Erik Jonsson School of Engineering and Computer Science | Tuning Electron | nic Transport in | Epitaxial Gra | aphene- | |-----------------|------------------|--------------------------|----------| | Based Van Der | Waals Heterosti | ructures—Su _l | pplement | | ©2016 The Royal Society | of Chemistry. | This article | may not b | oe further | made a | available | |-------------------------|---------------|--------------|-----------|------------|--------|-----------| | or distributed. | | | | | | | ### **Citation:** Lin, Yu-Chuan, Jun Li, Sergio, C. de la Barrera, Sarah M. Eichfeld, et al. 2016. "Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures." Nanoscale 8, doi: 10.1039/C6NR01902A This document is being made freely available by the Eugene McDermott Library of The University of Texas at Dallas with permission from the copyright owner. All rights are reserved under United States copyright law unless specified otherwise. Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016 ## **Supplementary Information** # Tuning Electronic Transport in Epitaxial Graphene-based van der Waals Heterostructures Yu-Chuan Lin,^a Jun Li,^b Sergio C. de la Barrera,^b Sarah M. Eichfeld,^a Yifan Nie,^c Rafik Addou,^c Patrick C. Mende,^b Robert M. Wallace,^c Kyeongjae Cho,^c Randall M. Feenstra,^b and Joshua A. Robinson^a,* ^aDepartment of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802 USA ^bDepartment of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 USA ^cDepartment of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA * E-mail: jrobinson@psu.edu | Methods | PV¹
WSe₂/EG | MOCVD
WSe₂/EG
(Sample 1) | MOCVD
WSe ₂ /EG
(Sample 2) | |--|--|--|--| | WSe₂ growth conditions | 5 % H ₂ /Ar
5 -10 Torr
925 °C
30 mins. | 100 % H₂
700 Torr
800 °C
30 mins. | 100 % H ₂
700 Torr
800 °C
30 mins. | | C 1s of EG | 284.1 eV | 284.1 eV | 284.1 eV | | C 1s of EG
after
WSe ₂ growth | 284.4 eV
(+ 0.3 eV) | 284.0 eV
(- 0.1 eV) | 284.0 eV
(- 0.1 eV) | **Supplementary Table 1.** Binding energy of C1s, which is corresponding to the C-C sp² from the epitaxial graphene (EG) used as template in powder vaporization (PV) and metal-organic chemical vapor deposition (MOCVD) for WSe₂ synthesis show the MOCVD process, carried out in a pure H₂ atmosphere, significantly shifts the C1s of WSe₂-EG towards a lower binding energy (This work, highlighted in the table). The C 1s of EG without exposure to WSe₂ synthesis is used as a reference. | X _{EGPH} (eV) | $X_{EG_{FH}}$ (eV) | $X_{\text{WSe}_2} + E_{\text{g}}$ (eV) | N _{A (cm⁻²)} | $N_{\text{C,WSe}_2 - EG_{PH}}$ (cm^{-2}) | $N_{\text{C,WSe}_2 - EG_{FH}}$ (cm^{-2}) | |------------------------|--------------------|--|----------------------------------|---|---| | 4.57 | 4.71 | 5.09 | 1.3x10 ¹² | 4.1x10 ⁵ | 2.9x10 ¹² | | 4.47 | 4.71 | 5.09 | 1.3x10 ¹² | 0.9x10 ⁴ | 2.9x10 ¹² | | 4.67 | 4.71 | 5.09 | 1.3x10 ¹² | 2.0x10 ⁷ | 2.9x10 ¹² | | 4.57 | 4.61 | 4.99 | 1.3x10 ¹² | 2.0x10 ⁷ | 2.9x10 ¹² | | 4.57 | 4.81 | 5.19 | 1.3x10 ¹² | 0.9x10 ⁴ | 2.9x10 ¹² | Supplementary Table 2. Computed dependence of electron affinity plus bandgap of WSe₂ ($^{X}_{WSe_2} + E_g$), unintentional doping of WSe₂ ($^{N}_{A}$), carrier density of WSe₂ after charge transfer between WSe₂ and EG_{PH} ($^{N}_{C,WSe_2-EGPH}$), and carrier density of WSe₂ after charge transfer between WSe₂ and EG_{FH} ($^{N}_{C,WSe_2-EGFH}$) on electron affinities of EG_{PH} ($^{X}_{EG}_{PH}$) and EG_{FH} ($^{X}_{EG}_{FH}$), respectively. An error range of \pm 0.1eV for the input parameters is considered. **Supplementary Figure 1.** The G peak positions from the same as-grown graphene and the graphene samples from the 800 °C and 930 °C WSe₂ growth that provide the information of the 2D peaks in the Figure 2 c and 2d. **Supplementary Figure 2.** (a) and (b) are linear plots of the I-V curves from graphene and WSe_2 -graphene samples, respectively, presented in the Figure 4a. (c) A comparison of I-V curves measured on multiple 1L WSe_2 domains grown on EG_{PH} and EG_{FH} shows a clear reduction of turn-on voltage for the WSe_2 - EG_{FH} case. **Supplementary Figure 3.** (a) Plane averaged local electric potential energy of electrons along the stacking direction. (b) After dipole correction, a difference on vacuum energy above both sides of 0.17 eV is observed (zoomed inset). Supplementary Figure 4. Band alignment of WSe₂ and EG_{PH} (a) before charge transfer (including computed intrinsic dipole 0.17 eV), and (b) after charge transfer. Band alignment of WSe₂ and EG_{FH} (c) before charge transfer (including the intrinsic dipole), and (d) after charge transfer. Monolayer and bilayer graphene models are employed for EG_{PH} and EG_{FH} respectively, based on LEEM observations. Green shades in (c) and (d) represent conduction/valence subbands of bilayer graphene. The numerical values show various vacuum level differences, in units of eV. ### Computational methods for the intrinsic dipoles between WSe₂ and graphene The density functional theory (DFT) calculation are performed by Vienna ab-initio simulation package (VASP)² with the projector-augmented wave (PAW) method.³ The local density approximation (LDA)⁴ is used to describe the exchange-correlation functional with the partial core correction included. Spin polarization and spin-orbit coupling are applied. The stable phase of the monolayer WSe2 is trigonal prism structure.⁵ The optimized planar lattice constant of WSe₂ is 3.25Å, and the optimized planar lattice constant for monolayer graphene is 2.45 Å. In order to fit the lattice constant, a super cell with 3×3 WSe₂ unit cells and 4×4 graphene unit cell is used, and a compressive strain of 0.4 % is applied to graphene, as the electronic behaviors of TMD are very much susceptible to lattice strain. The super cell is shown in Figure 2a. The wave functions are expanded in plane waves with a kinetic energy cutoff of 500 eV, and the convergence criteria for the electronic relaxation is 10⁻⁵ eV. Integration over the Brillouin zone is performed with a gamma-centered 6×6×1 Monkhorst-Pack k-point mesh for ionic and electronic optimization. A vacuum region of about 15Å normal to the surface is added to minimize the interaction between adjacent slabs (Figure S3a). Dipole correction on the stacking direction is used in systems to reveal the dipole within the two layers caused by the Fermi-level alignment. The local density approximation (LDA) is found to be suitable for studying the metal-TMD contact.⁶ The generalized gradient approximation (GGA)7 with the DFT-D2 method for van der Waals (vdW) corrections8 is also used to cross-check the structural accuracy. We find that GGA results with vdW corrections are in overall agreement with LDA results. Both the LDA method and the GGA+vdW method result in a similar structure with a distance of \sim 3.5 Å between graphene and TMD, indicating a secondary bond interaction. The energy difference between the vacuum regions on the both sides of the contact system is the dipole induced by the contact. The vacuum energy level above WSe₂ is 0.17 eV higher than that above graphene, indicating a dipole from graphene towards the WSe₂ (Figure S3b). ### Computation of WSe₂ doping density and charge densities, and dependence on parameters For the computation of charge transfer and band alignment, we take the doping densities of EG_{PH} and EG_{FH} from our experimental values, as discussed in the main text. Parameters in the computation are the electron affinities for monolayer and bilayer graphene, with nominal values of 4.57 eV and 4.71 eV, respectively, as known from prior experiments.⁹ We take the sum of the electron affinity plus band gap of the WSe₂, $X_{WSe_2} + E_g$, to be an unknown in the computation, since a value for this sum is not accurately known from prior work (only the sum is considered here since the electron occupation in the conduction band of the WSe₂ is negligible). A second unknown is the unintentional doping density of WSe₂. Then, using the two measured work function differences for WSe₂ on both EG_{PH} and EG_{FH} compared to the bare EG_{PH} and EG_{FH} , we can determine values for the two unknown parameters. The carrier densities for the WSe₂ on both EG_{PH} and EG_{FH} after charge transfer are then a byproduct of the computation. Table S2 shows dependence of these quantities on the input parameter values. In all cases, the carrier densities of WSe₂ in WSe₂- EG_{PH} are very much greater than those of WSe₂ in WSe₂- EG_{FH} , consistent with the observed differences in the CAFM I-V results. We note that the doping density values in Table S2 are all the same, reflecting a tight constraint on this value. This constraint arises from charge transfer between the WSe₂ and the EG_{PH}. As pictured in Figure S4a and 4b, since the Fermi energies of the EG_{PH} and WSe₂ are relatively far apart prior to charge transfer, and hence the Fermi energy of the WSe₂ ends up well within its band gap after the transfer, then the p-type doping density in the WSe₂ is directly determined by the doping density of the EG together with the difference between the electron affinity of the EG_{PH} and the $\frac{X_{WSe_2} + E_g}{2}$ value of the WSe₂. The resulting carrier densities for the WSe₂ on EG_{PH} are negligible, again since the resulting WSe₂ Fermi energy is well within the gap. On the other hand, for the WSe₂ on EG_{FH}, their Fermi energies are relatively close prior to charge transfer, as pictured in Figure S4c and 4d. The resulting Fermi energy for the WSe₂ on EG_{FH} ends up near or within the valence band even after the charge transfer, with concomitant large carrier density, and the value of the WSe₂ doping density is not so tightly constrained in this part of the problem. We have also considered the effect on the computed carrier densities of variation in the EG_{PH} and EG_{FH} doping density values, as well as variation of the measured work functions differences within their experimental error ranges. Doping densities of $(4 \pm 1) \times 10^{12}$ cm⁻² for EG_{PH} and $(1.5 \pm 0.2) \times 10^{13}$ cm⁻² for EG_{FH} are typical measured in our samples. Considering the variations of these doping densities, the carrier density of WSe₂ on EG_{FH} after charge transfer is computed to range from $2.5 - 3.0 \times 10^{12}$ cm⁻² while the carrier density of WSe₂ on EG_{PH} after transfer is always less than 10^7 cm⁻², i.e. its Fermi is well within the bandgap. For the measured error ranges $(\pm 0.03 \text{ eV})$ on the work function differences, performing computations at the bounds of these values produces carrier densities in the WSe₂ on EG_{FH} compared to WSe₂ on EG_{PH} that continue to differ by more than a factor of 10^4 , for all cases. #### Reference: - Y.-C. Lin, R. K. Ghosh, R. Addou, N. Lu, S. M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M. J. Kim, L.-J. Li, R. M. Wallace, S. Datta and J. A. Robinson, *Nat. Commun.*, 2015, **6**, 7311. - 2 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186. - 3 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775. - 4 D. M. Ceperley and B. J. Alder, *Phys. Rev. Lett.*, 1980, **45**, 566–569. - C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace and K. Cho, *Appl. Phys. Lett.*, 2013, 103, 053513. - 6 C. Gong, L. Colombo, R. M. Wallace and K. Cho, *Nano Lett.*, 2014, **14**, 1714–20. - 7 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396–1396. - 8 G. Makov and M. Payne, *Phys. Rev. B*, 1995, **51**, 4014–4022. - 9 Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim and P. Kim, *Nano Lett.*, 2009, **9**, 3430–3434.