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The worldwide adoption of electronic health records (EHRs) to document patient data en-

ables the use of big-data methods to harness the medical information contained therein for

secondary use. While most medical informatics research focuses on using the structured

data found in EHRs, there is a substantial amount of information in the narratives of the

records that is inaccessible without processing. This dissertation focuses on extracting this

information in the form of medical concepts and relations between them. Specifically, deep

learning methods are presented to perform (1) concept detection; and (2) relation extraction.

Multiple deep learning methods are explored including recurrent neural networks, convolu-

tional neural networks, memory networks, and attention networks. Methods are presented

for performing these tasks in multiple genres of EHRs with differing target concept and re-

lation schemata. Moreover, due to the data-hungry nature of deep learning models and the

expertise necessary to annotate medical narratives, this dissertation addresses the problem of

training deep learning models using multi-task active learning. These methods can be used

to extract data-driven knowledge encoding clinical expertise from practicing clinicians. As

such, this dissertation explores methods for representing such knowledge in graphical struc-

tures that can be used for question answering and to infer new knowledge. Moreover, these

techniques are extended to represent biomedical knowledge from expert-curated ontologies

vi



as embeddings. These embeddings expose otherwise inaccessible biomedical knowledge to

deep learning models for relation identification.
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CHAPTER 1

INTRODUCTION

The widespread adoption of electronic health records (EHRs) around the world enables the

use of big-data techniques to harness the rich medical information found throughout the

records for secondary use. EHRs are patient-centered records generated by clinicians during

their practice to document clinically relevant information gleaned during examinations, tests,

procedures, and interviews with patients. As such, the information contained within EHRs

represents clinical knowledge that is relevant to myriad applications throughout medical

informatics including clinical trail screening and adverse drug reaction detection (Luo et al.,

2016). In clinical trial screening, patients are identified for eligibility for a clinical trial

based on certain eligibility criteria that can be found in a patient’s EHR. Adverse drug

reaction (ADR) detection is the task of identifying unintended adverse reactions caused

by a medication and it is one of the leading causes of morbidity and mortality (Onder

et al., 2002; Luo et al., 2016). Detecting instances of ADRs in a large corpus of EHRs

can support translational research to improve patient outcomes and avoid potential patient

injury. This kind of knowledge expressed in EHRs can be represented in relational form,

e.g., in a structured database, that is readily accessible to automated systems. Formally,

a relation is a triple of the form 〈A1, R,A2〉 where the arguments A1 and A2 are medical

concepts linked together in a relationship of type R. For clinical trail screening, eligibility

criteria can be expressed in relational form, e.g., 〈liver function, status, adequate〉, which

can be matched against relations expressed in EHRs to identify patients that meet the

criteria. Likewise, instances of ADR relations can also be represented as relation triples,

e.g., 〈penicillin, causes, rash〉, facilitating big-data systems for discovering novel potential

ADRs in large corpora of EHR data.

However, much of this relational knowledge is not present in structured form in the EHR

directly. Rather, it exists in the unstructured text portions of the EHR which are not readily
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accessible for many applications, including those listed above (Chapman et al., 2011). The

unstructured text portions of an EHR are referred to as clinical narratives. Clinical narratives

vary widely in format and content, yet they all contain important clinical knowledge that

can be extracted from their text. For example, the relation 〈liver function, status, adequate〉

can be extracted from the natural language sentence, “ liver function is adequate” found in a

patient’s EHR.

Such relations can be extracted from clinical narratives using machine learning methods,

specifically deep learning (Wang et al., 2018). Deep Learning is a sub-field of machine

learning that includes computational models with multiple layers of abstraction trained using

backpropagation (LeCun et al., 2015). In recent years, deep learning methods have been

applied successfully to a wide range of prediction tasks including medical informatics (Ravì

et al., 2016) and natural language processing (Young et al., 2018). In order to extract

relations from clinical narratives, their arguments must be identified first. Medical concepts

can also be extracted from clinical narratives using deep learning learning methods. However,

training deep learning models to identify medical concepts and relations between them in

clinical narratives requires large amounts of training data. Moreover, considerable expertise

is often necessary to effectively create this training data due to the specialized nature of the

text and annotation tasks. Therefore, Active Learning (Settles, 2009) is necessary in order

to efficiently generate training data for training deep learning methods.

This dissertation focuses on the application of deep learning techniques for identifying

medical concepts and relations between them across multiple genres of EHRs. The remainder

of this chapter outlines the main contributions of the dissertation followed by a brief overview

of planned future work.
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1.1 Overview of Contributions

In this dissertation, deep learning methods are applied to medical concept detection and

medical relation extraction along with Active Learning systems for training the deep learn-

ing methods. Knowledge graph embedding techniques for representing medical knowledge

are also described. The knowledge extracted in clinical narratives can be represented in

graphical structures, known as knowledge graphs. Knowledge graph embeddings distill the

relational information of a knowledge graph into a set of discrete embeddings representing

concepts and relations between them. Knowledge graphs generated from corpora of clinical

narratives can be used to perform inference and identify new knowledge. Moreover, knowl-

edge graphs can be used to expose relational knowledge from curated biomedical ontologies

to deep learning models to enhance their representations of medical concepts and relations

between them. Embeddings learned from the methods presented in this dissertation are

shown to improve relation extraction in clinical narratives. An overview of the contributions

of this work is provided below:

Chapter 2 addresses the task of medical concept detection on two types of EHR data: EEG

reports and discharge summaries. EEG reports document the results of an electroencephalo-

gram, while discharge summaries describe a patient’s hospital stay when they are discharged.

Neural models are presented for extracting medical concepts from both types of EHR. An

electroencephalogram (EEG) is a medical test performed by neurologists in the treatment

of epilepsy and other brain disorders. EEGs measure electrical activity along the scalp as

a complex digital signal that can be correlated with brain activity. EEG reports are gen-

erated by neurologists to document the important phenomena gleaned from the signal and

its clinical relevance, if any. As such, EEG reports contain a wealth of important clinical

information in the form of medical concepts that describe the patient’s current state, the

characteristic signal activity observed during the EEG test (referred to as EEG activities),
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and the possible medical problems that are indicated by the observed signal activity. In

Chapter 2, a schema defining EEG-specific medical concepts and attributes that describe

those concepts is defined. Two neural models are introduced: the stacked Long-Short Term

Memory network (sLSTM) for identifying medical concepts; and the Deep ReLU Network

(DRN) for identifying their attributes. The sLSTM operates on natural language sentences,

modeling context to detect mentions of EEG-specific medical concepts. The DRN leverages

deep learning to generate a multi-purpose embedding that is used to classify each attribute

of a medical concept concurrently. Both neural models are evaluated and shown to be ef-

fective in identifying medical concepts and their attributes in EEG reports. In this chapter,

we also address the task of identifying three types of medical concepts in discharge sum-

maries: medical problems, tests, and treatments. We rely on the 2010 i2b2/VA challenge

dataset (Uzuner et al., 2011) which provides a corpus of discharge summaries with manually

annotated medical concepts. Each medical problem is assigned a belief value (referred to as

an assertion) that describes how that medical problem was believed to have occurred (e.g.,

present, absent, possible). Chapter 2 presents a multi-task neural model for jointly identi-

fying medical concept mentions and their assertions in discharge summaries. The proposed

model relies on a massively pre-trained representation module for generating contextualized

embeddings for each token in a sentence. The model is shown to advance the state-of-the-art

in both concept detection and assertion classification.

Chapter 3 addresses the task of medical relation extraction from EEG reports. Four rela-

tions capturing EEG-specific medical knowledge are defined and two novel neural models

for detecting them are presented. Traditionally, relation extraction methods operate at

the sentence level, extracting relations between medical concepts mentioned in the same sen-

tence. However, many important medical relations in EEG reports span sentence boundaries,

sometimes crossing multiple sentences in an EEG report. Therefore, both neural methods in-

troduced in Chapter 3 operate on the document level, identifying relations between medical
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concepts mentioned anywhere in the report. The first neural model, EEG-RelNet, main-

tains a set of memory vectors that it updates recurrently as it reads through each sentence

of an EEG report. The memory vectors maintain information pertaining to each medical

concept mentioned in the report and each potential relation between each pair of concepts.

EEG-RelNet is shown to be able to perform long-distance relation extraction in EEG re-

ports. However, EEG-RelNet requires medical concepts and their attributes to be identified

beforehand. The second neural model, the Self-Attention Concept, Attribute, and Rela-

tion identifier (SACAR) performs concept detection, attribute classification, and relation

extraction jointly in an end-to-end manner. SACAR relies on a powerful neural architecture

developed by Dehghani et al. (2018) to generate a contextualized representation of an EEG

report. This representation is shared among a series of prediction layers, trained to extract

information relevant to each prediction task. In this way, each prediction task helps to in-

form the others by constraining the shared representation during learning. Evaluations show

that SACAR out performs the dedicated neural methods for concept detection and attribute

classification introduced in Chapter 2 while performing competitively with EEG-RelNet for

relation extraction.

Chapter 4 presents three Active Learning frameworks for training the sLSTM, DRN, EEG-

RelNet, and SACAR models introduced in Chapters 2 and 3. Training neural models like

these requires significant amounts of labeled data. Due to the substantial expertise involved

in annotating EEG reports, we sought to generate the fewest number of manually annotated

EEG reports necessary to train our neural models by employing active learning. The first

framework, Memory-Augmented Active Deep Learning (MAADL) is presented for training

EEG-RelNet to perform relation extraction. The second framework, Multi-Task Active Deep

Learning (MTADL) is presented for training the sLSTM and DRN to identify the medical

concepts and their attributes that function as the arguments of the relations extracted by
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EEG-RelNet. The third framework, Improved Multi-Task Active Deep Learning with the

Active Learning Policy Neural Network (MTADL+), identifies concepts, attributes, and re-

lations jointly using the SACAR learner presented in Chapter 3. All three frameworks are

used to perform an active learning loop whereby unlabeled EEG reports are selected from

a pool for manual annotation. Both MAADL and MTADL adhere to the same five-step ac-

tive learning paradigm whereby unlabeled EEG reports are selected for manual annotation

using the uncertainty of their respective learners. MTADL+ leverages the Active Learning

Policy Network (ALPNN) to learn how to select unlabeled EEG reports using the internal

representation of the reports produced by SACAR.

Chapter 5 addresses the task of knowledge graph embedding. Three knowledge graph embed-

ding frameworks are presented. The first framework encodes biomedical knowledge discov-

ered from a large corpus of EEG reports such that it can be used for probabilistic inference.

Specifically, we explore the application of knowledge graph embedding methods to noisy

relations extracted from the narrative of EEG reports in order to discover new data-driven

knowledge from clinical practice. To our knowledge, this is the first exploration of this ap-

plication of knowledge graph embedding methods. The second framework presents a novel

knowledge graph embedding method for representing a large biomedical ontology, namely

the Unified Medical Language System (UMLS) (Lindberg et al., 1993). The UMLS is a

comprehensive resource providing millions or relation instances between medical concepts.

The framework leverages the rich representation of the medical concepts in the UMLS to

produce embeddings for both concepts and relations. The UMLS embeddings are demon-

strated to be useful in improving the results of an existing clinical prediction model. The

third framework extends the second framework to the task of ontology alignment through

the use of alignment-oriented embeddings. Alignment-oriented embeddings are learned from

two disparate ontologies such that they reside in a single embedding space. Concepts and
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relations from either ontology can be aligned using this embedding space. This framework is

applied to the task of biomedical ontology alignment, producing alignments between three

large biomedical ontologies.

Chapter 6 presents deep learning methods leveraging knowledge graph embeddings presented

in Chapter 5 for extracting relations between the medical concepts in discharge summaries.

Discharge summaries contain medical concepts that capture important information about a

patient’s care and status during a hospital stay. and are discussed in more detail in Sec-

tion 2.3. Moreover, methods for identifying such concepts and their attributes are presented

in Section 2.6. In Chapter 6, we investigate the efficacy of incorporating outside medical

knowledge into relation extraction decisions through the use of UMLS knowledge embed-

dings derived by the system described in Section 5.3. The biomedical knowledge contained

in the UMLS is particularly relevant to many of the relations present in discharge summaries

and can be leveraged to inform concept representations in the model. Experimental results

indicate that UMLS knowledge embeddings significantly improve the recall of a state-of-the-

art relation extraction system, resulting in an increase in overall performance. Moreover,

Chapter 7 demonstrates that deep learning methods for relation extraction are robust across

genres of medical text.

Chapter 7 presents methods for extracting a class of relations known as Drug-Drug Inter-

actions. Drug-Drug Interactions (DDIs) indicate when a prescription drug interacts with

another substance causing an adverse reaction or event. Drug-drug interactions are of par-

ticular importance in medical informatics as they represent a preventable cause of adverse

events, the eighth leading cause of death in the United States (Demner-Fushman et al., 2018).

Each prescription drug certified by the Food and Drug Administration (FDA) is described by

a medical reference document called a Structured Product Labeling documents (SPLs). SPLs
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contain descriptions of the essential scientific information needed for the safe and effective

use of a drug, including known drug-drug interactions. Therefore, the 2019 Text Analysis

Conference (TAC) DDI Extraction from Drug Labels track was designed by the FDA and

National Library of Medicine to facilitate research in DDI extraction from SPLs. The goal

of the 2019 TAC DDI Extraction track is to extract the unique set of DDIs from each SPL

and link each interaction to existing ontologies in order to facilitate interoperability with

downstream systems. In Chapter 7 we present an end-to-end pipeline for identifying DDIs

in SPLs including the medical concepts that participate in DDI relations and the type of DDI

relation between them. At the heart of this pipeline is the Multi-Task Transformer for Drug-

Drug Interaction (MTTDD) identifier. MTTDDI is a multi-task neural network based on the

state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) (Devlin

et al., 2019). Chapter 7 demonstrates that deep learning methods for relation extraction are

robust across genres of medical text.

Finally, Chapter 8 presents possible directions for future work and Chapter 9 summarizes

each chapter and concludes the dissertation.
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CHAPTER 2

MEDICAL CONCEPTS IN ELECTRONIC HEALTH RECORDS

Medical concept extraction is the task of identifying medical concepts that occur in the free

text of medical narratives and is a crucial first step in harnessing the unstructured data in the

EHR. The accurate identification of medical concepts enables or enhances a bevy of crucial

medical tasks, including patient cohort retrieval (Hersh, 2008), relation extraction (Uzuner

et al., 2011), clinical decision support (Demner-Fushman et al., 2009), medical question

answering (Goodwin, 2018), knowledge discovery (Maldonado et al., 2017), and predictive

modeling (Stubbs et al., 2015). The language describing medical concepts in the free text

of medical records can be complex. As such, identifying mentions of medical concepts in an

EHR is often insufficient, e.g., in cases where a medical concept is mentioned in a hypothetical

context – “the patient may be unconscious”. This sort of characteristic information can be

encoded in the form of attributes that describe a medical concept more fully. Given a schema

of attribute types and values, attribute classification is the task of assigning a value to each

attribute type for a medical concept. Trained on EHR data, machine learning techniques

are capable of automatically extracting medical concepts and their attributes from medical

text.

In this chapter12, deep learning systems for performing automatic medical concept de-

tection and attribute classification in two datasets of electronic health records are presented.

The annotation schema for each dataset is presented, defining the medical concepts to be

detected along with their attributes. The first dataset is comprised of electroencephalo-

gram (EEG) reports while the second dataset is comprised of discharge summaries. Three

1©2019 Elsevier. Reprinted, with permission, from Ramon Maldonado and Sanda M. Harabagiu, Active
Deep Learning for the Identification of Concepts and Relations in Electroencephalography Reports. Journal
of Biomedical Informatics, Vol. 98 (2019): 103265.

2This chapter contains excerpts from Maldonado et al. (2017).
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deep learning architectures for medical concept detection and attribute classification are pre-

sented in this chapter. The stacked Long Short-Term Memory Network (sLSTM)

is presented for detecting medical concepts in EEG Reports. The Deep ReLU Network

(DRN) is presented for classifying a rich set of attributes of the medical concepts identified

in EEG Reports. TheMulti-Task BERT Graph Convolution Network (MT-BGCN)

is presented for jointly detecting three types of medical concepts in discharge summaries and

classifying their attributes with a single neural model. The sLSTM uses deep learning to

model the context of a medical narrative to detect medical concepts mentions. Likewise,

the DRN uses deep learning to perform joint prediction on a set of 18 attributes of medical

concepts found in EEG reports. Both the sLSTM and DRN operate on hand-crafted feature

representations of the text in EEG reports. In contrast, the MT-BGCN is an end-to-end

model that jointly performs medical concept detection and attribute classification using only

the text of a clinical narrative and a dependency parse – without the need for hand-crafted

features. Based on the pre-trained Transformer model BERT (Devlin et al., 2019), MT-

BGCN leverages massive pre-training to learn abstract representations of text, first using

general text data, then using clinical text data. Moreover, the MT-BGCN employs graph

convolution to encode syntactic information useful for determining the boundaries of medical

concept mentions in text.

The sLSTM and DRN are used in tandem to extract concept and their attributes: first

the sLSTM is used to detect medical concepts mentioned in the free text of EEG reports, then

the DRN is used to classify the attributes of each medical concepts that was detected. The

MT-BGCN is used similarly, first to detect medical concepts, then to classify their attributes.

However, while the sLSTM and DRN are two separate models, trained in isolation, the MT-

BGCN is comprised of a single model that is trained to perform both tasks jointly. To

this end, two forward passes of MT-BGCN are required during prediction – one for concept

detection and one for attribute classification.
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This chapter is organized as follows: Section 2.1 provides a brief background for the

chapter, then Sections 2.2–2.5 describe the medical concepts and attributes found in EEG

reports and discharge summaries, respectively. Section 2.4 presents the deep learning method

for identifying medical concepts in EEG reports, while Section 2.5 presents the DRN for

classifying their attributes. Section 2.6 presents the MT-BGCN for jointly identifying medical

concepts and attributes in discharge summaries. Finally, Section 2.7 presents experimental

results and discussions and Section 2.8 concludes the chapter.

2.1 Background

Clinical named entity recognition (NER) is the task of extracting medical concepts (named

entities) from the free-text of clinical EHRs. Traditional methods for performing clinical

NER were rule-based including Aronson (2001) and Friedman (1997). Machine learning

methods, usually based on Conditional Random Fields (CRF) (Lafferty et al., 2001), were

later introduced, improving performance. Hybrid methods combine traditional rule-based

systems with machine learning (Demner-Fushman et al., 2017; Savova et al., 2010). More

recently, neural methods for clinical NER have been introduced advancing the state-of-the-

art in several common clinical NER datasets. These include Convolutional networks (Wu

et al., 2017), Recurrent Networks (Huang et al., 2015), and Transformer networks (Verga

et al., 2018) operating on word embeddings. Even more recent work in NLP has shown that

methods that rely on word embeddings can be improved by replacing the word embeddings

with contextualized word embeddings using a pre-trained representation layer (Peters et al.,

2018; Devlin et al., 2019; Radford et al., 2019; Dai et al., 2019). In this chapter, we perform

clinical NER on two datasets of EHRs: discharge summaries and EEG reports.

Prior work on clinical narratives related to EEG tests consider either clinical discharge

summaries or EEG reports. The Epilepsy Data Extraction and Annotation (EpiDEA) (Cui
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et al., 2012) system operates on discharge summaries originating from the Epilepsy Mon-

itoring Unit (EMU) which collects clinical data about patients with potential of Sudden

Unexpected Death in Epilepsy (SUDEP) at four centers: University Hospitals Case Med-

ical Center (UH CMC Cleveland), Ronald Reagan University of California Los Angeles

Medical Center (RRUMC-Los Angeles), The National Hospital for Neurology and Neuro-

surgery (NHNN, London, UK), and The Northwestern Memorial Hospital (NMH Chicago).

These discharge summaries contain interleaving unstructured free text and semi-structured

“attribute-value” text. The EpiDEA system applied regular expressions, concept identifi-

cation provided by cTakes (Savova et al., 2010) and negation detection delivered by the

Negex algorithm (Chapman et al., 2001) to map the clinical narratives into the concept

classes provided by the Epilepsy and Seizure Ontology (EpSO) (Sahoo et al., 2013). EpSO

has more than 1000 classes modeling the etiology of epilepsy. Cui et al (Cui et al., 2014)

describes natural language processing (NLP) methods aiming at extracting epilepsy-related

phenotypes from the same discharge summaries as those reported in Cui et al (Cui et al.,

2012). The epilepsy phenotypes were related to (a) anatomical locations for the identification

Epileptogenic Zone; (b) the Seizure Semiology; and (c) Lateralizing Signs, Interictal EEG

Patterns, and Ictal EEG Patterns, which is a sub-set of the EEG activities we targeted in

the research presented in this paper. The NLP methodology for phenotype extraction was

also centered on the semantics of the EpSO ontology, but it incorporated the detection of

anatomical locations available from MetaMap (Aronson, 2001) into the rule-based concept

detector described in Cui et al (Cui et al., 2012). The methods introduced in this chapter

operate on a clinical narrative dataset which is two orders of magnitude larger than the

dataset of discharge summaries on which the methods from Cui et al. (2012, 2014) oper-

ate. Furthermore, we incorporate a rich set of attributes, including spatial (which consider

anatomical locations) and temporal, and it covers the full set of EEG activities and events

(including seizures) that are collected and interpreted during the EEG test. The NLP meth-

ods described in this chapter provide an information extraction framework that operates
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on EEG-specific clinical narratives and takes advantage of Big Data technologies (including

Deep Learning) in contrast with the methods described in Cui et al. (2012, 2014), which rely

on the EpSO ontology (Sahoo et al., 2013).

This chapter also presents methods for detecting medical concepts in discharge summaries

using the 2010 i2b2/VA challenge dataset (Uzuner et al., 2011). The medical concepts

identified in the dataset include medical problems, tests, and treatments. Each medical

problem has an associated assertion attribute that characterizes the mention of that medical

problem. In 2010, a Hidden semi-Markov Model (De Bruijn et al., 2011) and a Support

Vector Machine model (Roberts and Harabagiu, 2011) performed best at concept detection

and assertion classification, respectively. Neural models have since advanced the state-of-

the-art in concept detection on this dataset. Bhatia et al. (2019) introduce a multi-task

sequence-to-sequence (Cho et al., 2014) model for jointly detecting medical concepts and

their negations. More recently, several methods using contextualized word representations

have set new top scores for concept detection (Zhu et al., 2018; Si et al., 2019; Fraser et al.,

2019). These methods feed the contextualized word embeddings generated by pre-trained

representation layers to simple dense or recurrent layers for prediction. Later in the chapter,

we demonstrate the efficacy of incorporating syntactic information through the use of a more

sophisticated model built atop the pre-trained representation layer for the concept detection

in the 2010 i2b2/VA challenge dataset.

2.2 Medical Concepts and Attributes in EEG Reports

This section presents the medical concepts found in EEG reports and attributes that describe

those concepts. Clinical electroencephalography (EEG) is the main investigation tool used

for the diagnosis and management of epilepsy. It is also used to evaluate other types of brain

disorders (Smith, 2005), including encephalopathies, neurological infections, Creutzfeldt-

Jacob disease, and even the progression of Alzheimer’s disease. An EEG records electrical
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activity along the scalp and measures spontaneous electrical activity of the brain. The signals

measured along the scalp can be correlated with brain activity, which makes it a primary tool

for diagnosis of brain-related illnesses (Tatum IV, 2014). But as noted in Beniczky et al.

(2013), the complexity of the EEG signal, interpreted and documented in EEG reports,

produces inter-observer agreement known to be moderate. As more clinical EEG signals and

reports become available, the interpretation of EEG signals can be improved by providing

neurologists with results of search for patients that exhibit similar EEG characteristics.

CLINICAL HISTORY: This is a 55-year-old gentleman with [right leg swelling]PROB,
[ESRD]PROB, [history of seizures]PROB, and [hip fracture]PROB.
MEDICATIONS: [Dilantin]TR, [Haldol]TR, many others.
INTRODUCTION: [Digital video EEG]TEST is performed at the bedside using standard
10-20 system of electrode placement with one channel of [EKG]TEST . The patient is
described as drowsy.
DESCRIPTION OF THE RECORD: The background EEG is diffusely [slow]ACT with
primarily rhythmic [theta frequency activity]ACT of 5 to 7 Hz. There are frontally
predominant, relatively synchronous [triphasic waves]ACT seen throughout the record.
On one occasion, there may be some [asymmetries]ACT , somewhat more remarkable on
the left than the right. [Stimulation]EV of the patient produces cessation of the
[triphasic waves]ACT .
IMPRESSION: Abnormal EEG due to:
1. Generalized background [slowing]ACT .
2. [Triphasic waves]ACT .
CLINICAL CORRELATION: No [seizures]PROB were recorded. The [triphasic waves]ACT

are typically a manifestation of underlying [metabolic encephalopathy]PROB including
[hepatic encephalopathy]PROB, [renal insufficiency]PROB, or medication exposure.
The [asymmetry]ACT of the triphasic waves, with prominence on the left, may be due
to preexisting [history of epilepsy]PROB and/or [structural brain disease]PROB. No
[previous EEGs]TEST were available for comparison.

Figure 2.1. Synthetic Example EEG Report.

Recently, Goodwin and M. Harabagiu (2016) have described the MERCuRY (Multi-

modal EncephalogRam patient Cohort discoveRY) system that uses deep learning to rep-

resent the EEG signal. MERCuRY operates on a multi-modal EEG index resulting from

the automatic processing of both the EEG signal and the EEG reports that document and

interpret them. The MERCuRY system allows neurologist to search a vast data archive of

clinical electroencephalography (EEG) signals and EEG reports, enabling them to discover

patient populations relevant to queries like Q: Patients with triphasic waves suspected of
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encephalopathy. The discovery of a relevant patient cohort satisfying the characteristics ex-

pressed in queries such as Q relies on the ability to automatically and accurately recognize

various medical concepts and their attributes, both in the queries and throughout the EEG

reports. In Q we could recognize that triphasic waves represents an EEG activity, while

encephalopathy is a medical problem. To find relevant patients for Q based on their EEG

reports, the relevance models and the index implemented in the MERCuRY system consider

the concepts identified in the query as well as the concepts identified in the EEG reports.

For example, a patient from the cohort relevant to Q has the EEG report illustrated in

Figure 2.1, where identified concepts have annotations indicating medical problems [PROB],

treatments [TR], tests [TEST], EEG activities [ACT], and EEG events [EV]. This EEG re-

port is relevant to Q because, as indicated in its impression section, the patient’s triphasic

waves represent one of the explanations for the abnormal EEG, while in the report’s clinical

correlation section, it is mentioned that the EEG activity identified by triphasic waves is a

manifestation of the medical problem encephalopathy. Thus the EEG report illustrated in

Figure 2.1 is relevant to the query Q because of the identified medical concepts and their

attributes.

The Temple University Hospital (TUH) EEG corpus is a publicly available collection of

EEG reports comprising over 25,000 EEG reports from over 15,000 patients collected over 12

years. Figure 2.1 depicts a synthetic record exemplifying a typical EEG report from the TUH

EEG corpus. EEG reports are designed to convey a written impression of the visual analysis

of the EEG along with an interpretation of its clinical significance. In accordance with the

American Clinical Neurophysiology Society Guidelines for writing EEG reports, the reports

from the TUH EEG Corpus start with a clinical history of the patient including information

about the patient’s age, gender, current medical conditions (e.g., “right leg swelling”), and

relevant past medical conditions (e.g., “history of seizures”) followed by a list of medications

the patient is currently taking (e.g., “Dilantin”), described in a separate section. Together,
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Table 2.1. Medical concept types and their attribute types.
Concept Type Polarity Modality EEG Activity-Specific

EEG Activity
EEG Event
Problem
Test
Treatment

these two initial sections depict the clinical picture and therapy of the patient, containing a

wealth of medical concepts including medical problems (e.g., “stroke”), symptoms (e.g., “facial

droop”), signs (e.g., “twitching”) and treatments (e.g., “Haldol”, “gastrocnemius surgery”).

After the clinical picture and therapy of the patient is established, the introduction section

of the EEG report describes the techniques used for the current EEG (e.g., “digital video

EEG using standard 10-20 system of electrode placement with one channel of EKG”), the

patient’s condition at the time of the record (e.g., drowsy), and possible activating procedures

carried out (e.g., “stimulation of the patient”). The description section is the mandatory

part of the report, meant to provide a complete and objective description of the EEG,

noting all observed EEG activities (e.g., “triphasic waves”, “PLEDs”), and EEG events (e.g.,

“stimulation”, “hyperventilation”). The impression section indicates whether or not the EEG

test is abnormal and, if so, lists the abnormalities in decreasing order of importance. These

abnormalities usually describe EEG activities (e.g., “triphasic waves”), but can also describe

EEG Events (e.g., “myoclonic seizures”). Finally, the clinical correlation section explains

what the EEG findings mean in terms of clinical interpretation, (e.g., "asymmetry of the

triphasic waves ... may be due to preexisting history of epilepsy and/or structural brain

disease").

From the narratives of each section from every EEG report, we extract five types of con-

cepts: (1) EEG activities, (2) EEG events, (3) medical problems, (4) medical treatments,

and (5) medical tests, because they represent the predominant types of concepts in the EEG
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reports (as illustrated in Figure 2.1). We were able to take advantage of the definitions of

three types of medical concepts, which were used in the 2010 i2b2 challenge (Uzuner et al.,

2011), namely medical problems (e.g., disease, injury), tests (e.g., diagnostic procedure, lab

test), and treatments described in the previous section. For the EEG-specific medical con-

cepts (i.e., EEG activities and EEG events) we created our own definitions. When deciding

on the attributes associated with the five types of medical concepts from EEG reports, as

illustrated in Table 2.1, we distinguished between attributes that apply to all types of con-

cepts, e.g., polarity and modality, and attributes that are specific only to EEG activities.

For identifying the polarity of medical concepts in EEG reports, we relied on the definition

used in the 2012 i2b2 challenge (Sun et al., 2013), considering that each concept can have

either a “positive” or a “negative” polarity, depending on the absence or presence of negation

of its finding. When we considered the recognition of the modality of concepts, we took

advantage of the definitions used in the same i2b2 challenge, where modality was used to

capture whether a medical event discerned from a medical record actually happens, is merely

proposed, mentioned as conditional, or described as possible. We extended this definition

such that the possible modality values of “factual”, “possible”, and “proposed” indicate that

medical concepts mentioned in the EEGs are actual findings, possible findings and findings

that may be true at some point in the future, respectively. Through the identification of

polarity and modality of the medical concepts, we aimed to capture the neurologist’s beliefs

about the medical concepts mentioned in the EEG report. For example, in the EEG report

illustrated in Figure 2.1, we identified the medical problem “right leg swelling" with a “fac-

tual" modality and a “positive" polarity in the clinical history section, whereas the medical

problem “structural brain disease" in the clinical correlation section was found to have the

modality “possible" and the polarity “positive". In the same section, the medical problem

“seizures" had the modality “factual" and the polarity “negative".

An EEG activity is defined as “an EEG wave or sequence of waves”, while an EEG

event is defined as “a stimulus that activates the EEG” by the International Federation of
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Table 2.2. Attributes specific to EEG activities.
Attribute 1 : Morphology ::= represents the Attribute 2 : Frequency Band
type or “form” of EEG waves. • Alpha (8 – 13 Hz)
• Rhythm: continuous rhythmic activity • Beta (13 – 32 Hz)
• Transient • Delta (< 4 Hz)

• Single Wave: • Theta (4 – 8 Hz)
• Vertex wave • Gamma (> 32 Hz)
• Wicket spikes • N/A: the default value
• Spike Attribute 3 : Background
• Sharp wave • Yes
• Slow wave • No: the default value

• Complex: A sequence of two or more
waves recurring with a fairly consistent Attribute 4 : Magnitude ::= describes the
form, distinguished from background amplitude of the EEG activity if it is
activity emphasized in the EEG report
• K-complex • Low: e.g., subtle (spike); small (polyspike
• Sleep spindles discharges)
• Spike-and-sharp-wave complex • High: e.g., high amplitude (spike); excess
• Spike-and-slow-wave complex (theta)
• Sharp-and-slow-wave complex • Normal: the default value
• Triphasic wave
• Polyspike complex Attribute 5 : Recurrence ::= describes how
• Polyspike-and-slow-wave-complex often the EEG activity occurs

• Pattern: any characteristic EEG Activity • Continuous: the activity repeats in a
• Suppression continuous, uninterrupted manner
• Amplitude Gradient • Repeated: the activity repeats intermittently
• Slowing • None: the activity occurs once; default value
• Breach Rhythm
• Benign Epileptic Transients of Sleep Attribute 6 : Dispersal ::= describes the spread

(BETS) of the activity over regions of the brain
• Photic Driving (response) • Localized (focal): limited to a small area of
• Periodic Lateralized Epileptiform the brain

Discharges (PLEDs) • Generalized (diffuse): occurring over a large
• Generalized Periodic Epileptiform area of the brain or both sides of the head

Discharges (GPEDs) • N/A: the default value
• Epileptiform discharge (unspecified)
• Disorganization Attribute 7 : Hemisphere ::= describes which
• Positive Occipital Sharp Transients of hemisphere of the brain the activity occurs in

Sleep (POSTS) • Right
• Unspecified: the default attribute value • Left

used if no morphological information is • Both
given • N/A: the default value

Clinical Neurophysiology (Noachtar et al., 2004). Although previous efforts of identifying

medical concepts in clinical narratives assumed that it is sufficient to automatically discover

(a) the boundary of each mention of a concept; (b) the concept type; (c) its modality and
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Table 2.3. Location attributes for EEG activities.
Location Attributes: Brain Location ::= describes the region of the brain in which the EEG
activity occurs. The BRAIN LOCATION attribute of the EEG Activity indicates the
location/area of the activity (corresponding to the electrode placement under the standard 10-20
system).
• Attribute 8 : Frontal (i.e., Anterior): The frontal region of the brain including all F*, Fp* and
AF* electrodes
• Attribute 9 : Occipital (i.e., Posterior): The occipital region of the brain including all O*
electrodes
• Attribute 10 : Temporal: The temporal region of the brain including all T* electrodes
• Attribute 11 : Central: The central region of the brain including all C* electrodes
• Attribute 12 : Parietal: The parietal region of the brain including all P* electrodes
• Attribute 13 : Frontocentral: The area between the frontal and central regions of the brain
including all FC* electrodes
• Attribute 14 : Frontotemporal: The area between the frontal and temporal regions of the
brain including all FT* electrodes
• Attribute 15 : Centroparietal: The area between the central and parietal regions of the brain
including all CP* electrodes
• Attribute 16 : Parieto-occipital: The area between the parietal and occipital regions of the
brain including all PO* electrodes

(d) its polarity, the EEG activities could not be recognized in the same way. First, we

noticed that EEG activities are not mentioned in a continuous expression. For example,

in the narrative fragment: “there are also bursts of irregular, frontally predominant [sharply

contoured delta activity]ACT , some of which seem to have an underlying [spike complex]ACT

from the left mid-temporal region" we can recognize one EEG activity that is mentioned

by distant expressions in the narrative. To address this problem, we considered (a) the

anchors of EEG activities and (b) their attributes. This allows us to automatically identify

the anchors of EEG activities, annotate them in EEG reports while also recognizing the

attributes of EEG activities and attaching them to the anchors, without needing to annotate

all text spans referring to EEG activities in the reports. For this purpose, we defined 16

attributes which are specific to EEG activities, listed and defined in Tables 2.2 and 2.3.

Because Morphology best defines the EEG activities, we decided to use it as the anchor

of each EEG activity, but its values also expressed the attributes of the EEG activities.

When considering the Morphology of EEG activities, we relied on a hierarchy of values,

distinguishing first two types: (1) Rhythm and (2) Transient. In addition, the Transient
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type contains three subtypes: Single Wave, Complex and Pattern. Each of these sub-types

can take multiple possible values, illustrated in Table 2.2. In addition to Morphology, we

considered three classes of attributes for EEG activities, namely (a) general attributes of the

waves, e.g., the Frequency Band , the Background - which asserts whether the EEG

activity occurs in the background or not; and Magnitude; (b) temporal attributes and (c)

spatial attributes. The only temporal attribute considered is Recurrence, which describes

how often the EEG activity occurs. As spacial attributes, we considered the Dispersal,

the Hemisphere and eight additional attributes for the Brain Location where the EEG

activity is observed, since an activity can simultaneously occur in more than one brain

location. The Brain Location attributes are enumerated in Table 2.3. All attributes

specific to EEG activities have multiple possible values associated with them. Table 2.2

defines each of the 16 attributes of EEG activities and illustrates the possible values each of

these attributes. In contrast, EEG events, which are frequently mentioned in EEG reports

as well, can be recognized only by identifying the text span where they are mentioned.

2.3 Medical Concepts and Attributes in Discharge Summaries

Discharge summaries are clinical reports generated when a patient is discharged from a hos-

pital stay. These reports, prepared by medical professionals, are the primary mode of com-

munication between the hospital care team and subsequent care providers (Kind and Smith,

2008). As mandated by the Joint Commission3, a discharge summary is to be comprised of

six components in accordance with Standard IM.6.10, EP7 (Kind and Smith, 2008):

1. Reason for hospitalization;

2. Significant findings;

3The Joint Commission is a healthcare accreditation organization that accredits more than 21,000 orga-
nizations in the United States.
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3. Procedures and treatment provided;

4. Patient’s discharge condition;

5. Patient and family instructions (where applicable);

6. Attending physician’s signature.

While each of these components is mandatory, the format of the report is not consistent

between institutions and is largely realized in unstructured natural language. As such, NLP

methods are necessary to extract useful information from discharge summaries in the form

of medical concepts and their attributes.

Discharge summaries are rich with medical concepts including medical problems, treat-

ments, and tests. Medical problems are defined as observations made by patients or clin-

icians about the patient’s body or mind that are thought to be abnormal or caused by

a disease (Uzuner et al., 2011). Medical problems can be mentioned throughout a dis-

charge summary, for instance as the reason for hospitalization, a significant finding, and as

a part of the patient’s discharge condition. Treatments are defined as phrases that describe

procedures, interventions, and substances given to a patient in an effort to resolve a med-

ical problem (Uzuner et al., 2011). Treatments can be mentioned as part of a reason for

hospitalization, a procedure/treatment provided during hospitalization, and patient/family

instructions. Tests are phrases that describe procedures performed on a patient to discover,

characterize, or rule out a medical problem and can be mentioned as leading to a significant

finding or as administered during hospitalization. Consider the synthetic example: “[An

echocardiogram] revealed [a pericardial effusion] which was relieved by [a pericardiocentesis].”

Here three spans identified by brackets indicate a test (“An echocardiogram”) a medical prob-

lem (“a pericardial effusion”) and a treatment (“a pericardiocentesis”). Together these three

types of medical concepts characterize the hospital visit and can be used for downstream

automatic processing.
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However, simply identifying the medical concepts mentioned in discharge summaries can

lead to mischaracterization of a patient’s hospital stay. While most of the medical concepts

mentioned in a discharge summary indicate problems, tests, and treatments that are present

or have happened, others may be mentioned in a hypothetical context, or as concepts that

have been ruled out. For example, consider the medical problems in the following examples:

EX1:“The patient denies [pain].”; EX2:“[pneumonia] is possible”; EX3:“admitted for [stroke] ”.

While the “stroke” from EX3 has indeed occurred, the “pain” from EX1 has explicitly not

occurred, and the “pneumonia” from EX2 is described as “possible”, having not yet been

identified as occurring or not. Each of these medical problems differ in the belief status

of the physician that wrote the discharge summary. To describe the belief status of each

medical problem, the 2010 i2b2/VA Shared-Task on Challenges in NLP for Clinical Data

defined a set of 6 assertions enumerated below (Uzuner et al., 2011):

1. Present: the medical problem has occurred;

2. Absent: the medical problem has not occurred;

3. Possible: the medical problem may have occurred, but there is uncertainty;

4. Conditional: the medical problem occurs, but only under certain conditions;

5. Hypothetical: the medical problem may occur in the future;

6. Associated with Someone Else: the medical problem is mentioned, but not asso-

ciated with the patient being discharged.

While any of the three medical concepts targeted by the shared task can be mentioned with

one of these belief status assertions, only medical problems are annotated with assertions in

the 2010 i2b2/VA challenge dataset.

In order to facilitate research in extracting medical concepts, their assertions, and rela-

tions between them in clinical free-text, the 2010 i2b2/VA challenge on concepts, assertions,

22



and relations in clinical text provided the research community with a set of 871 discharge

summaries with medical concepts and their assertions manually annotated by medical pro-

fessionals (Uzuner et al., 2011). The data contain 72,846 medical concepts with assertions

for 30,518 medical problems (Roberts and Harabagiu, 2011). The data is split into a training

set of 349 discharge summaries with 27k concepts and a test set of 477 discharge summaries

with 45k concepts (Roberts and Harabagiu, 2011).

2.4 Deep Learning for Identifying Medical Concepts in EEG Reports

In this section, the stacked Long Short-TermMemory network (sLSTM) for detecting medical

concepts in EEG reports is presented. The sLSTM is an initial application of deep learning to

medical concept detection, operating on hand-crafted features, that leverages the expressive

power of deep learning to improve prediction. The sLSTM architecture operates at the

token level, representing each token in an EEG report as a feature vector and uses a series of

LSTM layers to contextualize the token representations before using them to detect mentions

of medical concepts in the text.

More specifically, the sLSTM identifies spans of text in medical narratives that correspond

to medical concept mentions by assigning a label to each token in a sentence indicating if that

token is a part of a medical concept mention. This process is known as boundary detection

since we are identifying which tokens occur in the boundaries of a medical concept mention.

Specifically, we represent a sentence as a sequence of tokens, [w1, w2, ..., wN ], and train the

models to assign a label bi ∈ {I, O,B} to each token wi such that the token will receive a

label bi = B if it is the beginning of a mention of a medical concept, a label bi = I if the token

is inside of a mention of a medical concept, and a label bi = O otherwise. For example, the

token sequence “occasional left anterior temporal [sharp and slow wave complexes]ACT were

seen” would correspond to the label sequence [O,O,O,O,B, I, I, I, I, O,O], where tokens

{occasional, left, anterior, temporal, were, seen} are all assigned labels of O, the token
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{sharp} is assigned a label of B, and the tokens {and, slow, wave, complexes} are all assigned

labels of I.

2.4.1 The Stacked Long Short-Term Memory Network for Medical Concept

Boundary Detection

The stacked Long Short-Term Memory Network (sLSTM) for medical concept boundary

detection is a recurrent deep neural network that processes each token in a sentence, updating

a shared memory state to use previous context to inform its predictions. The sLSTM is

defined by a recurrent LSTM cell (Hochreiter and Schmidhuber, 1997) where the same cell

is applied to each token sequentially such that the memory output of a cell for token ti is

taken as the memory input for the cell for token ti+1. This is referred to as recurrence.

As such the sLSTM model belongs to a class of neural network models known as recurrent

neural networks. Using this shared memory, the sLSTM is able to incorporate information

from each of its previous predictions to inform the current prediction, making it a well-suited

for medical concept boundary detection.

The sLSTM described in this section represents each token as a feature vector encoding

several linguistic phenomena listed in Table 2.4. The genia tagger (Tsuruoka and Tsujii,

2005) was used for tokenization, lemmatization, part-of-speech (PoS) tagging, and phrase

chunking. Brown Clustering (Brown et al., 1992) is an unsupervised learning method that

discovers hierarchical clusters of words based on their contexts. The Unified Medical Lan-

Table 2.4. Features for the stacked LSTM for Medical Concept Boundary Detection.
1. The lemmas of the current token and the previous/next tokens
2. The PoS of the token and the previous/next tokens
3. The phrase chunk of the token and previous/next tokens
4. The Brown cluster of the token
5. The UMLS Concept Unique Identifier (CUI) of the UMLS concepts containing

the token
6. The title of the section containing the token
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Figure 2.2. The Stacked Long Short-Term Memory Network for Medical Concept Boundary
Detection

guage System (UMLS) (Lindberg et al., 1993) is a large biomedical ontology that enumerates

most medical concepts of interest, assigning each concept a unique identifier (CUI).

The stacked LSTM is illustrated in Figure 2.2. The sLSTM operates on sentences from

the narrative of clinical text. Each token in a sentence wi, i ∈ [1, ..., N ] is represented by a

feature vector ti, provided as input to the sLSTM, which predicts a label bi for each token.

To predict each label bi, the sLSTM considers (1) the vector representation of the token, ti;

as well as (2) the vector representation of all previous tokens from the sentence via a shared

memory vector that is updated as the sLSTM processes each token. In order to update the

shared memory vector, the LSTM cell maintains a series of gating mechanisms defined by

the following equations:

m̃i = tanh (Wm[oi−1, ti] + bm) (2.1)

gi = σ (Wg[oi−1, ti] + bg) (2.2)

(2.3)
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fi = σ (Wf [oi−1, ti] + bf ) (2.4)

mi = ft ·mi−1 + gi · m̃i (2.5)

where Wm,Wg,Wf ∈ Rd×d are weight matrices, bm, bg, bf ∈ Rd are bias vectors, σ is the

sigmoid function, and · denotes element-wise multiplication. The vector m̃i is referred to

as the candidate memory and is combined with the previous memory state, mi−1 to form

the new memory state, mi in equation 2.5. The vector fi is referred to as the forget gate

since it modulates how much of the old memory state should be forgotten. Likewise, the

gating vector gi modulates how much of the candidate memory, m̃i is incorporated into the

new memory state. The output of each LSTM cell is then calculated as follows, given the

updated memory state:

ci = σ (Wc[oi−1, ti] + bc) (2.6)

oi = ci · tanh(mi) (2.7)

where Wc ∈ Rd×d is a weight matrix and bc ∈ Rd is a bias vector.

LSTM cells have the property that they can be stacked such that the outputs of cells on

level l are used as the input to the cells on level l + 1. The sLSTM has three levels where

the input to the first level is a sequence of token feature vectors and the output of the top

level is used to determine the IOB labels for each token. To this end, the output from the

top level, o3
i , is passed through a softmax layer to produce a probability distribution over

possible IOB labels. This is accomplished by computing a vector of probabilities, qi using

the softmax function such that qi, 0 is the probability of label I, qi, 1 is the probability of

label O, and qi, 2 is the probability of label B. Specifically,

ri = Wro
3
i + br (2.8)

qij =
erij∑
j e

rij
(2.9)
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where Wr ∈ Rd×3 is a weight matrix, d is the hidden size of o3
i , and r ∈ R3 is a bias

vector. The predicted IOB label is then chosen as the label with the highest probability,

ŷi = argmaxjqij.

The weights of the sLSTM are learned by minimizing the categorical cross entropy be-

tween the predicted label distribution and the actual label, yi, for each token:

L = −
∑
i

∑
j

I[yi = j]log (qij) (2.10)

where I[yi = j] is an indicator function testing for the true label of token wi.

Two sLSTM models are trained to detect concept mentions in EEG reports: one for

identifying EEG activity anchors, and one for identifying the spans of the other four medical

concept types. As described in Section 2.2, EEG activities have complex surface forms, often

spanning entire sentences As such, mentions of EEG activities are identified by the text that

indicates their morphology attribute, referred to as the anchor of the EEG activity. Since

the other medical concepts do not have anchors, we identify them by the full span that

describes the concept – usually limited to a single phrase. Therefore, it is beneficial to have

an entirely two separate models is for identifying EEG activity anchors and spans of the

other medical concepts.

2.5 Deep Learning for Classifying Attributes in EEG Reports

In this section, the Deep ReLU Network (DRN) for classifying attributes of medical con-

cepts in EEG reports is presented. The DRN is a deep neural network that performs joint

classification of a set of inter-related attributes of the same medical concept (i.e., polarity

and modality or the 16 EEG activity-specific attributes described in Section 2.2). After

mentions of medical concepts have been automatically identified using methods presented in

Section 2.4, the DRN is used to identify the value of each attribute that characterizes the

detected medical concepts. Traditional approaches to attribute classification require training
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separate classifiers for each attribute, e.g., SVMs. However, by leveraging deep learning, we

are able to model a set of attribute classification tasks jointly and perform them with the

same network via multi-task learning.

The DRN is a deep feed-forward network operating on a feature vector representing a

medical concept that learns a multi-purpose embedding used to predict each attribute. In

this way, the DRN is able to use training signals from each attribute task to inform the

others.

Formally, the task of attribute classification is defined as a set of traditional multi-class

classification problems, one for each attribute type. For attribute a ∈ A that characterizes a

medical concept, a model is trained to produce a probability distribution over the possible

values that attribute a can take, qa. In this way, an attribute classification system should

produce a series of distributions qa for each attribute s ∈ A.

2.5.1 The Deep ReLU Network for Attribute Classification

The Deep ReLU Network (DRN) for attribute classification is a multi-task neural network for

jointly performing attribute classification on a set of inter-related attributes that characterize

a medical concept in an EEG report. The DRN operates on a feature vector describing a

medical concept and the context in which it is found in a medical narrative, distilling from

the feature vector a multi-task embedding which is used to perform concurrently a set of

attribute classification tasks. Using a shared embedding allows important information to be

shared between individual tasks. For example, when classifying the frequency of an EEG

activity, it is beneficial to have information about the the activity’s morphology since several

morphologies preclude certain frequency ranges.

The DRN represents a medical concept as a feature vector encoding the medical concept

mention itself, and the context in which it occurs in the free text of a medical narrative. The

features are listed in Table 2.5 below:
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Table 2.5. Feature representation of medical concepts used by the Deep ReLU Network for
Attribute Classification.
1. The text of the medical concept mention
2. The lemmas of each token in the medical concept mention
3. The PoS of each token in the medical concept mention
4. The lemmas of three tokens before/after the medical concept mention
5. The title of the section containing the medical concept mention
6. The syntactic dependency path to t
7. The number of words between the medical concept mention and t
8. The number of “hops” in the syntactic dependency path from the head of the medical

concept mention to t
9. The number of medical concepts between the medical concept mention and t

Feature
Vector Multi-Task

Embedding
ReLU ReLU ReLU

Softmax Layer

Attribute 1

Softmax Layer

Attribute 2

Attribute k

Softmax Layer

Figure 2.3. The Deep ReLU Network (DRN) for Attribute Classification shown performing
joint prediction over k attribute classes.

As with the stacked LSTM of Section 2.4.1, the genia tagger (Tsuruoka and Tsujii, 2005)

is used for tokenization and lemmatization, while Stanford CoreNLP (Chen and Manning,

2014) is used for dependency parsing. The context features 6-9 help the DRN capture long-

distance context information which is helpful if the textual cues indicating the value of an

attribute are far away. For example, due to the complex nature of EEG activities, it is

not uncommon for entire sentences to describe a single activity, with attribute values being

indicated by text throughout the sentence.
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The DRN is presented in Figure 2.3. Given a feature vector xc representing a medical

concept c from a medical narrative, the DRN learns a d-dimensional multi-task embedding

of the concept, ec ∈ Rd. The embedding ec is produced by passing the feature vector

through five fully-connected Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) layers.

Specifically, for layer l ∈ {1, ..., 5},

rlc = max
{

0,Wlr
l−1
c + bl

}
(2.11)

whereWl ∈ Rd×d is a weight matrix for layer l, bl ∈ Rd is a bias vector for layer l, and r0
c = xc

is the feature vector representing medical concept c. The ReLU layers provide two benefits

that allow the network to function properly at depth: (1) ReLUs allow for a deep network

configuration and (2) they learn sparse representations, allowing them to perform de facto

internal feature selection (Glorot et al., 2011). ReLU’s allow for deep network configurations

by avoiding the vanishing gradient problem. The vanishing gradient problem effects deep

networks by causing them to lose information used to update weights in the network as the

network gains depth (Bengio et al., 1994). The gradient with respect to a traditional unit

(e.g., tanh, sigmoid) can cause gradient values to saturate because the gradient is scaled up

or down at each layer. If the gradients are scaled down, this can cause the gradient values

back-propagated to the input layers to trend towards zero, leading to stagnation. Because

the ReLU activation effectively acts as a linear unit during back-propagation, the gradients

are passed through the ReLU layers without scaling, effectively avoiding the problem of

vanishing gradients.

As illustrated in Figure 2.3, the multi-task embedding produced by the DRN is used to

perform prediction on a set of k attributes using a fully-connected softmax layer for each

attribute. Specifically, for attribute a of concept c in a medical narrative, the DRN produces
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a probability distribution qac as follows:

rac = W a
r e

a
c + bar (2.12)

qacj =
er

a
cj∑

j e
racj

(2.13)

where W a
r ∈ Rd×|a| is a weight matrix, |a| is the number of possible values for attribute a,

and bar ∈ R|a| is a bias vector. The predicted attribute value is then chosen as the value with

the highest probability, ŷac = argmaxjqacj.

The weights of the DRN are learned using cross-entropy for each attribute, a, of each

concept, c in the training corpus:

L = −
∑
c

∑
a

∑
j

I[yac = j]log
(
qacj
)

(2.14)

where Iyac = j] is an indicator function testing for the true label of attribute a of concept c.

As the the sLSTMS for boundary detection, we train two DRM models classifying the

attributes of medical concepts in EEG reports: one for EEG activities and one for the other

four types of medical concepts. Two models are necessary since EEG activities have 16

attributes that only pertain the activities. Specifically we have a DRN model that is applied

to EEG activities that predicts the 16 EEG activity specific attributes along with their

polarity and modality. A second DRN model is trained to predict the polarity, modality,

and type of the other medical concepts identified by EEG reports. Since the spans of the

other four types of medical concepts are identified together by a single sLSTM model, their

type needs to be predicted as well, so it is incorporated as an additional attribute.

2.6 Deep Learning for Jointly Identifying Medical Concepts and Assertions in

Discharge Summaries

This section describes the Multi-Task BERT Graph Convolution Network (MT-BGCN) for

jointly identifying medical concepts and assertions in discharge summaries. Sections 2.4 and

31



There        is      a        moderate     effusion

Medical Problem

Root

expl
dobj

det
amod

Assertion: PRESENT

The   patient     denies       any        chest       pain

Medical Problem

Root

nsubj

dobj

predet
nn

Assertion: ABSENT

det

I        believe       it        is         due   to   pulmonary   hypertention

Root

nsubj
parataxis

pcomp

amod
nsubj cop

Medical Problem

Assertion: POSSIBLE

Readmit      him       once       the     wound       has    healed

Medical Problem

Root

dobj
tmod

det aux
dobj

mark
Assertion: CONDITIONAL

Patient     to      return      for     worsening     pain

Root
vmod pcomp

amod

Medical Problem

Assertion: HYPOTHETICAL

The      mother     died      of       lung      cancer

Root

nsubjdet nn

pcomp

Assertion: ASSOCIATED  WITH  SOMEONE  ELSE

Medical Problem

Figure 2.4. Syntactic dependencies between medical concepts and their narrative context
indicative of the assertions.

2.5 introduced two distinct systems for medical concept boundary detection and attribute

classification, respectively. However, as these two tasks are closely related, MT-BGCN is de-

signed to perform both tasks jointly via multi-task learning, leveraging the training signals

of each task to inform the other. As such, MT-BGCN leverages a sophisticated pre-trained

representation layer to perform medical concept boundary detection (as in Section 2.4) and

attribute classification (as in Section 2.5) jointly, with the same network. As described in

Section 2.3, the we focus on a single attribute of medical problems that occur in discharge

summaries called the assertion. Figure 2.4 illustrates examples of assertions regarding medi-

cal concepts mentioned in the context of clinical narratives. Moreover, Figure 2.4 illustrates

the syntactic dependency parse for each example sentence to demonstrate the interactions

between medical problems and their assertions.

Figure 2.4 illustrates how a Present assertion of the medical concept "moderate effu-

sion" can be inferred because the mention of the medical problem is a direct object (dobj) of

the expletive (exp) used in the narrative context- a dependency pattern that is highly rep-

resentative of medical problems which are Present. Medical problems that are believed to

be Possible may form a prepositional complement (pcomp) to verbs involved in a parataxis

relation with verbs of judgement, such as "believe", "think" or "consider". As shown in Fig-

ure2.4, the medical problem "pulbmonary hypertention" is a complement of the phrasal verb
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"is due", which is involved in a parataxis relation with the judgement verb "believe". Alter-

natively, when the mention of a medical concept is a direct object (dobj) is a verb that has

negation connotations, the assertion receives a value of Absent. As illustrated in Figure 2.4,

the medical problem "chest pain" is believed to be Absent because it is a direct object of

the verb "denies". Sometimes the assertion value related to a medical concept is inferred

by a chain of dependency relations. For example, as illustrated in Figure 2.4, the medical

problem "wound" is believed to be Conditional on its healing such that the readmission

discussed in the context of the clinical narrative can occur. In this case, the value of the

assertion is informed not only by the fact that the medical problem is a direct object (dboj)

of the healing event, but also by temporal relationship (tmod) established in the dependency

parse between the verb "readmit" and the temporal signal "once", which is also a marker to

the dependency relating it to the verb "healed". A Hypothetical assertion of a medical

concept can be inferred, as illustrated in Figure 2.4, when a dependency relation to a verb

in infinitive (e.g., "to return") which has the medical problem as a complement is headed by

a preposition (pcomp) (e.g., for ... pain"). Figure 2.4 also shows how a pcomp dependency

from a medical problem to a verb that has a subject mentioning a person in some relation

(e.g., kinship) to the patient, the assertion that the medical problem is Associated with

Someone Else can be inferred. Syntactic dependencies similar to those illustrated in Fig-

ure 2.4 can also be used to identify the span of words that cover the mention of a medical

concept, as these words participate in specific relations that inform the assertion inference.

MT-BGCN employs a graph convolution network to leverage the syntactic information made

available by the dependency parse to more accurately identify medical concepts and their

assertions.

MT-BGCN, depicted in Figure 2.5, is comprised of five modules operating at the sentence

level:
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Figure 2.5. The Multi-Task BERT Graph Convolution Network for jointly identifying med-
ical concepts and assertions in discharge summaries.

1. The BERT Sentence Encoder is the massively pre-trained transformer model of

Devlin et al. (2019). It was pre-trained on a general text corpus using language mod-

eling tasks, then fine-tuned on a clinical text corpus by Peng et al. (2019).
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2. The Graph Convolution Network incorporates syntactic information in the form

of Part-of-Speech (PoS) tags and contextualizes each token using its neighbors in the

dependency graph using graph convolution.

3. The BiLSTM Module further contextualizes each token in the sentence via forward

and backward connections in the BiLSTM.

4. The Mention Boundary CRF is comprised of a fully connected layer and a Condi-

tional Random Field (CRF) (Lafferty et al., 2001) used to perform token-level medical

concept boundary prediction.

5. The Assertion Classifier is a softmax layer for performing assertion classification.

The first three modules are used to extract contextualized representations of each token in a

sentence which are shared among the two prediction modules, the Mention Boundary CRF

and the Assertion Classifier. Each module is described in detail in the remainder of the

section.

2.6.1 The BERT Sentence Encoder

The Bidirectional Encoder Representations from Transformers (BERT) model developed by

Devlin et al. (2019) is a pre-trained Transformer encoder model that constructs contextual-

ized token embeddings from a text sequence. BERT has been shown to be widely applicable

in natural language processing, achieving state of the art results in several tasks including

named entity recognition, question answering, and natural language inference (Devlin et al.,

2019). Moreover, BERT has also been successfully applied to clinical NLP tasks as well (Peng

et al., 2019; Fraser et al., 2019). BERT is part of a wider trend in NLP emphasizing the

contextualization of word embeddings (Peters et al., 2018; Radford et al., 2019; Dai et al.,

2019).
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Traditional word embeddings (e.g., the GloVe embeddings used in Section 2.4) are used

to represent a word in isolation whereas contextualized word embedding systems will produce

different embeddings for the same word based on the context in which that word occurs. For

example, the word “cardiovascular ” would have a different representation if it occurred in the

phrase “cardiovascular distress” vs. “cardiovascular surgery” in a contextualized embedding

system, but the same representation in a static embedding system like GloVe or Word2Vec.

Contextualized word embeddings produced by BERT are used in place of traditional word

embeddings (e.g., GloVe (Pennington et al., 2014), Word2Vec (Mikolov et al., 2013)) to

provide increased representational power, capturing for each word its deep connections to

other words from the same context.

The BERT Sentence Encoder, illustrated in Figure 2.5 is a multi-layer bidirectional Trans-

former (Vaswani et al., 2017) encoder which operates at the sentence level, considering each

sentence as a sequence of word-piece tokens. WordPiece tokenization (Wu et al., 2016)

is completely data-driven and guaranteed to generate a deterministic segmentation for any

possible sequence of characters of each sentence. This is especially important for clinical nar-

ratives where rare words, that are not available in common word embedding collections, are

prevalent. For this reason, we used the word-piece token vocabulary of Devlin et al. (2019),

as required by the BERT model. Given a sequence of word-piece tokens, t1, ..., tn, the BERT

Sentence Encoder produces a sequence of contextualized token embeddings c1, ..., cn using

a stack of twelve Transformer layers. The Transformer (Vaswani et al., 2017) is a self-

attentive model that contextualizes each token in a sentence using every other token in the

same sentence, determining token-token relevance using a process called attention. In this

way, the contextualized token representations, ci contain bidirectional context information.

The learning framework of the BERT Sentence Encoder has two steps: (1) pre-training and

(2) fine-tuning During pre-training, BERT is trained to perform language modeling on a

large collection of unlabeled free text. We have used the BLUE-BERT model which is pre-

trained in two steps. First BLUE-BERT is trained on the BooksCorpus (800M words) (Zhu
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et al., 2015) and the English Wikipedia (2,500M words) by Devlin et al.(Devlin et al., 2019)

In order to adapt BLUE-BERT to the clinical domain, it was further pre-trained on PubMed

abstracts (4,000M words) and MIMIC-III (500M words) by Peng et al. (Peng et al., 2019)

Fine-tuning was straightforward since the self-attention mechanism in the Transformer al-

lows BERT to model medical concept identification by swapping out the appropriate inputs

and outputs. For fine-tuning, the BERT Sentence Encoder was first initialized with the

pre-trained parameters, enabling all of the parameters to be fine-tuned.

2.6.2 The Graph Convolution Network for Incorporating Syntactic Informa-

tion.

Because medical concepts are annotated on discharge summaries available for the 2010

i2b2/VA Challenge by considering only complete noun and adjectival phrases, while as-

sertions are informed by dependency relations, it is imperative to incorporate in MT-BGCN

syntactic information in two forms: (1) Part-of-Speech (PoS) information; and (2) informa-

tion provided by dependency parsing. PoS information is incorporated at the token level in

the form of a PoS tag embedding, while the dependency parse is used to further contextualize

each token embedding, cs, using graph convolution on the dependency graph. PoS tags and

dependency parses are obtained using SciSpacy (Neumann et al., 2019), an NLP pipeline

made for scientific and biomedical text. To incorporate PoS information, we concatenated

the contextualized token embedding produced by the BERT Sentence Encoder with PoS

embeddings:

si = [ci, pi] (2.15)

where [] is the concatenation operation and pi is the PoS embedding of token i. The PoS

embeddings were initialized randomly and learned along with the rest of the parameters

of the MT-BGCN model. While PoS tags representing lexico-syntactic information was
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incorporated through embedding concatenation, the syntactic dependency information was

incorporated using Graph Convolution Networks (GCNs).

GCNs are neural networks operating on graphs and inducing embeddings of nodes based

on properties of their neighborhoods in the graph. In the MT-BGCN architecture, we con-

sider the graph induced by the syntactic dependency parse where the tokens from a sentence

comprise the nodes of the graph and the dependency relations constitute the edges. GCNs

operating on the syntactic dependency parse have been shown to be effective in several NLP

tasks including semantic role labeling (Marcheggiani and Titov, 2017) and relation extrac-

tion (Guo et al., 2019). An adjacency matrix A informed by the syntactic dependency of a

sentence assigns Aij = 1 if the token i is directly connected to token j in the dependency

parse and 0 otherwise. For a sequence of token embeddings, [s1, ...sn], a GCN computes

a sequence of syntactically-informed embeddings [g1, ..., gn] using the dependency graph as

follows:

GCN(ci) = φ

(∑
j

Aij (Wgcj + bg)

)
(2.16)

whereWg and bg are a weight matrix and bias vector and φ is an activation function. We used

the Gaussian Error Linear Unit (GELU) (Hendrycks and Gimpel, 2016) activation function

in this work. By using the adjacency matrix A, the computation of GCN(ci) only considers

those tokens which are connected to token i in the dependency parse. It should be noted

that self-edges are added to the adjacency matrix (i.e., Aii = 1 for each i) for each token

such that each token, ci, is used to inform it’s own induced representation, GCN(ci).

Figure 2.6 illustrates how the GCN is processing the sentence: “Complaining of low-

grade fever and nasal congestion”, showcasing the PoS tags and dependency parse produced

by ScispaCy along with three GCN layers having edges informed by the dependency parse.

The GCN module combines each token representation with its part of speech tag and uses

a series of graph convolution layers to further contextualize each token embedding using

its neighbors in the dependency graph. Each token and its representations throughout the
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Figure 2.6. The Graph Convolution module for incorporating syntactic information.

GCN are highlighted in a different color in Figure 2.6. At each layer of the GCN, each

token representation is a function of the tokens connected to it in the dependency graph.

It is to be noted that at each layer of the GCN, each token representation is a function

of the tokens connected to it in the dependency graph. We can see, for example, that

the phrase “ low-grade fever ” is represented by its head token, “fever ”, since each token in

the phrase has a connection to “fever ” in the dependency graph. By stacking GCN layers,

we allow for influence to spread along the graph. For example, the representation of the

token, “complaining”, depends on the token “congestion” in the third layer though the path

(g1
6, g

2
2, g

3
1).

In the GCN of MT-BGCN we used three GCN layers augmented with residual connec-

tions (He et al., 2016). Formally, this enabled the representation of token i in layer l to be

calculated as:

gli = gl−1
i + GCN(gl−1

i ) (2.17)

The residual connections combine the output of each GCN node with its input to cause each

node in the GCN to refine its input instead of replacing it, thus leading to faster convergence,
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especially in larger networks (He et al., 2016). The input of the first GCN layer, g0
i = si

as computed in Equation 2.15. It is to be noted that PoS tags and dependency parses are

defined on the word level, not the word-piece level. Therefore, in MT-BGCN, word-pieces

from the same word inherit that word’s PoS tag. Moreover, edges are added to the adjacency

matrix of the dependency graph connecting word-piece tokens of the same word.

2.6.3 The BiLSTM Module

The BiLSTMmodule is a simple 1-layer bidirectional LSTM that performs the final contextu-

alization step. While the GCN incorporates important syntactic information into the model,

the BiLSTM layer performs two functions the GCN does not: (1) it encodes local sequen-

tial information; and (2) it provides robustness in the face of erroneous dependency parses.

Local sequential information is privileged in a BiLSTM architecture due to the connections

between adjacent BiLSTM cells. This is also important for medical concept recognition since

medical concept mentions are defined by contiguous token spans. Moreover, the BiLSTM

module provides a fallback for contextualization in the event of errors in the dependency

parse produced by SciSpacy. Due to the nature of discharge summaries, based on dictation,

and including semi-structured text, this is not an uncommon occurrence.

The BiLSTMmodule produces an embedding di for each token by passing the embeddings

g3
i produced by the GCN module through a bidirectional LSTM: di = BiLSTM(g3

i ; g
3
: ).

2.6.4 Prediction Modules in the MT-BGCN

There are two prediction modules in the MT-BGCN: the Medical Concept Type and Bound-

ary CRF (MCTB-CRF) and the Assertion Classifier. The MCTB-CRF uses a Conditional

Random Field (Lafferty et al., 2001) to generate the most likely boundary tag sequence for

a sentence in order to identify the spans of medical concept mentions. Because it uses differ-

ent boundary tags for each type of medical concept, it also identifies the concept type. The
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Assertion Classifier uses a softmax layer to calculate a probability distribution over possible

assertion values for a given medical concept using its token embedding.

Given a sequence of token embeddings from the BiLSTM module, d1, ..., dn, the MCTB-

CRF uses a fully connected layer to produce a vector of potentials4, d̃i ∈ R3 with one

potential for each possible IOB tag. A CRF is trained to predict the highest likelihood tag

sequence given a sequence of vectors of potentials, d̃1, ..., d̃n. The CRF uses the likelihood

of transitioning between IOB tags measured during training to enforce consistency in its

predictions during testing (e.g., it will be very unlikely to predict an ‘I’ tag after an ‘O’

tag since this is never seen during training). Since there are three medical concept types,

the MCTB-CRF has three fully connected layers that produce three sequences of vectors of

potentials, one for each concept type. However, the same CRF is shared for each of the three

concept types since they share the output label space and their label transition probabilities

should align. The MCTB-CRF is trained to minimize the negative log likelihood of the

correct tag sequence s:

LB = −logP (s|d̃1, ..., d̃n) (2.18)

In fact, the MCTB-CRF uses three loss functions, one for each concept type, LBP , LBTe,

LBTr for problems, test, and treatments, respectively.

The Assertion Classifier is comprised of a single softmax layer that produces a probability

distribution over assertion values: αi = softmax(Wαdi + bα) where Wα ∈ Rd×6 is a weight

matrix and bα ∈ R6 is a bias vector. Only tokens di representing the start of a medical

problem mention are considered by the Assertion Classifier. The Assertion Classifier is

trained considering the minimization of a cross-entropy loss, defined as:

LA = −
∑
a

I[yi = a]log (αia) (2.19)

4A potential is simply a score associated with an IOB tag indicating the likelihood of that tag.
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where Iy = a] is an indicator function that returns 1 if the assertion associated with the

medical problem mentioned at token i has value a ∈ [1, ..., 6] and 0 otherwise. A value

of a = 1 indicates that the assertion of the medical problem has the value of Present,

a value of a = 2 corresponds to Possible, while a = 3 indicates Absent and a = 4

indicates Conditional; a = 5 indicates Hypothetical; a = 6 indicates Associated

With Someone Else. MT-BGCN is trained to minimize the multi-task loss function

defined as a linear interpolation of each loss:

L = λ1LBP + λ2LBTe + λ3LBTr + λ4LA (2.20)

2.7 Experimental Results and Discussions

In order to evaluate the deep learning methods for identifying concepts and their attributes

in electronic health records introduced in this chapter, we conduct experiments using the

TUH EEG corpus and the 2010 i2b2/VA challenge dataset (Uzuner et al., 2011). We adopt

the metrics used in the 2010 i2b2/VA challenge for both medical concept detection and

attribute classification: precision (P), recall (R), and F1-score (F1) defined below:

P =
tp

tp+ fp
(2.21)

R =
tp

tp+ fn
(2.22)

F1 = 2
P ∗R
P +R

(2.23)

where tp, fp, and fn indicate true positives (prediction matches gold annotation), false

positives (prediction does not match gold annotation) and false negatives (gold annotation

does not match any prediction), respectively. For medical concept detection, we report exact

and partial matching evaluations. For partial matching, overlapping medical concept spans

are counted as true positives even if their boundaries do not exactly align, while for exact

matching, their spans must align completely.
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Table 2.6. Evaluation results for stacked LSTM models for concept boundary recognition
evaluated with exact and partial matching against a CRF baseline.

EEG Activity

Exact Partial
Model Precision Recall F1-Score Precision Recall F1-Score

CRF 0.8721 0.7650 0.8364 0.9489 0.8308 0.9095
sLSTM 0.8949 0.8125 0.8517 0.9650 0.8968 0.9297

Other Medical Concepts

Exact Partial
Model Precision Recall F1-Score Precision Recall F1-Score

CRF 0.9047 0.8501 0.8683 0.9474 0.8773 0.9110
sLSTM 0.9207 0.8538 0.8860 0.9469 0.9263 0.9332

2.7.1 Evaluation of Deep Learning Systems for Identifying Concepts and Their

Attributes in EEG Reports

In this subsection, we evaluate (1) the ability of the stacked LSTM (sLSTM) to detect

anchors of EEG activities and the boundaries of medical problems, tests, and treatments;

and (2) the ability of the Deep ReLU Network (DRN) to determine attributes of each medical

concept. The evaluations are conducted on a set of 140 EEG reports in which concepts and

attributes were manually annotated by three graduate students after extensive consultation

with practicing neurologists. Average inter-annotator agreement, measured using Jaccard

Score (Levandowsky and Winter, 1971), was 0.9658 and 0.9518 for concept boundaries and

attributes, respectively. The evaluations were performed using a test set of 30 reports and a

training set of 110 reports, with 10 held out for validation. There are 1184 EEG activities,

419 EEG events, 747 medical problems, 669 tests, and 500 treatments manually identified

in the EEG reports.

Table 2.6 presents the results of the two sLSTM models for detecting (a) the anchors

of EEG activities and (b) the boundaries of all other medical concepts (EEG events, medi-

cal problems, test, and treatments). The sLSTM models are compared with a linear chain

Conditional Random Field (Lafferty et al., 2001) trained on the same features using an im-
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Table 2.7. Performance of the DRN when automatically detecting attributes of EEG events,
medical problems, tests, and treatments.

Attributes and Value # Precision Recall F1-Score

Concept Type 2335 – – 0.939

EEG Event 419 0.926 0.928 0.927
Medical Problem 747 0.901 0.960 0.929
Test 669 0.982 0.958 0.970
Treatment 500 0.964 0.898 0.930

Modality 2318 – – 0.659

Factual 2199 0.971 0.990 0.980
Possible 64 0.634 0.406 0.495
Proposed 55 0.622 0.418 0.500

Polarity 121 – – 0.770

plementation provided by CRFSuite (Okazaki, 2007). As described in Section 2.4, we train

two separate sLSTM models due to the syntactic differences in the surface forms indicating

EEG activity anchors versus the other medical concept boundaries. The results show that

the performance of predicting EEG activity anchors was slightly lower than predicting the

other medical concept boundaries. This is not surprising given the fragmented and complex

language used in EEG activity descriptions in EEG reports, as noted in Section 2.2. However,

with F1 scores of 0.8517 and 0.8860, it is clear that the sLSTM model is able to accurately

identify medical concept mentions in EEG reports. Recall from Section 2.5 that in order

to differentiate medical problems, treatments, tests, and EEG activities, the concept type is

encoded as an attribute of the medical concepts identified by the sLSTM along with polarity

and modality. The results of the DRN for concept type, polarity and modality are presented

in Table 2.7 along with the counts of each concept type and attribute value. When identi-

fying medical concepts using the sLSTM for boundary detection and predicting their types

using the DRN, we achieve F1 scores of 0.8563, 0.8118, 0.8963, and 0.9074 for recognizing

EEG events, medical problems, tests, and treatments, respectively. Table 2.8 presents the

performance of the DRN for predicting the attributes of EEG activities. Aggregated metrics

are presented for each attribute type using micro-average, however precision and recall are
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Table 2.8. Performance of the DRN when automatically detecting attributes of EEG activ-
ities evaluated with precision (P), recall (R), and F1-score (F1).
Attributes and Values # P R F1 Attributes and Values # P R F1

Morphology 1438 – – 0.7716 Frequency Band 1438 – – 0.8754

Rhythm 388 0.6087 0.8660 0.7149 Alpha 128 0.8632 0.7891 0.8245
Vertex Wave 37 0.6977 0.8108 0.7500 Beta 91 0.6881 0.8242 0.7500
Wicket Spikes 11 0.5000 0.1818 0.2667 Delta 129 0.8416 0.6589 0.7391
Spike 43 0.8000 0.5581 0.6575 Theta 118 0.7755 06441. 0.7037
Sharp Wave 107 0.9195 0.7577 0.8247 N/A 972 0.9067 0.9410 0.9235

Slow wave 64 0.8929 0.7813 0.8333 Magnitude 1438 – – 0.8148

K-complex 11 0.8889 0.7273 0.8000 Low 184 0.7548 0.5939 0.6648
Sleep spindles 28 0.5526 0.7500 0.6364 High 175 0.6273 0.6900 0.6571
Spike-and-slow wave 106 1.0000 0.6132 0.7602 Normal 1079 0.9210 0.9396 0.9302

Triphasic wave 16 0.8333 0.6250 0.7143 Background 1438 0.8904 0.8197 0.8543

Polyspike complex 29 0.7500 0.5172 0.6122 Recurrence 1438 – – 0.7174

Suppression 48 0.5814 0.5208 0.5495 Continuous 224 0.7244 0.6546 0.6878
Slowing 174 0.9371 0.7701 0.8454 Repeated 262 0.7974 0.6461 0.7138
Breach rhythm 12 0.8000 0.6667 0.7273 None 952 0.6607 0.8163 0.7303

Photic driving 51 0.8750 0.6863 0.7692 Location 692 0.7450 0.5958 0.6618

PLEDs 20 0.5625 0.4500 0.5000 Frontal 189 0.7302 0.4868 0.5841
Epileptiform Discharge 136 0.7934 0.7059 0.7471 Occipital 268 0.7871 0.7313 0.7582
Disorganization 98 0.8000 0.6122 0.6936 Temporal 128 0.6786 0.5938 0.6333
Unspecified 59 0.3855 0.5424 0.4507 Central 30 0.7500 0.4109 0.5309

Hemisphere 1438 – – 0.8148 Parietal 10 0.5714 0.4000 0.4706

Right 96 0.7634 0.7396 0.7513 Frontocentral 50 0.8824 0.6000 0.7143
Left 159 0.8257 0.5660 0.6716 Frontotemporal 17 0.5618 0.4963 0.5270

Both 246 0.6027 0.5488 0.5745 Modality 1438 – – 0.9337

N/A 937 0.8603 0.9218 0.8900 Factual 1366 0.9696 0.9939 0.9816

Dispersal 1438 – – 0.7283 Possible 70 0.4308 0.4000 0.4148

Localized 330 0.5955 0.6424 0.6181 Proposed 76 0.2318 0.4605 0.3084

Generalized 246 0.5162 0.5813 0.5468 Polarity 1438 0.9100 0.7389 0.8156

N/A 862 0.8441 0.7947 0.8186

omitted for multi-class classification tasks since they are equivalent to F1. Table 2.9 presents

a comparison of the DRN against a Support Vector Machine (Vapnik, 1999) trained on the

same features.

In general, it is clear that the DRN was able to accurately determine the attributes of

EEG, obtaining an overall macro-averaged F1 score of 0.7133. While the DRN out performs

the SVM in micro-averaged F1 score, it is also clear that the DRN struggles to predict certain

attribute values, for example MODALITY=Possible, MORPHOLOGY=Polyspike_and_wave,
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Table 2.9. Deep ReLU Network compared with Support Vector Machine for detecting at-
tributes of medical concepts in EEG Reports measured using micro-average F1 score.

Attribute SVM DRN

Morphology 0.7521 0.7716
Hemisphere 0.7897 0.8148
Dispersal 0.6734 0.7283
Frequency Band 0.8506 0.8754
Magnitude 0.8062 0.8148
Background 0.8483 0.8543
Recurrence 0.7380 0.7174
Location 0.6741 0.6618
Modality 0.7275 0.7500
Polarity 0.7384 0.7852
Concept Type 0.9109 0.9392

and BRAIN_LOCATION=Central. The degraded performance for these values is unsur-

prising as they are some of the least frequently annotated attributes in our data set (with

41, 5, 29 instances respectively). However, we believe that the performance of our model

when detecting rare attributes could be improved in future work by incorporating knowledge

from neurological ontologies (Sahoo et al., 2014) as well as other sources of general medical

knowledge (Lindberg et al., 1993). We found that the performance of our DRN for deter-

mining attribute of other medical concepts was highly promising, with an overall accuracy of

97.4%. However, we observed the same correlation between the number of annotations for an

attribute’s value and the DRN’s ability to predict that value. In the TUH EEG corpus, we

found that nearly all mentions of EEG Events and medical problems, test, or treatments had

a factual modality (96%). The lowest performance of the DRN was observed when deter-

mining the polarity attribute. The main source of errors for determining polarity was due to

frequent ungrammatical sentences in the EEG Reports, e.g., “There are rare sharp transients

noted in the record but without after going slow waves as would be expected in epileptiform

sharp waves”. We believe these errors could be overcome in future work by relying on parsers

trained on medical data. The medical concepts and their attributes extracted from EEG
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Table 2.10. Annotation distribution for concepts and assertions in the 2010 i2b2/VA chal-
lenge. The AwSE assertion represents an assertion value of “Associated with Someone Else”.

Concepts

Problem Test Treatment

Training Set 11,968 7,369 8,500
Test Set 18,550 12,899 13,560

Assertions

Present Absent Possible Conditional Hypothetical AwSE

Training Set 8,052 2,535 535 103 651 92
Test Set 13,025 3,609 883 171 717 145

reports it enables us to generate EEG-specific qualified medical knowledge (Goodwin and

Harabagiu, 2013). We believe this knowledge can be enhanced by incorporating informa-

tion from the EEG signals, creating a multi-modal medical knowledge representation. Such

a knowledge representation is needed for reasoning mechanisms operating on big medical

data.

2.7.2 Evaluation of Deep Learning Systems for Identifying Concepts and Their

Attributes in Discharge Summaries

In this subsection, we evaluate the ability of the MT-BGCN system to detect medical con-

cepts and their attributes in discharge summaries. To evaluate MT-BGCN, we use the 2010

i2b2/VA Challenge dataset described in Section 2.3 comprised of 349 discharge summaries

for training and 477 for testing. The discharge summaries have manually annotated spans

of medical concept mentions including medical problems, tests, and treatments. Moreover,

each medical problem has an assertion associated with it taking one of six values defined in

Section 2.3. Table 2.10 describes the distribution of annotations in the dataset.

For boundary detection MT-BGCN is compared against several baselines:

• Semi-Markov HMM (De Bruijn et al., 2011) is the system that won the 2010

i2b2/VA challenge. It relies on a Semi-Markov HMM operating on feature vectors.
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• MT-Seq2Seq is a Multi-task Sequence-to-Sequence model of (Bhatia et al., 2019)

trained to jointly perform concept detection and negation.

• ELMo+BiLSTM-CRF is a model from Zhu et al. (2018) using contextualized ELMo

embeddings (Peters et al., 2018) fed into a BiLSTM-CRF. This is equivalent to MT-

BGCN with the BERT sentence encoder replaced by ELMo and the GCN module

removed. The ELMo model used in this system was pre-trained first on general purpose

text, then on medical text, similar to the BERT model in MT-BGCN.

• BERT is a fine-tuned BERT model (Devlin et al., 2019) feeding directly into a single

softmax layer for prediction. This was reported in Fraser et al. (2019).

• MIMIC-BERT-large is a model developed by Si et al. (2019) that takes the pre-

trained BERT-large model, conducts a second pre-training regimen using clinical notes

in MIMIC, then fine-tunes it for the 2010 i2b2/VA challenge using a BiLSTM. The

BERT-large model contains roughly three times as many parameters as the BERT-base

model used in MT-BGCN and the rest of the baselines.

• NCBI-BERT is a model developed by Fraser et al. (2019) that uses two pre-trained

BERT models concatenated together to form its contextualized word embeddings. The

first BERT model is the BERT-base model trained on Wikipedia and the BooksCorpus

and the second BERT model is the same pre-trained BERT model as MT-BGCN. The

concatenated token embeddings are passed to a BiLSTM as in MT-BGCN.

MT-BGCN is implemented in TensorFlow (Abadi et al., 2016) and trained using the entire

training set for 50 epochs using a learning rate of 1e-6 with exponential decay with rate of

0.95. The PoS embedding size is 256, the GCN and BiLSTM hidden size is 200. A dropout

rate of 0.4 is used in all layers other than the BiLSTM in which no dropout is used. λ1, λ2,
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Table 2.11. Evaluation results for medical concept detection for the 2010 i2b2/VA challenge.
Best results are in bold. *Results marked with an asterisk were reported with only two
significant figures. The developers of MIMIC-BERT-large only report F1 score.

System Precision Recall F1-Score

Semi-Markov HMM 0.869 0.836 0.852
MT-Seq2Seq 0.854 0.858 0.855
ELMo+BiLSTM-CRF 0.893 0.879 0.886
BERT 0.85* 0.87* 0.86*
MIMIC-BERT-large – – 0.903
NCBI-BERT 0.89* 0.90* 0.90*

MT-BGCN 0.901 0.917 0.909

λ3, and λ4 are set to 0.1, 0.6, 0.3, and 0.7, respectively. Hyper-parameters are tuned using

a reserved set of 10% of the training data.

As in the previous subsection, boundary detection is evaluated in terms of precision,

recall, and F1. However we only report exact matching scores since partial matching metrics

are only available for one baseline. The results are presented in Table 2.11. MT-BGCN

achieves to top score in each metric. We can see from the baselines that contextual embedding

is important for this task, since the ELMo and BERT models all outperform the MT-Seq2Seq

model. However, the results also indicate that it is important to adapt the contextual

embedding system to medical data before fine-tuning, as MT-BGCN, ELMo+BiLSTM-CRF,

MIMIC-BERT-large, and NCBI-BERT all outperform the general purpose BERT model.

Most importantly, the results indicate that the representation layer is not the only important

part of the model and that syntactic information is beneficial. The representation layers of

NCBI-BERT and MIMIC-BERT-large contain roughly 2x and 3x more parameters than the

BERT sentence encoder of MT-BGCN, yet MT-BGCN outperforms them both. Moreover,

MT-BGCN jointly performs assertion classification in addition to medical concept boundary

detection, soundly outperforming the other multi-task network, MT-Seq2Seq.

For assertion classification, MT-BGCN is compared against the best performing system

from the 2010 i2b2/VA challenge as well as MT-Seq2Seq. However, MT-Seq2Seq only per-
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Table 2.12. Evaluation results for assertion classification. The AwSE assertion value rep-
resents “Associated with Someone Else”. Best results are in bold. MT-Seq2Seq model is
trained to only classify the “Absent” assertion.

Present Possible Absent

P R F1 P R F1 P R F1

SVM 0.944 0.980 0.962 0.816 0.589 0.684 0.959 0.934 0.947
MT-BGCN 0.970 0.974 0.972 0.740 0.818 0.777 0.968 0.969 0.969
MT-Seq2Seq – – – – – – 0.919 0.891 0.905

Conditional Hypothetical AwSE

P R F1 P R F1 P R F1

SVM 0.729 0.298 0.423 0.922 0.870 0.895 0.915 0.812 0.861
MT-BGCN 0.759 0.386 0.512 0.940 0.874 0.906 0.934 0.779 0.850

Micro-Average

F1

SVM 0.939
MT-BGCN 0.955

forms negation detection – identifying only those medical problems whose assertions have the

“absent” value. The top system for assertion classification from the 2010 i2b2/VA challenge

was a Support Vector Machine (SVM) model from Roberts and Harabagiu (2011).

The results for assertion classification are presented in Table 2.12. MT-BGCN attains

top performance in F1 score for five out of six assertion classes. MT-BGCN is out-performed

by the SVM model in recall and F1 for the “Associated with Someone Else” assertion value

which is, unsurprisingly, the assertion value with the least amount of training data, as per

Table 2.10. MT-BGCN also out-performs the MT-Seq2Seq model in negation detection by

a wide margin.

By advancing the state-of-the-art in both medical concept detection and assertion clas-

sification on the 2010 i2b2/VA challenge, MT-BGCN shows the importance of pre-trained

contextualized embedding methods and incorporating syntactic information using graph con-

volution. Moreover, MT-BGCN demonstrates the efficacy of multi-task learning by achieving

top results in both tasks with the same network. However, MT-BGCN is still prone to certain
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classes of errors. In spite of the incorporation of syntactic information in the form of PoS

tags and the dependency parse, MT-BGCN still makes mistakes identifying phrasal bound-

aries. When the boundary detection evaluation is relaxed to allow for partial matching, the

F1 score increased by 0.4 points to 0.949. This could be due to errors in PoS tagging and

dependency parsing by SciSpacy. In future work, it may be beneficial to allow the network

to model this information implicitly in the form of auxiliary training tasks. This way, the

network will develop its own internal representations of syntactic information and not reliant

on third party tools. Another class of errors pertains to falsely predicted medical problems.

For example, MT-BGCN falsely identifies phrases like “somewhat uncontrolled ” and ”acute

onset” as medical problems. These phrases are indeed indicative of medical problems, but on

their own do not indicate a specific problem. In future work, incorporating medical knowl-

edge like that found in biomedical ontologies could prove to be beneficial since it could allow

the model to better characterize medical concepts. Biomedical knowledge would also help

the model determine the types of medical concepts it identifies. For example, the model

identifies the span “a net fluid balance” as a medical concept, but erroneously assigns it

the type of treatment instead of test. Biomedical ontologies arrange medical concepts in

ontologies with type information explicitly encoded.

2.8 Summary Lessons Learned

In this chapter we described medical concept detection and attribute classification, focusing

on two datasets of clinical free-text documents. Both EEG reports and discharge summaries

contain important medical concepts characterized by attributes that require identification

to inform downstream tasks. In particular both EHR datasets contain mentions of medical

problems, tests, and treatments that help paint a clinical picture for the patient described

in the record. Moreover, EEG reports are characterized by two EEG-specific concepts: EEG

activities and EEG events. EEG activities are particularly complex and as such are described
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by intricate and specialized language. Therefore, characterizing EEG activities requires a

schema of eighteen EEG Activity attributes that are defined in the chapter.

We presented three deep learning architectures for performing medical concept detection

and attribute classification. The stacked Long Short-Term Memory network (sLSTM) was

shown to be capable of identifying medical concepts in EEG reports while the Deep ReLU

Network (DRN) was able to classify a complex set of attributes for EEG activities and the

other medical concepts that occur in EEG reports. Together, the sLSTM and DRN show

that deep learning can be effectively used to process EEG reports. Likewise the Multi-

Task BERT Graph Convolution Network (MT-BGCN) was introduced for performing both

medical concept detection and attribute classification in discharge summaries with the same

model. MT-BGCN relies on the pre-trained contextualized embedding model, BERT to

represent text from discharge summaries. Moreover, it incorporates syntactic information in

the form of graph convolution on the dependency graph of a sentence to improve prediction.

MT-BGCN advances the state-of-the-art in concept detection and assertion classification in

the 2010 i2b2/VA challenge.
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CHAPTER 3

IDENTIFYING RELATIONS BETWEEN MEDICAL CONCEPTS IN EHRS

In this chapter12 deep learning methods are proposed for identifying relations between med-

ical concepts in EHRs. In order to leverage big medical data increasingly available in large

collections of EHRs, medical concept detection and attribute classification methods like

those described in Chapter 2 provide a useful first step. However, the information encoded

in medical narratives is not limited to concepts and their attributes. Relations between med-

ical concepts encode important information that is also widely useful in many of the same

medical informatics tasks as concept detection, including patient cohort retrieval (Hersh,

2008), relation extraction (Uzuner et al., 2011), clinical decision support (Demner-Fushman

et al., 2009), medical question answering (Goodwin, 2018), and knowledge discovery (Mal-

donado et al., 2017). Moreover, accurately identified relations between medical concepts in

clinical narratives can help drive secondary use of EHR data for clinical and translational

research (Wang et al., 2018). A relation between a pair of medical concepts can encode many

forms of clinically relevant information, e.g., a drug is a treatment for a medical problem,

one medical problem causes another, or a physiological structure is located in an anatomical

region.

This chapter address the task of extracting relations from EEG reports. As described in

Chapter 2, EEG reports are clinical documents generated by neurologists during an EEG

exam that document the EEG signal. Since inter-observer agreement is known to be mod-

erate (Beniczky et al., 2013), we seek to develop methods to aid in the interpretation of the

EEG signal. Patient cohort retrieval can help improve EEG signal interpretation by provid-

ing neurologists with the results of search from a vast archive of EEG reports. The medical

1©2019 Elsevier. Reprinted, with permission, from Ramon Maldonado and Sanda M. Harabagiu, Active
Deep Learning for the Identification of Concepts and Relations in Electroencephalography Reports. Journal
of Biomedical Informatics, Vol. 98 (2019): 103265.

2This chapter contains excerpts from Maldonado et al. (2018).
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concepts and attributes identified in the TUH-EEG corpus by methods like those introduced

in Chapter 2 can help inform cohort retrieval systems, such as MERCuRY (Goodwin and

Harabagiu, 2016). However, identifying relations between medical concepts can also provide

important information to cohort retrieval systems. Consider the example record from Sec-

tion 2.2, reproduced in Figure 3.1. In Section 2.2, we saw that this record can be deemed

CLINICAL HISTORY: This is a 55-year-old gentleman with [right leg swelling]PROB,
[ESRD]PROB, [history of seizures]PROB, and [hip fracture]PROB.
MEDICATIONS: [Dilantin]TR, [Haldol]TR, many others.
INTRODUCTION: [Digital video EEG]TEST is performed at the bedside using standard
10-20 system of electrode placement with one channel of [EKG]TEST . The patient is
described as drowsy.
DESCRIPTION OF THE RECORD: The background EEG is diffusely [slow]ACT with
primarily rhythmic [theta frequency activity]ACT of 5 to 7 Hz. There are frontally
predominant, relatively synchronous [triphasic waves]ACT seen throughout the record.
On one occasion, there may be some [asymmetries]ACT , somewhat more remarkable on
the left than the right. [Stimulation]EV of the patient produces cessation of the
[triphasic waves]ACT .
IMPRESSION: Abnormal EEG due to:
1. Generalized background [slowing]ACT .
2. [Triphasic waves]ACT .
CLINICAL CORRELATION: No [seizures]PROB were recorded. The [triphasic waves]ACT

are typically a manifestation of underlying [metabolic encephalopathy]PROB including
[hepatic encephalopathy]PROB, [renal insufficiency]PROB, or medication exposure.
The [asymmetry]ACT of the triphasic waves, with prominence on the left, may be due
to preexisting [history of epilepsy]PROB and/or [structural brain disease]PROB. No
[previous EEGs]TEST were available for comparison.

Figure 3.1. Synthetic Example EEG Report.

relevant to an example query Q: Patients with triphasic waves suspected of encephalopathy

by identifying the medical concepts in the query and throughout the corpus of EEG reports.

However, the identification of the medical concepts from the query and in the EEG reports

is not sufficient, as many false positives can be produced. For example, the query Q does not

only ask about the concepts it mentions, but it also implicitly asks about the relation between

the concepts [triphasic waves]ACT and [encephalopathy]PROB. The EEG report illustrated in

Figure 3.1 contains two relations between the medical concepts mentioned in Q, namely:

(R1):[triphasic waves]ACT −Evidences→ [metabolic_encephalopathy]PROB; (R2):[triphasic

waves]ACT −Evidences→ [hepatic encephalopathy]PROB. Therefore, the EEG report is
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judged relevant to the query Q. However, if only the query concepts would be considered to

infer relevance of an EEG report, the EEG report illustrated in Figure 3.1 would be deemed

relevant also for the query Q’: Patients with theta waves suspected of encephalopathy. Both

concepts from Q’ are mentioned in the EEG report, but no relation between those concepts

can be inferred from the EEG report, which correctly indicates that it should not be judged

as relevant to Q’.

Two deep learning methods for identifying relations in EEG reports are presented in

this chapter: (1) EEG-RelNet and (2) the Self-Attention Concept, Attribute, Rela-

tion (SACAR) identifier. EEG-RelNet is a recurrent neural model that processes entire

EEG reports, one sentence at a time, in order to identify potentially long-distance relations.

SACAR is a multi-task model that is trained to jointly extract concepts, their attributes and

relations between them.

Relations between medical concepts in EEG reports can span sentences and even sections.

Therefore, both EEG-RelNet and SACAR operate at the report level, identifying relations

between concepts mentioned anywhere in an EEG report. EEG-RelNet reads through an

EEG report, recurrently updating a set of memory vectors that store information about med-

ical concepts and potetntial relations between them. SACAR relies on a powerful encoding

mechanism based on the Universal Transformer neural architecture (Dehghani et al., 2018)

to derive a shared representation of the text of an EEG report. This shared representation

is then fed to a series of prediction modules that perform concept detection, attribute classi-

fication, and relation extraction. EEG-RelNet is used only for relation extraction, requiring

previously identified medical concepts with attributes. In contrast, SACAR is an end-to-end

model that does not require pre-identification of concepts or attributes.

This chapter is organized as follows: Section 3.1 provides background for medical relation

extraction from EEG reports; Section 3.2 describes the relations of interest in EEG reports;

Section 3.3 presents the EEG-RelNet model; Section 3.4 presents the SACAR model; Sec-
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tion 3.5 presents experimental evaluations and discussion; and Section 3.6 concludes the

chapter.

3.1 Background

Clinical relation extraction is the task of identifying relations between medical concepts

in clinical narratives. Clinical relation extraction along with medical concept detection and

attribute classification, discussed in Chapter 2, comprise the field known as Clinical informa-

tion extraction (IE) (Wang et al., 2018). The 2010 i2b2/VA challenge (Uzuner et al., 2011)

has proven to be a useful benchmark dataset for research in clinical IE since it provides a

relation extraction task in addition to the concept detection and assertion classification tasks

discussed in Chapter 2. The 2010 i2b2/VA challenge includes relations from the following

three categories: medical problem−treatment (TrP) relations, medical problem−test (TeP)

relations, and medical problem−medical problem (PP) relations.

The winner of the 2010 i2b2/VA challenge proposed a Support Vector Machine model

operating on sentence-level features (Rink et al., 2011). Later, D’Souza and Ng (2014) intro-

duced an ensemble-based method operating in an ILP framework leveraging human-supplied

knowledge. Neural methods have shown promise for this task including Convolutional Neural

Networks (Luo et al., 2017), and BiLSTM-CRF (Li et al., 2019). More recently, massively

pre-trained contextualized embedding models have been employed to advance the state-of-

the-art further still (Peng et al., 2019).

Although it is now well established that automated extraction of knowledge from clinical

notes involves accurately identifying not only the medical concepts, but also the various

relationships in which they are involved (Cimino, 1998), the automatic identification of

relations between medical concepts in EEG reports is hindered by two major obstacles. First,

the types of relations between medical concepts in EEG reports are not well represented in

existing clinical IE corpora. As illustrated in the exemplified EEG report, TrP from the
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2010 i2b2/VA challenge relations would be useful, but other types of relations relevant for

the knowledge expressed in the report would be missed. The second hurdle arises from the

constraint that only relations between medical concepts observed in the same sentence can

be identified with methods produced for the 2010 i2b2/VA challenge, even those using deep

learning methods capable of processing large corpora of clinical documents (Luo, 2017). We

found the solution of both these limitations by employing neural models that operate at the

report-level instead of the sentence-level. By considering entire EEG reports, the systems

are able to model interactions between medical concepts across sentences, from anywhere in

the report. First, we consider and extend RelNet (Bansal et al., 2017), a memory-augmented

neural network in which medical concepts can be processed in abstract memory cells while

relations between medical concepts are processed in separate relation memory cells. The

memories implicitly model the current knowledge about medical concepts and the relations

they share. We also consider and extend Bi-Affine Relation Attention Networks (Verga

et al., 2018) which simultaneously predicts relations between all concept mention pairs in

a document using a Transformer encoder (Vaswani et al., 2017) and a Bi-Affine prediction

layer.

3.2 Relations Between Medical Concepts in EEG Reports

This section describes the relations between medical concepts that can be extracted from

the narrative of EEG reports. In the rest of this chapter, we focus on the publicly available

corpus of EEG reports from Temple University Hospital, the TUH-EEG corpus, described

in Section 2.2.

In this chapter, we focus on four binary relations between medical concepts: (1) evi-

dences; (2) evokes; (3) clinical-correlation; and (4) treatment-for. The decision

to focus on these four relations was motivated by discussions with practicing neurologists,

as the relations represent implicit knowledge gleaned from the EEG reports which informs
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their reading of the Impression and Clinical Correlation sections of the EEG report. The

Evidences relation considers EEG activities or medical problems as providing evidence for

medical problems mentioned in the EEG report. For example, the excerpt “The triphasic

waves are typically a manifestation of underlying metabolic encephalopathy” from the exam-

ple report in Figure 3.1 indicates the following evidences relation: [triphasic waves]ACT

−Evidences→ [metabolic_encephalopathy]PROB. The Evokes relation represents the re-

lationship where a medical concept evokes an EEG activity. EEG events, medical problems

and treatments can all evoke EEG activities. For example, the excerpt “Stimulation of the

patient produces cessation of the triphasic waves” indicates the following evokes relation:

[stimulation]EV −evokes→ [triphasic waves]ACT . It should be noted that the polarity at-

tribute for this triphasic waves entity is negative.

The Clinical-Correlation relation connects the EEG activities and medical problems

mentioned in the Clinical Correlation section of the EEG report if the activity clinically

correlates with the medical problem. Examples of clinical-correlation relations in

the example record include: [triphasic waves]ACT −clinical-correlation→ [metabolic

encephalopathy]PROB, [triphasic waves]ACT −clinical-correlation→ [renal

insufficiency]PROB, and [asymmetry]ACT −clinical-correlation→ [structural brain

disease]PROB. The Treatment-For relation links treatments to the medical problems for

which they are prescribed. A common pattern for treatment-for relations is to link a

medication from the “MEDICATIONS ” section to a medical problem from the “CLINICAL

HISTORY ” section, e.g., [Dilantin]TR −treatment-for→ [history of seizures]PROB. It

should be noted that this relation spans across sentence boundaries. While this phenomenon

is common for treatment-for relations, it is not limited to treatment-for relations as

arguments of any of the four relation types can cross sentences and even sections.

Because in the same EEG report, the same entity corresponding to a unique medical

concept may be mentioned several times, we distinguish between concept mentions and
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Concept 
mention1=
“triphasic waves” Concept

mention2=
“encephalopathy”

Concept
mention3=
“metabolic encephalopathy”

Concept 
mention4=
“the waves” Concept

mention5=
“triphasic waves”

Concept  Entity A
Triphasic Wave
Type: EEG Activity
Morph: Triphasic_Wave
Frequency: N/A
Background: No
Magnitude: Normal
Recurrence: Repeated
Dispersal: Focal
Hemisphere: N/A
Frontal
Modality: Factual
Polarity: Positive

Concept  Entity B
Metabolic
Encephalopathy
Type: Medical Problem 
Modality: Factual
Polarity: Positive

EVIDENCES

Figure 3.2. Concept entities, their mentions and possible relations between them.

concept entities. Figure 3.2 illustrates two concept entities and their corresponding concept

mentions. As it can be seen, the concept entities are illustrated through (1) their normalized

name; (2) their type; and (3) their identified attributes. We normalized each concept mention

into a canonical form (referred to as normalized name) using the (i) the morphology attribute

for EEG activities and (ii) the United Medical Language System (UMLS) (Lindberg et al.,

1993) preferred name of the concepts of other types. To identify the concept entities, we

assumed that concept mentions from the same EEG report that (1) have the same normalized

name, (2) the same type, and (3) the same values of their attributes co-refer to the same

concept entity. We defined relations between concept entities, not between concept mentions.

The remainder of this chapter details two neural networks for detecting relations between

concept entities in EEG reports.
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3.3 Memory-Augmented Deep Learning for Recognizing Long-Distance Rela-

tions in EEG Reports

The automatic identification of relations between pairs of medical concepts in EEG reports,

regardless of their presence in the same sentence or sentence of the report, has been made

possible by EEG-RelNet. The EEG-RelNet deep learning architecture provides end-to-end

detection of relations between medical concepts in EEG reports by using a neural network

augmented with two types of memory cells: (i) a memory for each medical concept mentioned

in the report; and (ii) a memory for each relation between each pair of medical concepts

mentioned in the report. Moreover, the relational memory is dynamic as it changes to model

the specific concepts and relations observed in each EEG report. By processing entire reports

at once, EEG-RelNet is able to model both inter- and intra-sentential relations with the same

network.

Given a corpus of EEG reports with pre-identified medical concepts (EEG activities,

EEG events, medical problems, tests and treatments), EEG-RelNet provides inference of the

evidences, evokes, clinical-correlation, and treatment-for relations between

pairs of such concepts. Inspired by RelNet, a model reported by Bansal et al. (2017), we

developed the EEG-RelNet, a deep neural network architecture that operates on the full

text of an EEG report considering all medical concepts identified in the report to detect

relations. More specifically, given the full text of an EEG report and the set of medical

concepts identified in that report, EEG-RelNet can predict whether there is relation, R̂ij, of

type t between any pair of medical concepts ci and cj recognized in the report. To do so, EEG-

RelNet processes the EEG report, one sentence at a time, reading its words, encoding the

information from the sentence, processing the sentence information in the dynamic relational

memory, and predicting each type of relation based on the dynamic memories after they have

processed each sentence in the EEG report. EEG-RelNet is comprised of three modules:
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• the Input Encoding Module which encodes information from the report in concept-

and sentence-level embedding vectors, which are used throughout the deep learning

architecture;

• the Dynamic Relational Memory Module which maintains and updates a set of

hidden states called memories to capture accumulated information about each medical

concept and potential relation in the EEG report;

• the Output Module which uses the updated memories to determine the most likely

relations (and their types) between medical concepts in the EEG report.

In the remainder of this section, we provide a detailed description of each module of EEG-

RelNet.

3.3.1 The Input Encoding Module

The role of this module is to learn (1) an embedding encoding each medical concept as well

as each of its attributes and (2) an embedding encoding the information from each sentence

in the EEG report. Formally, we represent an EEG report as a set of medical concepts,

C = {c1, · · · , cd}, and a sequence of sentences, [s1, · · · , sn]. Each medical concept, ci, is

associated with several N -dimensional vectors called embeddings: (a) an embedding for the

normalized concept name, c̃i ∈ RN and (b) separate embeddings for each of its A attributes

values {aci
1 , · · · , a

ci
A} ∈ RN . Thus, the embedding ~ci for a medical concept is created by

(1) concatenating the embedding for the name of the medical concept with the embedding

for each of its attributes and (2) projecting this concatenated vector using a learned weight

matrixWC ∈ RN×N(|A|+1), i.e., ~ci = WC× [c̃i, a
ci
1 , · · · , a

ci
A]. In this way, each medical concept

is represented by an embedding, ~ci ∈ RN .

Participation of medical concepts in relations is informed by the context of each concept in

the text of the EEG report. Contextual information is provided by the words of the sentence

where the concept is mentioned, hence a representation of words from each sentence as is also
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desirable. Therefore, we learn an embedding ei for each word wi in a sentence, enabling us to

represent each sentence as a sequence of embeddings E = [e1, · · · , em] such that the elements

of E occur in the same order as the words from the sentence 3. We use the pre-trained word

embeddings provided by GloVe (Pennington et al., 2014). While the traditional choice for

combining and composing the embeddings in E into a single sentence embedding would be

a Recurrent Neural Network (RNN), we instead adopt a more recent and significantly more

efficient strategy, namely a learned positional mask (Bansal et al., 2017; Sukhbaatar et al.,

2015). The k-th sentence from the EEG report is represented as: ~sk =
∑m

i fi � ei where

fi is the learned positional mask for word i and � is the element-wise product. Given that

the sentence had m words, the vectors [f1, · · · , fm], represent the learned positional mask for

the entire sentence. It is important to note that the same vectors [f1, · · · , fm] are used when

each new sentence is encoded and they are learned jointly with the other parameters of the

deep learning model.

3.3.2 The Dynamic Relational Memory Module

Because EEG reports often contain long-distance relations between concepts we relied on

a Dynamic Relational Memory (Bansal et al., 2017) (DRM) Module to keep track of the

interactions between medical concepts in each report. The DRM, depicted in Figure 3.3,

accumulates information about medical concepts and the relations between them by pro-

cessing each sentence encoded by the Input Module and recurrently updating a set of hidden

states, called memories. The DRM maintains one concept memory, ~hi, for each medical

concept, ci, mentioned in the EEG report being processed and one relation memory, ~rij , for

each pair of concepts, (ci, cj), mentioned. Specifically, given a set of d concept embeddings

{~c1, · · · , ~cd}, one for each concept mentioned in the report, the DRM constructs a set of d

3Embeddings, ew, corresponding to words contained within a concept mention, ci are replaced with the
embedding for that concept instead of the word, i.e., ew = ~ci. This is required to enable the Key-Value
memory structures described in the next subsection
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Figure 3.3. The Dynamic Relational Memory Module of EEG-RelNet. The Dynamic Re-
lational Memory Module processes n sentences, updating a set of d Concept Memories and
d (d− 1) Relation Memories for each sentence.

Concept Memory cells, maintaining a set of d concept memories, { ~h1, · · · , ~hd}. Likewise,

the DRM constructs a set of d× (d− 1) Relation Memory cells maintaining a set of relation

memories, { ~rij |∀i, j ∈ [1, ..., d], i 6= j}. The Dynamic Relational Memory consists of the

entire set of concept and relation memories in an EEG report. This set of memories is recur-

rently updated for each sentence in the report. Given a sentence embedding, ~sk, the DRM

sends that sentence embedding to each Concept Memory cell to determine if that sentence

is relevant to that concept. If it is deemed relevant, the Concept and Relation Memory cells

update the concept and relation memories associated with that concept. The shared concept

and relation memories are recurrently updated by their respective cells for each sentence in

the EEG report. In this way, after processing each sentence in the EEG report, the concept

and memory cells will contain information from the entire report that can be used to identify

relations between concepts.

The Concept Memories are organized as a Key-Value Memory Network (Miller et al.,

2016). Key-Value memory networks function in two stages: the lookup (addressing) stage is

based on a key vector while the reading stage (giving the returned result) returns the value
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vector. Consequently, in EEG-RelNet, memory vectors are tied to so-called key vectors

enabling the model to selectively update a memory vector when the input sentence has

context that is relevant to the memory’s associated key vector. Henaff et al. (2016) have

shown that when concept embeddings are used as key vectors, the associated memory vectors

will accumulate information about those concepts. Consequently, in EEG-RelNet, concept

embeddings are used as key vectors allowing the network to selectively update each Concept

Memory, hi, if an input sentence is relevant to the concept, ci. The Concept Memory Cell,

illustrated in Figure 3.4, is used to update a Concept Memory, hi, given a medical concept

embedding, ci, and a sentence encoding, ~sk, via the following equations:

gci = σ (〈~sk,hi + ci〉) (3.1)

h̃i = φ (Wuhi +Wvci +Ws ~sk) (3.2)

hi ← hi + gci � h̃i (3.3)

𝑐𝑖

ℎ𝑖 +

𝑠𝑘

෨ℎ𝑖
𝑔𝑖𝜎

𝜙

Figure 3.4. Concept Memory Cell

where Wu,Wv and Ws are trainable weight matrices in RN×N , 〈·, ·〉 is the inner product, σ is

the sigmoid function and φ is a Parametric Rectified Linear Unit (PReLU) (He et al., 2015).

Equation 3.1 is a gating function that determines how much the kth input sentence affects

the ith Concept Memory such that gci ∈ [0, 1] values close to 1 indicate sentence sk is relevant

to medical concept ci and values close to 0 indicate the opposite. Equation 3.2 defines the

candidate Concept Memory that will be used to update the existing Concept Memory, hi,

after it is scaled by gci as shown in equation 3.3.

As illustrated in Figure 3.3, when each sentence si is processed, the DRM uses and up-

dates not only concept memories, but also a much larger set of relation memories. This

is explained by the fact that maintaining a single memory vector for each concept is not

sufficient for modeling concepts that participate in multiple relations, especially when those

relations involve concepts that are mentioned at significant distance in the EEG report.

Thus, to model the interactions each concept has with each other concept in the same EEG
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report, we maintain a set of Relation Memories corresponding to each pair of concepts from

the EEG report, {rij : i, j ∈ C, i 6= j}, where C is the set of medical concepts in the EEG

report. Each Relation Memory is updated using the Relation Memory Cell illustrated in

Figure 3.5 via the following equations:

grij = gci g
c
jσ (〈~sk, rij〉) (3.4)

r̃ij = φ (WArij +WB ~sk) (3.5)
rij ← rij + grij � r̃ij (3.6)

𝑟𝑖𝑗 +
𝑠𝑘

𝜙 ෤𝑟𝑖𝑗
𝑔𝑖
𝑔𝑗

𝑔𝑖𝑗
𝑟

𝜎

Figure 3.5. Relation Memory Cell

where WA and WB are trainable weight matrices in RN×N . As in the Concept Memory

Cell, the Relation Memory Cell uses a gating function (equation 3.4) and a candidate mem-

ory (equation 3.5) to update the relation memory in a way that reflects how relevant the

input sentence, sk, is to the concept pair, (ci, cj). To compute the gate value grij, the Relation

Memory Cell uses the two concept gate values, gci , gcj from the Concept Memory Cells for

concepts ci and cj, ensuring that input sentences that are relevant to either concept can be

used to update the Relation Memory. By maintaining a memory vector for each pair of con-

cepts and updating that memory vector as the model accumulates information across each

sentence in an EEG report, EEG-RelNet can be interpreted as constructing a local latent

knowledge graph (Bansal et al., 2017) for each EEG report, where each Relation Memory

represents a possible relation in the graph.

3.3.3 The Output Module

The output module makes use of the Dynamic Relational Memory updated after processing

the last sentence in the EEG report to identify relations (and their types) between any pair

of medical concepts from the report. The relation prediction, R̂ij between medical concepts
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ci and cj is produced by passing the Concept Memories associated with concepts ci and

cj along with the Relational Memory rij to two fully connected PReLU layers followed by

a softmax layer: where Wq ∈ RN×3N and Wz ∈ R5×N are learned weight matrices, and

qij = φ (Wq [hi,hj, rij]) (3.7) Rij = softmax (φ (Wzqij)) (3.8)

φ is a Parametric Rectified Linear Unit. Rij is a probability distribution over 5 possible

relations: the 4 relation types described in the annotation schema and a 5th type indicating

no relation. Consequently, the relation (if any) detected between concepts ci and cj is given

by R̂ij = argmaxtRij
t.

EEG-RelNet is trained using cross-entropy:

L = −
∑
i

∑
j

I[yij = t]log
(
Rij

t

)
(3.9)

where I[yij = t] is an indicator function denoting that the relation between concept i and

concept j is of type t.

3.4 Joint Learning of Medical Concepts, their Attributes, and Relations Be-

tween them in EEG Reports

While EEG-RelNet is able to identify long-distance relations between medical concepts in

EEG reports, it requires the medical concepts it relates to be identified a priori. More-

over, EEG-RelNet requires that those concepts also have their attributes identified. This is

problematic for two reasons: (1) the performance of EEG-RelNet is reliant upon the per-

formance of the concept and attribute identification systems upon which it runs; and (2)

it complicates the efficient use of Active Learning to generate expert annotations on EEG

reports. Due to the expertise required to generate concept, attribute, and relation annota-

tions in EEG reports, it is crucial that manual annotation be done as efficiently as possible.
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tification.

Active Learning (Settles, 2009) provides a solution to this problem, however training EEG-

RelNet via active learning entails two rounds of the active learning loop, once for concept

and attribute recognition, and another for relation extraction. Therefore, in this section we

introduce a method for performing end-to-end information extraction from EEG reports:

the Self-Attention Concept, Attribute and Relation (SACAR) identifier for automatically

recognizing concepts, their attributes, and relations relations between concepts.

Inspired by the Bi-affine Relation Attention Networks (BRANs) presented in Verga et al.

(2018), SACAR operates on entire EEG reports, enabling it to identify long-distance relations

across multiple sentences from the EEG report. To accomplish this, SACAR uses self-

attention to learn a representation of all the words in the EEG report. Self-attention is
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an attention mechanism relating different positions of a single sequence (of words) with

one another in order to compute a contextualized representation of each sequence member.

Self-attention has been used successfully before in abstractive summarization (Paulus et al.,

2018), textual entailment (Parikh et al., 2016) and learning task-independent sentence (Lin

et al., 2017) and token (Devlin et al., 2019) representations.

As shown in Figure 3.6, SACAR first uses a transformer narrative encoder (Vaswani

et al., 2017) to generate an encoding, bji , for each word, wji , in each sentence Sentencej in

the narrative of the EEG report4. These encodings serve as input to: (1) the concept

type and boundary labeler that detects the type and the boundaries of each concept

mentioned in an EEG report; (2) the attribute classifier that recognizes the attributes of

each concept mentioned in the EEG report; and (c) the relation detector that identifies

relations between the concepts in EEG reports. As shown in Figure 3.6, these three modules

operate jointly because they share the encoding of the words and sentences produced by

the transformer narrative encoder. Moreover, each of these three modules has an associated

loss function, namely LC for the concept type and boundary labeler, LA for the attribute

classifier and LR for the relation detector, respectively. We shall define the loss functions

later in the section, when we detail the functionality of each module. The parameters of

each module as well as the transformer narrative encoder are learned jointly by minimizing

the combined loss:

L = γCLC + γALA + γRLR + γTLT (3.10)

where LT , is the Adaptive Computation Time loss used in the encoder for learning the

encodings of words from the EEG report, defined later in the section, while γC , γA, γR, and

γT are hyperparameters (set to 0.85, 0.65, 1.0, and 0.05 in this work, respectively). The

combined loss L is minimized using Adam (Kingma and Ba, 2015), a widely-used stochastic

optimization algorithm.

4Tokenization was performed using the GENIA tagger (Tsuruoka et al., 2005) and sentence splitting was
performed using OpenNLP (opennlp.apache.org).
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3.4.1 The Transformer Narrative Encoder

The transformer narrative encoder (TNE) learns a contextualized encoding, bji ∈ Rd, for each

word, wji , in an EEG report given the full context of the EEG report using self-attention.

The TNE consists of B recurrent blocks, denoted as TNEk, with k ∈ {1, . . . , B}. Each block

TNEk shares parameters and is made up of two sub-components: (a) a multi-head attention

and (b) a series of convolutions, as in Verga et al. (2018). The output of the kth block for the

ith word, denoted as blki , is connected to its input, bl(k−1)
i through a residual connection (He

et al., 2016):

bl
(k)
i = bl

(k−1)
i + TNEk(bl

(k−1)
i ) (3.11)

The ith input to the first block of the TNE, bl0i = wi, is the word embedding of the ith word

in the EEG report. It should be noted that word embeddings are learned jointly along with

the other parameters of this model in this work.

Each block TNEk uses the multi-headed self-attention mechanism introduced in Vaswani

et al. (2017), which allows our learning model to jointly attend to information from different

representation subspaces at different positions in the sequence of words from each sentence

of the EEG report. This amounts to using multiple, parallel self-attention functions, one

for each head. The self-attention function maps a sequence of input vectors to a sequence

of output vectors, where each output vector is a weighted sum of the input vectors and the

weights are computed using a compatibility function that compares the sequence of input

vectors to itself (hence the name self -attention). In this way, for head h using an input

vector vi ∈ Rd, the self-attention function computes the output vector oih ∈ Rdo , as:

oih =
∑
j

W h
v vj � αijh (3.12)

whereW h
v ∈ Rdo×d is a learned weight matrix, do is the dimension of the vector oih, � denotes

the element-wide multiplication, and αijh is the attention weight between inputs i and j of
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attention head h computed by:

αijh = softmax

(
W h
q vi ×

(
W h
k vj
)ᵀ

√
d

)
(3.13)

where W h
q ,W

h
k ∈ Rd×d are learned weight matrices.

The outputs of each attention-head, oih, are concatenated and projected back into d

dimensions using a linear layer:

oi = [oi1, oi2, . . . , oiH ]WO (3.14)

whereH is the number of attention heads,WO ∈ RHdo×d is a learned weight matrix and [·; ·] is

the concatenation operation. A residual connection combined with Layer Normalization (Ba

et al., 2016), denoted as LN(·), is then applied to the output vectors:

mi = LN(bl
(k−1)
i + oi) (3.15)

In addition to the multi-head attention, as in Verga et al. (2018), for each block TNEk we

have used a feed-forward network of three convolutional layers cl followed by a final residual

connection and Layer Norm:

cl
(0)
i = ReLU(C1(mk

i )) (3.16)

cl
(1)
i = ReLU(C5(cl

(0)
i )) (3.17)

cl
(2)
i = C1(cl

(1)
i ) (3.18)

TNEk(bl
(k−1)
i ) = LN(mk

i + cl
(2)
i ) (3.19)

where CL(·) represents a convolution operator of kernel width L and TNEk(bl
(k−1)
i ) ∈ Rd is

the output of block k for word i.

It is to be noted that in EEG reports, certain words tend to be more ambiguous than

others, suggesting that computing the encodings of these words requires additional processing

to correctly capture their meaning from the contexts in which they appear. Therefore, some
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words will require a larger number of TNE blocks than others. Inspired by Dehghani et al.

(2018), we dynamically adjusted the number of blocks used to produce the encoding for each

word in the narrative using Adaptive Computation Time (ACT) (Graves, 2016). ACT allows

the model to learn how many processing steps (blocks) are necessary to encode each word

and to dynamically halt processing for one word, but to continue processing for other words

whose encodings still require further refinement. Once ACT has halted for a word in the

EEG report narrative, its encoding is simply copied to the next block until processing has

halted for all other words in the narrative or until a maximum number of blocks has been

reached (12 in this work).

To determine if processing should halt for word i at block k, we used a sigmoidal halting

unit with weights Wh ∈ Rd×1 and bias bh ∈ R (Graves, 2016):

hki = σ
(
WhTNEk(bl

(k−1)
i ) + bh

)
(3.20)

The halting score, hki , for word i at block k is used to calculate (i) the number of recurrent

updates for word i, N(i); (ii) the halting probability pki ; and (iii) the remainder, R(i), defined

as:

N(i) = min

{
k′ :

k′∑
k=1

hki ≥ 1− ε

}
(3.21)

pki =


R(i) if k = N(i)

hki otherwise
(3.22)

R(i) = 1 =

N(i)−1∑
k=1

hki (3.23)

where epsilon is a small constant (0.01 in this work). Equation 3.21 bounds the number of

recurrent updates for word i by the total halting score for all blocks such that processing

halts when
∑

k=1 h
k
i ≥ 1 − ε. The remainder, R(i), represents the amount of halting score

remaining before processing halts. The final encoding for word i produced by the transformer
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narrative encoder is the sum of the output at each block weighted by the halting probability

for that block:

bi =

N(i)∑
k=1

pki TNEk(bl
(k−1)
i ) (3.24)

In order to allow the neural network to learn when to halt or continue processing, we add

the differentiable loss term described in Graves (2016) which bounds the total recurrent

computation performed by the TNE:

LT =
∑
i=1

N(i) +R(i) (3.25)

3.4.2 Concept Type and Boundary Annotator

The concept type and boundary annotator first identifies spans of text that correspond to

medical concept mentions by assigning a label to each word in the narrative of the EEG

report indicating that the word begins a medical concept mention (B), is inside of a medical

concept mention but not at the beginning (I), or is outside of a medical concept mention

(O). In this way, medical concept mentions can be identified by continuous sequences of

words starting with a word labeled B optionally followed by words labeled I.

In order to also identify the type of the medical concepts from the EEG reports and

to distinguish EEG activities, EEG events, medical problems, treatments, and tests, we

extended the IOB labeling system to include separate B and I labels for each concept type,

yielding 11 total medical concept boundary and type labels: LC ={B-ACT, I-ACT, B-EV,

I-EV, B-PR, I-PR, B-TR, I-TR, B-TE, I-TE, O}. The concept type and boundary labeler

assigns a label li ∈ LC to each word wi in the EEG report by passing each word’s encoding

produced by the TNE through a fully connected softmax layer to produce a distribution pCi

over the labels:

pCi = softmax (WCbi + bC) (3.26)

where WC ∈ Rd×11 is a weight matrix and bC ∈ R11 is a bias vector. Then, the predicted

label for word wi is the label with the highest probability li = argmaxjpCij.
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We trained the concept type and boundary labeler to maximize the likelihood of labeling

each word correctly, considering that the labels yCi are conditionally independent, given the

word encoding produced by the transformer narrative encoder, namely bi. This allowed us

to define:

LC = −
∑
i

logP (yCi |bi) (3.27)

where the probability P (yCi |bi) is the probability assigned to the label yCi in pCi .

3.4.3 Attribute Classifier

Each medical concept automatically identified in an EEG report is associated with several

attributes including its modality, and polarity. In addition, EEG activities have 16 specific

attributes defined in Table 2.3. After each medical concept is identified in the EEG report,

the attribute classifier determines the values of each attribute type for each medical concept

using another transformer encoder – this time at the sentence level – and a series of linear

classifiers, one for each attribute type.

In each EEG report, the textual cues that signal attribute values for a medical concept

are typically found in the same sentence as the concept mention. Therefore, the attribute

classifier needs to further refine the encoding for each word using the sentence transformer

encoder (STE), which is a transformer module similar to the TNE, operating at the sentence

level instead of the full narrative. By operating at the sentence level, the STE allows the

model to attend to each word in the surrounding sentence, determining which context words

are most informative for attribute classification, while ignoring irrelevant out-of-sentence

words. The STE is defined exactly the same as the TNE, consisting of a set of Bs identical

blocks (8 in this work) where the number of blocks used is dynamically determined for each

word using Adaptive Computation Time. For each sentence Sj in the EEG report, the

STE produces an encoding hji ∈ Rd for each word in Sj using the sequence of encodings bji

for the words in sentence Sj produced by the TNE, as illustrated in Figure 3.6. We also
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took into account the annotations produced by the concept type and boundary annotator

on Sj such that for each concept cjk identified in Sj we considered only the encoding hji of

the sentence words found within the boundaries of cjk. In addition we took into account

the type t(cjk) of concept cjk to decide which of the 18 attributes should be identified for

that concept. If t(cjk) = EegActivity each of the 18 attributes will be considered but if

t(cjk) ∈ {EegEvent,MedicalProblem,Treatment,Test}, we shall only consider the

attributes polarity and modality. In this way, given any attribute a selected for concept

cjk, we computed the distribution pakj over the values for attribute a as follows:

pakj = softmax
(
W a
A1ReLU(W a

A0c
j
k + baA0) + baA0

)
(3.28)

where W a
A1 ∈ R∆(a)×d,W a

A0 ∈ Rd×d are weight matrices, d is the dimension of the encodings

produced by the STE, ∆(a) is the number of distinct attribute values of attribute a, and

baA1 ∈ R∆(a), baA0 ∈ RdA are bias vectors.

Similarly to the concept type and boundary annotator, the attribute classifier is trained

to maximize the likelihood of correctly classifying each attribute of every concept identified

in an EEG report, where the attribute values, yakj are conditionally independent given the

concept encodings, cjk:

LA = −
∑

(j,k)∈Φ

∑
a

P (yakj|c
j
k) (3.29)

where Φ is the set of (sentence, concept) indices (j, k) denoting concept mentions and the

probability P (yakj|c
j
k) is given by the probability assigned to attribute value yakj in the pre-

dicted distribution, pakj, for attribute a.

3.4.4 Relation Detector

The relation detector automatically identifies relations between pairs of concepts recognized

in EEG reports (the definition of relations types was provided in Section 3.2). Recall from the

discussion in Section 3.2 that relations are identified between concept entities, not concept
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mentions. Concept entities are identified by concept mentions from the same EEG report

that have the same (1) normalized name, (2) type, and (3) attribute values. It should be

noted that the automatic identification of medical concept type and boundaries performed by

the SACAR neural system recognizes only concept mentions, requiring this normalization

step. Moreover, observing that relations in EEG reports are directed, we consider both

directions when classifying potential relations. Specifically, we considered for each pair of

concept entities two possible cases, namely (case 1) in which the first concept entity is the

the source concept of the potential relation and the second concept entity is the destination

of the relation; or (case 2) in which the first concept entity is the destination whereas the

second concept entity is the source.

In this framework relation discovery was cast as a prediction of the most likely relation

type between two concept entities. The Relation Detector performs simultaneously predic-

tion of both directions of a potential relation between concepts, considering that the first

concept of the pair is the source while the second concept is the destination for one possible

relation, and conversely for a second possible relation. As in Verga et al. (2018), to enable

the prediction of the most likely relation, the Relation Detector generates for each concept

mention cki of every concept entity both a source encoding, ski and a destination encoding

dki using the Source Net, and the Destination Net, respectively, as illustrated in Figure 3.6,

implemented as two-layer neural networks:

sji = SourceNet(cji ) = W 1
S

(
ReLU

(
W 0
Sc

j
i

))
(3.30)

dji = DestinationNet(cji ) = W 1
D

(
ReLU

(
W 0
Dc

j
i

))
(3.31)

whereW 0
S ,W

1
S ,W

0
D,W

1
D ∈ Rd×d are weight matrices. These encodings enabled us to represent

all possible relations between each pair of concept entities from an EEG report in terms of

their mentions using an N × R ×N tensor, L, where N is the number of concept mentions

discovered in the EEG report and R is the number of possible relation types. For each source
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concept entity S and each destination concept entity D, we consider (a) the source encodings

of all the mentions of S in the EEG report, denoted as sm; and (b) the destination encodings

we produced for all the mentions of D, denoted as dn. In order to compute each value of L,

we used a bi-affine function between a source encoding, sm, and a destination encoding, dn,

for each relation type r ∈ R:

Lrmn = (sᵀmQr) dn (3.32)

where Q ∈ RR×d×d is a learned tensor representing a set of d × d embedding matrices (one

for each relation type r ∈ R). This enabled us to compute the scores of all relation types

between a pair of concept entities, in which the source is S and the destination is D using

the LogSumExp function as in Verga et al. (2018):

scores(S,D) = log
∑

m∈M(S)
n∈M(D)

exp(Lm,n) (3.33)

where M(S) are all the mentions of concept entity S and M(D) are all the mentions of the

concept entity D in the same EEG report. Note that scores(S,D) ∈ RR is a vector of scalar

scores for each relation type between S and D and the LogSumExp function is a smooth

approximation to the max function (Das et al., 2017). The probability distribution over the

possible relation types between S and D can then be calculated using the softmax function:

pRelS,D = softmax (scores(S,D)) (3.34)

To train the relation detector, we maximized the likelihood of classifying each relation be-

tween each pair of concepts entities correctly:

LR = −
∑
(S,D)

logP
(
yrS,D|scores(S,D)

)
(3.35)

where yrS,D is the type of the relation from concept entity S to concept entity D and

P
(
yrS,D|scores(S,D)

)
is the probability assigned to relation type yrS,D in the distribution

pRelS,D.
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Table 3.1. Data statistics for the evaluation dataset.
Concept Types

Activity Event Problem Test Treatment

1438 452 798 716 539

Relation Types
evidences evokes treatment-for clinical-correlation

397 342 356 195

3.5 Experimental Results and Discussions

In this section, the deep learning architectures introduced in this chapter are evaluated using

a set of 140 EEG reports with concepts, attributes, and relations manually annotated. This

is the same set of reports used in Chapter 2 with relation annotations generated by the same

annotators with an average inter-annotator agreement of 0.8843, measured using Jaccard

Score. Statistics for concept and relation types for the evaluation dataset are provided in

Table 3.1. The dataset is split into training/validation/test splits of 100/10/30. First, eval-

uations of EEG-RelNet for recognizing long-distance relations in EEG reports are presented.

Next, because SACAR performs end-to-end clinical information extraction tasks including

concept detection and attribute classification, in addition to relation detection, each task

is evaluated for SACAR. Performance is measured using Precision (P), Recall (R), and F1

score (F1).

3.5.1 Evaluation of EEG-RelNet for Recognizing Long-Distance Relations in

EEG Reports

To measure the impact of the EEG-RelNet architecture, we compare our system with two

alternate configurations and one baseline:

1. EEG-RelNet_NRM is a deep neural network structured similarly to EEG-RelNet

but without Relation Memories. Formally, we omit equations [3.4–3.6] and replace

equation 3.7 with qij = φ (Wq [hi,hj]).
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Table 3.2. Hyper-parameters of EEG-RelNet. Selected values indicated by an asterisk*.
Hyper-parameter Values Hyper-parameter Values

Hidden size N=[100*, 300] Learning Rate [1e-2, 1e-3*, 1e-4]
Batch size [8, 16, 32*] Dropout Probability [0.1, 0.25, 0.5*]

2. EEG-RelNet_NA is a deep neural network structured similarly to EEG-RelNet that

ignores the attributes of each medical concept in the Input Module. Formally, EEG-

RelNet_NA represents each concept embedding using only the embedding for the name

of that concept, ~ci = c̃i.

3. Heuristic is a simple rule-based baseline from Maldonado et al. (2017) that uses med-

ical concept type and section type to detect relations. evidences relations are created

between any medical concept in an EEG report and medical problems in the clinical

correlation section, evokes relations are created between any medical concept and an

EEG activity, treatment-for relations are created between any treatment and med-

ical problems in the history section of the EEG report, and clinical-correlation

relations are created between EEG activities in the impression section and medical

problems in the clinical correlation section.

Each EEG-RelNet configuration is trained for 10 epochs with the same random initialization

with early-stopping using validation F1 score. Hyper-parameters are set using grid search

over the values defined in Table 3.2.

EEG-RelNet is able to successfully detect the four relation types, evokes, evidences,

treatment-for, and clinical-correlation obtaining F1 scores of 0.8387, 0.6674, 0.7358,

and 0.8487, respectively. Clearly, EEG-RelNet obtains the best performance on each relation

type, demonstrating the importance of both the Dynamic Relational Memory and medical

concept attributes when detecting relations. EEG-RelNet achieves significantly better per-

formance when recognizing evokes and clinical-correlation relations compared to the

other two relation types indicating that the network is able to correctly link medical problems
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Table 3.3. Evaluation Results EEG-RelNet for relation identification in EEG Reports.
evokes evidences

Model Precision Recall F1 Precision Recall F1

EEG-RelNet 0.8601 0.8183 0.8387 0.6754 0.6596 0.6674
EEG-RelNet_NRM 0.8185 0.7556 0.7858 0.6852 0.5255 0.5948
EEG-RelNet_NA 0.6987 0.6481 0.6725 0.6689 0.5753 0.6186
Heuristic 0.1960 0.9771 0.3265 0.1750 0.8624 0.2910

treatment-for clinical-correlation
Model Precision Recall F1 Precision Recall F1

EEG-RelNet 0.6060 0.9365 0.7358 0.8422 0.8554 0.8487
EEG-RelNet_NRM 0.5946 0.9163 0.7212 0.8041 0.7348 0.7679
EEG-RelNet_NA 0.5523 0.8680 0.6751 0.8022 0.7787 0.7902
Heuristic 0.1715 0.9852 0.2921 0.1895 0.9820 0.3177

All Relations (Macro Average)
Model Precision Recall F1

EEG-RelNet 0.7459 0.8175 0.7727
EEG-RelNet_NRM 0.7256 0.7331 0.7174
EEG-RelNet_NA 0.6805 0.6925 0.6891
Heuristic 0.1830 0.9517 0.3068

with the EEG activities they evoke and the with which they clinically correlate. The effect of

the Dynamic Relational Memory is most obvious when considering the evidences relation

type, increasing the F1 measure by more than 10%. Interestingly, the removal of attribute

information from the model drastically reduces performance when detecting the evokes

relation type, but only slightly reduces performance on the other two types compared to the

EEG-RelNet_NRM system. The Heuristic approach is able to achieve the highest recall on

each relation type since it was specifically designed for high recall. However, due to the poor

precision, the Heuristic baseline achieves by far the worst overall performance.

3.5.2 Evaluation of SACAR for Clinical Information Extraction

This subsection presents evaluations of the SACAR identifier for automatically recognizing

concepts, their attributes, and relations spanning them. For training purposes, another sub-

set of 1,000 EEG reports with silver-standard annotation produced by the concept detection

and attribute classification systems presented in Chapter 2 and relation extraction produced
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Table 3.4. Data statistics for the evaluation dataset along with automatically generated
silver-standard annotations.

Concept Types
Annotations Activity Event Problem Test Treatment

Gold 1438 452 798 716 539
Silver 8820 3033 5367 5049 3416

Relation Types
Annotations evidences evokes treatment-for clinical-correlation

Gold 397 342 356 195
Silver 2850 2326 2065 1228

by EEG-RelNet are used to augment the training data. The statistics for the silver-standard

data are provided in Table 3.4 along with the gold-standard data, for reference. The silver-

standard data was used to augment the training data for SACAR during training. SACAR

was compared to EEG-RelNet for relation extraction as well as the stacked LSTM (sLSTM)

from Section 2.4 for concept boundary detection and the Deep ReLU Network (DRN) from

Section 2.5 for attribute classification. Each of the these neural baselines was trained to

perform one of the three tasks discussed above, while SACAR is trained to perform all tasks

jointly.

When evaluating the results of SACAR, we took also into account the fact that SACAR

uses two transformer encoders – the TNE and the STE – to produce internal representations

of each EEG report. We were interested to evaluate two important properties of SACAR’s

transformer encoders: (1) recurrence and (2) Adaptive Computation Time. Inspired by De-

hghani et al. (2018) we hypothesized that introducing recurrence to the transformer encoders

could help SACAR learn better from our small amount of labeled data and that ACT could

further boost performance by allowing SACAR to dynamically allocate more resources to

more complicated encodings. In this section, we will refer to the full SACAR model described

in Section 3.4 that uses both recurrence and ACT based on the Adaptive Universal Trans-

former (Dehghani et al., 2018) as SACAR-A. We evaluate SACAR-A against two alternative
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Table 3.5. Hyper-parameters of SACAR. Selected values indicated by an asterisk*.
Hyper-parameter Values Hyper-parameter Values

Hidden size d=[100*, 300] Learning Rate [1e-2, 1e-3, 1e-4*]
Batch size [4, 8, 16*] Dropout Probability [0.1, 0.25, 0.5*]
Concept Weight LC=[0.65, 0.85*, 1.0] Attribute Weight LA=[0.65*, 0.85, 1.0]
Relation Weight LR=[0.65, 0.85, 1.0*] ACT Weight LT=[0.05*, 0.1, 0.2]
TNE stacks k=[4*, 8] TNE attention heads H=[4, 8*, 12]
STE stacks kS=[2*] STE attention heads HS=[4, 8*, 12]

configurations: (1) SACAR-V which uses a simple vanilla transformer encoder without re-

currence or ACT as described in Vaswani et al. (2017); and (2) SACAR-U based on the

Universal Transformer described in Dehghani et al. (2018) which uses recurrence, but not

ACT. Formally, SACAR-V is equivalent to SACAR-A where each TNE and STE block has

its own parameters and Equation 3.24 is replaced by bi = TNEB(bl
(B−1)
i ) given B blocks.

Similarly, SACAR-U is equivalent to SACAR-V where parameters are shared between TNE

blocks and between STE blocks (i.e., the transformer encoders are recurrent). Each SACAR

configuration is trained for 10 epochs with the same random initialization with early-stopping

using validation F1 score averaged over the concept detection, attribute classification, and

relation extraction tasks. Hyper-parameters are set using grid search over the values defined

in Table 3.5.

The results for concept type and boundary detection are presented in Table 3.6 in terms

of precision, recall, and F1 score, where predicted concept boundaries are considered correct

if they exactly match a manually annotated boundary using the exact match protocol as in

Section 2.7. We compare SACAR and its alternate configurations to two sLSTM baselines.

Recall from Section 2.4 that two sLSTM models are required to detect medical concepts in

EEG reports, one for detecting EEG activities and one for detecting the other types medical

concepts. As we can see from the Table, the SACAR-A model outperforms the sLSTM

baselines as well as the other alternative implementations of the transformers for all concept

types, except for Treatment, where it is slightly outperformed by SACAR-U. Interestingly,
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Table 3.6. Evaluation Results for Concept Type and Boundary Recognition.
EEG Activity EEG Event Medical Problem

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM 0.8949 0.8125 0.8517 0.8842 0.8301 0.8563 0.8391 0.7863 0.8118
SACAR-V 0.8662 0.8287 0.8522 0.8378 0.8076 0.8224 0.6967 0.6121 0.6516
SACAR-U 0.8734 0.9422 0.9065 0.8375 0.8761 0.8564 0.8028 0.7923 0.7975
SACAR-A 0.9327 0.9153 0.9239 0.9048 0.8800 0.8922 0.8985 0.8766 0.8874

Treatment Test All Types (Macro Average)
Model Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM 0.9257 0.8687 0.8963 0.8904 0.9250 0.9074 0.8869 0.8645 0.8756
SACAR-V 0.8079 0.7940 0.8009 0.8457 0.8822 0.8636 0.8109 0.7851 0.7981
SACAR-U 0.9186 0.8967 0.9075 0.8666 0.8564 0.9092 0.8798 0.8727 0.8755
SACAR-A 0.9687 0.8747 0.9193 0.8945 0.9296 0.9117 0.9198 0.8917 0.9069

the only model that does not make use of recurrence, SACAR-T, performs worst – obtaining

results that are outperformed even by the LSTM baseline.

When evaluating the results for attribute classification, we used as baseline the Deep

ReLU Network (DRN) described in Section 2.5. As was the case for boundary detection,

we used two DRN models: one for EEG activity attributes, and one for the attributes of all

other medical concepts. It should be noted that both baselines used for concept type and

boundary detection and for attribute classification, namely the LSTM and DRN baselines,

rely on hand-crafted features while the SACARmodels are trained end-to-end with no feature

extraction needed. The results of the baseline used for attribute classification as well as the

results of all three SACAR model are listed in Table 3.7, evaluated with Precision, Recall,

and F1 score. Table 3.7 presents the results for each value of each attribute along with

their prevalence in the gold annotated data (indicated by the ‘#’ symbol). Attribute values

with no examples in the training data are omitted. Aggregated metrics are presented for

each attribute type using micro-average, however precision and recall are omitted for multi-

class classification tasks since they are equivalent to F1. All three SACAR models tend to

outperform the DRN baseline in micro-averaged F1 score.

The results for relation identification are presented in Table 3.8, compared against EEG-

RelNet. In general both SACAR-A and SACAR-U are able to produce similar – yet slightly

worse – results as EEG-RelNet, with SACAR-V consistently performing worst. It should
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Table 3.8. Evaluation Results for Relation Identification.
evokes evidences

Model Precision Recall F1 Precision Recall F1

EEG-RelNet 0.8601 0.8183 0.8387 0.6754 0.6596 0.6674
SACAR-V 0.7853 0.7488 0.7666 0.5658 0.6094 0.5868
SACAR-U 0.8174 0.8684 0.8421 0.6026 0.5871 0.5948
SACAR-A 0.8597 0.8954 0.8767 0.5937 0.6556 0.6231

treatment-for clinical-correlation
Model Precision Recall F1 Precision Recall F1

EEG-RelNet 0.6060 0.9365 0.7358 0.8422 0.8554 0.8487
SACAR-V 0.5109 0.9164 0.6561 0.8255 0.8573 0.8411
SACAR-U 0.5725 0.9163 0.7047 0.8413 0.8662 0.8536
SACAR-A 0.6063 0.9245 0.7323 0.8639 0.7865 0.8234

All Relations (Macro Average)
Model Precision Recall F1

EEG-RelNet 0.7459 0.8175 0.7727
SACAR-V 0.6719 0.7830 0.7127
SACAR-U 0.7085 0.8095 0.7488
SACAR-A 0.7309 0.8155 0.7639

be noted that the SACAR models do not only identify relations, but also recognize concept

types and boundaries and classify concept attributes as well.

3.5.3 Discussions

The experimental results indicate that the SACAR identifier is able to jointly extract medical

concepts from EEG reports, classify their attributes, and detect relations between them.

While SACAR is able to out-perform the sLSTM and DRN for concept type and boundary

detection and attribute classification in EEG reports, it does not out-perform EEG-RelNet

for relation detection, achieving similar results. In general, both EEG-RelNet and SACAR

are able to correctly recognize relations between medical concepts as indicated by the macro-

average F1 scores of 0.7727 and 0.7639, respectively.

In order to better understand the SACAR model, we conducted a brief ad hoc error anal-

ysis on a few synthetic excerpts illustrating common errors. Consider the following sentence

indicative of typical text found in the description section of an EEG report: “In addition,
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there is asymmetric anterior predominant small amplitude polyspikes and spike and waves

seen generalized that at times have an EMG correlate noted in the arms and in the video

on the face.” SACAR is unable to correctly identify that two EEG activity anchors are

present (“polyspikes” and “spike and wave”), instead annotating a single erroneous anchor

(“polyspikes and spike and waves”). This incorrect boundary identification causes a cascade

of failures in both attribute classification and relation identification. Since there is only one

anchor identified, the anchor is determined to have the Polyspike-complex morphology, leav-

ing the spike-and-slow-wave complex un-annotated. Since the spike-and-slow-wave complex

is not identified, the Evokes relation it has with the EEG Event “EMG correlate” is also

not identified. Another source of errors for both EEG-RelNet and SACAR stems from the

complicated – and sometimes ungrammatical – way in which EEG activities are described.

For instance, we ran the models on the example sentence: “There are rare sharp transients

noted in the record but without after going slow waves as would be expected in epileptiform

sharp waves.” This sentence is meant to convey the fact that sharp waves have occurred,

but sharp-and-slow-wave-complexes which would indicate epileptiform activity have not oc-

curred. However, three anchors are identified by SACAR, “sharp transients”, “slow waves”,

and “epileptiform sharp waves” with morphologies Sharp-wave, Slow-wave, and Epileptiform-

discharge(unspecified), respectively. SACAR is unable to associate the text ‘slow waves”

with “sharp transients” to identify that the morphology of the “slow waves” anchor should

be sharp-and-slow-wave-complex. Moreover, the polarity of the epileptiform activity is not

correctly identified as being negative.

As can be seen in Table 3.8, both EEG-RelNet and SACAR exhibit moderate perfor-

mance in identifying treatment-for relations due to low precision. A typical erroneous

treatment-for relation is exemplified in the following synthetic excerpt: “CLINICAL

HISTORY: 50 year old with history of seizures status post code. MEDICATIONS: Dilantin,

Trileptal, Keppra, Hydralazine, Ativan.” In this excerpt, all of the treatments (medications)
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listed other than Hydralazine are treatments for the medical problem, “seizures”. Since they

share the same context, SACAR tends to link all of the treatments in Treatment-For re-

lations with “seizures”. The performance of the models could potentially be improved in the

future by introducing more sophisticated representations of medical problems, treatments,

and EEG events using neurological ontologies (Sahoo et al., 2014) or other sources of med-

ical knowledge, like the Unified Medical Language System (UMLS) (Lindberg et al., 1993).

For example, when determining if the concept [Lamictal]TREATMENT is a treatment-for

the concept [seizure]MEDICAL_PROBLEM , it would be beneficial to know that Lamictal is an

anticonvulsant – knowledge contained in the UMLS. More sophisticated concept represen-

tations could help improve performance for the other relation types as well. The superior

performance when detecting evokes relations may be explained by (1) the fact that evokes

relations always involve an EEG activity and (2) the more sophisticated representation of

EEG activities compared to the other medical concepts. EEG activities are explicitly char-

acterized by their attributes in EEG-RelNet, and are implicitly characterized by them in

SACAR due to the token representation shared between the Attribute Classifier and the

Relation Detector. Specifically, EEG activities have 18 semantic attributes that capture rich

information, but medical problems, treatments, and EEG events only have two attributes:

modality and polarity. This suggest that semantic attributes play an important role in

detecting relations between medical concepts.

Recall from Section 3.4 that the word embeddings used in SACAR are learned jointly

along with the other parameters. The decision to learn word embeddings from scratch was

made empirically. While the use of pre-trained word embeddings (Mikolov et al., 2013) has

proved to be effective, more recent work (Peters et al., 2018; Devlin et al., 2019) has shown

that pre-training entire representation layers that learn to contextualize word embeddings

can be more effective. In order to determine if such a pre-training paradigm would improve

SACAR, we adopted the BERT (Devlin et al., 2019) pre-training procedure to pre-train the
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Figure 3.7. Example of the number of blocks used per word in a sentence in the Transformer
Narrative Encoder, determined with Adaptive Computation Time.

Transformer Narrative Encoder. We pre-trained the TNE on the text of the entire TUH EEG

corpus for 256 epochs before incorporating it into the full SACAR system. Surprisingly, this

resulted in slight performance decreases across the board. We believe this is likely due to the

comparatively small size of the TUH EEG corpus – just 25,000 reports – allowing the TNE

to overfit. How to best pre-train SACAR remains a question for future work with possible

areas of investigation including: (a) incorporating large amounts of auxiliary clinical text;

(b) the use of word-piece tokenization; and (c) fine tuning a massively pre-trained model on

the EEG report domain.

The results show that the SACAR-V model which did not make use of recurrence or

Adaptive Computation Time consistently performed worst among the SACAR and baseline

models in concept type and boundary detection, as well as relation identification. Interest-

ingly, SACAR-V is the only model evaluated that did not make use of recurrence. However,

it should be noted that, while EEG-RelNet applies recurrence sequentially, using the same

recurrent cells for each input, the SACAR-U and SACAR-A models apply recurrence in a

parallel manner, using separate recurrent blocks for each input.

In order to analyze the properties of Adaptive Computation Time, we graphed the number

of Transformer Narrative Encoder blocks used per word in an example sentence along with

the concept type and boundary labels of each word in Figure 3.7. The sentence we considered
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Head 1 Head 2

Figure 3.8. Self-Attention weights generated by the Transformer Sentence Encoder for an
example sentence.

is: “Male with, spells, childhood epilepsy and chronic right hemispheric infarct.” We can see

that ACT tends to allocate more computation time to words at the boundaries of concept

mentions. ACT allocated the maximum of twelve TNE blocks to each of words 4-10 in

the sentence as those words are constantly changing boundary labels, corresponding to two

concept mentions, “childhood epilepsy” and “chronic right hemispheric infarct”, separated by

a single word, “and ”. This supports the suggestion made in Graves et al. (Graves, 2016) that

ACT can learn to ‘ponder ’ longer on inputs that indicate implicit boundaries or transitions

in sequential data.

To better understand the impact of multi-headed self-attention in SACAR, we visualized

the attention weights for two attention heads produced by the last block of the Sentence

Transformer Encoder for the example sentence: “Hyperventilation was performed and re-

sults in symmetric slowing of the background activity.” This visualization is presented in

Figure 3.8. Each column in the Figure shows the attention distribution for each word in

the vertical axis over the words in the horizontal axis. For the word “slowing”, which cor-

responds to a mention of an EEG Activity, we notice that the attention head 1 places high

attention weights on the words: “symmetric” – indicating Attribute 6: Dispersal = General-

ized; and “background ” – indicating Attribute 3: Background = Yes. However, for the same
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word “slowing” the attention head 2 does not place a high weight on “symmetric”, attending

to the attribute “background ”, but it places high attention weights for the word “results”,

indicating that the two heads tend to focus on different parts of the context.

We believe that the automatic and simultaneous identification of medical concepts and

relations in a large collection of EEG reports will enable the generation of EEG-specific

knowledge embeddings of high accuracy. High-quality embeddings have been shown recently

(Jameel et al., 2017) to be crucial in designing relevance models that rely on deep learning,

and thus produce excellent results. We intend in future work to learn knowledge embeddings

from the large collection of EEG reports and use them in an enhanced MERCuRY system.

It should be noted that the SACAR model poses two important weakness. First, the

final SACAR model itself is comprised of 12,346,589 parameters - which is relatively small

for a Transformer-based model. Recent work (Devlin et al., 2019; Radford et al., 2019;

Yang et al., 2019) indicates that, given enough data, the performance of Transformer-based

models, like SACAR, can be further improved by scaling the size of the model well beyond

the 12 million parameters of this work. This necessitates the use of specialized hardware

capable of hosting the model in GPU memory requires a large amount of time to train.

Second, document-level training results in fewer training examples than sentence- or word-

level training from the same amount of data. Each EEG report represents a single training

example for SACAR, while the same report would yield more than ten times as many exam-

ples for sentence level training, on average. In this way, document-level training necessitates

the use of silver-annotated data to adequately train SACAR, requiring pre-trained models

capable of producing such silver annotations.

3.6 Summary and Lessons Learned

In this chapter, we described the task of relation extraction on EEG reports, defining

four relation types between medical concepts: evokes, evidences, treatment-for, and
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clinical-correlation. Each of these four relation types can relate medical concepts any-

where in an EEG report, both in the same sentence, or across sentences, encoding clinical

knowledge useful for cohort retrieval. This chapter described two deep learning architec-

tures capable of identifying relations that span sentences or even sections in an EEG report.

The EEG-RelNet is presented for recognizing long-distance relations which relies on a set

of memory vectors that are recurrently updated as the model reads through the text of an

EEG report. The Self-Attention Concept, Attribute, and Relation (SACAR) identifier is also

presented in this chapter. While EEG-RelNet requires medical concepts and their attributes

to be identified a priori, SACAR performs the full clinical information extraction pipeline

jointly, in an end-to-end fashion.

The results indicate that both EEG-RelNet and SACAR are able to successfully detect

both inter- and intra-sentential relations in EEG reports. EEG-RelNet leverages Dynamic

Relational Memory and rich attribute representations of medical concepts to narrowly out-

perform SACAR. However, SACAR is able to jointly perform medical concept detection and

attribute classification in addition to relation identification. Specifically, SACAR employs a

Transformer Narrative Encoder (TNE) to perform end-to-end multi-task clinical information

extraction corresponding to concept detection, attribute classification, and relation extrac-

tion with a single neural network. SACAR uses the shared representation of an EEG report

produced by the TNE as input to separate prediction modules, out-performing the dedicated

systems designed for concept detection and attribute classification introduced in Chapter 2,

while performing competitively with EEG-RelNet for relation extraction.
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CHAPTER 4

ACTIVE LEARNING OF CLINICAL CONCEPTS AND

RELATIONS IN EHRS

The accurate identification of relations in clinical narratives with deep learning methods, like

those presented in Chapter 3, requires large amounts of manually annotated data. However,

annotating data is a resource-intensive effort requiring domain expertise – especially for com-

plicated annotation schemata, e.g., relation identification from EEG reports. To address this

issue, the field of Active Learning (AL) was developed. AL allows a learning model to achieve

higher performance with fewer labeled examples by using the learning model itself to select

the best unlabeled example for manual labeling (Settles, 2009). In this chapter12, three active

learning methodologies are presented. The first framework, Memory-Augmented Active

Deep Learning (MAADL) is presented for the task of relation identification from EEG

reports. Observing that relation identification in EEG reports requires the identification of

medical concepts and their attributes in the EEG reports as well, a second active learning

methodology is presented, Multi-Task Active Deep Learning (MTADL), for jointly

performing concept detection and attribute classification. The third framework, Improved

Multi-task Active Deep Learning with the Active Learning Policy Neural Net-

work (MTADL+), is presented which uses a single multi-task learning model to perform

concurrently, concept detection, attribute classification, and relation identification.

The purpose of MAADL is to train the EEG-RelNet model (defined in Section 3.3) to

accurately extract relations from EEG reports with the minimum number of manually an-

notated EEG reports necessary. Likewise, the purpose of MTADL is to train the stacked

1©2019 Elsevier. Reprinted, with permission, from Ramon Maldonado and Sanda M. Harabagiu, Active
Deep Learning for the Identification of Concepts and Relations in Electroencephalography Reports. Journal
of Biomedical Informatics, Vol. 98 (2019): 103265.

2This chapter contains excerpts from Maldonado et al. (2017) and Maldonado et al. (2018).
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LSTM and DRLN models (defined in Sections 2.4–2.5) accurately, again with the fewest

manually annotated EEG reports. However, using two separate active learning paradigms

for relations extraction and concept/attribute detection is inefficient, defeating the purpose

of active learning in the first place. Therefore, the purpose of MTADL+ is to train a single

joint model to accurately perform concept detection, attribute classification, and relation

identification together by selecting the most informative EEG reports for each task for man-

ual annotation.

All three of MAADL, MTADL, and MTADL+ are used to perform an active learning

loop whereby an initial set of labeled examples is used to train learning models, and then the

learning models are used to select examples for human validation from a pool of unlabeled

examples. In the MAADL framework, this selection decision, called an active learning policy,

is performed by quantifying the uncertainty EEG-RelNet has toward each unlabeled example

and selecting the example that it is most uncertain about. Because the MTADL framework

has several prediction tasks of interest, two concept detection tasks and 16 attribute clas-

sification tasks, its active learning policy identifies the unlabeled example the ensemble of

models is most uncertain about. In the MTADL+ framework, the AL policy is learned from

the initial set of labeled examples by the Active Learning Policy Neural Network (ALPNN).

The manually annotated examples selected by the policy learned by ALPNN are used to

train the SACAR model (defined in Section 3.4) with performs joint prediction of concepts,

attributes and relations.

The remainder of this chapter is structured as follows: A brief background of Active

Learning is provided in Section 4.1, the MAADL and MTADL frameworks are presented in

Section 4.2, MTADL+ is presented in Section 4.3, and the three frameworks are evaluated

in Section 4.4.
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4.1 Background

Active Learning is a field of machine learning consisting of methods for training high quality

learning models with fewer labeled examples. The most widely used form of active learning

is pool-based active learning. In pool-based active learning, there is a small labeled training

set, a learning model, and a large pool of unlabeled data. The learning model is iteratively

improved by (1) training the model on the training set; (2) selecting unlabeled examples from

the pool; and (3) manual labeling of the selected examples by a human expert (sometimes

referred to as an oracle) and adding the newly labeled examples to the training set. The key

hypothesis of active learning is that the internal state of a machine learning model can be

used to select unlabeled examples whose labels would be especially beneficial to the learning

model (Settles, 2009). These methods are of practical importance because human labeling is

a time and resource intensive practice, especially for complex labeling schemata such as those

presented in Chapters 2 and 3 which require domain expertise on the part of the oracle. As

such, active learning can be employed to minimize the overall labeling cost of an annotation

task by ensuring only the most informative unlabeled examples are considered for manual

labeling.

The efficacy of an active learning system is determined by its active learning selection

policy, i.e., the strategy used to select unlabeled examples for manual labeling. Uncertainty

sampling (Lewis and Gale, 1994) is one of the most commonly used selection policies due to

its simplicity and effectiveness (Settles, 2009). Uncertainty sampling quantifies the uncer-

tainty of a classifier with regards to an unlabeled example by using the classifier’s probability

distribution over predicted labels. Other families of sampling mechanisms include query-by-

committee (Seung et al., 1992), expected model change (Settles et al., 2008), and expected

error reduction (Roy and McCallum, 2001). Each of these sampling paradigms is defined with

respect to a single prediction task. However, in this work we consider complex information

extraction problems involving multiple sub-tasks as in Chapters 2 and 3. To apply active
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learning in the multi-task domain, Reichart et al. (2008) introduce the alternating selection

and rank combination protocols. These methods extend traditional sampling mechanisms

to the multi-task domain by considering the per-task selection criteria for each example and

either alternating between them (alternating selection) or combining them (rank combina-

tion) to select examples. The rank combination protocol has been shown to be effective

for multi-task neural methods for tasks such as semantic role labeling and entity recogni-

tion (Ikhwantri et al., 2018). More recently, neural methods have been introduced for learning

an active learning selection policy from data, as opposed to using a heuristic. Bachman et al.

(2017) present a method for a learning how to represent an active learning problem in the

form of a data representation, an selection policy, and a method for constructing prediction

functions from labeled training sets. Konyushkova et al. (2017) train a regressor to predict

the expected error reduction of incorporating any unlabeled example and use that regressor

as a selection policy. Liu et al. (2018a) present an imitation learning approach whereby

the selection policy is a neural network trained to imitate an optimal selector on a series of

simulated active learning problems.

Past work has shown that AL methods can be used to enhance supervised NLP methods

operating on health narratives. For example, AL was used to annotate pathological phe-

nomena in Medline abstracts in the PathoJen system (Hahn et al., 310) by relying on a set

of classifiers and computing the disagreement between them to inform the selection of the

annotation that needs to be validated or edited. AL has also been used for high-throughput

phenotyping algorithms. By integrating AL with SVM-based classifiers, the research pub-

lished by Chen et al. (Chen et al., 2013) showed that AL can reduce the number of sampled

annotations required for achieving an area under the curve (AUC) of 0.95. Dligach et al.

(2013) used AL with Naive Bayes classification for extracting phenotypes and observed that

AL generated a significant reduction in annotation efforts: only one third of annotations were

required. More recently, a new study targeting a cost-sensitive AL for clinical phenotyping
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was published by Ji et al. (Ji et al., 838), using the identification of breast cancer patients

as a use case. The cost model was generated based on linear regression using some heuristic

features, and used to maximize the informativeness/cost ratio when selecting samples for

validation/editing. However, Ji et al. (838) rely on a simple logistic regression model as their

learner. In this chapter, we show the benefit of combining state-of-the-art deep learning

models with active learning for information extraction in clinical narratives.

4.2 Active Deep Learning of Concepts, Attributes, and Relations in EEG Re-

ports

This section presents two active deep learning systems for information extraction from EEG

reports: (1) the Memory-Augmented Active Deep Learning (MAADL) system for relation

identification in EEG reports and (2) the Multi-task Active Deep Learning (MTADL) system

aiming to perform concurrently multiple annotation tasks corresponding to the identification

of medical concepts and their attributes. In order to perform relation identification, MAADL

relies on pre-identified concepts and attributes. Therefore, MAADL relies on the MTADL

system for concept detection and attribute classification. Both MAADL and MTADL make

use of a 5-step process designed to be applied in general to any information extraction tasks

on a large dataset of clinical notes, however in this section we describe the application of

this process to the TUH EEG corpus described in Chapters 2 and 3. While MAADL uses

standard uncertainty sampling, the selection policy of MTADL is designed to be robust to

multiple concurrent annotation tasks, which is necessary for operating on the EEG reports

of the TUH EEG corpus. This section begins with the description of the 5-step process for

active deep learning shared by MAADL and MTADL. Because the relation identification of

MAADL requires pre-identified concepts and attributes, MTADL is specified first, followed

by MAADL.
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Figure 4.1. The Multi-task (MTADL) and Memory-Augmented (MAADL) Active Deep
Learning Systems for Annotating EEG Reports. The modules specific to MTADL are high-
lighted in green, while the modules specific to MAADL are highlighted in dark blue.

4.2.1 Five-Step Active Deep Learning Architecture for Automatically Annotat-

ing EEG Reports

The MTADL and MAADL paradigms, depicted in Figure 4.1, consists of the following five

steps:

Step 1: The development of an annotation schema

Step 2: Annotation of initial training data

Step 3: Design of deep learning methods that are capable to be trained on the data

Step 4: Development of the sampling mechanism

Step 5: Usage of the active learning system which involves:

Step 5.a: Accepting/Editing annotation of sampled examples

Step 5.b: Re-training the deep learning models
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It should be noted that while both MAADL and MTADL employ the same abstract 5-step

process, each system requires a specific implementation. These steps are described in detail

in the remainder of this section, first for MTADL, then for MAADL.

4.2.2 Multi-task Active Deep Learning for Concept Detection and Attribute

Classification in EEG Reports

To identify medical concepts and attributes in EEG reports, we apply the five-step active

deep learning methodology, depicted in Figure 4.1, via the following implementation:

STEP 1: Annotation Schema: The first step is the development of an annotation schema.

The annotation schemata used by MTADL for concept detection and attribute classification

are defined in Section 2.2. Recall from Chapter 2 that the EEG corpus contains mentions of

medical concepts including EEG activities, EEG events, medical problems, and treatments.

Recall further that each of these medical concepts is characterized by a set of annotations

including modality and polarity and a set of 16 EEG-activity specific attributes. Because

of the complex surface forms in which concept attributes are expressed, EEG activities

are identified by their anchor which is defined by the text corresponding to an activity’s

morphology attribute. MTADL will train its classifiers (defined in Step 3) to extract

information from the free text of the EEG reports according to this schema.

STEP 2: Annotation of Initial Training Data: Initially, a sub-set of 40 EEG reports

was manually annotated. The annotations were created by first running the medical concept

recognition system reported in (Roberts and Harabagiu, 2011) to detect medical problems,

tests, and treatments and their polarity and modality. The annotations that were obtained

were manually inspected and edited, while manual annotations for EEG Activities and EEG

events, as well as their attributes, are also generated in the sub-set of 40 EEG reports.

The initial annotations represented the initial set of training data for two deep learning

architectures, as illustrated in Figure 4.1.
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STEP 3: Design of Deep Learning Architectures: The first architecture aims to

identify (1) the anchors of all EEG activities mentioned in an EEG report; as well as (2)

the boundaries of all mentions of EEG events, medical problems, medical treatments and

medical tests. To this end we employ two stacked LSTM models described in Section 2.4, one

for detecting EEG activity anchors and one for detecting the boundaries of all other medical

concepts. We employ a second deep learning architecture, the Deep ReLU Network (DRN),

which is designed to recognize (i) the sixteen attributes that we have considered for each

EEG activity, as well as (ii) the type of the EEG-specific medical concepts, discriminated as

either an EEG event, a medical problem, a medical test or a medical treatment. In addition,

the DRN identifies the modality and the polarity of these concepts. The DRN is described

in Section 2.5. As with the boundary detection models, we employ two DRNs, one for EEG

activity attributes and one for the attributes and types of all other medical concepts.

After training the stacked LSTMs and DRNs on the initial training data obtained with

manual annotations, we were able to automatically annotate concepts and attributes in

the entire corpus of EEG reports. Because these automatically created annotations are

not always correct, we developed an active learning framework to validate and edit these

annotations, and provide new training data for the deep learning architectures, which are

iteratively refined as active learning progresses.

STEP 4: Development of the Sampling Mechanism The choice of sampling mechanism

is crucial for validation as it determines what makes one annotation a better candidate for

validation over another. MTADL is an active learning paradigm for multiple annotation tasks

where new EEG reports are selected to be as informative as possible for a set of annotation

tasks instead of a single annotation task. The sampling mechanism that we designed used

uncertainty sampling (Lewis and Gale, 1994) with the rank combination protocol (Reichart

et al., 2008), which combines several single-task active learning selection decisions into one.

The usefulness score, sXj
(a) of each un-validated annotation a from an EEG Report is
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calculated with respect to each annotation task Xj and then translated into a rank rXj
(a)

where higher usefulness means lower rank (examples with identical scores are assigned the

same rank). Then, for each EEG Report, we sum the ranks of each annotation task to get

the overall rank
∑

j=1 rxj(a). All examples are sorted by this combined rank and annotations

with lowest ranks are selected for validation. For each annotation task, we score an EEG

Report d : sxj(d) = 1
|d|
∑

a∈dH(a) where a is an annotation from d and |d| is the number of

annotations in document d, and H(a) =
∑

c q
a
c log qac is the Shannon Entropy of a. Shannon

Entropy (Shannon, 1948) is an information theoretic method for quantifying the uncertainty

expressed in a probability distribution. By considering the rank of each task for an example

as opposed to the raw Shannon Entropy scores, the rank combination protocol ensures that

no single task is more important than the others while performing sampling. As such, this

protocol favors selecting documents containing annotations the model is uncertain about

from all annotation tasks.

STEP 5: Usage of the Multi-Task Active Deep Learning System We performed

several active learning sessions with our deep learning architectures. At each iteration, the

deep learners are trained to predict annotations using the new validations in addition to the

previous training data. This process is repeated until (a) the error rate is acceptable; and

(b) the number of validated examples is acceptable.

4.2.3 Memory-Augmented Active Deep Learning for Identifying Relations Be-

tween Medical Concepts in EEG Reports

While MTADL uses the rank combination protocol to select unlabeled examples which are

informative for concept detection and attribute classification tasks, incorporating relations

into this selection policy is not trivial. There is only a single relation identification task,

while there are two concept detection tasks and eighteen attribute classification tasks, so it

is likely that the rank combination protocol will simply ignore relation identification when
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selecting examples. Therefore, we present the Memory-Augmented Active Deep Learning

(MAADL) system for relation identification in EEG reports. The five steps of MAADL,

depicted in Figure 4.1, are defined as:

STEP 1: Annotation Schema: For relation identification, we relied on the schema defined

in Section 3.2, focusing on three types of relations between medical concepts found in EEG

reports: evokes, evidences, and treatment-for.

STEP 2: Annotation of Initial Training Data: In order to perform relation identifica-

tion, medical concepts and their attributes must be identified first. Therefore, we relied on

the same sub-set of 40 manually annotated EEG reports from Step 2 of MTADL, annotating

relations on the same set. 198 evidences, 146 evokes, and 72 treatment-for relations

were identified in the seed set of 40 EEG reports.

STEP 3: Design of Deep Learning Architectures: For relation identification we employ

EEG-RelNet, which detects relations between medical concepts in each EEG report by using

a neural network augmented with two types of memories: (i) a memory for each medical

concept; and (ii) a memory for each relation between each pair of medical concepts. EEG-

RelNet is fully specified in Section 3.3.

STEP 4: Development of the Sampling Mechanism: Since MAADL is focused on

relation detection between pairs of medical concepts, we chose a selection policy that only

prioritizes relation detection performance, ignoring the quality of medical concepts and their

attributes. Therefore, we do not use the rank combination protocol reported of MTADL,

opting for standard uncertainty sampling (Settles, 2009) whereby EEG reports containing

relations for which the model is most uncertain are selected for manual validation. The

uncertainty of a report is measured at the report level by averaging the uncertainty of each

relation classification decision in the report. The uncertainty of a relation classification

decision is calculated using Shannon Entropy, H(R) = −
∑

tRt logRt, where R is a vector

representing the probability distribution over possible relation types. These probability
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distributions are derived by EEG-RelNet from the learned dynamic relation memory, as

defined in Equation 3.8 in Section 3.3.

STEP 5: Usage of the Memory Augmented Active Deep Learning System: As in

MTADL, the active learning loop is iterated until (a) the error rate is acceptable; and (b)

the number of validated examples is acceptable.

The MTADL and MAADL frameworks allowed us to rely on the active learning loop to

enhance the quality of the concepts, attributes and relations we have discovered automatically

in the EEG reports. However, while active learning with the rank combination protocol is

useful for the task of training separate classifiers on the same training examples, it does have

drawbacks. For example, it is likely that if one classifier is uncertain about an example, other

classifiers are also likely to be uncertain because the tasks are heavily correlated, causing the

rank combination protocol to inflate the importance of such examples. In general, selecting

the most informative unlabeled examples is a complex and difficult task, so heuristics like

uncertainty sampling and rank combination will only go so far. Moreover, have two separate

frameworks for active learning from the same corpus is inefficient, providing the possibility of

manually annotating the same EEG report twice. In the next section, a method for learning

a sampling mechanism from data to make these complex selection decisions over all three

annotation problems is presented.

4.3 Improved Multi-task Active Deep Learning with the Active Learning Policy

Neural Network

In this section we present a new paradigm for Multi-task Active Deep Learning of Concepts,

Attributes, and Relations using the Active Learning Policy Neural Network. The Active

Learning Policy Neural Network (ALPNN) is a meta-learning network that learns an active
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learning selection policy from data by training on a series of simulated active learning prob-

lems. The improved paradigm for Multi-task Active Deep Learning of concepts, attributes,

and relations in EEG reports (MTADL+) boasts several improvements over MTADL pre-

sented in Section 4.2 including (1) the joint prediction of boundary detection, attribute clas-

sification, and relation identification; (2) the learning of a sampling mechanism by ALPNN;

and (3) the usage of a single end-to-end neural model for identifying concepts, attributes,

and relations, the SACAR model. The SACAR model is defined in Section 3.4. MTADL+

improves active learning over MTADL by eschewing the rank combination protocol for the

learned selection policy of ALPNN. Combining the uncertainty of the medical concepts and

their attributes in an EEG report with the uncertainty of the relations between medical

concepts in the same EEG report is not a trivial task. Therefore we chose to learn the

EEG report selection strategy best suited for the identification of concepts, attributes and

relations in our corpus of EEG reports with ALPNN. As in Liu et al. (Liu et al., 2018b)

the problem of learning the example selection policy is cast as a imitation learning problem.

The usage of ALPNN is enabled by the multi-task SACAR model since ALPNN is able to

represent an unlabeled example by its internal representation from SACAR, instead of as

a series of probability distributions over predictions (as in the rank combination sampling

mechanism of MTADL). As shown in the Figure 4.2, MTADL+ uses the following six steps:

Step 1: The initial manual annotation of medical concepts, attributes and relations

between medical concepts in EEG reports. In addition to the expert annotations

used before in Section 4.2, we also made use of silver annotations, produced on the

entire corpus of EEG reports, using the previous methods for concept and attribute

recognition as well as relation identification

Step 2: Learn to recognize concepts, their attributes and relations between concepts by

training SACAR on the current manually annotated training data along with the silver

annotations
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Figure 4.2. Multi-Task Active Deep Learning of Concepts, Attributes and Relations from
EEG Reports.

Step 3: Automatically annotate all concepts, their attributes and relations between

concepts given the current SACAR model

Step 4: Deep imitation learning of the active learning policy is performed if a selection

policy is not yet learned. The learned policy is then applied on the entire set of un-

annotated EEG reports, given the current state of the SACAR model. This step is

performed only once, while the resulting learned selection policy of the annotated EEG

reports will be used repeatedly, inside the AL loop, as illustrated in Figure 4.2

Step 5: Accept/Edit annotations of concepts, attributes and relations in sampled EEG

reports, made available by the learned selection of annotated EEG reports

Step 6: Re-training SACAR with the new training data, containing the validated

annotations. Go to Step 3 until the desired performance is obtained or the time for

active learning is exhausted.
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As shown in Figure 4.2, the active learning loop is comprised of Steps 2, 3, 5 and 6. Central

to MTADL+ is the active learning policy which, once learned in Step 4, it is applied in the

AL loop in a static fashion.

4.3.1 Deep Imitation Learning of the Active Learning Policy

To select unlabeled examples for manual annotation in the active learning loop, we used a

neural network, namely the the Active Learning Policy Neural Network (ALPNN), illustrated

in Figure 4.3, which we trained with the deep imitation learning algorithm developed by Liu

et al. (2018b). The ALPNN represents an active learning problem in terms of (1) a model (in

this case the SACAR model); (2) a set of labeled data for training, DT ; (3) a set of labeled

data for evaluation, DE; and (4) a set of unlabeled data DU . Given an AL problem, the

Policy Network determines a score for each unlabeled data example and returns the example

with the highest score for manual annotation.

In order to train the ALPNN, we use the initial manually annotated dataset, D, to de-

velop a series of simulated active learning problems. Each simulated active learning problem

consists of (1) three random partitions of D to form (a) the training data, DT , (b) the eval-

uation data DE, and (c) the unlabeled data, DU ; along with (2) the SACAR model. The

ALPNN is trained to select the optimal unlabeled example for each simulated problem. To

determine the optimal selection, K examples X1, X2, . . . XK are randomly selected from DU

and K different SACAR models are trained using DT augmented with one of the examples,

e.g., SACARi is trained using DT augmented with Xi, for each i ∈ {1 . . . K}. When evaluat-

ing each of the K SACAR models using the evaluation data DE, we were able to determine

the SACAR model with the best performance, e.g., SACARj and thus conclude that exam-

ple Xj is the the optimal selection. In this way, the ALPNN is trained to imitate an expert

selection policy that selects the unlabeled example that will most improve the performance

of SACAR.
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Figure 4.3. The Active Learning Policy Neural Network (ALPNN).

The ALPNN is a two-layer feed-forward neural network that calculates a score, s(dU),

for an unlabeled example, dU , given an active learning problem. The inputs to the ALPNN,

as shown in Figure 4.3 consist of 3 fixed-size vector representations: (1) v(DU) representing

the entire unlabeled data set, DU ; (2) v(DT ) representing the entire labeled data set, DT ;

and (3) v(dU) representing the unlabeled example, dU , along with the predicted labels for

it, ŷU , generated by SACAR. Specifically, v(DU), the vector representation of the unlabeled

data set DU , is produced by aggregating the encodings for each example, d ∈ DU :

v(DU) =
∑
d∈DU

1

|d|
∑
wi∈d

bi (4.1)

where bi is the encoding produced by SACAR’s TNE for word wi in the EEG report d; and |d|

is the number of words in d. Similarly, the vector representation, v(DT ), for the labeled data

set consists of an aggregation of (i) the encodings for each example d ∈ DT concatenated with

vectors for the empirical distributions of class labels for (ii) the concept type & boundary

detection task; (iii) the 18 attribute classification tasks, and (iv) the relation prediction task
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in the labeled data set:

x =
∑
d∈DT

1

|d|
∑
wi∈d

bi (4.2)

ytl = P (t = l|DT ) (4.3)

v(DT ) = [x, y1, . . . , y|t|] (4.4)

where x is the sum of the average TNE encoding for each word in each example d ∈ DT ; yat is

the probability of task t having class l under the empirical distribution of DT ; and vT is the

concatenation of x and all of the distributions, yt for each task t. The vector representation

v(dU) of the unlabeled example, dU , along with its predicted labels, ŷU , is derived as follows:

vx =
1

|dU |
∑
wi∈d

bi (4.5)

vty =
∑
i

pti (4.6)

v(dU) = [vx, v
1
y, . . . , v

|t|
y ] (4.7)

where vx is the average TNE encoding for each word in the example dU , vty is the sum

of the predicted distributions pti (from Equations 3.26, 3.28, and 3.34 in Section 3.4) for

each instance of task t in dU , and v(dU) is the concatenation of vx and all of the combined

predicted distributions vty for each task t.

The score s(dU), illustrated in Figure 4.3, is then calculated as:

s(dU) = W 1
P (W 0

P [v(DU), v(DT ), v(dU)] + b0
P ) + b1

P (4.8)

where W 0
P ∈ Rdp×d0 and W 1

P ∈ R1×dp are weight matrices, dp is the dimension of the hidden

state, d0 is the dimension of the three input vectors concatenated together, and b0
P ∈ Rdp , b1

P ∈

R are bias vectors.

The ALPNN is trained using the imitation learning algorithm described in Liu et al.

(2018b) using the following loss function which maximizes the probability of selecting the
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optimal unlabeled example, d̂U , from DU for each simulated problem:

LP = −
∑

(d̂u,DU ,DT ,DE)
∈SIM

exp s(d̂U)∑
dU∈r(DU ) exp s(dU)

(4.9)

where the tuple (d̂u, DU , DT , DE) represents a simulated active learning problem, and SIM

is the set of simulated examples. The set SIM is dynamically generated during training

of ALPNN using the algorithm described in Liu et al. (2018b), which uses the Dataset

Aggregation method (Ross et al., 2011) which is meant to increase the generalization of the

Policy Network by exposing it to problems similar to those it is likely to encounter during

the active learning loop.

4.4 Experimental Results and Discussions

The impact of the active learning systems presented in this chapter is evaluated by measuring

the change in performance after each additional round of active learning. The active learning

systems are evaluated for 10 rounds where 10 unlabeled EEG reports are sampled from the

entire unlabeled pool for manual annotation, starting with a seed set of 40 labeled documents.

Results are presented in terms of F1 score using 7-fold cross validation. We compare the

MTADL and MAADL systems (Section 4.2) against MTADL+ (Section 4.3) and against

a random sampling baseline (RAND) using the SACAR model as its learner. Specifically,

the active learning policy of the random baseline is simply to select an unlabeled example

completely at random.

Figure 4.4 presents the learning curves for all tasks, macro-averaged. Since MAADL per-

forms only relation identification and MTADL performs only concept detection and attribute

classification, their performances are averaged to compare against MTADL+ and the ran-

dom sampling baseline. Figure 4.4 clearly shows that both MTADL+ and MTADL outper-

form random sampling, with MTADL+ achieving the best performance. In fact, MTADL+
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tection for 10 rounds of active learning mea-
sured by F1 Score.

achieves a 35% relative increase over the 10 rounds of active learning, while MTADL achieves

20% and random sampling using SACAR achieves 27%. The improved relative increases of

ALPNN for each task compared to random sampling illustrates the effectiveness of the ap-

proach. Moreover, we found that MTADL+ selects documents with slightly fewer concepts

and a similar number of relations compared to random sampling. Specifically, the average

document sampled by MTADL+ contained 24.54 concepts and 7.57 relations while the aver-

age randomly sampled document contained 27.20 concepts with 7.89 relations. This indicates

that the policy learned by ALPNN doesn’t simply bias towards longer documents with more

annotations to trivially outperform random sampling.

Figure 4.5 presents the learning curves for concept detection, while Figure 4.6 presents

the learning curves for attribute classification, and Figure 4.7 presents the learning curves

for relation identification. For concept detection, we see a slight dip in performance as

active learning begins for MTADL, while it recovers to achieve an overall increase of 8%

over the 10 rounds. The performance of MTADL+ begins lower than that of MTADL, but

quickly outpaces it, achieving a relative increase of 13%. Similarly for attribute classification,

MTADL+ quickly surpasses the performance of MTADL, achieving a relative increase in F1

score of 47% vs. 33%. For relation identification, we compare the joint learning of MTADL+
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tification for 10 rounds of active learning
measured by F1 Score.

against the more focused, single-task MAADL system. Compared to MAADL, MTADL+

starts with much lower initial performance for relation identification. This could be due to

the fact that the underlying model of ALPNN, SACAR, is performing concept boundary

detection and attribute classification in addition to relation identification while MAADL’s

model is able to focus on relation identification alone. While the SACAR model used by

ALPNN is just starting active learning, it focuses on concept boundaries and attributes as

there are more concepts and attributes than relations to be identified, dominating the loss

function. However, as the performance for concepts and attributes increases, so to does the

performance for relation identification - to the point where the performance is comparable

to that of MAADL. In this way, ALPNN is able to match the performance of the dedicated

relation identification system while also out-performing another dedicated system for concept

boundary and attribute identification at the same time.

4.5 Lesson Learned

In this chapter three active deep learning systems are presented for training deep learners to

extract information from clinical text. The MAADL system improves relation identification
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quality while the MTADL system improves concept detection and attribute classification.

Both of these systems select unlabeled examples for manual annotation by quantifying the

uncertainty that the underlying deep learners have about the unlabeled examples. However,

when a single multi-task neural network which performs concept detection, attribute classi-

fication, and relation identification is provided, a new active learning paradigm is enabled,

MTADL+. MTADL+ is able to learn an active learning selection policy from data and the

resulting policy is shown to outperform both uncertainty sampling and random sampling in

experiments.
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CHAPTER 5

DEEP LEARNING OF BIOMEDICAL KNOWLEDGE EMBEDDINGS

Biomedical ontologies encoding biomedical knowledge have been a major focus of the biomed-

ical research community over the past two decades, justified by the steady increase in biolog-

ical and biomedical research and the growth of data that is being collected in all areas of biol-

ogy and medicine. As the number of ontologies increases and their size grows, their relevance

in biomedical research also rises as they contribute to the interpretation of the biomedical

data and enable complex inference over their encoded knowledge. The BioPortal1 of the

National Center for Biomedical Ontology (NCBO) is the most comprehensive repository of

biomedical ontologies in the world (as of this writing it includes 817 ontologies, with over

10 million classes and almost 40 million indexed records). Many of the ontologies available

from the BioPortal have become widely used resources, e.g., the Gene Ontology (Ashburner

et al., 2000) (GO), one of the most important resources available in genomics research. For

instance, survey published in Huang et al. (2009) discusses 68 bioinformatics enrichment

tools informed by GO, that have played a very important and successful role contributing to

the gene functional analysis of large gene lists for various high-throughput biological studies,

evidenced by thousands of publications citing these tools. Moreover, LePendu et al. (2011)

showed that it is possible to create reference annotation sets for enrichment analysis 2 using

other ontologies than GO, still available from BioPortal, e.g., the Human Disease Ontology

(DO). The ontologies in the BioPortal define graph-theoretic structures, with concepts con-

nected by edges representing relations such as ‘Is-A’ or ‘Part-Of’ or others from the OBO

Relation Ontology (RO), generating well-principled ontologies for many biomedical domains.

1http://bioportal.bioontology.org

2Gene set enrichment (also functional enrichment analysis) is a method to identify classes of genes or
proteins that are over-represented in a large set of genes or proteins, and may have an association with
disease phenotypes.
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The knowledge encoded in the ontologies available through the BioPortal of the Na-

tional Center for Biomedical Ontology (NCBO), although informative and originating from

biomedical expertise, cannot be used easily, especially when considering techniques informed

by deep learning similar to those presented in Miotto et al. (2016) and Rajkomar et al. (2018).

The main difficulty arises from the fact that deep learning techniques operate on special rep-

resentations, called embeddings, while ontologies encode knowledge differently, describing

concepts and relations between them. Therefore, in order to take advantage of the vast

knowledge encoded in biomedical ontologies, knowledge embeddings have been considered,

which can be seamlessly integrated into deep learning systems. Knowledge embeddings are

continuous vector representations of concepts and relations representing a knowledge graph

that encode the inherent structure of the graph. This chapter3 presents three different

frameworks of generating biomedical knowledge embeddings:

Framework 1: in which knowledge embeddings are used to represent instances of concepts

encoded in a specific ontology;

Framework 2: in which knowledge embeddings represent concepts as well as relations from

a very large ontology widely used in medical informatics; and

Framework 3: in which knowledge embeddings provide an alignment between separate

ontologies, thus enabling the incorporation of knowledge that overlaps in separate

ontologies.

In Framework 1, biomedical knowledge discovered from a large corpus of EEG reports is

used to augment an existing ontology developed for encoding knowledge relevant to epilepsy.

Framework 2 presents novel knowledge graph embedding methods operating on a very large

biomedical ontology, namely the Unified Medical Language System (UMLS) (Lindberg et al.,

3This chapter contains excerpts from Maldonado et al. (2017), Maldonado et al. (2019), and Maldonado
and Harabagiu (2019).
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1993). In Framework 3, knowledge embedding methods are extended to jointly model dis-

parate ontologies, and enable their alignment using a shared embedding space.

The purpose of Framework 1 is to (a) provide new ontologies with instances of relations

involving concepts encoded in the ontology and (b) identify new data-driven knowledge that

should be included in the ontology. The purpose of Framework 2 is to expose the expert-

curated knowledge found in the UMLS to deep learning systems. As such, Framework 2

informs a predictive model using deep learning based on a hierarchical attention mechanism

using the knowledge contained in the UMLS embeddings. The purpose of Framework 3 is

to perform ontology alignment. Ontology alignment is the task of finding correspondences

between concepts in disparate ontologies. Many biomedical ontologies are developed in isola-

tion and therefore exhibit subsets of overlapping information, imposing the task of ontology

alignment.

In Framework 1, techniques from Chapters 2 and 3 are used to construct a data-driven

knowledge graph by identifying instances of concepts and relations between concepts through-

out the corpus. The concepts in this knowledge graph are linked against an existing ontology,

and embedded to allow for probabilistic inference. Framework 2 is comprised of a novel em-

bedding method based on Generative Adversarial Networks (GAN) (Goodfellow et al., 2014)

operating on distinct graphs within the UMLS. Framework 3 extends the embedding methods

of Framework 2 to jointly perform alignment and embedding.

The knowledge embeddings produced by Framework 1 can be used to perform inference,

identifying the most likely relations expressed in the data that should be added to the

ontology. Framework 2 produces embeddings for each concept in the UMLS – these concept

embeddings can be used to characterize medical concepts in deep learning systems. As an

example, a clinical prediction model is augmented with the UMLS concept embeddings,

improving results. Framework 3 is applied to the task of aligning three specific biomedical

ontologies, showing promising results.
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This chapter is organized as follows: Section 5.1 provides background on knowledge graph

embedding methods, Section 5.2 presents Framework 1 for learning knowledge embeddings,

while Section 5.3 presents Framework 2, Section 5.4 presents an application of Framework 2,

and finally Section 5.5 presents Framework 3 for learning knowledge embeddings for ontology

alignment.

5.1 Background

Knowledge graph embedding is the task of encoding the relational structure of a multi-

relational knowledge graph into a set of real-valued vectors (Wang et al., 2014). In a multi-

relational knowledge graph G = (V,E), vertices, V , represent concepts and edges, E, repre-

sent relations between concepts in the form of relation triples, 〈c1, r, c2〉 where c1, c2 ∈ V are

concepts and r is a relation from a fixed set R. For example, the edge 〈cancer, IS_A, disease〉

represents a hierarchical “IS_A” relation between the biomedical concepts “cancer” and “dis-

ease”. Given a knowledge graph, vectors c ∈ V and r ∈ R are learned for each concept

and relation, respectively. These vectors are referred to as knowledge embeddings since they

encode the relational structure of the knowledge graph and thus the knowledge contained

therein. Using the relational information encoded in knowledge graphs directly is known to

be difficult and inefficient, especially as the size of the graph grows (Wang et al., 2014; Nickel

et al., 2011). Knowledge embeddings facilitate the usage of this relational knowledge since it

allows for subsets of concepts and relations to be manipulated in isolation, while still main-

taining information about their context within the graph as a whole (Wang et al., 2014).

To this end Nickel et al. (2011) introduced RESCAL, a tensor factorization method that

derives a factorization of the multi-relational adjacency matrix such that each concept and

relation is a separate learned factor. Bordes et al. (2013) reformulate the problem by project-

ing concepts onto a shared embeddings space and casting relations as translations between

concepts on that embedding space, introducing TransE. Socher et al. (2013) introduce a
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more expressive model, the Neural Tensor Network, that learns a series of weight matrices

for each relation type along with concept embeddings. Building on the success of TransE,

various other methods were more recently introduced that project concept embeddings onto

more structured embedding spaces with various geometric properties (Wang et al., 2014; Lin

et al., 2015; Ji et al., 2015a). Noting that concepts found in knowledge graphs are often

characterized by information that is not contained within the graphical structure itself, Guo

et al. (2015) use concept type information to impose smoothing constraints on knowledge

embeddings and Trivedi et al. (2018) incorporate attribute information into their embed-

ding scheme. As we will see later in the chapter, these methods are particularly well-suited

to biomedical ontologies, which contain rich attribute information. Knowledge embeddings

learned by these techniques have wide-ranging uses including discovering new relations in a

knowledge graph (Bordes et al., 2013), question answering (Bordes et al., 2014), and relation

extraction (Weston et al., 2013). In this chapter knowledge embeddings are applied to prob-

abilistic question answering in Section 5.2, predictive modeling in Section 5.4, and ontology

alignment in Section 5.5.

5.2 Knowledge Embeddings Meets Biomedical Ontologies

This section describes the medical knowledge embeddings (MKE) automatically learned from

a large corpus of EHRs, specifically the Temple University Hospital (TUH) EEG Corpus

described in Chapter 2. EEG reports contain a wealth of epilepsy-related knowledge, de-

rived from clinical practice, expressed through narratives describing medical concepts and

implicit relations between these concepts. The methodology described in this section links

medical concepts throughout the corpus against an existing biomedical ontology from Bio-

Portal, the Epilepsy Syndrome and Seizure Ontology4 (ESSO). ESSO encodes 2,705 classes

4http://bioportal.bioontology.org/ontologies/ESSO
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Background_Asymmetry

Background_Slow_Activity

Abnormal_Pattern Normal_Pattern

Complex_Wave_Pattern Suppression

EEG_Test_Result Diagnostic_Factor

Diagnostic_Test_ProcedureDiagnostic_Test

Activation_Procedure

Photic_Stimulation Hyperventilation

Excerpt from Epilepsy Syndrome and Seizure Ontology (ESSO)

Photic_Driving

EVOKES

EVOKES

Example Report

…

DESCRIPTION OF THE RECORD: The background EEG is characterized by 
slowing and disorganization. There is prominent shifting 
arrhythmic delta activity more prominent in the left mid to 
anterior temporal region. Photic stimulation generates scant 
driving.

…

Figure 5.1. Concept mentions from clinical text linked to the ESSO ontology. A new relation
(EVOKES) is inferred from the text.

with an upper ontology targeting epilepsy, a disease which affects an estimated 2.2 million

people in the United States. However, ESSO is not a complete ontology, and its continu-

ous creation could benefit from data-driven knowledge suggestion, especially when the data

originates in clinical documents produced in the practice of neurology in patients exhibiting

epilepsy symptoms. For this purpose, a large set of EEG reports can inform the generation

of knowledge embeddings specific for epilepsy. Moreover, knowledge embeddings are used to

infer new relations evidenced by the clinical narratives for possible inclusion in the ontology.

Figure 5.1 illustrates the application of the framework presented in this section. The

depicted example report contains several mentions of medical concepts including EEG ac-

tivities (highlighted in green) and EEG events (highlighted in blue), defined in Chapter 2.

Each of these EEG activities and events is linked to a specific concept in ESSO, providing

instances of the concepts represented in the ontology. While EEG activities and EEG events

are linked to ESSO, medical problems and treatments extracted from the corpus are linked
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to the UMLS (Lindberg et al., 1993) since ESSO does not contain a comprehensive set of

medical problems and treatments. Figure 5.1 also contains an example of an evokes rela-

tion (defined in Chapter 3) that is inferred from the text and suggested for addition to the

ontology. The relation triple 〈photic stimulation, evokes, photic driving〉 is identified in the

example report illustrated in Figure 5.1.

The set of relations between medical concepts extracted from the TUH EEG corpus

constitutes a data-driven knowledge graph, where several relations are considered. Using

knowledge graph embedding methods, the most likely relations expressed in the data can

be identified for inclusion in the ontology using probabilistic inference. Unlike concepts and

relations encoded in the BioPortal ontologies, the knowledge graph embeddings associate

relations between medical concepts with a probability or likelihood, enabling a probabilis-

tic representation of biomedical knowledge. For example in Figure 5.1, the relation triple

identified in the example report is deemed to be plausible and is therefore a candidate for

inclusion as a new relation to the ontology.

To the best of our knowledge, this is the first report of the development of an embed-

ded medical knowledge graph using free text clinical records. We learned knowledge graph

embeddings representing 1,195,927 instances of binary relations between epilepsy-related

concepts. These relations involved 2,442 instances of medical concepts.

5.2.1 Extraction of the Medical Knowledge Graph and Generation of Knowl-

edge Embeddings

Extraction of the medical knowledge graph relies on the automatic identification of concepts

and relations from data to enable (i) the population of the knowledge representation and

(ii) linking the acquired knowledge to existing ontologies. In learning medical knowledge

embeddings (MKE) from EEG reports we do not only perform bottom-up acquisition of

medical knowledge from EEG reports, but we also represent the knowledge probabilistically
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in a multi-dimensional space allowing inference to be performed on it. To do so, we followed

a methodology which involves the following three steps:

STEP 1: Decide which medical concepts and which relations between them are expressed in

the EEG reports;

STEP 2: Automatically generate the Knowledge Graph by extracting medical concepts and

relations from the EEG reports;

STEP 3: Learn Medical Knowledge Embeddings (MKE) from the associated Knowledge

Graph;

It is to be noted that the the MKE represent only knowledge available from the EEG reports,

which do not discuss the taxonomic organization of medical concepts or their partonymy

relations. These forms of relations are encoded in medical ontologies, thus the MKE provide

complementary knowledge to medical ontologies. However, many of the concepts represented

in the MKE are also encoded in existing medical ontologies, providing a simple mechanism

of linking the MKE to various ontologies available in BioPortal. For example, the clinical

history and the medication list of EEG reports mention multiple medical concepts already

encoded in the Unified Medical Language System (UMLS) (Lindberg et al., 1993) ontology:

Example 1: CLINICAL HISTORY: This is a 20-year-old female with history of seizures

described as generalized tonic-clonic with loss of consciousness for a few minutes. Last

seizures occurred 2 years ago.

MEDICATIONS: Keppra and Lamictal.

Medical problems such as “ loss of consciousness”, and treatments such as “Keppra”, “Lam-

ictal” are encoded in UMLS while concepts such as seizures will be linked both to UMLS

and the ESSO ontology. However, these ontologies do not capture relations between such

concepts that are implied in the EEG reports, e.g., which brain activities evidence some

epilepsy-specific medical problems. Our three-step methodology aims to capture and repre-

sent such relationships such that their probabilistic likelihood can be expressed via inference.
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Figure 5.2. Medical concepts and relations considered for Medical Knowledge Embeddings
(MKE), and their linkage to biomedical ontologies.

Knowledge graph embedding enables such probabilistic inference by providing a mecha-

nism for calculating the likelihood of any possible relation between concepts expressed in the

data. Therefore, in addition to the three-step methodology for generation and embedding of

a knowledge graph for epilepsy, we present the application of the knowledge embeddings to

probabilistic inference.

STEP 1: Decide which medical concepts and relations between them are ex-

pressed in EEG reports

In addition to medical problems and treatments that describe the clinical picture and therapy

of a patient, EEG reports mention EEG events and EEG activities (defined in Chapter 2).

Thus, we decided to encode in the MKE four types of medical concepts: (1) EEG events; (2)

EEG activities; (3) medical problems and (4) treatments. Whenever these concepts are also

encoded in other ontologies, we linked to them. EEG events and EEG activities are linked
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against ESSO using a manual mapping between the event and activity schemata introduced

in Chapter 2 and ESSO. Medical problems and treatments are linked against the UMLS

using MetaMap Lite (Demner-Fushman et al., 2017). Medical problems and treatments

that are contained in ESSO are also linked against ESSO using a manual mapping between

the UMLS and ESSO. For example, medical problems such as idiopathic generalized epilepsy,

when identified in an EEG report with methods developed in the STEP 2 of our methodology,

shall be linked to UMLS through its concept unique identifier (CUI) discovered by MetaMap.

In addition to these four types of concepts, we decided to discern four types of binary

relations that are implicit in the EEG reports. Each of these relations operates between

a source argument and a destination argument. The relations along with examples of the

four types of medical concepts are illustrated in Figure 5.2. The four binary relation types

that we considered were motivated by discussions with several practicing neurologists and

surgeons, corresponding to the implicit knowledge they discern from EEG reports. As shown

in Figure 5.2, the evidences binary relation always has a medical problem as its destination

concept, which is always mentioned in the clinical correlation section of the EEG report.

The following example shows how the medical problem idiopathic generalized epilepsy, is

evidenced by findings such as polyspike discharges, which is a mention of an EEG activity,

in the impression section:

Example 3: IMPRESSION: This is an abnormal EEG recording capturing wakefulness

through stage II sleep due to generalized spike and wave and polyspike discharges seen

during wakefulness.

CLINICAL CORRELATION: The above findings are consistent with idiopathic generalized

epilepsy.

As shown in Figure 5.2, the evidences relation considers EEG events, EEG activities,

treatments, and medical problems as providing evidence for the medical problem from the

clinical correlation section of the EEG report. The evokes binary relation always has an
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Table 5.1. Examples of the Relations and Concepts expressed in EEG reports.
Evidences Evokes

〈seizures, evidences, idiopathic generalized
epilepsy〉

〈photic stimulation, evokes, photic driving
response〉

〈polyspike discharges, evidences, idiopathic
generalized epilepsy〉

〈hyperventilation, evokes, slowing〉

〈facial grimacing, evidences, psychogenic seizure〉 〈seizures, evokes, periodic lateralized epileptiform
discharge〉

〈toxoplasmosis, evidences, degenerative brain
disorder〉

〈shaking, evokes, rhythm〉

Treatment For Occurs With
〈lamictal, treatment-for, idiopathic generalized

epilepsy〉
〈keppra, occurs-with, lamictal〉

〈depakote, treatment-for, generalized anxiety
disorder〉

〈encephalopathies, occurs-with, occipital lobe
epilepsy〉

〈dilantin, treatment-for, hematoma, subdural,
chronic〉

〈cerebral dysgenesis, occurs-with, recurrent
convulsions〉

〈ampicillin, treatment-for, infection of foot〉 〈spike and slow wave complex, occurs-with,
polyspike complex 〉

EEG activity as a destination concept, as it attempts to capture the medical concepts that

evoke the respective EEG activity. Those medical concepts can be either EEG events, or

other EEG activities, medical problems or treatments followed by the patient. The third

relation, namely occurs-with constrains both its arguments to be of the same type, e.g.,

either EEG activities, medical problems or treatments. The treatment-for relation cap-

tures the treatments prescribed for certain medical problems. Table 1 illustrates examples

of each of the four relations we considered, involving medical concepts illustrated in Fig-

ure 5.2, which lists all the EEG events and EEG activities that we decided to encode in

the MKE, while providing several examples of medical problems and treatments, along with

their UMLS CUIs. We used the vocabularies of EEG Activities and EEG Events from Chap-

ter 2 based on the International Federation of Clinical Neurophysiology’s glossary of terms

(Noachtar et al., 1999).
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EEG Reports
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Boundary Detection of Medical Concepts

Textual Boundary of
EEG Activities
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EEG Events, Medical 
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Deep Rectified 
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Deep Rectified 
Linear Network

EEG Activity POLARITY

EEG Event POLARITY MODALITY

Medical Concept Recognition & Identification of Polarity/Modality

Medical Problem POLARITY MODALITY

Treatment POLARITY MODALITY

Figure 5.3. Deep Learning Architectures used for Recognizing Qualified Medical Concepts
from EEG Reports.

STEP 2: Automatically generate the Knowledge Graph by extracting medical

concepts and relations from the EEG reports

The extraction of medical knowledge from EEG reports consists of (1) automatic identifica-

tion of medical concepts and (2) binary relation detection. Medical concept identification

aims to recognize all the four types of concepts mentioned in EEG reports, along with their

inferred polarity and modality, as described in Chapter 2. Through the identification of

modality and polarity of the clinical concepts, we aimed to capture the neurologist’s be-

liefs about the clinical concepts mentioned in the EEG report. Thus our medical concept

identification method needed also to qualify the concepts by their polarity and modality.

Medical Concept Identification was performed by taking advantage of our existing active

deep learning methodology described in Sections 2.4–2.5, which is illustrated in Figure 5.3.

As described in Sections 2.4–2.5, the methodology first uses two stacked Long Short-Term

Memory (LSTM) networks for detecting medical concepts in the text of the EEG report

then uses two Deep Rectified Linear Networks (DRLNs) to (a) identify the medical concepts

and (b) discern their polarity and modality. EEG activities are identified only with their

polarity, as their mentions are always assumed to be factual, as illustrated in Figure 5.3.

Moreover, medical problems and treatments are both normalized into UMLS concepts using

MetaMap Lite (Demner-Fushman et al., 2017).
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Detecting Relations between Medical Concepts was possible when pairs of medical con-

cepts identified in the same EEG report were considered. Specifically, we established the four

types of relations illustrated in Figure 5.2 by considering: (1) a potential evidences relation

between any medical concepts from an EEG report and a medical problem identified in its

clinical correlation section; (2) a potential evokes relation between any medical concept

and an EEG activity, provided that the treatments were not identified in the clinical cor-

relation section, as they may indicate possible or recommended treatments; (3) a potential

treatment-for relation between any treatment and a medical problem identified in the

history section of the EEG report; and (4) a potential occurs-with relation between pairs

of EEG activities, medical problems and treatments that are identified in the same section of

the EEG report. We discard potential relations involving medical concepts with “negative”

polarities and “possible” modalities since these medical concepts, while mentioned, were not

actually observed. All these potential relations are indicative of implied relations, that are

not always directly stated in the text of the EEG report.

Taken together, the set of medical concepts extracted from the entire TUH EEG corpus

along with the collection potential relations between them constitute a Knowledge Graph,

G = {V,E} where V is the set of graph vertices and E is the set of graph edges. In our

knowledge graph, V is the set of medical concepts and E is the set of relations between them.

The medical knowledge embeddings learned in the following step can be used to provide the

likelihood of any possible example of one of these relations.

STEP 3: Learning medical knowledge embeddings (MKE) from the knowledge

graph

Learning MKE is made possible by relying on the TransE (Bordes et al., 2013) method,

widely used (Guo et al., 2015; Lin et al., 2015; Wang et al., 2014) for representing multi-

relational data corresponding to concepts and relations by modeling concepts as points in a
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continuous vector space, Rd, called the embedding space, where d is a parameter indicating

the dimensionality of the embedding space. In our use of the TransE framework, relations

between medical concepts are represented as translation vectors, also in Rd, that connect the

two points representing the two medical concepts in the embedding space. TransE learns

an embedding, ~ci, for each concept ci and an embedding, ~r, for each relation type r such

that the relation embedding is a translation vector between the two concept embeddings

representing its arguments. This means that for any medical concept ci, the concept most

likely to be related to ci by the relation r should be the medical concept whose embedding

is closest to (~ci+~r) in the embedding space. By modeling the medical concepts as points in

the embedded space and the relations between them as translation vectors, we can measure

the plausibility of any potential relation between any pair of concepts using the geometric

structure of the embedding space. The plausibility of a relation between a source medical

concept and a destination medical concept, represented as a triple, 〈cs, r, cd〉, is inversely

proportional to the distance in the embedding space between the point predicted by our

model (~cs+~r) and the point in the embedding space representing the destination argument

of the relation, i.e., (~cd). In this work, we use Manhattan Distance as our distance function:

f(cs, r, cd) = ||~cs + ~r − ~cd||L1 (5.1)

where || · ||L1 is the L1 norm. Using this distance function, plausible triples have low value

of f (since ~cs + ~r ≈ ~cd for plausible triples) and implausible triples have a high value of f .

Neural Network Architecture for learning MKE. To learn the concept embeddings and trans-

lation vectors, we use a neural network that will in fact produce the MKE. Formally, let C

be the set of medical concepts found in the EEG reports and L be the set of relation types.

Let X = {x1 = 〈c1
s, r

1, c1
d〉, . . . , xm = 〈cms , rm, cmd 〉} be the set of m relation triples extracted

from the corpus of EEG reports at Step 2; where each cis, cid ∈ C is a medical concept and

each ri ∈ L is a relation type. The embedding, ~cj
i, for a concept cij is calculated by first
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generating a one-hot vector representation of cij given by v(cij) which is a |C|-dimensional

vector of zeros with a one in the dimension corresponding to the index of the concept cij

in the set of concepts C. The embedding ~cj
i = v(cij)E is derived by multiplying the one-

hot vector v(cij) with the embedding matrix E ∈ R|C|×N . Each row of E corresponds to a

medical concept embedding and the operation v(cij)E corresponds to selecting the kth row

of E if v(cij)k = 1. Likewise, the embedding for a relation type ri is given by ~r i = w(ri)R

where w(ri) maps ri to a one-hot vector of size |L| and R is the relation embedding matrix.

Consequently, Equation 5.1 can be computed using:

f(cis, r
i, cid) = ||v(cis)E + w(ri)R− v(cid)E||L1 (5.2)

To learn useful embeddings we must also define a training objective that encodes useful

relationships. Inspired by the work of Bordes et al. (2011), we use the following train-

ing objective: if either the source argument or destination argument from a training triple

is removed, the model should be able to predict the correct medical concept. For exam-

ple, the model should ensure that value of f(keppra,treatment-for, idiopathic general-

ized epilepsy) is less than the value of f(morphine,treatment-for, idiopathic generalized

epilepsy) since keppra is a treatment for idiopathic generalized epilepsy, but morphine is

not. Formally, we wish to learn the values of E and R such that for any training triple

xi = 〈cis, ri, cid〉, the following two constraints are met:

f(cis, r
i, cid) < f(cjs, r

i, cid),∀j : 〈cjs, ri, cid〉 6∈ X (5.3)

f(cis, r
i, cid) < f(cis, r

i, cjd),∀j : 〈cis, ri, c
j
d〉 6∈ X (5.4)

To learn the optimal embedding matrices E and R, we optimize the objective defined by the

constraints outlined in Equations 5.3-5.4 by iterating the following process:

1. Randomly select a training triple xi = 〈cis, ri, cid〉 from X.
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2. Create a corrupted version of the triple xnegi by selecting a medical concept cneg at

random from the set of medical concepts C and randomly replacing either cis or cid in

xi such that xnegi 6∈ X

3. Update E and R by backpropagating the ranking margin loss (Guo et al., 2015),

max(0, γ + f(xi) − f(xnegi )), where γ is the margin parameter that determines how

much of a margin should exist between triples in the training set and triples not in the

training set.

4. Normalize each row e of E (i.e., e := e
||e||)

This process is repeated for each triple in X a fixed number of iterations (200,000 in this

work). Our collection of 1,195,927 relation triples extracted from the TUH EEG corpus

consisted of |X| = 138, 369 unique relation triples. It is important to note that, as reported

in (Bordes et al., 2013), the normalization in the fourth step prevents the model from trivially

minimizing the loss by artificially increasing entity embedding norms.

Application of the MKE: Inference as Probabilistic Question Answering

The knowledge embeddings learned from the data-driven knowledge graph extracted from

the TUH EEG corpus can be used to perform inference. Inference from a knowledge base

can be viewed as answering questions using its encoded knowledge. Answering questions like

(Q1) “what is the most likely treatment for idiopathic generalized epilepsy?”, (Q2) “what

EEG activity is most likely to occur with polyspike discharges?”, and (Q3) “what is the

likelihood that a patient with background slowing is diagnosed with cerebral dysfunction?”

requires the ability to perform probabilistic inference. The MKE can be used to perform

probabilistic inference by (1) representing the question as a relation triple q and (2) measuring

the plausibility of q using equation 5.1 with the embedding matrices E and R automatically

learned from the TUH EEG corpus. We estimated the probability of q = 〈cqs, rq, c
q
d〉 in terms
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of the geometric structure of the embedding space. Formally:

P (cqs, r
q, cqd) = 1− f(cqs, r

q, cqd)∑
〈cis,ri,cid〉∈X

f(cis, r
i, cid)

(5.5)

For example, answering (Q1) is the result of ĉs = arg maxcs∈C P (cs, treatment-for,

idiopathic generalized epilepsy); answering (Q2) is the result of ĉd = arg maxcd∈C P (polyspike

discharges ,occurs-with, cd); and answering (Q3) is the result of P (background slowing ,

evokes, cerebral dysfunction). The augmented relations from inference are detailed in the

next subsection.

5.2.2 Experimental Results and Discussions

The medical knowledge embeddings for epilepsy were evaluated in terms of (a) their plausi-

bility; and (b) their completeness. The plausibility of a knowledge graph embedding model

measures how that model’s plausibility function can be used to score valid relation triples

above invalid relation triples. The completeness of a knowledge graph embedding model

measures how well that model can be used to infer new information. The plausibility of

relations encoded in MKE was assessed in three ways, measuring how well MKE rank triples

from a test set T , of 1,000 relation triples held out from the data used to train the MKE. For

each triple τ in the test set, we randomly remove either the source or destination argument

and produce a set of candidate triples by replacing the removed argument with every medical

concept c ∈ C. We rank the candidate triples in ascending order according to the distance

function f . This allows us to calculate the following metrics using the rankings produced

from every triple in the test set:

• Mean Reciprocal Rank (MRR) is a standard ranking evaluation that measures how

high the first correct triple is ranked according to the model. MRR = 1
|T |
∑|T |

i=1
1

ranki

where ranki refers to the rank of the first correct triple in the ranking, where a correct

triple is defined as any triple from any of the training, validation, or tests sets.

127



• Precision at 10 (P@10) is another standard ranking evaluation that measures the

percentage of the top K ranked triples are correct. As with MRR, correct triples are

defined as any triple from any of the training, validation, or tests sets. The Precision

at 10 evaluation shows how well the MKE ranks the triples about which the model is

most confident.

• Hits at K (H@10, H@100) is a standard evaluation used for knowledge graph embed-

dings (Bordes et al., 2011, 2013) for evaluating link prediction. Hits at K measures

how often the specific test triple t occurs in the K highest ranked triples, as opposed to

precision which measures how often any correct triple occurs in the k highest ranked

triples. We report both Hits at 10 and Hits at 100 to illustrate how often t is ranked

among the most plausible triples, and how often t is ranked in the top 5% of triples.

The evaluation of completeness of the relations from the MKE also used the test set, T . We

evaluated how well the MKE can infer new knowledge in the form of new relations from the

test set. To measure how well the MKE can model relations of the held out triples from the

test set, we consider each test triple, τ ∈ T , and a corrupted version of the test triple, z,

created by randomly replacing either the source argument or destination argument with a

random medical concept and compute the Pairwise Plausibility Accuracy (PPA). The PPA

measures the percentage of test triples for which the plausibility, P (cτs , r
τ , cτd), of the test

triple τ is higher than plausibility, P (czs, r
z, czd), of the corrupted triple. PPA demonstrates

how well the MKE can differentiate between a correct triple, τ , and an incorrect triple,

z, even if the model had never encountered τ during training. For these evaluations, the

MKE were learned from 137,369 training triples automatically extracted from the TUH EEG

corpus as described in the Methods section. We selected the dimension of the embedding

space d = 50 from [25, 50, 100, 200] and the margin parameter γ = 1.0 from [0.1, 1.0, 5.0, 10.0]

using grid search on a validation set of 500 relation triples.

Table 5.2 presents these results. The results for the Pairwise Plausibility Accuracy show

that the MKE can correctly distinguish between relations that occur in the data (but that
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Table 5.2. Quality of relations encoded in the MKE, measured using Pairwise Plausibility
Accuracy (PPA), Mean Reciprocal Rank (MRR), Precision at 10 (P@10), Hits at 10 (H@10)
and Hits at 100 (H@100).

Relation Type PPA MRR P@10 H@10 H@100

evidences 86.04% 96.44% 77.22% 63.37% 84.43 %
evokes 94.22% 96.10% 84.62% 84.91% 97.17 %
occurs-with 90.00% 62.30% 45.58% 27.77% 68.36 %
treatment-for 82.89% 83.78% 72.28% 45.18% 80.70 %

Micro-Averaged 88.95% 83.33% 66.73% 47.35% 81.30 %

the model has not seen during training) and corrupted relations 88.95% of the time. The

micro-averaged Mean Reciprocal Rank of 83.33% indicates that for the majority of triples

in the test set, the top ranked candidate triple is correct. While the MRR of the occurs-

with relation is the lowest (62.3%), it should be noted that, on average, there is at least

one correct candidate triple ranked in the top two. The Precision at 10 metrics show that

66.73% of the top 10 ranked triples were correct, in general. It is interesting to note that the

results for the Hits at 10 metric have the most variability between relation types. For the

occurs-with relation, test triple, t, only occurs within the top 10 ranked triples 27.77%

of the time. In contrast, for the evokes relation, t occurs within the top 10 ranked triples

84.91% of the time. In general, the Hits at 100 results show that the MKE correctly ranks

t in the top 5% of candidate triples 81.3% of the time.

To analyze the correctness of medical knowledge distilled from EEG reports in the MKE,

we manually inspected the 30 most plausible triples for each relation type. Specifically,

for each triple, we determined whether that triple is consistent with established medical

knowledge. In general, we found the evokes relation type to have the highest percentage

of correct triples, highlighting the ability of the MKE to capture neurological experience

from EEG reports. By contrast, the MKE successfully identified a number of unexpected

Occurs-With relations, including 〈hypothyroidism, occurs-with, turner syndrome〉, and

〈infantile spasms, occurs-with, MELAS Syndrome〉. Whereas the coincidence of hypothy-

roidism and Turner Syndrome is fairly well known, the relationship between infantile spasms
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and MELAS syndrome is relatively obscure. Infantile Spasms, also known as West syn-

drome, is an exceedingly rare condition, with an estimated incidence in the United States

of about 0.25-0.4 per 1000 live births (Paciorkowski et al., 2011). The MELAS syndrome is

an even rarer inherited disorder of mitochondrial function which may be responsible for 8%

of cases of infantile spasms (Sadleir et al., 2004). That the MKE recognized the connection

between these two very rare conditions is quite interesting, and suggests that knowledge

graph embedding holds promise for the elucidation of unusual concepts and relations from

EEG reports in particular, and perhaps in medical reports more generally.

Owing to the data-driven nature of our technique, we generated some incorrect triples, as

might be expected when using noisy free text data. For example, we observed two common

types of errors when evaluating the evidences relation: (1) relation inversion, inverting the

source and destination arguments of the relation; and (2) relation confusion, confusing one

relation type with another. Consider the following example of a triple exhibiting relation

inversion: (E1) 〈liver cirrhosis, evidences, encephalopathies〉. As defined in Figure 5.2, the

source argument of the evidences relation is a medical concept suggesting or supporting

the diagnosis listed in the destination argument. By contrast, it could be argued that, for

triple (E1), the destination argument encephalopathies more commonly evidences the source

argument liver cirrhosis. We believe these types of error could be addressed by incorporating

semantic attributes (e.g., temporal information) to contextualize or constrain the arguments

allowed for each relation type. Relation confusion is exemplified by the triple (E2) 〈rifaximin,

evidences, brain diseases, metabolic〉. The source argument rifaximin is an antibiotic used

in the management of the encephalopathy (i.e., the destination argument brain diseases,

metabolic) related to severe liver failure. Thus, whereas there is a biologically plausible ex-

planation for (E2), the evidences relation clearly does not accurately describe the relation;

instead, the relation occurs-with may be preferred. This type of error could be mitigated

in future work by introducing constraints into the knowledge embedding framework, as re-

ported in Guo et al. (2015). Finally, there were rare cases in which the MKE assigned a high
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plausibility to triples in which the source argument contradicts the destination argument,

i.e., 〈insulin, treatment-for, Diabetes Mellitus, Non-Insulin-Dependent〉. We believe that

these types of error may be resolved by incorporating knowledge from existing ontologies to

enforce consistency.

5.2.3 Lessons Learned

In this section, we presented the medical knowledge embeddings (MKE) automatically

learned from clinical text in EEG reports. Unlike traditional ontologies which encode cu-

rated knowledge, the MKE infers probabilistic knowledge by extracting a large number of

potential relation triples from clinical narratives. By applying knowledge graph embedding

techniques, we were able to discover data-driven knowledge which can potentially be linked

to ontologies from the BioPortal. Experimental results demonstrate the promise of this ap-

proach and highlight the potential of the MKE for bridging the knowledge gaps of existing

neurological ontologies. The MKE presented in this section showcase the way in which deep

learning techniques applied to large collections of medical records can supply medical knowl-

edge derived from clinical practice to complement the knowledge already encoded in existing

biomedical ontologies. By also considering the plausibility of medical knowledge, the MKE

also enable probabilistic reasoning as a form of medical question answering.

5.3 Knowledge Embeddings for the Unified Medical Language System

In this section, we present a framework for extracting knowledge embeddings from the Unified

Medical Language System (UMLS) (Lindberg et al., 1993). The UMLS integrates knowledge

from nearly 200 source vocabularies into a single ontology consisting of over 3 million concepts

linked together by over 3,000 relation types. The medical knowledge contained in the UMLS

represents biomedical expertise that is relevant to myriad deep learning applications from

predictive modeling to cohort retrieval.

131



In order to learn representations of the structured knowledge encoded in the UMLS that

can be used in deep learning models, we present in this section a novel Generative Adversarial

Network (GAN) (Goodfellow et al., 2014) method that leverages the unique properties of

the UMLS. Both the learned UMLS knowledge embeddings and the knowledge embedding

learning methodology are publicly available2.

5.3.1 Knowledge Graphs in the Unified Medical Language System

The UMLS is comprised of two separate knowledge graphs: the Metathesaurus and the

Semantic Network. The Metathesaurus is a traditional biomedical knowledge graph with

relations between medical concepts, while the Semantic Network is comprised of relations

between groups of medical concepts called semantic types. Each concept encoded in the

UMLS Metathesaurus is linked to the corresponding concept names in various source vo-

cabularies (e.g., ICD-10) and can be connected to other concepts via various relations, e.g.,

“Is-A", “Is-Part" or “Is caused by". Each concept from the Metathesaurus is assigned one

or more semantic types (or categories), which are linked with one another through seman-

tic relationships. The UMLS Semantic Network is a catalog of these semantic types (e.g.,

“anatomical structure" or “biological function") and semantic relationships between them

(e.g., "spatially related to" or "functionally related to"). While there are over 3 million

concepts in the UMLS Metathesaurus, there are only 180 semantic types and 49 semantic

relationships in the UMLS Semantic Network. The UMLS Metathesaurus graph along with

the UMLS Semantic Network graph encode a wealth of medical knowledge, capturing on-

tological and biomedical expertise which could also be used by deep learning methods, in

addition to the concept embeddings derived from the EHRs. To enable the usage of the

knowledge encoded in UMLS in deep learning methods, we need to learn knowledge embed-

dings which represent (1) the UMLS concepts; (2) the relations between UMLS concepts;

2https://github.com/r-mal/umls-embeddings
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(3) the nodes of the UMLS Semantic Network, representing the semantic types assigned to

concepts; and (4) the semantic relations shared between the nodes of the UMLS Semantic

Network (i.e., the semantic types).

5.3.2 Adversarial Learning of Knowledge Embeddings for the UMLS

The structure of the UMLS knowledge encoding poses a challenge to the applicability of

existing knowledge graph embedding models, which assume a single knowledge graph. The

UMLS encodes two different and jointly connected graphs, namely (a) the UMLS Metathe-

saurus; and (b) the UMLS Semantic Network. In this section we present a neural model

capable of learning UMLS knowledge embeddings representing concepts, relations between

them, semantic types and semantic relations.

In Section 5.2, we relied on the TransE (Bordes et al., 2013) method for knowledge graph

embedding which represents medical concepts and relations between them as real-valued

vectors #»c , #»r ∈ Rd. By modeling the concepts as points in the embedding space and the

relations between them as translation vectors, it is possible to measure the plausibility of

any potential relation between any pair of medical concepts using the geometric structure

of the embedding space: f(c1, r, c2) = || #»c1 + #»r − #»c2||L1 where || · ||L1 is the L1 norm. This

scoring function can be used for (a) assigning a plausibility score to each triple τ = 〈c1, r, c2〉,

encoding a relation between a pair of concepts from the UMLS Metatheraurus; as well as

(b) assigning another plausibility score to each triple λ = 〈t1, sr, t2〉 encoding semantic

relationships (sr) between semantic types (t1, t2) encoded in the UMLS Semantic Network.

In addition to TransE, several other knowledge graph embedding models, which represent

concepts and relations as vectors or matrices in an embedding space, have shown promise in

recent years. We list in Table 5.3 two additional models that we have used when learning

UMLS embeddings. TransD (Ji et al., 2015b) learns two embedding vectors for each concept

in a knowledge graph: [ #»c , #»cp] as well as two embeddings for each relation in the graph: [ #»r , #»rp],
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Table 5.3. Scoring functions used in models that learn knowledge embeddings. I is the
identity matrix.

Model Scoring Function
TransE || #»c1 + #»r − #»cd||L1

TransD ||(I + #»rp × # »csp
>)× #»c1 + #»r

−(I + #»rp × #  »cdp
>)× #»cd||L1

DistMult
∑

i
#»c1
i · #»r i · #»cd

i

where the first vector represents the “knowledge meaning" of the concept or relation while the

second vector is a projection vector (with subscript p), used to construct a dynamic mapping

matrix for each concept/relation pair. If the knowledge meaning of a concept or relation refers

to the reason why the concept or relation was encoded in the knowledge graph, the projection

of concepts in the space of the relations is used to capture the interaction between concepts

participating in relations and relations holding various concepts as arguments. Essentially,

TransD constructs a dynamic mapping matrix for each entity-relation pair by considering

the diversity of entities and relations simultaneously. As each source concept c1 is translated

into a pair [ #»c1,
# »csp] and each destination concept is translated into a pair [ #»cd,

#  »cdp], while the

relation between them is translated into [ #»r , #»rp], the plausibility of the relation is measured

by the scoring function listed in Table 5.3. DistMult (Yang et al., 2015), another knowledge

embedding model, is a simplification of the traditional bilinear form of matrix decomposition

using only a diagonal matrix that has been shown to excel for probabilistic models. Its

scoring function, listed in Table 5.3, is equivalent to the dot product between the vector

representations of the source concept, the relation and the destination concept.

Training any of these embeddings models requires both positive examples encoded in the

knowledge graph (in our case UMLS Metathesaurus and Semantic Network), and negative

examples representing relations that do not occur in the knowledge graph. In Section 5.2,

negative examples are obtained by removing either the correct source or destination con-

cept and replacing it with a concept randomly sampled from a uniform distribution (as in

Equations 5.3-5.4). As noted in Cai and Wang (2018), this approach of generating negative
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examples is not ideal, because the sampled concept (or semantic type) may be completely

unrelated to the original UMLS concept (or source UMLS semantic type), resulting in a

learning framework using too many obviously false examples. To address this challenge, we

have extended the KBGAN (Cai and Wang, 2018) adversarial learning framework, which is

currently one of the state-of-the-art learning methods for knowledge embeddings.

Generative Adversarial Networks (GANs) are at the core of our framework for learning

knowledge embeddings for the UMLS. GANs typically use a generator and a discriminator,

as introduced by Goodfellow et al. (2014). Metaphorically, the generator can be thought of

as acting like a team of counterfeiters, trying to produce fake currency and use it without

detection. The discriminator can be thought of as acting like the police, trying to detect

the counterfeit currency. Competition in this game enabled by the GAN drives both teams

to improve their methods until the counterfeiters are indistinguishable from the genuine ar-

ticles. In the KBGAN (Cai and Wang, 2018) framework, the discriminator learns to score

the plausibility of a given relation triple and the generator tries to fool the discriminator by

generating plausible, yet incorrect, triples. In order to accomplish this goal, the generator

calculates a probability distribution over a set of negative examples of relation triples and

then samples one triple from the distribution as its output. However, a single generator is

not sufficient for creating UMLS embeddings, because the UMLS graph contains two types of

relations, namely (1) relations between UMLS concepts and (2) semantic relations between

UMLS semantic types. Therefore, we extended the KBGAN by using two different genera-

tors: an UMLS Metathesaurus generator G1 and an UMLS Semantic Network generator G2,

as illustrated in Figure 5.4. Given any relation between two concepts encoded in the UMLS

Metathesaurus, G1 calculates the probability distribution over a set of candidate negative

examples of the relation, samples it and produces a negative example. Given the ground

truth relation triple R1 = IsA(Opioid Abuse, Drug Abuse) from the Metathesaurus G1 will

produce the negative example RN
1 = IsA(Opioid Abuse, UMLS concepti), as illustrated in
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Figure 5.4. Adversarial Learning Framework for Producing Knowledge Embeddings for
UMLS.

Figure 5.4, where UMLS concepti is some UMLS concept which is not in an IsA relation

with Opioid Abuse in the UMLS Metathesaurus. Similarly, given a ground truth semantic

relation triple R2 = Affects(Mental or Behavioral Dysfunction, Behavior), G2 generates the

negative example, RN
2 = Affects(UMLS Semantic Typej, Behavior) where UMLS Semantic

Typej is not in an Affects relation with UMLS semantic type Behavior. Both negative ex-

amples generated by G1 and G2 are sent to the Discriminator D along with the two ground

truth relation triples: R1 and R2, respectively. D uses the function fD1 to compute the scores

for R1 and RN
1 while it uses the function fD2 to compute the scores for R2 and RN

2 . For both

of fD1 and fD2 we experimented with two alternatives: (1) the scoring function of TransE,

and (2) the scoring function of TransD, listed in Table 5.3.

Intuitively, the discriminator D should assign low scores produced by the functions fD1

and fD2 to high-quality negative samples generated by G1, and G2 respectively. Moreover, the

discriminator D should assign even lower fD1 and fD2 scores to the ground truth triples than

to the high-quality negative samples. Suppose that G1 produces a distribution of negative

triples pG1(τ
′|τ) for a positive example τ = 〈c1, r, c2〉 encoded in the UMLS Metathesaurus

and generates τ ′ = 〈c1
′, r, c2

′〉 by sampling from this distribution. Similarly, suppose that
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G2 produces a distribution of negative triples pG2(λ
′|λ) for a positive example λ = 〈t1, sr, t2〉

encoded in the UMLS Semantic Network. Let fD1 and fD2 be the two scoring functions of

D. Then the objective of the discriminator is to minimize the marginal loss between the

ground truth (or positive) triples and the negative example triples generated by G1 and

G2. To jointly minimize the marginal loss of D, we extend the marginal loss function of

KBGAN (Cai and Wang, 2018) to have two terms: (i) the Metathesaurus loss function, LM

and (ii) the Semantic Network loss function LS. We defined LM as:

LM =
∑
τ∈M

||fD1 (τ)− fD1 (τ ′) + γ1|| (5.6)

where M represents all valid triples from the Metathesaurus, while fD1 (τ) measures the

plausibility of the triple τ = 〈c1, r, c2〉 and γ1 is a margin hyper-parameter. We defined LS

as:

LS =
∑
λ∈S

||fD2 (λ)− fG2 (λ′) + γ2||+
∑
i

[
#»
ti −

1

|δ(ti)|
×
∑
c∈δ(ti)

c

]
(5.7)

where S represents all valid triples from the UMLS Semantic Network, while fD2 (λ) measures

the plausibility of the triple λ = 〈t1, sr, t2〉 from the UMLS Semantic Network expressing the

semantic relation sr between the semantic types t1 and t2 in the UMLS Semantic Network

and γ2 is a margin hyper-parameter. The embedding of the UMLS semantic type ti is denoted

by #»
ti and δ(ti) represents the set of UMLS concepts having the semantic type ti. In this

way, the centroid of the embeddings of UMLS concepts having the UMLS semantic type ti

is represented as 1/δ(ti) ×
∑

c∈δ(ti) c. This allows us to measure in LS not only the margin

between the semantic relation produced by G2 to the ground truth semantic relation encoded

in the UMLS Semantic Network, but also the cumulative distance between the embeddings

of each semantic type ti and the centroid of the embeddings corresponding to the UMLS

concepts sharing the semantic type ti. Hence, LS measures the loss of (a) not correctly

recognizing a plausible semantic relation from the UMLS Semantic Network, but also (b)

the loss of not recognizing plausible semantic types in the UMLS Semantic Network, given as
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reference all the UMLS semantic concepts that share same semantic type. This ensures that

we learn embeddings of semantic relations from UMLS by taking into account the semantic

types and the concepts that are encoded in UMLS.

In the adversarial framework presented in Figure 5.4, the objective of generator G1 is to

maximize the following expectation:

RG1 =
∑
τ∈M

E[−fD1 (τ ′)] τ ′ = 〈c1
′, r, c2

′〉 ∼ pG1(τ
′|τ) (5.8)

Similarly, the objective of generator G2 is to maximize the following expectation:

RG2 =
∑
λ∈S

E[−fD2 (λ′)] λ′ = 〈t1′, sr, t2′〉 ∼ pG2(λ
′|λ) (5.9)

Both G1 and G2 involve a sampling step. To find the gradient of RG1 and RG2 we used

a special case of the Policy Gradient Theorem (Sutton et al., 1999), which arises from

reinforcement learning (RL). To optimize both RG1 and RG2 , we maximized the reward

returned by the discriminator to each generator in response to selecting negative examples

for the relations encoded in UMLS, providing an excellent framework for learning the UMLS

embeddings that benefits from good negative examples in addition to the abundance of

positive examples. Finally, both generators G1 and G2 need to have scoring functions,

defined as fG1(τ) and fG2(λ). Several scoring function can be used, selecting from those

that have been implemented in several knowledge graph embeddings, listed in Table 5.3.

In our implementation, we have used for both generators the same scoring function as the

one used in DistMult. Then given a set of candidate negative examples for the UMLS

Metathesaurus: NegM(τ) = {〈c1
′, r, c2〉|c1

′ ∈ C} ∪ {〈c1, r, c2
′〉|c2

′ ∈ C} (where C represents

all the concepts encoded in the UMLS Metathesaurus), the probability distribution pG1 is:

pG1(τ
′|τ) =

exp(fG1(τ
′))∑

τ∗∈NegM exp(fG1(τ
∗))

(5.10)

Similarly, given a set of candidate negative examples for the UMLS Semantic Network

NegS(λ) = {〈t1′, sr, t2〉| t1′ ∈ T } ∪ { 〈t1, sr, t2′〉|t2′ ∈ T } (where T represents all the
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semantic types encoded in the UMLS Semantic Network), then the probability distribution

pG2 is modeled as:

pG2(λ
′|λ) =

exp(fG2(λ
′))∑

λ∗〉∈NegS exp(fG2(λ
∗))

(5.11)

In this adversarial training setting, the generators G1 and G2 and the discriminator D are

alternatively trained towards their respective objectives, informing the two forms of embed-

dings for the UMLS: knowledge embeddings for the UMLS Metathesaurus and knowledge

embeddings for the UMLS Semantic Network.

5.3.3 Experimental Results and Discussions

The quality of the UMLS knowledge embeddings was evaluated in terms of plausibility and

completeness, as in Section 5.2.2 using PPA, Hits@10, and MRR. We also introduce a new

evaluation in this section: Relation Triple Classification (RTC) – an evaluation that uses the

model to classify candidate triples as valid or invalid.

To perform RTC, we defined two plausibility functions informed by the scoring functions

used in the Discriminator: the first operating on the UMLS Metathesaurus, defined as

ρ1 = −fD1 and the second operating on the UMLS Semantic Network, defined as ρ2 = −fD2 .

Therefore, we measured how well ρ1 can be used to predict a correct relation τ = 〈c1, r, c2〉

encoded in the UMLS Metathesaurus, e.g., answering the questions “Is OPIOID ABUSE

a kind of DRUG ABUSE?", or how well ρ2 can be used to predict a semantic relation

λ = 〈t1, sr, t2〉 encoded in the UMLS Semantic Network, e.g., answering the question “Can

MENTAL OR BEHAVIORAL DYSFUNCTION affect BEHAVIOR?". Given a relation

triple τ , we use ρ1(τ) to classify τ as either a valid or invalid relation triple depending on if

ρ1(τ) > ω1 for some threshold ω1. Likewise, we discover a threshold value ω2 for the Semantic

Network using the scoring function ρ2. To perform RTC, we split the relation triples from

each knowledge graph into train/validation/test splits. For each triple in each validation

and test set, we create an invalid triple by replacing either the source or destination concept
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and add the invalid triple to the respective set. We then use the trained model to score each

triple from the validation set and select the optimal values of ω1 and ω2 for each model. We

evaluate RTC on the test sets using Precision (RTC-P) and Recall (RTC-R). RTC-P can be

thought of as measuring plausibility while RTC-R measures completeness.

We experimented with several methods for learning knowledge embeddings, and list their

results in Table 5.4. It can be noted that the plausibility and completeness obtained by

the GAN-based model, presented in this paper, consistently obtained the best results. We

evaluated the performance of six knowledge embedding models by varying (a) the scoring

functions (TransE and TransD), (b) information from the UMLS Semantic Network,

and (c) the generative (GAN) adversarial learning framework. The TransE and TransD

models were trained using only the Metathesaurus loss function, LM shown in equation 5.6.

The TransE_SN and TransD_SN models incorporated the Semantic Network by using

both LM and the Semantic Network loss function, LS shown in equation 5.7. The GAN

(TransE_SN+DistMult) and GAN (TransD_SN+DistMult) are trained with the full

adversarial framework described in the Methods section, using the Transe and TransD

scoring functions in their discriminators, respectively. Both GAN models use the DistMult

scoring function for both their Metathesaurus (G1) and Semantic Network (G2) generators.

Each model was trained for 13 epochs using 9,169,311 Metathesaurus triples between

1,726,364 concepts spanning 388 relation types. The results for the Metathesaurus evalua-

tions were obtained using the entire Semantic Network (6217 triples between 180 semantic

types spanning 49 relation types). The dimension of the embedding space d = 50 was se-

lected from [25, 50, 100, 200] and the margin parameters γ1, γ2 = 0.1 from [0.1, 1.0, 5.0] using

grid search on the validation set. All models are optimized using Adam (Kingma and Ba,

2015) with default parameters. TransE and TransD models are learned with the usual

constraint that the L2-norm of each embedding is ≤ 1 and the DistMult models use L2 reg-

ularization. Table 5.4 shows that the GAN-based models outperform the non-adversarially
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Table 5.4. Plausibility and completeness of the UMLS knowledge embeddings. _SN
indicates the incorporation of the Semantic Network in the embeddings, which otherwise
were learned only from the Metathesaurus.

UMLS Metathesaurus

Model RTC-P RTC-R PPA H@10 MRR

TransE 0.7712 0.6479 0.9340 0.2161 0.1400
TransD 0.9080 0.8895 0.9734 0.2780 0.1674
TransE_SN 0.8649 0.8019 0.9746 0.2240 0.1425
TransD_SN 0.9188 0.8915 0.9729 0.2775 0.1670
GAN (TransE_SN+DistMult) 0.8959 0.8424 0.9833 0.2727 0.1650
GAN (TransD_SN+DistMult) 0.9311 0.9130 0.9803 0.3164 0.1886

UMLS Semantic Network

TransE_SN 0.5105 0.7790 0.9150 0.7125 0.4882
TransD_SN 0.6840 0.8771 0.9017 0.7300 0.4680
GAN (TransE_SN+DistMult) 0.6109 0.7898 0.9367 0.7883 0.5373
GAN (TransD_SN+DistMult) 0.8419 0.8546 0.9200 0.7867 0.5236

learned models in each evaluation for the Metathesaurus and Semantic Network, demon-

strating their effectiveness.

The results listed in Table 5.4 indicate that the TransD models outperform the TransE

models on the Metathesaurus evaluations (by 16% on H@10 and 14.3% on MRR), however

TransE outperforms TransD on the Semantic Network evaluations, albeit by a lesser

margin (1.8% on H@10 and 2.5% on MRR). Clearly, the full GAN model using TransD

outperforms the other model configurations, attaining the top performance in RTC-P, RTC-

R, H@10 and MRR for the Metathesaurus. This work demonstrates that adversarial learning

of UMLS knowledge embeddings is an effective strategy for learning embeddings representing

medical concepts, relations between them, semantic types and semantic relations.

The learned knowledge embeddings exhibit interesting properties. For example, the 5

nearest neighbors of the UMLS concept ‘Malignant neoplasm of the lung ’ (C0242379) are all

different kinds of malignant neoplasm, including neoplasms of the skin (C0007114), brain

(C0006118), pancreas (C0017689), bone (C0279530), and trachea (C0153489), each having

the semantic type Neoplastic Process (T191). Likewise, the 10 nearest neighbors of the
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medical concept ‘Heroin Dependence’ are all Mental or Behavioral Dysfunctions (T048) in-

dicating different drug abuse/dependency problems and the 10 nearest neighbors of ‘Quan-

titative Morphine Measurement ’ (C0202428) are all Laboratory Procedures (T059) testing

for some kind of opioid. The model does, however, struggle with concepts that have low

connectivity in the knowledge graph (e.g., the 10 nearest neighbors of the concept ‘Stearic

monoethanolamide’, which only appeared in 3 relation triples, are largely unrelated due to

the low degree of that concept in the Metathesaurus graph).

5.3.4 Lessons Learned

In order to produce UMLS embeddings, a novel generative adversarial network (GAN) is

presented which took into account the two knowledge graphs of the UMLS: the Metathe-

saurus and the Semantic Network. This necessitated the use of two generators in the GAN

framework, one for each of the knowledge graphs from the UMLS, and a single discrimina-

tor able to encode knowledge from both graphs jointly. The experimental results suggest

that the proposed method improves knowledge representation quality indicating that the

multi-generator framework is able to leverage knowledge from each graph to improve the

representation of the other. The knowledge embeddings, which have been made publicly

available, can be used in a multitude of deep learning methods to benefit from the knowl-

edge encoded in UMLS.

5.4 Application of the UMLS Knowledge Embeddings in a Clinical Prediction

Model

To showcase the impact of using UMLS knowledge embeddings, we have considered the task

of building a deep learning model for discovering (1) the incidence of opioid use disorders

(OUD) after onset of opioid therapy and (2) chronic opioid therapy (COT) achievement and

persistence. OUD is defined as a problematic pattern of opioid use that causes significant
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impairments or distress. COT is defined as 45+ days supply of opioid analgesics in a calendar

quarter (3 months) for at least one quarter within the 7-year time range. As such COT

achievement occurs when the conditions for COT are first noted while COT persistence is

observed when a patient continues to be prescribed a 45+ days supply of opioid analgesics

in consecutive quarters. OUD is part of the current opioid use epidemic, which is among

the most pressing public health issues in the United States as opioid related poisonings and

deaths have increased at alarming rates since 2014. Long-term opioid therapy poses a much

higher risk of OUD and other adverse outcomes. In 2014, US retail pharmacies dispensed

245 million prescriptions for opioid pain relievers. Of these prescriptions 65% were for short

term therapy (< 3 weeks). However, 3-4% of the adult population (9.6-11.5 million patients)

were prescribed longer term (> 90 days) opioid therapy.

In this section, we present a predictive model for discovering the incidence of OUD

after onset of opioid therapy and COT achievement and persistence uses a deep learning

architecture based on hierarchical attention. Superior prediction are obtained when the

model is informed by the UMLS knowledge embeddings generated with the methodology

presented in Section 5.3.

5.4.1 Hierarchical Attention Networks with UMLS Embeddings

A deep learning method using a hierarchical attention mechanism was used to predict (1)

the incidence of Opioid Use Disorders (OUD) after onset of opioid therapy and (2) Chronic

Opioid Therapy (COT) achievement and persistence, The hierarchical attention network,

illustrated in Figure 5.5, relies on embeddings representing ICD-10 codes, medications or-

dered and laboratory results. To produce these embeddings, we considered that if a patient

had records spanning N quarters, each having at mostM different diagnostic codes assigned

during the quarter, we could denote each diagnostic code as dit, to represent the t-th ICD-10

code in the i-th quarter, with i ∈ [1, N ]. To encode each diagnostic code dit as a low-

dimensional vector cit (also called ICD-10 code embedding) we compute: cit = Q× dit, with
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Figure 5.5. Architecture of a Hierarchical Attention-Based Prediction Model incorporating
the UMLS embeddings.

t ∈ [1,M ], in which Q represents the embedding matrix obtained from word2vec(Mikolov

et al., 2013). As shown in Figure 5.5, each ICD-10 code embedding was concatenated with

an UMLS knowledge embedding, such that the knowledge from clinical practice (ICD-10

code word2vec embeddings) can be combined with complementary knowledge, available

from the UMLS ontology. The concatenation of UMLS knowledge embeddings was informed

by the mapping of the ICD-10 vocabulary into UMLS concepts provided by the UMLS.

We were then able to encode this combined knowledge representation pertaining to diag-

noses and their ICD-10 codes as well as UMLS concepts representing them using a Recur-

rent Neural Network (RNN), implemented with bi-directional gated-recurrent units (GRUs).

More specifically, for each concatenated embedding ccit , we computed two vectors: (1)
−→
hit =

−−−→
GRU(ccit) ) for t ∈ [1,M ]; and (2)

←−
hit =

←−−−
GRU(ccit), for t ∈ [M, 1]; generating the en-

coding xit = [
−→
hit,
←−
hit]. Similarly, we computed the encodings of medications ordered oit and of

laboratory results lit using the same type of RNNs as we did for ICD-10 codes. These encod-

ings were also concatenated with corresponding UMLS embeddings. The medications and

laboratory results are mapped to UMLS concepts using MetaMap Lite (Demner-Fushman
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et al., 2017). For the concatenated encodings of medications ordered oit with UMLS embed-

dings, denoted ooit, embeddings for medications were produced using again bi-directional

GRUs as: yit = [−→qit,←−qit], where −→qit =
−−−→
GRU(ooit) and

←−
hit =

←−−−
GRU(ooit). When concatenating

the encodings of laboratory results lit with UMLS embeddings, denoted llit, the bi-directional

GRUs generated embeddings for laboratory results: zit = [
−→
kit,
←−
kit], where

−→
kit =

−−−→
GRU(llit)

and
←−
kit =

←−−−
GRU(llit). In addition, since not all ICD-10 codes, medications or laboratory

results contribute equally to the clinical picture of the patient, we introduce an attention

mechanism, that enables the predictive model to pay more attention to the more informative

ICD-10 codes, medications and laboratory test results. Attention mechanisms are a new

trend in deep learning, loosely based on visual attention mechanisms in humans, that have

been successfully used in caption generation (Xu et al., 2015) and medical predictions (Choi

et al., 2016; Sha and Wang, 2017). In our predictive model, illustrated in Figure 5.5, we

used a form of hierarchical attention mechanism, inspired by the work of Yang et al. (2016).

The first layer of attention learned how each of the combinations of ICD-10 codes and cor-

responding UMLS embeddings, ordered medications and corresponding UMLS embeddings

and laboratory test results and corresponding UMLS embeddings contribute to the predic-

tions and how to pay more attention to the more impactful ones. In the case of ICD-10 code

embedding, attention is learned through the following equations: uit = tanh(Wc × xit + bc);

αcit = exp (uᵀit × ccit)/
∑

t exp (uᵀit × ccit); ICDencod
10 =

∑
t α

c
it × xit. As illustrated in Fig-

ure 5.5, similar attention mechanisms are implemented in the first attention layer for the

medication and for the laboratory results encodings, with the attention parameters αoit and

αlit respectively.

A second layer of attention was also implemented, since we wanted the prediction model

to also learn which form of clinical information combined with UMLS knowledge was the

most impactful in deciding for the following quarter the COT achievement/persistence and

the OUD incidence. Therefore, we learned an encoding for each quarter from the clinical
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picture and therapy of the patients available from ICD-10 codes, medications ordered and

laboratory results of all hospital visits in a given quarter. The attention mechanism of the

second layer uses parameters: αai1 (for ICD-10 codes encodings), αai2 (for medications ordered

encodings) and αai3 (for laboratory result encodings). The results of the second layer of the

hierarchical attention mechanism feed into a GRU which feeds into a fully prediction layer,

as illustrated in Figure 5.5, allowing one binary classifier to decide whether COT will be

achieved or persist in the next quarter, whereas a second binary classifier decides whether

the incidence of OUDs will be observed.

5.4.2 Data Used by the Prediction Model

In this section, a large clinical dataset from the University of Washington Medical Center

and Harborview Medical center is used for predicting the incidence of OUD after onset of

opioid therapy and COT achievement and persistence. Adult patients (age ≥ 18 years),

were considered eligible in this study if they were prescribed with COT for chronic non-

cancer pain between 2011-2017 (7 years). A cohort of 6355 patients receiving COT with

a total of 23,945 COT quarters (avg:3.77, min:1, max:27) was created using the described

inclusion/exclusion criteria. There were 3446 patients (54%) with 1 COT quarter, 1856

patients (29%) with 2-5 COT quarters, 420 patients (6.6%) with 6-10 COT quarters, and

680 patients (10.7%) with >10 COT quarters. A longitudinal dataset was created for the

selected patients spanning 10 years (2008-2017) to capture a wider range of background

clinical data. The dataset contained 1,089,600 outpatient, 20,449 inpatient, and 25,232

emergency department visits. Each visit is characterized by the ICD-10 codes corresponding

to diagnoses, the medication ordered, and the laboratory results, which were mapped into

UMLS. The retrospective review of the described de-identified longitudinal dataset has been

approved by University of Washington Institutional Review Board as well as The University

of Texas at Dallas Institutional Review Board.
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Table 5.5. The impact of UMLS knowledge embeddings on the prediction of incidence of
Opioid Use Disorder (OUD) and the achievement/persistence of Chronic Opioid Therapy
(COT). HANUMLS incorporates UMLS knowledge embeddings whereas HAN does not.

OUD COT

HANUMLS HAN HANUMLS HAN

F1 Score 0.843 0.774 0.778 0.776
Sensitivity 0.749 0.629 0.850 0.773
Specificity 0.963 0.981 0.717 0.792
DOR 77.86 72.99 14.30 12.99
AUROC 0.856 0.784 0.783 0.778

5.4.3 Experimental Results and Discussions

The impact of the UMLS knowledge embeddings on clinical prediction of the incidence of

Opioid Use Disorders (OUD) after onset of opioid therapy and Chronic Opioid Therapy

(COT) achievement and persistance is presented in the section. Two models were trained:

HANUMLS, configured as described in the Methods section, and HAN, a baseline model

that does not make use of the UMLS knowledge embeddings. HANUMLS uses the UMLS

embeddings while HAN skips the concatenation step (described in Section 5.4.1), using

only the embeddings learned using word2vec. Both models are evaluated using F1 score,

sensitivity, specificity, Diagnostic Odds Ratio (DOR) and Area Under the Receiver Operating

Characteristic curve (AUROC). The results, presented in Table 5.5, show that incorporating

ontological knowledge in the form of UMLS knowledge embeddings improved performance

when predicting Opioid Use Disorder while maintaining performance on Chronic Opioid

Therapy achievement/persistence without major changes to the model.

The results also show that the UMLS knowledge embeddings improve the prediction of

incidence of Opioid Use Disorder after onset of opioid therapy and Chronic Opioid Therapy

achievement and persistence, out-of-the-box, by simply concatenating the UMLS knowledge

embeddings with the traditional, word2vec-style embeddings typically used in deep learn-

ing systems. We analyzed the attention weights assigned to each medical concept and to each

class of concepts (i.e., ICD-10 codes, medications, and lab results) in the test set for both the
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HANUMLS and HAN models to determine the impact of the knowledge embeddings on the

model. Interestingly, including the UMLS knowledge embeddings in the HANUMLS model

caused the model to pay more attention to diagnoses (attention weight of 0.617 vs 0.4942)

and less attention to medications (0.2706 vs 0.4762) on average indicating that the inclusion

of the UMLS knowledge embeddings made the diagnoses more informative for prediction

than the medications. Moreover, the diagnosis with the highest average attention weight

in the HANUMLS model is ‘Chronic pain syndrome’ (C1298685) with an average attention

weight of 0.5750 while in the HAN model, the diagnosis with the highest weight of 0.8092

was ‘Predominant Disturbance of Emotions ’.

5.4.4 Lessons Learned

Through the use of the UMLS embeddings in a neural model for predicting the incidence

of Opioid Use Disorder and Chronic Opioid Treatment achievement and persistence, we

have found that these knowledge embeddings improve prediction. We also learned that

the UMLS embeddings can be seamlessly incorporated into existing neural architectures

operating on concept embeddings by simply concatenating the UMLS embeddings with the

existing embedding for each concept. The same model is evaluated with and without the

UMLS knowledge embeddings, showing that the embeddings improve results.

5.5 Knowledge Embeddings for Ontology Alignment

In this section, we present the Knowledge-graph Alignment and Embedding Generative Ad-

versarial Network (KAEGAN) which learns (a) to represent the relational knowledge from

two distinct biomedical ontologies in the form of knowledge embeddings and (b) to use them

for ontology alignment, by also relying on their ontology semantics. Learning how to auto-

matically align biomedical ontologies has been a long-standing goal, given the ever-growing
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content of such ontologies and the many applications that rely on them. Because the knowl-

edge graphs underlying biomedical ontologies enable neural learning techniques to acquire

knowledge embeddings as representations of these ontologies, neural learning can also con-

sider ontology alignments. In order to facilitate alignment, KAEGAN embeds the knowledge

graphs associated with two distinct biomedical ontologies into the same semantic embedding

space. KAEGAN uses a novel adversarial learning framework to learn alignment-oriented

knowledge embeddings. More specifically, KAEGAN uses multiple generators to model in-

teractions inside and across two knowledge graphs in order to embed them into the same

semantic space, ensuring that aligned concepts will have similar embeddings. The ontology

alignment is bootstrapped by iteratively predicting new alignments informed by the most

similar alignment-oriented knowledge embeddings. We show that by jointly learning knowl-

edge graph alignments and knowledge embeddings for any pair of biomedical ontologies, we

improve the results of learning either knowledge embeddings or knowledge alignments in

isolation. Therefore, the main novelty of KAEGAN arises from its adversarial framework

which enables joint learning of knowledge alignments while learning how to discriminate

valid relations in each knowledge graph, both with competitive results.

5.5.1 Joint Learning of Knowledge Graph Alignment and Embedding

To learn knowledge embeddings informing ontology alignments we have designed theKnowledge-

graph Alignment and Embedding Generative Adversarial Network (KAEGAN), which learns

(1) how to embed two distinct biomedical ontologies into the same semantic space such that

pairs of concepts from different ontologies can be aligned based on their similarity, while

also (2) encoding the semantics of both ontologies in the same, shared embedding space. In

KAEGAN, knowledge alignments are learned using the structure of the ontologies, i.e., rely-

ing on (a) the relations spanning concepts and (b) the attributes of concepts. KAEGAN also

leverages a Generative Adversarial (Goodfellow et al., 2014; Cai and Wang, 2018) framework
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to learn high-quality alignment-oriented knowledge embeddings, which in turn are used to

iteratively bootstrap the learning of ontology alignments. To describe the functionality of

KAEGAN, we first present the way in which alignments between ontologies are learned and

then we detail the way in which KAEGAN learns alignment-oriented embeddings.

Formally, let CX and CY denote the set of concepts encoded in ontologies X and Y ,

respectively. An alignment A = {(cx, cy) ∈ CX × CY |cx ≡ cy} is a set of pairs of con-

cepts from X and Y that represent equivalent concepts across the ontologies. For exam-

ple, the concept “Arterial structure” from SNOMED CT represents the same concept as

“Artery” in the NCI Thesaurus (concept C0003842 in the UMLS), so there would be a pair

(Arterial_structure, Artery) in A. It should be noted that c1 ≡ c2 cannot hold if c1 and c2

are from the same ontology, so a concept cx from X can be aligned with at most one concept

cy from Y , and vice-versa. We consider a subset of A, A′ as training data. This allows us to

model alignment as a classification problem where the probability, q(cy|cx), of a concept cy

being aligned with a concept cx is a function of the similarity of their concept embeddings:

q(cy|cx) = softmax (sim(cx, cy)) =
esim(cx,cy)∑
j∈Y e

sim(cx,cj)
(5.12)

sim(cx, cy) =
#»v (cx) · #»v (cy)

|| #»v (cx)||2|| #»v (cy)||2
(5.13)

where #»v (cx) represents the concept embedding for cx, whereas sim(·, ·) is computed by the

cosine similarity.

Inspired by Trivedi et al. (2018), we adopt a contextualized concept embedding method

that is particularly well suited to knowledge graph alignment. LinkNBed (Trivedi et al., 2018)

contextualizes concept embeddings using (1) concept attributes and (2) the neighborhood

of nearby concepts in the knowledge graph. In a biomedical ontology, concept attributes

encode auxiliary information via attribute triples of the form 〈c, t, v〉 where c represents

a concept, t represents an attribute type, and v represents the attribute value, usually a

string. For example in the National Cancer Institute Thesaurus (Sioutos et al., 2007), the
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concept c=“Eicosapentaenoic Acid ” has the attribute t=“definition” value v=“A class of

polyunsaturated fatty acids with 20 carbons and 5 double bonds”. To further contextualize

each concept embedding, nearby concept embeddings are aggregated using random walks

in the knowledge graph. Formally, the embedding #»v (c) for the concept c in KAEGAN is

calculated as:
#»v (c) = σ ( #»v0(c) +WnNc(c) +WaAc(c)) (5.14)

where σ is the sigmoid function, #»v0(c) ∈ Rd is an initial d-dimension embedding of c; Nc(c)

is the aggregate neighborhood context embedding of c; and Ac(c) is the aggregate attribute

embedding of c, while Wn,Wc ∈ Rd×d are weight matrices. More specifically:

• The aggregate neighborhood context embedding Nc(c) is computed by averaging the

initial embedding vectors #»v0(ci) for each concept ci in the neighborhood of c. The neigh-

borhood of a concept c is approximated as the set of concepts other than c encountered

on k random walks of length l executed when starting at c.

• The aggregate attribute embedding Ac(c) is computed by max-pooling over the at-

tribute embeddings of each attribute of c.

An attribute embedding a is calculated by passing an attribute type embedding at and

an attribute value embedding av through a fully connected sigmoid layer: a = σ(Wtat +

Wvav), where Wt,Wv ∈ Rd×d are weight matrices. Attribute type embeddings are learned

from scratch for each attribute and attribute value embeddings are learned using Para-

graph2Vec (Le and Mikolov, 2014) as in Trivedi et al. (2018).

Using the concept embeddings to calculate q(cy|cx) ∀(cy, cx) ∈ CY ×CX , we can measure

the quality of a predicted alignment according to q using cross entropy:

−
∑
x∈X

∑
y∈Y

1[cx≡cy ]log q(cy|cx) (5.15)

However, Equation 5.15 will only measure how well the model captures similarity between

concepts aligned in the training data, which represents a small subset of CX ×CY . Inspired
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by Sun et al. (2018), we extended Equation 5.15 to incorporate uncertainty for unlabeled

alignments, using the function φ(cx, cy) in place of the indicator function of Equation 5.15:

φ(cx, cy) =


1[cx≡cy ] if cx is aligned in the training data

1
Nunl

if cx is unlabeled
(5.16)

where Nunl is the number of currently unaligned concepts from Y . 1
Nunl

represents a uniform

distribution over the possible alignment candidates for cx and serves to bias the system

against erroneous alignments. Using φ in the cross-entropy calculation of Equation 5.15 in

place of the indicator function, we obtain the Alignment Classification loss, LC :

LC = −
∑
x∈X

∑
y∈Y

φ(cx, cy)log q(cy|cx) (5.17)

By minimizing LC , KAEGAN learns the probability alignment function, q, which enables

the maximum likelihood alignment between X and Y to be found. As in Sun et al. (2018),

we produce an alignment between X and Y given an alignment probability function, q, by

solving the max-weighted matching problem on the bipartite graph whose nodes are concepts

from X and Y with edges 〈cx, cy〉 denoting alignment weighted by q(cy|cx). We only consider

alignment between each concept pair 〈cx, cy〉 for which q(cx, cy) is above a certain threshold.

It should be noted that this represents a max-weighted, one-to-one matching between subsets

of X and Y with maximum total likelihood according to q.

Moreover, Sun et al. (2018) have shown that such alignments can be iteratively refined

through bootstrapping by adding newly predicted alignments to the training data at each

iteration and altering the predictions if a more likely alignment emerges. Specifically, at

iteration i, given a training alignment A′i (where A′0 = A′), KAEGAN learns alignment-

oriented knowledge embeddings for each concept in CX ∪ CY using the adversarial method

described below, after which the alignments are learned and new concept matches are added

to A′i+1. If a more likely matching emerges for a particular concept according to q, the less
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likely matching is simply replaced. KAEGAN terminates when no new concept matchings

are added to the alignment.

In order to learn alignment-oriented knowledge embeddings KAEGAN uses a Genera-

tive Adversarial Network (Goodfellow et al., 2014) (GAN) composed of a Discriminator and

four Generators illustrated in Figure 5.6. In this work, we extend our GAN framework for

learning knowledge graph embedding (Section 5.3) to learn alignment-oriented knowledge

embeddings. In KAEGAN, the Discriminator learns embeddings that are used to discrim-

inate between valid and invalid relation triples from both biomedical ontologies while also

ensuring that any aligned concepts from the pair of ontologies have similar embeddings,

given a probability of alignment between the concepts, defined as q. The relation triple

τ = 〈c1, r, c2〉 is considered to be valid if the concept c1 is related to the concept c2 by the

relation r in either of the knowledge graphs X or Y and is said to be invalid otherwise.

As in Section 5.3, KAEGAN’s Generators learn to produce more plausible – yet still invalid

– relation triples in an attempt to fool the Discriminator. In order to facilitate alignment,

the Discriminator is trained to evaluate the plausibility of both intra-graph relation triples

produced by Generators GX and GY and inter-graph relation triples produced by Generators

GXY and GY X .

Consider two relation triples τx = 〈cx1 , rx, cx2〉 and τy = 〈cy1, ry, c
y
2〉 from the knowledge

graphs represented by ontologies X and Y , respectively shown in Figure 5.6. Attempting to

fool the Discriminator, GeneratorGX uses τx to generate an invalid triple τ ′x = 〈cx′1 , rx′, cx′2 〉 by

swapping out either cx1 or cx2 with another concept from X such that τ ′x, while invalid, is more

plausible than a randomly sampled triple (e.g., τx = 〈Artery, IS_A, Blood_Vessel〉 and τ ′x =

〈Artery, IS_A, Blood_capillary〉). Generator GY does the same for triple τy, generating the

invalid triple τ ′y using Y . The Discriminator’s job is then to determine which of τx and τ ′x and

which of τy and τ ′y is more plausible. Generators GXY and GY X operate similarly, however

they generate invalid triples by sampling concepts across the knowledge graphs corresponding
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Figure 5.6. Adversarial Learning of Knowledge Graph Embeddings for Biomedical Ontology
Alignment.

to the pair of biomedical ontologies. Specifically, GXY generates the invalid triple τ ′xy by first

relying on the valid triple τxy and replacing either cx1 or cx2 with its aligned concept from

Y , cy1 or cy2, based on an alignment A′, available from the training data used for learning

ontology alignments. Then GXY samples a concept from Y to replace cy1 or cy2 to produce τ ′xy.

For example, consider the triple τx = 〈Artery, IS_A, Blood_Vessel〉 from the Foundational

Model of Anatomy Ontology (FMA) (Rosse and Mejino Jr, 2003). Blood_Vessel could

be replaced with the concept Human_Blood_Vessel from National Cancer Institute (NCI)

Thesaurus (Golbeck et al., 2003) to create τxy = 〈Artery, IS_A, Human_Blood_Vessel〉

and the generator might sample the semantically related concept Angiogram to produce

τ ′xy = 〈Artery, IS_A, Angiogram〉. GY X operates in the same way to create τyx and τ ′yx from

τy. In this case, the Discriminator needs to determine which of τxy and τ ′xy and which of

τyx and τ ′yx is more plausible, using a loss function LA. The Discriminator also minimizes

LC from Equation 5.17 to jointly learn the similarity function q, yielding the final objective
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function for the Discriminator:

LD = LR + LA + µLC (5.18)

where µ is a hyper-parameter controlling the importance of the Alignment Classification loss.

Next we shall describe how LR and LA are defined and evaluated.

In order to discriminate valid relation triples from invalid relation triples, the Discrimina-

tor is trained to measure the plausibility of a triple τ = 〈c1, r, c2〉 where c1, c2 ∈ CX ∪CY are

concepts and r is a relation from either X or Y . As in Sections 5.2 and 5.3, each concept c

and relation r is associated with learned embeddings #»v (c), #»v (r) ∈ Rd, where d is the dimen-

sionality of the embedding space. The concept embeddings #»v (c1), #»v (c2) are computed using

Equation 5.14 and the relation embedding #»v (r) is calculated via simple embedding lookup.

Plausibility is measured using a scoring function: fD(τ) = || #»v (c1) + #»v (r)− #»v (c2)||L2.

In order to learn the plausibility of the relations encoded in an ontology, KAEGAN

minimizes the following marginal loss function:

LR =
∑

τ∈X∪Y

max (0, fD(τ)− γ1) + max (0, γ2 − fD(τ ′)) (5.19)

where γ1, γ2 are margin hyperparameters and fD(τ ′) is the score of an invalid triple generated

by either GX or GY using τ . While the triple τ represents semantic knowledge that we wish

to encode in our knowledge embeddings, τ ′ represents erroneous knowledge that KAEGAN

should learn is implausible. The two margin parameters γ1, γ2 > 0 where γ2 > γ1 enforce

the property that plausible triples have lower score than negative triples since f(c′1, r, c
′
2)−

f(c1, r, c2) ≥ γ2 − γ1 > 0. By modeling the margin with two parameters and setting γ1 to

a small positive value, we also enforce the property that plausible triples have low absolute

scores, which has shown to be effective for alignment-oriented embedding (Sun et al., 2018;

Zhou et al., 2017).

The corrupted triple τ ′ is sampled by either Generator GX or Generator GY depending

on whether the original triple τ was encoded in ontology X or in ontology Y . Given a
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triple τx ∈ X, Generator GX generates the corrupted triple τ ′x by producing a probability

distribution PX(τ ′x|τx) and sampling from that distribution. The distribution PX is calculated

using Generator GX ’s own scoring function fGX
:

PX(τ ′x|τx) =
efGX

(τ ′)∑
τ∗∈NegX e

fGX
(τ∗)

(5.20)

where NegX is a set of invalid relation triples derived from τx = 〈cx1 , rx, cx2〉 with either cx1

or cx2 replaced with another concept from ontology X such that the resulting relation triple

does not occur in the knowledge graph X. KAEGAN uses the DistMult (Yang et al., 2015)

scoring function, defined as fGX
= ( #»v (c1)� #»v (r)) · #»v (c2), as in the Generators described in

Section 5.3.2. Intuitively, PX is used to sample the most plausible, yet still incorrect triples

in an attempt to fool the Discriminator. Generator GY samples from the distribution PY

calculated using the scoring function fGY
defined similarly.

For alignment-oriented embeddings, the scoring functions fD, (of the Discriminator) and

fG (of the generators) should have the replacement property that if cx1 ∈ X has an aligned

concept cy1 ∈ Y , f(cx1 , r
x, cx2) ≈ f(cy1, r

x, cx2) when f is either fD or fG. That is to say, if

a concept from a plausible triple of ontology X is replaced with an aligned concept from

ontology Y , the new triple should remain plausible under both scoring functions. The same

property should hold if cx2 is replaced with its aligned concept or if a concept from a triple from

ontology Y is replaced with an aligned concept from ontology X. The replacement property

of fD and fG ensures that relation semantics are preserved across knowledge graphs. In order

to capture this property, we minimized the cross-graph marginal loss, defined as:

LA =
∑
τx∈XA

max (0, fD(τxy)− γ1) + max
(
0, γ2 − fD(τ ′xy)

)
+
∑
τy∈Y A

max (0, fD(τyx)− γ1) + max
(
0, γ2 − fD(τ ′yx)

) (5.21)

whereXA, Y A represent the subsets of triples in the knowledge graphs of the ontologiesX and

Y that involve concepts aligned across ontologies; τxy represents a triple τx = 〈cx1 , rx, cx2〉 ∈ X
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with either cx1 or cx2 replaced with its aligned concept from Y , and τ ′xy represents a triple

〈cx1 , rx, cx2〉 ∈ X with either cx1 or cx2 replaced with an incorrect concept from Y that does not

represent a true alignment, sampled by GXY . τyx and τ ′yx are defined similarly.

5.5.2 Experimental Results and Discussions

The alignment-oriented knowledge embeddings learned by KAEGAN were evaluated in terms

of their ability to (1) produce an alignment between two biomedical knowledge graphs, and

(2) model the semantics of the two encoded knowledge graphs. For the evaluations, we used

three ontologies available from BioPortal: SNOMED Clinical Terms (Donnelly, 2006), the

National Cancer Institute (NCI) Thesaurus (Golbeck et al., 2003), and the Foundational

Model of Anatomy (FMA) (Rosse and Mejino Jr, 2003). SNOMED CT, the largest of

the three ontologies, encodes medical terms used in clinical documentation and reporting,

consisting of 349,548 medical concepts as of January 31, 2019. The NCI Thesaurus is an

ontology providing a reference terminology for 66,724 cancer and cancer-related medical

concepts. The Foundational Model of Anatomy (FMA) is an ontology with the stated

goal of representing the phenotypic structure of the human body, encoding 78,989 concepts.

Each of these ontologies is distinct and was designed independently. Consequently, a subset

of the concepts in each ontology also have representations in the other two ontologies. As

each of these ontologies has been integrated into the Unified Medical Language System

(UMLS) (Lindberg et al., 1993), we used UMLS as a reference alignment for evaluating the

quality of the learned knowledge alignments. We were inspired by the Ontology Alignment

Evaluation Initiative’s (OAEI) Large BioMed Track (Achichi et al., 2017)5, which in fact

uses these three ontologies and the reference alignment provided by the UMLS to evaluate

ontology alignment systems in a yearly competition. The OAEI Large BioMed track is an

evaluation of ontology alignment systems aimed at aligning large biomedical ontologies. It

5http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
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Table 5.6. Alignment data distribution.
Alignment Training Validation Testing
SNOMED-NCI 3,442 1,721 12,047
SNOMED-FMA 1,205 602 4,219
NCI-FMA 537 269 1,880

provides six sub-tasks aligning aligning subsets of the ontologies described above. However,

the OAEI Large BioMed track is an evaluation for unsupervised systems and does not concern

itself with distilling ontological knowledge into embeddings. As such, we have adapted the

alignments provided by the OAEI to the supervised knowledge graph alignment problem.

SNOMED CT, the NCI Thesaurus and FMA proved to be ideal ontologies for our work

since they not only have a widely accepted alignment evaluation, but each ontology contains

rich relational knowledge that can be used to inform the learning of knowledge embeddings,

enabling KAEGAN to jointly learn knowledge graph alignment and embedding.

Ontology Alignment Evaluation

For the alignment task, we randomly sampled 20% of the aligned concepts of each pair of

ontologies to create our initial training Alignment, A′0, reserving 10% for validation, leaving

the remaining 70% as test data, summarized in Table 5.6. For both tasks, we evaluate

KAEGAN against the following alternate configurations of KAEGAN to explore the efficacy

of the methods used therein:

1. KA-Classifier is a neural classifier that learns a similarity function q(·) which mini-

mizes the objective in Equation 5.17, but does not use the relational information of the

two knowledge graphs being aligned. KA-Classifier is meant to evaluate the effect of

relational information on embedding-based alignment. KA-Classifier does not use ei-

ther loss from Equations 5.19 or 5.21 and therefore can not be trained in an adversarial

fashion.
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2. KAEGAN-No_Class is a configuration of the KAEGAN system that does not use

the classification loss, LC . KAEGAN-No_Class learns to embed and align concepts

using only the relational information from the two knowledge graphs as represented by

LR and LA. This configuration serves to evaluate the effect of LC on both alignment

and embedding.

3. KA-Discriminator is a model comprised only of the Discriminator of KAEGAN,

meant to evaluate the effect of the GAN training regime. KA-Discriminator is trained

using standard negative sampling instead of the Generators.

4. KAEGAN-No_Context is a configuration of KAEGAN that uses simple embedding

lookup for #»v (·) in Equation 5.14, eschewing context information from attributes and

concept neighborhoods.

5. KAEGAN-No_Attr is a configuration of KAEGAN that does not use attribute

information, leaving WaAc(c) out of Equation 5.14.

6. KAEGAN-No_Neigh is a configuration of KAEGAN that does not use neighbor-

hood information, leaving WnNc(c) out of Equation 5.14.

Following the Ontology Alignment Evaluation Initiative (Achichi et al., 2017), ontology

alignment is evaluated using Precision (P), Recall (R), and F1 as well as Hits@10 and Mean

Reciprocal Rank as in Sun et al. (2018). Hits@10 reports the percentage of concepts cx

for which the true aligned concept ĉy is one of the top-10 most likely matches according

to q(cy|cx). Mean reciprocal rank reports the average reciprocal rank of the correct aligned

concept among all possible concepts, ranked by q.

The ontology alignment results are presented in Table 5.7. We compare the different con-

figurations of KAEGAN to the top performing system from the OAEI Large BioMed track,

AgreementMakerLight (AML) (Faria et al., 2013), a hand-engineered expert system which
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Table 5.7. Evaluation of biomedical ontology alignment using alignment-oriented knowledge
embeddings.

SNOMED CT - NCI SNOMED CT - FMA

Model P R F1 H@10 MRR P R F1 H@10 MRR

KA-Classifier 0.841 0.573 0.682 0.851 0.773 0.820 0.606 0.697 0.843 0.740
KAEGAN-No_Class 0.665 0.592 0.626 0.700 0.587 0.676 0.512 0.583 0.660 0.577
KA-Discriminator 0.837 0.591 0.693 0.867 0.763 0.832 0.624 0.713 0.850 0.738
KAEGAN-No_Context 0.551 0.392 0.458 0.585 0.497 0.521 0.432 0.473 0.588 0.485
KAEGAN-No_Attr 0.557 0.389 0.458 0.590 0.504 0.523 0.427 0.470 0.580 0.494
KAEGAN-No_Neigh 0.840 0.588 0.692 0.866 0.757 0.824 0.616 0.705 0.842 0.743
KAEGAN 0.857 0.613 0.715 0.890 0.784 0.847 0.631 0.723 0.867 0.766

AML (Faria et al., 2013) 0.904 0.668 0.768 – – 0.882 0.687 0.772 – –

NCI - FMA Macro-Average

Model P R F1 H@10 MRR P R F1 H@10 MRR

KA-Classifier 0.817 0.656 0.727 0.824 0.769 0.826 0.612 0.702 0.839 0.761
KAEGAN-No_Class 0.675 0.558 0.611 0.691 0.616 0.672 0.554 0.607 0.684 0.593
KA-Discriminator 0.827 0.657 0.732 0.840 0.769 0.832 0.624 0.713 0.852 0.757
KAEGAN-No_Context 0.537 0.476 0.503 0.541 0.519 0.536 0.433 0.478 0.571 0.500
KAEGAN-No_Attr 0.534 0.468 0.499 0.544 0.519 0.538 0.428 0.476 0.572 0.505
KAEGAN-No_Neigh 0.818 0.667 0.734 0.832 0.773 0.827 0.624 0.710 0.847 0.758
KAEGAN 0.842 0.682 0.753 0.849 0.792 0.849 0.642 0.730 0.869 0.781

AML (Faria et al., 2013) 0.838 0.872 0.855 – – 0.875 0.742 0.798 – –

leverages background information found outside the ontologies being aligned. While not at

the level of AML, clearly, the full KAEGAN model out-performs the alternate configurations

for each matching. Interestingly, the worst performing configurations were the KAEGAN-

No_Context and KAEGAN-No_Attr models, illustrating the importance of attribute in-

formation for ontology alignment. Moreover, the strong performance of the KA-Classifier

model and the relatively poor performance of the KAEGAN-No_Class model demonstrate

the efficacy of modeling alignment matching explicitly through the alignment classification

loss, LC .

In general, the results show that KAEGAN is able to embed distinct knowledge graphs

into the same semantic space such that the learned embeddings can be used for both ontol-

ogy alignment and representation learning. The ontology alignment experiments presented in

Table 5.7 elucidate several interesting phenomena including the importance of attributes in

ontology alignment. Since attributes are useful in qualifying the concepts - making them dis-

tinct from the other concepts in the ontology - it is not unexpected that ignoring them results
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in the large performance drops seen by KAEGAN-No_Context and KAEGAN-No_Attr.

The name and description attributes are particularly helpful, since many concepts have sim-

ilar names or descriptions across ontologies. However, the performance of KAEGAN-No_C

demonstrates the efficacy of leveraging the structured knowledge in the form of relation

triples for alignment. One possible reason for this is that concepts with differing names

and descriptions from different ontologies may share similar relations with more well-defined

concepts, causing the model to discover their alignment. Another interesting trend we can

glean from the alignment experiments is the small improvement of Hits@10 over Precision,

a fundamentally more difficult evaluation. Precision is akin to ‘Hits@1’, but when we relax

the evaluation to the top 10 we only see a 2% increase on average. This finding indicates

that when the model finds an alignment it is generally correct, but when the model is not

able to determine alignment correctly, the probability it learns for the correct alignment is

especially low.

While the alignment results show promise, they do not surpass the current state-of-the-

art on the OAEI Large BioMed track, represented by AgreementMakerLight (AML) (Faria

et al., 2013). AML is hand-engineered for aligning large biomedical ontologies, leveraging

outside ontologies (Mungall et al., 2012; Lipscomb, 2000; Kibbe et al., 2014) as intermediaries

to facilitate matching. We believe KAEGAN can be improved in the same way – by jointly

modeling the alignment more than two ontologies. Likewise, noting that AML makes use

of string matching, we believe KAEGAN can be improved by incorporating character-level

information about a concept’s name and other attributes.

Knowledge Embedding Evaluation

To determine the ability of the learned knowledge embeddings to model the semantics of the

embedded knowledge graphs, we evaluate the embeddings using RTC-P, RTC-R, PPA, H@10,

and MRR (described in Sections 5.2.2 and 5.3.3) using the plausibility function ρ = −fD.
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Table 5.8. Biomedical knowledge embeddings evaluated by their ability to model knowledge
graph plausibility and completeness.

SNOMED CT NCI Thesaurus

Model RTC-P RTC-R PPA H@10 MRR RTC-P RTC-R PPA H@10 MRR

KAEGAN-No_Class 0.873 0.860 0.971 0.417 0.304 0.756 0.737 0.943 0.707 0.485
KA-Discriminator 0.883 0.866 0.958 0.410 0.301 0.726 0.719 0.914 0.687 0.461
KAEGAN-No_Context 0.850 0.837 0.938 0.386 0.274 0.720 0.721 0.905 0.677 0.450
KAEGAN-No_Attr 0.850 0.847 0.938 0.395 0.281 0.725 0.721 0.925 0.684 0.450
KAEGAN-No_Neigh 0.890 0.869 0.967 0.431 0.304 0.763 0.756 0.938 0.719 0.475
KAEGAN 0.897 0.871 0.974 0.432 0.316 0.764 0.757 0.962 0.723 0.486

FMA Macro-Average

Model RTC-P RTC-R PPA H@10 MRR RTC-P RTC-R PPA H@10 MRR

KAEGAN-No_Class 0.775 0.767 0.963 0.526 0.391 0.801 0.788 0.959 0.550 0.393
KA-Discriminator 0.770 0.765 0.951 0.511 0.396 0.793 0.783 0.941 0.536 0.386
KAEGAN-No_Context 0.744 0.722 0.920 0.354 0.341 0.771 0.760 0.921 0.472 0.355
KAEGAN-No_Attr 0.748 0.733 0.922 0.364 0.352 0.774 0.767 0.928 0.481 0.361
KAEGAN-No_Neigh 0.781 0.771 0.959 0.502 0.403 0.811 0.799 0.955 0.551 0.394
KAEGAN 0.784 0.771 0.963 0.548 0.406 0.815 0.800 0.966 0.568 0.403

To perform the evaluations, we split the relation triples from each knowledge graph into

85%/5%/10% train/validation/test splits.

The results presented in Table 5.8 indicate that KAEGAN is able to model the seman-

tics of distinct knowledge graphs by embedding them in the same semantic space facilitated

by modeling their alignment. The KA-Classifier model does not perform knowledge graph

embedding, so it is not evaluated along with the other configurations. Likewise, we do not

evaluate KAEGAN against general-purpose, non-alignment-oriented embedding models (e.g.,

Trans-X, SePLi(Wu et al., 2015), or TATEC(García-Durán et al., 2015)) in order to focus

on the impact of modeling alignment on knowledge graph embedding. Although it should

be noted that the general KAEGAN learning framework can accommodate any general pur-

pose embedding paradigm, such as the ones listed above, by replacing Equation 5.14. The

improvement of KAEGAN over KAEGAN-No_Class shows that using alignment classifica-

tion improves relational learning. Likewise, the improvement of KAEGAN over KAEGAN-

Discriminator demonstrates the efficacy of the GAN learning framework. It should be noted

that, while the removal of concept context in the form of attributes and neighborhoods has a
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marked effect on performance, the decrease is minimal compared to its effect the alignment

task.

The results presented in Table 5.8 indicate that biomedical knowledge embeddings learned

from distinct graphs are improved by jointly modeling the alignment between the graphs.

We believe the primary reason for this is that modeling both graphs in the same semantic

space allows each graph can inform the other - filling possible knowledge gaps and providing

additional context for both overlapping concepts and the rest of the graphs. Guo et al. (2015)

have shown that semantically smooth knowledge embeddings can be achieved by imposing

constraints on the learned embeddings. The alignment classification loss LC plays a similar

role in KAEGAN constraining aligned embeddings to be similar to one another, imposing

its own type of smoothing which is shown to improve results.

5.5.3 Lessons Learned

The Knowledge-graph Alignment and Embedding Generative Adversarial Network (KAE-

GAN) was able learn how to jointly embed distinct biomedical ontologies into the same

semantic embedding space such that the resulting embeddings can be used for knowledge

graph alignment. KAEGAN leverages relational knowledge encoded in the knowledge graph

of an ontology as well as attributes of the medical concepts to learn alignment-oriented

embeddings. In addition to ontology alignment, the learned embeddings can be used to

model the semantics of the encoded knowledge graphs. Results indicate that jointly learning

to align and embed the knowledge graphs improves upon learning the alignment and the

embedding separately. Moreover, the results suggest that the multi-generator GAN frame-

work modeling both intra- and inter-graph relations improves representation quality for both

graphs, leading to a better learned alignment.
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CHAPTER 6

THE IMPACT OF KNOWLEDGE EMBEDDINGS ON RELATION

EXTRACTION IN CLINICAL NARRATIVES

In this chapter, we investigate the use of knowledge graph embeddings for extracting relations

between medical concepts in discharge summaries. Discharge summaries use many medical

concepts to convey important information, as discussed in Chapter 2. The relations between

medical concepts expressed in text capture additional important clinical information, as it

was shown to tbe the case in EEG reports discussed in Chapter 3. Relation extraction from

discharge summaries is a well-studied topic in clinical informatics, with the 2010 i2b2/VA

challenge (Uzuner et al., 2011) proving to be a useful benchmark for (a) relation extraction as

well as (b) concept detection and (c) assertion classification. The top-performing submission

for the relation extraction task of the 2010 i2b2/VA challenge used an SVM-based method

operating on hand-engineered features, including dependency parse patterns and biomedical

ontologies (Rink et al., 2011). Later, specialized end-to-end neural methods with no feature

extraction were designed for the relation extraction task, but these methods were not able

to achieve the performance of the feature-based method (Luo et al., 2017; Li et al., 2019),

probably due to the comparatively small size of the dataset. However, the breakthrough

of pre-trained neural language models was able to surpass the state-of-the-art set by Rink

et al. (2011) using the Bidirectional Encoder Representations from Transformers (BERT)

model (Devlin et al., 2019).

The pre-training of the BERT model offers the advantage that it eliminates the need for

large training corpora because it learns most of the weights of the network on massive lan-

guage modeling data. The pre-trained BERT model is fine-tuned for an end-task via transfer

learning. In order to adapt BERT to medical relation extraction, it was first pre-trained on

general-domain text, then pre-trained further on medical text, and finally fine-tuned to re-

lation extraction as described in Section 2.6 (Peng et al., 2019). The resulting model, called
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BlueBERT, set a new state-of-the-art for relation extraction in discharge summaries as well

as several other tasks (Peng et al., 2019). The BlueBERT network models binary relation

extraction at the sentence-level by (a) replacing two concept mentions in the same sentence

with special tokens denoting their types; and (b) performing relation extraction as sentence

classification. For example, the sentence “An echocardiogram revealed a pericardial effusion.”

is changed into “An @TEST$ revealed a @PROB$.”. The test “echocardiogram” is replaced

by the special token @TEST$ denoting a test, and the medical problem “pericardial effusion”

is replaced by @PROB$ denoting a problem. By using the special tokens, the transformed

sentence can be seen as a masked token sequence. This masked sequence is fed into BERT

to produce a relation type prediction. This allows the BlueBERT network to focus on learn-

ing textual cues indicating relations by ignoring the textual expression of the concepts that

constitute teh arguments of each relation.

However, by completely ignoring the concepts being related, BlueBERT is ignoring impor-

tant information that could lead to better relation prediction performance. In this chapter,

we present the Knowledge-Informed BERT (KIBERT) model for relation extraction that

incorporates concept information into the BlueBERT model to improve performance. Two

forms of concept information are incorporated by KIBERT: (1) lexical information and (2)

background knowledge. Lexical information is incorporated by using the full input sentence,

without BlueBERT’s type-token masking, while still allowing the model to focus on contex-

tual cues indicating relations via a novel attention-masking strategy. Background knowledge

is incorporated in the form of knowledge embeddings. In Chapter 5, knowledge embeddings

are presented for distilling knowledge from biomedical ontologies into real-valued embeddings

that can be incorporated into deep learning architectures. Particularly, in Section 5.3 knowl-

edge embeddings from the Unified Medical Language System (UMLS) (Lindberg et al., 1993)

were presented representing medical concepts, groups of medical concepts called semantic

types, and relations between them. Such UMLS relations capture relevant information for
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the task of relation extraction from clinical text. For instance, the may treat relation de-

fined in the UMLS (e.g., 〈alosetron, may treat, abdominal pain〉) could help determine if a

treatment is a recognized treatment for a medical problem mentioned in the same sentence.

However, associating the mention of a medical concept with its ontological representation in

a structured ontology, known as entity disambiguation is known to be a difficult task (Mohan

and Li, 2019). In the 2010 i2b2/VA Challenge Dataset, medical concept mentions are not

annotated with UMLS codes, however each concept is annotated with one of three types: (1)

medical problem; (2) test; or (3) treatment. In KIBERT, each of these concept types is as-

sociated with a type embedding derived from the UMLS Semantic Type embeddings learned

in Section 5.3. When classifying the relation between two medical concepts, KIBERT uses

the type embedding of each concept to inform the classification decision. In this chapter, we

show that such type embeddings learned via knowledge graph embedding improve relation

extraction performance.

The remainder of this chapter is formatted as follows: Section 6.1 provides details about

the task and the dataset, Section 6.2 presents the KIBERT model for relation extraction from

discharge summaries, Section 6.3 presents experimental results, and Section 6.4 concludes

the chapter.

6.1 Data

The 2010 i2b2/VA Shared Task on Challenges for Clinical Data (Uzuner et al., 2011) provides

a dataset of 871 discharge summaries annotated with medical concepts and assertions, as

described in Section 2.3, as well as relations between annotated concepts. The original

dataset of 871 discharge summaries was made available only to teams that participated in

the Shared Task. However, a smaller dataset of 426 discharge summaries was provided

publicly to foster research in clinical Information Extraction (IE). In order to compare the
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Table 6.1. Relation Annotation Definitions and Examples from the 2010 i2b2/VA Challenge
Dataset. Definitions and examples are taken from the Task Annotation Guidelines (Uzuner
et al., 2011). Subscripts P, TR, and TE indicate medical problems, treatments, and tests,
respectively.
Relation Definition Example

TrIP Treatment improves medical [Hypertension]P was controlled by
problem [hydrochlorothiazide]TR

TrWP Treatment worsens medical culture taken from the lumbar drain showed
problem [Staphylococcus aureus]P resistant to

[Nafcillin]TR
TrCP Treatment causes medical [Bactrim]TR could be a cause of [these

problem abnormalities]P
TrAP Treatment is administered [Dexamphetamine]TR 2.5 mg. p.o. q. A.M.

for medical problem for [depression]P
TrNAP Treatment is not administered [Relafen]TR which is contra-indicated

because of medical problem because of [ulcers]P
TeRP Test reveals medical problem [an echocardiogram]TE revealed [a pericar-

dial effusion]P
TeCP Test conducted to investigate suggest [echocardiogram]TE to check for

medical problem [vegetation]P
PIP Medical problem indicates [Azotemia]P presumed secondary to [sepsis]P

medical problem

methods presented in this chapter with state-of-the-art systems, we consider the smaller

dataset of 426 discharge summaries.

The 2010 i2b2/VA challenge dataset contains annotations of eight types of relations

between medical problems, tests, and treatments annotated in the discharge summaries.

These relations are defined in Table 6.1 along with a prototypical example of each relation

type provided by the task annotation guidelines1. There are five relation types between

treatments and medical problems (TrIP, TrWP, TrCP, TrAP, and TrNAP), two relation

types between tests and medical problems (TeRP and TeCP) and a single relation type

between medical problems (PIP). Each of the examples listed in Table 6.1 illustrate clinical

language typical of how relations are expressed in discharge summaries.

1https://www.i2b2.org/NLP/Relations/assets/Relation%20Annotation%20Guideline.pdf
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Table 6.2. Relation Annotations Statistics from the 2010 i2b2/VA Challenge Dataset.
Relation Train Validation Test

TrIP 49 2 152
TrWP 24 0 109
TrCP 171 13 342
TrAP 800 85 1,732
TrNAP 52 10 112
TeRP 903 90 2,060
TeCP 149 17 338
PIP 659 96 1,448

The dataset is split into 170 training documents and 256 testing documents. In order to

facilitate comparison against the state-of-the-art system for relation extraction on the 2010

i2b2/VA Challenge dataset (Peng et al., 2019), we reserve the same 16 documents from the

training set on which to perform validation. Annotation statistics are provided in Table 6.2.

6.2 Methods

This section presents the Knowledge-Informed BERT (KIBERT) model for relation extrac-

tion from discharge summaries. KIBERT augments a pre-trained medical language model

architecture with knowledge embeddings learned from the UMLS Metathesaurus and Seman-

tic Network knowledge graphs. Semantic type embeddings are used to infuse background

knowledge into the model to inform relation classification decisions. Moreover, a novel

attention-masking mechanism is applied to allow the model to develop simultaneously (a)

a simplified representation of sentence context indicating relations (as in BlueBERT); and

(b) contextualized representations of concept mentions. The KIBERT model is depicted in

Figure 6.1, contrasted with the BlueBERT model.

Both KIBERT and BlueBERT operate at the sentence level, considering a pair of medical

concepts mentioned in the same sentence. The two models perform multi-class classification

to predict the type of relation (if any) between the two concepts, generating a probability
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Figure 6.1. Neural architectures for identifying relation in clinical narratives. (a) The ar-
chitecture of the Knowledge-Informed BERT (KIBERT) model. (b) The Architecture of
BlueBERT.

distribution over relation types P (r), r ∈ [TrIP, TrWP, TrCP, TrAP, TrNAP, TeRP, TeCP,

PIP, NONE]. The BlueBERT model replaces the mentions of the two potentially related

medical concepts with special tokens indicating the type of the concept, while KIBERT uses

the full input sentence. In both models, the input sentences are then word-piece tokenized

and fed to the same pre-trained BERT model (Peng et al., 2019). During word-piece to-

kenization, a special [CLS] token is prepended to the input sequence as in (Devlin et al.,

2019). This [CLS] token is used by BERT to generate an aggregate embedding of the full

sentence that is used as a context embedding by both models, referred to as the context em-

bedding. In addition to the context embedding, KIBERT uses the token-level BERT outputs

to generate embeddings for the two arguments of the potential relation to be classified, the

A1 embedding and the A2 embedding. This process is described in more detail in the Sec-

tion 6.2.1. While KIBERT uses the same pre-trained BERT model as BlueBERT, KIBERT
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introduces a novel attention-masking strategy to allow the model to simultaneously generate

(a) a context embedding that ignores concept mentions and (b) contextualized argument em-

beddings that consider the full input sequence. This attention masking strategy is detailed

in Subsection 6.2.1. BlueBERT feeds the context embedding into a fully connected layer to

produce P (r). KIBERT combines the context and argument embeddings along with knowl-

edge embeddings representing the type of each argument (i.e., problem, test, or treatment),

described in Subsection 6.2.2. These five embeddings are fed into a two-layer multi-layer

perceptron (MLP) with Gaussian Error Linear Unit activations (Hendrycks and Gimpel,

2016) to produce the distribution P (r). Both models are trained using the cross-entropy loss

function:

L = −
∑
s

∑
i 6=j∈s

I[yij = argmaxP (r)ij] log(P (r)ij) (6.1)

where s is a sentence in the corpus, i and j are pairs of concepts in s, yij is the type of

relation between i and j, and I[yij = argmaxP (r)ij] is an indicator function that returns 1 if

the most probable predicted relation type is correct and 0 otherwise.

6.2.1 Relation-context Transformer Encoder Attention Masking

Relation-context Transformer Encoder Attention Masking (RTEAM) is a novel attention-

masking strategy whereby the same BERT model is used to simultaneously generate (1) a

context embedding representing the simplified sentence context with medical concept men-

tions removed; and (2) fully-contextualized token-level representations of each medical con-

cept mention. The performance of the BlueBERT model indicates that the strategy of

simplifying the input sentence to focus on sentence context to uncover textual cues indi-

cating relations is efficacious in this task. BlueBERT replaces the two medical concept

mentions corresponding to the arguments of the potential relation under consideration with

special tokens indicating the type of the replaced medical concept, depicted in Figure 6.1.
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The decision of BlueBERT to ignore medical concept mentions is motivated by the non-

standard language and complex lexicalizations of medical concepts in clinical narratives like

discharge summaries. Lee et al. (2019) report that this strategy out-performs an alterna-

tive whereby concept mentions are not removed, but wrapped with pre-defined tags (e.g.,

<PROB></PROB>), indicating that the pre-trained BERT language model performs bet-

ter when operating on this simplified input sentence. However, while context is certainly

important, the text of medical concept mentions is also a valuable signal indicating relation-

ships. Moreover, medical concepts mentioned in clinical records are often context dependent

(e.g., the meaning of the token “heart” changes drastically if it is followed by “surgery” as

opposed to “disease”). RTEAM allows KIBERT to learn fully-contextualized representations

of medical concepts, while simultaneously learning a simplified context representation that

ignores medical concepts, as in BlueBERT.

The Relation-context Transformer Encoder Attention Masking modifies the connections

between Transformer Encoder layers in BERT depending on whether a token is (a) a part

of a medical concept mention; or (b) a part of the sentence context. The KIBERT model

with RTEAM is depicted in Figure 6.2. The BERT Transformer Encoder is comprised of

12 layers of Transformer Encoder Units (TEU), one for each token of the input sentence.

Recall from Section 3.4.1 that in a traditional Transformer Encoder, each TEU is connected

to every other TEU from the previous layer, informing each token’s representation with

the representations of every token in the full input sequence. RTEAM is used to limit the

attention connections for tokens corresponding to relation context to simulate the simplified

sentence representation used by BlueBERT, without removing the relation arguments from

the input sentence. RTEAM is applied to each TEU associated with a context token (e.g.,

[CLS], suggest, to, check, for in Figure6.2) such that context tokens only attend to other

context tokens in the input sentence, ignoring relation arguments. Figure 6.2 illustrates

RTEAM masking between layers 1 and 2. For clarity, the RTEAM mask is shown for only
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Figure 6.2. Knowledge-Informed BERT (KIBERT) for relation extraction in clinical narra-
tives.

two units (TEU3
2 , TEU

3
10) in layer 3 to illustrate how the mask operates for context tokens

and argument tokens. The context token, “suggest”, is associated with TEU3
2 while the

argument token, “vegetation”, is associated with TEU3
10. Because it is associated with a

context token, TEU3
2 is only connected to the units from layer two corresponding to other

context tokens (TEU2
1 , TEU2

2 , TEU2
7 , TEU2

8 , TEU2
9 ). In contrast, TEU3

10 is connected to

every token in layer two because the full context may have important cues that inform the

model’s representation of the argument associated with TEU3
10.

The Transformer Encoder is defined formally in Section 3.4.1 through Equations 3.11-

19. Using RTEAM, the attention values, αijh, defined in Equation 3.13 is replaced by

α′ijh = αijh × C[i], where i, j are token indexes into the input sequence, h is an attention
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head2, and C[i] is an indicator function that returns 1 if token i is a context token and 0

otherwise. The rest of the TEU functions exactly as described in the original Transformer

Encoder (Vaswani et al., 2017), performing multi-headed attention over the connected cells

from the previous layer, followed by a feed-forward layer. The effect of this attention masking

is that the representation of each context token output by BERT is only informed by the

other context tokens in the input sequence, ignoring complicated medical concept mentions

such that the focus remains textual cues indicative of relations between pairs of medical

concepts. However, KIBERT is able to also simultaneously generate fully-contextualized

representations of relation argument tokens, attending to each token from the input sequence

at each layer.

The output of the TEU in the final layer corresponding to the leading [CLS] token is

considered the resulting context embedding, c = TEU12
1 , as suggested by Devlin et al.

(2019), as it was also considered BlueBERT. The output of each TEU corresponding to the

relation arguments are pooled to generate the argument embeddings: a1 = ψ(TEU12
i |i ∈

A1), and a2 = ψ(TEU12
j |j ∈ A2) where ψ is the mean-pooling operation; while tokens

i ∈ A1 correspond to the tokens in the first argument and tokens j ∈ A2 correspond to

the tokens in the second argument of the relation. The context embedding is concatenated

with the argument embeddings and type embeddings learned from the UMLS, as described

in Section 6.2.2, and fed into the MLP as depicted in Figure 6.2.

6.2.2 Knowledge Embeddings for Identifying Relations in Discharge Summaries

Knowledge embeddings derived from the UMLS are used to represent the type of each relation

argument in KIBERT. Recall from Section 6.1 each of the eight relation types in the 2010

i2b2/VA Challenge Dataset are constrained to connect two specific concept types. TrIP,

2Recall that BERT is a Transformer model that performs multi-headed attention as described in Sec-
tion 3.4.1.The same attention mask is used for each attention head.
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Table 6.3. UMLS Semantic Types used by KIBERT to represent Medical Problems, Tests,
and Treatments in the 2010 i2b2/VA Challenge Dataset.

Code Name KIBERT Concept Type

T060 Diagnostic Procedure Test
T061 Therapeutic or Preventive Procedure Treatment
T200 Clinical Drug Treatment
T127 Vitamin Treatment
T020 Acquired Abnormality Problem
T190 Anatomical Abnormality Problem
T049 Cell or Molecular Dysfunction Problem
T019 Congenital Abnormality Problem
T047 Disease or Syndrome Problem
T050 Experimental Model of Disease Problem
T033 Finding Problem
T037 Injury or Poisoning Problem
T048 Mental or Behavioral Dysfunction Problem
T191 Neoplastic Process Problem
T046 Pathologic Function Problem
T184 Sign or Symptom Problem

TrWP, TrCP, TrAP, and TrNAP relations occur between treatments and problems; TeRP

and TeCP relations occur between tests and problems; and PIP relations occur between pairs

of medical problems. In BlueBERT, type information is provided in the form of a learned

token embeddings that replace each argument mention. As KIBERT does not perform this

type-token replacement, it does not have access to type information.

Semantic Type knowledge embeddings learned from UMLS present an ideal solution to

this problem. The semantic type embeddings are learned to represent an amalgamation of

the concept embeddings for each concept of that type as well as capture the semantics of

the Semantic Network knowledge graph as described in Section 5.3. The UMLS defines 127

semantic types in the Semantic Network that represent types of medical concepts from the

Metathesaurus. KIBERT uses some of these semantic types to represent medical problems,

tests, and treatments, defined in Table 6.3.
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The ‘Diagnostic Procedure’ semantic type is used to represent tests, while there are

three semantic types used to represent treatments: ‘Therapeutic or Preventive Procedure’,

‘Clinical Drug’, and ’Vitamin’. There are twelve semantic types associated with medical

problems, defined by the ‘Disorder’ semantic group. Semantic Groups3 are groups of semantic

types defined by the UMLS. While there is only a single semantic type associates with tests,

there are multiple semantic types related to treatments and medical problems. Therefore, we

considered the centroid of each semantic type embedding associated with a specific concept

type as the type embedding in KIBERT.

It should be noted that in Section 5.3 knowledge embeddings representing medical con-

cepts are presented along with embeddings representing semantic types. Such concept-level

knowledge embeddings would provide fine-grained knowledge that is particularly relevant to

the end-task of relation extraction. However, medical concepts in the 2010 i2b2/VA challenge

dataset are not annotated with gold-standard concept codes. Therefore, without a perfect

entity disambiguation solution, we were not able to accurately associate medical concept

mentions with their corresponding UMLS concept embeddings. In Section 6.3, we explore

the use of an off-the-shelf biomedical entity linker (Neumann et al., 2019) to assign each

medical concept mention to a UMLS concept but it is shown to degrade performance.

6.2.3 Training Details

KIBERT is trained using cross-entropy defined in Equation 6.1. The predicted distribution

over relations types, P (r), is produced by concatenating the context embedding, c, the

argument embeddings, a1, a2, and the type embeddings t1, t2 and feeding that into a two

layer MLP with GELU (Hendrycks and Gimpel, 2016) activations followed by a softmax

3https://metamap.nlm.nih.gov/Docs/SemGroups_2018.txt
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layer:

h1 = GELU(Wh1[c, a1, a2, t1, t2] + bh1) (6.2)

h2 = GELU(Wh2h1 + bh2) (6.3)

P (r) = softmax(Wph2 + bp) (6.4)

where Wh1 ∈ R256×(3d+2k),Wh2 ∈ R128×256,Wp ∈ R9×128 are weight matrices, d is the hidden

size of BERT, k is the size of the type embeddings, and bh1 ∈ R256, bh2 ∈ R128, bp ∈ R9 are

bias vectors. Note that the dimensionality of the distribution, P (r), is 9, due to the extra

‘NONE’ class signifying no relation.

In order to facilitate a comparison with BlueBERT, we adopt the same training regime

and hyperparameters, where applicable (Peng et al., 2019). KIBERT is trained for 10 epochs

with a learning rate of 5e-5, 1 epoch of learning rate warmup, and linear decay with a rate

of 0.99. A dropout of 0.1 is used in all layers, including BERT, during training. We use

the NCBI BERT (base) model trained on PubMed and MIMIC that performs best with

BlueBERT (Peng et al., 2019), based on the BERT (base) model (Devlin et al., 2019). The

hidden size of this BERT model is d = 768 and the size of the semantic type embeddings

was k = 50. Due to the increased capacity of the inputs to the prediction layer compared

to BlueBERT, (i.e., the argument and type embeddings) we found that a two-layer GELU

MLP was necessary to facilitate training, described in Equations 6.3-4.

6.3 Experimental Results and Discussions

KIBERT is evaluated on the 256 test documents of the 2010 i2b2/VA Challenge Dataset

using the standard metrics of micro-averaged precision, recall and F1 score used by the task

organizers. KIBERT is evaluated against NCBI BlueBERT as well as four other baseline

systems. Rink et al. (2011) was the winning submission of the original challenge, using an

SVM-based approach operating on hand-crafted features generated from dependency parse
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Table 6.4. Relation Extraction evaluation of KIBERT against five baselines on the 2010
i2b2/VA Challenge Dataset measured using Precision, Recall, and F1 score. Top scores
bolded.

System Precision Recall F1

D’Souza and Ng (2014) 72.9 66.7 69.6
He et al. (2019) 73.1 66.7 69.7
Luo et al. (2017) 68.7 73.7 71.1
Rink et al. (2011) 72.0 75.3 73.7
NCBI BlueBERT 78.4 74.4 76.4
KIBERT 75.0 81.2 78.0

patterns and biomedical ontologies. D’Souza and Ng (2014) present an ensemble approach

also based on features. He et al. (2019) and Luo et al. (2017) present deep-learning models

learned from scratch using convolutional neural networks, however neither approach attains

the performance of the original baseline. The results are presented in Table 6.4

While BlueBERT attains the highest precision, KIBERT out-performs the baselines in

recall (by 5.9 points) and F1 score (by 1.6 points). Compared to BlueBERT, KIBERT has

lower precision (3.4 points) but much higher recall (6.8 points) leading to a higher F1 score.

The dramatic increase in recall indicates that the KIBERT model is able to use the argument

and type embeddings to detect more instances of correct relations than BlueBERT.

In order to determine the value of (a) the Relation-context Transformer Encoder At-

tention Masking strategy and (b) knowledge embeddings, we conduct an ablation analysis

of KIBERT. Five knowledge embedding strategies are evaluated both with and without

RTEAM. Specifically, we vary the knowledge embeddings in KIBERT representing types

t1, t2, in the following ways:

1. None: The embeddings t1, t2 are not used. This is done to set a baseline from which

to evaluate the efficacy if knowledge embeddings in KIBERT.

2. Concept Embeddings: The embeddings t1, t2 are replaced with knowledge embed-

dings of concepts from the UMLS Metathesaurus. In order to associate a concept
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Table 6.5. Ablation analysis of KIBERT varying knowledge embedding and attention-
masking strategies. Results measured in terms of F1 score.

Knowledge Embedding Type RTEAM masking No Masking

None 76.5 (-1.5) 75.0 (-3.0)
Concept Embeddings 75.8 (-2.2) 74.4 (-3.6)
Semantic Type Embeddings 78.0 77.1 (-0.9)
Concept+Type Embeddings 76.2 (-1.8) 75.6 (-2.4)
Learned Type Embeddings 76.9 (-1.1) 75.9 (-2.1)

mention with a UMLS concept, we use the ScispaCy entity linker (Neumann et al.,

2019). If no concept is found by ScispaCy, we default to the semantic type embedding

defined in Section 6.2.2

3. Semantic Type Embeddings: This is the default KIBERT model. The embeddings

t1, t2 are the semantic type embeddings defined in Section 6.2.2.

4. Concept+Type Embeddings: The embeddings t1, t2 are replaced with the Concept

Embeddings and Semantic Type Embeddings described above concatenated together.

In theory, such embeddings would contain both coarse-grained type information and

fine-grained concept information.

5. Learned Type Embeddings: The embeddings t1, t2 are learned from scratch along

with the rest of the parameters of KIBERT. This is done to evaluate the efficacy

of knowledge embeddings by comparing them to embeddings with the same capacity

learned from the data.

Results are presented for each knowledge embedding strategy both with and without RTEAM.

The models trained without RTEAM use fully-connected self-attention, as is default in BERT

and described in Section 3.4.1.

Table 6.5 presents this analysis evaluated using F1 score. The analysis shows that both

semantic type embeddings and RTEAM improve relation extraction performance of KIB-

ERT. Without semantic type embeddings performance decreased by 1.5 points and without
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RTEAM performance decreased by 0.9 points. Without both semantic type embeddings and

RTEAM, performance degrades by 3.0 points. RTEAM improves results across the board,

under any knowledge embedding strategy. This reinforces the results of Lee et al. (2019)

and Peng et al. (2019) that focusing on sentence context is an effective strategy for relation

extraction. However, the 76.5 F1 score attained by the RTEAM model without knowledge

embeddings shows that the RTEAM strategy is slightly preferable to ignoring concept men-

tions representing relation arguments entirely.

Table 6.5 reveals that semantic type embeddings are the preferred way to inject back-

ground knowledge into KIBERT for relation extraction between medical concepts in the 2010

i2b2/VA Challenge Dataset. Concept embeddings degrade performance below the baseline

that does not use knowledge embeddings at all. Moreover, the combination of concept and

type embeddings does not match the performance of type embeddings alone. We believe

that this could be due to noisy entity linking misinforming the model during training. In

order to properly evaluate the efficacy of UMLS concept embeddings for relation extraction,

gold-standard concept codes are required for relation arguments. In future work, we plan

to investigate strategies for soft entity linking whereby knowledge embeddings for the most

likely concepts associated with a concept mention are combined using attention. The com-

parison with learned type embeddings shows that knowledge embeddings are indeed able

to capture useful background knowledge and leverage that knowledge to inform relation

extraction decisions.

6.4 Summary and Lessons Learned

In this chapter, the Knowledge-Informed BERT (KIBERT) model for relation extraction

between medical concepts in clinical narratives is presented. KIBERT augments a state-

of-the-art pre-trained Transformer model with (1) background knowledge; and (2) a novel

attention masking strategy in order to improve results, setting a new baseline for the 2010
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i2b2/VA Challenge Dataset. Background knowledge is incorporated in the form of knowl-

edge embeddings learned from the knowledge graphs of the Unified Medical Language System

(UMLS). Semantic Network embeddings from the UMLS are trained to capture the struc-

ture of the UMLS knowledge graphs, representing groups of medical concepts known as

semantic types. KIBERT uses Semantic Type embeddings to represent the types of medi-

cal concepts participating in potential relations in discharge summaries. Moreover, a novel

attention masking strategy is presented whereby the pre-trained Transformer model is used

to simultaneously generate embeddings representing (a) simplified sentence context; and (b)

fully-contextualized relation arguments. The results indicate that considering semantic type

embeddings along with attention masking improves relation extraction performance.

This chapter demonstrates that deep learning methods for relation extraction are suffi-

ciently robust operate well in a new genre of medical text while also showing that knowledge

embeddings can be successfully used to inject knowledge when they take the form of seman-

tic type embeddings. While semantic type embeddings are shown to improve results, such

embeddings represent broad groups of concepts. More fine-grained knowledge in the form

of concept embeddings is also available, but results indicate that more sophisticated meth-

ods are necessary to make use of this knowledge to improve relation extraction. Because

relations were considered between arguments that represent broad groups of concepts from

the UMLS, it is not surprising that semantic type embeddings are preferable for incorporat-

ing background (or ontological) knowledge. It is to be noted that because KIBERT takes

advantage of knowledge embeddings, it achieves the best recall measures, indicating that it

uncovers more relations than other methods. However, KIBERT also achieves lower precision

than BlueBERT, indicating that the knowledge embeddings embolden an aggressive relation

identification which, while less precise, leads to an improvement in overall performance.
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CHAPTER 7

IDENTIFYING RELATIONS BETWEEN MEDICAL CONCEPTS IN

STRUCTURED PRODUCT LABELS

In this chapter the methods introduced in this dissertation are extended to extract drug-drug

interaction relations from medical reference text. Drug-drug interactions are a preventable

cause of adverse events, the eighth leading cause of death in the United States (Demner-

Fushman et al., 2018). For each prescription drug approved by the U.S. Food and Drug

Administration (FDA), Structured Product Labeling (SPL) documents are produced, con-

veying in-depth information characterizing each prescription drug, including known drug-

drug interactions. Contrary to their name, SPLs are comprised of unstructured natural

language descriptions of the essential scientific information needed for the safe and effective

use of a drug1. Together, the FDA and the National Library of Medicine (NLM) have a joint

mandate to transform the natural language content of SPL documents, including drug-drug

interactions, into a normalized, structured format that is readily accessible to downstream

systems (Demner-Fushman et al., 2018). As such, Natural Language Processing (NLP) meth-

ods are necessary to extract information from the SPLs into a structured form. In an effort

to address this problem, the 2019 Text Analysis Conference (TAC) Drug-Drug Interaction

(DDI) Extraction from Drug Labels track was designed by the FDA and NLM for extraction

of drug-drug interactions from SPL documents.

The TAC-DDI track provides a set of SPLs with manually annotated drug-drug inter-

actions meant to facilitate the development of NLP systems that can automatically recog-

nize such interactions. Unlike EHR data, SPLs are comprised of well-formed, grammatical

sentences, however, they present their own difficulties. Each SPL document contains in-

formation pertaining to a single prescription drug, termed the Labeled Drug. Since the

1https://open.fda.gov/data/spl/
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entire SPL pertains to the Labeled Drug, it is rarely if ever mentioned explicitly, yet each

drug-drug interaction indicated in an SPL involves the Labeled Drug. Therefore, existing

relation extraction methods that expect relation arguments to be explicitly mentioned must

be adapted to the task of DDI extraction from SPLs. For example, consider the following

sentence from the SPL for Accupril: “Patients taking concomitant [mTOR inhibitor ] (e.g.,

[temisirolimus ]) therapy may be at increased risk for [angioedema].” The sentence indicates

two DDIs between (Accupril and mTOR inhibitors) and (Accupril and temisirolimus). Both

DDIs impose the risk of “angioedema”. Each of the interacting substances (“mTOR in-

hibitors”, “temisirolimus”) and the effect of the interactions, (“angioedema”) are represented

in biomedical ontologies like those discussed in Chapter 5. The goal of the track is to identify

the unique set of drug-drug interactions for each prescription drug and link the interactions

to existing knowledge sources by normalizing the interacting substances and the effects of

each interaction to target ontologies.

In order to facilitate the development of systems capable of performing this goal, the

organizers provide four subtasks2: (1) entity recognition; (2) sentence-level relation iden-

tification; (3) entity normalization; and (4) normalized relation identification. The entity

recognition task is to identify entities that participate in drug-drug interactions with the La-

beled drug including interacting substances (e.g., “mTOR inhibitors”) and interaction effects

(e.g., “angioedema”). The sentence-level relation identification task is to classify the type of

interactions, if any, between the set of entities identified in Task (1) in the same sentence.

The entity normalization Task is to normalize each entity into a concept from one of three

structured biomedical ontologies. The normalized relation identification task is the end goal

of the 2019 TAC DDI track: to identify the unique interactions between normalized entities

contained in an SPL. Task (4) is the goal of the challenge, while Tasks (1-3) are provided to

aid in the development of machine learning systems capable of performing Task (4).

2https://bionlp.nlm.nih.gov/tac2019druginteractions
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In this chapter, we present a multi-task neural network for end-to-end drug-drug interac-

tion extraction from Structured Product Labels, the Multi-Task Transformer for Drug-Drug

Interaction (MTTDDI). Moreover, we introduce a sentence classification task in which sen-

tences that contain a DDI are discriminated from sentences that do not contain a DDI.

MTTDDI jointly performs sentence classification, entity recognition (Task 1) and relation

identification (Task 2) using a pre-trained Transformer model trained on medical text (Peng

et al., 2019). In this way, MTTDDI jointly identifies sentences that contain a DDI, recog-

nizes the arguments of all DDIs in the sentence, and classifies the relations between each

set of arguments in the sentence. The entity normalization task is performed using tf-idf

search and the normalized relation identification task is inferred from the results of Tasks

1-3. Similar to the Multi-task BERT models introduced in Chapters 2–3, MTTDDI uses a

transformer model to develop a shared multi-task representation that is fed to a series of

prediction models that identify DDIs and the entities that participate in them. We show

that training MTTDDI to perform sentence classification along with entity recognition and

relation identification improves upon equivalent models which are trained separately.

This chapter is organizes as follows: Section 7.1 describes the dataset and the task

of Normalized Drug-Drug Interaction Identification in detail. Section 7.2 provides a brief

background for the task and drug-drug interaction identification in general. Section 7.3

presents the MTTDDI model and the end-to-end normalized drug-drug interaction identifi-

cation pipeline. Finally, Section 7.4 presents experimental results and Section 7.5 concludes

the chapter.

7.1 Normalized Drug-Drug Interaction in Structured Product Labels: The 2019

TAC DDI Dataset

The 2019 TAC DDI Dataset targets three drug-drug interactions expressed in Structured

Product Labels: (1) Pharmacodynamic Interactions, (2) Pharmacokinetic Interactions, and
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(3) Unspecified Interactions. Pharmacodynamic Interactions (PDI) indicate that a drug

interacts with the Labeled Drug3 to produce an effect on a patient taking both drugs. Con-

versely, Pharmacokinetic Interactions (PKI) indicate that a drug interacts with the Labeled

Drug to produce an effect on the drugs themselves. Unspecified Interactions (UI) indicate

that a drug interacts with the Labeled Drug in some otherwise problematic way that is

warned against. Each interaction involves the Labeled Drug and three potential arguments:

a precipitant, a trigger, and an effect. A precipitant is a drug, drug class, or some other sub-

stance that causes one of the three DDIs described above when combined with the Labeled

Drug. A trigger is a string of words that indicates the presence and type of an interaction.

PDIs and PKIs also have effects that are annotated in the dataset. PDI effects are spans of

text that indicate a medical problem that results from a PDI while PKI effects are classified

into 20 discrete classes defined by the National Cancer Institute Thesaurus (Golbeck et al.,

2003). Table 7.1 provides example sentences indicating DDIs along with their interaction

type, precipitants, effects, and triggers.

The first sentence, S1, indicates two PDIs precipitated by the mentions “mTOR in-

hibitor ” and “temsirolimus”, indicated by the trigger “increased risk ” and having the effect

“angioedema”. Sentence S2 demonstrates a PKI between the Labeled Drug Accupril and the

precipitant “high-fat meal ” indicated by the disjoint trigger span “absorption|diminished ”.

Disjoint mention spans are common in this dataset, comprising 35% of trigger mentions and

14% of all mention spans. Note that the effect of the PKI demonstrated by S2 is not a span

from the sentence, but the NCI Thesaurus code C54356 indicating a decrease in drug level.

Sentence S3 demonstrates an unspecified interaction between the Labeled Drug and four

precipitants with overlapping, disjoint spans. Note that UIs do not have annotated effects.

The first task of the 2019 TAC DDI challenge is the entity recognition task: to identify

precipitant and effect spans mentioned in SPLs. The primary difficulty of this task arises

3The Labeled Drug is the drug for which the Structured Product Label was created.
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Table 7.1. Examples of Drug-Drug Interactions from the 2019 TAC DDI Dataset. PDI
indicates a pharmacodynamic interaction, PKI indicates a pharmacokinetic interaction, and
UI indicates an unspecified interaction. Disjoint spans are indicated by the ‘|’ character.
Sentence Type Precipitant Effect Trigger
S1: Patients taking concomitant PDI mTOR inhibitor ; angioedema increased risk
mTOR inhibitor (e.g., temsirolimus) temsirolimus
therapy may be at increased risk for
angioedema.
S2: The rate and extent of quinapril PKI high-fat meal C54356 absorption|
absorption are diminished moderately diminished
when ACCUPRIL tablets are admini-
stered during a high-fat meal.
S3: Combined P-gp and strong UI P-gp|inducers; – Avoid
CYP3A4 inhibitors and inducers: P-gp|inhibitors;
Avoid concomitant use strong CYP3A4

inhibitors;
strong CYP3A4 |
inducers

from the irregular spans like the precipitant spans demonstrated in S3. Moreover, the entity

recognition task is further complicated by the fact that only those entities which participate

in DDIs are to be identified. Task 2, the sentence-level relation identification task,

is to classify the interaction type between each set of identified precipitants, triggers, and

effects identified in Task 1. Trigger spans are not evaluated as part of the challenge for either

Task 1 or 2, however they provide important information relevant to each task since they

indicate the presence and type of a DDI.

The third task is the normalization task: to normalize each identified precipitant

and effect into a target ontology. There are three target ontologies: Medication Reference

Terminology (MED-RT)4 and Unique Ingredient Identifier5 for precipitants, and SNOMED-

CT (Donnelly, 2006) for PDI effects. There are two classes of precipitants termed drug

classes and interacting substances by the task organizers. Drug classes are precipitant men-

4https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/MED-RT/index.html

5https://www.fda.gov/industry/fda-resources-data-standards/fdas-global-substance-registration-system
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Table 7.2. Dataset statistics for the 2019 TAC DDI Dataset.
Training Validation Testing

Structured Product Labels 191 20 86
Entities (Task 1) 17,533 2,314 5,713

Precipitants 9,562 1,355 2,889
Effects 2,804 321 944
Triggers 5,167 638 1,880

Sentence-Level DDIs (Task 2) 11,044 1,584 3,911
Pharmacodynamic Interactions 4,938 547 2,188
Pharmacokinetic Interactions 3,255 485 1,010
Unspecified Interactions 2,851 552 713

Normalized Entities (Task 3) 11,026 1,463 3,115
Drug Classes (MED-RT) 4,935 918 1,308
Interacting Substances (UNII) 3,740 475 1,063
Effects (SNOMED-CT) 2,351 255 744
Unmapped 1,340 213 718

Normalized DDIs (Task 4) 8,541 1,025 3,107
Pharmacodynamic Interactions 4,195 456 1,763
Pharmacokinetic Interactions 2,309 308 780
Unspecified Interactions 2,036 261 564

tions corresponding to classes or groups of drugs (e.g., “P-gp inducers”), while interacting

substances include specific drugs or non-drug substances that cause an interaction with the

Labeled Drug (e.g., “temsirolimus”, “high-fat meal ”). Precipitants which are drug classes are

to be normalized to MED-RT while interacting substances are to be normalized to UNII.

Because PKI effects are not tied to mentions, they are not evaluated as part of Task 3. It

should be noted that roughly 12% of precipitant and PDI effect mentions do not have a valid

mapping in a target ontology. These mentions are assigned a normalized code of NO MAP.

Task four is the Normalized DDI identification task: to identify the unique DDIs

between the labeled drug and normalized precipitants and effects identified in the SPL. For

PDIs and UIs, Task 4 is entailed by the results of Tasks 1-3, however for PKIs, the PKI

effect code must be identified as well.
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Table 7.2 lists the frequencies of entities (Task 1), sentence-level DDIs (Task 2), nor-

malized entities (Task3), and normalized DDIs (Task 4) in the 2019 TAC DDI Dataset.6

The dataset is comprised of 297 human-annotated SPL documents split into sets of 211

for training and 86 for testing. We reserve 20 randomly selected training documents for

validation.

7.2 Background

Drug-Drug Interaction (DDI) occurs when two drugs are co-administered causing the effects

of at least one of the administered drugs to change. Adverse reactions to DDIs are a major

preventable cause of injury and death in the United States (Demner-Fushman et al., 2018),

so the automatic extraction of DDIs is an important research area in regards to patient out-

comes. In 2011, the 1st DDIExtraction challenge task was held for the identification of DDIs

in biomedical texts (Segura-Bedmar et al., 2011) and was updated in 2013 as part of Se-

mEval (Segura Bedmar et al., 2013). The DDIExtraction dataset focuses on the identification

of pharmacological substances and DDIs between them in biomedical text from DrugBank

and MedLine. Neural methods have shown promise for these tasks including convolutional

networks (Liu et al., 2016) and hierarchical RNNs (Zhang et al., 2018). More recently, pre-

trained language model-based networks have set a new state-of-the-art result (Peng et al.,

2019).

DDI extraction from SPLs is not as well studied. In 2018, the FDA and NLM partnered

to host the first TAC DDI challenge track (Demner-Fushman et al., 2018) which consisted

of a set of 22 training SPL documents and two test sets of 57 and 66 labels, respectively.

The 2018 challenge defined the normalized DDI identification task and its three subtasks,

however given the relatively small amount of training data, systems were not able to produce

6https://bionlp.nlm.nih.gov/tac2019druginteractions
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results consistent with DDI identification in other domains, achieving a high score of 11.83

F1. The top performing system consisted of a BiLSTM-CRF informed with syntactic features

for entity recognition, a Piecewise Attention-LSTM for relation extraction, and learning-to-

rank for entity normalization (Demner-Fushman et al., 2018). In this chapter, we leverage

a state-of-the-art neural architecture and additional training data to set a new baseline for

normalized DDI identification in structured product labels.

7.3 Multi-task Learning for Normalized Drug-Drug Interaction Extraction from

Structured Product Labels

In this section we present the End-to-end Normalized DDI Identification Pipeline (ENDIP)

for performing all four TAC-DDI tasks. ENDIP uses the Multi-task Transformer network

for identifying Drug-Drug Interactions (MTTDDI) to identify DDI relations, the substances

that precipitate DDIs, the effects of the DDIs, and their triggers. MTTDDI is a multi-task

network, based on BERT (Devlin et al., 2019) that uses the pretrained transformer to develop

a shared multi-task representation that is fed to a series of four prediction modules: (1) the

sentence classifier; (2) the mention boundary detector; (3) the relation extractor; and (4)

the Pharmacokinetic Effect (PKE) classifier.

ENDIP is depicted in Figure 7.1. ENDIP first ingests the three available training datasets

via a preprocessing module. This module performs annotation propagation as in Dandala

et al. (2018) and two-stage tokenization. Next, the MTTDDI model is used to identify

sentences containing DDIs, and extract their mentions, relations, and PKI effect codes.

The mentions and relations are post-processed by the Postprocessing module resulting in

predicted mention spans (for Task 1) and predicted relations (for Task 2). The mentions

are normalized into ontology codes by the Normalization module for Task 3. Finally, the

normalized mentions and predicted relations are unified and filtered by uniqueness to derive

the unique normalized DDI relations for Task 4.
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Figure 7.1. The End-to-end Normalized DDI Identification Pipeline (ENDIP).

7.3.1 Pre-processing

Pre-processing began with reading mentions and sentence-level interactions from SPL files,

including triggers, precipitants, and effects. The presence of trigger annotations facilitates

the representation of an N-ary DDI relations as a composition of binary relations. Inter-

actions were represented as binary relations between triggers and precipitants and between

triggers and effects. Therefore, ternary PDI relations are transformed into two binary rela-

tions, sharing the same trigger. In this way, the two ternary PDI relations in example S1

in Table 7.1 are expressed as three binary relations: {PDI(increased risk, mTOR inhibitor),

PDI(increased risk, temsirolimus), PDI(increased risk, angioedema)}. The original ternary

relations are recovered by joining precipitants and effects which are related to the same trig-

ger in a relation of the same type. Since PKI and UI relations do not have effect mentions,

they are simply represented as binary relations between triggers and precipitants. Pharma-

cokinetic interaction effects are treated as an attribute of the corresponding PKI relation

since they had no mention associated with them.

The mention span annotations in the 2019 TAC DDI dataset are slightly below gold-

standard due to the fact that they are produced semi-automatically via the following proce-
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dure: mention spans indicating precipitants, effects, and triggers are identified in a sentence

and then only the first substring matching the identified span is annotated as the gold men-

tion span. This is problematic when the same span is mentioned more than once in the same

sentence, e.g., “Until data on possible interactions between verapamil and [disopyramide]P

are obtained, disopyramide [should not be administered ...]T ”. In this example the second

mention of disopyramide should be annotated as a precipitant since it is clearly related to the

trigger span. Therefore, mention propagation is performed. Mention propagation consists of

propagating the annotations of any mention participating in a relation to all other matching

mention strings in the same sentence as in (Dandala et al., 2018). In the same way, relation

propagation is performed to link newly created mentions spans to the same DDI arguments

as the original span. During post processing, only the first predicted span is kept.

Sentence spans are provided by the task organizers. Tokenization was performed in two

steps: at the word level, and at the word-piece level. First ScispaCy (Neumann et al., 2019)

is used to extract word tokens from each sentence in a SPL. Then, word piece tokenization

was performed on each token utilizing the word-piece vocabulary of BERT. We adopted the

C-IOBES tagging scheme for mention prediction due to the prevalence of disjoint spans in

this corpus. In C-IOBES tagging, each word-piece token is assigned a tag in {O,I,B,E,S,C-

I,C-B,C-E-C-S} depending on if it outside of a mention, inside of a mention, the beginning

of a mention or a single token representing a mention. The C- tags denote that a token is

a part of a continuation span, e.g., “diminished ” from the trigger “absorption|diminished ”

of S2 in Table 7.1. Continuation spans are attached to the closest leading head span of the

same type. C-IOBES boundary tagging was performed on each sentence, where separate

C-IOBES tags were assigned to each word piece token for triggers, precipitants, and effects.

It should be noted that under this tagging scheme, there is some information loss in regards

to overlapping spans of the same type. For instance, the four precipitants in example S2

from Table 7.1 are collapsed into a two spans: “P-gp|strong CYP3A4 inhibitors” and “P-

gp|inducers”. However, such overlapping spans account for less than 4% of the data.
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Figure 7.2. The Multi-Task Transformer Network for Identifying Drug-Drug Interactions.

7.3.2 The Multi-Task Transformer Network for Identifying Drug-Drug Interac-

tions

The Multi-Task Transformer network for identifying Drug-Drug Interactions (MTTDDI),

depicted in Figure 7.2, is a multi-task neural network built on the pretrained BERT trans-

former model to perform end-to-end drug-drug interaction identification from FDA drug

labels. MTTDDI consists of five modules: (1) the BERT sentence encoder; (2) the sentence

classifier; (3) the mention boundary labeler; (4) the relation extractor; and (5) the PKE

classifier. MTTDDI operates on the sentence level, determining if the sentence contains

a drug-drug interaction using the sentence classifier. If so, MTTDDI applies the mention

boundary labeler to identify the arguments of the DDI and the relation extractor to classify

the type of the relation. If the relation is found to be a pharmacokinetic interaction, the

PKE classifier is applied to classify the effect of the interaction from one of the pre-defined

classes in the NCI Thesaurus. Each module is trained jointly (including fine-tuning the
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BERT model) using the following loss function:

L = LS + LB + LR + LPKE (7.1)

where LS,LB,LR,LP are the loss functions of the sentence classifier, the mention boundary

labeler, the relation extractor and the PKE classifier, respectively.

The BERT sentence encoder generates (1) a sentence embedding and (2) contextualized

token embeddings for each token in the input sentence. The sentence embedding is passed to

the sentence classifier while the contextualized token embeddings are passed to the mention

boundary labeler and the relation extractor. The input to the BERT sentence encoder

is a sequence of word-piece tokens with a special leading ‘[CLS]’ token used for sentence

classification as described in Devlin et al. (2019). As described in Section 3.4, a bi-directional

transformer encoder such as BERT uses every token in the input sequence to inform the

representation of every other token in the sequence using multi-headed attention. As such,

the purpose of the ‘[CLS]’ token is to extract from the full input sequence the information

necessary to perform the sentence classification task, without biasing towards any specific

token or learning to pool the contextualized token embeddings explicitly.

Formally, given a sequence of n word-piece tokens, t1, t2, . . . , tn the BERT sentence en-

coder produces a sentence embedding, s, and a sequence of contextualized token embeddings,

c1, c2, . . . , cn, as depicted in Figure 7.2. The sentence embedding s is fed to the sentence clas-

sifier while the contextualized token embeddings are shared among the mention boundary

labeler and the relation extractor as in SACAR (Section 3.4).

The BERT model used in MTTDDI was pretrained in two phases, similar to the model

described in Section 2.6.1, first on English Wikipedia and Books Corpus (Devlin et al., 2019)

then on PubMed abstracts (Peng et al., 2019). This model was chosen due to the similarity

of the language used in SPL medical reference documents and scientific articles contained

in PubMed. The parameters of BERT are fine-tuned, updated during training using the
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training signal provided by each of the four prediction models. In this way, the embeddings

produced by BERT extract information relevant to each task from the input sentence.

Sentence Classifier

The sentence classifier module is used to determine if a given sentence contains a drug-

drug interaction. While not one of the four tasks provided by TAC DDI, we found that

filtering out sentences identified by the sentence classifier as not containing a DDI beneficial,

experimentally. The sentence classifier module consists of a single sigmoid layer operating

on the [CLS] embedding produced by the BERT sentence encoder:

ŝ = σ(W ᵀ
Ss+ bS) (7.2)

where σ is the sigmoid function, WS ∈ Rd is a weight vector, and bS ∈ R is a bias value,

and d = 768 is the dimensionality of s, the hidden size of BERT. The sentence classifier is

trained using sigmoid cross-entropy:

LS =
∑
i

yi log(ŝ) + (1− yi) log(1− ŝ) (7.3)

Mention Boundary Labeler

The Mention Boundary Conditional Random Field (MB-CRF) uses a Conditional Random

Field (CRF) (Lafferty et al., 2001) to generate the most likely C-IOBES boundary tag

sequences for a sentence in order to identify trigger, precipitant and effect mentions in the

sentence. In order to accomplish this, the MBD passes each contextualized token embedding

ci produced by BERT through a fully connected layer to produce a vector of potentials for

each possible tag, b̃i ∈ R9. This is identical to the MB-CRF module described in Section 2.6.4

with extra potentials to accommodate the larger tagset of this task. Three separate fully

connected linear layers are trained to produce potentials for triggers, precipitants, and effects,
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respectively, which are then fed to the same CRF:

b̃pj = Wpcj + bp (7.4)

b̃ej = Wecj + be (7.5)

b̃tj = Wtcj + bt (7.6)

Again as in Section 2.6.4, the MB-CRF is trained to minimize the negative log likelihood

of the correct tag sequence, given the sequence of potentials:

LB =
∑
i

− logP (bp|b̃p1, . . . b̃
p
n)− logP (be|b̃e1, . . . b̃en)− logP (bt|b̃t1, . . . b̃tn) (7.7)

where bp, be, and bt are the true tag sequence for precipitants, effects, and triggers for sentence

i, respectively.

Relation Extractor

The relation extractor is used to extract relations between each pair of mentions in the

same sentence and to classify the type of relation between them, if any. Each potential

relation is indicated by a trigger, therefore this task is cast as binary relation extraction

between triggers and one other relation argument, either a precipitant or an effect. In

order to predict a relation between a trigger and another argument, the model requires a

representation for (a) the trigger, (b) the argument (either a precipitant or an effect), and (c)

the context of the containing sentence. Therefore, the relation extractor distills the shared

contextualized token embeddings provided by BERT into: (a) a trigger embedding; (b) an

argument embedding; and (c) a context embedding for each trigger-argument pair. The

trigger embedding represents the relation trigger, while the argument embedding represents

either a precipitant or an effect, depending on what was is present in the sentence. The

context embedding represents the context in which the two relation arguments occur – i.e.,

it is derived from the rest of the sentence. Formally, the trigger embedding is calculated
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using max-pooling, τ = φ(cti, . . . , c
t
j) where φ is the max-pooling operation and cti, . . . , c

t
j

are the tokens corresponding to the trigger mention. Similarly, the argument embedding is

calculated as α = φ(cai , . . . , c
a
j ) where cai , . . . , caj are the tokens corresponding to the argument

mention and the context embedding is calculated as δ = φ(csi , . . . , c
s
j) where csi , . . . , csj are

the tokens from the sentence that appear in neither argument.

The three embeddings are concatenated to derive the relation embedding representing

the potential relation between trigger t and argument a: r(t, a) = [τ, α, δ]. r is passed to a

fully connected softmax layer and the relation extractor is trained using cross-entropy:

q(t, a)k =
eWRr+bR
k∑
l e
WRr+bR
l

(7.8)

LR = −
∑
i

∑
(t,a)∈si

∑
k

I[y(t, a) = k] log(q(t, a)k) (7.9)

where q(t, a) is the probability distribution over relation types between trigger t and argu-

ment a, WR ∈ R4×3d is a weight matrix, bR ∈ R4 is a bias vector, and y(t, a) is the true

relation type between trigger t and argument a.

Pharmacokinetic Effect Classifier

The pharmacokinetic effect (PKE) classifier is used to predict the effect code of each phar-

macokinetic interaction. The PKE classifier consists of a single softmax layer that operates

on the relation embedding of the candidate relation, provided by the relation extractor.

The PKE classifier is trained using softmax cross-entropy jointly along with the other four

modules:

qpke(t, a)p =
eWP r+bP
k∑
l e
WP r+bP
l

(7.10)

LP = −
∑
i

∑
(t,a)∈si

I[y(t, a) = PKI]
∑
p

I[yp = p] log(qpke(t, a)p) (7.11)

where qpke(t, a) is the probability distribution over PKE types between trigger t and precip-

itant a, WP ∈ R20×3d is a weight matrix, bP ∈ R4 is a bias vector, I[y(t, a) = PKI] indicates
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that the loss is only considered for PKI relations, and ye is the true PKE code for the PKI

relation between trigger t and precipitant a.

7.3.3 Postprocessing

Postprocessing began with reading predictions from MTTDDI and cleaning up predicted

C-IOBES tags by removing malformed predicted spans. Predicted spans were transformed

into predicted mentions, where continuation spans were linked to the closest leading mention

of the same type. First occurrences of mention text in the sentence were the only mentions

kept, and interactions were reconstructed from predicted binary relations with the same head

trigger. Predicted mentions which participated in no interactions were also removed.

7.3.4 Normalization

Each mention was normalized into one of three target ontologies: SNOMED-CT for PDI

effects, MED-RT for drug classes, and UNII for interacting substances. Normalization was

performed using string matching against atoms from (a) the vocabularies themselves and

(b) the Unified Medical Language System (Lindberg et al., 1993). For each vocabulary, an

index was constructed using the 2019AA UMLS release augmented with primary names from

the source vocabularies themselves. For MED-RT, only drug classes and their atoms were

extracted. Effects were searched against SNOMED and precipitants were searched against

MED-RT first, then UNII if no match to MED-RT was found. In this way, the task of

determining if a mention was a drug class was obviated.

7.4 Experimental Results and Discussions

ENDIP is evaluated against the submissions to the 2019 TAC DDI challenge in Tasks 1, 2,

3, and 4. Each task is evaluated using precision, recall, and F1 score. In accordance with

the standards set by the task organizers, Tasks 1 and 2 are evaluated using micro-averaged
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statistics, while Tasks 3 and 4 are evaluated using statistics macro-averaged over each SPL

in the test set.

The competing systems are summarized in the track overview (Goodwin et al., 2019) and

described below:

1. IBMResearch (Mahajan et al., 2019) developed a series of BERT-based models tar-

geting Tasks 1 and 2 using the cased 24-layer BERT-large model7. IBMResearch’s

submission is comprised of five separately trained BERT models for detection of (1)

precipitants; (2) effects; (3) PDI triggers; (4) PKI triggers; and (5) UI triggers. Each

of the five models perform boundary detection as token classification as in MTTDDI,

however they do not use a CRF and train a separate model for each concept type.

The effect boundary detector is only applied to sentences in which a precipitant has

already been found. Task 1 is accomplished using the precipitant boundary detector

and the effect boundary detector. Post-processing using a set of hand-crafted depen-

dency parse patterns is used to extract overlapping disjoint entities, which is shown

to be effective in this dataset. Task 2 is accomplished using the three typed trigger

boundary detectors. If a trigger is detected in a sentence, the precipitants in the same

sentence are predicted as participating in an interaction of the same type as the trigger.

Precipitants and effects in the same sentence are linked together in a PDI. In this way,

IBMResearch do not perform explicit relation detection. Final predictions for both

tasks are made using an ensemble created via 5-fold cross validation. Pharmacokinetic

effect codes are not predicted as Task 4 is not attempted by IBMResearch.

2. SRCB represents Ricoh Software Research Center (Beijing) (Ding et al., 2019) which

have participated in Tasks 1, 2, and 3. For Tasks 1 and 2, SRCB develop a series

7https://github.com/google-research/bert
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of BERT-based models using the cased BioBERT-large model8. For Task 1, SRCB

trained models using additional universal transformer layers atop BioBERT (the num-

ber of layers is not specified) and perform data augmentation. Two models are trained

for precipitants and effects, respectively. For data augmentation, SRCB used the full

set of FDA SPLs downloaded from the web (including the labels present in the test

set), use their current model to predict precipitants and effects in the unlabeled data,

then retrain in the next epoch with the full dataset using both gold- and silver-standard

labels. Prediction was performed using an ensemble created via 11-fold cross valida-

tion. Task 2 was performed by the SRCB system as sentence-pair classification. This

sentence pair is comprised of (1) an input sentence from an SPL; and (2) a “support

sentence” describing the type of interaction to be predicted, PDI, PKI, or UI. Support

sentence creation was not described in detail (Ding et al., 2019). Task 3 was performed

using index search as in ENDIP, however the search is augmented with multiple string

kernels including Jaccard distance, Longest Common Subsequence, Levenshtein dis-

tance, and combinations thereof. Pharmacokinetic effect codes are not predicted as

Task 4 is not attempted by SRCB.

3. INK_BC, a system developed by Shadong University of Finance and Economics,

participated in Tasks 1 and 2 with “a hybrid approach combining context and n-gram

models” as reported in Goodwin et al. (2019). No other details of this approach were

provided.

The results for all Tasks are presented in Table 7.3 and compared against the top per-

forming system for each task from the 2018 TAC DDI challenge. It should be noted that the

2018 TAC DDI challenge was conducted using a smaller training set and a different test set,

so the results are not directly comparable.

8https://github.com/naver/biobert-pretrained
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Table 7.3. Evaluation of ENDIP against participating systems in entity recognition (Task
1), relation extraction (Task 2), entity normalization (Task 3), and normalized relation
identification (Task 4) of the 2019 TAC DDI measure using Precision, Recall, and F1 score.
Top scores in each task are bolded. The top scoring results from the 2018 challenge are also
reported.

Task 1 Task 2

System Precision Recall F1 Precision Recall F1

IBMResearch 73.40 58.94 65.38 58.29 42.31 49.03
SRCB 70.93 56.52 62.91 54.70 40.84 46.77
ENDIP 68.60 54.09 60.48 49.03 40.39 44.29
INK_BC 18.15 28.73 22.25 3.62 4.51 4.02
2018 Best 43.8 49.9 46.7 54.4 32.8 40.9

Task 3 Task 4

System Precision Recall F1 Precision Recall F1

SRCB 70.88 58.49 62.39 – – – –
ENDIP 61.13 46.35 50.90 31.89 28.63 28.84
2018 Best 31.9 24.0 26.4 17.4 9.7 11.8

For Task 1, IBMResearch outperformed the other systems, attaining an F1 score of 65.38

vs. 62.91 for SRCB and 60.48 for ENDIP. In Task 2, IBMResearch again outperform the

other submissions, attaining an F1 score of 49.03 vs. 46.77 for SRCB, and 44.29 for ENDIP.

For Task 3, only SRCB and ENDIP participated, with SRCB submitting a more sophisticated

string matching system than that of ENDIP. ENDIP is the lone system that is capable of

performing Task 4. Compared with the top system from 2018, ENDIP achieves a 144%

greater F1 score (17.04 absolute), setting a new baseline for this domain.

The IBMReserch, SRCB, and ENDIP models are all based on BERT, with IBMResearch’s

model being the simplest, yet most effective adaptation. IBMResearch’s model is comprised

of a simple softmax layer atop BERT, while SRCB use universal transformer layers. However,

both IBMResearch and SRCB use larger BERT models than ENDIP, indicating that the

extra capacity of the larger models is useful for this task. Moreover, the pretrained BERT

models used by each system differ; IBMResearch use the original BERT model (Devlin

et al., 2019) trained on open-domain text while SRCB use BioBERT (Lee et al., 2019)
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trained on scientific articles. In experiments using our validation set, we found that the

original BERT model performed slightly worse than the NCBI BERT model used in ENDIP,

indicating that the capacity of the model is more important than the pre-training corpus,

for this challenge. The performance of IBMResearch over the other models indicates that

the dependency pattern post-processing performed by IBMResearch is also important for

Task 1. IBMResearch are the only team whose system is theoretically able to produce the

correct precipitant spans for overlapping, non-contiguous mentions like the precipitants in

example S3 in Table 7.1 due to their post-processing step. Future work may benefit from

the incorporation of such dependency information at learning time, allowing models to learn

their own patterns like those hand-crafted by IBMResearch.

Since the relation extraction of Task 2 is dependent on correctly identifying relation ar-

guments in Task 1, the performance of Task 2 is bounded by the performance of Task 1. As

such, a comparison of relation extraction methods is not possible for this task as the differ-

ences in Task 2 evaluation scores could be due entirely to differences in Task 1 performance.

However, it should be noted that IBMResearch, SRCB, and the ENDIP systems perform

similarly, indicating that the approaches are commensurate.

Both IBMResearch and SRCB train separate models for each of the three boundary

detection problems in task 1, in contrast to the multi-task network of ENDIP. In order to

assess the efficacy of the multi-task paradigm of the MTTDDI model used in ENDIP, we

compare ENDIP against an alternate configuration whereby precipitant, trigger, and effect

recognition are performed by dedicated models, as in the approaches of IBMResearch and

SRCB. Specifically, we train three separate versions of the MTTDDI network that ignore

both sentence and relation classification, focusing only on boundary detection. Each model is

trained to focus on a single boundary detection task. We refer to this ENDIP configuration

using multiple single-task learners for boundary recognition as ENDIP-ST (Single Task).

ENDIP-ST is compared against the full multi-task version of ENDIP, referred to as ENDIP-

MT (Multi-Task), in Table 7.4
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Table 7.4. Evaluation of the multi-task paradigm of ENDIP on of the 2019 TAC DDI
measure using Precision, Recall, and F1 score. ENDIP-MT uses a single end-to-end mutli-
task network, while ENDIP-ST is comprised of several single-task learners.

Task 1 Task 2

System Precision Recall F1 Precision Recall F1

ENDIP-MT 68.60 54.09 60.48 49.03 40.39 44.29
ENDIP-ST 65.27 55.94 60.24 47.80 43.19 45.38

Task 3 Task 4

System Precision Recall F1 Precision Recall F1

ENDIP-MT 61.13 46.35 50.90 31.89 28.63 28.84
ENDIP-ST 58.61 47.53 50.69 29.31 28.08 27.58

Table 7.4 shows that the adoption of separate single-task learners for boundary detection

improves recall in Tasks 1-3 but decreases precision for all four tasks. For relation extraction,

ENDIP-ST sets a new state-of-the art in recall at 43.19 (IBMResearch achieved 42.31). The

increase in recall does not, however, translate to Task 4, where the multi-task model is still

superior. Moreover, the multi-task model has superior precision in each task and superior F1

score in Tasks 1, 2, and 4. This indicates that the multi-task paradigm is indeed useful for

identifying normalized drug-drug interactions in medical reference text. The superiority of

multi-task learning in terms of precision could be explained by the model using information

from related tasks to identify and ignore potential false positives. By focusing on several

aspects of the input sentence, the model is able to identify otherwise hidden features that

preclude incorrect classification. Moreover, the fact that ENDIP-MT out-performs ENDIP-

ST in Task 4 but not Task 2 indicates that the higher precision approach is preferable for

the end-task of normalized relation identification.

7.5 Summary and Lessons Learned

In this chapter, an end-to-end pipeline for identifying normalized drug-drug interactions

from medical reference text is presented. The End-to-end Normalized Drug-drug interaction
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Identification Pipeline (ENDIP) leverages a multi-task neural model based on the BERT pre-

trained Transformer model. ENDIP is evaluated using the 2019 TAC DDI dataset, which

provides three sub-tasks in addition to normalized drug-drug interaction. The sub-tasks,

entity recognition, sentence-level relation identification, and entity normalization, facilitate

the training of models capable of performing normalized relation extraction. ENDIP sets

a new baseline for normalized DDI extraction from Structured Product Labels, achieving

results comparable to much larger state-of-the-art models on the entity recognition and

sentence-level relation identification subtasks. Experiments show that learning to perform

relation extraction along with entity recognition in a multi-task network improves results over

models learned in isolation. Moreover, the chapter illustrates that deep learning methods

for relation identification are robust across genres of medical text.
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CHAPTER 8

POSSIBLE FUTURE DIRECTIONS

In this chapter, possible avenues for future work are presented. First, the work presented

in this dissertation could be extended to yet another genre of medical text: scientific arti-

cles. Relation extraction from scientific articles has important applications including clinical

decision support, knowledge discovery, and search (Nasar et al., 2018). In order for auto-

matic systems to stay up-to-date with current research, knowledge must be continuously

extracted from newly published articles. With respect to systems like SACAR (Section 3.4)

and KIBERT (Section 6.2), relation extraction from scientific articles poses new problems

which require extensions. For instance, an interesting problem in relation extraction from

scientific articles is zero-shot learning of new relation types. Scientific articles differ widely in

subject and scope, necessitating different relation schemata for each sub-genre (e.g., cancer

research, quantum physics, natural language processing). Zero-shot learning methods could

be investigated to apply learned models to new sub-genres of scientific articles inducing new

target relations for each sub-genre.

Another promising area of future work is the unification of the MT-BGCN (Section 2.6)

and KIBERT (Section 6.2) models to form a single multi-task information extraction ar-

chitecture for discharge summaries. Recall from Section 6.2 that KIBERT extends the

BlueBERT model. The BlueBERT model alters the input sentence, removing medical con-

cept mentions which precludes the possibility of jointly predicting medical concept mention

boundaries with the same network. KIBERT does not have this drawback, and therefore is

able to be incorporated with MT-BGCN to form a single multi-task network capable of pre-

dicting concepts, assertions, and relations. Moreover, the inclusion of syntactic information

from the dependency parse could prove to be beneficial for the task of relation extraction as

has been shown in previous work (Rink et al., 2011).
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A third possible direction of future work is the extension of the multi-task methods

presented in this dissertation to biomedical entity disambiguation. Biomedical entity dis-

ambiguation is the task of assigning a medical concept mention in a health narrative to a

canonical code from a structured vocabulary (e.g., the UMLS, ICD-10). For instance, the

MedMentions dataset (Mohan and Li, 2019) contains medical concept mention annotations

from over 4,000 PubMed abstracts with an associated UMLS Concept Unique Identifier

(CUI) code for each concept mention. Likewise, several shared tasks have been conducted

that include an entity disambiguation component (Suominen et al., 2013; Pradhan et al.,

2014; Elhadad et al., 2015). Learning to perform entity disambiguation in the same network

as concept detection and relation extraction could prove to be beneficial since the semantics

of each task are deeply interconnected. Moreover, I hypothesize that UMLS knowledge em-

beddings could also be used to improve entity disambiguation in such a multi-task network

as was shown to be the case for relation extraction in Chapter 6.
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CHAPTER 9

CONCLUSIONS

Biomedical text such as clinical narratives and medical reference documents are rich with

important medical information relevant throughout medical informatics. However, this infor-

mation is largely contained in unstructured text, unable to be incorporated into downstream

systems. In this dissertation, deep learning methods for extracting meaningful information

in the form of structured relations were investigated across three genres of health narratives:

EEG reports, discharge summaries, and FDA structured product labeling documents. EEG

reports are generated by neurologists during an electroencephalogram to document the clin-

ically relevant information gleaned during the examination and the clinical interpretation

thereof. Discharge summaries are generated upon discharge from a hospital stay, document-

ing the important events and findings that characterize a patient’s stay. Structured Product

Labeling documents are created for general use by the United States Food and Drug Admin-

istration (FDA) for each prescription drug, conveying important information characterizing

the drug. In each of these genres, deep learning methods were presented in this dissertation

for identifying relations between medical concepts mentioned in unstructured narrative text.

In order to identify relations between medical concepts, the medical concepts themselves

must first be identified. To that end, medical concept detection methods were presented in

Chapter 2.

Chapter 2 introduced the task of medical concept detection in EEG reports, defining five

categories of important medical concepts mentioned in the reports: (1) EEG activities, (2)

EEG events, (3) medical problems, (4) tests, and (5) treatments. A deep learning architec-

ture for identifying each of these medical concepts in EEG reports was presented, showing

promising results. Moreover, a schema defining 18 attributes that characterize medical con-

cepts mentioned in EEG reports was presented. A separate deep learning architecture for

classifying the attributes of each concept was also presented. Chapter 2 also addressed the
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task of identifying medical concepts and the physician’s belief values about those concepts in

discharge summaries. The documenting physician’s belief value, referred to as an assertion,

characterizes a medical concept mention, e.g., determining if the concept is mentioned as

having occurred, not occurred, possibly occurred, etc. In Chapter 2, a state-of-the-art neural

language model was adapted to jointly perform concept detection and assertion classification,

leading to state-of-the-art results in both tasks.

Having presented methods for medical concept detection in Chapter 2, Chapter 3 ad-

dressed the task of extracting relations between the identified concepts. A novel relation

schema was defined including four relation types. Due to the nature of the EEG report,

relations between medical concepts often span sentences and even sections. Therefore in

Chapter 3, two neural networks performing long-distance relation extraction were presented.

The first network, EEG-RelNet, processes entire EEG reports one sentence at a time, gath-

ering information about potential relations between concepts using a set of memory vectors.

Upon processing the entire document, these memory vectors are used to predict relations

between each pair of concepts mentioned anywhere in the report. While experimental results

are promising, EEG-RelNet requires medical concepts and their attributes to be identified

a priori, which is inefficient. The second neural architecture presented in Chapter 3 is an

end-to-end multi-task network that jointly predicts medical concepts, their attributes, and

relations between them in the same network.

While the neural methods presented in Chapters 2 and 3 are performant, they require

large amounts of labeled data in order to be trained. In order to produce this labeled data,

manual annotations were required. Due to the highly specialized narratives of EEG reports,

substantial expertise is required to generate these annotations. Therefore, in Chapter 4

Active Learning (AL) methods were investigated. Three Active Learning frameworks were

developed for training the neural methods for information extraction in EEG reports pre-

sented in Chapters 2 and 3. The first framework targeted the annotation of concepts and
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attributes, while the second framework targeted relations. Both of these AL frameworks use

traditional heuristics to select documents for manual annotation from a pool of unlabeled

documents. These heuristics are referred to as the active learning selection policy. The third

framework used the multi-task model presented in Chapter 3 to address two drawbacks of

the first two AL frameworks: (1) the inefficiency of having separate frameworks operating on

the same unlabeled document pool; and (2) the ineffectiveness of traditional heuristics se-

lecting new documents for multiple annotation tasks. The third framework selects unlabeled

documents that are informative for concept detection, attribute classification, and relation

extraction, addressing drawback (1). To accomplish this, the third AL framework learns an

active learning selection policy from data, addressing drawback (2).

Chapter 5 addressed the task of biomedical knowledge graph embedding. Knowledge

graph embedding methods were presented for performing inference using relations extracted

from EEG reports. Moreover, Chapter 5 presents a novel approach for creating knowl-

edge embeddings from the expert-curated knowledge graph defined by the Unified Medical

Language System (UMLS) (Lindberg et al., 1993). The UMLS is a large biomedical ontol-

ogy that unifies disparate biomedical vocabularies, defining two comprehensive knowledge

graphs: the Metathesaurus and the Semantic Network. The Metathesaurus defines relations

between medical concepts while the Semantic Network defines relations between Semantic

Types. Semantic Types are conceptual groups of medical concepts, e.g., diagnostic proce-

dure, clinical drug, and disease or syndrome. Methods for embedding both the Metathesaurus

and Semantic Network knowledge graphs into the same embedding space are presented, re-

sulting in knowledge embeddings for medical concepts and semantic types encoded in the

UMLS. Because deep learning architectures cannot make direct use of structured ontologi-

cal knowledge, UMLS knowledge embeddings provide an intriguing method for representing

biomedical concepts in downstream deep learning architectures. In Chapter 5, the UMLS

knowledge embeddings were applied to an existing clinical prediction model, improving re-

sults. Moreover, the knowledge embedding method presented in Chapter 5 was extended to
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perform ontology alignment, attaining promising results. In Chapter 6, UMLS knowledge

embeddings learned in Chapter 5 are applied to the task of relation extraction in clinical

narratives.

Chapter 6 presented a neural network that used semantic type embeddings generated

in Chapter 5 to improve relation extraction performance in discharge summaries. Semantic

type embeddings were used to represent the type of each medical concept participating in a

potential relation, providing valuable background knowledge to inform relation classification

decisions. Experimental results showed that knowledge embeddings result in drastically

improved recall compared with the state-of-the-art, indicating that the embeddings allowed

the model to recognize more relations than previous methods.

In Chapter 7, relation extraction from FDA Structured Product Labeling (SPL) docu-

ments was presented. Three types of Drug-Drug Interaction relations were identified between

the drug the SPL is about (i.e., the Labeled Drug), an interacting substance, and a resulting

effect. An end-to-end multi-task neural pipeline was developed to identify medical concept

mentions, DDI relations between them, and normalize the DDIs into one of four target ontolo-

gies, setting a new baseline for normalized DDI extraction from Structured Product Labels.

Experimental results indicate that multi-task learning improves results on the end-task of

normalized DDI extraction over equivalent single-task models trained separately.

Overall, this dissertation presents novel deep learning architectures for relation extraction

across three genres of health narratives, setting new baselines in each genre. Novel methods

for representing medical knowledge as dense vectors readily accessible to deep learning sys-

tems were presented and applied to relation extraction in discharge summaries, advancing

the state-of-the-art. Possible directions for future work include merging the tasks of infor-

mation extraction and knowledge embedding into the same, multi-task network. Currently,

state of the art text encoders leverage vast amounts of text data, but are not directly in-

formed by knowledge. A network capable of producing a knowledge-informed text encoding

could prove to be the next frontier in deep text representation.
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