
PARAMETER TYING AND DISSOCIATION

IN GRAPHICAL MODELS

by

Li Kang Chou

APPROVED BY SUPERVISORY COMMITTEE:

Vibhav Gogate, Chair

Latifur Khan

Vincent Ng

Nicholas Ruozzi

Copyright c© 2019

Li Kang Chou

All rights reserved

To my wife,

Linda,

and

in memory of

our canine extraordinaires,

Eros & Bruce.

PARAMETER TYING AND DISSOCIATION

IN GRAPHICAL MODELS

by

LI KANG CHOU, BS, MBA, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2019

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Vibhav Gogate.

His class, Statistical Methods in Artificial Intelligence and Machine Learning, inspired and

sparked my PhD journey. I am thankful for his unwavering patience, constant motivation,

and insightful guidance. Without him, this dissertation and the papers published would

not have been possible or intelligible. His high standard for research has motivated me to

continue to work on achieving high-quality and impactful research myself. Looking back, I

am truly grateful to have had Vibhav as my advisor.

I would like to thank my committee members, Dr. Latifur Khan, Dr. Vincent Ng, and Dr.

Nicholas Ruozzi, for their guidance on my dissertation and for their patience and flexibility

throughout the approval process. I would also like to thank my collaborators, Dr. Nicholas

Ruozzi, Dr. Wolfgang Gatterbauer, Somdeb, and Pracheta. In addition, I would like to

recognize Somdeb for his invaluable help and mentorship in the beginning of my research.

I was fortunate to be in a position where I had the opportunity to interact with existing senior

graduate students as well as new incoming graduate students. Thank you to those who have

graduated; David, Somdeb, Tahrima, Deepak, Luis, and Tatiana, for their guidance, inspiring

discussions, and friendship. I enjoyed the friendly competition with David on writing the

fastest variable elimination program for computing the partition function of a 20×20 grid

Markov network. Thank you to Pracheta, Shasha, Chiradeep, Sara, Yuanzhen, and Hao for

the many interesting conversations and their encouragement and involvement in my research

presentations. Thank you to Yibo for his technical wizardry.

I would like to thank my family for their support. I am especially thankful to my wife, Linda,

for her constant love, support, patience, and humor throughout this journey. This PhD would

not have been possible without her encouragement.

v

Finally, I would like to thank the funding agencies DARPA, AFRL, NSF (under grant

prime contract and award numbers: FA8750-14-C-0005, N66001-17-2-4032, IIS-1528037, and

IIS-1652835), and The University of Texas at Dallas Computer Science Teaching Assistant

scholarship for providing financial support.

August 2019

vi

PARAMETER TYING AND DISSOCIATION

IN GRAPHICAL MODELS

Li Kang Chou, PhD
The University of Texas at Dallas, 2019

Supervising Professor: Vibhav Gogate, Chair

Understanding the implications of today’s deluge and high velocity of data is a challenging

problem facing researchers across multiple disciplines and domains. Data are typically high-

dimensional, unstructured, and noisy; thus, the models produced or learned from applying

modern machine learning techniques are often very complex, i.e., large number of parameters.

To this, I present new techniques that impose constraints, in the form of parameter tying, on

both the learning and inference task for probabilistic graphical models (PGM). Specifically,

in this dissertation, we consider two important problems for PGMs. The first problem is

parameter learning given a PGM structure with the objective of improving the generalization

of the learned model. Specifically, we present and utilize the concept of parameter tying as

a novel alternative regularization (variance reduction) framework for parameter learning in

PGMs. In addition to improved generalization, parameter tied PGMs are a new class of

models for which inference algorithms can be constructed to achieve efficient inference by

exploiting the symmetric parameter structure. The second problem focuses on exploiting

parameter tying to develop a bounded inference scheme, which we refer to as dissociation-

based bounds. We consider the task of weighted model counting which includes important

tasks in PGMs such as computing the partition function and probability of evidence as

special cases. Namely, we propose a partition-based bounding algorithm that exploits logical

vii

structure and gives rise to a novel set of inequalities from which lower and upper bounds can

be derived efficiently. The bounds come with correctness guarantees and are oblivious in that

they can be computed by minimally manipulating the parameters of the model.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF FIGURES . xii

LIST OF TABLES . xiii

CHAPTER 1 INTRODUCTION . 1

1.1 Learning . 2

1.2 Inference . 3

1.3 Dissertation Organization . 5

1.3.1 Contributions to Learning using Parameter Tying 6

1.3.2 Contributions to Inference using Parameter Tying 6

CHAPTER 2 BACKGROUND . 8

2.1 Preliminary Notation . 8

2.2 Representation . 8

2.2.1 Probabilistic Graphical Models . 10

2.2.2 Propositional Logic . 16

2.3 Inference . 18

2.3.1 Elimination-based Methods . 20

2.3.2 Monte Carlo Methods . 23

2.4 Learning . 28

2.4.1 Maximum Likelihood Estimation . 29

2.4.2 Maximum Pseudolikelihood Estimation 32

2.5 L2 Regularization . 34

2.6 Quantization and k-means . 35

CHAPTER 3 LEARNING PARAMETER TIED BAYESIAN NETWORKS 37

3.1 Introduction . 37

3.2 Problem Definition and Approach . 38

3.3 Theoretical Analysis of Quantization . 39

ix

3.4 Relearning . 41

3.5 Experiments . 43

3.6 Discussion . 46

CHAPTER 4 LEARNING PARAMETER TIED MARKOV NETWORKS 47

4.1 Introduction . 47

4.2 Problem Definition . 49

4.3 Block Coordinate Ascent Learning Algorithm 50

4.4 Theoretical Analysis . 52

4.5 Experiments . 56

4.5.1 Experimental Setup . 56

4.5.2 apt versus L2 regularization . 58

4.5.3 apt versus ltr . 58

4.5.4 Impact of varying k . 60

4.6 Discussion . 61

CHAPTER 5 SLICE IMPORTANCE SAMPLING FOR PARAMETER TIED GRAPH-
ICAL MODELS . 62

5.1 Introduction . 62

5.2 Slice Importance Sampling . 62

5.3 Experiments . 66

5.4 Discussion . 68

CHAPTER 6 DISSOCIATION-BASED BOUNDING ALGORITHMS 69

6.1 Introduction . 69

6.1.1 Weighted Model Counting Problem 70

6.1.2 WCNF Encoding of a GM . 71

6.1.3 Mini-bucket Elimination for w2cnf 72

6.2 Dissociation . 74

6.2.1 Comparison with Mini-bucket . 78

6.3 Dissociation for Non-monotone Formulas . 79

6.3.1 Preprocessing . 79

x

6.3.2 Types of Non-Monotone Formulas . 80

6.3.3 Characterizing Oblivious Bounds . 81

6.4 Experiments . 95

6.4.1 Synthetic Datasets . 95

6.4.2 UAI Inference Datasets . 99

6.5 Discussion . 100

CHAPTER 7 CONCLUSION . 101

7.1 Contributions . 101

7.2 Directions for Future Research . 102

7.2.1 Towards Canonical Parameter Tied GMs 102

7.2.2 Beyond k-means for Parameter Tying 103

7.2.3 Improving Dissociation-Based Bounds 104

REFERENCES . 105

BIOGRAPHICAL SKETCH . 111

CURRICULUM VITAE

xi

LIST OF FIGURES

2.1 An example of a binary Bayesian network. 11

2.2 An example of a binary pairwise Markov network. 13

2.3 Potentials for Example 2.10. 15

2.4 Truth table for Example 2.15 . 18

3.1 Hasse diagram showing the partitions for 4 parameters. 38

3.2 Bayesian network for Example 3.5. 42

3.3 Average log-likelihood on test data plotted for each parameter learned graphical
model (MLE, Quantized and Relearned) varying the value for k level of quantization. 45

4.1 Quantization intervals denoting tied parameters. Each k-partition (interval)
contains a set of quantized parameters θi (dots) and is associated with a local
Gaussian distribution parameterized by (µ = µaj , σ). Short dashed lines on the
intervals denote the quantization boundaries which shift according to an optimum
(local) penalized parameter setting. 49

4.2 Average test set negative PLL scores for L2 (dotted) and apt (solid) for varying
number of clusters (k) and model complexity (d). To minimize clutter, we show
graphs for only three values of d and do not include results for ltr (whose variance
is quite high). 59

5.1 Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of k level of quantization for MS MLE (MC-SAT
MLE), MS RL (MC-SAT Relearned), TW MLE (Tied Weight MLE), TW RL
(Tied Weight Relearned), GIBBS MLE (Gibbs MLE), and GIBBS RL (Gibbs
Relearned). Result for each of the network types (noisy-or, relational, and grid)
are shown. 67

6.1 Potentials for Example 6.2 . 72

6.2 Upper bound estimates for dissociation DIS(U) and mini-bucket MB(U), and
lower bound estimates for dissociation DIS(L). Error bound by varying (a) grid
size (b) level of determinism for 10×10 grid (c) 20×20 grid. Lower value is better. 97

xii

LIST OF TABLES

3.1 MLE computations for learning parameter θ1 and θ4 under no tying and tying
(quantize and relearn). 43

3.2 Network information and error analysis for MLE, (Q) Quantized, and (RL) Relearned. 44

4.1 Dataset characteristics. 56

4.2 Test set negative PLL scores (k and λ selected using the validation set) on 20
benchmark datasets for L2 regularization, ltr and apt algorithm under various
values of d. 57

6.1 Clauses for w2cnf Encoding of a GM. 71

6.2 Dissociation valuation analysis for Example 6.5. * denotes the don’t care condition. 76

6.3 Dissociation for Example 6.14. ⊥ denotes contradiction (i.e., formula cannot be
satisfied). ∗ denotes the don’t care condition. 86

6.4 Dissociation for Example 6.16. ⊥ denotes contradiction (i.e., formula cannot be
satisfied). ∗ denotes the don’t care condition. 94

6.5 Summary of oblivious bound conditions. T : whether C(Xi) has two-occurrence
neighbors, S+ and S−: whether C(Xi) has single-occurrence neighbors which
appear in clauses (Xi ∨ Yj) and (Xi ∨ Yj) respectively. An entry in a cell means
that neighbors of the respective types are either present (

√
), absent (×), or either

present or absent (∗). Bold text in Case and Solution columns denote novel
contributions of this dissertation while normal font text indicates previous work. 95

6.6 The log relative upper bound between dissociation DIS(U) and mini-bucket MB(U)
on UAI 2008 repository problem instances. Lower value is better for DIS. 98

6.7 The log relative lower bound between ground truth and dissociation DIS(L) on
UAI 2008 repository problem instances. Lower value is better for DIS. 99

xiii

CHAPTER 1

INTRODUCTION

Probabilistic graphical models (PGM) have emerged as a powerful tool for modeling and

reasoning about uncertainty (Koller and Friedman, 2009; Darwiche, 2009). PGMs provide

compact and structured representations of joint probability distributions defined over random

variables in high-dimensional space. Under the assumption that the joint distribution

represents complete knowledge over the random variables, PGMs can be used to answer any

probabilistic query over the random variables (e.g., what is the conditional probability of a

random variable given observations, namely a value assignment to a subset of other random

variables in the model; what is the most likely value assignment to a subset of variables; etc.).

In PGMs, the distribution is factorized and conceptualized over a graphical structure by

exploiting conditional independencies in the distribution. In this dissertation, we focus on two

main families of PGMs: Bayesian and Markov networks, as well as their extensions. Bayesian

networks use directed acyclic graphs while Markov networks use undirected graphs to depict

conditional independencies, where each node in the graph denotes a random variable. At a

high level, absence of an edge between two nodes in the graph denotes that there is no direct

dependence between the corresponding variables. Various graph properties and concepts such

as directed and undirected separators (Pearl, 1988) are then used to formalize the notion

of indirect dependencies. For example, in a Markov network, a variable is conditionally

independent of all other variables given its neighbors (in an undirected graph, all nodes

having an edge with a node are called its neighbors) since removing the neighbors separates

the variable from the rest of the network.

Both Bayesian and Markov networks have been extensively used in a wide variety of

application domains such as medical diagnosis, computer vision and natural language process-

ing. For effectively using PGMs in these application areas, the two key tasks an application

designer has to solve are (1) learning (or estimating) the parameters and structure from

1

data; and (2) answering probabilistic queries posed to the learned model. As a result, solving

the two aforementioned tasks is of both practical and theoretical interest in the artificial

intelligence community.

1.1 Learning

In this dissertation, we focus on the task of parameter learning in PGMs with given structure

and from a fully observed dataset, namely a dataset having no missing values. The task is

often expressed as the following optimization problem: find an assignment of values to all

parameters in the PGM such that the likelihood of the data is maximized. This problem

is also known as maximum likelihood estimation (MLE). MLE is the prevailing parameter

learning formulation because it has several desirable theoretical properties such as consistency

(converges in the limit to the correct value) and asymptotic efficiency (best possible estimator

in the limit). However, in practice, when the dataset is small (relative to the number of

parameters) or the number of parameters is large (relative to the dataset size) or both,

MLE yields parameter estimates having high variance and the resulting models have poor

predictive (generalization) accuracy. To combat this issue, regularization methods such as

L1 and L2 regularization, and their Bayesian counterparts, Laplace and Gaussian priors, are

often employed in practice (Steck and Jaakkola, 2002; Ng, 2004).

An alternative regularization method is parameter tying (Chou et al., 2016, 2018), namely

partitioning the parameters of a model into groups and forcing all parameters in each

group to take the same or similar values. Parameter tying is employed in a large variety

of graphical models and their extensions. For example, in convolutional neural networks

(CNN) (LeCun et al., 1998) parameters are shared (tied) between various neurons to take

advantage of symmetries in images and to control the number of parameters. Similarly, in

statistical relational learning (SRL) models (Getoor and Taskar, 2007) such as Markov logic

networks (Domingos and Lowd, 2009) and probabilistic soft logic (Bach et al., 2017), weights

2

(parameters) are tied in order to exploit symmetries in relational domains. However, a key

feature of this existing work is that it assumes the tied parameters are specified a priori. Our

contribution deviates from the existing approach and seeks methods that automatically tie

the parameters by analyzing the data.

A straightforward approach to solving the automatic parameter tying problem is to

express it as a constrained optimization problem. Given m number of parameters and a

hyperparameter k, which bounds the maximum number of tied parameters and controls

the amount of regularization, find a set of at most k equality constraints that are mutually

exclusive (no two equality constraints are specified for same parameter) and exhaustive (all

parameters are included) such that the likelihood of the data is maximized. Unfortunately,

this problem is computationally difficult as it includes structure learning as a special case.

To overcome this computational difficulty, we propose approaches that tie parameters

by quantizing the parameter values. Namely, we propose to find a many-to-one function Q

that maps m parameter values to a set having k values, such that m > k and the sum of the

Euclidean distance between parameter θ and its quantized value Q(θ) is minimized. This

subproblem can be solved optimally using dynamic programming (Wang and Song, 2011).

1.2 Inference

As alluded to earlier, one main motivation for learning a PGM is to be able to reason about

the various underlying states or configurations of the random variables in the model. That is,

we would like to perform inference on or pose probabilistic queries to the learned PGM. To

reiterate, for example, we may want to know the most likely configuration of a subset of the

variables potentially given observations on a disjoint subset of variables in the model. This

query is related to finding the (maximum) mode of the underlying distribution and is often

utilized in applications such as computer vision and biological protein design.

3

For exact inference, elimination-based methods, such as variable or bucket elimination

(Zhang and Poole, 1994; Dechter, 1996), are in a family of deterministic approaches that

eliminate variables, commonly one at a time, by applying the operations of product and sum

(i.e., marginalization) to the factors (or functions) in the model. By using the distributive

law, the product and sum operations can be organized according to a variable ordering

and factor partitioning to help reduce the overall computation burden. The elimination

approach leverages dynamic programming in that the original computation is decomposed into

sub-computations such that the intermediate results are stored. While this adds efficiency to

the algorithm, we are still faced with the issue that the sub-computations remain intractable

in general. In fact, the difficulty in designing inference algorithms is that, for many problems

of interest, performing exact inference is computationally intractable. Therefore, in this

dissertation, we consider the essential need for approximate inference algorithms.

Monte Carlo methods (Metropolis and Ulam, 1949) provide a general framework for

stochastic approximation to intractable problems. At a high-level, applying this framework

involves two main sub-tasks. The first task is to sample from the model. For PGMs, this

means to generate instantiations from the model1, namely assignments to the variables. The

second task is to express the quantity of interest (i.e., probabilistic query) as an expectation.

Using the samples, we then compute the expectation as an approximation to the solution.

In addition to regularization, another key benefit from applying parameter tying to the

learning algorithm is that the resulting models contain symmetries within the parameterization

(i.e., tied parameters). By exploiting the symmetries, we can develop sampling algorithms

that explore the sample space in a more efficient and systematic manner, which then lead to

faster and more accurate results. We propose a method based on importance sampling.

Relaxation is a term synonymous with mathematical or combinatorial optimization.

Depending on the problem at hand, relaxation can have different definitions. However,

1This is also referred to as simulating the network.

4

generally it can be thought of as an alternative modeling strategy applied to the original

difficult problem (e.g., NP-hard or #P-complete) with the intention of simplifying the

problem. Traditionally, with combinatorial optimization or counting problems (e.g., maximum

a posteriori query or partition function computation), this means relaxing inherent constraints

(e.g., equality). The trade-off is a lose in accuracy, but a gain in information to the solution

of the problem.

Referring back to the elimination method, we mentioned that the complication arises

from local or sub-computations. We approach this problem by approximating the local sub-

problems through a structural adjustment. The adjustment we make is to apply dissociation2

(Gatterbauer and Suciu, 2014; Chou et al., 2018) to the subproblems, which involves two

parts. The first part of dissociation is to duplicate the variables. By having multiple copies

of the variables, the original equivalence relations or constraints are relaxed and the local

problems are partitioned or decomposed into further (tractable) subproblems (Dechter and

Rish, 2003). The second part is what we refer to as valuation analysis. That is, we analyze

the equivalence relations using an algebraic framework to derive inequality constraints in

order to recover a closer or tighter approximate solution to the original problem. We view the

inequality constraints as applying parameter tying between the original and relaxed problem.

1.3 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we present a general background

related to our contributions. The two sections below outline our contributions, which are

detailed in Chapters 3 to 6. In Chapter 7, we summarize the contributions in this dissertation

and provide several directions for future work.

2Dissociation is related to schemes that involve variable duplication or node splitting.

5

1.3.1 Contributions to Learning using Parameter Tying

In Chapter 3, we present our first approach to learning parameter tied Bayesian networks.

This greedy approach, which we dub learn-tie-relearn (ltr), quantizes the parameterization

of the MLE solution as a post processing step. The resulting parameter tied model gives

rise to a smoother underlying distribution. The performance of the quantized model can

then be further improved by relearning the model based on the equality constraints from the

quantization. We provide and prove error bounds for our new technique and demonstrate

experimentally that it often yields models having higher test set log-likelihood than the ones

learned using the MLE.

In Chapter 4, we consider the problem of learning parameter tied Markov networks. We

propose a novel approach called automatic parameter tying (apt) that uses soft instead of hard

parameter tying as a regularization method to alleviate overfitting. The key idea behind apt

is to set up the learning problem as the task of finding parameters and groupings of parameters

such that the likelihood plus a regularization term is maximized. The regularization term

penalizes models where parameter values deviate from their group mean parameter value.

We propose and use a block coordinate ascent algorithm to solve the optimization task.

In addition, we analyze the sample complexity of our new learning algorithm and show

that it yields optimal parameters with high probability when the groups are well separated.

Experimentally, we show that our method improves upon L2 regularization and suggest

several pragmatic techniques for good practical performance.

1.3.2 Contributions to Inference using Parameter Tying

In Chapter 5, we propose a new slice importance sampling algorithm for fast approximate

inference in models having several tied parameters. Our experiments show that our new

inference algorithm is superior to existing approaches such as Gibbs sampling and MC-SAT

on models having tied parameters (learned using our quantization-based approach).

6

In Chapter 6, we consider the weighted model counting task which includes important

tasks in graphical models, such as computing the partition function and probability of evidence

as special cases. We propose a novel partition-based bounding algorithm that exploits logical

structure and gives rise to a set of inequalities from which upper (or lower) bounds can be

derived efficiently. The bounds come with optimality guarantees under certain conditions and

are oblivious in that they require only limited observations of the structure and parameters

of the problem. We experimentally compare our bounds with the mini-bucket scheme (which

is also oblivious) and show that our new bounds are often superior and never worse on a wide

variety of benchmark networks.

7

CHAPTER 2

BACKGROUND

In this chapter, we introduce a general background on representation, inference, and learning

for probabilistic graphical models (PGM) with additional relevant topics. For more detailed

information on probability theory and statistics, refer to (Wasserman, 2004; Bertsekas and

Tsitsiklis, 2008). For more detailed information on PGMs, refer to (Pearl, 1988; Koller and

Friedman, 2009; Darwiche, 2009). For more detailed information on Monte Carlo methods,

refer to (Liu, 2004).

2.1 Preliminary Notation

Let X, Y , etc. be random variables and X,Y , etc. be sets of random variables (e.g.,

X = {X1, . . . , Xn}). We assume throughout the thesis the variables Xi ∈ X are discrete,

namely taking a finite d number of values. For simplicity, we assume d= 2 (i.e., binary),

unless otherwise noted. Let x, y, etc. be values the variables can take and denote Val(Xi) as

the domain or set of possible values. Let x̃i be an assignment of a value to a variable Xi, such

that xi ∈ Val(Xi). We also use Val(Xj) to denote the possible values for a subset of variables

Xj ⊂X. We denote x̃ = (x̃1, . . . , x̃n) to be an assignment of values to all variables X.

2.2 Representation

We are interested in representing a joint probability distribution P over the set of random

variables. Given n binary variables, one approach is to explicitly represent the joint probability

distribution using a tabular form with 2n−1 entries such that each entry corresponds to

the probability of some joint assignment to all the variables. In practice, this approach is

not feasible for at least three reasons. First, it is difficult to elicit such information from

domain experts. Second, it requires an enormous amount of data to estimate the probability

8

distribution statistically. Lastly, it is computationally intractable to manage and store such

information.

However, probability distributions defined over high-dimensional data often explicitly or

implicitly contain probabilistic structure in the form of independence properties that can

be exploited to achieve a more compact factorized representation. We next present some

relevant concepts from probability theory that form the fundamental building blocks for

independence properties.

Definition 2.1. (Conditional Probability). Given two random variables X and Y such that

P (Y) > 0. The conditional probability of X given (or conditioned on) Y is defined as

P (X|Y) =
P (X, Y)

P (Y)
.

Note the condition probability can be rewritten as a product, namely P (X, Y) =

P (X|Y)P (Y). We can generalize this notion of factoring a joint probability as a prod-

uct of conditional probabilities through the definition of the chain rule (or product rule).

Definition 2.2. (Chain Rule). Given a set of random variables X = {X1, . . . , Xn}. By the

definition of conditional probability, the joint probability distribution over X can be factored

as

P

(
n⋂
i=1

Xi

)
=

n∏
i=1

P

(
Xi

∣∣∣∣ n−1⋂
j=1

Xj

)
.

Example 2.3. Given a joint probability P (X1, X2, X3, X4), applying the chain rule, one way

to factor the joint is P (X1, X2, X3, X4) = P (X1|X2, X3, X4)P (X2|X3, X4)P (X3|X4)P (X4).

Building on the ideas of conditional probability and the chain rule, we next define the

concepts of independence and conditional independence.

9

Definition 2.4. (Independence). Two random variables X and Y are independent, denoted

as X ⊥⊥ Y , iff

P (X, Y) = P (X)P (Y).

Equivalently by the definition of conditional probability, we have

P (X|Y) = P (X).

Definition 2.5. (Conditional Independence). Given random variables X, Y, and Z. X and

Y are conditional independent given Z, denoted as X ⊥⊥ Y |Z, iff

P (X, Y |Z) = P (X|Z)P (Y |Z).

2.2.1 Probabilistic Graphical Models

Probabilistic graphical models (PGM) (or graphical models (GM)) are a general class of

machine learning models that compactly represent a joint distribution over a set of random

variables via a collection of factors (or functions), which can be conceptualized over a graph.

The graph can be interpreted as either a skeleton structure for representing the factorized

distribution or as a set of independence properties encoded in the distribution. We first

present and define two relevant concepts for PGMs.

Definition 2.6. (Factor). Given a set of random variables X, a factor, denoted as ψ(X),

is a function that maps the possible values of X to a real value. A nonnegative factor is a

function that maps X to nonnegative real values.

Definition 2.7. (Scope). Given a factor ψ(X), the set of random variables X represented

by (or appearing in) the factor is the scope of the factor, denoted as Scope[ψ].

We restrict our focus to nonnegative factors, namely ψ : X → R+, where R+ = {x ∈ R :

x ≥ 0}. Two main families of PGMs are Bayesian networks and Markov networks, which we

present next.

10

P (X1 = 1)

θ1

P (X3 = 1)

θ2

X1 P (X2 = 1 |X1)

0 θ3

1 θ4

X1

X2

X3

X4

X1 X3 P (X4 = 1 |X1, X3)

0 0 θ5

0 1 θ6

1 0 θ7

1 1 θ8

(a) (e)(d)

(b) (c)

Figure 2.1. An example of a binary Bayesian network.

Bayesian Networks

Bayesian networks (BN) represent joint probability distributions factorized and parameterized

over a directed acyclic graph (DAG). A BN is a tripleMBN , 〈X,θ,GBN〉. X is the set of

random variables and θ = {θ1, . . . , θm} is the set of parameters. GBN = (V,E) is a DAG

such that V is the set of nodes (or vertices) and E is the set of directed edges. We associate

each node i ∈ V with one variable Xi∈V (we also use Xi as shorthand). E is the set of

pairs of the form (X ′, Xi) such that X ′ ⊂ X \Xi and ∀ Y ∈ X ′, Y → Xi. Given a Y , we

say Y is the parent of Xi and Xi is the child of Y . We denote the subset X ′ (i.e., parents

of Xi) as Pa[Xi]. A (local) conditional probability distribution is defined for each variable

and corresponding parent set as P (Xi | Pa[Xi]). The joint probability distribution is then

11

factored as

Pθ(X1, . . . , Xn) =
n∏
i=1

P (Xi | Pa[Xi]).

One way to parameterize discrete conditional probability distributions is to utilize a

tabular form, which are typically referred to as conditional probability tables (CPT). For BNs,

the parameters defined in the CPTs have an intuitive probabilistic interpretation, namely

θi ∈ [0, 1]. A factor subsumes the notion of the conditional probability distribution defined

by a CPT.

Example 2.8. Figure 2.1 shows a binary Bayesian network. The network (a) is a DAG

comprised of four variables: X1, X2, X3, and X4. The parent set for each variable are:

Pa[X1] = {}, Pa[X3] = {}, Pa[X2] = {X1}, and Pa[X4] = {X1, X3}. A CPT is specified

and parameterized for each variable ((b) to (e)). Notice that for some CPT defined for a

variable Xi, the probability P (Xi = 0 |Pa[Xi]) is 1− θi. The BN defines the joint distribution:

Pθ(X1, X2, X3, X4)=P (X1)P (X3)P (X2|X1)P (X4|X1, X3).

The BN from Figure 2.1 encodes a set of (conditional) independencies and therefore leads

to a compact factorization of the joint distribution stated in Example 2.8. To highlight

some independence statements, we have for example (X1 ⊥⊥ X3) and (X2 ⊥⊥ X3 |X1, X4).

For a detailed treatment of independencies in graphs for BNs, see (Pearl, 1988; Koller and

Friedman, 2009).

Markov Networks

Markov networks (MN) or Markov random fields represent joint probability distributions

factorized over an undirected graph. A MN is a tripleMMN , 〈X,θ,GMN〉. X is the set

of random variables and θ = {θ1, . . . , θm} is the set of parameters. GMN = (V,E) is an

undirected graph such that V is the set of nodes (or vertices) and E is the set of undirected

edges. We associate each node i ∈ V with one random variable Xi∈V ∈X (we also use Xi

12

X1

X2

X3

X4

X1 X2 ψ1,2(X1, X2)

0 0 θ1

0 1 θ2

1 0 θ3

1 1 θ4

X1 X3 ψ1,3(X1, X3)

0 0 θ5

0 1 θ6

1 0 θ7

1 1 θ8

X1 X4 ψ1,4(X1, X4)

0 0 θ9

0 1 θ10

1 0 θ11

1 1 θ12

X3 X4 ψ3,4(X3, X4)

0 0 θ13

0 1 θ14

1 0 θ15

1 1 θ16

(a) (b)

Figure 2.2. An example of a binary pairwise Markov network.

as shorthand). E is a set of pairs of the form (Xi, Xj) such that i 6= j (we also use (i, j) as

shorthand). Given a node Xi, we call the set of nodes connected to Xi (or neighbors of Xi)

as the Markov blanket of Xi, denoted as Mb[Xi]. The size of the Markov blanket for a given

variable Xi, namely |Mb[Xi]|, is also know as the degree of Xi. Let I be the set of cliques

in GMN . A clique is a subset of nodes in an undirected graph such that every two distinct

nodes are adjacent (i.e., connected). We focus on pairwise MNs (i.e., cliques of size 2) since

every PGM can be converted to this form (cf. (Koller and Friedman, 2009)). In a pairwise

PGM, we associate a factor ψi,j over each pair (i, j) ∈ I. The joint probability distribution

is then factored as

Pθ(X1, . . . , Xn) =
1

Z(θ)

∏
(i,j)∈I

ψi,j(Xi, Xj),

where Z(θ) is the normalizing constant (or partition function) defined as

Z(θ) =
∑
X

∏
(i,j)∈I

ψi,j(Xi, Xj).

13

Since the graphs represented by MNs are undirected, and unlike BNs, the parameterization

for MNs do not naturally follow a probabilistic interpretation. Therefore, the parameterization

of MNs are more effectively described as affinities or the compatibility among the different

random variables. However, similar to BNs, the factors can also be represented using a

tabular formulation with parameters θi ∈ [0,∞). The factors in MNs are often referred to as

(clique) potentials.

Example 2.9. Figure 2.2 shows a discrete binary Markov network. The network (a) is a

undirected graph comprised of four variables, where Mb[X1] = {X2, X3, X4}, Mb[X2] = {X1},

Mb[X3] = {X1, X4}, and Mb[X4] = {X1, X3}. There are four pairwise cliques and a potential

is specified for each clique (b), which defines the joint distribution Pθ(X1, X2, X3, X4) =

ψ1,2(X1, X2)ψ1,3(X1, X3)ψ1,4(X1, X4)ψ3,4(X3, X4).

We highlight below some independence properties encoded in MNs. For a detailed

treatment, see (Koller and Friedman, 2009). A MN represented by graph GMN satisfies the

following Markov properties.

• Global Markov Property Given subsets A,B,S ⊂ V . Let XA, XB, and XS be

sets of random variables corresponding to the respective vertices. Any two subsets

are conditionally independent given a separating set. Namely, XA ⊥⊥XB |XS where

every path from a node i ∈ A to a node j ∈ B passes through a node h ∈ S.

• Local Markov Property Given a random variableXi. Xi is conditionally independent

of all other variables given Mb[Xi]. Namely, Xi ⊥⊥XV \Mb[Xi] |XMb[Xi].

• Pairwise Markov Property Two random variables Xi and Xj are conditionally

independent given all other variables. Namely, Xi ⊥⊥ Xj |XV \{i,j}.

14

X1 X2 ψ1,2(X1, X2)

0 0 23

0 1 1

1 0 1

1 1 23

(a)

X1 X2 logψ1,2(X1, X2)

0 0 3.135

0 1 0

1 0 0

1 1 3.135

(b)

Figure 2.3. Potentials for Example 2.10.

Log-linear Graphical Models

Although the graph of a PGM provides an explicit structure for a represented distribution,

the parameterization within the factors can exhibit patterns that allow for further compact or

finer-grained representation. To begin with, by specifying the parameter values in logarithmic

space, certain patterns (or structures) become more apparent. In addition, the parameters can

now take any real value, namely θi ∈ (−∞,∞). Furthermore, the operations of multiplying

potentials now become summations, which offers algebraic convenience and numerical stability.

Example 2.10. Given a potential ψ defined over two random variables X1 and X2 shown in

Figure 2.3 (a). The corresponding parameterization in log-space is shown in Figure 2.3 (b).

We observe that a more compact representation only needs to capture the fact that if X1 and

X2 are equal, then the parameter for the potential is 3.135. Otherwise, the parameter value is

0.

One general framework, as an alternative parameterization, is a log-linear model. A

log-linear PGM is a tripleM` , 〈X,F ,θ〉, where X = {X1, . . . , Xn} is a set of variables,

F = {f1(X1), . . . , fm(Xm)} is a set of features such that X i is a subset of variables (i.e.,

X i ⊂X), and θ = {θ1, . . . , θm} is the set of weights (parameters) such that θi is the weight

of feature fi(X i) (we also use fi as shorthand when it is apparent from the context). A

15

feature is a factor without the non-negativity constraint on the parameter (i.e., log-space).

One type of feature is known as an indicator feature. That is, given an assignment x̃, fi(x̃)

evaluates to 1 if some values x̃ ∈Val(X i) and 0 otherwise. M` represents the probability

distribution

Pθ(x̃) =
1

Z(θ)
exp

(
m∑
i=1

θifi(x̃)

)
,

where

Z(θ) =
∑
x̃∈X

exp

(
m∑
i=1

θifi(x̃)

)
is the normalization constant (or partition function).

Features allow for more compact representations that account for particular patterns or

relationships among the variables in a factor. Building on the observation from Example

2.10, we can reparameterize the potential ψ(X1, X2) compactly as two features: f1(X1, X2) ,

1(X1 = X2) associated with the weight θ1 = 3.135 and f2(X1, X2) , 1(X1 6= X2) associated

with the weight θ2 = 0. We can convert and represent both BNs and MNs as log-linear model

forms.

Intuitively, we can view these indicator features as a set of constraints and therefore

naturally lead to a logical interpretation. While PGMs provide the ability to reason under

uncertainty, we next present logic as a formalism to complement this reasoning ability.

2.2.2 Propositional Logic

Propositional logic provides the formalism to reason about the truth or falsehood of logical

assertions. Propositional logic consists of propositional sentences or statements1, which are

represented by variables and logical connectives (or operators). Logical connectives allow for

new and complex propositions, namely, formulas, to be constructed using operations such as

¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒ (implication), and ⇔ (equivalence). An

1Statements can be considered as certain types of sentences, but we do not make the distinction.

16

atomic proposition or atom is a proposition that does not include any logical connectives.

Given some variable Xi, for compactness, we use the notation Xi to denote negation (cf.

¬Xi). A non-negated or negated atom is also referred to as a positive (+) literal or negative

(−) literal respectively.

Definition 2.11. (Monotonicity) A formula F is “monotone in variable Xi” iff Xi appears in

F as either positive or negative (but not both). A formula F is “monotone” iff it is monotone

in all variables. Otherwise, F is non-monotone.

Atoms and formulas take values (i.e., truth assignments) from the set {false, true}

(or {0, 1}). Given a set of variables X = {X1, . . . , Xn}, let Ω be the set of the 2n truth

assignments to X. Let x̃ = (x1, . . . , xn) ∈ Ω be truth assignments to all variables in X such

that Xi = xi. We denote with the symbol ‘∗’ for the case when Xi can take either false or

true value, namely (0 ∨ 1) or otherwise known as the don’t care condition. We say a formula

is satisfied if given an assignment to the propositions evaluates the formula to true. The

assignment that satisfies the formula is also known as a model of the formula.

Example 2.12. Let X1, X2, and X3 be atoms. Let F = X1 ∨X2 ∨X3 be a formula. The

literals appearing in F are X1, X2, and X3. F is monotone with 23 possible assignments.

The assignment, (X1 = 1, X2 = 1, and X3 = 1) ∈ Ω, evaluates F to 1 (or true). Given the

assignment X2 = 1, X1 and X3 become don’t care conditions (i.e., (X1 = ∗, X2 = 1, and

X3 = ∗)), that is, F is satisfied once X2 is 1.

The propositional satisfiability problem (or Boolean satisfiability problem), abbreviated as

SAT, is the problem of deciding if there exists an assignment that satisfies a given formula.

SAT was the first problem to be proven as NP-complete (Cook, 1971; Levin, 1973). The

propositional model counting problem, abbreviated as #SAT, is the problem of computing

the number of distinct satisfying assignments for a given formula. #SAT generalizes SAT

and it is known to be #P-complete (Valiant, 1979).

17

X1 X2 (X1 ∨X2) ∧ (X1 ∨X2)

0 0 1

0 1 0

1 0 0

1 1 1

Figure 2.4. Truth table for Example 2.15

One canonical form used within the SAT and #SAT problem setting is the so-called

conjunctive normal form, which we define below.

Definition 2.13. (Conjunctive normal form) A propositional formula is in conjunctive

normal form (CNF) if it is a conjunction of clauses, where a clause is a disjunction of literals.

Example 2.14. Let A and B be atoms. The formula F = (X1 ∨ X2) ∧ (X1 ∨ X2) is in

conjunctive normal form. F is non-monotone since both X1 and X2 are not monotone in F

(i.e., X1 and X2 appear both as negative and positive).

Example 2.15. Consider the formula F in Example 2.14. We use the truth-table shown in

Figure 2.4 to illustrate the solution to the model counting problem for F . The #SAT solution

for F is 2 because there are two distinct assignments that satisfies F , namely X1 = X2 = 0

and X1 = X2 = 1.

In Chapter 6, we focus on the weighted model counting (WMC) problem, a further

extension of the model counting problem. (Weighted) model counting falls under the general

notion of inference, which we present next.

2.3 Inference

With a PGM, one task is to reason about or pose probabilistic queries to the model. We refer

to this broad task as probabilistic inference or simply inference. Specifically, we would like

18

to compute quantities or configurations of interest using the PGM. These queries typically

consists of two disjoint subsets of variables: (1) query (or non-evidence) variables, denoted

as Y , and (2) evidence (or observed) variables and an instantiation of or assignment to the

evidence variables, denoted as E = e. Formally, Y ⊂ X, E ⊂ X, and Y ∩ E = ∅. The

common inference tasks for PGMs include the following:

• Compute the normalizing constant (or partition function):

Z(θ) =
∑
X

∏
ξ ∈I

ψξ(Xξ),

where ξ indexes the variables of the PGM. Within the BN setting, this task is also

called computing the probability of evidence (i.e., P (E = e)).

• Compute the posterior probability distribution over Y , conditioned on evidence:

P (Y |E = e) =
P (Y ,E = e)

P (E = e)
.

This quantity is also known as the posterior marginal probability.

• Determine the most probable (i.e., mode) assignment to the non-evidence variables of

the distribution:

argmax
y

P (Y ,E = e).

This problem is also know as the maximum a posteriori (MAP) query. Y is typically

referred to as MAX variables. Within the BN setting, this task is also called determining

the most probable explanation (MPE).

• Marginal MAP:

argmax
y

∑
U

P (Y ,U ,E = e).

This problem is considered to be the more general setting of the MAP query. Y is the

set of MAX variables and U is the set of SUM variables, where U = X \ Y \E.

19

Algorithm 2.1: Bucket Elimination (BE) for computing the partition function

1 Input: Variable ordering o = [X1, X2, . . . , X|X|],
factors (or functions) of the PGM Ψ = {ψξ(Xξ)}

2 Output: Partition function
3 begin
4 for i← 1 to |X| do
5 1. Find the set of factors (bucket) that involve variable Xi and update the

factors.
BXi ← {ψ : ψ ∈ Ψ ∧Xi ∈ Scope[ψ]},

Ψ← Ψ \BXi .

6 2. Eliminate variable Xi. Take the product of all factors in the bucket and
sum-out Xi. The result is a new factor ψ∗ξ , which is then added to the factors.

ψ∗ξ ←
∑
Xi

∏
ψξ∈BXi

ψξ,

Ψ← Ψ ∪ ψ∗ξ .

7 The remaining factors ψ are constants.
8 return Partition function Z ←

∏
ψ∈Ψ

ψ

9 end

Although there exists an array of exact inference algorithms for solving the aforementioned

tasks, in general, the quantities of interest are computationally intractable. Thus, in this

dissertation, we address the important need for approximate inference schemes. Two popular

families for approximate inference schemes can be broadly categorized as elimination-based

and Monte Carlo methods. We next describe these schemes.

2.3.1 Elimination-based Methods

Using a variable ordering, elimination-based methods, such as variable or bucket elimination

(Dechter, 1996; Zhang and Poole, 1994), leverage the idea of dynamic programming and work

20

Algorithm 2.2: Mini-bucket elimination (MB) for computing a bound on the
partition function.

1 Input: Variable ordering o = [X1, X2, . . . , X|X|],
factors (or functions) of the PGM Ψ = {ψξ(Xξ)}, Integer i > 0 (i-bound)

2 Output: Upper bound on the partition function
(replace max with min in step 3 (line 7) for lower bound)

3 begin
4 for i← 1 to |X| do
5 1. Find the set of factors (bucket) that involve variable Xi and update the

factors.
BXi ← {ψ : ψ ∈ Ψ ∧Xi ∈ Scope[ψ]},

Ψ← Ψ \BXi .

6 2. Partition the bucket BXi into B disjoint groups such that the cardinality of
the union of scopes for the factors in each group B

(b)
Xi

(mini-bucket) is less than
or equal to i-bound plus 1.

B
(1)
Xi
∪ B

(b)
Xi
∪, . . . ,∪ B

(B)
Xi

= BXi ,

∀b ∈ 1, . . . , B
∣∣∣{x : x ∈ Scope[ψ] ∧ ψ ∈ B

(b)
Xi
}
∣∣∣ ≤ i+ 1.

7 3. Eliminate variable Xi. For each mini-bucket, take the product of all factors
within it. Sum-out Xi on one of the mini-bucket and max-out (or min-out) Xi

on the remaining mini-buckets. The results are new factors ψ∗ξ , which are then
added to the factors.
for b← 1, . . . , B do

ψ∗ξ ←



∑
Xi

∏
ψξ∈B

(b)
Xi

ψξ if b = 1

max
Xi

∏
ψξ∈B

(b)
Xi

ψξ otherwise
, Ψ← Ψ ∪ ψ∗ξ .

8 The remaining factors ψ are constants.
9 return Bound on the partition function Ẑ ←

∏
ψ∈Ψ

ψ.

10 end

21

on directly eliminating each variable, by performing the operations of product and sum (i.e.,

marginalization). We first present the bucket elimination algorithm for exact inference.

Bucket Elimination

Bucket elimination (BE) (Dechter, 1996) is a simple and effective algorithm for performing

exact inference. The high-level idea is to first organize the factors of a PGM into so-

called buckets using a variable ordering. Then, using the same variable ordering, eliminate

each variable accordingly from each bucket (i.e., by applying product and marginalization

operations). Each step of the elimination process creates new factors, which are then assigned

to an existing bucket based on the variable ordering and the scope of the factor. The details

of bucket elimination are presented in Algorithm 2.1. We focus our discussion on the task of

computing the partition function, but the algorithm can be derived for other inference tasks.

From Algorithm 2.1, we can see that the computational complexity of bucket elimination

is exponential in the size of the largest bucket (step 2). This is also referred to as the max

cluster size or induced width. To alleviate the complexity burden, we next present mini-bucket

elimination, a general approximate inference scheme to bucket elimination.

Mini-bucket Elimination

Mini-bucket elimination (MB) (Dechter and Rish, 2003) is an approximation of bucket or

variable elimination (Dechter, 1996; Zhang and Poole, 1994). MB returns an upper or lower

bound on the partition function. MB is shown in Algorithm 2.2. We mentioned previously

the complication for BE is the intractable induced width, which is exponential in general.

The basic idea is that MB overcomes this issue by partitioning and splitting the bucket

into so-called mini-buckets shown in step 2 of Algorithm 2.2. The maximum size of the

mini-bucket is controlled by an input parameter called the i-bound. This relaxation allows

the complexity to be exponential in the i-bound as a trade-off to accuracy. Subsequently

22

in step 3, marginalization (sum-out) is applied to one of the mini-buckets and depending

on if an upper or lower bound on the partition is selected, maximization or minimization is

applied to all remaining mini-buckets. Processing the newly created functions then follows

that of BE. MB is a simple and straightforward approximation scheme and achieves tighter

bounds with higher i-bound values.

2.3.2 Monte Carlo Methods

The main idea behind Monte Carlo2 methods (Metropolis and Ulam, 1949) is to leverage

randomness (i.e., random numbers) and invoke the (strong and weak) law of large numbers

(LLN). LLN states that the empirical or sample average for a sequence of independent and

identically distributed (i.i.d.) random variables, X(1)
i , . . . , X

(D)
i (i.e., 1/D

∑D
d=1X

(d)
i), con-

verges in probability to the expectation of Xi (i.e., E[Xi]) with high probability (Wasserman,

2004). The random variables are i.i.d. if all the random variable have the same probability

distribution and are mutually independent. Monte Carlo methods encompass a general family

of stochastic approximation techniques and can be used for PGMs to solve either or both of

the following problems:

1. Generate instantiations, {x̃(1), . . . , x̃(D)}, to all or some of the variables from a given

PGM using random sampling.

2. Estimate expectations of functions under the distribution, Pθ(X), represented by a

given PGM.

In general, sampling from high-dimensional distributions is hard. However, under the

framework of PGMs, we can devise and implement amenable and efficient algorithms, which

we describe next.

2Also referred to as Ordinary Monte Carlo or i.i.d. Monte Carlo as compared to Markov Chain Monte
Carlo (Brooks et al., 2011)

23

Algorithm 2.3: Forward Sampling for BNs

1 Input: Topological ordering o = [X1, X2, . . . , X|X|],
Bayesian networkMBN , 〈X,θ,GBN〉

2 Output: An instantiation to all variables (i.e., sample)
3 begin
4 for i← 1 to |X| do
5 1. Get the assignment (x̃1, . . . , x̃n−1) to the parents of Xi: x̃Pa[Xi]

6 2. Sample xi ∼ P (Xi | x̃Pa[Xi])

7 return x̃

8 end

Forward Sampling

Generating samples from a BN is a straightforward process. The sampling procedure is

known as forward sampling or probabilistic logic sampling (Henrion, 1986), which is described

by Algorithm 2.3. At a high-level, using a topological ordering of the variables, the sampling

process samples one variable at a time according to the conditional distribution corresponding

to the variable. The main consideration is step 2 of the algorithm. Here, we can use a

(pseudo) random number generator to sample a value x from the condition distribution

(i.e., CPT). Specifically, consider the domain, Val(Xi) = {x1, . . . , xj}, for some variable Xi,

corresponding to parameters (θ1, . . . , θj). First, d number of subintervals are created as

follows: [0, θ1), [θ1, θ1 + θ2), . . . , [θj−1,
∑j−1

k=1 θk), [θj, 1]. Next, a value c is randomly generated

(i.e., sampled) from an uniform distribution defined over the interval [0, 1]. If c is in the d-th

subinterval, then the value xd is selected as the sample. The forward sampling process is also

referred to as simulating the BN (Darwiche, 2009).

24

Algorithm 2.4: Forward Sampling with Likelihood Weighting for BNs

1 Input: Topological ordering o = [X1, X2, . . . , X|X|],
Bayesian networkMBN , 〈X,θ,GBN〉, evidence set E

2 Output: An instantiation to all variables (i.e., sample) and a corresponding weight w
3 begin
4 Initialize: w ← 1

5 for i← 1 to |X| do
6 1. Get the assignment (x̃1, . . . , x̃n−1) to the parents of Xi: x̃Pa[Xi]

7 if Xi ∈ E then
8 2. Assign evidence value xi ← ei

9 3. Compute likelihood weight w ← w × P (x̃i | x̃Pa[Xi])

10 else
11 4. Sample xi ∼ P (Xi | x̃Pa[Xi])

12 return (x̃, w)

13 end

Likelihood Weighting

To handle the harder task of computing conditional probability queries (i.e., P (Y |E = e)),

a priori, we can utilize a naïve approach known as rejection sampling3. Given an evidence

set, E = e, we follow the aforementioned forward sampling process, but reject samples that

are not consistent with e. However, we can immediately notice an issue with this approach.

That is, in the case when P (E = e) has a low probability. For example, if P (E = e) = .001,

then for every 1, 000 samples collected, we can expect to reject 999 of the samples. Therefore,

rejection sampling under this scenario is not practical. On the other hand, if we use forward

sampling and clamp the evidence, meaning when the sampling procedure reaches an evidence

variable that variable is assigned the value of evidence, then this procedure can generate

3Also known as hit-or-miss in older literature on Monte Carlo methods (Hammersley and Handscomb,
1964).

25

incorrect results in general because it is not sampling according to the conditional probability

distribution (Koller and Friedman, 2009).

One way to overcome the rejection issue, and to sample more efficiently, is to use the

so-called likelihood weighting (LW) approach (Fung and Chang, 1989; Shachter and Peot,

1989). In LW, we use forward sampling with clamping, but each sample is weighted according

to the likelihood of the evidence. Namely, the likelihood is the product of the probabilities

for the evidence variables in each sample. The procedure is showing in Algorithm 2.4. The

result of this process is that we now have weighted samples. LW is a special case of a general

weighted sampling framework called importance sampling, which we present next.

Importance Sampling

We previously mentioned that Monte Carlo methods are also used for computing expectations.

Importance sampling (IS) (Marshall, 1956) is one such technique commonly used to evaluate

the expectation of a real function H according to a probability distribution P (shorthand

for Pθ), namely EP [H(X)] =
∑

x̃∈X H(x̃)P (x̃). The general idea is to generate samples

x̃(1), ..., x̃(N) from a proposal distribution Q and estimate EP [H(X)] as

EP [f(X)] ≈

N∑
i=1

H(x̃(i))w(x̃(i))

N∑
i=1

w(x̃(i))

,

where w(x̃(i)) = P (x̃(i))/Q(x̃(i)) is the importance weight of sample x̃(i). Note the importance

weight needs to be known only up to a multiplicative constant. Q does not have to be

positive everywhere. It is sufficient for Q > 0 when H(x̃)P (x̃) 6= 0. Importance sampling

can be used to estimate the partition function (normalizing constant) and single variable

marginal probabilities. In this dissertation, we focus on computing the single variable marginal

26

Algorithm 2.5: Gibbs Sampling for BNs

1 Input: Evidence set E, Variables to sample Y = X \E, Number of samples N ,
Bayesian networkMBN , 〈X,θ,GBN〉

2 Output: Samples
3 begin
4 Initialize x̃(0) ∪ {xi ← ei : ei ∈ E}
5 for s← 1 to N do
6 x̃(s) ← x̃(s−1)

7 for Yi ∈ Y do
8 Sample yi ∼ Pθ(Yi |X \ Yi)

9 return (x̃(s)) for s = 1 to N
10 end

probability, which can be estimated as

P̂N(x̃) =

N∑
i=1

1(x̃(i))w(x̃(i))

N∑
i=1

w(x̃(i))

, (2.1)

where 1(x̃) = 1 iff x̃ contains the assignment x̃, and 0 otherwise, and w(x̃) = exp(
∑

i θifi(x̃))

/ Q(x̃). We will make the standard assumption that Q is a BN (Fung and Chang, 1989; Ortiz

and Kaelbling, 2000; Cheng and Druzdzel, 2001; Gogate, 2009), since it is computationally

efficient to generate independent samples from a BN using forward sampling. The quality of

estimation, namely the accuracy of P̂N(x̃) is highly dependent on how far Q is from P , and

as a result most of the research on importance sampling is about designing a good Q. In

Chapter 5, we design a Q for parameter tied graphical models.

Gibbs Sampling

While LW improves on rejection sampling, the performance of LW is effected by the location

of the evidence nodes. Specifically, if the set of evidence variables are at the leaves of the

27

network (nodes with no child nodes), then the samples will be generated from the prior

distribution, which can be, in general, divergent from the posterior distribution. One way to

overcome this issue is to utilize Gibbs sampling (Geman and Geman, 1984). The procedure

is shown in Algorithm 2.5. In Gibbs sampling, starting with an initialized sample, each

of variables in Y are then iteratively sampled based on conditioning the current sampled

values for all other variables (line 8 of the algorithm). Under the assumption that the

conditional distributions are easy to sample, the process is straightforward. For example,

given two conditional distributions Pθ(Y |X) and Pθ(X|Y). We set Y = y(0) and X = x(0) to

some initial value. Then, starting with Y , we next repeat the following sampling process:

y(1) ∼ Pθ(Y |X = x(0)), x(1) ∼ Pθ(X|Y = y(1)), y(2) ∼ Pθ(Y |X = x(1)), and so on. Note,

we can also start with X, in which the sampling starts with x(1) ∼ Pθ(X|Y = y(0)). The

intuition is, by following this process for the PGM case, the various states of the variable or

information moves through the network. In particular, the downstream information from the

evidence nodes are collected and thereby samples will be generated closer to the posterior

distribution. Note that, although Algorithm 2.5 is specified for BNs, Gibbs sampling is a

general technique that can also be used for MNs. Referring back to the simple example, we

have the resulting sequence of samples: (y(0), x(0)), (y(1), x(1),), (y(2), x(2),), (y(3), x(3),), . . . ,

etc. This sequence satisfies the Markov chain property because the current sample (y(i), x(i))

depends only on the previous sample (y(i−1), x(i−1)). In fact, Gibbs sampling is in the general

family of sampling techniques called Markov chain Monte Carlo (MCMC). In Chapter 5, we

develop a slice importance sampling approach belonging to the MCMC family.

2.4 Learning

In Section 2.2, we mentioned one way to acquire a PGM is to construct the model manually,

often with the aid of domain experts. However, this is clearly infeasible and not practical

due to the large amount of knowledge and time required to develop a useful model. On the

28

other hand, it is frequently the case that we have access to examples (i.e., data) generated

from models for which we are interested in. Thus, if we assume the domain we are interested

in modeling is governed by some distribution P ∗, which is induced by some PGM, we can

develop learning algorithms that use data (or samples), D = {x̃(1), . . . , x̃(D)} generated from

P ∗, to construct PGMs.

The two main learning tasks for PGMs are: (1) learn (or estimate) the parameters of a

given fixed PGM structure; and (2) learn both the parameter and structure of a PGM. In

this dissertation, we focus on learning the parameters generatively from a given complete or

fully observed dataset and PGM structure.

2.4.1 Maximum Likelihood Estimation

One motivation for learning a PGM is to use it for reasoning (e.g., perform inference on the

model). The goal of this setting is often framed as density estimation, that is to construct

a PGM representing some distribution P which is close to P ∗. Intuitively, we would like

to learn models that assign high probability to the given data. The statistical connection

between data and models is commonly expressed as the likelihood (i.e., the of likelihood the

data, given a model), which we formally define below.

Definition 2.16. (Likelihood and log-likelihood function). Let X = {X1, . . . , Xn} be a set

of random variables with joint probability distribution P where the set of parameters θ can

take values from some parameter space Θ. Given the dataset or observed values over the

random variables, D = {x̃(1), . . . , x̃(D)}, the likelihood function L : Θ→ [0,∞) is defined as

L(θ : D) = P (D : θ), θ ∈ Θ.

It is often algebraically convenient and numerically stable to work with the natural logarithm

of the likelihood function, which we refer to as the log-likelihood function and is defined as

`(θ : D) = logL(θ : D).

29

The log-likelihood can be viewed as a function of the parameters θ for a given fixed

dataset D. If D is i.i.d., then the log-likelihood function is

`(θ : D) = log
D∏
d=1

Pθ(x̃
(d)) =

D∑
d=1

logPθ(x̃
(d)).

Note, since ` : Θ→ (−∞, 0], the log-likelihood is not necessarily a normalized probability

distribution.

As mentioned to earlier, we are interested in estimating parameter values with higher

likelihood since it is more likely to have generated the data. To formulate the learning task,

we define a hypothesis space, Θ (i.e., possible parameterization) and an objective function to

evaluate different parameter settings relative to the dataset D. We use the likelihood function

as the objective function and the value that maximizes the likelihood is referred to as the

maximum likelihood estimator. Formally, we defined the learning problem as

max
θ∈Θ

`(θ : D).

This method of parameter learning or estimation is referred to as maximum likelihood

estimation (MLE). Note that since the log-likelihood function is monotonically related to

the likelihood function, maximizing `(θ : D) is equivalent to maximizing L(θ : D). MLE is a

general technique for learning the parameters of a PGM using data (or observations) which

we describe next.

MLE for Bayesian Networks

In this section, we describe the MLE setting for learning the parameters of a given Bayesian

network structure. Given a set of random variables X = {X1, . . . , Xn} with joint probability

distribution Pθ(X) defined over a Bayesian network, MBN , and a fully observed dataset,

D = {x̃(1), . . . , x̃(D)}. The likelihood function is defined as

L(θ : D) =
D∏
d=1

n∏
i=1

Pθ(x̃
(d)
i | x̃(d)

Pa[Xi]
),

30

where x̃(d)
i is the value assigned to Xi in x̃(d) and x̃

(d)
Pa[Xi]

are the values assigned to the parents

of Xi in x̃(d). Since the distribution represented by a Bayesian network is a product of (local)

condition probability distributions, the likelihood decomposes as a product of independent

terms. The parameters to be estimated are defined as

θi = P (x̃i | x̃Pa[Xi]).

Following the MLE solution for a discrete multinomial distribution (Darwiche, 2009), the

estimates for the parameters admit an analytical solution. We first specify the following two

indicator functions for collecting sufficient statistics from the dataset.

1(x̃i, x̃Pa[Xi] : x̃(d)) =


1 (x̃i ∧ x̃Pa[Xi] ∈ x̃(d)) ∨ (Pa[Xi] = ∅ ∧ x̃Pa[Xi] ∈ x̃(d))

0 otherwise
.

1(x̃Pa[Xi] : x̃(d)) =


1 (x̃Pa[Xi] ∈ x̃(d))

0 otherwise
.

The sufficient statistics contains all the information required to compute the estimate of a

parameter. Therefore, the MLE for the parameters is computed as

θi =

D∑
d=1

1(xi, x̃Pa[Xi] : x̃(d))

D∑
d=1

1(x̃Pa[Xi] : x̃
(d)
i)

.

The MLE solution is sensitive to the size of the dataset. In general, the variance of the

solution decreases as the size of the dataset increases.

MLE for Markov Networks

In this section, we describe the MLE setting for learning the parameters of a given Markov

network structure. Given a collection of random variables X = {X1, . . . , Xn} with joint

31

probability distribution Pθ(X) defined over a Markov network and a fully observed dataset

D = {x̃(1), . . . , x̃(D)}. We use a log-linear model representation of the Markov network and

the log-likelihood function, which is defined as

logP (D : θ) =
D∑
d=1

logPθ(x̃
(d))

=
D∑
d=1

log

{
1

Z(θ)
exp

{
m∑
i=1

θifi(x̃
(d)
i)

}}

=
D∑
d=1

m∑
i=1

θifi(x̃
(d)
i)−D logZ(θ)

=
m∑
i=1

θi

D∑
d=1

fi(x̃
(d)
i)−D logZ(θ)

= D
m∑
i=1

θiED[fi(x̃i)]−D logZ(θ)

1

D
`(D : θ) =

m∑
i=1

θiED[fi(x̃i)]− logZ(θ),

where logZ(θ) =
∑
X exp

{∑m
i=1 θifi(xi)

}
. Since the MLE does not admit a closed-form

solution, we can instead use any standard gradient-based method (i.e., gradient ascent) to

solve the optimization problem. The gradient w.r.t. θi is computed as

1

D

∂`(D : θ)

∂θi
= ED[fi(x̃i)]−

1

Z(θ)
fi(xi) exp

{
θifi(xi)

}
= ED[fi(x̃i)]−

exp
{
θifi(xi)

}
Z(θ)

fi(xi)

= ED[fi(x̃i)]− EPθ(X)[fi(xi)].

2.4.2 Maximum Pseudolikelihood Estimation

Unlike Bayesian networks, the likelihood function does not decompose for Markov networks.

Therefore, evaluating the likelihood, as well as the gradient, requires computing the partition

function. Since computing the latter is #P-hard in general, alternative computationally

32

tractable approximations to likelihood, such as the pseudolikelihood (Besag, 1975), are often

used in practice. Given an instance x̃ and a Markov network GMN representing some positive

distribution Pθ, recalling the chain rule from Definition 2.2, we can write the probability of

the instance as

Pθ(x̃) =
n∏
i=1

P (x̃i | x̃1, . . . , x̃i−1).

The likelihood can be approximated as

Pθ(x̃) ≈
n∏
i=1

P (x̃i | x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃n),

which is the conditional probability of xi given all other variables. Applying the local Markov

property, we can simplify the approximation to

Pθ(x̃) ≈
n∏
i=1

P (x̃i | x̃Mb[Xi]).

Furthermore, the complexity of the likelihood function has been reduced from a global

exponential summation (i.e., partition function) to a local partition function requiring only

a summation over the values of Xi. The more tractable formulation for the conditional

probabilities becomes

P (x̃i | x̃Mb[Xi]) =
P (x̃i, x̃Mb[Xi])∑

xi∈Val(Xi)

P (xi, x̃Mb[Xi])
.

MPLE for Log-linear Models

In this section, we describe the maximum pseudo-loglikelihood (MPLE) setting for learning

the parameters of a given log-linear PGM structure. Given a collection of random variables

X = {X1, . . . , Xn} with joint probability distribution Pθ(X) defined over a log-linear PGM

33

and a fully observed dataset D = {x̃(1), . . . , x̃(D)}. The log-likelihood function is defined as

logP (D : θ) =
D∑
d=1

logPθ(x̃
(d))

=
D∑
d=1

n∑
i=1

log P̃θ(x̃
(d)
i | x̃(d)

{−xi})

=
D∑
d=1

n∑
i=1

log
P (x̃

(d)
i , x̃

(d)
{−xi})

P (x̃
(d)
{−xi})

=
D∑
d=1

n∑
i=1

logP (x̃
(d)
i , x̃

(d)
{−xi})− log

∑
x∈Val(Xi)

P (x, x̃
(d)
{−xi}).

where {−xi} = x1, . . . , xi−1, xi+1, xn. By using the Markov local property, the other variables

x̃{−xi} simplify to the Markov blanket Mb[Xi]. The pseudo-loglikelihood is defined as

p`(θ : D) =
D∑
d=1

n∑
i=1

log
{

exp
{
θifi(x̃

(d)
i , x̃

(d)
Mb[Xi]

)
}}
− log

∑
x∈ val(Xi)

exp
{
θifi(x, x̃

(d)
Mb[Xi]

)
}

=
D∑
d=1

n∑
i=1

θifi(x̃
(d)
i , x̃

(d)
Mb[Xi]

)− log
∑

x∈ val(Xi)

exp
{
θifi(x, x̃

(d)
Mb[Xi]

)
}
.

Since the MPLE does not admit a closed-form solution, we can instead use any standard

gradient-based method (i.e., gradient ascent) to solve the optimization problem. The gradient

w.r.t. θi is computed as

∂p`(θ : D)

∂θi
=

1

D

D∑
d=1

(
fi(x̃

(d)
i , x̃

(d)
Mb[Xi]

)−

∑
x∈ val(Xi)

fi(x, x̃
(d)
Mb[Xi]

) exp
{
θifi(x, x̃

(d)
Mb[Xi]

)
}

∑
x∈ val(Xi)

exp
{
θifi(x, x̃

(d)
Mb[Xi])

)
})

.

2.5 L2 Regularization

MLE is prone to overfitting when the size of the training dataset is small compared to the

number of parameters. One way to combat overfitting, using the Bayesian approach, is to

introduce a prior distribution over the parameters. A zero-mean Gaussian (uniformed) prior

34

distribution is the standard choice. After taking logs, the regularizer function is of the form

−λ
2
||θ||22 = −λ

2

m∑
i=1

(θi)
2.

This penalty term, when added to the learning objective, is generally referred to as L2

regularization. L2 penalizes parameter values with large magnitude, which aides in smoothing

out the variations in the data. The penalty grows quadratically and thus larger parameter

values are penalized more than smaller parameter values. Since the penalty term is concave

in the parameters, adding it with a concave learning objective preserves concavity and

the resulting objective can be efficiently optimized using gradient-based methods. The

hyperparameter λ ∝ 1/σ2 controls the variance of the Gaussian distribution. Due to the

inverse relation, high values of λ result in low variance and vice versa.

2.6 Quantization and k-means

Quantization is the process of mapping a set of real numbers to a smaller set. Formally, a

quantization function Q, is a many-to-one mapping from a set of real numbers A to a set of

real numbers B, such that |A| ≥ |B|. Our aim is to find a quantization that minimizes the

average quantization error, namely to optimize the objective

min
1

|A|
∑
a∈A

|a−Q(a)|.

A k-level quantizer fixes the size of B, namely |B| = k.

Closely related to the optimal k-level quantization problem is the k-means clustering

problem (Pollard, 1982; Bottou and Bengio, 1994). Note that in our work, we only need to solve

the 1-dimensional k-means clustering problem, which admits a polynomial time algorithm,

O(m2k), via dynamic programming (Wang and Song, 2011). Given a set θ = {θ1, . . . , θm} of

real numbers, the 1-dimensional k-means algorithm seeks to partition θ into k clusters such

35

that the following objective function is minimized

m∑
j=1

(θj − µaj)2,

where µ = {µ1, . . . , µk} are the cluster centers or means and aj ∈ {1, . . . , k} denotes the

cluster assignments, namely the cluster to which θj is assigned to. The cluster mean, µi, is

given by

µi =
1∑m

j=1 1(aj, i)

m∑
j=1

θj · 1(aj, i),

where 1(aj, i) is an indicator function which equals 1 if aj = i and 0 otherwise.

From any k-clustering 〈a,µ〉 where a = {a1, . . . , am} and µ = {µ1, . . . , µk} of θ, we can

define an equivalent quantizer such that Q(θj) = µaj .

36

CHAPTER 3

LEARNING PARAMETER TIED BAYESIAN NETWORKS

3.1 Introduction

In this chapter, we describe a parameter tying algorithm as a alternative regularization

technique (variance reduction) for parameter learning in Bayesian networks. To simplify the

presentation, we refer to and notate the Bayesian network as log-linear form. The idea of

parameter tying is to force several parameters of the graphical model to take the same value.

We propose a greedy approach that ties parameters by quantizing the learned parameters.

Empirically, our approach improves the generalization of a learned model (i.e., combats the

issue of overfitting) with fewer parameters.

A number of (automatic) parameter tying schemes have been investigated. (Nowlan and

Hinton, 1991) proposed utilizing a Gaussian mixture model (prior) for parameter sharing to

simplify neural networks. While Gaussian mixtures are a general model, the trade-offs with

this approach are significant, e.g., added complexity resulting from an increase in the number

of parameters that need to be selected with validation data, the creation of a large number

of local minima, and slow convergence. (Han et al., 2016) investigated compression and

pruning in neural networks, utilizing a form of k-means quantization and parameter tying.

They incorporate these elements into their pipelined algorithm as a post-processing step and

empirically validate the performance. (Liu and Page, 2013) utilized k-means to initialize a

nonparametric Bayesian (hard) tying approach. Recently, there has been growing interest in

locality-sensitive hashing (Gionis et al., 1999) where, at a high-level, the objective is to develop

hash functions such that the probability of collision for similar items is maximized to solve

the approximate nearest neighbor (Indyk and Motwani, 1998) search problem. Quantization

is generally used as a subroutine to partition a lower-dimensional feature space (Wang et al.,

2016). Deep learning neural networks have been proposed to learn such hash functions (Zhu

et al., 2016).

37

θ1 θ2

θ3 θ4

θ1 θ4

θ2 θ3

θ1 θ2

θ3 θ4

θ1 θ2

θ3 θ4

θ1 θ2

θ4 θ3

θ1 θ3

θ2 θ4

θ2 θ1

θ3 θ4

θ1 θ3

θ2 θ4

θ1 θ2

θ3 θ4

θ2 θ1

θ3 θ4

θ3 θ1

θ4 θ2

θ1 θ3

θ2 θ4

θ1 θ2

θ4 θ3

θ2 θ1

θ4 θ3

θ1 θ2

θ3 θ4

Figure 3.1. Hasse diagram showing the partitions for 4 parameters.

3.2 Problem Definition and Approach

We are interested in learning a parameter tied graphical model which we define as follows.

Definition 3.1. (Parameter tied graphical model) A parameter tied graphical model (PTGM)

is a tripleMt , 〈X,θ, C〉, where X is the set of variables, θ is the set of parameters, and C

is the set of equality constraints of the form θi = θj for some θi, θj ∈ θ such that i 6= j.

We are interested in learning the optimal PTGMM∗
t . Formally, we defined the problem

as: given training data D on variable set X, find the constraint set C and parameters θ such

that the parameters respect the constraints and the (log) likelihood of data is maximized.

For a fixed set of constraints, the learning problem can be set up as maximizing a concave

objective (i.e., likelihood) over a convex set of constraints.

38

In general, solving the aforementioned optimization problem is hard because it requires

searching over all possible constraint sets, which is clearly impractical. In particular, the

number of possible constraint sets of size k for m parameters equals the number of partitions

of size k for a set of size m (denoted by {mk}). This number is given by the so-called S tirling

numbers of the second kind computed as{
m

k

}
=

1

k!

k∑
j=0

(−1)j(k − j)m,

which grows exponentially with m. The total number of partitions of a set is given by the Bell

number, Bm =
∑m

k=1 {mk}.1 Figure 3.1 shows the number of ways to partition 4 parameters.

The partitions are: 1 partition, 7 ways to create 2 partition, 6 ways to create 3 partition, and

4 partition.

Our approach. To remedy this computational difficulty, we propose the following greedy

approach. First, we learn the parameters of the log-linear model using MLE. Then, we

quantize these parameters to k levels using the one-dimensional k-means clustering algorithm.

3.3 Theoretical Analysis of Quantization

Although our approach is simple and straightforward, we show next that it will yield models

that have high log-likelihood score yet fewer parameters under the assumption that the

quantization error is small. Let θ = (θ1, . . . , θm) denote the parameters of a log-linear model

learned from a dataset D having D examples. Without loss of generality, we assume all

parameter values are positive. Let µ = (µ1, . . . , µk), where k ≤ m, be a quantization of θ

with respect to the quantizer Q between θ and µ such that

|θi −Q(θi)| ≤ ε ,∀θi ∈ θ

1 The fact that the optimization problem is computationally difficult also follows from the observation
that it includes structure learning as a special case where the number of true features is k − 1.

39

hold, where ε ≥ 0 is a small constant. Let `(θ : D) and `(µ : D) denote the log-likelihood

scores of D with respect to θ and µ. Then, we can prove that the difference between the

average log-likelihood scores of the quantized model and the original model is bounded by

2mε.

Theorem 3.2. (Average Likelihood Error for Quantization). The average error of likelihood

due to quantization is bounded by

1

D
(`(θ : D)− `(µ : D)) ≤ 2mε.

Proof.

`(θ : D) =
D∑
d=1

log

{
1

Z
exp

{
m∑
i=1

θifi(x̃
(d))

}}

=
D∑
d=1

(
m∑
i=1

θifi(x̃
(d))− log

{∑
x′

exp

{
m∑
i=1

θifi(x
′)

}})

≤
D∑
d=1

(
m∑
i=1

(Q(θi) + ε)fi(x̃
(d))− log

{∑
x′

exp

(
m∑
i=1

(Q(θi)− ε)fi(x′)
}})

=
D∑
d=1

(
m∑
i=1

Q(θi)fi(x̃
(d)) + ε

m∑
i=1

fi(x̃
(d))− log

{∑
x′

exp

{
m∑
i=1

Q(θi)fi(x
′)

}
·

exp

{
− ε

m∑
i=1

fi(x
′)

}})

≤
D∑
d=1

(
m∑
i=1

Q(θi)fi(x̃
(d)) +mε− log

{∑
x′

exp

{
m∑
i=1

Q(θi)fi(x
′)

}
· exp {−mε}

})

=
D∑
d=1

(
m∑
i=1

Q(θi)fi(x̃
(d))− log

{∑
x′

exp

{
m∑
i=1

Q(θi)fi(x
′)

}}
+ 2mε

)

=
D∑
d=1

(
m∑
i=1

Q(θi)fi(x̃
(d))− log

{∑
x′

exp

{
m∑
i=1

Q(θi)fi(x
′)

}})
+ 2mDε

= `(µ : D) + 2mDε,

40

where the second inequality is due to the fact that all the features (fi) are binary features

and the sum over all of them would be bounded by m. Similarly, we can show that

`(θ : D) ≥ `(µ : D)− 2mDε.

As the number of quantization levels, k, increases, the quantization error, ε, decreases,

and vanishes when k = m. As a result, the bound specified in Theorem 3.2 becomes tighter,

and our greedy learning approach yields more accurate results while using smaller number

of model parameters. Using the quantization error bound, we derive the sample complexity

bounds as follows.

Theorem 3.3. (MLE Sample Complexity for Quantization). Let any ε, δ > 0, λ ∈ (0, 1)

be given. Let θ = {θ1, . . . , θm} denote the parameters learned from a dataset D having n

examples such that λ ≥ θi ≤ 1− λ holds. Let µ = {µ1, . . . , µk}, k ≤ m be a quantization of

θ with respect to quantizer Q between θ and µ. Then, to recover the given optimal cluster

assignments c and centers µ with quantization error less than |θi −Q(θi)| with probability at

least (1− δ), it suffices to have training set size

n ≥

(
1 +

ε

2m

)2

2λ2
(ε

2m

)2 log
2

δ
.

Proof. . From Theorem 3.2, 1/n(`(θ : D)− `(µ : D)) ≤ 2mε′ where ε′ ≥ 0 is a small constant.

For 2mε′ ≤ ε to hold, it suffices that ε′ ≤ ε/2m. Applying Lemma 17 from (Abbeel et al.,

2006) completes the proof.

3.4 Relearning

The log-likelihood score of the quantized log-linear model can be further improved by relearning

the model, treating all parameters that are quantized to the same value as tied. Since the

41

X1 X2 X3

θ1 θ2, θ3 θ4, θ5

Figure 3.2. Bayesian network for Example 3.5.

quantizer Q induces a k-partition on the original parameter set θ, we set up the following

learning problem.

max
θ

`(θ : D)

s.t. {θi = θj : θi, θj ∈ θ,Q(θi) = Q(θj)}.
(3.1)

The optimization problem given above is concave and we can use the same approaches (e.g.,

gradient ascent) that are used to solve the MLE problem. As mentioned earlier, the key

benefit of the formulation in equation (3.1) is that it has fewer (unique) parameters and

therefore the data statistics are estimated using a larger sample size than the ones used in the

unconstrained (MLE) version of this problem. From standard sampling theory (Liu, 2004),

this reduces the variance of the estimates.

Proposition 3.4. Let µ denote the set of quantized parameters, Q be the corresponding

quantizer, and ρ be the relearned parameters (optimal solution of the optimization problem

given by (3.1)), then we have

`(ρ : D) ≥ `(µ : D).

Proof. Since µ is a feasible solution of the problem given in (3.1), namely it satisfies all the

constraints), and ρ is the optimal solution, it follows that `(ρ : D) ≥ `(µ : D).

We illustrate the ideas of quantization and relearning with the following example.

Example 3.5. Given the binary Bayesian network shown in Figure 3.2 with five parameters

(θ1, . . . , θ5) corresponding to the three random variables (X1, X2, X3). For brevity, we do

42

Table 3.1. MLE computations for learning parameter θ1 and θ4 under no tying and tying
(quantize and relearn).

Parameter No tie Tie (quantize:avg) Relearn

θ1
α1

α1+α2 1
2

(
α1

α1+α2
+ β1

β1+β2

)
α1+β1

α1+α2+β1+β2

θ4
β1

β1+β2

not include the 1− θi parameters. Given a dataset D over the three variables, the relevant

sufficient statistics are as follows: let α1 = #1(X1 = 1 : D) be the number of times X1

appears as 1 in the data set. Similarly, let α2 = #1(X1 = 0 : D). Let β1 = #1(X3 = 1|X2 =

1 : D) be the number of times X3 and X2 both appear as 1 in the data set. Similarly, let

β2 = #1(X3 = 0|X2 = 1 : D). Assume α1, α2, β1, and β2 > 0. Table 3.1 shows the MLE

computations required for learning parameters θ1 and θ4 under no tying and tying scenarios.

3.5 Experiments

We evaluated the performance of our quantized approach on learning tasks using several

publicly available benchmark datasets from the UAI 2008 probabilistic inference competition

repository (http://graphmod.ics.uci.edu/uai08). All experiments were performed on quad-core

Intel i7 based machines with 16GB of RAM running Ubuntu.

First, we compared our quantized tied weight learning algorithms to the MLE with a

Laplacian prior on a collection of Bayesian network learning problems. For each selected

Bayesian network, we used forward sampling to generate 100 sets of 6,000 training, 2,000

validation and 2,000 test data points. Using the training data, we learned three models

corresponding to the MLE, the quantized MLE, and a MLE obtained by relearning after

43

Table 3.2. Network information and error analysis for MLE, (Q) Quantized, and (RL)
Relearned.

Total # True Est. Max Error
Network Param. k k MLE Q RL

bn2o 20,510 20,491 500 0.339 0.339 0.299
students 1,308 13 20 0.141 0.141 0.140
grid 1,089 596 400 0.0186 0.0186 0.0181
friends 3,899 6 10 0.008 0.008 0.007

quantization for different values of k. Performance of each learning technique was evaluated

using the average log-likelihood over the test set.

We consider three kinds of Bayesian networks: two-layered noisy-or Bayesian networks

(Savicky and Vomlel, 2009), relational Bayesian networks constructed from the Primula tool

(UCLA), and grid networks (Sang et al., 2005). The various networks and the respective

number of parameters in the networks are shown in Table 3.2.

We experimented on various noisy-or networks. The results for these networks were

consistently similar. Figure 3.3 (a) shows the result for one of the networks. For these

models, the MLE has a higher average log-likelihood than the quantized MLE at low values

for k, but we obtained a significant performance improvement over the MLE by relearning

after quantization. As k increases, relearning greatly outperforms the MLE and reaches

a steady level. The performance difference tends to zero as k converges to the actual

number of parameter in the network. Even for small k, the relatively small difference in

log-likelihood appears to be a reasonable trade-off for the drastic reduction in the number of

model parameters.

We also selected two relational networks and one grid network. The results for these

models appear in Figure 3.3 (b)–(d). The performance for these networks are similar to the

noisy-or networks. For small k, the performance improvement by relearning is realized fairly

immediately, while the quantization also converges to the MLE quickly.

44

-19

-18.9

-18.8

-18.7

-18.6

-18.5

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE

(a) bn2o

-77.95

-77.9

-77.85

-77.8

-77.75

-77.7

-77.65

-77.6

-77.55

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE

(b) grid

-13.4

-13.2

-13

-12.8

-12.6

-12.4

-12.2

-12

-11.8

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE

(c) students

-77

-76

-75

-74

-73

 0 50 100 150 200 250 300

A
ve

ra
ge

 L
og

-l
ik

el
ih

oo
d

K

Quantized
Relearned

MLE

(d) friends

Figure 3.3. Average log-likelihood on test data plotted for each parameter learned graphical
model (MLE, Quantized and Relearned) varying the value for k level of quantization.

We conducted error analysis on parameter estimation between the three different learned

models and the true model by using the validation set to obtain an optimally estimated

k. With the exception of bn2o, our estimated k is reasonably close to the true k in the

various models as shown in third and fourth column of Table 3.2. The bn2o networks contains

many very similar parameter values and thus resulted in a much lower estimated k. For each

model set, we calculated the average absolute point-wise error between the true and learned

parameters and selected the maximum among the experimental set. The results are also

shown in Table 3.2. The relearning has a consistent lower error rate compared to MLE and

quantization, while the quantization has similar error rate as MLE with fewer parameters.

45

This reduction in the number of parameters often translates to better inference performance

at prediction time as we show in the next subsection.

3.6 Discussion

We proposed a greedy method to learn tied parameter models that quantizes the parameters

learned via maximum likelihood estimation using k-means clustering. Despite its simplicity,

we demonstrated empirically that our approach can be used both as a regularizer and as a

technique to reduce model complexity, which comports with the theoretical bounds on the

error resulting from quantization that we provided.

46

CHAPTER 4

LEARNING PARAMETER TIED MARKOV NETWORKS

4.1 Introduction

In this chapter, we describe a parameter tying algorithm as a regularization technique for

parameter learning in Markov networks (MN). In Chapter 3 we proposed an automatic

approach for tying (parameters) in Bayesian networks (BNs). The parameter learning

algorithm has three basic steps: (1) learn the parameters of the given BN using the maximum

likelihood estimation (MLE) objective (this can be done in closed-form in BNs); (2) given

a positive integer k, use the 1-dimensional k-means algorithm to group the conditional

probabilities into k clusters; and (3) relearn the probabilities by forcing all parameters in each

cluster to take the same value (again this can be done in closed form). Through experimental

evaluations on a few benchmark datasets, we showed that the hard parameter tying approach

often yields models that not only have higher test set log-likelihood scores but also admit

faster and more accurate inference compared to models trained using the MLE objective.

It is not clear on how to apply the method presented in Chapter 3 to solve the harder

parameter learning task for MNs. Unlike BNs, the choices of (clique) potential functions

for MNs are not unique (i.e., MNs are not identifiable). Specifically, there is an infinite

continuum of parameter value settings that all represent the same probability distribution.

For instance, multiplying all parameters in a potential function by a real constant c > 0

does not change the underlying distribution. Another example is a MN with two pairwise

potentials that share one common variable. The information on the common variable can

be split (shifted) in arbitrary ways that result in the same distribution. A consequence of

this invariance is that applying the aforementioned k-means clustering technique to achieve

parameter tying may not produce useful results.

We address this limitation by proposing a soft, instead of hard, parameter tying scheme

dubbed apt. Given that a MN has high degree of freedom in terms of parameter settings,

47

soft tying allows for greater flexibility for parameters to shift among cluster assignments.

This type of soft tying can be viewed as a generalization of L2 regularization that allows for

k Gaussian priors (instead of one) and k different cluster center means (instead of only zero

means). To automate parameter tying, we set up the learning problem as jointly selecting

the parameters, group membership, and means such that either the MLE or maximum

pseudolikelihood (MPLE) plus the penalty term, informally described above, is maximized.

We then propose a block coordinate ascent algorithm for this optimization problem and show

that it converges to a local maximum.

The second contribution is a detailed theoretical analysis of our proposed algorithm. In

particular, building on the work of (Bradley and Guestrin, 2012) and (Ravikumar et al., 2010),

we prove sample complexity bounds for our algorithm within the probably approximately

correct (PAC) (Valiant, 1984) framework. We show that our algorithm can learn the optimal

cluster memberships of the parameters with high probability when the clusters are well

separated (i.e., sufficiently far from each other). Moreover, when the data is generated from

a model having tied parameters, we show that the sample complexity of our algorithm can

be significantly smaller than the MLE/MPLE learning task with L2 regularization. These

results provide the first rigorous theoretical justification of quantization that we are aware of.

We end the chapter with a detailed empirical evaluation of our proposed algorithm. We

compare with L2 regularization on binary pairwise Markov network structures generated using

the L1 regularized logistic regression algorithm of (Ravikumar et al., 2010). Our results show

apt outperforms L2 regularization according to pseudo-loglikelihood (PLL) score, especially

on dense networks. We also evaluated the impact of changing the number of clusters on

the PLL score and found that small to medium values for k often achieve the best score.

These results demonstrate that apt is a promising, practical approach for controlling model

complexity and improving generalization performance.

48

•
✓1

•
✓2

•
✓3

•
✓4

• • • •
✓j

•
✓j+1

• • • • • •
✓m

µ1 µ2 µaj

Figure 4.1. Quantization intervals denoting tied parameters. Each k-partition (interval)
contains a set of quantized parameters θi (dots) and is associated with a local Gaussian
distribution parameterized by (µ = µaj , σ). Short dashed lines on the intervals denote the
quantization boundaries which shift according to an optimum (local) penalized parameter
setting.

4.2 Problem Definition

We are interested in learning a parameter tied graphical model (Chapter 3, Definition 3.1)

for Markov networks. For a fixed set of constraints, the learning problem can be formulated

as maximizing a concave objective (the log-likelihood) over a convex set (set of equality

constraints). This can be accomplished via projected gradient ascent. Since the total numbers

of partitions is given by the Bell number, searching over all possible constraint sets is not

feasible. However, the problem can be simplified by relaxing the equality constraints. Our

approach is to approximate the equality constraints utilizing a penalty function which enforces

a soft tying of parameters. We reformulate the learning of a parameter tied graphical model

by adding a penalty for poor clusterings to the log-likelihood objective.

arg max
θ,a,µ

`(θ)− λ

2

m∑
j=1

(θj − µaj)2. (4.1)

The objective in equation (4.1) represents a regularized log-likelihood similar to L2 regu-

larization. Here, the penalty function is the k-means objective with an additional tuning

hyperparameter λ that controls the magnitude of the penalty. This corresponds to a collection

of k Gaussian priors such that the i-th prior has mean µi and variance proportional to 1/λ

(see Figure 4.1). However, while equation (4.1) is concave in θ for a fixed clustering, the

objective function is no longer a concave optimization problem when a is not given (note that,

49

in general, the k-means objective is not convex). It is easy to show that L2 regularization is

a special case of the objective in equation (4.1); all we have to do is assume that there is

only one cluster and µ1 = 0.

4.3 Block Coordinate Ascent Learning Algorithm

In this section, we derive a block coordinate ascent technique for equation (4.1), thus achieving

our aim of automating parameter tying for MNs. We will refer to this general algorithm

simply as apt going forward. Giving fully observed training dataset D, the MN structure

MMN , 〈X,θ,GMN〉, k clusters, and penalty term λ, the apt algorithm performs coordinate

ascent on the objective in equation by alternating between finding the optimal parameters for

a fixed clustering and finding the optimal clustering for a fixed vector of parameters. Both

of these optimizations are straightforward: a regularized maximum likelihood optimization

problem and a 1-dimensional k-means clustering problem respectively. The former can be

solved using standard gradient-based methods while the latter can be solved in polynomial

time using dynamic programming. Next, we make remarks about Algorithm 4.1, that illustrate

the flexibility and utility of our proposed method.

First, Algorithm 4.1 returns a soft clustering of the parameters. However, we can turn the

soft clustering into hard clustering and relearn the parameters using the MLE objective while

enforcing equality constraints C on all parameters assigned to the same cluster. This can be

done via projected gradient ascent. That is, after each gradient step, the parameter vector

may step outside of the set of constraints. If this happens, we simply project the parameters

back into the constraint set. As the cluster constraints insist that all parameters in cluster i

must have the same value, the projection operation simply replaces all parameters in cluster

i with the average of all parameters in cluster i.

Second, since the objective function in equation (4.1) is bounded from above, the coordinate

ascent procedure is guaranteed to converge to a local maxima. The algorithm increases the

50

Algorithm 4.1: Automatic Parameter Tying (apt)

1 Input: A Markov network structureMMN , 〈X,θ,GMN〉, Integer k > 0,
Integer T > 0, penalty λ

2 Output: Feature vector θ, clustering 〈a,µ〉
3 begin
4 Initialize θ(0) and 〈a,µ〉 to random values.
5 for t← 1 to T or until convergence do
6 1. Update θ given 〈a,µ〉 using gradient ascent.

θ(t) ← arg max
θ

`(θ)− λ

2

m∑
j=1

(θj − µ(t−1)

a
(t−1)
j

)2

7 2. Update 〈a,µ〉 using 1D k-means given θ.

〈a(t),µ(t)〉 ← arg min
a,µ

m∑
j=1

(θ
(t)
j − µaj)2

where µi 1∑m
j=1 I(aj ,i)

∑m
j=1 θj · 1(aj, i) and 1(aj, i) is an indicator function which

equals 1 if aj = i and 0 otherwise.

8 return 〈θ(T),a(T),µ(T)〉
9 end

objective function each iteration since each of the two sub-optimization problems, finding the

optimal parameters for a fixed clustering (increasing log-likelihood) and finding the optimal

clustering for a fixed vector of parameters (reducing penalty), contributes to increasing the

objective function. In practice, the rate of convergence can be improved by initializing the

parameters and cluster means to small values or after running a few iterations of gradient

ascent that optimizes MLE plus an L2 regularization term.

Third, note that Algorithm 4.1 optimizes MLE plus a penalty term which requires

inference over the MN. The latter is often infeasible in practice. Its practical performance and

convergence can be improved by using two strategies: (a) stochastic or mini-batch gradient

ascent and (b) using the MPLE objective instead of MLE. Stochastic and mini batch gradient

51

ascent can be used in two ways. First, we can use it to optimize θ in Step 1 of the for

loop of Algorithm 4.1. Second, we can use it in the outer loop by not running Step 1 until

convergence, namely we run gradient ascent only for a few iterations in Step 1. In our

experiments, we employ both strategies to speed up our algorithm.

4.4 Theoretical Analysis

In this section, we analyze the sample complexity of the proposed method and provide condi-

tions under which it provably recovers the correct clustering assignments a and approximate

cluster means µ with small L1 error. We demonstrate polynomial sample complexity when the

clusters are well-separated (defined formally below). We consider two cases: (1) hard tying :

when the true MN from which the data is generated has exactly k < m unique parameters;

and (2) soft tying : when the MN has m parameters and k is the number of clusters.

We begin by establishing conditions for well-separation of clusters in Lemmas 4.3 and

Corollary 4.4.

Definition 4.1. (Maximum Cluster Width). Let ω denote the maximum width of a cluster

i such that the width of a cluster is the Euclidean distance between two farthest parameter

points, θr, θs, in the cluster.

ω = max
i

max
(r,s)|ar=i,as=i

|θr − θs|.

Definition 4.2. (Minimum Inter-cluster Distance). Let α denote the Euclidean distance

between two closest parameter points, θr, θs, in different clusters i, j.

α = min
(r,s)|ar=i,as=i,i 6=j

|θr − θs|.

We will refer to α as the minimum inter-cluster distance.

52

Lemma 4.3. Let θ̂i and µ̂j denote the estimates of the true parameters θi and µj respectively

based on N samples drawn independently and identically from the true MN. Let maxi |θi−θ̂i| ≤

ε and ω, α be true maximum cluster and minimum inter-cluster distances. If ε < α−ω
4

, then

the 1-dimensional k-means (k > 0) clustering algorithm is guaranteed to return optimal

cluster assignments.

Proof. Without loss of generality, since maxi |θi − θ̂i| ≤ ε, the estimated maximum cluster

width is bounded above by, ωUB ≤ ω + 2ε, and the estimated minimum inter-cluster width is

bounded below by αLB ≥ α− 2ε. To ensure the parameter estimates θ̂i and θ̂j, with cluster

assignments, âi and âj, of any two parameters, θi and θj such that âi = ai and âj = aj,

requires the condition αLB > ωUB. Thus, by satisfying α − 2ε > ω + 2ε, rearranged as

ε < α−ω
4

, the 1-dimensional k-means clustering algorithm is guaranteed to return optimal

cluster assignments.

Corollary 4.4. For the hard tying case (namely there are k > 0 unique parameters) the 1-

dimensional k-means clustering algorithm is guaranteed to return optimal cluster assignments

if ε < α
4
.

Proof. When there are k > 0 unique parameters that also correspond to the cluster centers,

ω = 0 and the proof follows from Lemma 4.3.

We use Lemma 4.3 and Corollary 4.4 to derive the following definition for well-separation.

Definition 4.5. (Well-separation) We say that the triple 〈θ,a,µ〉 denoting the parameters

as well as cluster assignments and centers is well-separated for a given error bound ε iff

ε < α−ω
4

for the soft tying case and ε < α
4
for the hard tying case.

Next, we use Lemma 4.3 and Corollary 4.4 in conjunction with the PAC and sample

complexity bounds for MLE derived in (Bradley and Guestrin, 2012) and (Ravikumar et al.,

2010) to yield our desired sample complexity bounds. Formally,

53

Theorem 4.6 (MLE Sample Complexity for Soft and Hard Tying). Let Cmin > 0 be

a lower bound on the minimum eigenvalue of the Hessian of the negative log likelihood. Let

the regularization hyperparameter λ be chosen such that λ = C2
minn

−ξ/2/(26m2), where n is

the number of training samples, m is the number of feature weights and ξ ∈ (0, 1). Then, to

recover the optimal cluster assignments a and centers µ with L1 error smaller than (α−ω)/4

with probability at least (1− δ), it suffices to have training set size

n ≥ 29

C2
min

16m2

(α− ω)2
log

2m(m+ 1)

δ
.

For hard tying, in which we have k unique parameters, the sample complexity for finding

optimal cluster assignments a and centers µ with L1 error smaller than α/4 is given by

n ≥ 29

C2
min

16k2

α2
log

2m(m+ 1)

δ
.

Proof. Our proof follows that of (Bradley and Guestrin, 2012). Given n training samples,

m number of feature weights, k number of cluster centers, and constant δ > 0. Let φ be

indicator function features with range [0, 1] s.t. the maximum magnitude of any feature

φmax = 1. Let Cmin > 0 be a lower bound on the minimum eigenvalue of the Hessian of the

negative log-likelihood. Using Lemma 9.3 from (Bradley and Guestrin, 2012), we have the

probability of failure on the lower bound of the parameter estimation error as

2m exp

(
−δ

2n

2

)
− 2m2 exp

(
nC2

min

25m2

)
.

Choose

λ = δ =
C2
min

26m2
n−ξ/2,

where ξ ∈ (0, 1). Substituting δ, we have the probability of failure as

2m exp

(
−C

2
min

26m2
n−ξ/2

n

2

)
− 2m2 exp

(
nC2

min

25m2

)
= 2m(m+ 1) exp

(
− C4

min

213m4
n1−ξ

)
.

54

To have probability of failure of at most δ for n samples, choose ξ as

2m(m+ 1) exp

(
− C4

min

213m4
n1−ξ

)
≤ δ

ξ ≤ 1− 1

log n

(
log

213m4

C4
min

+ log log
2m(m+ 1)

δ

)
.

From Lemma 4.3, for soft tying, to have the 1-dimensional k-means clustering algorithm

guarantee to return optimal cluster assignments, it suffices to bound the L1 parameter

estimation error at most ε < (α− ω)/4. Therefore, we have

C2
min

26m2
n−ξ/2 ≤ ε <

α− ω
4

log
C2
min

26m2
− ξ

2
log n ≤ log

α− ω
4

ξ

2
log n ≥ log

C2
min

26m2
− log

α− ω
4

1

2

(
1− 1

log n

(
log

213m4

C4
min

+ log log
2m(m+ 1)

δ

))
log n ≥ log

C2
min

26m2
− log

α− ω
4

n ≥ 29

C2
min

16m2

(α− ω)2
log

2m(m+ 1)

δ
.

For the hard-tying case, the parameters are set to cluster centers. This sets ω = 0 and

λ = δ = (C2
min/2

6k2)n−ξ/2. Then, from Corollary 4.4, to have the 1-dimensional k-means

clustering algorithm guarantee to return optimal cluster assignments, it suffices to bound the

L1 parameter estimation error at most ε < α/4. Therefore, we have

n ≥ 29

C2
min

16k2

α2
log

2m(m+ 1)

δ
.

The sample complexity bound implies that when the minimum eigenvalue is large and/or

when the difference between the minimum inter-cluster distance and the maximum cluster

width is large (namely, the clusters are well separated), our algorithm is statistically efficient.

As expected, the hard tying case is statistically more efficient than the soft tying case since

the former does not depend on the cluster width.

55

Table 4.1. Dataset characteristics.

Dataset #vars #train #valid #test
nltcs 16 16181 2157 3236
msnbc 17 291326 38843 58265
kdd 64 180092 19907 34955

plants 69 17412 2321 3482
audio 100 15000 2000 3000
jester 100 9000 1000 4116
netflix 100 15000 2000 3000

accidents 111 12758 1700 2551
retail 135 22041 2938 4408

pumsb∗ 163 12262 1635 2452
dna 180 1600 400 1186

kosarek 190 33375 4450 6675
msweb 294 29441 3270 5000
book 500 8700 1159 1739
tmovie 500 4524 1002 591
webkb 839 2803 558 838
reuters 889 6532 1028 1540
20ng 910 11293 3764 3764
bbc 1058 1670 225 330
ad 1556 2461 327 491

4.5 Experiments

4.5.1 Experimental Setup

We evaluated apt on 20 real-world datasets which have been widely used in recent years to

evaluate learning algorithms for probabilistic graphical models (Rahman and Gogate, 2016;

Rooshenas and Lowd, 2014; Davis and Domingos, 2010) (see Table 4.1 for details on the

binary datasets). We implemented apt in C++ and all experiments were conducted on Intel

i7 Ubuntu machines with 16GB of RAM.

56

Table 4.2. Test set negative PLL scores (k and λ selected using the validation set) on 20
benchmark datasets for L2 regularization, ltr and apt algorithm under various values of d.

d = 5 d = 15 d = 50

Dataset L2 ltr apt L2 ltr apt L2 ltr apt

nltcs 5.05 5.02 5.02 5.10 4.99 4.98 – – –
msnbc 6.17 6.12 6.11 6.22 6.10 6.08 – – –
kdd 2.12 2.11 2.11 2.09 2.08 2.09 2.14 2.08 2.07

plants 10.68 10.63 10.59 10.46 10.23 10.21 11.11 10.26 10.24
audio 38.88 38.46 38.44 38.34 37.31 37.22 40.73 37.47 37.03
jester 51.94 51.41 51.28 51.21 50.00 49.75 54.97 50.53 50.04
netflix 54.91 54.41 54.40 54.22 52.84 52.68 57.52 53.32 52.67

accidents 14.71 14.50 14.47 13.21 12.78 12.70 13.85 12.90 12.69
retail 10.53 10.46 10.45 10.57 10.41 10.40 10.93 10.40 10.39

pumsb∗ 11.58 11.47 11.46 10.13 9.80 9.79 11.17 9.94 9.79
dna 59.16 58.54 58.46 61.92 59.73 59.54 69.26 63.13 62.84

kosarek 10.41 10.35 10.34 10.32 10.17 10.17 10.59 10.27 10.25
msweb 16.98 16.80 16.79 17.04 16.60 16.60 14.80 13.74 13.71
book 35.90 36.68 35.82 35.49 37.70 35.20 36.48 42.14 35.88
tmovie 71.91 72.87 71.49 63.16 66.43 62.94 61.22 66.22 58.50
webkb 158.31 163.21 158.08 157.30 169.17 155.51 180.85 203.54 158.71
reuters 91.33 92.29 91.26 88.55 91.98 88.65 91.19 99.66 88.83
20ng 163.90 164.36 163.30 160.82 162.38 162.29 170.94 167.38 166.71
bbc 259.96 275.06 259.18 267.44 292.66 256.60 331.67 343.90 260.95
ad 6.79 6.58 6.55 6.37 6.11 6.16 6.22 6.01 6.06

For each dataset, we learned a pairwise binary MN structure (not the parameters) using

the L1 regularization based structure learning algorithm of (Ravikumar et al., 2010). This

algorithm constructs the MN structure as follows. It learns a L1 regularized logistic regression

classifier L(Xi) for predicting the value of each variable Xi given all other variables. Then,

it adds an edge between two variables Xi and Xj if the features corresponding to Xi or Xj

have non-zero weights in L(Xj) and L(Xi) respectively. Unfortunately, on many datasets,

this method yields dense models. Therefore, in order to achieve sparsity we constrained

the regularization hyperparameter (λ) so that the degree (size of the Markov blanket) of

57

each variable is bounded by d. In our experiments, we used the following values for d =

{5, 10, 15, 30, 50} where d = 10, 30 are shown in supplemental material due to space

constraint. We learned the L1 regularized logistic regression classifier using the Orthant-Wise

Limited-memory Quasi Newton (OWL-QN) method (Andrew and Gao, 2007).

4.5.2 apt versus L2 regularization

Table 4.2 shows the test set negative PLL scores (using various values of d) for apt and

L2 regularization on the 20 datasets. For each dataset, we select the k and λ values using

the validation set. Lower negative PLL values are better and bold signifies the higher value

achieved by the respective regularization method. From the results, we can clearly see apt

outperforms L2 across the majority (with the exception of reuters and 20ng) of datasets

and complexity of model structure. Moreover, as the structure becomes increasingly dense

(more neighboring nodes), the performance gap widens. One key takeaway here is when the

underlying model has a large number of parameters, it is prudent to utilize apt for better

generalization performance. Parameter learning algorithms for complex models such as CNNs

or SRL models can leverage our method since the model will contain parameters that take

on similar values, which is evident from the results.

4.5.3 apt versus ltr

We also compared apt with the approach presented in Chapter 3 to MNs, which we refer

to as the learn-tie-relearn algorithm (ltr). The previous algorithm focuses on BNs and

a straightforward extension of the previous method to parameter learning in MNs is the

following: (1) learn the parameters using the MLE objective; (2) cluster the resulting

parameters into k clusters; and (3) relearn the parameters by adding equality constraints

over the parameters in each cluster. However, we found that this approach has high variance.

This is likely due to the scale invariance property of MNs. To combat this, in step (1) of

58

100 101 102 103 104
Number of Clusters (k)

12.5

13.0

13.5

14.0

14.5

15.0
Av
er
ag

e
Ne

ga
tiv

e
Te
st
 S
et
 P
LL

Dataset: accidents

APT-Struct=5
L2-Struct=5

APT-Struct=15
L2-Struct=15

APT-Struct=50
L2-Struct=50

100 101 102 103 104

Number of Clusters (k)

37.0

37.5

38.0

38.5

39.0

39.5

40.0

40.5

41.0

Av
er

ag
e

Ne
ga

tiv
e

Te
st

 S
et

 P
LL

Dataset: audio

APT-Struct=5
L2-Struct=5

APT-Struct=15
L2-Struct=15

APT-Struct=50
L2-Struct=50

100 101 102 103 104
Number of Clusters (k)

58

60

62

64

66

68

70

Av
er

ag
e

Ne
ga

tiv
e

Te
st

 S
et

 P
LL

Dataset: dna

APT-Struct=5
L2-Struct=5

APT-Struct=15
L2-Struct=15

APT-Struct=50
L2-Struct=50

100 101 102 103 104
Number of Clusters (k)

58

60

62

64

66

68

70

Av
er

ag
e

Ne
ga

tiv
e

Te
st

 S
et

 P
LL

Dataset: dna

APT-Struct=5
L2-Struct=5

APT-Struct=15
L2-Struct=15

APT-Struct=50
L2-Struct=50

Figure 4.2. Average test set negative PLL scores for L2 (dotted) and apt (solid) for varying
number of clusters (k) and model complexity (d). To minimize clutter, we show graphs for
only three values of d and do not include results for ltr (whose variance is quite high).

the algorithm, we learned the parameters using L2 regularization, which greatly reduces the

variance and thus improves the performance of ltr.

Table 4.2 also shows the test set negative PLL scores (using various values of d) for apt

and ltr. For each dataset we select the k and λ values using the validation set. Lower

negative PLL values are better and bold signifies the best value achieved by the respective

regularization method. From the results, we clearly observe that apt outperforms ltr across

the majority of datasets and complexity of model structure (measured by d). However, the

59

noticeable deviation from the previous results is that wider differences occur in datasets with

higher complexity (more variables and neighboring nodes) as in the case with bbc (d = 50).

Comparatively, we see that ltr mostly outperforms L2. Thus, hard tying the parameters

output by L2 is highly beneficial.

4.5.4 Impact of varying k

Figure 4.2 shows average negative test set PLL scores for apt and L2 regularization as a

function of the number of clusters k on four randomly chosen datasets. To better organize

the results and to avoid clutter, the comparison was made by fixing the maximum number

of d neighboring nodes to 5, 15 and 50 for the learned MN structures and across varying

k clusters. Consistent with the previous results, more complex structures (d = 50) create

a wider performance gap between apt and L2. Conversely, the performance gap is closer

for simpler models (d = 5). The plots also show that by having the ability to control the

parameter k (number of clusters), there is an optimal setting where the lowest test average

negative PLL score can be achieved. For example, in dna, the best test average negative PLL

score requires approximately 20 clusters. Overall, for each of the datasets, there is a setting

of k where apt outperforms L2. This demonstrates the utility of our approach.

We found that our algorithm converges rapidly and requires roughly the same number

of iterations as L2 to converge in practice. Moreover, its variance is also low (and therefore

not plotted in the graphs and tables), namely most local maxima reached achieve similar

solution quality.

We end this section by mentioning several pragmatic techniques to achieve good practical

performance. First, it is often beneficial to increase the regularization hyperparameter λ

with the number of iterations. As the cluster centers and assignments converge, increasing λ

increases the penalty and yields rapid convergence to good solutions. Second, hard tying is

beneficial only for moderate to large values of k and in fact for small values of k, it may hurt

60

the performance significantly. For small values of k, soft tying works much better. Finally,

the rate of convergence can be improved in practice by updating the cluster centers but

not the cluster assignments at each iteration of gradient ascent in Step 1 of Algorithm 1.

Periodically updating the cluster assignments appears to yield much faster convergence than

updating them at each iteration.

4.6 Discussion

We investigated parameter tying, an alternative regularization method for MNs. Unlike other

machine learning frameworks where parameter tying is specified a priori, we introduced

an automatic approach to tying parameters (apt). Specifically, we incorporated a more

informative and general penalty term that leverages clustering into the objective function

for parameter learning in MNs. We showed that our approach generalizes L2 regularization.

Since our formulation of the penalized learning problem is no longer concave, we proposed a

block coordinate ascent algorithm to solve the optimization problem efficiently. We provided

sample complexity bounds for our proposed algorithm which show significant improvement

over standard L2 regularization with high probability when the clusters are well-separated.

Empirically, we showed that our approach outperforms L2 regularization on a variety of

real-world datasets.

61

CHAPTER 5

SLICE IMPORTANCE SAMPLING

FOR PARAMETER TIED GRAPHICAL MODELS

5.1 Introduction

As mentioned earlier, a key benefit of parameter tying is that it introduces symmetries in

the learned model, and exploiting the symmetric structure makes inference easier and more

efficient. In this chapter, we develop a novel sampling-based approximate inference algorithm

for fast and accurate sampling in parameter tied models. The sampling algorithm is based on

slice importance sampling (Neal, 2003; Gogate and Domingos, 2010). Slice sampling belongs

to the family of Markov Chain Monte Carlo (MCMC) algorithms and is related to other

MCMC algorithms such as Gibbs and Metropolis-Hastings. Our experiments conclusively

show that our new sampling algorithm outperforms MC-SAT (Poon and Domingos, 2006),

a popular sampling algorithm that combines MCMC sampling and satisfiability solution

sampling, and Gibbs sampling (baseline) in the presence of tied parameters.

5.2 Slice Importance Sampling

In slice importance sampling, the proposal distribution is defined over the features of a

log-linear model rather than over the variables. For instance, we can define a proposal

distribution

Q(F) = Q(f1)
m∏
i=2

Q(fi|f1, . . . , fi−1),

over the set of features F . Sampling each feature in order from Q yields a 0/1 assignment

to the features, where 0 indicates that the negation of the feature is true while 1 indicates

that the feature is true. We can consider this 0/1 assignment as a slice over the possible

assignments to the variables in the following sense. All (variable) assignments that satisfy all

62

features assigned to 1 and all negations of features assigned to 0 will have the same probability.

Uniformly sampling over this subset of variable assignments (the slice) gives us the required

sample. The benefit of slice sampling is that all variable assignments having the same

probability in the distribution represented by the log-linear model have the same probability

(assuming uniform sampling over the slice can be done) in the proposal distribution. This

reduces the variance (Gogate and Domingos, 2010).

In our new algorithm, the main idea is to define the proposal distribution over the tied

features rather than over the individual features, further reducing the variance. We first create

a set of super-features G, such that each of them contains features with tied parameters.

Gi = {fj|fj has parameter θi}.

Using the chain rule, define a proposal over super-features as

Q(G) = Q(G1)
k∏
i=2

Q(Gi|G1, . . . ,Gi−1).

However, one problem with defining a proposal over the super-features is that the number of

values each super-feature Gi can take is exponential in the number of features it contains,

namely exponential in |Gi|. To compactly represent these exponentially many assignments,

we use the so-called counting assignments (Milch et al., 2008; Jha et al., 2010) as follows. We

partition the assignments to the features in the set Gi into |Gi|+ 1 subsets where the j-th

subset contains all assignments in which exactly j features in Gi are assigned to true and

the remaining are assigned to false. Thus, each super-feature Gi can take |Gi|+ 1 values,

yielding exponential reduction in complexity.

Another benefit of using counting assignments is that they yield better proposal distribu-

tions. In particular, the set of valid counting assignments to all super-features partitions the

set of assignments to the variables into equiprobable subsets, where each subset is composed

of assignments to variables that satisfy a counting assignment to all super-features. In an

63

Algorithm 5.1: Tied Weight Importance Sampling

1 Input: A log-linear modelM = 〈X,F ,µ〉 with k unique weights,
number of samples N

2 Output: Importance weighted samples
3 begin
4 Create one super-feature Gi for each parameter µi
5 Construct a proposal distribution Q(G) over the super-features
6 for s← 1 to N do
7 S ← ∅
8 w(s) ← 1

9 for i← 1 to k do
10 Sample ji ∼ Q(Gi|G1, . . . ,Gi−1)

11 Add ji randomly selected features from Gi to S
12 Add the negation of the features from Gi not selected in the previous step

to S
w(s) ← w(s) ×

(|Gi|
ji

)
exp(jiµi)

Q(Gi|G1, . . . ,Gi−1)

13 Sample x̃(s) ∼ USAT (S)

14 w(s) ← w(s) ×#S

15 return (x̃(N), w(N)) for s← 1 to N

16 end

ideal proposal distribution all such assignments must have the same probability, and defining

the proposal over the counting assignments preserves this property.

Example 5.1. Consider a log-linear PGM having three features f1 = X1 ∨X2, f2 = X2 ∨X3,

and f3 = X1 ∨X3 and three binary variables X1, X2, and X3. Let the features f1 and f2 have

the same weight θ1 and θ2 be the weight associated with f3. We define two super-features:

G1 = {f1, f2} and G2 = {f3}. G1 has four possible assignments: {(f1 = 0, f2 = 0), (f1 =

0, f2 = 1), (f1 = 1, f2 = 0), (f1 = 1, f2 = 1)} but only three possible counting assignments

{0, 1, 2}, where 0, 1 and 2 correspond to the subset of assignments {(f1 = 0, f2 = 0)},

{(f1 = 0, f2 = 1), (f1 = 1, f2 = 0)} and {(f1 = 1, f2 = 1)} respectively. The reader can verify

64

that the assignments to the the variables that satisfy either (f1 = 0, f2 = 1) or (f1 = 1, f2 = 0)

have the same probability.

However, counting assignments introduce the following problem. To generate a sample, we

need to generate an assignment to variables uniformly at random from the subset of variable

assignments that satisfy the counting assignment. Unfortunately, this problem is extremely

challenging and to our knowledge no general-purpose algorithms exist for it. To alleviate this

computational difficulty, we propose to use the following proposal distribution.

Q(f1, . . . , f|Gi| | ∀j fj ∈ Gi,Gi = t) =
1(|Gi|
t

) .
Sampling from this proposal distribution yields a 0/1 assignment to the features and the

only problem that remains to be solved is generating an assignment to variables uniformly

at random from the subset of variable assignments that satisfy the given assignment to

the features. This problem can be reduced to the uniform solution sampling problem, a

well-researched problem for which a number of general-purpose solvers and techniques exist

(Gogate and Dechter, 2011; Wei et al., 2004; Gogate, 2009).

Algorithm 5.1 formally describes our proposed slice importance sampling algorithm. The

sampling process begins by constructing a proposal distribution Q over the super-features

Gi associated with the same parameter µi. Then we sample assignments (ji) for each super-

feature Gi from the proposal Q in a selected order (step 10). Then we select ji random

features from Gi and set their assignment as 1. The rest of the features in Gi are assigned

0. This sampled 0/1 assignment to all features defines a satisfiability problem S. Solutions

of this satisfiability problem correspond to the subset of variable assignments that have the

same probability. Thus to generate a sample, all we have to do is uniformly sample the

solutions of S (step 13). For this (procedure USAT), we can use uniform solution samplers

such as SampleSAT (Wei et al., 2004) and SampleSearch (Gogate and Dechter, 2011). In our

experiments, we used the latter. The weight w(s) of the generated sample is proportional to

65

the ratio between the probability of generating the sample fromM and the probability of

generating it from the proposal distribution and is computed iteratively in steps 12 and 14.

In our experiments, we have used a simple proposal which factorizes independently over

the super-features.

Q(G) =
k∏
i=1

Q(Gi).

Let µ1, . . . , µk be the parameters and let Gi denote the super-feature that is associated with

µi. We define Q(Gi) as the binomial distribution

Q(Gi = t) ,

(|Gi|
t

)
exp(tµi)

(1 + exp(µi))|Gi|
,

where t ∈ {0, . . . , |Gi|}. Notice that the binomial is defined over |Gi|+ 1 points as opposed

to the conventional proposal which would have been defined over 2|Gi| points.

5.3 Experiments

We evaluated the performance of our quantized approach on inference tasks using several

publicly available benchmark datasets from the UAI 2008 probabilistic inference competition

repository (http://graphmod.ics.uci.edu/uai08). All experiments were performed on quad-core

Intel i7 based machines with 16GB of RAM running Ubuntu.

We compared our proposed approximate inference method based on slice importance

sampling (denoted TW) to MC-SAT (Poon and Domingos, 2006) in the Alchemy system

(Kok et al., 2006) and Gibbs sampling for inference in Bayesian networks. Each algorithm

was run for 500 seconds and then evaluated by computing the average Hellinger distance

(Kokolakis and Nanopoulos, 2001) between the single-variable marginals obtained by each

algorithm and marginals obtained by an exact solver. The Hellinger distance between

two probability distributions P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qm) is defined as

h(P,Q) = (1/
√

2)
√∑m

i=1

√
pi −√qi. The results were averaged over 10 runs of each algorithm

66

�����

�����

�����

����

���� ���� ���� ���� ����

�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��

�
��������� �������� �����

�����

��

�����

������ ����� ������

(a) bn2o

��

����

��

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��

�
������ ����� ������ �����

��

����

���

��������� ��������

(b) grid

����

����

��

���� ���� ���� ���� ����

�
��
��
��

�
�
��
��
��
��

�
�
��
��
��
�

�
������ ����� ������ �����

����

��

����

��������� ��������

(c) students

Figure 5.1. Average Hellinger distance between the exact and the approximate one-variable
marginals plotted as a function of k level of quantization for MS MLE (MC-SAT MLE), MS
RL (MC-SAT Relearned), TW MLE (Tied Weight MLE), TW RL (Tied Weight Relearned),
GIBBS MLE (Gibbs MLE), and GIBBS RL (Gibbs Relearned). Result for each of the network
types (noisy-or, relational, and grid) are shown.

using the MLE as well as parameters that were relearned (RL) after quantization. Figure

5.1 (a) to (c) shows our experimental results on each the three types of networks (noisy-or,

relational, and grid).

The average Hellinger distances are consistently similar between MC-SAT and our method

across the three network types when no parameters are tied (the MLE case). This is expected

as MC-SAT is a special case of our algorithm. However, with the relearned parameters,

our algorithm significantly outperforms both MC-SAT and Gibbs sampling on the students

67

and grid networks. This shows that even though the test-set log likelihood of the MLE

solution and the parameter tied models are roughly the same, at prediction time (estimating

marginals), models having tied parameters outperform untied models provided methods such

as TW that explicitly exploit the tied parameters are used.

One explanation for the poor performance of MC-SAT on parameter tied models is that

MC-SAT is based on local search with a strong bias towards features that have high weights.

Thus, without the ability to make large moves, MC-SAT is not able to efficiently traverse

through the state space. Analogously, MCMC techniques such as Gibbs sampling, can also

become trapped within a local region and may require a large number of samples to escape.

Since our algorithm systematically partitions the overall state-space through the tied weight

structure, it is able to move across the various regions more easily.

5.4 Discussion

We introduced a new slice importance sampling technique that exploits the symmetry

resulting from the parameter tied model. Specifically, better proposal distributions can be

constructed over the groups of tied parameters (features). In addition, with slice sampling,

the algorithm explores the sample space more effectively. Experimentally, our sampling

algorithm outperforms comparable algorithms, such as MC-SAT and Gibbs sampling, when

there are tied parameters in the model.

68

CHAPTER 6

DISSOCIATION-BASED BOUNDING ALGORITHMS

6.1 Introduction

It is well known that probabilistic inference in GM can be reduced to weighted model counting

(WMC) (Chavira and Darwiche, 2008). The reduction has two main components. The first

component is to encode the GM as a propositional knowledge base. The second component is

to leverage state-of-the-art propositional model counters to develop a WMC-based algorithm

for solving the desired inference task. However, a major drawback of the aforementioned

methods is that they are computationally intractable for most real-world problems. Therefore,

developing fast, scalable approximate schemes is a subject of fundamental interest.

In this chapter, we focus on developing a novel bounding algorithm for the WMC

problem. Specifically, we extend the work of Gatterbauer and Suciu (Gatterbauer and Suciu,

2014, 2017), which is applicable to only monotone SAT formulas, to the task of WMC

for arbitrary (non-monotone) formulas. Our method is related to the class of bounded

complexity inference schemes such as mini-buckets (MB) and their extensions (Choi et al.,

2007; Liu, 2014). MB relaxes the original problem by decomposing it into local subproblems

(by splitting/dissociating nodes) that are then solved exactly.

We make the following contributions. First, we analyze the idea of dissociation based

oblivious bounds (Gatterbauer and Suciu, 2014) using the framework of WMC and extend it

to the general non-monotone case. Second, we take advantage of logical structure and derive

a novel set of inequalities for bounding methods that dissociate until the formula has a tree

structure (namely the i-bound in MB is equal to 1). Third, we theoretically compare the idea

of dissociation with MB and show that MB bounds are a special case of our bounds and can

be quite inferior. Lastly, we empirically demonstrate that dissociation based bounds are more

accurate than MB on several synthetic and real-world datasets.

69

6.1.1 Weighted Model Counting Problem

Given a propositional formula F , a satisfying assignment or model of F is a truth assignment

to all variables in F such that F evaluates to true (x̃ |= F). As mentioned in Chapter 2, the

problem of determining if there exists a satisfying assignment x̃ for F is called the Boolean

satisfiability problem or SAT. Propositional model counting or #SAT is the task of computing

the number of models of F .

The weighted model counting (WMC) problem (Chavira and Darwiche, 2008; Sang et al.,

2005) extends model counting by associating the following probability distribution (weight

function) φi to each propositional variable Xi.

φi(Xi) =


pi if Xi evaluates to 1

pi otherwise
,

where pi ∈ [0, 1] and pi , 1−pi.1 The functions φi yield a weighted representation F of the

CNF F and is called WCNF. Formally, F is a triple 〈X,Φ,C〉, where X is a set of n Boolean

variables in F , Φ is a set of weight functions φi associated with each Boolean variable Xi ∈X

and C is a set of clauses of F . F represents the following probability distribution

PF(x̃) =


1

ZF

n∏
i=1

φi(Xi = xi) if x̃ |= F

0 otherwise

,

where ZF is the partition function, also referred to as the weighted model count (WMC) of F ,

and is given by

ZF =
∑

(x̃∈Ω∧ x̃|=F)

n∏
i=1

φi(Xi = xi).

When pi = 1/2 is assigned for all variables, then the product 2nZF equals the special case of

(unweighted) model count of F .

1WMC is typically defined by attaching weights to literals, and the corresponding potential function over
each variable is constructed by exponentiating the weights. We consider an equivalent representation in which
the potential function is normalized to yield a probability distribution.

70

Table 6.1. Clauses for w2cnf Encoding of a GM.

(Xi ∨ Yi,j,1) (Xj ∨ Yi,j,1)

(Xi ∨ Yi,j,2) (Xj ∨ Yi,j,2)

(Xi ∨ Yi,j,3) (Xj ∨ Yi,j,3)

(Xi ∨ Yi,j,4) (Xj ∨ Yi,j,4)

6.1.2 WCNF Encoding of a GM

We describe here a possible translation from GM to WCNF. For more details see (Chavira

and Darwiche, 2008; Gogate and Domingos, 2010, 2016). Since we focus on pairwise binary

GMs, we can convert them to WCNFs in which each clause has at most two literals. We will

refer to such WCNFs as w2cnf.

Encoding 1. Given a GM, we can construct an equivalent w2cnf as follows. We start

with a w2cnf F defined over the variables X of the GM such that the set of clauses C

of F is empty and pXi = 0.5 for each variable Xi ∈ X. Then, for each pairwise binary

potential ψi,j in the GM such that ψij : Xi = 0, Xj = 0→ wi,j,1, ψij : Xi = 0, Xj = 1→ wi,j,2,

ψij : Xi = 1, Xj = 0→ wi,j,3, ψij : Xi = 1, Xj = 1→ wi,j,4, we add a variable for each weight

to F . We will denote the variables associated with wi,j,1, wi,j,2, wi,j,3 and wi,j,4 by Yi,j,1, Yi,j,2,

Yi,j,3 and Yi,j,4 respectively. Utilizing these weight variables, we add the the clauses given in

Table 6.1 to C for k = 1, . . . , 4. We also add the following probability distribution for each

variable Yi,j,k

φ(yi,j,k) =


wi,j,k − 1

wi,j,k
if yi,j,k is false or 0

1

wi,j,k
otherwise

.

Note that when wi,j,k < 1, φ(yi,j,k) will be negative. To avoid this condition, we can easily

rescale the potentials of the GM by multiplying them with an appropriate constant. Also,

71

X1 X2 ψ1,2(X1, X2)

0 0 0

0 1 p1p2

1 0 p1p2

1 1 p1p2

X1 X3 ψ1,3(X1, X3)

0 0 0

0 1 p3

1 0 p3

1 1 p3

Figure 6.1. Potentials for Example 6.2

zero weights can be handled by adding the corresponding negated assignment as a clause to

C. For example, if wi,j,1 = 0, we add the clause Xi ∨Xj to C. Using previous work (Chavira

and Darwiche, 2008; Gogate and Domingos, 2010), it is straight-forward to show that:

Proposition 6.1. w2cnf output by Encoding 1 represents the same probability distribution

over X as the input GM.

6.1.3 Mini-bucket Elimination for w2cnf

We can utilize inference algorithms such as bucket or variable elimination to compute the

weighted model count of a w2cnf. However, since the complexity of using such algorithms is

in general exponential in the treewidth (or induced width), a more practical approach is to

approximate the task by introducing relaxations techniques that control model complexity

(i.e., the induced width given a fixed elimination order). Mini-bucket (MB) is one such

approximate scheme that builds on bucket elimination (BE) for generating upper (or lower)

bounds on the partition function or weighted model count. We will use the following running

example to illustrate BE and MB for WMC.

Example 6.2. Consider the w2cnf F such thatX = {X1, Y2, Y3}, C = {(X1∨Y2), (X1∨Y3)}

and Φ = {φ1, φ2, φ3}. For simplicity we denote φ1 for φ1(X1), etc. We can convert the clauses

and potentials of F to the two potentials shown in Figure 6.1 yielding a more convenient form

for BE.

72

Without loss of generality, we assume the elimination ordering as [X1, Y2, Y3] (although

it is clearly not optimal, it will help us illustrate the main ideas). BE begins by creating

|X| number of buckets and groups the functions by placing each function involving some

variable Xi (or Yi in our example) in a bucket BXi according to the position of Xi in the

ordering. The resulting computation is ZBE
F =

∑
Y3

∑
Y2

∑
X1
ψ12ψ13 where BX1 = {ψ12, ψ13}

is first processed by taking the product of the two potentials and summing out variable X1.

The resulting new potential ψ′23 is placed in bucket BY2 in which variable Y2 is summed out.

Summing out Y3 from the subsequent function ψ′3 yields ZBE
F .

MB follows similarly. However, MB partitions each bucket into two or more so called

mini-buckets according to an input parameter called the i-bound, which defines the maximum

number (i-bound + 1) of variables in each mini-bucket. The mini-buckets are then processed

independently. To obtain an upper bound, the sum-product operation is performed on one

of the mini-buckets and the max-product for the remaining (min-product for lower bound).

Using i-bound = 1, BX1 is split into two mini-buckets B′X1
= {ψ12} and B′′X1

= {ψ13}. One

possible resulting computation is

∑
Y3Y2

(∑
X1

ψ12

)(
min
X1

ψ13

)
︸ ︷︷ ︸

Z
MB(L)
F

≤
∑
Y3

∑
Y2

∑
X1

ψ12ψ13 ≤
∑
Y3Y2

(∑
X1

ψ12

)(
max
X1

ψ13

)
︸ ︷︷ ︸

Z
MB(U)
F

,

where the MB upper bound on the partition function, ZMB(U)
F , is computed by maxing out

X1 from ψ13 independently from summing out X1 from ψ12. Summing out Y2 and Y3 from

the resulting two new potentials, ψ′2, ψ′3, and taking their product gives the upper bound. The

lower bound, ZMB(L)
F , is computed similarly using min instead of max.

MB is a fast and simple algorithm for computing upper (or lower) bounds. The resulting

complexity of inference is exponential in the i-bound. Lower i-bound values translates to

simpler models and provides the trade-off between complexity and accuracy.

73

Next, we present the idea of dissociation based oblivious bounds for the case of monotone

w2cnf and extend it to the non-monotone case by exploiting logical structure in Section 6.3.

As mentioned earlier, in this dissertation, we focus on the case where variables are dissociated

until the resulting formula is a tree. In other words, our scheme is comparable to the case

when the i-bound in MB equals 1.

6.2 Dissociation

Our task is to compute the WMC ZF of a given WCNF F . Since the problem is computa-

tionally intractable in general (e.g., high treewidth), approximate methods are required. In

this dissertation we use a bounded inference approach, where we approximate the original

F with F ′ from which the upper (or lower) bounds on ZF can be computed efficiently. We

build upon (Gatterbauer and Suciu, 2014, 2017) which presents a bounding scheme called

dissociation that can be applied to WMC. The derived bounds are oblivious to the set

of weight functions φi, i.e. they can be calculated by only observing a limited subset of

clauses. However, these bounds only apply to monotone formulas, whereas we are interested

in extending the underlying ideas to more general non-monotone formulas (Section 6.3). Here,

we first give a general intuition of prior results followed by the formal definition and then

present optimal oblivious bounds for monotone formulas.

At a high level, dissociation is the process of replacing an existing variable Xi in F with

new variables Xi;1, . . . , Xi;d and assigning them new probability distributions. The technique

is closely related to variable or node splitting (Choi et al., 2007) in which the new variables

are referred to as clones. The partitioning of mini-buckets can also be classified under the

general notion of variable splitting.

By creating new variables, we are implicitly ignoring (or relaxing) a set of equality

constraints (Choi and Darwiche, 2009). However, we can recover the set by defining and incor-

porating the function ϕ(Xi;1 =xi;1, . . . , Xi;n =xi;d) which evaluates to 1 iff xi;1 = . . . = xi;d,

74

and 0 otherwise, for the d copies Xi;j, j ∈ [d] of variable Xi, and xi;j being the corresponding

truth assignment. We can also incorporate equivalence clauses for each new pair of variables

into a formula with the new clauses. For example, consider the formula F = (X1∨Y1)(X1∨Y2).

We can create the equivalent formula F ′ = (X1;1 ∨ Y1)(X1;2 ∨ Y2)(X1;1 ⇔ X1;2) using copies

of X1 for the unweighted model counting case. We see two issues arising. First, for general

2-CNF formulas, we will require d−1 equality constraints (equivalence (⇔) formulas). Second,

it is not immediately clear on how to integrate the weight functions so that weighted model

counts can be computed using this scheme.

Dissociation expands on the notion of variable duplication and provides an algebraic

framework to analyze and approximate the aforementioned set of equality constraints. The

result is a novel class of inequalities to construct upper (or lower) bounds on the WMC. We

first give the formal definition of dissociation for w2cnf.

Definition 6.3. (Dissociation). Let F = 〈X,Φ,C〉. Select a variable Xi ∈ X and let

C(Xi) ⊆ C be the subset of all clauses that involve variable Xi. We say F ′ = 〈X ′,Φ′,C′〉 is

a dissociation of F on Xi iff

• X ′ = X \Xi ∪Xi;1 ∪ · · · ∪Xi;d with d ≤ |C(Xi)|,

• Φ′ = Φ \ φi ∪ φi;1 ∪ · · · ∪ φi;d, and

• C′[θXi(X
′)] = C[X] with θXi being the substitution θXi [{(Xi;j/Xi), j ∈ [d]}].

We say a dissociation is full if d = |C(Xi)|.

Example 6.4. (Dissociation). Consider F from Example 6.2. Dissociating X1 results in

adding two new variables, X ′ = X \X1∪X1;1∪X1;2, and two new associated weight functions

Φ′ = Φ \φ1∪φ1;1∪φ1;2. Applying the substitution θX1 [(X1;1/X1), (X1;2/X1)] on C(Xi) results

in C′ = C \ C(Xi) ∪ (X1;1 ∨ Y2) ∪ (X1;2 ∨ Y3).

75

Table 6.2. Dissociation valuation analysis for Example 6.5. * denotes the don’t care condition.

Y2 Y3 X1 X1;1 X1;2 φ1 φ1;1, φ1;2

0 0 1 1 1 p1 p1;1p1;2

0 1 1 1 ∗ p1 p1;1

1 0 1 ∗ 1 p1 p1;2

1 1 ∗ ∗ ∗ 1 1

Once we have defined the new weight functions (for dissociated variables), the question we

are interested in is how to parameterize the new functions in order to obtain guaranteed upper

(or lower) bounds. In particular, we are interested in oblivious bounds, i.e. when the new

probabilities are chosen independently of the probabilities of all other variables. We achieve

that by considering all possible valuations (or truth assignments) of the non-dissociated

variables, The assignments give rise to a set of inequalities which are then evaluated to

develop necessary and sufficient conditions for upper (or lower) bounds. We next illustrate

with an example.

Example 6.5. (Oblivious bounds). Consider the two sets of clauses, {(X1 ∨ Y2), (X1 ∨ Y3)}

and {(X1;1 ∨ Y2), (X1;2 ∨ Y3)} from Example 6.2 and Example 6.4. We analyze the 22 = 4

possible truth assignments to the non-dissociated variables Y2 and Y3. Table 6.2 shows each

possible valuation of Y2 and Y3 and the corresponding assignments to X1, X1;1 and X1;2

required to satisfy the clauses. We also show the weights (probabilities) of the original (column

φ1) and dissociated formulas (column φ1;1φ1;2).

For example, consider the assignment, Y2 = 0∧Y3 = 1: The assignment X1 = 1 is required to

satisfy F , resulting in the term p1p2p3. The assignments (X1;1 = 1 ∧X1;2 = 0) or (X1;1 = 1 ∧

X1;2 = 1) are required to satisfy F ′, i.e. X1;2 can take any assignment (∗), resulting in the

term p1;1p2p3. Utilizing the two terms, simplifying by removing the common terms (p2p3)

and assuming that we are interested in computing lower bounds, we create the inequality

p1 ≥ p1;1. Repeating the same analysis for the three remaining cases results in the inequalities

76

p1 ≥ p1;1p1;2 and p1 ≥ p1;2. The last case 1 ≥ 1 is trivially satisfied. Combining the resulting

inequalities, and doing a similar analysis for computing upper bounds (where we replace ≥ by

≤) gives rise to the following conditions for oblivious (U)pper and (L)ower bounds:

• U: (p1 ≤ p1;1p1;2) ∧ (p1 ≤ p1;1) ∧ (p1 ≤ p1;2).

• L: (p1 ≥ p1;1p1;2) ∧ (p1 ≥ p1;1) ∧ (p1 ≥ p1;2).

Notice the valuation process creates 2|C(Xi)| inequalities, one for each truth assignment.

However, we can simplify the conditions by removing subsumed inequalities.

Definition 6.6. (Subsumed inequality). We say an inequality Ii subsumes inequality Ij

(i 6= j) iff Ii ⇒ Ij, i.e. satisfying Ii also satisfies Ij.

Example 6.7. Consider the upper and lower bound conditions in Example 6.5. For the upper

bound, clearly p1 ≤ p1;1p1;2 subsumes the remaining inequalities since ∀p1, p1;1, p1;2 ∈ [0, 1] :

(p1 ≤ p1;1p1;2)⇒ (p1 ≤ p1;1)∧ (p1 ≤ p1;2). For the lower bound, clearly (p1 ≥ p1;1)∧ (p1 ≥ p1;2)

subsumes the remaining inequality since ∀p1, p1;1, p1;2 ∈ [0, 1] : ((p1 ≥ p1;1) ∧ (p1 ≥ p1;2))⇒

(p1 ≥ p1;1p1;2). Therefore, we can reduce the required conditions for the oblivious bounds to:

• U: p1 ≤ p1;1p1;2.

• L: (p1 ≥ p1;1) ∧ (p1 ≥ p1;2).

Following the preceding analysis, we can now state the conditions for oblivious bounds

for monotone w2cnf.

Theorem 6.8. (Gatterbauer and Suciu, 2014) (Oblivious bounds for monotone w2cnf). Let

F be a monotone w2cnf. Let F ′ be the result of applying a series of dissociation steps on

F . For every set of weight functions defined for a dissociate variable, namely Xi;1, . . . , Xi;d

and {φi;1, . . . , φi;d} with d > 1, we have the following oblivious bounds:

77

• U:
d∏
j=1

pi;j ≥ pi.

• L: ∀j : pi;j ≤ pi.

Optimal oblivious bounds are defined as those that are not dominated, i.e. they cannot be

improved without knowledge of the probabilities of all other variables. They are obtained by

replacing inequality with equality. Notice that optimal oblivious lower bounds are uniquely

defined, ∀j : pi;j = pi, whereas there are infinitely many optimal oblivious upper bounds,

e.g. symmetric ones: ∀j : pi;j = d
√
pi, and finding the best one requires access to all other

probabilities (den Heuvel et al., 2018).

Note that optimal oblivious bounds are different from augmented mini-buckets (AMB) (Liu,

2014). For example, in AMB for computing upper bounds, the potential over each dissociated

variable is initialized to φi;j(Xi;j = 1) = φi(Xi = 1)1/d and φi;j(Xi;j = 0) = φi(Xi = 0)1/d

where we have d dissociations. A better initialization would be φi;j(Xi;j = 1) = φi(Xi = 1)1/d,

and φi;j(Xi;j = 0) = 1− φi(Xi;j = 1)1/d.

6.2.1 Comparison with Mini-bucket

We use Example 6.2 to analyze the base case bounds for monotone dissociation (X1 to X1;1

and X1;2) and compare it with MB (i-bound = 1).

Lower bound. Dissociation results in the partition function

Z
DIS(U)
F ′ = p2p3 + p1;1p2p3 + p1;2p2p3 + p1;1p1;2p2p3.

The two possible partition functions according to MB are:

1.
∑
X1

ψ1 min
X1

ψ2 ⇒ Z
MB(L1)
F = p2p3 + p1p2p3;

2. minX1 ψ1

∑
X1

ψ2 ⇒ Z
MB(L2)
F = p2 min(p1, p1)(1 + p3).

Clearly, ZDIS(L)
F ′ ≥ Z

MB(L)
F ∀p1, p1;1, p1;2, p2, p3 ∈ [0, 1].

78

Upper bound. Notice there exist an infinite number of settings to p1;1 and p1;2 that satisfy

p1;1p1;2 = p1 under dissociation. We analyze two possible cases.

1. (p1;1 = p1) ∧ (p1;2 = 1)⇒ Z
DIS(U1)
F ′ = p1;1 + p1;1p2;

2. (p1;2 = p1) ∧ (p1;1 = 1)⇒ Z
DIS(U2)
F ′ = p1;2 + p1;2p3.

The two possible partition functions according to MB are:

1.
∑
X1

ψ1 max
X1

ψ2 ⇒ Z
MB(U1)
F = p1 + p1p1;

2. maxX1 ψ1

∑
X1

ψ2 ⇒ Z
MB(U2)
F = (1 + p3)(p2 max(p1, p1) + p1p1).

We first observe the bounds are equivalent between dissociation and MB in setting (1) and

also for (2) if the functions are unweighted (e.g., ∀i pi = 1/2). However, note there exist

more degrees of freedom (solutions) for dissociation, and this example simply demonstrates

one such setting for which we observe equivalency under certain conditions.

6.3 Dissociation for Non-monotone Formulas

In this section, we extend dissociation bounds from the monotone case to arbitrary non-

monotone w2cnfs. Unlike monotone w2cnfs, we can apply logical inference techniques

such as resolution and unit propagation to reduce non-monotone w2cnfs which in turn may

improve our dissociation-based bounds. Moreover, logical propagation can be applied as a

preprocessing step before dissociating a variable Xi.

6.3.1 Preprocessing

We say that a w2cnf F is minimal if the following steps are applied to its set of clauses C

until convergence.

79

1. (Binary) Resolution: If C contains two clauses of the form Li ∨ Lj and Li ∨ Lk,

where Li, Lj and Lk are literals of variables Xi, Xj and Xk respectively, we add the

clause Lj ∨ Lk to C.

2. Unit Resolution: If C contains two clauses of the form Li ∨Lj and Li ∨Lj , where Li
and Lj are literals of variables Xi and Xj respectively, we add the unit clause Lj to C.

3. Clause Deletion and Reduction: If C contains a unit clause Li where Li is a literal

of Xi then we delete all clauses of the form Li ∨ Lj and remove Li from all clauses that

mention Li. If C contains both unit clauses Li and Li, C is inconsistent and we return

a lower/upper bound of 0.2

Example 6.9 (Minimal formula). Consider C = {(X1 ∨ X2), (X1 ∨ X2), (X2 ∨ Y4), (X1 ∨

X3), (X3 ∨X5)}. C is not minimal and we can make it minimal using the aforementioned

steps. After applying Unit Resolution on the first two clauses, we get C = {(X1), (X1 ∨

X2), (X1∨X2), (X2∨Y4), (X1∨X3), (X3∨X5)}. After applying Clause deletion and Reduction,

we get C = {(X1), (X2 ∨ Y4), (X3 ∨X5)}, which is minimal.

6.3.2 Types of Non-Monotone Formulas

In the sequel, we assume that the input w2cnf F to our algorithm is minimal. To formulate

oblivious bounds for non-monotone w2cnf, we first establish a canonical representation that

helps us take advantage of symmetry and reduces the number of cases (inequalities) we need

to consider for our proposed oblivious bounds. Specifically, given a candidate dissociation

variable Xi, we convert the set of clauses C into a canonical representation:

Definition 6.10 (Canonical representation). We say that F is canonical w.r.t. a variable

Xi if F is minimal and all clauses in C(Xi) satisfy the following two properties:

2Note that our scheme will return an upper bound of 0 only when C is inconsistent.

80

1. If a variable Yj appears only once in C(Xi) then it only appears positively, i.e. it appears

in clauses of the form Xi ∨ Yj or X i ∨ Yj (but not of the form Xi ∨ Y j or X i ∨ Y j).

2. If a variable Yj appears twice in C(Xi), then it appears in the following two clauses

Xi ∨ Yj and X i ∨ Y j (but not in the clauses X i ∨ Yj and Xi ∨ Y j).

Note that since F is minimal, Yj cannot appear more than twice in C(Xi), nor twice with

the same sign. If C(Xi) is not in canonical form, we can easily make it canonical by using

the following procedure:

• If Yj violates either condition (1) or (2) in definition 6.10, then replace Yj by a

new variable Yk in all clauses of F (where Yj appears) such that Yk = Y j, and set

φ(Yk) = φ(Yj) and φ(Yk) = φ(Yj).

Example 6.11 (Canonical representation). Consider C = {(X1 ∨ Y2), (X1 ∨ Y2), (X1 ∨ Y3)}.

C is not in canonical form w.r.t. X1 because Y2 and Y3 violate the second and first property

respectively in definition 6.10. To convert it to canonical form, set Y4 = Y2, Y5 = Y3,

φ(Y4) = φ(Y2), φ(Y4) = φ(Y2), φ(Y5) = φ(Y3) and φ(Y5) = φ(Y3). Thus, the canonical

representation of C is the set {(X1 ∨ Y4), (X1 ∨ Y4), (X1 ∨ Y5)}.

We call variables Yj which appear only once in C(Xi) single-occurrence neighbors of Xi

and those which appear twice two-occurrence neighbors.

6.3.3 Characterizing Oblivious Bounds

We now derive oblivious bounds based on whether C(Xi) has two-occurrence neighbors or

not. In the following, let F denote a w2cnf that is canonical w.r.t. Xi and let F ′ be the

result of applying a series of dissociation steps on F . Let Yj be a single-occurrence neighbor

of Xi. Let S+ and S− denote the set of indices of the dissociated variables that appear in

clauses (Xi ∨ Yj) and (Xi ∨ Yj) respectively in C(Xi). Let Yk be a two-occurrence neighbor

81

of Xi. Let T+ and T− denote the set of indices of the dissociated variables in clauses Xi ∨ Yk
and X i ∨ Y k respectively in C(Xi). (We use S and T to refer to “single-occurrence” and

“two-occurrence” variables, respectively.)

Example 6.12 (Indices). Consider C = {(X1 ∨ Y5), (X1 ∨ Y8), (X1 ∨ Y6), (X1 ∨ Y7), (X1 ∨

Y7), (X1 ∨ Y9), (X1 ∨ Y9)}. After applying dissociation on X1, we get C(X ′1) = {(X1;1 ∨

Y5), (X1;2 ∨ Y8), (X1;3 ∨ Y6), (X1;4 ∨ Y7), (X1;5 ∨ Y7), (X1;6 ∨ Y9), (X1;7 ∨ Y9)}. Then S+ =

{1, 2}, S−={3}, T+ = {4, 6}, and T− = {5, 7}.

We next analyze the two possible non-monotone cases in Theorems 6.13 and 6.15. The first

case is when C(Xi) has only single-occurrence neighbors (but no two-occurrence neighbors).

This generalizes the monotone case, in which only one type of single-occurrence variables are

present. In particular, in the monotone case either clauses of the form (Xi ∨ Yj) or (Xi ∨ Yj)

are present but not both while in the non-monotone case both clauses can be present in

C(Xi). Note that bounds given in Theorem 6.8 are a special case of the bounds in Theorem

6.13 presented next.

Theorem 6.13. (Oblivious bounds for w2cnfs having only single-occurrence neighbors

w.r.t. Xi). For a given variable Xi, if F contains only single-occurrence neighbors but no

two-occurrence neighbors then we have the following oblivious bounds for Xi:

• U:
(∏
j∈S+

pi;j ≥ pi

)
∧
(∏
j∈S−

pi;j ≥ pi

)
• L: Either of following two conditions hold:

1.
(
∀j ∈ S+ : pi;j ≤ pi

)
∧
(
∀j ∈ S− : pi;j = 0

)
2.
(
∀j ∈ S− : pi;j ≤ pi

)
∧
(
∀j ∈ S+ : pi;j = 0

)
Optimal oblivious bounds are obtained by replacing inequality with equality in the bound

conditions.

82

Proof. Let F be a w2cnf that is minimal and in canonical form. Moreover, for a given Xi,

let F contain at least one two-occurrence neighbor.

• Case: Xi = ∗

Non-dissociate: Let Y be the set of single-occurrence neighbors of the non-dissociated

variable Xi such that |Y | > 1. If ∀Yk ∈ Y, Yk = 1, then C(Xi) is a tautology. The

result is that C(Xi) is satisfied regardless of the assignment to Xi. Therefore, we have

the term

pi
∏
Yk∈Y

pk + pi
∏
Yk∈Y

pk = (pi + pi)
∏
Yk∈Y

pk =
∏
Yk∈Y

pk.

Dissociate: Let Y be the set of single-occurrence neighbors of the dissociated variable

X ′i. If ∀Yk ∈ Y, Yk = 1, then C(X ′i) is a tautology. The result is that C(X ′i) is satisfied

regardless of the assignment to Xi;j ,∀j. Therefore, we have the term

∏
Yk∈Y

pk

|C(Xi)|∏
j=1

(pi;j + pi;j) =
∏
Yk∈Y

pk.

The inequality condition for this case is trivially satisfied since∏
Yk∈Y

pk ≶
∏
Yk∈Y

pk ⇒ 1 = 1.

Without loss of generality (WLOG), since the parameters (∀Yk ∈ Y :
∏
pk) for the single-

occurrence neighbors appears on both sides of the inequality, and therefore cancels out, we

do not include it in the subsequent case analysis. Let P = {pi;j : j ∈ (S+ ∪ S−)} be the

set of parameters corresponding to the dissociated variables Xi;j. Then, for the remaining

2|C(Xi)|− 1 assignments to the single-occurrence neighbors to consider, the number of possible

combinations of P is given as
|C(Xi)|∑
a=1

(|C(Xi)|
a

)
. (6.1)

Let Y+ be single-occurrence neighbors of the positive appearing non-dissociated variable Xi

and let Y− be single-occurrence neighbors of the negative appearing non-dissociated variable

Xi.

83

• Case: Xi = ⊥

Non-dissociate: If for some Yj ∈ Y+ and Yk ∈ Y− such that j 6= k and Yj = Yk = 0,

then C(Xi) is unsatisfiable (i.e., contradiction). Therefore, we have the term 0.

Dissociate: From (6.1), let P ′ be the set of possible combinations of P by setting a = 2.

Let P ′′ be the set of possible combinations of P for a = 3 to a = |C(Xi)|. We know

∀b ∈ P ′′, the corresponding term from non-dissociation is 0 because the number of don’t

care assignments to Xi;j,∀j is less than 2. Then we only need to consider the conditions

when a = 2 because ∀b ∈ P ′, b ⊆ P ′′ and therefore satisfies the subsumed inequality

definition. For a = 2, let P ′′′ = (∀j ∈ S+ : pi;j) × (∀j ∈ S− : pi;j) s.t. P ′′′ ⊆ P ′.

Setting either pi;j ∈ P ′′′ or pi;j ∈ P ′′′ to 0 satisfies the case. Therefore, the lower bound

condition for this case is

(∀j ∈ S− : pi;j = 0) ∨ (∀j ∈ S+ : pi;j = 0).

Let P ′′′′ = (P ′ \ P ′′′) ∪ P . Let Y ′+ be single-occurrence neighbors of dissociated variable

Xi;j s.t. j ∈ S+ and let Y ′− be single-occurrence neighbors of dissociated variable Xi;j s.t.

j ∈ S−. If ∀Yj ∈ Y + and ∀Yk ∈ Y −, set Yj = 1, Yk = 1. Then the associated clauses of the

form (Xi ∨ Yj)(Xi ∨ Yk) are trivially satisfied (i.e., case: Xi = ∗). Similarly, if ∀Yk ∈ Y ′+ and

∀Yl ∈ Y ′−, set Yk = 1, Yl = 1. Then the associated clauses of the form (Xi;j ∨ Yk)(Xi;j ∨ Yl)

are trivially satisfied (i.e., case: Xi = ∗).

• Case: Xi = 1

Non-dissociate: If ∀Yj ∈ Y+ and ∀Yk ∈ Y−, set Yj = 1, Yk = 0, then the associated

clauses of the form (Xi ∨ Yk) are satisfied by setting Xi = 1. Therefore, we have the

term pi.

Dissociate: If ∀Yk ∈ Y ′+, and ∀Yl ∈ Y ′−, set Yk = 1, Yl = 0, then the associated clauses

84

of the form (Xi;j ∨ Yl) are satisfied by setting Xi;j = 1. The resulting term is pi;j. We

know ∀b ∈ P ′′′′ s.t. pi;j ∈ b, the corresponding term from non-dissociation is pi. Then

by the definition of subsumed inequality, the lower bound condition for this case is

∀j ∈ S+ : pi;j ≤ pi,

and the upper bound condition is

∏
j∈S+

pi;j ≥ pi.

• Case: Xi = 0

Non-dissociate: If ∀Yj ∈ Y+ and ∀Yk ∈ Y−, set Yj = 0, Yk = 1, then the associated

clauses of the form (Xi ∨ Yj) are satisfied by setting Xi = 0. Therefore, we have the

term pi.

Dissociate: If ∀Yk ∈ Y ′+, and ∀Yl ∈ Y ′−, set Yk = 0, Yl = 1, then the associated clauses

of the form (Xi;j ∨ Yk) are satisfied by setting Xi;j = 0. The resulting term is pi;j. We

know ∀b ∈ P ′′′′ s.t. pi;j ∈ b, the corresponding term from non-dissociation is pi. Then

by the definition of subsumed inequality, the lower bound condition for this case is

∀j ∈ S− : pi;j ≤ pi,

and the upper bound condition is

∏
j∈S−

pi;j ≥ pi.

Combining the four cases gives the conditions for the oblivious bounds for Xi.

Example 6.14. Consider C(X ′1) = {(X1;1∨Y2), (X1;2∨Y3), (X1;3∨Y4), (X1;4∨Y5)}. Theorem

6.13 gives the conditions for upper and lower oblivious bounds as:

85

Table 6.3. Dissociation for Example 6.14. ⊥ denotes contradiction (i.e., formula cannot be
satisfied). ∗ denotes the don’t care condition.

Y2 Y3 Y4 Y5 X1 X1;1 X1;2 X1;3 X1;4 φ1 φ1;1, φ1;2, φ1;3, φ1;4

0 0 0 0 ⊥ 1 0 1 0 0 p1;1p1;2p1;3p1;4

0 0 0 1 ⊥ 1 0 1 ∗ 0 p1;1p1;2p1;3

0 0 1 0 ⊥ 1 0 ∗ 0 0 p1;1p1;2p1;4

0 0 1 1 ⊥ 1 0 ∗ ∗ 0 p1;1p1;2

0 1 0 0 ⊥ 1 ∗ 1 0 0 p1;1p1;3p1;4

0 1 0 1 1 1 ∗ 1 ∗ p1 p1;1p1;3

0 1 1 0 ⊥ 1 ∗ ∗ 0 0 p1;1p1;4

0 1 1 1 1 1 ∗ ∗ ∗ p1 p1;1

1 0 0 0 ⊥ ∗ 0 1 0 0 p1;2p1;3p1;4

1 0 0 1 ⊥ ∗ 0 1 ∗ 0 p1;2p1;3

1 0 1 0 0 ∗ 0 ∗ 0 p1 p1;2p1;4

1 0 1 1 0 ∗ 0 ∗ ∗ p1 p1;2

1 1 0 0 ⊥ ∗ ∗ 1 0 0 p1;3p1;4

1 1 0 1 1 ∗ ∗ 1 ∗ p1 p1;3

1 1 1 0 0 ∗ ∗ ∗ 0 p1 p1;4

1 1 1 1 ∗ ∗ ∗ ∗ ∗ 1 1

• U:
(
p1;1p1;3 ≥ p1

)
∧
(
p1;2p1;4 ≥ p1

)
.

• L: Either of following two conditions hold:

1.
(
p1;1 ≤ p1

)
∧
(
p1;3 ≤ p1

)
∧
(
p1;2 = p1;4 = 0

)
2.
(
p1;2 ≤ p1

)
∧
(
p1;4 ≤ p1

)
∧
(
p1;1 = p1;3 = 0

)
The valuation analysis is shown in Table 6.3.

Our second non-monotone case is when F has at least one two-occurrence neighbor.

Intuitively, dissociated variables which form clauses with two-occurrence neighbors are more

constrained than those that appear with single-occurrence neighbors. Thus, there are more

constraints on probabilities associated with two-occurrence neighbors (indexed by T+ and

86

T−) than those associated with single-occurrence neighbors (indexed by S+ and S−); see

conditions 1. and 2. in Theorem 6.15.

Theorem 6.15. (Oblivious bounds for w2cnfs having two-occurrence neighbors w.r.t. Xi).

For a given variable Xi, if F contains at least one two-occurrence neighbor then we have the

following oblivious bounds for Xi:

• U:
(∏
j∈(S+∪T+)

pi;j ≥ pi

)
∧
(∏
j∈(S−∪T−)

pi;j ≥ pi

)
• L: Either of following three conditions hold:

1.
(∏
j∈T+

pi;j ≤ pi

)
∧
(
∀j ∈ (S− ∪ T−) : pi;j = 0

)
2.
(∏
j∈T−

pi;j ≤ pi

)
∧
(
∀j ∈ (S+ ∪ T+) : pi;j = 0

)
3. If |T+| = |T−| = 1 and T+ = {a} ∧ T− = {b}:(

pi;a ≤ pi

)
∧
(
∀j ∈ S− : pi;j = 0

)
∧
(
pi;b ≤ pi

)
∧
(
∀j ∈ S+ : pi;j = 0

)
Optimal oblivious bounds are obtained by replacing inequality with equality in the bound

conditions.

Proof. Let F be a w2cnf that is minimal and in canonical form. Moreover, for a given

Xi, let F contain at least one two-occurrence neighbor. Similar to the proof of Theorem

6.13, WLOG, the parameters for the non-dissociated variables cancels out and thus are not

included in the case analysis.

• Case: Xi = ⊥

Let |T−| ≥ 1 and |T+| ≥ 1.

Let |S−| > 0.

87

Non-dissociate:

Let Yl be a single-occurrence neighbor appearing with negative non-dissociated vari-

able Xi and Yj be a two-occurrence neighbor appearing with positive non-dissociated

variable Xi in clauses of the form (Xi ∨ Yj)(Xi ∨ Yl) s.t. j 6= l. If Yj = Yl = 0, then

the C(Xi) cannot be satisfied (i.e., contradiction). Therefore, we have the term 0.

Dissociate:

Let Yl be a single-occurrence neighbor appearing with negative dissociated variable

Xi;k and Yh be a two-occurrence neighbor appearing with positive dissociated variable

Xi;j in clauses of the form (Xi;j ∨ Yh)(Xi;k ∨ Yl) s.t. j 6= k and h 6= l. Assign

Yh = Yl = 0. Then we have the term∏
j∈T+

pi;j
∏
k∈S−

pi;k.

Let |S+| > 0.

Non-dissociate:

Let Yl be a single-occurrence neighbor appearing with positive non-dissociated variable

Xi and Yj be a two-occurrence neighbor appearing with positive non-dissociated

variable Xi in clauses of the form (Xi ∨ Yj)(Xi ∨ Yj)(Xi ∨ Yl) s.t. j 6= l. If Yj = 1

and Yl = 0, then C(Xi) cannot be satisfied (i.e., contradiction). Therefore, we have

the term 0.

Dissociate:

Let Yh be a two-occurrence neighbor appearing with negative dissociated variable

Xi;j and Yl be a single-occurrence neighbor appearing with dissociated variable Xi;k

in clauses of the form (Xi;j ∨ Yh)(Xi;k ∨ Yl) s.t. j 6= k and h 6= l. Assign Yh = 1 and

Yl = 0. Then we have the term ∏
j∈T−

pi;j
∏
k∈S+

pi;k.

88

Let |T−| > 1 and |T+| > 1. Additionally, we have the following.

Non-dissociate:

Let Yj and Yk be two-occurrence neighbors appearing with positive non-dissociate

variable Xi in clauses of the form (Xi ∨ Yj)(Xi ∨ Yj)(Xi ∨ Yk)(Xi ∨ Yk) s.t. j 6= k.

Let a1 and a2 be 0/1 assignments to Yj and Yk respectively. If a1 6= a2, then C(Xi)

cannot be satisfied (i.e., contradiction). Therefore, we have the term 0.

Dissociate:

Let Y be the set of two-occurrence neighbors appearing with positive non-dissociate

variable Xi;j in clauses of the form (Xi;1∨Yk)(Xi;2∨Yk)(Xi;3∨Yl)(Xi;4∨Yl) . . . (Xi;j ∨

Yk)(Xi;j+1 ∨ Yk) s.t. Yk, Yl ∈ Y . Given some Yk, Yl ∈ Y s.t. k 6= l. Let a1 and a2 be

0/1 assignments to Yk and Yl respectively s.t. a1 6= a2. If a1 = 0, then we have the

term ∏
j∈T+

pi;j
∏
j∈T−

pi;j.

By the definition of subsumed inequality, the lower bound condition are either

1. ∀j ∈ (S+ ∪ T+) : pi;j = 0

2. ∀j ∈ (S− ∪ T−) : pi;j = 0

• Case: Xi = 1

Let |T−| = |T+| = 1.

Let |S+| = |S+| = 0.

Non-dissociate: Clearly, from valuation analysis, we have the term pi.

Dissociate: Clearly, from valuation analysis, we have the term pi;j.

Let |S+| > 0 and |S−| > 0.

89

Non-dissociate:

Let Yk be a positive two-occurrence neighbor of non-dissociate variable Xi. Let

Yk = 0. Setting Xi = 1 satisfies C(Xi). Then we have the term pi.

Dissociate:

Let Y ′ be the set of single-occurrence neighbors for dissociated variable Xi;j s.t.

j ∈ S+. Let Y ′′ be the set of single-occurrence neighbors for dissociated variable Xi;j

s.t. j ∈ S−. Given the positive two-occurrence neighbor Yk of dissociate variable Xi;j ,

let Yk = 0. If ∀Yl ∈ Y ′, Yl = 0, then setting Xi;j = 1,∀j ∈ S+ satisfies C(Xi) (let P

be the set of jth indices for these parameters). ∀j ∈ S−, Xi;j are don’t cares because

∀Yl ∈ Y ′′, Yl = 1, otherwise it would be contradiction. The possible combinations for

P is given by (|P |
b

)
, for b = 0 . . . |P |. (6.2)

Let P ′ be the set of the possible combination of P given by (6.2). Then we have the

terms

{pi;a : T+ = {a}} ∪
{ ∏

j∈P ′′
pi;j : ∀P ′′ ∈ P ′

}
.

By the definition of subsumed inequality, combined with the case Xi = ⊥, the lower

bound condition is

(pi;a ≤ pi) ∧ (∀j ∈ S− : pi;j = 0).

Let |T−| > 1 and |T+| > 1.

Let |S+| ≥ 0 and |S−| ≥ 0.

Non-dissociate:

Let Y ′ be the set of positive two-occurrence and Y ′′ be the set of single-occurrence

neighbors of non-dissociated variable Xi. Let ∀Yk ∈ Y ′, Yk = 0 and ∀Yl ∈ Y ′′, Yl = 1.

Setting Xi = 1 satisfies C(Xi). Then we have the term pi.

90

Dissociate:

Let Y ′ be the set of two-occurrence neighbors for dissociated variable Xi;j s.t. j ∈ T+.

Let Y ′′ be the set of two-occurrence neighbors for dissociated variable Xi;j s.t. j ∈ T−.

Let Y ′′′ be the set of single-occurrence neighbors for dissociated variable Xi;j s.t.

j ∈ S+. Let Y ′′′′ be the set of single-occurrence neighbors for dissociated variable Xi;j

s.t. j ∈ S−. Let ∀Yk ∈ Y ′, Yk = 0 and ∀Yl ∈ Y ′′′′, Yl = 1. Note that for some Yk ∈ Y ′

and Yl ∈ Y ′′, setting Yk = a1 and Yl = a2 s.t. a1 6= a2 results in a contradiction.

To satisfy C(Xi), first set Xi;j = 1,∀ j ∈ T+. This results in ∀j ∈ S−, Xi;j and

∀j ∈ T−, Xi;j are don’t cares. If ∀Yk ∈ Y ′′′, Yk = 0, then setting Xi;j = 1, ∀j ∈ S+

satisfies C(Xi) (let P be the set of jth indices for these parameters). The possible

combinations for P is given by(|P |
b

)
, for b = 0 . . . |P |. (6.3)

Let P ′ be the set of the possible combination of P given by (6.3). Then we have the

terms { ∏
j∈T+

pi;j

}
∪
{ ∏

k∈P ′′
pi;k : ∀P ′′ ∈ P ′

}
.

By the definition of subsumed inequality, combined with the case Xi = ⊥, the lower

bound condition is(∏
j∈T+

pi;j ≤ pi

)
∧
(
∀j ∈ (S− ∪ T−) : pi;j = 0

)
.

The upper bound condition for this case is

∏
j∈(S+∪T+)

pi;j ≥ pi.

• Case: Xi = 0

Let |T−| = |T+| = 1.

91

Let |S+| = |S+| = 0.

Non-dissociate: Clearly, from valuation analysis, we have the term pi.

Dissociate: Clearly, from valuation analysis, we have the term pi;j.

Let |S+| > 0 and |S−| > 0.

Non-dissociate:

Let Yk be a negative two-occurrence neighbor of non-dissociated variable Xi and

Y ′ be the set of single-occurrence neighbors of positive appearing non-dissociated

variable Xi. Let Yk = 1. Setting Xi = 0 and ∀Yl ∈ Y ′, Y = 1 satisfies C(Xi). Then

we have the term pi.

Dissociate:

Let Y ′ be the set of single-occurrence neighbors for dissociated variable Xi;j s.t.

j ∈ S+. Let Y ′′ be the set of single-occurrence neighbors for dissociated variable

Xi;j s.t. j ∈ S−. Let Yk be the negative two-occurrence neighbor of dissociate

variable Xi;j, s.t. Yk = 1. If ∀Yl ∈ Y ′, Yl = 1, then ∀j ∈ S+, Xi;j are don’t cares. If

∀Yl ∈ Y ′, Yl = 1, then ∀j ∈ S−, Xi;j are don’t cares. The possible combination of

setting Yl = 0 s.t. Yl ∈ P ′′ is given by(|S−|
b

)
, for b = 0 . . . |S−|. (6.4)

Let P be the set of the possible combination of S− given by (6.4). Then we have the

terms

{pi;a : T− = {a}} ∪
{∏

j∈P ′
pi;j : ∀P ′ ∈ P

}
.

By the definition of subsumed inequality, combined with the case Xi = ⊥, the lower

bound condition is

(pi;a ≤ pi) ∧ (∀j ∈ S+ : pi;j = 0).

92

Let |T−| > 1 and |T+| > 1.

Let |S+| ≥ 0 and |S−| ≥ 0.

Non-dissociate:

Let Y ′ be the set of negative two-occurrence neighbor of non-dissociated variable Xi

and Y ′′ be the set of single-occurrence neighbors of positive appearing non-dissociated

variable Xi. Let ∀Yk ∈ Y ′, Yk = 0 and ∀Yl ∈ Y ′′, Yl = 1. Setting Xi = 0 satisfies

C(Xi). Then we have the term pi.

Dissociate:

Let Y ′ be the set of single-occurrence neighbors for dissociated variable Xi;j s.t.

j ∈ S+. Let Y ′′ be the set of single-occurrence neighbors for dissociated variable Xi;j

s.t. j ∈ S−. Let Y ′′′ be the set of two-occurrence negative appearing neighbors for

dissociated variable Xi:j s.t. j ∈ T−. Let ∀Yl ∈ P ′′′, Yl = 1. If ∀Yl ∈ Y ′, Yl = 1, then

∀j ∈ S+, Xi;j are don’t cares. If ∀Yl ∈ Y ′, Yl = 1, then ∀j ∈ S−, Xi;j are don’t cares.

The possible combination of setting Yl = 0 s.t. Yl ∈ P ′′ is given by(|S−|
b

)
, for b = 0 . . . |S−|. (6.5)

Let P be the set of the possible combination of S− given by (6.5). Then we have the

terms { ∏
j∈T−

pi;j

}
∪
{ ∏

k∈P ′
pi;k : ∀P ′ ∈ P

}
.

By the definition of subsumed inequality, combined with the case Xi = ⊥, the lower

bound condition is(∏
j∈T−

pi;j ≤ pi

)
∧
(
∀j ∈ (S+ ∪ T+) : pi;j = 0

)
.

The upper bound condition for this case is∏
j∈(S−∪T−)

pi;j ≥ pi.

93

Table 6.4. Dissociation for Example 6.16. ⊥ denotes contradiction (i.e., formula cannot be
satisfied). ∗ denotes the don’t care condition.

Y3 Y4 Y5 Y6 X1 X1;1 X1;2 X1;3 X1;4 X1;5 φ1 φ1;1, φ1;2, φ1;3, φ1;4, φ1;5

0 0 0 0 ⊥ 1 1 ∗ 1 1 0 p1;1p1;2p1;4p1;5

0 0 0 1 1 1 1 ∗ 1 ∗ pi p1;1p1;2p1;4

0 0 1 0 ⊥ 1 1 ∗ ∗ 1 0 p1;1p1;2p1;5

0 0 1 1 1 1 1 ∗ ∗ ∗ pi p1;1p1;2

0 1 0 0 ⊥ 1 ∗ 0 1 1 0 p1;1p1;3p1;4p1;5

0 1 0 1 ⊥ 1 ∗ 0 1 ∗ 0 p1;1p1;3p1;4

0 1 1 0 ⊥ 1 ∗ 0 ∗ 1 0 p1;1p1;3p1;5

0 1 1 1 ⊥ 1 ∗ 0 ∗ ∗ 0 p1;1p1;3

1 0 0 0 ⊥ ∗ 1 ∗ 1 1 0 p1;2p1;4p1;5

1 0 0 1 1 ∗ 1 ∗ 1 ∗ pi p1;2p1;4

1 0 1 0 ⊥ ∗ 1 ∗ ∗ 1 0 p1;2p1;5

1 0 1 1 1 ∗ 1 ∗ ∗ ∗ pi p1;2

1 1 0 0 ⊥ ∗ ∗ 0 1 1 0 p1;3p1;4p1;5

1 1 0 1 ⊥ ∗ ∗ 0 1 ∗ 0 p1;3p1;4

1 1 1 0 0 ∗ ∗ 0 ∗ 0 pi p1;3p1;5

1 1 1 1 0 ∗ ∗ 0 ∗ ∗ pi p1;3

Combining the three cases gives the conditions for the oblivious bounds for Xi.

Example 6.16. Consider C(X ′1) = {(X1;1∨Y3), (X1;2∨Y4), (X1;3∨Y4), (X1;4∨Y5)(X1;5∨Y6)}.

Theorem 6.15 gives the following conditions for upper and lower oblivious bounds:

• U:
(
p1;1p1;2p1;4 ≥ p1

)
∧
(
p1;3p1;5 ≥ p1

)
• L: Either of the following three conditions hold:

1. (p1;2 ≤ p1) ∧ (p1;3 = p1;5 = 0)

2. (p1;3 ≤ p1) ∧ (p1;1 = p1;2 = p1;4 = 0)

3. (p1;2 ≤ p1) ∧ (p1;3 ≤ p1) ∧ (p1;1 = p1;4 = p1;5 = 0)

94

Table 6.5. Summary of oblivious bound conditions. T : whether C(Xi) has two-occurrence
neighbors, S+ and S−: whether C(Xi) has single-occurrence neighbors which appear in
clauses (Xi ∨ Yj) and (Xi ∨ Yj) respectively. An entry in a cell means that neighbors of the
respective types are either present (

√
), absent (×), or either present or absent (∗). Bold text

in Case and Solution columns denote novel contributions of this dissertation while normal
font text indicates previous work.

S+ S− T Case Solution
√ × ×

Monotone Theorems 6.8 & 6.13
× √ ×
√ √ × Single-occurrence Theorem 6.13

∗ ∗ √
Two-occurrence Theorem 6.15

The valuation analysis is shown in Table 6.4.

Table 6.5 summarizes the oblivious bound conditions. Theorems 6.13 and 6.15 yield the

algorithm given in Algorithm 6.1 for bounding the partition function of a given w2cnf.

6.4 Experiments

We evaluated the performance of DIS (see Algorithm 6.1) and compared it with MB on

generated synthetic datasets and benchmark datasets from the UAI 2008 probabilistic inference

competition repository (http://graphmod.ics.uci.edu/uai08) for the task of computing upper

and lower bounds on the weighted model count (or partition function). All experiment were

conducted on quad-core Intel i7 based machines with 24GB RAM running Ubuntu.

6.4.1 Synthetic Datasets

We generated non-monotone w2cnf formulas encoded as m×m grid structure graphical

models parameterized by univariate and pairwise binary potentials. We then compared error

bound performance of DIS and MB (i-bound = 1) from the aspects of (1) varying grid sizes

95

Algorithm 6.1: (DIS) Dissociation Bounds for WMC

1 Input: w2cnf F = 〈X,Φ,C〉,
Variable ordering o = [X1, X2, . . . , X|X|]

2 Output: Lower (or upper) bound on the WMC
3 begin
4 Initialize: ZB ← 1 (Bound on the partition function)
5 for i← 1 to |X| do
6 Convert F to a minimal F
7 Convert C(Xi) to canonical form
8 if C is inconsistent then

return 0
9 else if C(Xi) = {Xi} then

ZB ← ZB × pi
10 else if C(Xi) = {Xi} then

ZB ← ZB × pi
11 else if C(Xi) has two-occurrence neighbors then

Update ZB using Theorem 6.15

12 else if C(Xi) has single-occurrence neighbors then

Update ZB using Theorem 6.13

13 return ZB

14 end

under random weight function settings; and (2) varying weight function settings according

to determinism strength under fixed grid sizes. For each model, we computed the true

weighted model count Z∗. We then compared each algorithm’s approximated bound Zalgo

and calculated the error bound as log(Z∗/Zalgo) for the lower bound and the same negated

for the upper bound. A lower error bound value is better. For each setting, we generated 50

random problem instances and ran DIS and MB 100 times for each instance. From the 100

solutions, we selected the best, namely either the lowest upper bound or the highest lower

bound. We then computed the average error bound across the 50 problem instances.

96

��

���

���

���

���

����

����

����

�� �� �� ��� ��� ��� ��� ��� ���

�
��
�
��
�
�
�
�
�

���������

�����
������
������

(a)

��

���

���

���

���

���

���

��� �� �� �� ��

�
��
�
��
�
�
�
�
�

��������������������

�����
������
������

(b)

���

���

���

����

����

����

����

����

�� �� �� �� ��

�
��
��

�
�
��
��

��������������������

�����
������
������

(c)

Figure 6.2. Upper bound estimates for dissociation DIS(U) and mini-bucket MB(U), and
lower bound estimates for dissociation DIS(L). Error bound by varying (a) grid size (b) level
of determinism for 10×10 grid (c) 20×20 grid. Lower value is better.

Grid size. We generated m×m grids using values of m = {5, 6, 7, . . . , 20}. For the

weight function values, we sampled from an uniform U(0, 1) distribution. We also uniformly

generated the clauses. The results are shown in Figure 6.2 (a). For the upper bound, DIS

noticeably begins to outperform MB starting at around grid size 10×10 and the performance

gap widens as the grid size increases. Since MB utilizes the max function, it has a higher

tendency to overestimate the upper bound. This was accomplished only by setting the weight

function values to the k-th root (e.g., pX1;1 = pX1;2 =
√
pX1 for |C(X1)| = 2). We would

expect the performance gap to be wider, favoring DIS, by optimizing the inequalities. For

97

Table 6.6. The log relative upper bound between dissociation DIS(U) and mini-bucket MB(U)
on UAI 2008 repository problem instances. Lower value is better for DIS.

Instance log ZDIS(U)

ZMB(U) Instance log ZDIS(U)

ZMB(U)

sg2-17 −277.8 orc111 −87.6

sg7-11 −293.4 orc175 −96.3

sg8-18 −281.9 orc180 −124.4

sg9-24 −292.8 orc203 −111.0

sg17-4 −303.3 orc218 −4.4

smk10 −50.9 orc62 −393.4

smk20 −165.9 orc154 −97.0

orc42 −119.6 orc225 −137.3

orc45 −261.1 orc139 −155.0

the lower bound, MB produced 0 for all problems and thus was not plotted. MB has a high

tendency to converge to the so called degenerate solution (i.e., 0) due to the min function.

The lower bound for DIS is tighter, as compared to the upper bounds, since the settings to

the lower bound inequalities do not need to be optimized.

Determinism strength. We analyzed the performance of DIS and MB according to

various levels of determinism, namely the distance from uniform .5 (unweighted) towards 0

and 1. To accomplish this, we set all weight functions to the same value pX ∈ {.5, .6, .7, .8, .9}.

The results are shown in Figure 6.2 (b) and (c). For the lower bound, MB produced 0 for all

problems and thus was not plotted. The overall relative performance comparison is similar

to that of varying grid size. Again, the lower bound performance for DIS is tighter and all

bounds had higher bound error as the determinism strength increased. Intuitively, as the gap

between pXi and pXi widens, the tendency to overestimate (underestimate) the upper (lower)

bound increases.

98

Table 6.7. The log relative lower bound between ground truth and dissociation DIS(L) on
UAI 2008 repository problem instances. Lower value is better for DIS.

Instance log Z∗

ZDIS(L) Instance log Z∗

ZDIS(L)

sg2-17 732.4 orc111 209.8

sg7-11 759.4 orc175 342.6

sg8-18 727.3 orc180 375.0

sg9-24 774.5 orc203 346.8

sg17-4 752.1 orc218 18.2

smk10 191.3 orc62 −
smk20 799.8 orc154 354.7

orc42 407.9 orc225 499.7

orc45 747.8 orc139 576.6

6.4.2 UAI Inference Datasets

We also compared DIS to MB on the segmentation (sg), promedas (orc) and smokers (smk)

dataset from the UAI 2008 repository. The variables in the models are binary and the number

of variables range from ∼100 to 1000. We converted the non-pairwise models to pairwise

models and then encoded them as w2cnf. We used i-bound = 1 for MB. We ran DIS and

MB 100 times and similarly, we selected the best. For the upper bound, we evaluated using

the log relative upper bound, namely log(ZDIS(U)/ZMB(U)). Lower value is better for DIS.

The results are shown in Table 6.6. DIS outperforms MB by a wide margin on the majority

of the datasets. The solution quality of DIS for sg was quite consistent while for orc it had

higher variance. For the lower bound, we evaluated dissociation’s lower bound against the

ground truth, namely log(Z∗/ZDIS(L)). MB produced 0 for all problems and thus was not

shown. The results are shown in Table 6.7 (orc62 was not tractable).

In summary, DIS performs consistently better than MB on harder WMC problems. In

particular, the lower bounds output by DIS are always better than MB.

99

6.5 Discussion

We proposed an approximate, oblivious bounding scheme for WMC, extending the idea

of dissociation to non-monotone formulas and exploiting logical structure. Dissociation

yields a novel set of inequalities for which upper and lower bounds can be derived efficiently.

Empirically, we showed that our method outperforms mini-buckets—a popular oblivious

bounding scheme—on various datasets. The lower bounds are robust since they do not require

optimization (in the monotone case). For upper bounds, we utilized naïve settings, namely

the k-th root applied to the parameter of a dissociated variable.

100

CHAPTER 7

CONCLUSION

In this chapter, we conclude by providing an overview of our contributions and listing future

directions for research.

7.1 Contributions

The goals of this dissertation have been to utilize the idea of parameter tying to improve

generalization of learning and efficiency of inference for graphical models. At a high-level, we

leverage parameter tying to:

• Learning. Develop novel alternative regularization schemes that are automatic (cf. a

priori) and can be integrated with standard learning objectives for graphical models to

achieve higher generalization accuracy (i.e., likelihood) compared to existing regulariza-

tion techniques. For Bayesian networks, the regularization for the learning procedure

follows a greedy post-processing approach that is fast and efficient. On the other hand,

with Markov networks, the regularization for the learning procedure is iterative and

penalty-based that facilitates both soft and hard parameter tying.

• Inference. Develop inference algorithms that can exploit the parameter structure,

in the form of symmetries, that are the result of learning a parameter tied graphical

model, to achieve efficient inference. To this we present a sampling-based algorithm

which explores the sample space in a more efficient manner, yielding more accurate

results for probabilistic queries. In addition, we develop bounded inference schemes

for graphical models, which we refer to as dissociation-based bounds. We propose a

deterministic bounding scheme for weighted model counting, which include computing

the partition function and probability of evidence in graphical models as special cases.

101

Our approach is partition-based (Dechter and Rish, 2003) and gives rise to a novel class

of inequalities for which upper (or lower) bounds can be efficiently derived. The bounds

are oblivious, that is they require only limited observation of parameterization to the

problem, which yields faster methods.

7.2 Directions for Future Research

Our research offers ample room for additional improvements for continued investigation in

the future.

7.2.1 Towards Canonical Parameter Tied GMs

In Chapter 4 we stated Markov networks are not identifiable in general. For parameter

learning, there exists a continuum of parameterizations for a given structure and probability

distribution. We can use finer-grained representations such as feature-based (log-linear)

models, however, Markov networks remain generally overparameterized. Although the soft-

tying of apt addresses the overparameterization issue to a certain extent, the parameter

tying procedure (i.e., quantization function) can be further improved.

The Hammersley-Clifford theorem (Besag, 1974), which states the equivalence between

the Markov properties and the Gibbs distribution, gives rise to the notion of a canonical

parameterization. The canonical parameterization is defined by a set of energy functions over

all non-empty cliques and the parameters of the functions are defined relative to a arbitrary

fixed assignment. While the canonical parameterization eliminates the issue of identifiability

(i.e., ambiguity), it gives rise to two main issues. First, the representation is generally

computationally intractable due to computing the probability of the fixed assignment (i.e.,

partition function). Second, the canonical parameterization generally results in extremely

sparse feature representation, which renders the model uninterpretable.

102

For future work, we aim to improve the parameter tying procedure to achieve a canonical

(or pseudo-canonical) parameter tied GM that also overcomes the issues of tractability and

interpretability. Since the parameters (weights) of a Markov network describe the affinity

between random variables and thus do not have a probabilistic interpretation, we will focus on

parameter tying that more aligns with the (conditional) probabilities encoded in the model. To

achieve this, we consider and investigate alternative GMs such as dependency networks (DNs)

(Heckerman et al., 2000). DNs are constructed by learning the conditional probabilities for

each variable in the model. The advantage of this approach is all the conditional probabilities

can be learned independently (i.e., Markov blanket) and thus computationally tractable.

DNs are similar to Bayesian networks, which are more interpretable. However, an issue with

DNs is that the conditional probabilities will not be consistent with the joint distribution.

Recently, (Lowd, 2012) proposed heuristics based on model averaging to seek consistent

distributions. We will also consider the issue of inconsistency and seek more principle methods

which incorporate parameter tying.

7.2.2 Beyond k-means for Parameter Tying

For this dissertation, we have focused on using k-means as the quantization function for

parameter tying. By framing the parameters as an one dimensional vector, we were able

to perform the quantization efficiently by leveraging a k-means algorithm with polynomial

complexity (Wang and Song, 2011). There exists other mapping functions to tie parameters

such as using coding theory or hashing. Autoencoders are neural network architectures that

allow for coding of data in an unsupervised manner. For future work, we are interested in

leveraging an autoencoder’s coding ability as the quantization mechanism for parameter tying.

Although the parameter tying will be done in a latent space, this approach allows for more

efficient tying of larger number of parameters. We will first apply this method on learning

the parameters of a dependency network.

103

7.2.3 Improving Dissociation-Based Bounds

For future work, we are interested in obtaining better (tighter) upper and lower bounds. To do

so, we can leverage four powerful complementary techniques described in literature (cf. (Liu

and Ihler, 2014; Lam et al., 2014; Ihler et al., 2012; Ping et al., 2015; Gogate and Domingos,

2011, 2013)): cost-shifting (or re-parameterization), higher i-bound, quantization and Hölder’s

inequality. For instance, applying Hölder’s inequality to our running example (see Example

6.2) gives the optimization problem minω(pωX1
+ (pX1pY2)

ω)1/ω(1 + p
(1−ω)
Y3

)(1/1−ω) such that

0 ≤ ω ≤ 1. We can also apply Hölder’s inequality to dissociation which alternatively gives us

the optimization problem minpX1;1
,pX1;2

,ω(pωX1;1
+ (pX1;1pY2)

ω)1/ω(p
(1−ω)
X1;2

+ (pX1;2pY3)
(1−ω))(1/1−ω)

such that pX1;1pX1;2 = pX1 and 0 ≤ ω ≤ 1. We are particularly interested in developing

algorithms to optimize the latter problem and to determine which formulation will consistently

yield tighter upper and lower bounds. Another line of future work is investigating the utility

of our approach when applied to other inference tasks such as maximum a posteriori (MAP)

estimation and marginal maximum a posteriori (MMAP) estimation.

104

REFERENCES

Abbeel, P., D. Koller, and A. Y. Ng (2006). Learning factor graphs in polynomial time and
sample complexity. Journal of Machine Learning Research 7, 1743–1788.

Andrew, G. and J. Gao (2007). Scalable training of L1-regularized log-linear models. In
Proceedings of the Twenty-Fourth International Conference on Machine Learning, pp.
33–40.

Bach, S. H., M. Broecheler, B. Huang, and L. Getoor (2017). Hinge-loss Markov random
fields and probabilistic soft logic. Journal of Machine Learning Research 18, 3846–3912.

Bertsekas, D. P. and J. N. Tsitsiklis (2008). Introduction to Probability. Athena Scientific.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society. Series B. 36 (2), 192–236.

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical
Society. Series D. 24 (3), 179–195.

Bottou, L. and Y. Bengio (1994). Convergence properties of the k-means algorithms. In
Proceedings of the Seventh International Conference on Neural Information Processing
Systems, pp. 585–592.

Bradley, J. K. and C. Guestrin (2012). Sample complexity of composite likelihood. In
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics,
pp. 136–160.

Brooks, S., A. Gelman, G. L. Jones, and X. Meng (2011). Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC.

Chavira, M. and A. Darwiche (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence 172, 772–799.

Cheng, J. and M. J. Druzdzel (2001). Confidence inference in Bayesian networks. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp.
75–82.

Choi, A., M. Chavira, and A. Darwiche (2007). Node splitting: A scheme for generating
upper bounds in Bayesian networks. In Proceedings of the Twenty-Third Conference on
Uncertainty in Artificial Intelligence, pp. 57–66.

Choi, A. and A. Darwiche (2009). Relax then compensate: On max-product belief propagation
and more. In Proceedings of the Twenty-Second International Conference on Neural
Information Processing Systems, pp. 351–359.

105

Chou, L., W. Gatterbauer, and V. Gogate (2018). Dissociation-based oblivious bounds for
weighted model counting. In Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, pp. 866–875.

Chou, L., P. Sahoo, S. Sarkhel, N. Ruozzi, and V. Gogate (2018). Automatic parameter tying:
A new approach for regularized parameter learning in Markov networks. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2860–2867.

Chou, L., S. Sarkhel, N. Ruozzi, and V. Gogate (2016). On parameter tying by quantization.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3241–3247.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pp. 151–158.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge University
Press.

Davis, J. and P. Domingos (2010). Bottom-up learning of Markov network structure. In
Proceedings of the Twenty-Seventh International Conference on Machine Learning, pp.
271–278.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic inference. In
Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pp. 211–219.

Dechter, R. and I. Rish (2003). Mini-buckets: A general scheme for bounded inference.
Journal of the ACM 50, 107–153.

den Heuvel, M. V., W. Gatterbauer, M. Theobald, and F. Geerts (2018). A general framework
for anytime approximation in probabilistic databases. In Eighth International Workshop
on Statistical Relational AI.

Domingos, P. and D. Lowd (2009). Markov Logic: An Interface Layer for Artificial Intelligence.
Morgan and Claypool.

Fung, R. M. and K. Chang (1989). Weighing and integrating evidence for stochastic simulation
in Bayesian networks. In Proceedings of the Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 209–220.

Gatterbauer, W. and D. Suciu (2014). Oblivious bounds on the probability of Boolean
functions. ACM Transactions on Database Systems 39 (5), 1–34.

Gatterbauer, W. and D. Suciu (2017). Dissociation and propagation for approximate lifted
inference with standard relational database management systems. The International
Journal on Very Large Data Bases 26, 5–30.

106

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6,
721–741.

Getoor, L. and B. Taskar (2007). Introduction to Statistical Relational Learning. MIT Press.

Gionis, A., P. Indyk, and R. Motwani (1999). Similarity search in high dimensions via hashing.
In Proceedings of the Twenty-Fifth International Conference on Very Large Data Bases,
pp. 518–529.

Gogate, V. (2009). Sampling Algorithms for Probabilistic Graphical Models with Determinism.
Ph. D. thesis, University of California, Irvine.

Gogate, V. and R. Dechter (2011). SampleSearch: Importance sampling in presence of
determinism. Artificial Intelligence 175, 694–729.

Gogate, V. and P. Domingos (2010). Formula-based probabilistic inference. In Proceedings of
the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 210–219.

Gogate, V. and P. Domingos (2011). Approximation by quantization. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 247–255.

Gogate, V. and P. Domingos (2013). Structured message passing. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 252–261.

Gogate, V. and P. Domingos (2016). Probabilistic theorem proving. Communications of the
ACM 59, 107–115.

Hammersley, J. M. and D. C. Handscomb (1964). Monte Carlo Methods. Methuen & Co.

Han, S., H. Mao, and W. J. Dally (2016). Deep compression: Compressing deep neural
networks with pruning, trained quantization and Huffman coding. In Fourth International
Conference on Learning Representation.

Heckerman, D., D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie (2000). Dependency
networks for inference, collaborative filtering, and data visualization. Journal of Machine
Learning Research 1, 49–75.

Henrion, M. (1986). Propagation of uncertainty in Bayesian networks by probabilistic logic
sampling. In Proceedings of the Second Conference on Uncertainty in Artificial Intelligence,
pp. 149–163.

Ihler, A., N. Flerova, R. Dechter, and L. Otten (2012). Join-graph based cost-shifting schemes.
In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence,
pp. 397–406.

107

Indyk, P. and R. Motwani (1998). Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, pp. 604–613.

Jha, A., V. Gogate, A. Meliou, and D. Suciu (2010). Lifted inference from the other side:
The tractable features. In Proceedings of the Twenty-Fourth International Conference on
Neural Information Processing Systems, pp. 973–981.

Kok, S., M. Sumner, M. Richardson, P. Singla, H. Poon, and P. Domingos (2006). The
Alchemy system for statistical relational AI. Technical report, Department of Computer
Science and Engineering, University of Washington. http://alchemy.cs.washington.edu.

Kokolakis, G. E. and P. Nanopoulos (2001). Bayesian multivariate micro-aggregation under
the Hellinger’s distance criterion. Research in Official Statistics 4 (1), 117–126.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

Lam, W., K. Kask, R. Dechter, and A. Ihler (2014). Beyond static mini-bucket: Towards
integrating with iterative cost-shifting based dynamic heuristics. In Proceedings of the
Seventh Annual Symposium of Combinatorial Search, pp. 105–113.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 2278–2324.

Levin, L. A. (1973). Universal sequential search problems (in Russian). Problemy Peredachi
Informatsii 9, 115–116.

Liu, J. and D. Page (2013). Bayesian estimation of latently-grouped parameters in undirected
graphical models. In Proceedings of the Twenty-Sixth International Conference on Neural
Information Processing Systems, pp. 1232–1240.

Liu, J. S. (2004). Monte Carlo Strategies in Scientific Computing. Springer.

Liu, Q. (2014). Reasoning and Decisions in Probabilistic Graphical Models – A Unified
Framework. Ph. D. thesis, University of California, Irvine.

Liu, Q. and A. Ihler (2014). Bounding the partition function using Hölder’s inquality. In
Proceedings of the Twenty-Eighth International Conference on Machine Learning, pp.
849–856.

Lowd, D. (2012). Closed-form learning of Markov networks from dependency networks. In
Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, pp.
533–542.

108

Marshall, A. W. (1956). The use of multistage sampling schemes in Monte Carlo computations.
In M. Meyer (Ed.), Symposium on Monte Carlo Methods, pp. 123–140. Wiley, New York.

Metropolis, N. and S. Ulam (1949). The Monte Carlo method. Journal of the American
Statistical Association 44 (247), 335–341.

Milch, B., L. S. Zettlemoyer, K. Kersting, M. Haime, and L. P. Kaelbling (2008). Lifted
probabilistic inference with counting formulas. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, pp. 1062–1068.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics 31 (3), 705–767.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Proceedings of the Twenty-First International Conference on Machine Learning, pp. 78–85.

Nowlan, S. J. and G. E. Hinton (1991). Adaptive soft weight tying using Gaussian mixtures.
In Proceedings of the Fourth International Conference on Neural Information Processing
Systems, pp. 993–1000.

Ortiz, L. E. and L. P. Kaelbling (2000). Adaptive importance sampling for estimation in
structured domains. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence, pp. 446–454.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann.

Ping, W., Q. Liu, and A. Ihler (2015). Decomposition bounds for marginal MAP. In Pro-
ceedings of the Twenty-Eighth International Conference on Neural Information Processing
Systems, pp. 3267–3275.

Pollard, D. (1982). Quantization and the method of k-means. IEEE Transactions on
Information Theory IT-28 (2), 199–205.

Poon, H. and P. Domingos (2006). Sound and efficient inference with probabilistic and
deterministic dependencies. In Proceedings of the Twenty-First AAAI Conference on
Artificial Intelligence, pp. 458–463.

Rahman, T. and V. Gogate (2016). Merging strategies for sum-product networks: From trees
to graphs. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, pp. 617–626.

Ravikumar, P., M. J. Wainwright, and J. D. Lafferty (2010). High-dimensional Ising model
selection using `1-regularized logistic regression. The Annals of Statistics 38 (3), 1287–1319.

109

Rooshenas, A. and D. Lowd (2014). Learning sum-product networks with direct and indirect
variable interactions. In Proceedings of the Thirty-First International Conference on
Machine Learning, pp. 710–718.

Sang, T., P. Beame, and H. Kautz (2005). Performing Bayesian inference by weighted model
counting. In Proceedings of the Twentieth AAAI Conference on Artificial Intelligence, pp.
475–481.

Savicky, P. and J. Vomlel (2009). Triangulation heuristics for BN2O networks. In Proceedings
of the Tenth European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, pp. 566–577.

Shachter, R. D. and M. A. Peot (1989). Simulation approaches to general probabilistic
inference on belief networks. In Proceedings of the Fifth Conference on Uncertainty in
Artificial Intelligence, pp. 221–230.

Steck, H. and T. S. Jaakkola (2002). On the Dirichlet prior and Bayesian regularization. In
Proceedings of the Fifteenth International Conference on Neural Information Processing
Systems, pp. 713–720.

Valiant, L. G. (1979). The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM 27 (11),
1134–1142.

Wang, H. and M. Song (2011). Ckmeans.1d.dp: Optimal k-means clustering in one dimension
by dynamic programming. The R Journal 3, 29–33.

Wang, Z., L. Duan, T. Huang, and W. Gao (2016). Affinity preserving quantization for
hashing: A vector quantization approach to learning compact binary codes. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1102–1108.

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical Inference. Springer.

Wei, W., J. Erenrich, and B. Selman (2004). Towards efficient sampling: Exploiting random
walk strategies. In Proceedings of the Nineteenth AAAI Conference on Artificial Intelligence,
pp. 670–676.

Zhang, N. L. and D. Poole (1994). A simple approach to Bayesian network computations. In
Proceedings of the Tenth Canadian Conference on Artificial Intelligence, pp. 171–178.

Zhu, H., M. Long, J. Wang, and Y. Cao (2016). Deep hashing network for efficient similarity
retrieval. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp.
2415–2421.

110

BIOGRAPHICAL SKETCH

Li K. Chou earned his Bachelor of Science in Computer Science and Master of Business

Administration from Southern Methodist University. Prior to starting the Computer Science

PhD program at The University of Texas at Dallas, Li worked extensively in the financial

industry. His research interests broadly encompass the areas of artificial intelligence, machine

learning, and data science.

111

CURRICULUM VITAE

Li K. Chou
August 2019

Contact Information:

Department of Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080
Email: li.chou@utdallas.edu
Citizenship: United States

Education:

PhD, Computer Science, The University of Texas at Dallas, 2019
MS, Computer Science, The University of Texas at Dallas, 2018
MBA, Finance and Accounting, Southern Methodist University, 2003
BS, Computer Science and Minor in Mathematics, Southern Methodist University, 1997

Selected Experience:

The University of Texas at Dallas, Richardson, TX
Department of Computer Science
Graduate Research Assistant
Graduate Teaching Assistant

5/2014−8/2015, 5/2016−8/2019
8/2015−5/2016

Adobe Research, San Jose, CA
BigData Experience Lab
Data Science Research Intern Summer 2018

Refereed Conference Publication:

Chou, L., W. Gatterbauer, and V. Gogate (2018). Dissociation-Based Oblivious Bounds for
Weighted Model Counting. In Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, pp. 866–875.

Chou, L., P. Sahoo, S. Sarkhel, N. Ruozzi, and V. Gogate (2018). Automatic Parameter Tying:
A New Approach for Regularized Parameter Learning in Markov Networks. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2860–2867.

Chou, L., S. Sarkhel, N. Ruozzi, and V. Gogate (2016). On Parameter Tying by Quantization.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3241–3247.

Teaching Experience:

Guest Lecture:

1. Artificial Intelligence (CS 6364) Fall 2018, Logical Agents

2. Machine Learning (CS 6375) Spring 2018, Naïve Bayes

3. Advanced Machine Learning (CS 7301) Spring 2017, Point Estimation

4. Big Data Management and Analytics (CS 6350) Spring 2016, Classification, Decision
Tree, Naïve Bayes

5. Big Data Management and Analytics (CS 6350) Spring 2016, k-Nearest Neighbors, En-
semble Methods

6. Convex Optimization (CS 8V02) Fall 2015, Frank-Wolfe Algorithm

7. Big Data Management and Analytics (CS 6350) Fall 2015, Classification, Decision Tree,
Naïve Bayes

8. Big Data Management and Analytics (CS 6350) Fall 2015, k-Nearest Neighbors, Ensemble
Methods

Teaching Assistant:

• Advanced Machine Learning (CS 7301) Spring 2016

• Big Data Management and Analytics (CS 6350) Spring 2016

• Artificial Intelligence (CS 6364) Fall 2015

• Big Data Management and Analytics (CS 6350) Fall 2015

Professional Service:

Organizer : UAI 2019 Workflow Chair
Program Committee: AAAI 2020, IJCAI 2018
Reviewer : JMLR, ICML, UAI, AAAI, IJCAI
Co-organizer : UAI 2014, 2016 Probabilistic Inference Competition/Evaluation

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Learning
	Inference
	Dissertation Organization
	Contributions to Learning using Parameter Tying
	Contributions to Inference using Parameter Tying

	Background
	Preliminary Notation
	Representation
	Probabilistic Graphical Models
	Propositional Logic

	Inference
	Elimination-based Methods
	Monte Carlo Methods

	Learning
	Maximum Likelihood Estimation
	Maximum Pseudolikelihood Estimation

	L2 Regularization
	Quantization and k-means

	Learning Parameter Tied Bayesian Networks
	Introduction
	Problem Definition and Approach
	Theoretical Analysis of Quantization
	Relearning
	Experiments
	Discussion

	Learning Parameter Tied Markov Networks
	Introduction
	Problem Definition
	Block Coordinate Ascent Learning Algorithm
	Theoretical Analysis
	Experiments
	Experimental Setup
	apt versus L2 regularization
	apt versus ltr
	Impact of varying k

	Discussion

	Slice Importance Sampling for Parameter Tied Graphical Models
	Introduction
	Slice Importance Sampling
	Experiments
	Discussion

	Dissociation-Based Bounding Algorithms
	Introduction
	Weighted Model Counting Problem
	WCNF Encoding of a GM
	Mini-bucket Elimination for w2cnf

	Dissociation
	Comparison with Mini-bucket

	Dissociation for Non-monotone Formulas
	Preprocessing
	Types of Non-Monotone Formulas
	Characterizing Oblivious Bounds

	Experiments
	Synthetic Datasets
	UAI Inference Datasets

	Discussion

	Conclusion
	Contributions
	Directions for Future Research
	Towards Canonical Parameter Tied GMs
	Beyond k-means for Parameter Tying
	Improving Dissociation-Based Bounds

	References
	Biographical Sketch
	Curriculum Vitae

