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PREFACE
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Transcription factors (TFs) are proteins that control the rate of transcription. They are main

regulators of gene transcription. Knowing their targets is very important for understand-

ing developmental processes, cellular stress response and genetic causes of disease. Most

of prokaryotic genome is coding and TF binding sites are usually close to genes. However,

for the mammalian system, most of its genome is non-coding and TFs usually bind to gene

distal regions and they regulate gene transcription via chromosome looping. In our study,

we were trying to identify TF targets in both the simple prokaryotic system and the complex

mammalian system by integrative omics data analysis. Considering the differences between

prokaryotic and mammalian systems, we integrated different omics data in each system to

identify TF targets. In prokaryotes, DNA is organized in operon which contains a cluster

of genes under the control of a single promoter. There is stronger correlation between TF

binding and gene expression in prokaryotes than in the mammalian system. And TF motif

in prokaryotes is usually longer and more specific than that in eukaryotes. Therefore, in

prokaryotes, we integrated TF genome-wide binding data, expression data and motif infor-
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mation to identify TF targets. We conducted our study using TF NsrR and tried to identify

its genome-wide binding targets in Uropathogenic Escherchia coli (UPEC) CFT073 to un-

derstand UPEC’s response to nitric oxide. In the mammalian system, DNA is wrapped on

histone to form nucleosome. Histone modification and chromatin accessibility are important

for transcription factor binding. DNA can form looping interactions to regulate gene expres-

sion. Therefore for TF targets identification in the mammalian system, we integrated TF

genome-wide binding data, epigenetic data and chromatin looping interaction data. We built

a classifier to predict TP53-associated looping interactions and genome-wide long-distance

targets of TP53.
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CHAPTER 1

INTRODUCTION

Transcription factors (TFs) are proteins that typically bind to specific DNA sequence to

regulate gene transcription. They are main regulators of gene expression. Transcriptional

activators can stimulate the transcription of target genes by binding to DNA elements of

enhancer or promoter. Transcriptional repressors, as opposed to activator, bind to specific

DNA elements to prevent transcription of target genes. Knowing TF targets is important

for us to understand complex developmental processes and cellular environmental responses.

It also allows us to better understand genetic cause of diseases by identifying TF binding

sites. Mutations in regulatory regions like TF binding sites were found to be correlated with

complex diseases like cancer. For example mutations in binding sites of CEBP factors were

highly enriched in cancer and mutations of CEBP sites likely alter transcriptional regulation

(Melton et al., 2015).

In our study, we were motivated to identify TF targets in both the simple prokaryotic

system and the complex mammalian system by integrative omics data analysis. Chromatin

immunoprecipitation coupled with deep sequencing (ChIP-seq) allows for identifying genome-

wide binding sites of DNA-associated proteins such as TFs. The prokaryotic genome is

efficiently compacted by protein coding sequences. In E. coli, for example, only 12% of

the genomes is occupied by non-coding DNA (Rogozin et al., 2002). TF binding sites in

prokaryotes are usually close to genes, whereas the mammalian genome is composed mostly

of non-coding elements. For instance, over 98% human genome is non protein coding (The

International Human Genome Sequencing Consortium, 2004). Also, many TF binding sites

in the mammalian system are in gene distal regions. TFs regulate gene expression through
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chromosome looping interactions. Therefore, in the mammalian system, it is important to

accurately assign long-distance targets to TFs.

To identify TF targets in prokaryotic and mammalian systems, we integrated different

omics data in each system according to the differences of two systems. In prokaryotes, DNA

is organized in operon which contains a cluster of genes under the control of a single promoter

and the correlation between TF binding and gene expression is stronger than that in the

mammalian system. Besides, binding motif of TFs in prokaryotes is often longer and more

specific. Therefore, we integrated TF genome-wide binding data, expression data and motif

information to identify TF targets in prokaryotes. We used TF NsrR in Uropathogenic

Escherchia coli (UPEC) CFT073 to conduct our study and tried to identify its genome-

wide targets. NsrR is nitric oxide (NO) sensitive, so knowing its targets can help us to

understand how UPEC respond to NO stress. In the mammalian system, DNA is wrapped

on histone to form nucleosome. Histone modification and chromatin accessibility is important

for transcription factor binding. And DNA can form looping interactions to regulate gene

expression. Therefore for long-distance TF targets identification in the mammalian system,

we integrated ChIP-seq data, epigenetic data and chromatin looping interaction data. We

built a classifier to predict TP53-associated looping interactions and its genome-wide long-

distance targets. TP53 is a famous tumor suppressor and knowing its targets can help us to

understand complex disease like cancer. The biological background of NsrR and TP53 will

be introduced separately in the following parts.

1.1 Identification of genome-wide targets of NsrR in UPEC CFT073

1.1.1 NO detoxification system in E. coli

UPEC CFT073 is a pathogenic strain that accounts for 80% of all symptomatic and asymp-

tomatic urinary tract infections (UTIs) (Roos and Klemm, 2006). UTI can cause the migra-

tion of neutrophils from the blood to the urine (Godaly et al., 2001), which exposes UPEC



3

to the defense mechanisms of the innate immune system. NO, produced by the inducible

nitric oxide synthase (iNOS) in phagocytic cells through the oxidation of arginine, is part of

an effective host immune response to infection (Fang, 1997; Fang and Vazquez-Torres, 2002;

Mowat et al., 2010). The antimicrobial effect of NO is due to its ability to target proteins

containing iron−sulfur clusters, haem and thiols (Fang, 1997; Kim et al., 1995; Ren et al.,

2008). Bacteria that inhabit the host environment utilize NO detoxification strategies to

convert NO to less toxic compounds. There are three known NO detoxification enzymes in

E. coli. Flavohaemoglobin (Hmp) dioxygenates NO to nitrate and reduces NO to N2O under

anaerobic condition (Gardner and Gardner, 2002; Hausladen et al., 2001). Flavorubredoxin

(FlRd or NorV) coupled with NorW, a NADH-linked reductase, catalyzes the reduction of

NO to N2O (Gardner et al., 2002). The periplasmic nitrite reductase (NrfA) can detoxify

NO by reducing it to ammonia in the absence of oxygen (Poock et al., 2002). Figure 1.1

shows a summary of NO consumption pathways and the regulation of enzymes involved in

NO consumption.

1.1.2 NO sensitive regulator NsrR

One important regulatory proteins in the NO response in E.coli is NsrR, shown in Figure 1.1.

NsrR is a nitric oxide-sensitive repressor of transcription (Partridge et al., 2009; Bodenmiller

and Spiro, 2006a) that belongs to the Rrf2 family of transcriptional repressors (Bodenmiller

and Spiro, 2006a). It contains Fe-S clusters that can react with NO (Yukl et al., 2008;

Tucker et al., 2008). Binding of NO to the Fe-S clusters leads to the loss of DNA-binding

activity of NsrR (Tucker et al., 2008; Rankin et al., 2008; Crack et al., 2016). NsrR plays a

very important role in the response to NO by regulating the expression of different genes.

Flavohaemoglobin (encoded by the hmp gene), one of the key NO detoxifying enzymes, is

known to be regulated by NsrR. Apart from hmp, the NsrR regulon contains various genes

implicated in the NO stress response, such as ytfE, hcp and the nrf operon (Tucker et al.,
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Figure 1.1. NO consumption pathway and the regulation of enzymes involved in NO con-
sumption adapted from (Spiro, 2007). Hmp dioxygenates NO to nitrate. Nrf reduces NO
to ammonia and flavorubredoxin (FlRd) reduces NO to nitrous oxide. Blue boxes represent
regulators that regulate the expression of NO consumption enzymes. Positive regulation is
denoted by arrows, negative regulation by perpendicular lines.

2010). Therefore, identification of members of the NsrR regulon would help us to understand

how E. coli responds to NO. Chromatin immunoprecipitation and microarray analysis (ChIP-

chip) has been performed to identify members of the NsrR regulon in non pathogenic E.coli

K12. UPEC is more resistant to the stress imposed by acidified nitrite than K-12 strains of

E. coli (Bower and Mulvey, 2006) and may also be more resistant to a prolonged exposure

to NO (Svensson et al., 2006), in which case toxicity might be due to N radicals derived

from NO. The genome of strain UPEC CFT073 is larger than that of E.coli K-12 strain by

∼0.6Mb. Some genes are only present in K12 and some are unique to CFT073. Compared to

K12, five unique inserted prophage genomes which include large proportion of virulence or

virulence-associated genes account for the difference in the CFT073 genome (Hacker et al.,
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1997; Luo et al., 2009). CFT073-specific islands insert into conserved backbone gene regions

in an extensive mosaic manner (Welch et al., 2002; Luo et al., 2009). The annotation related

to virulence and virulence-associated genes includes 12 types of fimbriae, 7 autotransporters,

and toxin operons such as hlyCABD and upxBDA (Welch et al., 2002; Luo et al., 2009).

Thus we were motivated to understand UPEC biology and how it responds to NO. Here

in this study, to understand the NO response in UPEC, we identified the NsrR regulon in

CFT073 using ChIP-seq to map NsrR binding sites in the CFT073 genome.

1.2 Identification of genome-wide long-distance targets of TP53

1.2.1 Tumor suppressor TP53

TP53 is a transcription factor that is well known for its function as tumor suppressor.

It can protect cells from uncontrolled proliferation and genotoxic stress like DNA damage

(Vousden and Lane, 2007). Loss or mutation of TP53 is very common in human cancers

and it correlates strongly with the increase of susceptibility to cancer (Vousden and Lane,

2007). TP53 can respond to varied stresses, such as hypoxia, oxidative stress, uncontrolled

cell proliferation, and genotoxic stresses (Giaccia and Kastan, 1998; Hu et al., 2012) through

the regulation of genes involved in cell cycle arrest, senescence, apoptosis and DNA repair.

Figure 1.2 shows the responses of TP53 to diverse stress signals. The cellular responses of

TP53 largely rely on its action as transcription activator to induce the expression of different

genes. Figure 1.3 shows target genes activated by TP53 in response to different stress signals.

1.2.2 TP53-dependent gene regulation

As mentioned above, TP53 plays very important roles in the response to diverse stresses

through acting as a transcription factor to activate gene expressions. Traditionally, it has
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Figure 1.2. Response of TP53 to different stress signals adapted from (Bieging et al., 2014)

been thought that TP53 regulates target gene expressions by binding to the promoter region.

However, TP53 genome-wide binding profile revealed that the majority of TP53 binding sites

fall to enhancer regions with enriched histone markers of H3K4me1 and distal regions lacking

of histone markers of either H3K4me1 or H3K4me3 (Sammons et al., 2015). The recognition

of TP53 to non-promoter regions especially to regulatory enhancers might be a general

function of TP53. Several studies have been performed to study the regulation of TP53
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Figure 1.3. Different target genes activated by TP53 in response to different stress signals
adapted from (Bieging et al., 2014). a, TP53 protein domains. b, List of key TP53-induced
targets involved in processes that are important for tumor suppression.

bound enhancers in both Drosophila and human fibroblasts. It was found that TP53-bound

enhancer can regulate target gene expression through chromosome looping. A single TP53

enhancer examined in Drosophila was discovered to regulate multiple gene expression (Link

et al., 2013). Physical looping interactions between that TP53 bound enhancer and its target

genes were confirmed by digital chromosome conformation capture (d3C) in combined with

fluorescent in situ hybridization(FISH) (Link et al., 2013). Similarly in human fibroblasts,

several TP53 bound enhancers were found to convey the regulation of multiple distant genes

through intrachromosomal interactions (Melo et al., 2013). And chromosome conformation

capture (4C) technology together with next-generation sequencing was applied to confirm

the existence of physical interactions (Melo et al., 2013). From the studies of individual

TP53 bound enhancers in distant organisms above, it might be a common feature for TP53

bound enhancers to regulate long-distance target genes via chromosome looping. However,

its long-distance targets have not been identified genome-widely yet. The development of
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high throughput chromatin interaction detection technics can help us to tackle that problem

so that we can better understand the function of TP53.

1.2.3 Genome-wide long-range chromatin interaction detection techniques

Capturing chromosome conformation (3C) was first developed to detect the contact frequency

between two genomic loci (Dekker et al., 2002). Then related technology 4C (chromosome

conformation capture(3C)-on-chip) (Simonis et al., 2006) and 5C (chromosome conformation

capture carbon copy) (Dostie et al., 2006) were developed to detect interactions of a given

genome locus with all the other genomic loci and interactions between multiple loci. With the

development of next generation sequencing, two high-throughput technics Hi-C (Lieberman-

Aiden et al., 2009)and ChIA-PET(Fullwood et al., 2009) were developed to allow us to

detect genome wide chromatin interactions. Hi-C was adjusted from 3C and biotin-labeled

restriction ends were ligated and sequenced. It can detect all the concurring interactions

regardless of the proteins that link the interactions. The resolution of Hi-C is about 1Mb

based on 10 million paired-end reads (de Wit and de Laat, 2012) which is too low to study

interactions between some specific elements like promoter-enhancer interactions. ChIA-PET

combines chromatin immunoprecipitation (ChIP) and 3C to analyze the ligation junctions

that are enriched by the antibody against the protein of interest. The resolution of ChIA-

PET is higher than that of Hi-C, but instead of collecting all the possible interactions, it

can only collect interactions associated with some specific protein.

1.2.4 TP53 associated long-range interaction prediction

TP53 ChIA-PET data which directly provides us genome-wide chromatin interaction medi-

ated by TP53 is not available yet. So in order to identify long-range targets of TP53 bound

enhancers, we integrated TP53 ChIP-seq data and genome-wide chromatin interaction data.

In previous study of TP53 bound enhancer in Drosophila, d3C was performed in both wide
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type and TP53− animals. It was found that d3C interaction patterns were similar between

wide type and TP53− animals suggesting that TP53 was not required for the formation of

chromatin looping (Link et al., 2013). Similarly, in human fibroblast, it was also found that

the long-range interactions existed in the wide-type cells are also present in cells with TP53

stably knocked down (Melo et al., 2013). Similar observations in distant organisms suggest

that instead of initiating new loops, TP53 may mainly act on the pre-existed chromatin

loops to regulate target gene expressions. Therefore, integrating TP53 ChIP-seq data and

pre-existing chromatin interaction data from Hi-C or ChIA-PET can help us to identify some

putative functional TP53 bound enhancers and their long-range targets.

However, genome-wide chromatin interaction data is not available for every cell line. We

therefore were motivated to predict functional TP53 binding sites that have the potential to

regulate gene expression via chromatin looping interactions in cell lines of which genome-wide

chromatin interaction data is not available. We were inspired by a study of predicting ERα

associated looping interactions (He et al., 2014). We learned pre-configured looping interac-

tions through pol2 ChIA-PET data by integrating multiple transcription factors binding and

histone modification profiles. We tried to predict TP53 associated long-range interactions

solely from TP53 ChIP-seq and epigenomic data when high throughput chromatin interac-

tion data such as pol2 ChIA-PET is absent. We are able to learn chromatin interaction from

epigenetic features for the following reasons. Active enhancers that can form looping inter-

actions are often occupied by multiple transcription factors and form a large protein complex

(Borggrefe and Yue, 2011; Young, 2011) which may cause a different epigenetic pattern com-

pared to binding sites with no looping interactions. Pol2 ChIA-PET data showed that basal

promoter with pol2 binding but no chromatin interaction displayed different histone modi-

fication pattern with pol2 binding site that can form chromatin interactions (Young, 2011).

It implies that looking at epigenetic features of TP53 binding sites will be informative for

us to predict TP53 binding sites that are associated with looping interactions mediated by

pol2.
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We performed our analysis in MCF7 because it is a well-characterized human cancer cell

model with complementary datasets including TP53 ChIP-seq, ChIA-PET, RNA-Seq and

GRO-Seq datasets. We integrated TP53 ChIP-seq and pol2 ChIA-PET data in MCF7 and

uncovered hidden features buried beneath TP53 binding sites associated with pol2 mediated

long-range interactions through the combination of TF binding, histone modification pro-

files and open chromatin conformation data . We determined epgenetic features that could

discriminate loop associated and non-loop associated TP53 binding sites. Then we used

these features to build classifier to predict loop associated TP53 binding sites and to develop

DNA looping prediction algorithm to predict TP53 interacting clusters. This allowed us to

discover TP53 associated long-range interactions even when genome-wide chromatin inter-

action data is not available and serve as a complement to the complicated and costly TP53

ChIA-PET experiments.



CHAPTER 2

THE NSRR REGULON OF E. COLI CFT073

2.1 Materials and Methods

Chromatin immunoprecipitation (ChIP) was performed as described previously on cultures

grown aerobically in L broth to mid-exponential phase (Efromovich et al., 2008). Chromatin

samples were sheared by sonication to within a size range of 200-600 bp. DNA fragments

were treated using an Epicentre End-It DNA End Repair kit and 3’ A overhangs were added

with DNA polymerase I (Klenow fragment). Adapters from the IlluminaTruSeq DNA sample

preparation kit were ligated using LigaFast (Promega) and DNAs were amplified by PCR

using primers provided in the IlluminaTruSeq DNA sample preparation kit and Phusion

DNA polymerase (NEB). Products of the ligation reaction and PCR amplification in the

range 300-400 bp were purified by 2% agarose gel electrophoresis. DNA concentrations were

measured using Qubit dsDNA HS Assay kits (Invitrogen). DNA sequencing was done on

the Miseq (Illumina) platform following the manufacturer’s instructions. For one replicate, a

single-end reads, 60 bp run was performed. For the other two replicates, a paired-end reads,

100 bp run was performed. Sequence reads were aligned with the published E. coli CFT073

genome (AE014075.1) using the software package Bowtie with the parameters bowtie -k 1

-X 500 -m 1 (Langmead et al., 2009). Peaks were identified using the peak finding algorithm

of MACS2 (Zhang et al., 2008), with default parameters.

For motif analysis, multiple Em for motif elicitation (MEME) was used to identify over-

represented sequences (Bailey and Elkan, 1994). PatSer was used to search the genome for

the presence of the NsrR position-specific weight matrix (PSWM) (Hertz and Stormo, 1999).

A precision-recall curve was constructed to determine the optimal threshold for predicting

11
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high-quality NsrR binding sites. Precision was defined as the ratio of true positives (locations

with an NsrR ChIP-seq peak and a predicted NsrR binding site) to true positives plus

false positives (locations with a predicted NsrR binding site but no NsrR ChIP-seq peak).

Recall was defined as the ratio of true positives divided by true positives plus false negatives

(locations with an NsrR ChIP-seq peak but no NsrR predicted binding site)(Myers et al.,

2013).

ChIP-seq data have been deposited in the GEO database, accession number GSE69829.

2.2 Results

2.2.1 The NsrR regulon of E. coli CFT073

As the E. coli CFT073 genome is ∼0.6 Mb larger than that of E. coli K-12, it is of interest

to determine the extent to which regulatory networks of the two organisms differ. Thus,

we used ChIP-seq to identify NsrR binding sites in the E. coli CFT073 genome. Cultures

expressing 3X flag-tagged NsrR were grown aerobically. After ChIP, libraries constructed

from precipitated DNAs were sequenced using the Illumina Miseq platform. The peak finding

algorithm MACS2 was used to identify putative NsrR binding sites, with a false discovery

rate (FDR) of 0.01. Ninety-four significant peaks (-log 10( P-value)>10 with fold enrichment

greater than 2) were identified in at least two of the three biological replicates as shown in

Figure 2.1. In total, 52 % of the binding sites (49 of 94) in E. coli CFT073 were located in

putative promoter regions (within 350 bp of the start codon) and the remaining 48 % were

found either within coding regions or between the coding regions of convergent genes. These

potentially functional 49 NsrR binding sites are shown in Table 2.1.
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Table 2.1. NsrR binding sites in E. coli CFT073 genome

Coordinatea -log10(P-

value)b

Fold

enrichmentc

Flanking genesd Distance from

summit to start

codone

Possible

NsrR sitef

Sequence PatSer

score

PatSer

ln(P-

value)g

1890380 503.52 19.16 grxD (<) mepH (>) -138 (grxD) grxD (74) AAATGTTATTT 7 -8.98

grxD (121) TTGTTGCATTT 7.19 -9.15

grxD (111) AAAATACGTTT 5.44 -7.45

3130600 523.77 16.18 hycB (<) hycA (<) -59 (hycB) hycB (54) AAATGTCATTT 7.6 -9.67

3645158 287.94 11.46 folB (<) plsY (>) 28 (folB)

967971 248.24 12.00 hcp (<) ybjE (<) -22 (hcp) hcp (15) AAGTTATATTT 9.19 -11.59

hcp (27) AACATGTATAT 8.78 -11.14

hcp (11) AAGTTGCATTA 8.92 -11.34

5049151 247.18 9.65 ytfE (<) ytfF (<) -50 (ytfE ) ytfE (33) AAGATGCATTT 10.92 -15.25

ytfE (45) AAGATGCATTT 10.92 -15.25

ytfE (128) CAGATTCAGTT 4.07 -6.32

115339 218.24 10.60 mutT (>) c0118 (>) 18 (c0118 ) c0118 (77) CATTTGCATAT 3.86 -6.16

c0118 (6) AAGGTGCAGTT 7.70 -9.79

227553 163.73 9.01 c0233 (<) yaeF (<) 2 (c0233 ) c0233 (29) AAGTTTTACTT 7.38 -9.39

c0233 (17) AACATTCATTT 9.43 -12.21

c0233 (1) AAGGTGCAGTT 7.70 -9.79

4375989 117.47 5.31 dgoK (<) dgoR (<) 222 (dgoK )

3967122 116.05 5.92 yhgF (>) feoAB(>) 95 (feoA) feoA (38)

2314458 88.47 6.45 c2470 (<) c2471 (>) -66 (c2471 ) c2471 (122) ATGTGATATTT 5.63 -7.62
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Table 2.1. NsrR binding sites in E. coli CFT073 genome

Coordinatea -log10(P-

value)b

Fold

enrichmentc

Flanking genesd Distance from

summit to start

codone

Possible

NsrR sitef

Sequence PatSer

score

PatSer

ln(P-

value)g

c2471 (84) AAGTTTCATGT 7.45 -9.49

c2471 (72) TTGATGTTTTT 3.92 -6.21

c2471 (56) AGCTTGTATTT 4.55 -6.69

4399249 72.9 4.67 yieH (>) cbrB (>) 4 (cbrB) cbrB (18) TACTTACCTTT 3.94 -6.22

4224075 72.8 4.56 waaH (<) tdh (<) 191 (waaH )

698961 54.72 4.83 ccrB (<) ybeM (>) 345 (ybeM )

4883923 49.17 3.65 phnC (<) phnB (<) 274 (phnC )

3639613 48.43 3.91 ygiF (<) c3803 (<) 232 (ygiF )

2654737 48.2 4.66 arnC (>) arnA (>) 316 (arnA)

4037958 46.57 3.97 livJ (<) rpoH (<) 250 (livJ )

4840905 45.39 3.67
acs (<)

c5065-nrfA (>)
-25 (c5065 ) c5065 (94) AACATGCAGTT 8.12 -10.23

c5065 (42) AAGTGGTATTT 8.71 -11.03

c5065 (31) TACATGCACTT 6.82 -8.79

c5065 (4) ACATTCATAGT 5.41 -7.42

796704 44.53 4.08
cydB (>) c0813 (<)

ybgE (>)
177 (c0813 )

3760376 34.92 3.61 hflB (<) c3935 (<) 152 (hflB)
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Table 2.1. NsrR binding sites in E. coli CFT073 genome

Coordinatea -log10(P-

value)b

Fold

enrichmentc

Flanking genesd Distance from

summit to start

codone

Possible

NsrR sitef

Sequence PatSer

score

PatSer

ln(P-

value)g

4476183 34.04 2.95
wecE (>)c4712 (<)

wzxE (>)
-259 (wzxE )

2350649 32.09 3.82 c2513 (<) c2514 (>) 200 (c2514 )

2948718 32.08 3.79 glyA (<) hmp (>) 34 (hmp) hmp (44) AAGATGCATTT 10.92 -15.25

hmp (19) AAGATGCAAAA 5.00 -7.08

4708187 28.99 3.45 thrT (>) tufB (>) -5 (tufB)

2694874 27.98 3.58 yfbT (<) yfbU (<) -281 (yfbT )

1088139 27.33 2.24 yccM (<) torS (<) -36 (yccM ) yccM (24) AAGTTGCATAC 6.86 -8.83

yccM (36) TAGTGGCATTT 7.63 -9.69

yccM (50) TAGTTGTTCTT 3.97 -6.25

4569962 26.65 3.45 c4805 (>) yihF (>) 314 (yihF )

628066 24.07 3.35 ydfM (>) c0650 (>) -52 (c0650 ) c0650 (50) AAGATGTATCG 3.95 -6.23

4468281 23.37 2.71 c4703 (>) rfe (>) 201 (rfe)

4342139 23.29 2.93 c4579 (<) c4580 (>) 123 (c4580 )

2639159 23.00 3.28 glpT (<) glpA (>) -41 (glpA) glpA (93) ACGTTTCACTT 4.95 -7.05

glpA (50) AACATGAATTG 4.74 -6.86

4792020 22.78 2.78 zur (<) yjbN (>) -169 (yjbN )

3999621 21.56 3.05 c4214 (<) glgP (<) 3 (c4214 ) c4214 (5) AAGGTATAAAT 4.35 -6.54
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Table 2.1. NsrR binding sites in E. coli CFT073 genome

Coordinatea -log10(P-

value)b

Fold

enrichmentc

Flanking genesd Distance from

summit to start

codone

Possible

NsrR sitef

Sequence PatSer

score

PatSer

ln(P-

value)g

c4214 (69) AAGTTATATCT 5.80 -7.79

5208290 20.47 2.75 deoA (>) deoB (>) 18 (deoB)

3131567 17.96 2.67 hycA (<) hypAB (>) -126 (hypB) hypB (167) CGAGGTGCAGT 4.13 -6.37

4704549 17.63 2.75 rrfB (>) murB (>) 244 (murB)

986391 16.91 2.87 trxB (<) lrp (>) -92 (trxB) trxB (32) TACTTAAATTT 4.92 -7.01

trxB (100) ATGTTGTACTA 4.41 -6.58

trxB (112) AACATCGATTT 4.90 -7.00

4961829 15.97 2.80 c5205 (<) c5206 (<) 4 (c5205 ) c5205 (7) AACAGGTATTA 6.29 -8.24

3335185 15.31 2.44 recJ (<) dsbC (<) -106 (recJ )

240582 15.04 2.73 aspU (>) dkgB (>) 14 (dkgB) dkgB (18) AAATAGCATTA 4.63 -6.76

dkgB (6) AAGAGGCATAT 8.32 -10.55

3016197 14.59 2.70 recN (>) bamE (>) 6 (bamE ) bamE (65) AAGGTCTATTA 5.21 -7.24

bamE (46) ATATTACAGAT 3.74 -6.06

4616876 14.49 2.17 rhaB (<) c4854 (>) 229 (rhaB)

2522542 14.14 2.67 yohJ (>) yohK (>) -172 (yohK )

3786570 14.05 2.36 arcB (<) yhcC (<) -53 (arcB)

3391606 13.75 2.47 yggT (>) yggT (>) -159 (yggT) yggT (172) TACAGCCATTT 4.94 -7.03

2961332 13.69 2.64 pgpC (<) c3084 (<) 64 (pgpC )

3795223 13.68 2.25 nanK (<) nanE (<) 322 (nanK )
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Table 2.1. NsrR binding sites in E. coli CFT073 genome

Coordinatea -log10(P-

value)b

Fold

enrichmentc

Flanking genesd Distance from

summit to start

codone

Possible

NsrR sitef

Sequence PatSer

score

PatSer

ln(P-

value)g

5139372 12.82 2.57 fimI (>) fimC (>) 337 (fimC )

4779126 11.28 2.07 malF (<) malE (<) -142 (malF ) malF (82) ACATACGTTTC 3.98 -6.26

malF (163) AAGATGCACAG 5.00 -7.08

a Genomic location of the summit of ChIP-seq peak.

b -log10(P-value) of each peak called by MACS2.

c Fold enrichment of each peak calculated by MACS2.

d The genes flanking the ChIP-seq summit.

e The distance between the peak summit and start codon of the nearest downstream gene.

f Possible NsrR binding motifs identified by PatSer, and the distance from the motif to the start codon of the gene. Only sites upstream of

start codons are shown.

g ln(P-value) associated with the PatSer score for each predicted NsrR site.
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Figure 2.1. UCSC Genome Browser track view of nrfA locus.

The presence of promoter-associated NsrR binding sites identifies target genes that po-

tentially belong to the NsrR regulon. Of these promoters bound by NsrR in vivo (Table 2.1),

19 (grxD, hypA, ytfE, ygiG/folB, hmp, ybjW /hcp, feoA, ybeM, yihF, yccM, yibD/waaH, yieI,

yohK, ygiF, trxB, yggS/ yggT, dgoK, rfe, yfhB/pgpC ) were identified in a previous ChIP-

chip analysis of NsrR binding sites in E. coli K-12 (Partridge et al., 2009). Twenty of the

remaining sites are associated with genes (hycB, phnC, arnA, livJ, wzxE, tufB, yfbT, glpA,

yjbN, deoB, murB, recJ, dkgB, c3139, rhaB, arcB, c3976 / nanK, fimC, c3934 / hflB and

malF ) that have homologues in E. coli K-12, and 10 ( c0118, c0233, c2471,c5065, c0813,

c2514, c0650, c4580, c4214 and c5205 ) are specific to E. coli CFT073.

In E. coli K-12, the nrfA promoter is bound by NsrR (Partridge et al., 2009) and is

repressed by NsrR according to microarray and reporter fusion data (Filenko et al., 2007).

In our ChIP-seq data, NsrR binding was also detected upstream of the transcription unit

that includes nrfA as shown in Figure 2.1. In strain CFT073, an additional gene upstream

of nrfA (c5065 ) is predicted to be co-expressed with nrfABCD. The c5065 gene encodes a

small protein of 65 aa residues. We have confirmed the sequence of this reading frame in the

CFT073 genome. The genome location and expression pattern of the c5065 gene suggest

that its product may have a role in the response to NO stress in CFT073.
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Nineteen of the 49 potential NsrR targets show differential expression with a fold change

greater than 1.5 for the CFT073 3X mutant strain in the presence of a physiological source

of NO (Table 2.2). The hycB, c0118, feoA, ybeM, c5065, c0813, c2514, glpA, deoB, hypAB,

yohJ K and yfhB/pgpC genes were downregulated, among which hycB, c0118, c5065, c0813,

c2514, glpA and deoB are newly detected potential NsrR targets in CFT073. The grxD,

folB, ybjW /hcp, ytfE, yjbN, trxB and c5205 genes were upregulated and c5205 and yjbN are

potential NsrR targets newly detected in CFT073. The glpA gene, which encodes anaerobic

glycerol-3-phosphate dehydrogenase subunit A, is downregulated in UPEC strain UTI89

exposed to acidified nitrite (Bower et al., 2009). The livJ gene, which encodes a periplasmic

Leu/Ile/Val-binding protein, is upregulated during in vitro growth in human urine (Snyder

et al., 2004). NsrR binding signals were found close to fimbriae related genes fimC and

c4214. The fimC gene whose product is required for the biogenesis of type 1 fimbriae is

upregulated in vivo during UTI (Snyder et al., 2004). The product of c4214 is putative

major fimbrial subunit precursor (Figure 2.2). Fimbriae is major determinants of bacterial

virulence. The rfe gene was upregulated in vivo compared with growth in human urine in

vitro (Hagan et al., 2010). The E. coli K-12 homologue of yfbT is upregulated in the presence

of a source of NO (Hyduke et al., 2007). In E. coli K-12, the expression of arcB and malF

was increased and decreased, respectively, after treatment with NO (Hyduke et al., 2007),

and phnC was upregulated by treatment with 1 mM S-nitrosoglutathione or acidified nitrite

(Mukhopadhyay et al., 2004).

2.2.2 Computational analysis of NsrR binding sites in CFT073

The 49 peaks located in putative regulatory regions were used to construct a PSWM for NsrR

binding sites in the CFT073 genome. Two hundred base pairs centred on the nucleotide

with the largest tag density within each of the peaks was analysed (Myers et al., 2013).

The sequence of NsrR in CFT073 is identical to that in E. coli K-12, and evidence from
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Table 2.2. NsrR binding sites associated with genes that are nitrate-responsive in RNA-seq data

Coordinatea -log10(P-
value)b

Fold
enrichmentc

Flanking genesd Distance from
summit to
start codone

Fold
change
after

nitrate
treatmentf

PPEEg

1890380 503.52 19.16 grxD (<) mepH (>) -138 (grxD) 1.59 0.005

3130600 523.77 16.18 hycB (<) hycA (<) -59 (hycB) 0.01 0

3645158 287.94 11.46 folB (<) plsY (>) 28 (folB) 1.59 0.01

967971 248.24 12.00 hcp (<) ybjE (<) -22 (hcp) 43.72 0

5049151 247.18 9.65 ytfE (<) ytfF (<) -50 (ytfE ) 69.63 0

115339 218.24 10.60 mutT (>) c0118 (>) 18 (c0118 ) 0.36 2.8 × 10−7

3967122 116.05 5.92 yhgF (>) feoAB (>) 95 (feoA) 0.18 0

698961 54.72 4.83 ccrB (<) ybeM (>) 345 (ybeM) 0.30 0

4840905 45.39 3.67 acs (<) c5065-nrfA (>) -25 (c5065 ) 0.57 0.002

796704 44.53 4.08 c0813 (<) ybgE (>) 177 (c0813 ) 0.62 1.84 × 10−11

2350649 32.09 3.82 c2513 (<) c2514 (>) 200 (c2514 ) 0.41 0

2639159 23 3.28 glpT (<) glpA (>) -41 (glpA) 0.23 0

4792020 22.78 2.78 zur (<) yjbN (>) -169 (yjbN ) 2.91 0.01

5208290 20.47 2.75 deoA (>) deoB (>) 18 (deoB) 0.28 0

3131567 17.96 2.67 hycA (<) hypAB (>) -126 (hypB) 0.05 0.05

986391 16.91 2.87 trxB (<) lrp (>) -92 (trxB) 1.71 0

4961829 15.97 2.80 c5205 (<) c5206 (<) 4 (c5205 ) 1.90 0.001

2522542 14.14 2.67 yohJ (>) yohK (>) -172 (yohK ) 0.06 0

2961332 13.69 2.64 pgpC (<) c3084 (<) 64 (pgpC ) 0.34 0

a Genomic location of the summit of ChIP-seq peak.
b -log10(P-value) of each peak called by Macs2.
c Fold enrichment of each peak calculated by Macs2.
d The genes flanking the ChIP-seq summit.
e The distance between the peak summit and start codon of the nearest downstream gene.
f Posterior fold change (the fold change computed from normalized data) calculated by EBSeq, shown for
the predicted NsrR target.
g Posterior probability that a gene/transcript is not equally expressed under two conditions, as estimated
by EBSeq.
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Figure 2.2. UCSC Genome Browser track view of fimC and c4214 loci.

previous studies suggests that NsrR binding sites have two copies of an 11bp motif arranged

as an inverted repeat with 1 bp spacing (Partridge et al., 2009). So, we first used MEME

to identify over-represented palindromic sequences with the parameters -mod zoops -nmotifs

1 -minw 23 -maxw 23 -revcomp -pal to see if the same motif could be retrieved. Motifs

matching the search criteria could be found in 20 of the 49 peak regions. As expected, the

predicted NsrR binding site in CFT073 is similar to that for E. coli K-12 (Figure 2.3(a)).

A precision-recall curve (see Methods) was constructed using the NsrR PSWM with two

inverted repeats and searching throughout the genome of CFT073 to determine the optimal

threshold for predicting high-quality NsrR binding sites. Using an ln(P-value) of -14.28 as the

cut-off, where we had both relatively high precision and recall, there were 27 predicted NsrR
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binding sites with the 11-1-11 inverted repeat (palindrome) motif in the CFT073 genome

(Table 2.3). Four of these predicted targets were not detected by the ChIP-seq data ( tehA,

yeaR, yhiX and ygbA). Among them, yeaR and ygbA are known to be regulated by NsrR

(Bodenmiller and Spiro, 2006b; Lin et al., 2007), and the ygbA promoter was reported to

be bound by NsrR in E. coli K-12 according to previous ChIP-chip data (Partridge et al.,

2009). Likewise, tehA was implicated as an NsrR target in E. coli K-12 by the same ChIP-

chip data and by repressor titration (Bodenmiller and Spiro, 2006b), and it was shown to

be upregulated in the urinary tract in an asymptomatic bacteriuria strain of E. coli (Roos

and Klemm, 2006). By contrast, reporter fusion data suggest that tehA is not regulated by

NsrR (Bodenmiller and Spiro, 2006b); conflicting reports may reflect differences in growth

conditions or genetic background. Minimally, we can conclude that yeaR and ygbA are

probably false negatives in our ChIP-seq data. The gadX ( yhiX ) gene was reported to be

induced by NO through an indirect NsrR-dependent mechanism in E. coli O157:H7 (Branchu

et al., 2014), but the presence of an NsrR binding site upstream of gadX may indicate a

direct regulatory mechanism.

There is evidence that a single 11 bp motif can function as an NsrR-binding site in E.

coli K-12 (Partridge et al., 2009). So we combined the two halves of the 11-1-11 palindromic

motif, and reconstructed a PSWM of 11 bp. The new 11-bp PSWM was used to scan the

49 200 bp sequences flanking all the peak regions using the P-value cut-off of 10−6. In this

analysis, 38 of 49 peaks had at least one single motif, and the updated sequence logo for the

11bp motif is shown in Figure 2.3(b) .

2.3 Discussion

By ChIP-seq we identified NsrR binding sites in the CFT073 genome. Of 49 NsrR binding

sites in promoter regions, 19 are associated with genes that were nitrate-responsive in the

RNA-seq data. This discrepancy may reflect differences in the strains used, or the growth
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Table 2.3. NsrR binding sites with 11-1-11 inverted repeats in the E. coli CFT073 genome

Peak centrea Downstream geneb ChIP-seqc PatSer ln(P-value)d Motif sequencee

5049128 ytfE + -25.13 AAGATGCATTTAAAATGCATCTT

967958 hcp + -23.87 AAGTTATATTTAATATACATGTT

115376 c0118 + -22.88 AAGTTTTACTTCAAATGAATGTT

227478 c0233 + -22.88 AAGTTTTACTTCAAATGAATGTT

4569952 yihF + -21.71 AAATTGTATTTGATGTGGATGTT

2948634 hmp + -18.22 TTGATGTATCTCAAATGCATCTT

2654713 arnA + -17.73 GAGGTGCATTTAATCTGCATGGT

1088121 yccM + -17.63 TAGTGGCATTTGGTATGCAACTT

3999611 c4214 + -17.62 AAATTGAATTTCATTTATACCTT

4104796 yhiX - -17.62 AAGATATATGTTATATGAATGTT

2037249 yeaR - -17.05 AAATGGTATTTAAAATGCAAATT

1890357 grxD + -16.81 TTGTTGCATTTCAAATATTCGTT

3130577 hycB + -16.79 AAATGACATTTCATCGGCATGTT

1693010 tehA - -16.74 AAAGTATATTTGAAATGCATTTT

3137982 ygbA - -16.65 AAGGTGCATTTATATTACAACTT

3994013 c4208 - -16.45 AAAGTTTATTTATACTGAATGTT

4840882 c5065 + -16.32 TAAGTGCATGTAAAATACCACTT

4342117 c4580 + -16.16 AAGTTGCATTTTATCTGCACCGG

986393 trxB + -16.15 ATGTTGTACTAAAAATCGATGTT

1920754 ydiC - -15.97 AAGTTGCATTGAAAATGACTATT

3391575 yggS + -15.94 AAGTTGCACGCCAAATGGCTGTA

1651193 c1819 - -14.83 ATATTACATTGGATATGAATGTA

460167 c0470 - -14.57 TAATTGCATATTAAAAATATGTT

4399231 yieI + -14.5 AAAGGGAGTTTGATATGTCTGTT

3645157 ygiG + -14.42 ATATTGTATTTATAGAGCAACTT

371521 c0392 - -14.31 TAGTTTCATTATATATGTCTGAT

1830291 ynfL - -14.28 AAGATGTTTTAAATATGAATCTT

a Sites were identified using PatSer and a precision-recall curve was determined based on an ln(P-value)
threshold of -14.28. The coordinate of the centre of the predicted site is shown.
b The gene downstream of the predicted NsrR binding site.
c Presence (+) or absence (-) of an NsrR ChIP-seq peak at the location of each predicted NsrR binding site.
d PatSer ln(P-value) of each predicted NsrR binding site (5’-3’).
e Sequence of each predicted NsrR binding site (5’-3’).
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Figure 2.3. Computational prediction of NsrR binding sites. (a) Precision-recall curve used
to determine the prediction threshold of NsrR binding sites. The precision and recall values
were determined for many ln( P-value) thresholds using the PatSer algorithm and the optimal
value (-14.28) is identified by the arrow. The inset shows the NsrR position weight matrix
with inverted repeats constructed from the NsrR ChIP-seq sequences. (b) NsrR position
weight matrix from NsrR ChIP-seq peak sequences. The height ( y-axis) of the letters
represents the degree of conservation at that position within the aligned sequences set (in
bits), with perfect conservation being 2 bits. The x-axis shows the position of each base
(1-11) starting at the 5’ end of the motif.

conditions used for the two experiments (aerobic growth for ChIP-seq, anaerobic growth for

RNA-seq), although there is no published evidence to suggest that NsrR binding to DNA

is sensitive to oxygen in vivo. Another possible explanation is that at some binding sites
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NsrR exerts weak or no regulation, as we have observed previously for E. coli K-12. As was

the case for E. coli K-12 (Partridge et al., 2009) around half of mapped sites were within

coding regions or between convergently transcribed genes. Similar results have been obtained

with other regulatory proteins, for example Fur (Seo et al., 2014), and this is not surprising

behaviour for a DNA-binding protein with a relaxed sequence specificity. We assume that

most sites in this category have no biological function, although some may regulate the

activity of promoters driving expression of small or anti-sense RNAs.

We found strong NsrR binding signals upstream of some hypothetical proteins of un-

known function, some of them specific to CFT073 (meaning not present in E. coli K-12).

Examples are c0118 and c0233 (Figure 2.4), which are homologues of each other. Both

c0118 and c0233 have two copies of a conserved helix-turn-helix domain that is often found

in transposases and is likely to bind DNA. Both proteins are implicated as transposases or

derivatives in the clusters of orthologous groups of proteins (COGs) database. Transposase

genes are frequently associated with pathogenicity islands, and NsrR has been implicated in

regulating pathogenicity island genes in E. coli O157:H7 (Branchu et al., 2014). Therefore,

it would be interesting to study the function of c0118 and c0233 to see if they are related

to the pathogenicity of CFT073, and to determine if NsrR is involved in the regulation of

pathogenicity island genes.

Of the genes implicated as possible NsrR targets by ChIP-seq that were also differentially

regulated in response to NO, two-thirds were downregulated in the presence of a source of

NO. This behaviour is consistent with positive regulation by NsrR, as has been reported

previously (Branchu et al., 2014), or with indirect effects of NsrR. Some genes associated with

NsrR binding sites were not differentially regulated in the RNA-seq experiment, which may

indicate that these genes are subject to multiple regulatory mechanisms, such that regulation

by NsrR is revealed only under specific growth conditions. An additional possibility is that

there is a category of promoter that is bound by, but not regulated by, NsrR.
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Figure 2.4. UCSC Genome Browser track view of c0118 and c0233 loci.



CHAPTER 3

TP53 ASSOCIATED LONG-RANGE INTERACTION PREDICTION

3.1 Materials and methods

3.1.1 Data sources

ChIA-PET data of pol2 in breast cancer MCF7 cells was obtained from (Li et al., 2012).

In our study we used saturated MCF7 ChIA-PET dataset in table s3h where the count,

p-value and FDR of each Paired-End Tag (PET) cluster were given. The TP53 ChIP-seq

data with nutlin treatment in MCF7 was retrived from GSE30183 (Nikulenkov et al., 2012).

The processed data files were based on genome build hg19. ChIP-seq data of H3K4me1,

H3K4me3, H3K27ac and input control in MCF7 were from GSE57498 (Taberlay et al., 2014).

MCF7 DNase data was from ENCODE project with the accession number of GSE32970

(Thurman et al., 2012; Natarajan et al., 2012). ChIP-seq data of p300, JUND and FOSL2

in MCF7 were also obtained from ENCODE project with accession number of GSE32465

(Gertz et al., 2013). Additional ChIP-seq data of H3K27ac and Gro-seq data before and after

nutlin treatment were from GSE76657 (Verfaillie et al., 2016) and GSE53966 (Allen et al.,

2014) respectively. TP53 ChIP-seq data, histone modification data (H3K27ac, H3K4me1 and

H3K4me3) before and after nutlin treatment, and ATAC-seq data before and after nutlin

treatment in IMR90 were obtained from GSE58740 (Sammons et al., 2015).

3.1.2 Mapping and Binding sites detection

Bowtie2 was used for the mapping of raw sequencing data with parameters of -k1 -N1. Model-

based Analysis for ChIP-Seq (MACS) (Zhang et al., 2008) was used to identify genome-wide

27
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binding sites of TP53. If the distances of peak summits were less than 200bp, then those

peaks would be merged and new peak summit was assigned as the mid-point of those merged

peaks. The lowest FDR among all the merged peaks is the FDR for newly merged peaks.

3.1.3 TP53 binding sites classification

TP53 peaks can be grouped into three classes after integrating with pol2 ChIA-PET data as

shown in Figure 3.1. The first class is composed of TP53 binding sites overlapped with pol2

looping interactions whose both ends have overlap with TP53 peaks. Here we will assign

a TP53 peak (FDR<0.01) into the first class if it overlaps with one end (<5kb) of a pol2

loop whose other end overlaps with another TP53 binding site (FDR not controlled). The

strongest summit of TP53 binding sites will be selected if there exists more than one TP53

binding sites in the same anchor of a looping interaction. For the second class, if only one end

of pol2 associated loops has overlap with TP53 binding site (FDR<0.01), then that binding

site would be assigned to class II TP53 binding sites. In the end we have 327 Class I TP53

binding sites from 306 high confident interactions with both interacting anchors overlapping

with TP53 peaks, 874 Class II TP53 binding sites overlap with interactions with only one

end overlapping with TP53 peaks, and 2674 Class III TP53 binding sites that don’t overlap

with any pol2 looping interactions.

3.1.4 Histone modification, DNase-seq and Gro-seq profiles surrounding ChIP-

seq binding peaks

TP53 peak summits were selected as center for signal alignments. Signals were plotted in a

4kb window surrounding the peak center with each window divided into 25 bp bins. Read

coverage from histone modification ChIP-seq, DNase-seq and Gro-seq were calculated for

each bin. For ChIP-seq data, reads were extended by 200bp in the 5’-3’ direction, and read

coverage of input was subtracted from that of ChIP data. For Gro-seq data, coverage from

plus strand and minus strand were separated.
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Figure 3.1. TP53 binding sites classification. A, Class I TP53 binding sites resulting from
pol2 looping interactions with both interacting anchors overlapping with TP53 binding sites.
B, Class II TP53 binding sites resulting from pol2 looping interactions with only one end
overlapping with TP53 binding sites. C, Class III TP53 binding sites not associated with
any pol2 looping interactions

3.1.5 Model to predict loop associated TP53 binding sites and loop associated

TP53 binding interaction clusters

Figure 3.2 shows the workflow of predicting TP53 associated long-range interactions. It

was done in two steps. In the first step, given all TP53 binding sites, model was built to
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predict loop-anchor candidates. And in the second step model was built to predict which

loop-anchor candidates from step 1 can form looping interactions.

For the first step, we used the scikit-learn Python package for logistic classification. We

selected the following types of features for classification: 1) log2-transformed read counts

for ChIP-seq data ( TP53, JUND, FOSL2, P300 and multiple histone modification ) or

DNase-seq data in TP53 binding sites within a window size of 1000bp centered by the

TP53 binding summits. 2) log2-distance between the TP53 binding site and its nearest

neighboring binding site. 327 TP53 binding sites from Class I TP53 binding sites were

selected as foreground training set and an equal number of TP53 binding sites that don’t

overlap with any pol2 looping interactions were randomly selected as background training

set. After fitting logistic classifier with different features, we chose the non-redundant but

significant features combinations that can discriminate positive and negative datasets to

build the final classifier. Threshold was set to 0.1 to get putative loop associated TP53

binding sites which resulted in 3072 candidate anchors.

For the second step, we constructed all possible TP53 binding sites pairs with distance

less than 1Mb using candidate TP53 anchors predicted from step 1. Out of all possible

pair combinations, 101 TP53 peak pairs (one peak overlaps with one end of a pol2 loop and

the other peak overlaps with the other end) with FDR < 0.01 were selected as foreground

training set and equal number of candidate TP53 pairs that don’t overlap with any pol2

or CTCF loops were randomly selected as background training set. We still used scikit-

learn Python package to perform logistic classification. The following features were used to

compute for each pair: 1) the sum of log2-transformed ChIP-seq read counts from TP53,

JUND, FOSL2, P300 and multiple histone modification ChIP-seq or DNase-seq read counts

for each TP53 binding sites pairs with window size of 400bp for each end. 2) log2-distance

of each pair.
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Figure 3.2. Workflow to predict loop associated TP53 binding sites and associated long-range interactions.
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We evaluated our classifier using 5-fold cross-validation. Model parameters were trained

on the whole training data set in MCF7. And the trained model in MCF7 was used to

predict TP53-TP53 interactions in other cell lines where genome-wide chromatin interaction

data is not available.

3.2 Results

3.2.1 Data integration is informative for identifying TP53 long-distance targets

If a transcription factor binds to a genomic region which has physical interaction with other

genomic region, it is likely that ChIP-seq of the TF can detect binding signals on both

regions. To investigate TP53 binding sites that are associated with putative chromatin loop-

ing interactions, we integrated TP53 ChIP-seq data and genome-wide chromatin interaction

data from pol2 ChIA-PET. Two TP53 binding sites would be considered as a potential

interacting pairs in our study, if they overlap with the two interacting anchors from pol2

ChIA-PET respectively. In the end, we got 306 pol2 mediated looping interactions with

both ends overlapping with TP53 peaks (at least one peak has FDR less than 0.01), which

results in 237 TP53 binding sites associated with pol2 looping interactions.

To find TP53 peaks that contain TP53 binding motif, we used HOMER (Heinz et al.,

2010) to scan known TP53 motif across TP53 peaks with 400 bp around their binding

summits. Among 306 interacting peak pairs, four have binding motifs on both ends and

85 have motifs on only one end. Thus the fact that some TP53 binding sites are absent

of binding motif can be explained by the looping interactions with TP53 binding sites with

motif.

Among the 306 interacting pairs, we identified some putative functional TP53 bound en-

hancers and their possible regulating targets which weren’t studied before. Phosphoinositide-

3-Kinase Interacting Protein 1(PIK3IP1), a negative regulator of Phosphatidylinositol-3-

kinase (PI3K), was reported to suppress the development of hepatocellular carcinoma (He
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et al., 2008). TP53 activation by nutlin elevates the the expression of PIK3IP1(Janky et al.,

2014), but its detailed regulation by TP53 has not been elaborately studied yet. TP53

ChIP-seq data showed that there is TP53 binding signal near TSS of PIK3IP1 with pro-

moter signature (Figure 3.3A, purple box) and another TP53 peak with enhancer signature

is located 20kb upstream (Figure 3.3A, grey box). The promoter or enhancer state was

obtained from GEO Accession GSE57498 where MCF7 ChromHMM chromatin state seg-

mentation was performed (Taberlay et al., 2014). The looping interactions between those

two peak regions were detected by pol2 ChIA-PET and both of regions have CTCF binding

sites. We further confirmed enhancer state by looking at the enrichment of classic enhancer

signals of p300 and H3K27ac. It was found that both of the signals can be detected in the

enhancer peak region. But for another TP53 peak which is located between the interact-

ing promoter peak and enhancer peak, neither of the signals was detected even it is closer

to the promoter peak. Therefore, integration with chromatin interaction data can help us

spot some potentially functional binding site and its putative long-distance targets. We also

checked HOMER motif scan results for those two regions, TP53 motif is present in enhancer

peak but absent in promoter peak which indicates that the binding of promoter region might

result from looping interaction with enhancer peak.

For some other differentially expressed genes after TP53 activation but without TP53

binding signal at the promoter region, it is possible that they are indirect targets of TP53.

And it is also possible that they are TP53 direct targets, but TP53 binds to some distant

genomic region to regulate their expression through chromatin looping instead of binding

to gene proximal promoters. False negatives from ChIP-seq may cause the failure of TP53

signal capture at promoter region. Krppel-like factor 4 (KLF4) is one such potential TP53

long-distance target that was not identified before. KLF4, on one hand can suppress TP53

expression and have a primary oncogenic function by repressing TP53-dependent apoptosis

(Rowland et al., 2005). On the other hand, KLF4 can also serve as tumor suppressor
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by physically interacting with TP53 to activate CDKN1A (p21) and lead cell cycle arrest

(Zhang et al., 2000; Yoon et al., 2003). KLF4 is upregulated on TP53 activation by nutlin.

Instead of detecting TP53 binding signal at KLF4 promoter region, two TP53 peaks with

enhancer signatures were detect more than 200kb upstream of KLF4 (Figure 3.3B, grey

boxes). Again, the their enhancer state from ChrommHMM chromatin state segmentation

were further confirmed by the enrichment of classic enhancer signals of p300, H3K27ac

and H3K4me1(Figure 3.3B). ChIA-PET of pol2 shows the existence of looping interactions

between those two TP53 bound enhancers and KLF4 promoters. Therefore, KLF4 might be

TP53 direct long-distance target regulated by TP53 through chromosome looping.

Collectively, integration of TP53 genome-wide binding ChIP-seq data and genome-wide

chromatin interaction data from pol2 ChIA-PET can help us both identify some putative

functional TP53 bound enhancers and also identify some putative TP53 direct long-distance

targets.

3.2.2 Epigenetic features can discriminate loop and non-loop associated TP53

binding sites

Through the integration with TP53 ChIP-seq data, chromatin interactions detected by pol2

ChIA-PET can be grouped in to 3 classes, i.e. both ends of a loop overlapped with TP53

binding sites, only one end overlapped with TP53 binding sites and neither of the ends

overlapped with TP53 binding sites. In our study TP53 binding sites from those three classes

are denoted by Class I TP53 binding sites, Class II TP53 binding sites and Class III TP53

binding sites respectively. The detailed classification procedure was described in Method.

TP53 binding sites associated with looping interactions may bear different epigenetic features

due to their inclination to form larger protein complexes to link enhancers and promoters

compared to simple protein binding sites. So here we checked different epigenetic markers

of those three groups of TP53 binding sites.
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Figure 3.3. UCSC Genome Browser track view (A)PIK3IP1 locus and (B)KLF4 locus.Track
for TP53 ChIP-seq is shown in red. Tracks for ChIP-seq of histone modifications (H3K27ac,
H3K4me1 and H3K4me3) and p300 are shown in black. Tracks for RNA-seq without and
with nutlin treatment are shown in green. Track for pol2 ChIA-PET is shown as connected
blue boxes, and boxes represent interacting genomic regions. Different classes of peak types
are in different color of shades. Purple shades represent promoters and gray shades represent
enhancers.

We first examined TP53 binding signal itself. As expected, the average signal of Class I

TP53 binding sites is higher than that of the other two groups (Figure 3.4A). There is no

much difference between Class II and Class III binding sites (Figure 3.4A). We further divided

TP53 binding sites according to the existence of TP53 binding motif. Out of 874 Class II and

2674 Class III binding sites, 36% and 69% of them have TP53 motif, but only 23% of Class

I binding sites contain motif. TP53 motif is significantly enriched in non-loop associated

TP53 binding sites with fisher exact p-value less than 4.1×e−58 when Class I and Class III

binding sites were compared. It is possible that TP53 motif is responsible for the majority
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of binding at non-loop associated sites, but for loop associated sites, motif is not necessary

since binding could result from looping interactions with TP53 peak containing motif. We

then further compared TP53 signals at Class I and Class III binding sites with or without

TP 53 motif, and it was found that loop associated Class I TP53 binding sites with TP53

motifs have the highest TP53 binding signals (Figure 3.4B). It is reasonable because loop

associated binding sites tend to have larger complex and higher TP53 concentration which

could make DNA bound by TP53 easier to be pulled down and enriched by ChIP, especially

for binding sites with TP53 motif which have higher binding affinities. The expected TP53

signal distribution in each group further confirmed the proper separation of TP53 binding

sites according to pol2 ChIA-PET.

We then analyzed histone modification patterns of three different classes of TP53 binding

sites. As mentioned before, loop associated Class I and Class II TP53 binding sites in our

study are nutlin induced binding sites that overlap with pre-configured looping interactions

detected by pol2 ChIA-PET. Individual studies in both human and Drosophila showed that

TP53 acts on pre-existing chromatin interacting loops (Melo et al., 2013; Link et al., 2013).

And epigenetic marks are associated with chromatin interaction sites (Li et al., 2012), thus

in order to investigate chromatin environment associated with pre-configured loops we com-

pared different epigenetic markers without TP53 activation at three classes of TP53 binding

sites. As shown in Figure 3.5 and Figure A.1-A.5, loop associated Class I and Class II binding

sites are more transcriptionally active with higher pol2 binding signal, higher enrichment of

active histone markers (H3K27ac, H3K4me1 and H3K4me3), stronger DNase-seq signal and

higher nascent transcription levels when compared to non-loop associated Class III TP53

binding sites. Interestingly for Class I and Class II binding sites, although both of them are

from TP53 binding sites that are associated with pol2 looping interactions, the signals tested

above tend to be stronger in Class I binding sites including pol2 signal itself. It is possible

that for Class II binding sites, some looping interaction with only one end overlapped with
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Figure 3.4. TP53 binding signal signal profile for different groups of TP53 binding
sites.Average TP53 read coverage against control surrounding (A) three classes of TP53
binding sites (B) Class I TP53 binding sites with and without TP53 motif and Class III
TP53 binding sites with and without TP53 binding sites
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TP53 binding sites are false positives, and the others are true positives but TP53 binding

signals failed to be detected due to false negatives from ChIP-seq. And Class II binding sites

might be a mixture of TP53 binding sites that are associated with real looping interactions

and looping interactions detected by ChIA-PET as false positives, therefore their signal lev-

els are in between Class I and Class III binding sites whose population are purer. To better

decipher the difference between loop associated TP53 binding sites and non loop associated

TP53 binding sites, we mainly focused on the comparison between Class I and Class III

TP53 binding sites in the following study.

To inspect the effect of TP53 activation, we included nutlin treated H3K27ac ChIP-seq

and Gro-seq data which are only public available datasets in MCF7 with nutlin treatment. It

was noticed that for both loop associated Class I TP53 binding sites and non-loop associated

Class III TP53 binding sites, TP53 activation increased H3K27ac enrichment and changed

nascent transcription to a certain extend, but the change is not dramatic (Figure 3.6A,B).

They still have similar profiles as before activation and loop associated Class I TP53 binding

sites still have higher H3K27ac enrichment and transcription level than non-loop associated

TP53 Class III binding sites. Both enhancer transcript and H3K27ac marker are features

correlated with enhancer activity and enhancer transcripts tend to be enriched at enhancers

that can form looping with promoters or other enhancers (Shlyueva et al., 2014; Lin et al.,

2012; Sanyal et al., 2012; Lam et al., 2014). From histone modification and transcription

level, loop associated TP53 Class I binding sites in our study tend to be a mixture of active

promoter and enhances which have high transcriptional activity even before TP53 activation

(Figure 3.5A-F). And non-loop associated Class III TP53 binding sites are mainly located at

inactivate genomic regions lacking active epigenetic marks. The fact that TP53 activation

didn’t dramatically increase the transcription activity of inactive non-loop associated Class

III TP53 binding sites to a level as high as loop associated regions further supported previous

study in IMR90 that TP53 bound to pre-established enhancers and TP53 binding would not
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Figure 3.5. Histone modification, Dnase-seq and Gro-seq signal profiles for three classes
of TP53 binding sites. Average H3K27ac(A), H3K4me1(B), H3K4me3(C) read-coverage
against input surrounding three classes of TP53 binding sites. Average DNase(D), pol2(E),
Gro-seq(F) read-coverage surrounding three classes of TP53 binding sites.
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license new enhancer (Sammons et al., 2015). It’s also consistent with previous study that

TP53 is more likely to act on pre-existing loops instead of initiating new loops to regulate

its targets (Melo et al., 2013; Link et al., 2013). The slight change and good correlation

of epigenetic marks with and without TP53 activation (Figure 3.6C ) makes it possible for

us to learn transcriptionally activated loop associated TP53 binding sites using epigenetic

marks in normal condition without TP53 activation which are usually public available for

most cell lines. We will give more detailed description later in next chapter.

In addition, we found that histone modification signals were more likely to be depleted in

the center of loop associated TP53 binding sites (Figure 3.7A-C. Figure A6-8). As mentioned

before, loop associated TP53 binding sites in our study are more like to be promoters or

enhancers with relatively higher transcriptional activity, therefore the enrichment of histone

modification depletion in loop associated TP53 binding sites can be explained by nucleosome

depletion in active promoter enhancer regions (Hon et al., 2009). And DNase-seq data further

supported that nucleosomes were more likely to be depleted in loop associated TP53 binding

sites (Figure 3.5D). We further divided TP53 binding sites by the presence of TP53 motif.

We found that TP53 binding sites without TP53 motif tend to show more fraction of histone

modification depletion than binding sites with motif (Figure A6-8). It is possible that for

binding sites lacking TP53 motif, TP53 binding requires a more open chromatin structure

for other transcription factors to bind and recruit TP53.

Collectively, Epigenetic markers can discriminate loop and non-loop associated TP53

binding sites. Loop associated TP53 binding sites, especially those without TP53 binding

motif are more often associated with more open chromatin structure and higher transcrip-

tional activity. TP53 activation won’t dramatically change chromatin environment of TP53

binding sites especially for loop associated TP53 binding sites.
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Figure 3.6. H3K27ac and Gro-seq profiles with and without nutlin treatment for Class I
TP53 binding sites and Class III TP53 binding sites. Average H3K27ac (A) and Gro-seq
(B) read-coverage with and without nutlin treatment surrounding Class I TP53 binding sites
and Class III TP53 binding sites. (C) Correlation of H3K27ac read-coverage in the window
of 1000bp surrounding peak summits before and after nutlin treatment



42

Figure 3.7. Histone modification profile for Class I TP53 binding sites with and without TP53
motif and Class III TP53 binding sites with and without TP53 motif. Average H3K27ac(A),
H3K4me1(B), and H3K4me3(C) read-coverage surrounding Class I TP53 binding sites with
and without TP53 motif and Class III TP53 binding sites with and without TP53 motif.
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3.2.3 A logistic classifier can predict loop associated TP53 binding sites and

associated long-range interactions

It can be seen from last section that different epigenetic features can discriminate TP53

binding sites that are associated with pol2 loops and that are not associated with pol2

loops. So here in this section, we were motivated to build a classifier using above features

to distinguish those two classes of TP53 binding sites and predict TP53 interacting clusters

in cell lines of which genome-wide chromatin interaction data is not available. First, we

built a classifier to discriminate TP53 peaks that are associated with pol2 loops and that

are not associated with pol2 loops. We selected 327 pol2 loop associated TP53 binding

sites from Class I TP53 binding sites as foreground training set. An equal number of TP53

binding sites from Class III TP53 binding sites that don’t overlap with any pol2 mediated

interactions were randomly selected as background training set. A logistic classifier was used

to separate foreground and background TP53 binding sites. We tested the prediction power

of features from previous section and AUC for predictor with single feature was shown in

Figure 3.8A. JUN/FOS family members were reported to overlap TSS and enhancer TP53

binding in IMR90, and they can mediate chromatin accessibility for other transcription

factors (Sammons et al., 2015; Biddie et al., 2011), therefore we also checked the prediction

power of two members (JUND and FOSL2) from JUN/FOS family using available ChIP-seq

data from encode project and tested their prediction power. It was noticed that binding

intensity of JUND and FOSL2 also show good predictive power in distinguishing foreground

and background TP53 binding sites. ROC comparisons for different feature combinations

were shown in Figure 3.8B. It was noticed that H3K27ac signal itself can give good prediction,

addition of DNase-seq signal and neighboring TP53 distance can improve the prediction by

some extend but not dramatically. Adding all the features didn’t improve prediction power

as just using the three features above. We evaluated the performance of the classifier using

the three features above (H3K27ac ChIP-seq signal, DNase-seq signal and distance of nearest
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neighboring TP53 binding sites) with 5-fold corss-validation and got the average true positive

rate (TPR) at 81% and average false positive rate (FPR) at 10% at threshold of 0.5. To

include as many as pol2 loop associated TP53 binding sites in our training set, we finally set

the threshold to 0.1 at which the average TPR was as high as 0.99 and the relatively high

rate of false positives (0.73) will be filtered out in the next step.

Figure 3.8. AUC and ROC curves for the predictors of loop associated TP53 binding sites
(A) AUC for each feature to predict loop associated associated TP53 binding sites. Here
AUC was computed as the average area under ROC curve for predictions with single feature
for 5-fold cross-validation(B) ROC trained for H3K27ac ChIP-seq alone, H3K27ac ChIP-
seq + DNase-seq, H3K27ac ChIP-seq + DNase-seq + distance of nearest neighboring TP53
binding sites and all the features.
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In the second step, we tried to predict interactions between the putative pol2 loop as-

sociated TP53 binding sites obtained from the first step. From the above integration of

pol2 ChIA-PET and TP53 ChIP-seq data, there are 103 pol2 looping interacting clusters

(<5kb) with both ends overlapping with TP53 peaks (FDR <0.01). We checked the distance

distribution between those interacting pairs and it was found that the distance of almost

every interacting pair is less than 1Mb (Figure A9). We constructed all possible interacting

pairs with distance less than 1Mb using predicted pol2 loop associated TP53 binding sites

from step 1. 101 out of above 103 pol2 looping interactions with both ends overlapped with

TP53 peaks can be found in all pair combinations and were selected as foreground train-

ing set. Equal number of candidate TP53 pairs that don’t overlap with any pol2 looping

interactions or CTCF looping interactions identified by CTCF ChIA-PET from the same

study was randomly selected as background training set. Logistic classifier was still used

to perform classification. We tested the prediction power of above features and AUC for

predictor with single feature was shown in Figure 3.9A. ROC comparisons for different fea-

ture combinations were shown in Figure 3.9B. The intensity of H3K27ac and the distance

between candidate pairs performed as the top features to distinguish foreground and back-

ground training data. Finally five features (i.e. H3K27ac ChIP-seq signal, distance between

interacting pairs, H3K4me1 ChIP-seq signal, DNase-seq singal and H3K4me3 ChIP-seq sig-

nals ) were selected to build final classifier. We evaluated the performance of our classifier

using five-fold cross-validation and got average TPR at 73% and average FPR at 22% at the

threshold of 0.5.

TP53 and multiple histone modification ChIP-seq data are available in IMR90 (GSE58740).

But pol2 ChIA-PET data is not available. So, we were motivated to predict TP53 binding

sites interactions in IMR90. And in IMR90 we used ATAC-seq data, an alternative method

to DNase-seq, for prediction since DNase-seq data is not available. Then data were fitted

into our classifier. Out of 4334 TP53 binding sites in IMR90, 2804 were predicted to be loop
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associated in the first step of prediction when we set threshold to 0.1. And it resulted in

6487 possible pairs with distance less than 1Mb for cells. In the second step of prediction,

1335 out of 6487 pairs are predicted to interact with each other in cells.

Among those1335 predicted TP53 interacting pairs, we were able to identify the inter-

action validated by other study and can also predict putative interactions which were not

studied before. As shown in Figure 3.10, there is a small peak in the IER5 promoter region

(labeled in blue shade) called by MACS with FDR less than 0.01. Our predictor can de-

tected its interactions with two other TP53 binding sites downstream with distance larger

than 10kb. One of them (labeled in yellow shade) was validated by 4C-seq in previous study

in human primary BJ fibroblasts (Melo et al., 2013). The other one (labeled in green shade)

was not studied before and has classic enhancer signature of H3K27ac and H3K4me1. It

might be another functional TP53 bound enhancer that can regulate IER5 gene.

3.3 Discussion

Long-range interaction can help us better understand gene regulation from chromatin 3D

structures. Among all kinds of 3C-based methods, ChIA-PET can provide us the interactions

genome widely associated with a given TF with relatively high resolution. It is a good tool for

us to study promoter-enhancer interactions associated with some specific TF. But sometimes

it is challenging to perform ChIA-PET for some TF. So here, we integrated TP53 ChIP-

seq data and genome-wide interaction data detected by pol2 ChIA-PET to have an insight

of looping interactions that TP53 potentially acts on and have a better understand of its

regulatory function.

Our integrative analysis provided us some putative promoter-enhancer interactions asso-

ciated with TP53 and also identified some putative TP53 direct targets which are regulated

by TP53 through chromatin looping. It was found that TP53 binding sites that overlap

with pol2 looping interactions are more transcriptionally active and have distinct epigenetic
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Figure 3.9. AUC and ROC curves for the predictors of TP53 binding sites interactions (A)
AUC for each feature to predict TP53 binding sites interactions. Here AUC was computed
as the average area under ROC curve for predictions with single feature for 5-fold cross-
validation(B) ROC trained for H3K27ac ChIP-seq alone, H3K27ac ChIP-seq + distance,
H3K27ac ChIP-seq+distance+H3K4me1 ChIP-seq+DNase+H3K4me3 ChIP-seq and all the
features.
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Figure 3.10. UCSC Genome Browser track view IER5 locus. Track for TP53 ChIP-seq
is shown in red. Tracks for ChIP-seq of histone modifications (H3K27ac, H3K4me1 and
H3K4me3) are shown in black. Track for predicted interactions is shown as connected blue
boxes, and boxes represent TP53 peak regions. Blue shades represent P53 peak in IER5
promoter region and green shades and yellow shades represent TP53 peaks that more than
10kb downstream of IER5 and have predicted interactions with IER5 promoter peak. The
interaction between the peak labeled by yellow shade and IER5 promoter was identified by
in human BJ fibroblasts.

markers compared to TP53 binding sites that don’t overlap with pol2 looping interactions.

We developed classifiers to predict loop associated TP53 binding sites and interacting TP53

binding sites pairs through the extraction of features from multiple histone modification

ChIP-seq and DNase-seq datasets.

However, there are still limitations of our classifiers, especially the classifier used to pre-

dict TP53 interacting pairs. It can only provide us average TPR of 73%. Although we can

eliminate many false positives by increasing threshold and make sure there are as many as

true positives in our predicted list, it also introduced more false negatives. Exploring more

relevant features or trying other classification methods might further improve the perfor-

mance of our classifier.



CHAPTER 4

CONCLUSION

Transcription factors are main regulators of gene transcription. Identifying their targets is

important for understanding biological processes like stress responses and genetic cause of

disease. In our study, we used integrative omics data analysis to identify TF targets in

both simple prokaryotes and more complex mammalian system. Different omics data were

integrated for TF targets identification in different systems. In prokaryotes, we integrated

TF genome-wide binding data, expression data and sequence motif information to identify

the targets of transcriptional repressor NsrR to better understand UPEC’s response to NO

stress. In mammalian system, we integrated TF ChIP-seq data, chromatin interaction data

and different epigenetic data to identify long-distance targets of tumor suppressor TP53.

To identify genome-wide targets of NsrR, we performed ChIP-seq of NsrR and first identi-

fied NsrR regulon in UPEC CFT073. Forty-nine NsrR binding sites were located in putative

promoter regions in CFT073 genome. Of those promoters bound by NsrR in vivo, 19 were

identified in a previous ChIP-chip analysis of NsrR binding sites in E. coli K-12 (Partridge

et al., 2009). Twenty of the remaining sites are associated with genes that have homologues

in E. coli K-12, and 10 are specific to E. coli CFT073. Some of the new targets might be

related to the virulence of CFT073. We integrated above NsrR genome-wide binding data

from ChIP-seq with expression data from RNA-seq in a triple mutant strain of CFT073

lacking the three known NO detoxification system, Hmp, FIRd and NrfA with and without

phsysiological source of NO. Nineteen out of 49 NsrR targets identified by ChIP-seq show

differential expression with NsrR perturbation by physiological source of NO. We then did

computational analysis of NsrR binding sites in CFT073, and it was found that the binding
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motif of NsrR in CFT073 is the same as that in K-12. TF binding motif in prokaryotes is

usually longer and more specific than that in mammalian system, so it is informative for TF

targets identification in prokaryotes. We used the PSWM of NsrR to search throughout the

genome of CFT073 as a complementary way of ChIP-seq to identify TF targets. Some of

predicted targets were not detected by the ChIP-seq data but they are known NsrR targets

in some other close related strains. They reason why ChIP-seq in CFT073 failed to detect

them might be that growth conditions are different or epitope tags were blocked by other

co-factors so that ChIP failed to pull down DNA. Therefore, TF motif could serve as a

complementary method for ChIP-seq to identify potential TF targets missed by ChIP-seq.

To identify genome-wide long-distance targets of TP53 in mammalian system, we first in-

tegrated TP53 ChIP-seq data and genome-wide chromatin interaction data from pol2 ChIA-

PET in cell line MCF7. Data integration that way helped us to identify some putative

functional TP53 bound enhancers and their long-distance targets. We then divided TP53

binding site into group associated with pol2 mediated looping interactions and group that

is not associated with pol2 mediated looping interactions. We checked epigenetic markers

around TP53 binding sites in two groups and it was found that TP53 binding sites associ-

ated with pol2 loops tend to be more trancscriptionally active with stronger active epigenetic

markers compared to TP53 binding sites that don’t overlap with any pol2 looping interac-

tions. Therefore, epigenetic markers is discriminative for those two groups of TP53 binding

sites. In the end we built logistic classifiers using different epigenetic features to predict

loop associated TP53 binding sites and TP53 interaction clusters, which can be used to pre-

dict TP53 associated looping interactions and TP53 long distance targets in cell lines where

genome-wide chromatin data are not available.



APPENDIX

SUPPLEMENTARY FIGURES

Figure A.1. Heatmap show of H3K27ac read coverage against input around summits of three
classes of TP53 binding sites. Each row represents signal strengths of ±2kb region around
the summits of TP53 binding sites.
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Figure A.2. Heatmap show of H3K4me1 read coverage against input around summits of
three classes of TP53 binding sites. Each row represents signal strengths of ±2kb region
around the summits of TP53 binding sites.
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Figure A.3. Heatmap show of H3K4me3 read coverage against input around summits of
three classes of TP53 binding sites. Each row represents signal strengths of ±2kb region
around the summits of TP53 binding sites.
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Figure A.4. Heatmap show of pol2 read coverage around summits of three classes of TP53
binding sites. Each row represents signal strengths of ±2kb region around the summits of
TP53 binding sites.
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Figure A.5. Heatmap show of DNase read coverage around summits of three classes of TP53
binding sites.
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Figure A.6. (A) Heatmap show of H3K27ac signal around Class I and Class III TP53 binding
sites with and without TP53 motif. Each row represents signal strengths of ±2kb region
around the summits of TP53 binding sites (B) H3K27ac modification depletion in four groups
of TP53 binding sites. To quantify central H3K27ac modification depletion level, we defined
hi as the difference between log2 transformed ratio of read-coverage against input in center
region(±100bp region relative to peak summit) to average of read-coverage against input in
two flaking regions (-600 bp to -400bp and +400bp to +600bp relative to peak summit) of
TP53 binding site i for H3K27ac modification. Barplot shows the faction of depletion with
hi < 0.
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Figure A.7. (A) Heatmap show of H3K4me1 signal around Class I and Class III TP53
binding sites with and without TP53 motif. Each row represents signal strengths of ±2kb
region around the summits of TP53 binding sites (B) H3K4me1 modification depletion in
four groups of TP53 binding sites. To quantify central H3K4me1 modification depletion
level, we defined hi as the difference between log2 transformed ratio of read-coverage against
input in center region(±100bp region relative to peak summit) to average of read-coverage
against input in two flaking regions (-600 bp to -400bp and +400bp to +600bp relative to
peak summit) of TP53 binding site i for H3K4me1 modification. Barplot shows the faction
of depletion with hi < 0.
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Figure A.8. (A) Heatmap show of H3K4me3 signal around Class I and Class III TP53
binding sites with and without TP53 motif. Each row represents signal strengths of ±2kb
region around the summits of TP53 binding sites (B) H3K4me3 modification depletion in
four groups of TP53 binding sites. To quantify central H3K4me3 modification depletion
level, we defined hi as the difference between log2 transformed ratio of read-coverage against
input in center region(±100bp region relative to peak summit) to average of read-coverage
against input in two flaking regions (-600 bp to -400bp and +400bp to +600bp relative to
peak summit) of TP53 binding site i for H3K4me3 modification. Barplot shows the faction
of depletion with hi < 0.
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Figure A.9. Distance distribution of interacting clusters
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