards system segregation, some of which is related to participant’s 

age. Consistent with the observations above, a formal mediation analysis where the IV was age, 

DV was system segregation and the mediator being CVH did not reveal that participant’s CVH 

fully or partially mediated the relationship between age and system segregation. Specifically, the 

average causal mediation effects (ACME) was -0.0003, p = 0.306 (CI95%: -0.001, 0.000) 

(mediation effect confidence interval were estimated using 1000 bootstrap).  

To investigate whether beta of age attenuates after including CVH in the model, beta of age from 

2 models predicting system segregation were compared. The first model included age, sex, and 

education as independent variables; the second model included CVH in addition to age, sex, and 

education as independent variables. Beta of age of the first model was compared to beta of age 

from the second model using a bootstrap method. For each model, participants were 

bootstrapped 1000 times to create 1000 samples. The linear model was estimated for each 

sample, resulting in totally 1000 beta values of age. The distribution of beta values of age from 

model 1 (without CVH) was then compared to the distribution of beta values of age from model 

2 (with CVH) using a two-sample t-test. The result demonstrated that beta from model 1 is 

statistically stronger than the beta from model 2 (𝛽𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙1 = -0.001±0.0002; 𝛽𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙2= -

0.0008±0.0003; t = -12.595, p < 0.001).  
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Given the varying spatial distribution of age-related differences in cortical CVR, I incorporated 

this fine-grained spatial information about flexibility of blood vessel dilation at different brain 

locations. Specifically, to control for regionally specific cerebrovascular confounds, each 

participant’s unique CVR map was used to correct BOLD signals at every vertex on the brain 

and then calculate system segregation using CVR-corrected signals (see Methods for details). 

Segregation values from CVR-corrected BOLD time series are positively correlated with 

segregation estimates from the original signals (without correction) (r = 0.838, p < 0.001; Figure 

2.5 A). In keeping with this, the CVR-corrected segregation values continue to exhibit a 

significant decrease with increasing age (r = -0.362, p < 0.001; Figure 2.5 B), even after 

controlling for sex and education (r = -0.356, p < 0.001).  

 

Figure 2.5. Brain system segregation was calculated after vertex (spatially) specific CVR 

correction of BOLD signals. Brain system segregation declines with increasing adult age. 

Segregation values were computed using resting-state BOLD time series corrected by each 

participant’s unique CVR map. This provides a more precise correction of BOLD signals by 

incorporating distinct CVR information at different brain locations. This step results in CVR-

corrected segregation that is correlated with the values using original signals (without CVR 

correction) (A). CVR-corrected segregation exhibits negative relationship with age (r = -0.362, p 
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< 0.001), which suggests a robust relationship between age and resting-state brain system 

segregation, even after a stringent correction using cerebrovascular reactivity maps (B). 

 

Next, both CVH and CVR information were included in the analysis to minimize confounding 

effects of all available vascular factors on the relationship between age and brain system 

segregation. Specifically, system segregation using CVR-corrected signals was correlated to age, 

while including CVH as a covariate in the model. Using this stringent method, aging-

accompanied decrease of system segregation persist in both datasets (r = -0.265, p = 0.008; 

Figure 2.6). Further including sex and education as covariates revealed consistent relationships 

(DLBS dataset 2: r = -0.271, p = 0.008).  

To investigate whether including CVH and CVR leads to attenuated variance of age to system 

segregation, a bootstrap analysis was performed as described earlier. Specifically, 2 models were 

estimated; The first model included age, sex, and education as independent variables and system 

segregation from original signals (without CVR-correction) as dependent variable, while the 

second model included age, sex, education, CVH as independent variables and system 

segregation from CVR-corrected signals as dependent variable. The beta of age from model 1 

was compared to beta of age from model 2, using the bootstrap method as described above. 

Briefly, participants were bootstrapped 1000 times to create 1000 samples. A linear model was 

estimated for each sample, resulting in totally 1000 beta values of age. The beta value 

distribution of age from model 1 was found to be not statistically different than beta values from 

model 2 (𝛽𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙1 = -0.001±0.0002; 𝛽𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙2= -0.001±0.0004; t = -1.136, p = 0.256). 

After accounting for the vascular variance based on multiple measures (CVH and CVR 
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correction), age-accompanied relationships with system segregation are not found to be generally 

attenuated.  

Altogether, these collective results indicate that system segregation is a robust biomarker of 

aging brain networks, independent of regional differences in cerebrovascular properties and after 

accounting for individual variability in cardiovascular health. 

 

Figure 2.6. System segregation decreases with age, after stringently removing distinct sources of 

vascular confounds. To rule out different sources of vascular factors, both CVR and CVH were 

considered in the final analysis. BOLD signals were corrected using fine-grained spatial CVR 

maps, and used to compute resting-state brain system segregation. Participant’s CVH score was 

regressed out from CVR-corrected segregation. Note that residuals were used to visualize 

relationships after removing confounding variance. In the main analysis I included covariates in 

the model to control for the confounds. The result shows that residuals of segregation were 

negatively correlated with age (r = -0.234, p = 0.02). These results suggest that brain system 

segregation is robustly related to participant age during adulthood, after minimizing potentially 

confounding effects from distinct vascular factors.  
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2.4. Discussion 

In this chapter, using a large dataset that includes participants across the adult lifespan, I have 

demonstrated that aging is accompanied by altered vascular measures, including cardiovascular 

health (CVH) and cerebrovascular reactivity (CVR). These relationships were robust after 

controlling for individual differences in sex and education. Compared to summarized CVH 

scores which are a participant-level trait measure of overall health conditions of the heart and 

blood vessels, CVR provided fine-grained spatial information that exhibits aging effect at 

different brain locations, including insular cortex, dorsal medial prefrontal cortex and anterior 

cingulate cortex. I next investigated the impact of vascular factors on the well-established 

relationship between age and resting-state brain system segregation during adulthood. The 

relationship remains after controlling for each type of vascular factor. Finally, a stringent applied 

wherein both sources of vascular information were incorporated simultaneously: i) BOLD 

signals were corrected using CVR maps at each vertex and used to compute system segregation, 

ii) CVH scores were included as a covariate in the model. The age-related decrease of brain 

system segregation persists, even after further controlling for other confounds including sex and 

education. These results collectively demonstrate that resting-state brain system segregation 

serves as a robust biomarker reflecting brain re-organization across adult lifespan. 

Consistent with prior reports (D’Esposito et al., 2003; Lu et al., 2010), my analysis revealed that 

an age-related decline of vascular measures, including cardiovascular health and cerebrovascular 

reactivity. Both of the two measures were summarized for each individual participant, 

demonstrating an overall aging effect on vascular factors (e.g., Tsvetanov et al., 2021). On the 

other hand, cerebrovascular reactivity maps provided fine-grained spatial information, and 
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revealed that aging-related decreases in CVR are evident across many locations in the brain, and 

are particularly prominent at specific brain regions which include insular cortex, dorsal medial 

prefrontal cortex and anterior cingulate cortex. These results are also consistent with previous 

findings (e.g., Lu et al., 2010), suggesting the importance of including vascular factors in 

understanding age-related alterations of neural activity across multiple brain regions. 

One important caveat of this research is that BOLD-based CVR has been used to quantify 

cerebrovascular functions across adult lifespan. This method primarily reflects venous responses 

at the presence of vasodilatory stimulus, because BOLD signals are sensitive to 

deoxyhemoglobin that exists in veins (Ogawa et al., 1990, 1993; Lee et al., 2001; Zhou et al., 

2015). By contrast, arterial responses would be better captured by alternate imaging methods 

(e.g., ASL; Detre et al., 2009). This distinction requires caution in the interpretation of CVR-

related findings of this report. 

Age-accompanied vascular changes relate to differences in brain structures (e.g., white matter 

lesions and cortical thinning), and dynamics of regional blood flow, even when neural activity 

remains comparable (Cohen et al., 2002; Brown et al., 2003; Stefanovic et al., 2005). These 

aspects pose critical challenges for estimating neural activity via BOLD signals. Accumulating 

evidence has shown that resting-state brain system segregation decreases with age across adult 

lifespan (Chan et al., 2014; Han et al., 2018; for review see Wig, 2017). Estimation of 

segregation is based on correlation patterns of BOLD signals sampled across the brain. As such, 

it is critical to evaluate whether the relationship between age and brain segregation is 

independent from vascular alterations. This report directly addresses this question by adopting a 

stringent procedure to control for vascular factors, and reveals that decreased system segregation 
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with age is not fully explained by non-neural vascular contributions (in fact, CVH was shown to 

not relate to brain system segregation when included in a larger model which also incorporated 

age, education, and sex as measures of interest), and strengthening the proposal that it serves as a 

measures of brain network re-organization which varies with age.  
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CHAPTER 3 

CAN SOURCES OF TIME-VARYING INFORMATION HELP ACCOUNT FOR  

RELATIONSHIPS BETWEEN AGING AND BRAIN SYSTEM SEGREGATION? 
 
 

3.1. Does resting-state BOLD signal variability relate to the measure of brain system 

segregation? 

 

3.1.1. Introduction 

Accumulating observations have revealed relationships between resting-state BOLD variability 

and individual differences in cognition and brain function across age. It has been shown that 

BOLD signals in the cortical regions exhibit less variability in older adults during a variety of 

conditions (including eye-fixation to a cross on the screen [Garrett et al., 2010], cognitive tasks 

[Garrett et al., 2011; Grady and Garrett, 2018], and resting-state scans [Kielar et al., 2016; Grady 

and Garrett, 2018]). A study of pharmacological intervention found that older participants 

receiving a GABA agonist experienced increases of BOLD signal variability and improved 

cognitive performance (Lalwani et al., 2021). Given that brain system segregation and BOLD 

variability are calculated from common measures, individual differences in BOLD variability 

may help explain some of the individual differences of resting-state brain system segregation 

across the adult lifespan, and contribute to our understanding of the mechanisms that establish 

brain system segregation more broadly. 

As revealed in the previous chapter, vascular factors serve as a major source of confounds in 

BOLD signals. While it has been reported that the relationship between age and BOLD 

variability during resting-state persists after controlling for motion and cardiovascular influences 
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(e.g. Millar et al., 2020), there is also evidence that the relationship significantly diminishes after 

controlling for  both cardiovascular and cerebrovascular estimates (Tsvetanov et al., 2020). 

These findings suggested that resting-state BOLD variability in older adults may need a more 

comprehensive evaluation by including non-neural factors that covary with age.  

In this chapter, resting-state BOLD variability was directly compared to resting-state brain 

system segregation across individuals using DLBS dataset. Before doing so, I first evaluated the 

basic relationship between age and BOLD variability while controlling for vascular factors, in a 

manner consistent with the previous chapter. Specifically, I first investigated the relationship 

between BOLD signal variability and age while controlling for CVH, next I assessed this age-

relationship with BOLD variability by initially correcting the variability measure using CVR 

maps at each vertex on the brain surface, and finally I combined both approaches to assess the 

robustness of the age versus BOLD signal variability relationship. In the second section of this 

chapter, I examined the relationship between resting-state BOLD signal variability and brain 

system segregation, including vascular controls throughout the comparisons.  

3.1.2. Methods 

Participants 

DLBS data was used in this section. For detailed information about participant demographics and 

inclusion criteria see Methods of Chapter 2.  

Data analyses 

Variability of BOLD signals 

BOLD signal variability was estimated using the standard deviation (SD) of the signals across 

time (e.g., Millar et al., 2020). To allow direct comparison between measures of BOLD signal 
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variability, regional CVR, and brain system segregation, variability was computed on brain 

network nodes (see Methods of Chapter 2 for description of nodes). Specifically, for each node 

of a given participant, the time series of all vertices within the node (n×t matrix, where n is the 

number of vertices and t is the time points) were first averaged (1×t vector). The temporal SD 

was calculated on this vector (resulting in a single SD value for each node). Finally, the SDs 

were averaged across all brain network nodes as a general estimate of BOLD variability for each 

participant (e.g., Millar et al., 2020). 

To control for regionally specific cerebrovascular confounds, each participant’s unique CVR 

map was used to correct BOLD signals at every vertex on the brain. CVR-corrected BOLD 

signals were averaged across all the vertices within each brain network node, and BOLD 

variability (SD) was computed on this CVR-corrected time-series. SD values of all nodes were 

finally averaged to derive an overall estimate of BOLD signal variability for each participant. To 

minimize biases from outliers, CVR-corrected BOLD variability values greater than 2.5 SD were 

excluded. 

3.1.3. Results 

3.1.3.1. Resting-state BOLD signal variability does not exhibit age-related differences after 

taking vascular factors into consideration 

Each individual participant’s overall resting-state BOLD variability was estimated using the 

temporal standard deviation of signals for each node, and then averaging across all nodes for that 

participant. Consistent with previous reports (e.g., Kielar et al., 2016; Grady and Garrett, 2018; 

Millar et al., 2020), there existed a significant relationship between participants age and BOLD 

signal variability whereby BOLD variability decreased with increasing age (r = -0.391, p < 
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0.001; Figure 3.1) using the DLBS dataset. This negative relationship remained after controlling 

for sex and education (r = -0.416, p < 0.001).  

  

Figure 3.1. Resting-state BOLD signal variability decreases with increasing age across adult 

lifespan. BOLD variability was quantified by temporal standard deviation of BOLD signals. 

Using DLBS dataset, there exists an age-accompanied decrease in BOLD signal variability (r = -

0.391, p < 0.001). These results suggest that BOLD signals may be less temporally variable in 

older adult individuals. 

 

I next examined whether the relationship between age and BOLD variability persists despite the 

age-accompanied differences in vascular health and measures described in Chapter 2 of the 

present dissertation. After controlling for CVH scores, there still existed an age-related decrease 

of BOLD variability (r = -0.342, p < 0.001) using DLBS dataset (Figure 3.2). This relationship 

persisted after further controlling for sex and education (r = -0.335, p < 0.001). 
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Figure 3.2. Aging-related decrease of BOLD variability persists after controlling for 

cardiovascular health (CVH) factors. One possible source contributing to the estimate of BOLD 

variability is cardiovascular health. To rule out the related confounds, CVH scores were 

regressed out from resting-state BOLD variability. Note that residuals were used to visualize 

relationships after removing confounding variance. In the main analysis I included covariates in 

the model to control for the confounds. There still exists a relationship between age and residuals 

of BOLD variability (r = -0.302, p = 0.002) using DLBS dataset. Note that the correlation 

coefficients are weaker relative to results using original BOLD variability without controlling for 

CVH. These results suggest that while BOLD variability may be partly explained by CVH, its 

relationship with age is robust after controlling for CVH confounds. 

 

Next, cerebrovascular factors were taken consideration. Specifically, to control for regionally 

specific cerebrovascular confounds, each participant’s unique CVR map was used to correct 

BOLD signals at every brain network node and then calculate BOLD variability using CVR-

corrected signals (see Methods for details). To minimize biases from outliers, CVR-corrected 

BOLD variability values greater than 2.5 SD were excluded. The CVR-corrected BOLD 

variability was no longer related to age using DLBS dataset (r = 0.19, p = 0.058; Figure 3.3). 

Including sex and education did not alter the results (r = 0.194, p = 0.056). 
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Figure 3.3. CVR-correction to BOLD signals alters the relation between age and BOLD 

variability. Another important source of confounds is individual difference of cerebrovascular 

reactivity. To control for this possible source of variance, BOLD signals were corrected using 

CVR maps at each brain network node, and were then used to compute BOLD variability. Using 

DLBS dataset, BOLD variability from CVR-corrected signals was marginally related to age (r = 

0.19, p = 0.058).  

 

As a final analysis, both CVH and CVR factors were included to stringently control for distinct 

sources of vascular confounds. Specifically, BOLD variability estimated using CVR-corrected 

signals was correlated to age, while CVH was included as a covariate in the model. With this 

stringent method, age was no longer related to BOLD variability ( r = 0.102, p = 0.325; Figure 

3.4). Further including sex and education as covariates in the model did not alter the results (r = 

0.094, p = 0.37). Taken together, the relationship between age and BOLD variability seems to be 

largely explained by contributions from both cardiovascular health and cerebrovascular factors.  
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Figure 3.4. BOLD variability does not relate to age, after controlling for both vascular measures. 

To provide stringent control for vascular factors, BOLD variability was estimated using BOLD 

signals corrected using CVR maps, after which CVH variance was removed from CVR-corrected 

BOLD variability. Note that residuals were used to visualize relationships after removing 

confounding variance. In the main analysis, I included covariates in the model to control for the 

confounds. Using DLBS dataset, residual of CVR-corrected BOLD variability is not related to 

age (r = 0.09, p = 0.38). 

 

3.1.3.2. Resting-state BOLD signal variability does not relate to system segregation when 

vascular factors are taken into consideration  

The relationship between BOLD variability and system segregation was first examined directly. 

Mean BOLD variability was positively correlated to system segregation (r = 0.347, p < 0.001; 

Figure 3.5 A). The previous findings in this project revealed an association between age and 

each of the variables. To control for the confounding effect, age was included as a covariate in 

the model correlating segregation to BOLD variability, revealing a significantly positive relation 

between the two variables (r = 0.232, p = 0.019; Figure 3.5 B). After additionally controlling for 
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sex and education, the relation between segregation and BOLD variability was still significant (r 

= 0.256, p = 0.011).  

 

Figure 3.5. Relationship between BOLD variability and system segregation. (A) Using DLBS 

dataset, BOLD variability is positively correlated with system segregation (r = 0.347, p < 0.001). 

(B) After controlling for age, this relation is still significant (r = 0.232, p = 0.019).  

 

Based on the above, it appears that resting-state BOLD signal variability directly relates to 

system segregation. However, the primary relationship between age and BOLD signal variability 

was found to not be significant after controlling for vascular factors. As such, it is important to 

control for this source of variance when examining the relationship between system segregation 

and BOLD signal variability.  

BOLD variability was estimated using CVR-corrected BOLD time series. To minimize biases 

from outliers, BOLD variability values greater than 2.5 SD were excluded. Earlier findings in 

Chapter 2 revealed that the relationship between age and system segregation remains after CVR-

correction. Consistent with this, system segregation values before and after CVR-correction were 
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highly correlated (r = 0.838, p < 0.001). Based on these observations, I included the original 

values of system segregation. The result showed that system segregation was no longer related to 

BOLD variability using node-wise CVR-corrected BOLD signals (r = -0.177, p = 0.085; Figure 

3.6). After controlling for age, the relationship between system segregation and CVR-corrected 

BOLD variability was also not significant (r = -0.153, p = 0.139). Further including sex and 

education in the model did not alter the insignificant relationship (r = -0.141, p = 0.177). These 

results suggest that BOLD variability does not explain age-relationships with segregation.  

 

Figure 3.6. System segregation is not associated with CVR-corrected BOLD variability. To 

control for the confounding effects, each brain network node’s BOLD time series were corrected 

using CVR maps, based on which CVR-corrected BOLD signal variability was derived. Using 

DLBS dataset, there is no significant correlation between system segregation and BOLD 

variability estimated from CVR-corrected time series (r = -0.177, p = 0.085).  

 

3.1.3.3. Regionally specific considerations 

While BOLD signal variability was calculated at the brain network node level and then averaged 

for the primary comparisons reported here, the relationship between age and BOLD signal 
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variability can also be investigated at different brain locations. As a supplemental analysis, I 

included this here information for completeness. For each vertex, BOLD variability was 

estimated from standard deviation of BOLD time series at this vertex. To estimate the 

relationship between age and BOLD variability on the brain, BOLD variability values at each 

vertex were correlated with age. The correlation coefficients were corrected using FDR at the 

significance level of p = 0.05. Using DLBS dataset (Figure 3.7 A), there existed spatially 

distributed brain regions in terms of the relationship between age and BOLD signal variability 

(e.g., posterior parietal cortex, cuneus cortex). 

To derived CVR-corrected BOLD variability, BOLD signals at each vertex were corrected using 

the CVR value at the same vertex. CVR-corrected BOLD variability was estimated by deriving 

standard deviation of the CVR-corrected BOLD signals. However, consistent with observations 

on mean BOLD signal variability reported earlier, CVR-correction greatly attenuated the 

observed regional relationships between age and BOLD signal variability (Figure 3.7 B). The 

age-related decreases of BOLD variability were greatly diminished across the cortical surface, 

with few scattered locations exhibiting a positive relationship between age and BOLD variability 

(e.g., anterior cingulate cortex, insular cortex). 
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Figure 3.7. CVR-correction greatly attenuates the observed regional relationships between age 

and BOLD variability across most cortical locations. To estimate the aging effect of BOLD 

variability on the brain, BOLD variability values at each vertex were correlated with age across 

participants, with the resultant correlation coefficient indicating the aging effect of BOLD 

variability at this brain location. The correlation coefficients were corrected using FDR at the 

significance level of p = 0.05. (A) Using DLBS dataset, extensive brain regions exhibit an age-

related decrease of BOLD variability. These regions include posterior parietal cortex (pPC) and 

cuneus cortex. (B) However, the prominent regional age-related decline of BOLD variability is 

no longer evident at these brain regions when BOLD signals were corrected using CVR maps at 

each vertex; in fact, the few regions that remain significant are largely exhibiting an opposing 

pattern (positive relationships). These results collectively suggest that CVR maps provide fine-

grained spatial features of vascular factors that largely account for the relationship between age 

and BOLD signal variability.  

 

3.1.4. Discussion 

In this section, I first investigated the relationship between an individual’s age and their resting-

state BOLD signal variability before and after strictly controlling for vascular confounds. There 

exists an age-associated decline in BOLD variability, consistent with prior reports (e.g., Kielar et 

al., 2016; Grady and Garrett, 2018; Millar et al., 2020). To carefully evaluate the contribution of 

distinct sources of vascular factors to BOLD variability, 3 analyses were performed. Only 
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controlling cardiovascular health (CVH) scores, which represent an individual-level health 

measure, the relationship between BOLD variability and age persists. When BOLD variability 

was estimated using CVR-corrected signals, the relationship between age and BOLD variability 

is largely absent. Finally, examining the relationship between age and CVR-corrected BOLD 

variability while also controlling for individual’s CVH scores also reveals an absence of 

relationship between the measures. These results demonstrate that vascular factors may serve as 

a major source of variance explaining the previously reported relationships between age and 

resting-state BOLD signal variability.  

The next segment of this section turned to my primary question, determining whether there exists 

a relationship between resting-state system segregation and BOLD variability. Before controlling 

for vascular factors, there exists a positive relationship between system segregation and BOLD 

variability, even after controlling for age, sex, and education. However after CVR correction, this 

relationship no longer exists. These results collectively suggest that vascular factors, especially 

cerebrovascular reactivity, play a critical role in estimates of BOLD variability and explain the 

age-related differences in BOLD variability. This latter observation contrasts with the 

relationship between age and resting-state system segregation, which was documented in Chapter 

2. Further, while system segregation appears to relate to BOLD variability, this relationship is 

also eliminated once vascular contributions are taken into account. 

There is a prior reason to believe that the relationship between age and resting-state BOLD 

signal variability is not straight forward. Some studies have reported that the relationship 

between age and BOLD variability during resting-state persists after controlling for motion and 

cardiovascular influences (e.g., Millar et al., 2020). However other studies have shown that large 



 

49 

 

portions of relationship can be explained by vascular measures, including both cardiovascular 

and cerebrovascular measures (e.g., Tsvetanov et al., 2020). Specifically, Tsvetanov and 

colleagues (2020) estimated voxel-wise aging-related differences of resting-state BOLD 

variability using multiple linear regression that included both summarized cardiovascular health 

(CVH) and regional cerebrovascular measure (cerebral blood flow using ASL imaging) as 

covariates in the model. Similar to the work presented here, combining both vascular measures 

revealed an absence of age-relationships with BOLD variability across all voxels on the brain. It 

is possible that some of the mixed findings are due to an absence of spatially specific 

cardiovascular information in earlier reports, which relied solely on participant-level covariates 

to control for vascular contributions.  

Consistent with the previous idea, in the present work, together with a participant level measure 

of vascular health (CVH) I incorporated a spatially specific measure (CVR). CVR maps provided 

vertex-wise information about blood vessel’s capacity in response to metabolic demands. 

Existing studies (e.g., Lu et al., 2011; Liu et al., 2013) and the present analysis capitalized on the 

spatial maps of CVR to correct for the BOLD signals, providing a stringent measure to control 

for vascular confounds at the regional level when estimating the relationship between age and 

BOLD signal variability. The absence of fine-grained regional information (e.g., Millar et al., 

2020) may result in a failure to account for important variation that relates to BOLD signal 

variability. In addition, cardiovascular and cerebrovascular factors may have unique 

contributions to variability estimates. This report included both CVH and CVR-correction in the 

analysis and revealed diminished age-relationships with BOLD signal variability, which is in line 

with Tsvetanov and colleagues’ findings (2020). Notably, the present work used a different 
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approach and measures to control for vascular factors from the work of Tsvetanov et al.; (i) using 

CVR maps to provide unique information on dynamic capacity of blood vessels responsive to 

metabolic demands, and (ii) using CVR maps to correct BOLD signals at each brain location. 

Tsvetanov and colleague (2020) quantified resting-state regional blood flow as a cerebrovascular 

measure, whereas the current worked used CVR, which is considered to be a more direct 

measure of vascular endothelium and smooth muscle function, reflecting dynamic vascular 

capacity at different brain locations (Kety and Schmidt, 1948; Kuschinsky, 1996). Another 

advantage of CVR is its higher signal-to-noise ratio relative to regional blood flow estimated 

from ASL imaging (Alsop et al., 2014; Kassner et al., 2010). As such, this work provides 

important and complementary evidence for vascular factors in relevance to age-accompanied 

difference in BOLD variability. Collectively, vascular factors serve as a major source of variance 

towards measures of BOLD signal variability, which necessitates stringent and comprehensive 

measures to minimize vascular information impacting estimates of age-relationships with this 

property of the BOLD signal. 

Accumulating evidence has suggested that the variability of BOLD signals may summarize the 

moment-to-moment alterations of functional network configuration that are relevant towards 

reconfiguring networks for task-related processing demands. Existing studies have revealed 

associations of resting-state BOLD signal variability to variability of BOLD signal during tasks 

(Mennes et al., 2013; Grady and Garrett, 2018) and cognitive performance (e.g., fluid abilities 

and episodic memory [Burzynska et al., 2015]). These observations have clear parallels with 

those noted for resting-state system segregation, although the two bodies of work have yet to be 

linked. It seems possible that resting-state BOLD variability may reflect dynamic re-organization 
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of segregated brain networks in support of cognitive functions. To test this possibility, this 

chapter directly investigated whether there exists a link between measures of resting-state BOLD 

variability and resting-state system segregation. There exists a relationship between resting-state 

BOLD signal variability and system segregation. However, after a stringent procedure to control 

for vascular confounds, there existed no relationship between BOLD variability and system 

segregation. This suggests that the relationship between BOLD variability and segregation is 

likely confounded by vascular information. These results added another piece of evidence that 

vascular factors serve as a major source of variance contributing to BOLD signal properties. 

Individual difference of BOLD variability may best reflect alterations of blood vessels capacity 

in response to metabolic demands rather than an indicator of dynamic re-organization in brain 

networks. 
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3.2. Do individual differences in moments of high pairwise-covariance (i.e., highly modular 

‘events’) help explain relationships between age and resting-state brain system 

segregation? 

 

3.2.1. Introduction 

An important source of time-varying information emerges from moments of strong co-

fluctuating patterns of BOLD signals between sets of network nodes (Zamani Esfahlani et al., 

2020). These moments (termed as events) were identified by higher root mean square (RMS) of 

the co-fluctuation between signals from a variety of nodes. Importantly, the modular structure of 

brain networks is much more prominent during events relative to non-events (Figure 3.8). This 

interesting observation suggests that neural signals may consist of heterogeneous components 

(moments) that exhibit different patterns of connectivity over time.  
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Figure 3.8. Moments with relatively greater amplitude of co-fluctuation between resting-state 

BOLD signals exhibit prominent modular structures of brain networks. (A) RSFC was estimated 

from Pearson correlation that could be temporally unwrapped to generate co-fluctuation 

timeseries for every pair of brain regions (edges). Co-fluctuation timeseries is the element-wise 

product of z-scored BOLD time series between node pairs. Conversely, co-fluctuation timeseries 

can be averaged across time, resulting in the vectorized RSFC matrix. (B) There are moments 

when co-fluctuation timeseries co-fluctuate collectively across the entire brain. These moments 

can be identified by estimating spatial variance across all co-fluctuation timeseries at each time 

point (quantified by root sum square [RSS]). The RSFC matrix from all time points (A) are more 

similar to the matrix using events’ frames (top 5% of RSS) relative to the matrix from frames of 

non-events (bottom 5%) (C, D). (E) Network modularity is higher during events’ frames, relative 

to non-event frames; also evident in the left half of (C). Figures adapted from Zamani Esfahlani 

et al. (2020). 

 

Existing evidence of network modularly during events gives rise to a natural hypothesis that 

number of events in a resting-state time-series may relate to the overall magnitude of system 
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segregation which is typically calculated across an entire resting-state time-series. Functional 

brain networks exhibit much greater modular structure during events relative to non-events 

(Zamani Esfahlani et al., 2020; Pope et al., 2021); therefore, more frequent occurrence of events 

is likely to have greater contribution to modular networks over time, which can be reflected by 

greater system segregation within an individual. Based on this then, the first hypothesis is that 

participants with lower system segregation (i.e., older adult individuals) exhibit a smaller number 

of events. 

Events can be revealed by identifying moments with greater co-fluctuation patterns across edges 

through computing root mean square (RMS) time series (Betzel et al., 2019; Zamani Esfahlani et 

al., 2020). The hypothesized relationship between events and system segregation is based on the 

assumption that other non-event moments with weaker RMS do not contribute to brain system. 

However, there exists an alternative possibility that individual difference in network organization 

across adult lifespan (i.e., system segregation) is not limited to high co-fluctuation moments 

(events), but exists across all the time points irrespective of RMS amplitude. Testing this second 

hypothesis requires comprehensive evaluation of relationships between age and system 

segregation limited to specific moments, including non-event moments with lower co-fluctuation 

amplitude across edges. 

To test the two hypotheses, in this chapter I first investigated number of events across age and in 

relevance to individual differences of system segregation. The second experiment involved 

examining relationships between age and resting-state system segregation as a function of RMS 

moments, aiming to determine whether the age-system segregation relationship is limited to 

moments classified as events, or pervasive across the entire resting-state time-series. 
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3.2.2. Methods 

Participants 

This chapter includes 2 large separate datasets consisting of healthy participants sampled from 

across the adult lifespan. These two datasets were selected because of the availability of a greater 

amount of functional imaging data per participant, providing better estimates of events across 

time.  

Dataset 1 was from DLBS dataset. For detailed information see Methods of previous chapters. 

Dataset 2 was from the Human Connectome Lifespan Cohort (HCP Aging Release 1.0; Harms et 

al., 2018) with 628 healthy adults (age range: 36 – 100 years; female = 57.2%). This release has 

been made publicly available on Connectome Coordination Facility 

(http://www.humanconnectome.org/). The scanning protocol was approved by the Washington 

University in St. Louis’s Human Research Protection Office and all participants provided written 

informed consent. Participants with at least 20-min high-quality resting-state data per session 

(see RSFC Preprocessing) were included in the final sample (n = 369). 

Imaging data acquisition 

HCP Aging: Participants were scanned on a Siemens 3T Prisma whole-body scanner (Siemens, 

Erlangen, Germany) with a Siemens 32-channel head coil at one of 4 different sites 

(Massachusetts General Hospital, University of California-Los Angeles, University of Minnesota 

and Washington University in St. Louis). Each participant completed two scanning sessions on 

two separate days. 
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Anatomical Images. Each participant has a single T1-weighted MP-RAGE structural scan (TR = 

2500 ms, TE = 2.22 ms, TI = 1000 ms, resolution = 0.8 × 0.8 × 0.8 mm3, flip angle = 8°) and a 

T2-weighted structural scan (TR = 3200 ms, TE = 563 ms, resolution = 0.8 × 0.8 × 0.8 mm3). 

Functional Images. Resting-state functional MRI images were acquired while the participants 

relaxed with eyes open using a gradient-echo EPI sequence (multiband factor = 8, TR = 800 ms, 

TE = 37 ms, flip angle = 52°, 104 × 90 matrix size, 72 slices, 2 mm isotropic voxels, and 488 

time points (~6.5 min) per scan. There were 2 resting-state scans in each session (so a total of 4 

scans across the two days), with different phase-encoding directions (RL and LR) in each scan. 

Processing of anatomical MRI images, cortical surface and subcortical anatomy 

HCP Aging: Anatomical MRI images were processed using the HCP structural pipelines that 

consist of 3 parts (PreFreeSurfer, FreeSurfer and PostFreeSurfer). These pipelines mostly 

overlap with the steps taken to process dataset 1, with some additional steps to specifically 

optimize the processing HCP dataset based on parameters of data acquisition. The PreFreeSurfer 

pipeline produced an undistorted native structural volume space for each participant, aligns the 

T1w and T2w images, performed a B1 (bias field) correction, and registers the participant’s 

native structural volume space to MNI space. The FreeSurfer pipeline segmented the volume into 

predefined structures (including tissues of gray matter, white matter, and subcortical structures), 

reconstructed white and pial cortical surfaces, and performed FreeSurfer’s standard folding-

based surface registration to their surface atlas (fsaverage). PostFreeSurfer has been the final 

structural pipeline that produced NIFTI volumes and GIFTI surface files, along with applying the 

surface registration (to the Conte69 surface template; Van Essen et al., 2012), down-sampling 

registered surfaces, and creating the final brain mask. 
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Basic fMRI preprocessing 

HCP Aging mainly employs the HCP fMRI Volume pipeline that largely overlaps with steps to 

process dataset 1 (e.g., realign the timeseries to correct for head motion and normalize the image 

intensity across runs to a whole brain mode value of 1000 [Miezin et al., 2000]). Due the 

parameters in HCP data acquisition, additional steps were taken to correct gradient-nonlinearity-

induced distortion, perform EPI fMRI image distortion correction due to phase encoding 

directions, and combine all of the transforms for each registration and distortion correction step 

into a single nonlinear transformation that can be applied in a single resampling step. 

RSFC preprocessing 

Similar to Dataset 1 (DLBS), HCP Aging dataset has gone through additional preprocessing 

steps to reduce spurious variance unlikely to reflect neuronal activity in RSFC data (Power et al., 

2014). (i) Demeaning and detrending. (ii) Multiple regression of the BOLD data to remove 

variance related to the whole brain gray matter signal (defined by each participant’s own 

anatomy), ventricular signal, white matter signal, six detrended head realignment parameters 

obtained by rigid-body head motion correction, and the first-order derivative terms for all 

aforementioned nuisance variables. Despite of different opinions toward global signal regression 

in resting-state data processing, this method has been shown effective to minimize motion-

related artifacts (Satterthwaite et al., 2013; Power et al., 2017), and remove global respiration-

related confounds when direct estimates of respiration are unavailable (Power et al., 2018). 

Because older adults are more prone to head movement [Van Dijk et al., 2012; Savalia et al., 

2017] that leads to altered RSFC profiles [Satterthwaite et al., 2013; Power et al., 2014], it is 

critical to minimize the source of bias that may contribute to erroneous estimation of RSFC. (iii) 
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To reduce the effect of motion artifact on RSFC, data were processed following a “scrubbing” 

procedure (Power et al., 2014). Motion-contaminated volumes were then identified by frame-by-

frame displacement (FD) that was calculated as the sum of absolute values of the differentials of 

the 3 translational motion parameters and 3 rotational motion parameters (Power et al., 2014). A 

recent study showed that high-frequency respiratory artifact can confound estimates of FD, in 

particular for scans using multiband sequencies with short TRs (Fair et al., 2020). As such, the 

motion parameters for HCP Aging dataset were filtered to remove high-frequency components 

prior to the estimate of FD and a more stringent cutoff for FD was used (FD > 0.08 mm). In 

addition, data between two motion-contaminated frames that were less than 5 frames were also 

flagged. These flagged motion-contaminated frames were removed and interpolated for the 

subsequent processing. (iv) Band-pass filtering (0.009Hz < f < 0.08Hz). (v) Removing the 

interpolated frames that were used to preserve the time series during regression and bandpass 

filtering. Following RSFC preprocessing, 369 participants were retained with 20-min clean data 

for subsequent analyses. 

Mapping functional data to surfaces 

HCP Aging: HCP fMRI Surface pipeline was used to map functional images in volumetric space 

to the standard CIFTI gray ordinate space. This pipeline largely overlapped with the steps used 

for dataset 1, with some specific optimization for HCP dataset (e.g., 2mm FWHM kernel due to 

image resolution): i) used partial volume weighted ribbon-constrained algorithm to map cortical 

data to the cortical surface, ii) down-sampled the surface timeseries from the high-resolution 

native mesh to the registered 32k_fs_LR mesh, iii) smoothed the surface data with 2 mm FWHM 

Gaussian kernel and applied a correction for differences in the triangle areas associated with each 
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vertex. Subcortical timeseries were processed using a FreeSurfer parcel-constrained atlas 

resampling/smoothing (2 mm FWHM Gaussian kernel) process, which enables better 

correspondence of subcortical voxels across participants and minimizes the bias of the voxels 

from undesired structures. Finally, the cortical data on the surface and subcortical data in volume 

space were combined such that functional timeseries are now in standard CIFTI grayordinate 

space (91282 vertices and voxels). 

Calculation of network Modularity (Newman’s Q) 

Newman’s Q quantifies the degree to which the entire brain network could be divided into 

separate functional systems (Newman, 2004).  

𝑄 = ∑ [𝑒𝑢𝑢 − (∑ 𝑒𝑢𝑣

𝑣∈𝑀

)

2

]

𝑢∈𝑀

 

where 𝑀 is a set of nonoverlapping modules in the network, and 𝑒𝑢𝑣 is the proportion of all links 

that connect nodes in module 𝑢 with nodes in module 𝑣. A Q value was derived from a 

thresholded correlation matrix at each edge density from top 1% to 10% in increments of 1%. 

Calculation of RMS and identification of events 

Events are moments exhibiting much stronger co-fluctuation amplitude across a variety of node 

pairs relative to other moments across all time points. These periods have been shown to 

correspond to moments where there exists a highly modular structure of the brain networks 

(Zamani Esfahlani et al., 2020). The first step to identify events is to generate co-fluctuation 

timeseries for every pair of nodes (i.e., edges). The BOLD time series in each node is normalized 

across time, followed by calculating the element-wise products between every node pair at every 

time point (i.e., at each frame/volume). This co-fluctuation time series (i.e., edge time series) 
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reflects the degree to which the BOLD signals from two distinct nodes fluctuate together across 

time. This results in a n×t edge time series matrix for each participant (Figure 3.9 A), where n is 

the number of edges between node pairs and t is the number of time points (or frames/volumes of 

BOLD resting-state data, in the present case). Across all the edges, there are moments in time 

where a variety of edges collectively co-fluctuate with higher amplitude, which can be derived 

by calculating the root mean square (RMS) across all the edges at each time point (i.e., RMS 

value of each column in the matrix).  

The moments with highest RMS were identified as events (red circles in Figure 3.9 B). 

Following previous reports on this topic (Zamani Esfahlani et al., 2020; Pope et al., 2021; Betzel 

et al., 2022), top 5% of RMS distribution was used as the threshold for detecting events in the 

initial analysis. This was followed up by using a more relaxed RMS threshold (top 10%). Any 

peaks above the threshold were identified as events, whereby peaks were defined as local 

maxima of the RMS time series. 
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Figure 3.9. Identification of events using an exemplar participant’s data. (A) is an edge matrix, 

where each row is the element-wise product between every node pair’s time series. This reflects 

the co-fluctuation pattern between each node pair; a positive value means signals of the two 

nodes fluctuate in the same direction whereas a negative value denotes opposite fluctuation. (B) 

There are moments exhibiting collective co-fluctuation between edges across the entire brain. 

These moments can be identified by estimating spatial variability across all co-fluctuation 

timeseries at each time point (quantified by root mean square [RMS]). These moments are 

captured by identifying peaks of top RMS (e.g., top 5% [Zamani Esfahlani et al., 2020]), marked 

by red circles. 

 

3.2.3. Results 

3.2.3.1. Events are moments exhibiting a more modular organization and higher resting-state 

system segregation 

Events are moments exhibiting high co-fluctuation patterns across edges, which could be 

captured by highest RMS values across all the edges (e.g., top 5%). Two independent datasets 
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were examined to evaluate the distribution of RMS. Despite of differences between the two 

datasets (e.g., data acquisition parameters, participants’ demographics), the distributions of RMS 

are surprisingly consistent across the two datasets, with a comparable thresholding cutoff to 

identify the top 5% of RMS values (DLBS dataset: RMStop5% = 1.78; HCP Aging: RMStop5% = 

1.85; Figure 3.10). For each dataset, its own cutoff value was used to identify events, which 

renders events comparable across participants.  

 

Figure 3.10. Two independent adult lifespan datasets were used in this chapter: DLBS and HCP 

Aging datasets. Both datasets exhibit consistent distributions of RMS values. Despite the 

differences across datasets (e.g., participants, data acquisition parameters), they exhibit 

consistent right-skewed distributions of RMS, with relatively comparable cutoff values to 

identify the top 5% of RMS values, which correspond to ‘events’ (DLBS dataset: RMStop5% = 

1.78; HCP Aging: RMStop5% = 1.85). 

 

It has been shown that events are accompanied by elevated modularity of functional brain 

networks (e.g., Zamani Esfahlani et al., 2020). Consistent with this, examining the mean 

correlation of events vs non-events across all participants revealed a highly modular correlation 

matrix (Figure 3.11). The upper triangle of each matrix is the node-to-node correlation matrix 
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using event frames (top 5% RMS), while lower triangle is from non-event frames (bottom 5% 

RMS). The sharp contrast of modular structures for events vs non-events is evident in both 

DLBS dataset (Figure 3.11 A) and HCP Aging (Figure 3.11 B). Using a different RMS cutoff to 

identify events (top 10% RMS) resulted in a similar contrast of patterns between the correlation 

matrix corresponding to event frames versus non-event frames. Consistent with these apparent 

patterns, Newman’s Q (Newman, 2004), which quantifies the quality of the modularity 

partitioning revealed a significant difference between the two halves of the mean correlation 

matrices. A Q value was computed for each edge density from 1% to 10% at the increment of 

1% for each mean correlation matrix, resulting in 10 Q values for the mean matrix from event 

frames and 10 Qs for the matrix from non-event frames. Using DLBS data, Q value using event 

frames (MQ = 0.659±0.08) was consistently higher than Q from non-event frames (MQ = 

0.617±0.12) at each density. Using HCP Aging data revealed consistent differences between Q 

values from events (MQ = 0.672±0.08) and Qs of non-events (MQ = 0.642±0.09). These results 

collectively revealed more modular structure of the brain networks during events relative to non-

events. 
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Figure 3.11. Correlation matrix from events exhibits stronger modular structure of brain 

networks. To compare network organization during events vs non-events frames, the node-to-

node correlations were computed using frames from events (top 5% RMS) or non-events (bottom 

5% RMS) in each participant. The matrices were then averaged across all participants in each 

dataset. In this figure, the right triangle of each correlation matrix was computed using event 

frames while left triangle of each matrix was from frames of non-events. The nodes of the 

correlation matrices are ordered and labelled according to a pre-defined atlas of brain systems 

(Gordon et al., 2016), to facilitate viewing of the modular pattern. Both DLBS dataset (A) and 

HCP Aging (B) showed sharp contrast between left and right triangles of correlation matrices, 

whereby a modular structure is evident in the right triangle (i.e., high within system correlations 

along the diagonal blocks, lower between system correlations in the off-diagonal blocks), 

suggesting much stronger modular structure of brain networks during events relative to non-

events. 

 

To more closely examine the apparent distinction of modular structures at different moments, 

system segregation using data from events (frames of top 5% RMS) was compared to system 

segregation of non-events (frames of bottom 5% RMS), for each participant within each dataset. 
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A paired-samples t-test revealed higher system segregation values during events relative to non-

events in both DLBS dataset (t(216) = 17.823, p < 0.001; Figure 3.12 A) and HCP Aging 

datasets (t(368) = 13.972, p < 0.001; Figure 3.12 B).  

 

Figure 3.12. Moments with greater pairwise-covariance (i.e., events) exhibit higher system 

segregation relative to moments with low pairwise-covariance. Events are moments that exhibit 

much stronger co-fluctuation amplitude across a variety of node pairs. These moments can be 

identified by isolating frames with higher root mean square (RMS) across all edges (e.g., top 5% 

RMS). To quantify functional network organization during events, system segregation was 

computed using data from events (top 5% RMS), and compared to system segregation values 

from non-events (bottom 5% RMS). (A) shows greater system segregation during events relative 

to non-events using DLBS dataset (paired-samples t-test: t(216) = 17.823, p < 0.001) and (B) 

depicts a similar distinction using the HCP Aging dataset (paired-samples t-test: t(368) = 13.972, 

p < 0.001, demonstrating that resting-state functional brain networks are more segregated during 

event time points. In each raincloud plot, individual dots represent participants. Box and whisker 

plots summarize the distribution of segregation values (upper and lower bound of each box 

denote 25th and 75th percentiles). Histograms to the left depict kernel density estimate of data 

distribution. 

 

To confirm that this observation was not a product of the specific RMS cutoff used to identify 

events, an additional analysis was done using a different threshold (top 10% RMS). This resulted 

in consistent findings: event system segregation is significantly higher than non-event system 
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segregation in both datasets (DLBS dataset: t(230) = 21.687, p < 0.001; HCP Aging: t(368) = 

12.386, p < 0.001). These results demonstrate that resting-state functional brain networks are 

more segregated during moments at which higher pairwise-covariance between edges is present. 

 

3.2.3.2. Mathematical proof that CVR-correction does not alter the estimation of RMS and 

identification of events 

Events were estimated from each participant’s BOLD time series. As revealed in Chapter 3.1, 

vascular factors can be a potential confound towards accurately estimating BOLD signals, 

particularly when there exist individual differences in cerebrovascular reactivity patterns. 

Correcting BOLD signals using CVR maps provides a stringent way to minimize vascular 

confounds, which potentially alters properties of BOLD signals as evidenced by the observations 

of BOLD signal variability across age described earlier. In this section, mathematical evidence is 

provided to show that estimation of events is spared from CVR-correction. Events were 

estimated from BOLD signals that have been normalized across all time points. Described below 

is the mathematical formula derivation to demonstrate that the normalized original BOLD signal 

is equal to the normalized CVR-corrected BOLD signal, resulting in equivalent estimation of 

event moments. 

The normalization of the original BOLD signals for a given voxel, vertex, or node is as follows. 

𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔−𝑛𝑜𝑟𝑚 =
(𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔 − 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑆𝐷𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔
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where 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔−𝑛𝑜𝑟𝑚 is the normalized original BOLD signals, 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean value of 

original signals across all time points, and 𝑆𝐷𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔
 is the standard deviation of BOLD signal 

time-series. 

Similarly, the normalization of the CVR-corrected signals can be expressed as follows. 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟−𝑛𝑜𝑟𝑚 =
(𝐵𝑂𝐿𝐷𝑐𝑣𝑟 − 𝐵𝑂𝐿𝐷𝑐𝑣𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑆𝐷𝐵𝑂𝐿𝐷𝑐𝑣𝑟

 

In CVR correction, each original BOLD time-series at a given vertex was divided by the CVR 

value at the same vertex. This calculation is formally expressed in the following equation 

(Bandettini and Wong, 1997; Liu et al., 2013). 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟 =
𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

𝑐𝑣𝑟
 

And this equation can be further transformed into the following derivation. 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟 = 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔 ×
1

𝑐𝑣𝑟
 

This derivation was plugged-in to the equation of normalizing CVR-corrected signals. 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟−𝑛𝑜𝑟𝑚 =
(

1
𝑐𝑣𝑟

× 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔 −
1

𝑐𝑣𝑟
× 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

1
𝑐𝑣𝑟 × 𝑆𝐷𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

 

The common factor of the numerator was extracted. 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟−𝑛𝑜𝑟𝑚 =

1
𝑐𝑣𝑟

× (𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔 − 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

1
𝑐𝑣𝑟 × 𝑆𝐷𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

 

Common factors of numerator and denominator were both isolated from the main expression. 
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𝐵𝑂𝐿𝐷𝑐𝑣𝑟−𝑛𝑜𝑟𝑚 =

1
𝑐𝑣𝑟

1
𝑐𝑣𝑟

×
(𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔 − 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑆𝐷𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔

 

Common factors were canceled by each other, resulting in 1. The expression to the right is 

mathematically equivalent to the normalized original BOLD signals. 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟−𝑛𝑜𝑟𝑚 = 1 × 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔−𝑛𝑜𝑟𝑚 

As such, normalized CVR-corrected BOLD signal are equivalent to normalized original BOLD 

signal. 

𝐵𝑂𝐿𝐷𝑐𝑣𝑟−𝑛𝑜𝑟𝑚 = 𝐵𝑂𝐿𝐷𝑜𝑟𝑖𝑔−𝑛𝑜𝑟𝑚 

 

3.2.3.3. The number of events declines with increasing age 

Given the observed distinction in system segregation when comparing moments classified as 

events versus moments classified as non-events, a natural hypothesis is that events drive the 

relationship between an individual’s age and their system segregation. Previously published 

results (e.g., Chan et al., 2014) and the observations in the present dissertation report have shown 

aging-accompanied decrease of system segregation. One hypothesis is that older individuals have 

a lesser number of events, and that this difference results in a decreased estimate of trait-like 

system segregation, which is calculated from a correlation matrix corresponding to the entire 

BOLD time-series. This hypothesis was directly tested by investigating the relationship between 

number of events, age, and system segregation. 

Examining the DLBS dataset, there is no relationship between number of events and age (r = -

0.034, p = 0.608; Figure 3.13 A). Including sex and education does not alter the non-significant 
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relationship (r = -0.001, p = 0.986). An additional analysis was done using a different threshold 

for defining events (top 10% RMS). This resulted in consistent findings: the number of events 

does not relate to age (r = 0.038, p = 0.566; Figure 3.13 C). In contrast however, using the HCP 

Aging dataset, the number of events is negatively correlated to age (r = -0.289, p < 0.001; Figure 

3.13 B), even after controlling for sex (r = -0.285, p < 0.001). Due to limited availability of 

demographic information in the data release, education was not included in models for the 

remaining analysis using HCP Aging data. Using a different threshold (top 10% RMS) revealed 

a consistent aging-accompanied relationship (r = -0.313, p < 0.001; Figure 3.13 D). One possible 

reason leading to the mixed findings is that HCP Aging has more data per participant (20 min of 

cleaned data), while DLBS dataset only has 5 min data for each participant. Previous studies 

(e.g., Laumann et al., 2015; Gordon et al., 2017) and observations from our lab (Han et al., in 

preparation) have revealed that derivation of reliable estimates of brain networks necessitates 

significant amounts of data per participant. As such, using HCP Aging may lead to more reliable 

estimation of the number of event and its relationship with the participant’s age. 
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Figure 3.13. Relationship between number of events and age of participant. (A) In the DLBS 

dataset, events were identified using the top 5% RMS. The number of events is not correlated 

with age (r = -0.034, p = 0.608). (C) Using a different threshold (top 10% RMS) does not alter 

the non-significant result (r = 0.038, p = 0.566). (B) In contrast, in the HCP Aging dataset there 

exists a significant relationship between participant’s age and the number of events identified in 

their resting-state time-series, both when calculated using the top 5% RMS (r = -0.289, p < 

0.001), and (D) top 10% RMS (r = -0.313, p < 0.001).  
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3.2.3.4. Participants with a greater number of events in their resting-state BOLD timeseries 

exhibit higher system segregation 

Given the potential relationship between number of events and participant’s age, I next tested the 

hypothesis that the number of events that are evident in an individual’s resting-state BOLD time-

series is related to their system segregation. A Pearson correlation was calculated between 

number of events (top 5% RMS) and system segregation using DLBS dataset, revealing a 

positive relation between the two variables (r = 0.158, p =0.016; Figure 3.14 A). After 

controlling for age, this positive relationship still holds, despite the fact that number of events 

was not shown to relate to participant age in this dataset (r = 0.154, p = 0.018; Figure 3.14 B). 

Controlling for additional covariates (sex and education) revealed a consistent relationship 

between number of events and system segregation (r = 0.186, p = 0.005). 

This relationship was also evident when events were defined from the top 10% of RMS values: (r 

= 0.135, p = 0.039). After controlling for age, this positive relationship remained significant (r = 

0.152, p = 0.021). Further controlling for variance related to sex and education did not alter the 

relationship (r = 0.176, p = 0.008). 

A parallel analysis was performed using the HCP Aging dataset. When top 5% RMS was used to 

identify events, there existed a positive relationship between number of events and system 

segregation before (r = 0.227, p < 0.001; Figure 3.14 C) and after controlling for age (r = 0.134, 

p = 0.01; Figure 3.14 D). The relationships remained after further controlling for sex (r = 0.128, 

p = 0.015). A comparable relationship was evident when defining events using the top 10% 

RMS: before (r = 0.268, p < 0.001), after controlling for age (r = 0.176, p < 0.001) and 

additionally controlling for sex (r = 0.166, p = 0.002).  
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Figure 3.14. Resting-state system segregation is positively related to number of events that are 

evident in a participant’s resting-state time-series. System segregation reflects the level of 

partitioning between distinct functional brain systems, calculated based on the correlation matrix 

from the entire BOLD time-series. This measure is correlated with number of events (top 5% of 

RMS; corresponding to moments exhibiting heightened modular structures of brain networks) 

using DLBS data (A). This relation persists after controlling for age (C). Using an independent 

dataset (HCP Aging), a similar relationship is evident (B) and remained significant after 

controlling age-related variance (D). Each in plot, dots represent individual participants.  
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3.2.3.5. The relationship between age and resting-state system segregation is not limited to event 

moments 

In the previous section it was revealed that number of events is positively associated with system 

segregation, independent of participant age. Is an individual’s system segregation entirely 

dictated by the presence of events? One way of evaluating this question more directly is to 

examine patterns of system segregation as a function of the RMS amplitude of frames. Up until 

this point, system segregation has been calculated form the entire time-series of all nodes (i.e., 

across all frames). However, if event moments define an individual’s system segregation, then 

the relationship between age and system segregation might only be evident during higher RMS 

moments, corresponding to frames of higher node co-fluctuation strength. However there exists a 

possibility that aging-accompanied difference in network re-organization are not limited to high 

co-fluctuation moments (events), but exists across all the time points irrespective of RMS 

amplitude.  

To test this hypothesis, all data frames were sampled into 10 bins based on RMS magnitude with 

10% increments (i.e., 0% - 10%, 10% - 20%, …, 90% - 100%). For each RMS bin (e.g., 90% - 

100%), system segregation was computed using only the frames in this particular bin for each 

participant, and then correlated with age across participants (Figure 3.15).  
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Figure 3.15. Estimating system segregation from data frames of differing RMS strength. To 

assess whether the relationship between a participant’s age and their resting-state system 

segregation  is limited to high co-fluctuation moments of the resting-state time-series, the 

following steps were taken to sample data and evaluate system segregation at distinct moments 

for each participant. (A) RMS was computed to reflect the degree to which edges collectively co-

fluctuate at different moments. (B) The distribution of RMS was derived, based on which 10 bins 

were created to categorize moments of different RMS amplitude (i.e., 0% - 10%, 10% - 20%, …, 

90% - 100%). (C) For each RMS bin (e.g., 90% - 100%), functional time series (frames) were 

sampled from only those moments, based on which a correlation matrix was computed for each 

participant. This correlation matrix reflected the participant’s functional network at the 

corresponding moments with specific RMS strength. (D) The participant’s resting-state system 

segregation was computed based on this correlation matrix for each RMS bin. As such, system 

segregation reflects organization of functional networks at the moments when levels of co-

fluctuation across edges are similar. By comparing relationships between age and system 

segregation from distinct RMS bins allows testing of whether age-associated differences in brain 

network organization are specific to certain moments with strong RMS amplitude or across all 

resting-state time points irrespective of RMS strength. 

 

As shown in Figure 3.16 A, system segregation calculated from higher RMS frames (top 10%) 

is negatively correlated with age in the DLBS2 data set (r = -0.205, p = 0.002). Surprisingly 

however, this relationship holds irrespective of the frames used to calculate system segregation.  
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Figure 3.16. The relationship between an individual’s age and the magnitude of their resting-

state system segregation is evident in moments of higher RMS (e.g., events) and low RMS (non-

events). Data frames were sampled into high RMS (top 10%) and low RMS (bottom 10%) bins. 

For each RMS bin, system segregation was computed using all frames in the corresponding bin 

for each participant, and then correlated with age across participants. There is an age-related 

decrease of system segregation using data sampled from the highest RMS frames (i.e., top 10% 

RMS frames) using DLBS data (A). However, this aging-related decrease of segregation is also 

evident using the lowest RMS frames (C). Similar relationships were revealed in an independent 

dataset (HCP Aging, B and D). 

 

Even when system segregation is calculated on frames that exhibit the lowest RMS (bottom 

10%), which typically exhibit lower modularity, there is a relationship with an individual’s age (r 
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= -0.274, p < 0.001; Figure 3.16 C). Using an independent dataset (HCP Aging) yielded similar 

findings as above. First, there is a negative relationship between age and system segregation 

when the latter is calculated from either the highest RMS frames (top 10%; r = -0.372, p < 0.001; 

Figure 3.16 B) or lowest RMS frames (bottom 10%; r = -0.42, p < 0.01; Figure 3.16 D).  

Further, the age-related decrease of segregation exists across all bins of RMS using DLBS data, 

with correlation coefficients ranging from -0.151 to -0.33 (Table 3.1 A).  

Table 3.1. The relationship between an individual’s age and the magnitude of their resting-state 

system segregation is evident across the resting-state time-series and is not limited to moments of 

higher RMS (e.g., events). Data frames were sampled into 10 bins based on RMS magnitude 

with 10% increments (i.e., 0% - 10%, 10% - 20%, …, 90% - 100%). For each RMS bin, system 

segregation was computed using all frames in the corresponding bin for each participant, and 

then correlated with age across participants. Significant correlations between age and segregation 

were evident across all RMS bins using DLBS (A) and HCP Aging (B) datasets. These results 

demonstrate that relationship between an individual’s age and their resting-state system 

segregation is evident across the resting-state time-series and is not limited to moments of higher 

RMS (e.g., events). 

 

 

After controlling for sex and education, all the relationships persisted with correlation 

coefficients ranging from -0.165 to -0.322 (all ps < 0.05). Using HCP Aging data also revealed 
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significant relationships between age and segregation irrespective of RMS strengths (Table 3.1 

B). These relationships were still significant after controlling for sex, with correlation 

coefficients ranging from -0.37 to -0.488 (all ps < 0.001). Together, these results demonstrate 

that relationship between an individual’s age and their resting-state system segregation is evident 

across the resting-state time-series and is not limited to moments of higher RMS (e.g., events). 

 

3.2.4. Discussion 

In line with previous reports (Zamani Esfahlani et al., 2020), the present chapter revealed that 

there exist moments (events) of greater co-fluctuation pattern across edges, in which functional 

brain networks exhibit a highly modular architecture relative to non-event moments. To 

understand events and their relationship to age-related differences of resting-state system 

segregation, I first investigated whether there exists a relationship between the number of events 

and an individual’s age. The result showed that number of events decreases with increasing age 

(in HCP Aging dataset, but not in DLBS dataset). This finding naturally led to a hypothesis that 

participants with higher system segregation have more events. It was revealed that exists a 

positive relationship between number of events and segregation, even after controlling for 

participant’s age and other covariates, across both datasets. These relationships were evident 

when different thresholds of RMS were used to categorize events. 

I next investigated whether the relationship between age and system segregation is primarily 

evident during higher RMS moments versus moments (frames) irrespective of co-fluctuation 

strength. The result showed that age-accompanied decreases of system segregation are evident 

across all the moments of the resting-state time-series, irrespective of co-fluctuation amplitude of 
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edges (RMS). These findings demonstrate while events provide information related to the 

modular organization of brain networks, the relationship between age and system segregation is 

not limited to these moments of high pairwise-covariance, but rather exist across all time points 

of a resting-state scan. 

Although the biological significance of events are not clear, recent studies have reported that 

events are associated with greater modular structures and attributive to greater connectivity 

within certain functional systems (e.g., default mode network; Zamani Esfahlani et al., 2020). 

Events exhibit repetitive patterns of co-fluctuation across scans, which is highly individualized 

and distinct from group-level patterns (Betzel et al., 2022). Interestingly, events have been 

revealed not only in resting-state studies but also during fMRI experiments that involve stimulus 

processing. For instance, events are detectable as participants watch movies in the scanner, and 

also during the ending scenes of a movie. Interestingly, the events that are evident at the offset of 

a movie exhibit distinct spatial patterns across brain networks relative to the events at other time 

frames during movie watching, suggesting non-equivalent network processes (Tanner et al., 

2022). These observations highlight the possibility that events may provide unique information 

about brain networks and dominate the relationship between network organization and other 

variables of interest (in the present case, age). The current project revealed that number of events 

is associated with age and segregation. This supports our first hypothesis that a higher frequency 

of events results in greater degree of resting-state system segregation across time. Older adults 

have lesser number of events, which at least partially contributes to lower system segregation in 

this population. 
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Curiously, and in contrast to the above conclusion however, I also found that the age-associated 

differences in brain network organization are not limited to events, but also non-event moments. 

Critically, this analysis comprehensively evaluated network organization at distinct moments 

irrespective of co-fluctuation amplitude. The pervasive aging-related decrease of system 

segregation across all moments highlights the persistence of degraded brain networks in older 

adults, which places an important caveat on the interpretation that number of events are critical 

towards establishing how system segregation is established. Indeed, a recent study demonstrates 

that events do not exhibit discrete patterns but rather reflect continuous features of co-fluctuation 

associated with brain network organization. In other words, co-fluctuations and network 

structure are correlated in a gradually increasing way (e.g., ~ top 50% of time points show highly 

modular network structure) and this relationship could be explained by sampling variability 

(Ladwig et al., 2022). Importantly, using limited numbers of time points that are randomly 

sampled from the entire timeseries could largely reproduce network structures, suggesting that 

while events explain a large portion of variance in network structure, they may not uniquely 

drive the patterns of network organization (Ladwig et al., 2022).  

Aging is accompanied by structural changes of the brain at multiple spatial scales, including 

decreases in synaptic connectivity (Barnes and McNaughton 1980; for review see Morrison and 

Baxter 2012), shrinkage and loss of neurons (Kril et al. 2004), loss of dendritic spines of cells 

(Markham and Juraska 2002; Uylings and de Brabander 2002; for review see Burke and Barnes 

2006), progressive thinning of the cerebral cortex and reductions in volume and surface area 

(Resnick et al. 2003; Raz et al. 2005; Fjell et al. 2009; Storsve et al. 2014). Aging-related 

vascular differences also serve as a major source leading to changes both in brain structures and 
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neural activities (e.g., Lu et al., 2011; Liu et al., 2013; Tsvetanov et al., 2020). I have shown 

throughout this dissertation how increasing adult age is associated with decreasing resting-state 

system segregation, a feature of brain organization that also has relevance towards understanding 

cognitive ability and disease risk (Chan et al., 2021). These network changes are thought to 

impact human brain function across time such that the ability of functional brain networks to 

flexibly re-organize in adapting to environment and processing demands may be continuously 

compromised (Wig, 2017). This pervasive effect of aging is presumed to manifest itself at every 

moment as brain networks are configured dynamically to support cognition and behavior. 

Indeed, observations of the present chapter speak to this hypothesis and rule out the possibility of 

exclusive dominance of events towards establishing age-accompanied differences in system 

segregation. 

Collectively, events with strong co-fluctuation patterns across the brain exhibit strong modular 

structures of brain networks. While the frequency of events shows decline across age, it may not 

provide unique information of aging-accompanied difference in brain network re-organization 

relative to other time points. Future work is needed to investigate whether these events reflect 

processes of biological significance or merely moments exhibiting coincidental patterns in a 

random manner. 
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CHAPTER 4  

CONCLUSION 

 

 

Resting-state system segregation is a feature of brain network organization that has relevance to 

brain function in both health and disease across adult lifespan. To investigate the genesis of 

resting-state system segregation requires a deeper understanding of its possible links to vascular 

factors and BOLD properties. 

I first investigated the impact of vascular factors on the estimation of aging-relationship with 

segregation. After a stringent procedure to minimize cerebrovascular and cardiovascular 

confounds, aging-related decrease of system segregation persists, even after further controlling 

for other confounds including sex and education. Numerous studies have revealed aging-related 

difference in vascular health in cross-sectional (e.g., Liu et al., 2013) and longitudinal studies 

(e.g., Peng et al., 2018), and this age-accompanied relationship leads to anatomical and 

functional alterations in the brain (e.g., Colcombe et al., 2004; Crichton et al., 2014, Abdelkarim 

et al., 2019; Hutchison et al., 2013). The complexity of vascular coupling with neural activity 

comprises estimation of patterns brain activation using BOLD signals (for review see 

Zimmerman et al., 2021). The present results collectively suggest that these vascular factors do 

not explain age-related decreases of system segregation, and supports the hypothesis that the 

measure serves as a unique biomarker of functional brain organization across the adult lifespan 

(Wig, 2017).  

Next, I tested whether dynamic properties of the BOLD signal might relate to system 

segregation. I showed that after carefully controlling for both CVR and CVH confounds, BOLD 

variability, a property of the BOLD signal which has been shown to relate to age, is not 



 

82 

 

correlated with age. Using this stringent way to rule out vascular confounds resulted in non-

significant relationship between system segregation and BOLD variability. These results suggest 

that vascular factors, especially cerebrovascular reactivity, play a critical rule in estimating 

BOLD signal variability, which adds another piece of evidence that vascular factors serve as an 

important source of variance contributing to BOLD signal properties (e.g., Tsvetanov et al., 

2020). As such, system segregation summarizes important features of brain network re-

organization across age, which cannot be explained by the degree of variability in a resting-state 

time-series.  

Further, I evaluated whether there exist moments (events) of greater co-fluctuation pattern across 

edges, in which functional brain networks exhibit highly modular structures relative to non-event 

moments. The result demonstrated that number of events decreases with increasing age. There 

also exists a positive relationship between number of events and system segregation, even after 

controlling for sex and education. However, age-related decreases of system segregation are 

evident across all moments, irrespective of co-fluctuation amplitude of edges. These findings 

demonstrate that events provide may contribute towards establishing more modular architecture 

of resting-state brain networks, but that the age-accompanied changes in brain network 

organization are not limited to these moments but rather are present across time. 

System segregation summarizes brain network organization and predicts behavioral outcomes in 

both healthy and diseased individuals (for review see Wig, 2017). The significance of system 

segregation is evident its relation to aging (Chan et al., 2014; Han et al., 2018), cognitive 

performance (e.g., working memory capacity [Stevens et al., 2012] and visual attention [Yue et 

al., 2017]), and in neurological diseases (e.g., Alzheimer’s disease [Brier et al., 2014]). These 
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observations collectively suggest that resting-state system segregation serves as a biomarker to 

differentiate individuals in their brain networks and behaviors. This important application 

naturally needs to withstand scrutiny of whether system segregation is due to any confounding 

effects, e.g., vascular health. Indeed, vascular differences in individuals exert profound impact on 

brain structure and functions (e.g., Bots et al., 1993; Longstreth et al., 1996, Marshall et al., 

2017, Raz et al., 2007), and further compromise estimation of BOLD signals (for review see 

Tsvetanov et al., 2021; Zimmerman et al., 2021). This project addresses this question and reveals 

consistent aging-related differences in system segregation independent of vascular influences, 

which provide critical evidence exhibiting robustness of system segregation as a biomarker for 

network organization and behavior, and measure of functional brain network organization.  

The second goal of present project was to gain a deeper understanding of driving forces of 

resting-state system segregation, in terms of time-varying signals, and how it is related to age. 

Instead of being static, brain networks re-organize in a dynamic way across time (Betzel et al., 

2016), with different moments exhibiting distinct modular structures of the brain networks 

(Zamani Esfahlani et al., 2020; Betzel et al., 2022). Previous studies have shown that dynamic 

fluctuation of RSFC that may reflect transitions between distinct brain states (Allen et al., 2014; 

Hutchison and Morton, 2015), and these brain states bear biological significance (e.g., levels of 

vigilance [Barttfeld et al., 2015; Nomi et al., 2017; Shine et al., 2016]; psychiatric disorders 

[Damaraju et al., 2014; Rashid et al., 2014; Su et al., 2016]). On the other hand, other studies 

suggest that the non-stationarity of resting-state BOLD signals may be largely attributed to data 

sampling error, head motion and fluctuating drowsiness (Laumann et al., 2015; Laumann et al., 

2017). Across dynamic time series, moments with greater co-fluctuation patterns (events) are not 
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special; they do not uniquely drive the patterns of network organization (Ladwig et al., 2022). 

This report reveals that while discrete moments may carry critical information about properties 

of brain networks, the impact of age on decreased segregation of large-scale functional brain 

networks is evident across time (within a scan session), rather than at discrete moments.  

Future research directions 

The goal of present project was to gain a deeper understanding of the now well documented 

relationships between increasing age and decreasing resting-state system segregation.  

It has been shown that vascular dysfunction is associated with neural alterations at different 

levels, including cellular dysfunction (Fricker et al., 2018), reduced efficiency in neural 

processing (Hutchison et al., 2013; Toth et al., 2017), white matter lesions (Bots et al., 1993; 

Longstreth et al., 1996), and gray matter differences (Marshall et al., 2017, Raz et al., 2007). 

Accounting for these factors in addition to cardiovascular health reveals that the relationship 

between increasing age and an important measure of large-scale functional brain network 

organization remains, and is largely unaltered. The robustness of this relationship provides 

critical evidence of using brain system segregation as a measure of individual differences of 

brain function and functional brain network organization. More importantly, this finding 

highlights the necessity of further studies to understand the driving sources of declines in system 

segregation in relation to brain function and cognition across adult lifespan.  

I have attempted to explore whether and how time-varying sources of resting-state relationships 

relate to declines in brain system segregation. While discrete moments may carry information 

about properties of brain networks, the impact of age on functional brain networks is evident 

across time (within a scan session), which likely impacts brain function at all moments. 
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However, this does not preclude the possibility that other measures of brain dynamics will lead 

to greater insights towards how brain networks are established (e.g., transition between different 

states and its relationship with cognition in health and disease). 

In sum, this dissertation provides important support that resting-state system segregation 

provides measurement of age-related decline which is linked to re-organization of the brain’s 

functionals network, and further supports the application of this approach towards measuring 

individual brain health across the lifespan.  
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