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supporting me every step of the way through my years of studies. He has not only been a

professor but also a mentor and a role model. I will be grateful to him for the rest of my life.

My husband, Shahram Behmardi, listened to me and supported me on stressful days and

encouraged me to keep on going, when I wanted to give up several times. I can’t thank him

enough for that.

Thanks to my brothers, Farhad and Fereidoun, for being my support system, for providing

accommodation and rides and listening ears when I needed it most.

To my parents and my friends Shaghayegh, Thuy, Het, Yanping, Simin, Igor and Pierrette

for giving me lots of support and encouraging me to be myself and make my own decisions.

July 2021

v



SOME TOPOLOGICAL ASPECTS OF INTEGRABLE RIGID BODY DYNAMICS

Fariba Khoshnasib-Zeinabad, PhD
The University of Texas at Dallas, 2021

Supervising Professors: Vladimir Dragović, Chair
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The main aim of this dissertation is to describe topology of isoenergy manifolds of the clas-

sical Kirchhoff case of Kirchhoff equations of rigid body motion in an ideal, incompressible

fluid.

The first chapter introduces the basic notions of rigid body dynamics and integrable Hamilto-

nian systems. To that end it also introduces the concept of symplectic and Poisson manifolds

and the analytical mechanics theorems and definitions that are needed to formulate and un-

derstand the models of rigid body systems characterized by three different systems of six

non-linear differential equations: the Euler-Poisson equations, the Kirchhoff equations, and

the Poincaré-Zhukovsky equations. The role of underlying Lie-Poisson algebras is stressed.

In Chapter 2 we studied the Goryachev-Chaplygin top. This system is completely integrable

if reduced to a level set of one first integral only. The bifurcation diagram of this completely

integrable system is the region of possible motion on the plane of first integrals together with

the image of the critical set.

Chapter 3 gives a complete description of the topology of the iso-energy manifolds of the

Kirchhoff system of the Kirchhoff equations of rigid body motion in an ideal, incompressible

fluid. This is a Hamiltonian system on Lie-Poisson algebra e(3) with a Hamlitonian which is

quadratic in mixed terms as well. For such general quadratic Hamiltonians on e(3) we first

vi



construct so-called reduced potential.

In the special case of the Kirchhoff system we use the reduced potential to construct its Reeb

graphs. Based on a theorem of Smale, we use the combinatorics of the constructed Reeb

graphs to compute the topology of the isoenergy manifolds. The challenge of the presence

of a large number of parameters has been compensated by a relatively simple form of the

reduced potential in this case.

In Chapter 4, we investigate the bifurcations of the momentum mapping for the Poincaré

model of rigid body filled with ideal incompressible vortex fluid. The equations of motion

are the Poincaré-Zhukovky equations. They can be seen as a Hamiltonian system on the

Lie-Poisson algebra so(4) with a quadratic Hamiltonian. For this purpose, we find the criti-

cal points of rank zero and rank one . Finally, the bifurcations are studied for the Kirchhoff

case on the Lie algebra e(3). We find critical points of rank zero and rank one.
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CHAPTER 1

INTRODUCTION

In order to study the bifurcations of systems of rigid body, let us first introduce the class of

manifolds and the type of systems that describe this motion. For this purpose, we will first

start with the notion of a manifold in symplectic geometry.

1.1 Poisson manifolds and symplectic manifolds

Symplectic and Poisson manifolds both arise from classical mechanics. As we will see sym-

plectic manifolds come equipped with a natural vector field called the Hamiltonian vector

field that corresponds to the Hamiltonian equations of a system. Symplectic manifolds are

a special case of Poisson manifolds, as we will state in theorem 1. Indeed, a motivation for

studying Poisson manifolds is that frequently it can be simpler to study a Poisson manifold

that a symplectic manifold is embedded into, than it is to study a symplectic manifold itself.

For example, it is often easier to analyze stability of the dynamics on a Poisson manifold

than on its symplectic leaves.

Let us define a binary operation {·, ·} called the Poisson bracket such that this operation

satisfies the following properties:

1. {f, g} = −{g, f} (skew − symmetry),

2. {af+bg, h} = a{f, h}+b{g, h}, {h, af+bg} = a{h, f}+b{h, g}, a, b ∈ R (bilinearity),

3. {fg, h} = {f, h}g + f{g, h}(Leibniz′s rule),

4. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)

Now, suppose we have a manifold S with the operation defined by Poisson bracket and its

properties defined as in 1-4, we call S a Poisson manifold. Considering the definition of
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a Poisson bracket, the structure can be degenerate and possess Casimir functions fK(x)

that commute with all variables xi. This means Casimir functions would commute with all

functions g(x) on S, i.e., {fk, g} = 0. We will just call Casimir functions, Casimirs from

now on, in this manuscript.

Definition 1. A symplectic manifold S is a differentiable manifold with a global closed 2-

form Ω of maximal rank, meaning dΩ = 0, Ωn 6= 0.

To include the linear algerba behind this, assuming a vector space V 2n, if Ω ∈
∧2 V

with rk Ω = 2n, then there exist θ1, ..., θ2n ∈ V ∗, linearly independent and with labeling

such that

Ω = θ1 ∧ θn+1 + ...+ θn ∧ θ2n.

The following also called the splitting theorem and demonstrates the relation between

Poisson and symplectic manifolds.

Theorem 1. Let (P, {·, ·}) be a Poisson manifold, and let p ∈ P . Then there exists an open

neighbourhood U ⊂ P containing p and a unique diffeomorphic Poisson mapping

Φ = ΦS × ΦN : U → S ×N

where S is a symplectic manifold and N is a Poisson manifold with rank zero at ΦN(p).

S in the above theorem is called a symplectic leaf of P . In other words, this theorem

states that every Poisson manifold is naturally partitioned into regularly immersed symplectic

leaves.

Furthermore, the structural group of the tangent bundle of S may be reduced to U(n) with

the use of a Reimannian metric and its orientibility. This means that the symplectic manifold

2



S carries an almost complex structure, hence leading to the German mathematician H. Weyl

giving it the name symplectic from the Latin com-plex changing to Greek sym-plectic.[1]

In other words, a symplectic manifold is a pair (S, ω) where S is a manifold and ω is a

non-degenerate closed 2-form on S.[44]

Definition 2. Non-degeneracy: Let V be a vector space. Let

ω : V × V → R

be a skew-symmetric, bilinear 2-form with ω ∈ ∧2V ?. The form ω is nondegenerate if for

every v ∈ V ,

ω(v, u) = 0 , ∀u ∈ V ⇒ v = 0.

Definition 3. A symplectic vector space is a pair (V, ω) where V is a vector space and

ω ∈ ∧2(V ?)

is a non-degenerate bilinear skew-symmetric form.

A two-form ω ∈ Ω2(S) is nondegenerate if and only if for any point s ∈ S, the bilinear

form ωs on the tangent space TsS is nondegenerate.

If we consider V = R2 with coordinates x and y and ω = dx ∧ dy as a (constant coefficient

)differential form, then it is easy to see that

ω](
∂

∂x
) = ι(

∂

∂x
)(dx ∧ dy) = dy

and that similarly

ω](
∂

∂y
) = −dx.

So ω] is bijective. Therefore (R2, dx ∧ dy) is a symplectic manifold.

Let (S, ω) be a symplectic manifold. Then for every point s ∈ S,

(ω)] : TsS → T ?s S

3



is an isomorphism so there is a correspondence between 1-forms and vector fields. In partic-

ular, given a function f ∈ C∞(S), the differential df of f is a one-form

s 7→ dfs = Σ
∂f

∂xi
(dxi)s.

This gives us a vector field

Xf (s) := ((ω])−1(dfs).

Equivalently, Xf is defined by ι(Xf )ω = df .

The vector field Xf defined above is called the Hamiltonian vector field of the function

f on a symplectic manifold (S, ω).

1.2 Hamiltonian Systems

In section 1.1, we defined the Poisson bracket and we will use this bracket to describe the

motion of rigid bodies. First, let us discuss the basics of Hamiltonian dynamics to shed light

on the description of a system defining rigid body motion.

As we know, in Newtonian mechanics motion is described in terms of acceleration, masses,

time and velocities for the sake of tangibility in every day use. Years after Newton, Joseph-

Louise Lagrange came up with a formulation for dynamics of a system with k degrees of

freedom. Let qi, i = 1, ..., k define our position coordinates, q̇i = dqi
dt

define our generalized

velocity coordinates and let t be the independent time variable. The Lagrangian or Lagrange

function

L(qi, q̇i, t)

is then a function of 2k + 1 dynamical variables. Lagrangian, L is defined as the difference

between Kinetic energy and potential energy, for a general time dependent system in a

electromagnetic field, is formulated as:

L(q, q̇, t) = T (q, q̇, t)− U(q, q̇, t),

4



where T is the kinetic and U is the potential energy.

Hamilton[7] shows in his book, that for a conservative system, the Lagrangian equations of

motion satisfy:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (1.1)

In (1.1), the quantity ∂L
∂q̇i

is the generalized momentum as we know it, in the absence of

vector potential, otherwise it is called magnetic momentum. Lagrangian can now be used

to describe the motion of a system. Here, Lagrangian would be a function of 2k dynamical

variables (q1, ..., qk, q̇1, ..., q̇k) with the dot representing time derivative. The motion of the

system then can be described with k second order differential equations.

The formulation used in Hamiltonian dynamics to describe the motion of a system includes

the Lagrange function. For the system coordinates (q1, ..., qk) and generalized momenta

(p1, ..., pk), the momenta in (1.1) are defined in the following way:

pi =
∂L

∂q̇i
,

Change of basis from (q, q̇, t) to (q, p, t) is performed using a Legendre transformation gives:

H(q, p, t) =

(∑
i

piq̇i − L(q, q̇, t)

)
, q̇ = q̇(p, q, t). (1.2)

After finding the differential of the left hand side and right hand side of (1.2) and setting

them equal, we obtain:

∂H

∂t
dt+

∑
i

∂H

∂qi
dqi+

∑
i

∂H

∂pi
dpi =

∑
i

pidq̇i+
∑
i

q̇idpi−
∑
i

∂L

∂qi
dqi−

∑
i

∂L

∂q̇i
dq̇i−

∂L

∂t
dt. (1.3)

Simplifying the expression in (1.3) and equating the two sides of the equation, results

in

∂H

∂t
= −∂L

∂t
, (1.4)

and for i = 1, ..., k:

q̇i =
∂H

∂pi
, (1.5)

5



ṗi = −∂H
∂qi

. (1.6)

Taking the assumptions and results above into consideration, the function H(q, p, t) is

called the Hamiltonian and equations (1.5) and (1.6) are Hamilton equations of motion. Not

considering the theory of relativity, the Hamiltonian is the sum of the potential and kinetic

energies:

H(q, p) = T + U.

The Poisson bracket as defined in section 1.1, for two functions f(qi, pi, t) and g(qi, pi, t)

is defined by

{f, g} ≡
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

where obviously {f, f} ≡ 0 and if we let f = H, we have

dH

dt
=
∂H

∂t
.

If H doesn’t depend on time explicitly , it would be a constant of motion. Similarly, any

invariant of the motion that doesn’t depend explicitly on time, would have a vanishing

Poisson bracket with H.

1.3 Integrable Hamiltonian Systems

Differential equations and as a result, Hamiltonian systems are divided into two classes,

non-integrable versus integrable systems. Birkhoff discovered that a differential equations

system is solved when there is some relation between the pattern of the motion and the phase

space and this relation was clear when the system has sufficient number of conservation laws

including first integrals, symmetry fields, or other tensor invariants[5]. In this case, we say

a system is solved by ”quadratures” which means the solutions are found by doing a finite

number of algebraic operations and calculations of integrals of known functions, Bour and

Liouville structured these conditions and relationships and later they were shaped into what

we call the Liouville- Arnold theorem.[3].

6



Theorem 2. Assume that on a symplectic manifold M2n(p, q) = M2n(p1, ..., pn, q1, ..., qn),

n functions in involution are given, i.e.,

F1, ..., Fn : {Fi, Fj} ≡ 0, i, j = 1, ..., n.

We also assume that on the level manifold Mf of the integrals {x ∈ M2n : Fi = ci, i =

1, ..., n}, where the n functions Fi are independent. Then:

1. Mf is a smooth manifold invariant under the phase flow with the Hamiltonian function

H = F1.

2. If the manifold Mf is connected and compact, then it is diffeomorphic to the n-dimensional

torus

Tn = {(ϕ1, ..., ϕn) mod 2π},

with ϕi being the action angles.

3. Locally there exists a canonical coordinate transformation (p,q) 7→ (ϕ,E) (called

‘action-angle’ coordinates)

(ϕ,E) = (ϕ1, ..., ϕn, E1, ..., En) ∈ T n × Rn

such that the angles ϕi, i = 1, ..., n are coordinates on Mc, the actions Ei, i = 1, ..., n

are first integrals and H(q, p) = H(E). The phase flow with the Hamiltonian func-

tion H = F1 defines on Mf a conditionally periodic motion, i.e., in some angular

coordinates ϕ = (ϕ1, ..., ϕn), we have the Hamilton equations

dϕϕϕ

dt
= ωωω, ωωω = ω(c1, ..., cn) = (ω1, ..., ωn),

dE

dt
= 0, E = (E1, ...,En)

7



4. The canonical equations with Hamiltonian function H are integrable by quadratures.

The classical proof of the statement of Liouville - Arnold theorem can be found in Whit-

taker’s treatise[6]. A Hamiltonian system satisfying the conditions of the Arnold- Liouville

thereom is called completely integrable.

Assume a dynamical system is given with two degrees of freedom and with the Hamiltonian

H(q,p) as a function of canonical variables q = (q1, q2) and p = (p1, p2), in the form:

q̇ =
∂H

∂p
, ṗ = −∂H

∂p
. (1.7)

If this system has an additional integral K(q,p) , by Arnold - Liouville theorem, the system

is integrable and can be integrated by quadrature as long as H and K are in involution on

the 4 dimensional symplectic manifold M4 defined by the system and the Casimirs[3]. The

examples we will discuss in this dissertation are integrable systems.

1.4 Rigid body dynamics

In this section we will review the physics of moments of inertia, kinetic energy and angular

momentum and angular velocity to arrive at the system of 6 differential equations defining

motion of a rigid body.

Moment of inertia of a rigid body about an axis is the inertia needed to carry it by rotation

about that axis. We define moment of inertia for a 3 dimensional body along x-axis to be∫∫∫
τ

(y2 + z2)dm = A,

the moment of inertia along y-axis to be∫∫∫
τ

(x2 + z2)dm = B,

and the one along the z-axis to be∫∫∫
τ

(x2 + y2)dm = C.

8



We know from physics that in the absence of applied torques, the angular kinetic energy T

is conserved so dT
dt

= 0.

Let us define a few terms here. The angular momentum of a rigid body rotating about an

axis passing through the origin of the local reference frame is in fact the product of the inertia

tensor of the body and the angular velocity. The moment of inertia tensor in 3D Cartesian

coordinates, is a three-by-three matrix I that can be multiplied by angular velocity vector

of the rigid body to produce the corresponding angular momentum vector for the rigid body

at its center of mass.

Definition 4. The diagonal elements in the inertia tensor are called the angular moments

of inertia. There exists an orthogonal basis on which I tensor has a diagonal form. Diagonal

elements are the principal moments of inertia. The coordinate axes are principal axes.

Definition 5. A principal axis of rotation is an eigenvector of the mass moment of

inertia tensor, defined relative to the center of mass of the body.

In the above definition, the corresponding eigenvalues are the principal moments of

inertia. To formulate this, we use the fact that the angular momentum vector is given by

the moment of inertia tensor times the angular velocity vector, i.e., L = I ω. If ω is an

eigenvector of I, then we have

L = I ω = λω,

where the scalar eigen value λ is the principal moment of inertia. There are always three

mutually orthogonal principal axes of rotation and three corresponding principal moments

of inertia in 3D space.

The angular kinetic energy may be expressed in terms of an inertia tensor I and the angular

velocity vector ω.

T =
1

2
ω · I · ω =

1

2
Aω2

1 +
1

2
Bω2

2 +
1

2
Cω2

3,

9



where ωk are the components of the angular velocity vector ω along the principal axes, and

the A,B and C are the principal moments of inertia. Thus, the conservation of kinetic

energy imposes a constraint on the three-dimensional angular velocity vector ω that in the

principal axis frame, it must lie on an ellipsoid, called inertia ellipsoid.

If x, y and z axis are oriented along the principal axes of the ellipsoid of inertia, given ~r the

radius vector and ~v, the linear velocity, for ~G ,the angular momentum, we get :

~G =

∫∫∫
τ

~r × ~v dm =

∫∫∫
τ

~r × (~ω × ~r) dm =

∫∫∫
τ

[~ω|~r|2 − ~r(~r.~ω)] dm,

using the property of cross product that says

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b).

Doing the following computations,

~ω|~r|2 = (p̂i+ qĵ + rk̂)(x2 + y2 + z2)

where î, ĵ, k̂ are the units vectors of the stationary coordinate system where O is the the

origin of both systems(stationary and the one rigidly connected to the body). and

~ω|~r|2 − ~r(~r.~ω) = î[p(x2 + y2 + z2)− px2 − x(qy + rz)]+

ĵ[q(x2 + y2 + z2)− qy2 − y(px+ rz)] + k̂[r(x2 + y2 + z2)− rz2 − z(px+ qy).] (1.8)

Applying the triple integrals to the region τ , we get

~G = î(Ixxp− Ixyq − Ixzr) + ĵ(Iyyq − Iyzr − Iyxp) + k̂(Izzr − Izxp− Izyq),

where ∫∫∫
τ

(y2 + z2)dm = A = Ixx,

∫∫∫
τ

xydm = Ixy = Iyx,

∫∫∫
τ

(x2 + z2)dm = B = Iyy,

∫∫∫
τ

xzdm = Ixz = Izx,

10



∫∫∫
τ

(x2 + y2)dm = C = Izz,

∫∫∫
τ

yzdm = Iyz = Izy,

with the remark that if x, y, z axes are oriented along the principal axes of ellipsoid of inertia,

then the coefficients Ixy, Iyz and Ixz become zero.

The angular momentum is defined to be the vector: ~G = Ap̂i + Bqĵ + Crk̂ where angular

velocity vector is ~ω = p̂i + qĵ + rk̂, assuming î, ĵ, k̂ are the unit vectors of the coordinate

system connected rigidly to the rigid body and A,B and C are defined as above.

If ~R is some variable vector originating from the point O and let x, y, z be the coordinates

of its vertex in the moving system of coordinates, rigidly connects with the body, such that:

~R = îx+ ĵy + k̂z,

then:

d~R

dt
= î

dx

dt
+ ĵ

dy

dt
+ k̂

dz

dt
+ x

d̂i

dt
+ y

dĵ

dt
+ z

dk̂

dt
.

Since d̂i
dt

is the velocity of the vertex of the unit vector î of the moving system and applying

the same thing to ĵ and k̂, we have

d̂i

dt
= ~ω × î,

dĵ

dt
= ~ω × ĵ

and

dk̂

dt
= ~ω × k̂.

The ~ω is the angular velocity vector of the body. Therefore, we have

d~R

dt
= î

dx

dt
+ ĵ

dy

dt
+ k̂

dz

dt
+ ~ω × (xî+ yĵ + zk̂).

This means that since

î
dx

dt
+ ĵ

dy

dt
+ k̂

dz

dt

11



is the relative derivative of the vector ~R with respect to time, in general we have:

d~R

dt
=
δ ~R

δt
+ ~ω × ~R. (1.9)

Now fixing z̄, which is the coordinate of the fixed point of the body in direction of z axis,

k̄ = γ1î+ γ2ĵ + γ3k̂,

where γ1, γ2 and γ3 are the coordinates of the direction cos vectors with respect to the moving

axes Ox,Oy,Oz.

Since k̄ is fixed,

dk̄

dt
= 0

and

dk̄

dt
=
δk̄

δt
+ ~ω × k̄ ⇒ δk̄

δt
= −~ω × k̄.

So,

î
dγ1
dt

+ ĵ
dγ2
dt

+ k̂
dγ3
dt

= −~ω × k̄ =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

γ1 γ2 γ3

p q r

∣∣∣∣∣∣∣∣∣∣
.

This gives: 

dγ1
dt

= γ2r − qγ3,

dγ2
dt

= pγ3 − γ1r,

dγ3
dt

= qγ1 − pγ2.

(1.10)

The differential equations in (1.10), are the first three equations in the system of equations

corresponding to the motion of rigid bodies. Now, let us find the next set of equations for

this motion.

Let us note that we are considering the motion of a heavy rigid body here, given the mass

12



in a gravitational field. In general, ~L(moment of force of gravity) is the cross product of the

position vector ~r0 of a point and the force applied to that point:

~L = ~r0 × ~F .

Let us suppose ~F = mg is in direction of negative z̄,

~F = mg(γ1î+ γ2ĵ + γ3k̂)

and

L =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

x0 y0 z0

mgγ1 mgγ2 mgγ3

∣∣∣∣∣∣∣∣∣∣
= îmg(y0γ3 − z0γ2) + ĵmg(z0γ1 − x0γ3) + k̂mg(x0γ2 − y0γ1).

(1.11)

Also, we can show that d~G
dt

= ~L, since we have

∫∫∫
τ

~r × ~v dm =

∫∫∫
τ

~r × ~vρdτ,

and now deriving this with respect to time, we have

d~G

dt
=

∫∫∫
τ

(
d~r

dt
× ~v + ~r × d~v

dt

)
ρdτ.

However, since d~r
dt

and ~v are in the same direction

d~r

dt
× ~v = 0.

Then in ∫∫∫
τ

~r × d~v

dt
ρdτ,

since

ρdτ
d~v

dt
= dm~a = d~F ,

13



we obtain ∫∫∫
τ

~r × d~F

and this is nothing but ~L.

Using (1.9) and (1.11), We can rewrite d~G
dt

= ~L as

d~G

dt
= A

dp

dt
î+B

dq

dt
ĵ + C

dr

dt
k̂ +

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

p q r

Ap Bq Cr

∣∣∣∣∣∣∣∣∣∣
.

This gives the other three differential equations corresponding to motion of the rigid body,

which is: 
A
dp

dt
+ (C −B)qr = mg(y0γ3 − z0γ2)

B
dq

dt
+ (A− C)pr = mg(z0γ1 − x0γ3)

C
dr

dt
+ (B − A)pq = mg(x0γ2 − y0γ1).

(1.12)

The Goryachev Chaplygin system would occur when A = B = 4C in (1.12).

1.5 The Euler-Poisson equations of rigid body dynamics

The closed form of the system of equations represented by (1.10) and (1.12) are called the

Euler-Poisson equations defining the motion of a rigid body about a fixed point in a uniform

gravitational field. The Euler-Poisson equations are given below:
Iω̇+ ω× Iω = µr× γ

γ̇ = γ × ω.
(1.13)

In (1.13), ω = (p, q, r) is the angular velocity vector, r = (r1, r2, r3) is the position vector

of the center of mass and γ = (γ1, γ2, γ3) is the unit vertical vector, with origin at the fixed

point of the rigid body, µ = mg is the body’s weight and I = diag(a1, a2, a3) is the inertia

tensor relative to the fixed point in these axes.
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Remark 1. Let us note that Ixx = a1, Iyy = a2 and Izz = a3 in the above representation of

the system, with I being the inertia tensor.

Figure 1.1: A rigid body with a fixed point in a gravitational field

Letting M = Iω be the angular momentum vector, (1.13) can be written in the

following Hamiltonian form:

Ṁi = {Mi, H}, γ̇i = {γi, H}, i = 1, 2, 3.

Let us define the Lie–Poisson bracket on the Lie algebras so(4), e(3) and so(3, 1).

{Mi,Mj} = −εijkMk, {Mi, γj} = −εijkγk, {γi, γj} = −κεijkMk. (1.14)

Cases κ > 0, κ = 0 and κ < 0 in (1.14) correspond to the Lie algebra so(4), e(3) and

so(3, 1), respectively.
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The Hamiltonian, representing the total energy of the system is defined as:

H =
1

2
〈M , I−1M〉 − µ〈r, γ〉. (1.15)

The Lie–Poisson bracket in this case being

{Mi,Mj} = −εijkMk, {Mi, γj} = −εijkγk, {γi, γj} = 0, (1.16)

defined on Lie algebra e(3), is degenerate and has two Casimirs

F1 = 〈M,γ〉, F2 = γ2 (1.17)

which commute with any function of (M,γ). In (1.17), F1 is called the integral of areas and

it’s the projection of angular momentum on a fixed vertical axis. The integral F2 = const is

the square of the absolute value of the unit vertical vector and can be normalized to 1.

1.6 Integrable cases of the Euler-Poisson equations: the Euler case, the La-

grange case, the Kowalevski case and the Goryachev – Chaplygin case

The Euler case occurs when there are no fields acting on the body, i.e., r = 0. The Hamil-

tonian and the additional integral in this case are

H =
1

2
〈M,I−1M〉, F3 = M 2 = const.

The geometric interpretation of this case was given by L. Poinsot in 1851, stating that the

inertial ellipsoid with the fixed center 1
2
(a1p

2 + a2q
2 + a3r

2) = h rolls without slipping on a

plane fixed in the absolute space and perpendicular to the angular momentum vector.

In the Lagrange case, the body possesses dynamical symmetry due to a1 = a2 and the center

of mass lies on the axis of dynamical symmetry r1 = r2 = 0 and the additional integral is

F3 = M3 = const.

In Kowalevski case just like Lagrange’s case, the body has a dynamical symmetry with
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a1 = a2 and the center of mass lies in the equatorial plane of the ellipsoid of inertia r3 = 0.

In addition a1
a3

= 2 holds. The Hamiltonian and the additional integral found by Kowalevski

are

H =
1

2
(M2

1 +M2
2 + 2M2

3 )− xγ1,

F3 = (
M2

1 −M2
2

2
+ xγ1)

2 + (M1M2 + xγ2)
2 = k2,

with the coordinates chosen in a way that the position vector of the center of mass has

coordinates r = (x, 0, 0) and the weight of the body is assumed to equal 1.

The Goryachev –Chaplygin case is an integrable case where the assumption for integrability

is 〈M,γ〉 = 0 meaning that the angular momentum vector is forced to lie in the horizontal

plane. Also, the ratio of the moments of inertia here is a1
a3

= 4 and we have dynamical

symmetry due to a1 = a2. The additional integral and the Hamiltonian are given below:

H =
1

2
(M2

1 +M2
2 + 4M2

3 )− xγ1,

F3 = M3(M
2
1 +M2

2 ) + xM1γ3.

1.7 The Zhukovsky – Poincaré equations and the Poincaré case

Fundamental questions of astrophysics and geophysics about the phenomena of precessional

motions of celestial bodies, including the Earth, led to theoretical studies and formulation of

the assumptions that a planet is a body which consists of a hard shell (mantle) surrounding

the liquid core. Modelling these questions further led to the study of rigid bodies with

cavities filled with fluids.

One of the first comprehensive studies of this subject was done by N. Y. Zhukovsky in

1880’s [43]. He studied uniform vortex motion in the case of ellipsoidal cavities and also

potential motion in the case of non-simply connected cavities. Parallel in time to that was

unpublished treatise of another great A. M. Lyapunov [21]. The celebrated monograph on

17



Hydrodynamics by H. Lamb collected a significant amount of material, including important

historic and background results and references. The whole last Chapter XII of that book is

devoted to rotating masses of liquid, [20]. Similar questions were studied by various authors

in the last decade of XIX century like V. A. Steklov [38, 40], V. Volterra [42], and others, see

also [17, 41]. The geophysical questions of the Earth precession also motivated H. Poincaré

to study the subject in 1910. We are going to follow closely here Poincaré’s work [22].

Let us also mention some more recent works. In [36] the model problem of Mercury’s

librations was considered. In [16] the problem of dynamics of a rigid body with a liquid-filled

cavity was considered in the framework of nonholonomic dynamics. Following Zhukovsky

[43] and Poincaré [22], we consider a rigid body with an ellipsoidal cavity filled with ideal

incompressible fluid. There is a solution to the Euler equations for the ideal fluid, for

which velocities satisfy the hydrodynamics equations. The boundary conditions are linear

in coordinates. Due to the results of Helmholtz [19], it is also known that the vortex flow

being homogeneous initially, remains homogeneous thereafter.

Let us now set the scene for Zhukovsky’s work and his assumptions that helped build the

model for motion of a rigid body with cavity filled with fluid.

Letting O be the origin fixed at the center of the cavity and X be the kinematic moment

matrix of the body with cavity filled with fluid and

Mi =
1

2
εijkXjk, Pi = Xoi, i, j, k = 1, 2, 3,

the equations of motion are represented in the following way:

Ṁ = M × ∂H1

∂M
+ P × ∂H1

∂P
, Ṗ = P × ∂H1

∂M
+M × ∂H1

∂P
, (1.18)

where:

H1 =
1

2
〈M , I−1M〉+ 〈M ,BP 〉+

1

2
〈P ,CP 〉, (1.19)

see [5]. The equations (1.18) are equivalent to the Hamiltonian equations on the Poisson

algebra of so(4), with the Hamiltonian H1. The diagonal matrix I is the inertia tensor
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that is positive definite and of the form I = diag(a1, a2, a3) where ai > 0. We will suppose

the matrices B and C are also diagonal and of the form B = diag(b1, b2, b3) and C =

diag(c1, c2, c3). Here ci correspond to the coefficients of the relative potential defined below

and bi are the moments of rotation of the relative motion. Poincaré calculated the relative

force of the motion of the ideal fluid in a rigid body with an ellipsoidal cavity defined as

αx2 + βy2 + γz2 = 1. (1.20)

This calculation was done in terms of the density of the liquid and the principal axes of the

ellipsoidal cavity. The relative potential energy is

1

2
(c1P

2
1 + c2P

2
2 + c3P

2
3 ),

where

c1 =
4πd

15

1

αβγ

(
1

β
+

1

γ

)
, c2 =

4πd

15

1

αβγ

(
1

α
+

1

γ

)
, c3 =

4πd

15

1

αβγ

(
1

α
+

1

β

)
. (1.21)

Here d is the density of the fluid and α, β, γ are the coefficients of the ellipsoidal cavity

(1.20). Poincaré calculated

b1 =
8πd

15

1√
αβγ

1√
βγ
, b2 =

8πd

15

1√
αβγ

1
√
αγ

, b3 =
8πd

15

1√
αβγ

1√
αβ

. (1.22)

The Poisson commutator relations on so(4) have the form

{Mi,Mj} = −εijkMk, {Mi, Pj} = −εijkPk, {Pi, Pj} = −εijkMk. (1.23)

The Casimirs of the Poisson algebra so(4) are defined in the standard way [4, 5]:

f1 = P 2
1 + P 2

2 + P 2
3 +M2

1 +M2
2 +M2

3 , f2 = M1P1 +M2P2 +M3P3. (1.24)
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1.7.1 The Poincaré case

Poincaré is well-known for his conjecture and his 3-body problem, but in this text we want

to focus more on his accomplishments in celestial and fluid mechanics leading to a simpli-

fied model of the earth motion, considering it as a ellipsoidal rigid body with a symmetric

ellipsoidal cavity filled with liquid. Having seen the equations of motion that was estab-

lished for motion of a rigid body with cavity filled with fluid, here we want to demonstrate

Poincaré main work in defining this system and establishing its integrability after finding

the additional first integral.

The Poincaré case [22] assumes an additional, axial symmetry and can be seen as the

simplest integrable example, where, for each of the diagonal matrices A,B,C the correspond-

ing pairs of eigen-values coincide:

a1 = a2, b1 = b2, c1 = c2.

Along with these conditions, it is also assumed that the cavity is symmetric, α = β. This

symmetry together with (1.21) and (1.22) imply b3 = c3. We will refer to the model which

satisfies

a1 = a2, b1 = b2, c1 = c2, b3 = c3

as the Poincaré model of rigid body on so(4). Along with the Hamiltonian (1.19), there is

an additional first integral of motion in the Poincaré model, M3. We will denote it as K

K = M3. (1.25)

Thus in the Poincaré case, there are four conserved quantities, H1 and K are two first

integrals and f1 and f2 are two Casimirs:

f1(M,P) = 1, f2(M,P) = g, H1(M,P) = h1, K(M,P) = k. (1.26)
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Thus, the Poincaré case is completely integrable, see [22], [5]. Using the Casimirs and the

conditions of axial symmetry, we transform the Hamiltonian (1.19) and get the Hamiltonian

for the Poincaré case:

H =
1

2
(M2

1 +M2
2 + aM2

3 ) + b(M1P1 +M2P2) +
1

2
c(P 2

1 + P 2
2 ), (1.27)

provided that

a =
(a−13 − c3)
(a1 − c3)

, b =
(b1 − b3)

(a−11 − c3)
, c =

(c1 − c3)
(a−11 − c3)

. (1.28)

Remark 2. From a = (a−13 − c3)/(a1 − c3), we conclude that a < 0 if a−13 > c3 > a1 or

a−13 < c3 < a1; otherwise a ≥ 0.

Lemma 1. For b and c in the Hamiltonian H (1.27), the relations hold:

a−13 > c3 ⇒ c ≥ b;

a−13 < c3 ⇒ c ≤ b.

Proof. With the use of the inequality between the arithmetic and geometric mean and given

that β and γ are positive coefficients in the equation of ellipsoid (1.20), we get:

1

β
+

1

γ
=
β + γ

βγ
≥ 2
√
βγ

βγ
=

2√
βγ
.

This means c1 ≥ b1 based on the relations (1.21) and (1.22). Since b3 = c3 and a1 > 0, we

get c ≥ b.

1.8 Kirchhoff equations on dynamics of a rigid body in an ideal incompressible

fluid

This section is dedicated to the original prototype of a system of rigid body that was invented

by the German mathematician G. Kirchhoff who modeled the dynamics of motion of a rigid

body in an ideal incompressible fluid.
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In effect, the Hamiltonian systems defined on the Lie-Poisson space e(3)∗ are labeled Kirch-

hoff equations with the Hamiltonian being a quadratic function with respect to the variables

impulsive momentum and implulsive force on e(3)∗.

Kirchhoff’s model assumes an ideal fluid which can be described by the type of fluid that is

incompressible, irrotational and at rest at infinity. The velocity potential of this kind of fluid

is single-valued. The equations of motion of the rigid body in an ideal fluid interestingly

decouple from the partial differential equations describing the fluid motion and they result

in a system of six ordinary differential equations.

Following Kirchhoff [14], we consider motion of a rigid body τ in R3 in an ideal incompress-

ible fluid with density ρ. It is supposed that motion of fluid is potential with ϕ as a potential

function and with the velocity v = ∂ϕ
∂x

, where x ∈ R3. Since the fluid is incompressible, we

have that 4ϕ = 0, since the divergence of v is zero. It is also assumed that v → 0 when

|x| → ∞.

The equations of the rigid body defined by Kirchhoff can be written in Hamiltonian form on

the Lie algebra e(3) = so(3)
⊕

sR3.
Ṁ = M× ∂H

∂M
+ P× ∂H

∂P
.

Ṗ = P× ∂H
∂M

.

(1.29)

The equations (1.29) are the Kirchhoff equations of motions of rigid body in an ideal fluid

with M and P representing impulsive momentum and impulsive force, respectively. The

system is defined in the reference frame fixed with respect to the body.

The Hamiltonian H1 is a quadratic form in the variables M and P and is defining the Kinetic

energy T:

H1 =
1

2
〈I−1M,M〉+ 〈BM,P〉+

1

2
〈CP,P〉, (1.30)

with I and C being symmetric matrices and B an arbitrary one. As H is defining the

kinetic energy of the body and the fluid, I, B and C are such that the Hamiltonian would
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be positive-definite.

Equation (1.29) have the following Casimirs:

F1 = 〈M.P 〉 = c1, F2 = P2 = c2, (1.31)

and as usual one of the integrals of the system is H = h. Unlike Euler-Poisson equations

where c2 in the Casimir is equal to 1, for Kirchhoff’s equations, this is not necessarily the

case.

1.8.1 The Kirchhoff case of Kirchhoff equations on e(3)

The Kirchhoff case of Kirchhoff equations on e(3) is an integrable case of Kirchhoff equations

on e(3) and was discovered by G. Kirchhoff for a dynamically symmetric body moving in

an ideal fluid. Kirchhoff managed to integrate the equations of motion in terms of elliptic

functions. This case is analogous to the Lagrange case of the Euler-Poisson equations and

has the Casimirs mentioned in (1.31), with the extra integral of the system being

K = M3.

The Kirchhoff case is defined by conditions:

I = diag(a1, a1, a3), B = diag(b1, b1, b3), C = diag(c1, c1, c3). (1.32)

The extra integral M3 is related to the existence of a cyclic coordinate which is the angle of

proper rotation.

1.9 Overview of the questions, methods and results that are treated in this

dissertation

In the next chapter, we will delve deeper into the Goryachev- Chaplygin case. The process

to find the first integrals of the system is reviewed and then the solution by quadrature
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is obtained. After that, the critical points of rank zero and rank one and the equilibrium

analysis is performed. We will finally obtain the bifurcations of the Liouville Tori of this

case. The study of bifurcations of Liouville Tori of integrable system is of great importance

in understanding the stability of the system. For instance, these bifurcations have been

studied in Elliptical billiards in [33].

In Chapter 3, we will study topology of the Kirchhoff case of rigid body motion in an ideal

incompressible fluid. We introduce the reduced potential for general Hamiltonian systems

on e(3) with mixed quadratic terms. In application to the Kirchhoff case, we describe the

Reeb graphs of the reduced potential. We provide a complete topological description of the

three-dimensional isoenergy manifolds for that system, based on a combinatorial study of the

Reeb graphs. Studying its momentum map, we describe the points of ranks zero and one[12].

In Chapter 4, we are going to study topology of the Poincaré model of a rigid body with an

ellipsoidal cavity filled with an ideal incompressible liquid. The Poincaré model is integrable

due to certain additional symmetry conditions. We introduce the reduced potential for

general Hamiltonian systems on so(4) with mixed quadratic terms. In application to the

Poincaré case, we describe the Reeb graphs of the reduced potential. We provide a complete

topological description of the three-dimensional isoenergy manifolds for that system, based

on a combinatorial study of the Reeb graphs[12]. Studying its momentum map, we describe

points of ranks zero and one and present corresponding bifurcation diagrams.

In order to facilitate the study of bifurcation diagrams and Reeb graphs, let us define these

concepts here.

Definition 6. Let (M2n, ω) be a symplectic manifold corresponding to an integrable system

with the Hamiltonian H. Let f1, f2, ..., fn be its independent integrals in involution. Let us

define the smooth mapping

F : M2n → Rn, where F (x) = (f1(x), f2(x), ..., fn(x)) .

The mapping F is called the momentum mapping.
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Definition 7. A point x ∈ M is called a critical( or singular) point of the momentum

mapping F if rankdF (x) < n. Its image F (x) is called a critical value.

Now, let K ⊂M be the set of all critical points of the momentum mapping F .

Definition 8. The set F (K) ⊂ Rn which is the image of K under the momentum mapping,

is called the bifurcation diagram.

After drawing the bifurcation diagrams of the integrable system for different values of

parameters of the system, we can then acquire the structure of their Reeb graphs based

on their critical points, Afterwards, these Reeb graphs and bifurcations diagrams are put

together and analyzed based on the regions of the bifurcation diagrams to conclude the

topology of Liouville tori as defined in theorem 2. Reeb graphs are defined in Chapter 3 as

this method of finding topology of Liouville tori of the Poincaré system is implemented there.
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CHAPTER 2

THE GORYACHEV-CHAPLYGIN SYSTEM

2.1 Model of rigid body motion

The Goryachev-Chaplygin case is obtained by letting A = B = 4C in (1.12) and it requires

that the center of gravity of the rigid body lies in the equatorial plane of the ellipsoid of

inertia, i.e., y0 = z0 = 0. This means that (1.12) becomes:


4
dp

dt
= 3qr

4
dq

dt
= −3rp− aγ3

dr

dt
= aγ2,

(2.1)

with mgx0
C

= a.

2.2 First Integrals

We know that in general to integrate this system with six differential equations completely,

we need five first integrals. We know that three of these first integrals are easily obtained

from mechanical and geometrical considerations. In our case, since time doesn’t enter in our

equations explicitly, we can replace this system by a system of 5 equations in the symmetrical

form:

dp

P
=
dq

Q
=
dr

R
=
dγ1
Γ1

=
dγ2
Γ2

=
dγ3
Γ3

= dt,
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where 

AP = −(C −B)qr +mg(y0γ3 − z0γ2)

BQ = −(A− C)pr +mg(z0γ1 − x0γ3)

CR = −(B − A)pq +mg(x0γ2 − y0γ1)

Γ1 = rγ2 − qγ3

Γ2 = pγ3 − rγ

Γ3 = qγ1 − pγ2.

And, since t doesn’t enter the equations for P,Q,R,Γ1,Γ2,Γ3, we basically only have:

dp

P
=
dq

Q
=
dr

R
=
dγ1
Γ1

=
dγ2
Γ2

=
dγ3
Γ3

.

Another remarkable property here is that since P doesn’t contain p, Q doesn’t contain q and

etc., so that

∂P

∂p
=
∂Q

∂q
=
∂R

∂r
=
∂Γ1

∂γ1
=
∂Γ2

∂γ2
=
∂Γ3

∂γ3
= 0 (2.2)

From (2.2), we have:

∂P

∂p
+
∂Q

∂q
+
∂R

∂r
+
∂Γ1

∂γ1
+
∂Γ2

∂γ2
+
∂Γ3

∂γ3
= 0.

By theory of postmultipliers, if we have four first integrals not containing t, one more

first integral can be found by means of integration of certain ordinary equations in total

differentials using integrating factors which is carried out by quadratures. This means the

system can be completely integrated as its equivalent to a system of five differential equa-

tions. The theory of postmultiplier states that in the system of n equations:

dx1
X1

=
dx2
X2

= ... =
dxn
Xn

= dt,

if we know the postmultiplier of the system and n − 2 first integrals, then the system re-

duces to integrating one equation with a known integrating factor which is always carried

27



out by quadrature. This is guaranteed by the Arnold-Liouville theorem. Here, we have a 6

dimensional space, but fixing two of the geometrical Casimirs(two of the first integrals, one

of which is γ2 + γ22 + γ23 = 1), we get a 4 dimensional common symplectic manifold on the

common level set. By Arnold-Liouville theorem, we only need two more first integrals to be

able to completely integrate the system.

Definition 9. Let P be a Poisson manifold. A function j ∈ C∞(P ) such that {j, f} = 0 for

all f ∈ C∞(M) is called a Casimir function on P.

Now let’s find the four first integrals in Goryachev-Chaplygin case. We know that

γ2 + γ22 + γ23 = 1 is always a Casimir for rigid body motion system. To find the second

integral, just multiply the equations in (2.1) respectively by p, q and r. This will give

4p
dp

dt
+ 4q

dq

dt
+ r

dr

dt
= 3pqr − 3pqr − aqγ3 + arγ2.

Integrating the above result, we get

2p2 + 2q2 +
r2

2
=

∫
a(−qγ3 + rγ2)dt

and since from (1.10), we know that

−qγ3 + rγ2 =
dγ1
dt
,

we end up getting the Hamiltonian of the system to be

4(p2 + q2) + r2 = 2aγ1 + k.

Next, we multiply the equations in (2.1) respectively by γ1, γ2 and γ3 and add them to the

equations in (1.10) respectively multiplied by 4p, 4q and r. This gives

4(γ1
dp

dt
+ p

dγ1
dt

) + 4(γ2
dq

dt
+ q

dγ2
dt

) + (γ3
dr

dt
+ r

dγ3
dt

) =
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3qrγ1 − 3prγ2 − aγ2γ3 + aγ2γ3 + 4prγ2 − 4pqγ3 + 4pqγ3 − 4qrγ1 + γ1qr − γ2pr = 0.

Integrating the above equation we get one of the Casimirs of the system to be

4(pγ1 + qγ2) + rγ3 = h

where h is the constant of integration.

To get the fourth integral, as denoted by Goryachev, in the case that h = 0 which is when

the principal angular momentum lies in a horizontal plane, we can find the fourth invariant

4(pγ1 + qγ2) + rγ3 = 0. (2.3)

Multiplying the first two equations of (2.1) by p and q respectively, we get :

4p
dp

dt
+ 4q

dq

dt
= −aqγ3

and simplifying it, we have

2
d

dt
(p2 + q2) = −aqγ3. (2.4)

Multiply (2.4) by 2r and we get

4r
d

dt
(p2 + q2) = −2arqγ3. (2.5)

Then let’s multiply the third equation in (2.1) by 4(p2 + q2), and we have

4(p2 + q2)
dr

dt
= 4aγ2(p

2 + q2). (2.6)

Adding (2.5) and (2.6), the result is

4
d

dt
(r(p2 + q2)) = −2aqrγ3 + 4aγ2(p

2 + q2). (2.7)

Now, multiplying the third equation of (1.10) by 4ap and the first equation in (2.1) by aγ3

and adding them, we obtain:

4a
d

dt
(pγ3) = 4apqγ1 − 4ap2γ2 + 3aqrγ3. (2.8)
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Sum of (2.7) and (2.8), gives:

4
d

dt
[r(p2 + q2) + apγ3] = aqrγ3 + 4apqγ1 + 4aγ2q

2 = aq[rγ3 + 4pγ1 + 4qγ2] (2.9)

and with the assumption that h = 0, we know that

rγ3 + 4pγ1 + 4qγ2 = 0. (2.10)

After plugging in (2.10) into (2.9) and integrating (2.9) with respect to t, we obtain the

fourth integral:

r(p2 + q2) + apγ3 = g,

where g is the constant of integration. Therefore, we have found two Casimirs

〈~γ,~γ〉 = 1,

〈 ~M,~γ〉 = 0

and a Hamiltonian

H = 4p2 + 4q2 + r2 − 2aγ

and the integral

f = r(p2 + q2) + apγ3.

2.3 Solution

In Lectures on Integration of the Equations of Motion of Rigid Body about a Fixed Point

by Golubev, the details of the solution bu quadratures is mentioned [11]. Goryachev uses

a substitution using two new variables u and v, given the role of Kovalevskaya’s variables
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s1 and s2. Let u−v = r and uv = 4(p2+q2) and introducing the following functions of u and v:


U = u3 − ku− 4g, V = v3 − kv + 4g,

U2
1 = U − 2au, V 2

1 = V − 2av,

−U2
2 = U + 2au, −V 2

2 = V + 2av.

(2.11)

Now, using the four first integrals we found, and substituting for u and v, we obtain three

new equations for γ1, γ2 and γ3:



2aγ1 = uv + (u− v)2 − k,

2aγ3 =
4g − (u− v)uv

2p
,

2aγ2 = −4g − (u− v)uv

8pq
(u− v)− uv + (u− v)2 − k

q
p.

(2.12)

This substitution helps us completely integrate the system. First eliminating p and then q,

using the u and v substitutions, we get

8ap = U1V2 − V1U2

8aq = U1V1 + U2V2

r = u− v

2aγ =
U + V

u+ v

2aγ2 =
U1U2 − V1V2

u+ v

2aγ3 =
U1V2 + V1U2

u+ v
.

(2.13)

From the first two equations in (2.1), we get 8(pdp
dt

+ q dq
dt

) = −2aqγ3 and taking derivative

of the second u,v substitution, du
dt
v + udv

dt
= −2aqγ3. From the third equation of (2.1), with

the assumption that r = u− v, we have:

du

dt
− dv

dt
= aγ2.
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Hence,


du

dt
(u+ v) = auγ2 − 2aγ3

dv

dt
(u+ v) = −avγ2 − 2aγ3.

From equations (2.13), we have:

2aγ2 =
(U1U2 − V1V2)

u+ v

and

4aqγ3 =
(U2

1 + U2
2 )V1V2 + (V 2

1 + V 2
2 )U1U2

4a(u+ v)
.

Manipulating these, we get Chaplygin’s remarkable equations that can be solved using hy-

perelliptic integrals in the case of genus 2 which is a problem quite analogous to the case of

Kovalevskaya: 
du

U1U2

− dv

V1V2
= 0

2udu

U1U2

+
2vdv

V1V2
= dt.

(2.14)

2.4 Equilibrium Analysis

To find the equilibrium solutions, we set the right hand side of our system of differential

equations equal to zero. 

3qr = 0, (1′)

−3rp− aγ3 = 0, (2′)

aγ2 = 0, (3′)

rγ2 − qγ3 = 0, (4′)

pγ3 − rγ1 = 0, (5′)

qγ1 − pγ2 = 0.(6′)

(2.15)
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From (3′), we have γ2 = 0.

From (1′), we have either q = 0 or r = 0.

2.4.1 q 6= 0 but r = 0

If q 6= 0 but r = 0, then we have equilibrium

(p∗, q∗, r∗, γ
∗
1 , γ

∗
2 , γ

∗
3) = (p, q, 0, γ1, 0, 0).

In this case, using the fourth integral we get g = 0 which can simplify the substitution and

consequently the integration.Plugging in to the last equation from (2.1), we get qγ1 = 0

which gives either γ1 = 0(the first integral not satisfied) or q = 0 but this is contradicting

the assumption which takes us to the last possible scenario.

2.4.2 q = r = 0

In case q = r = 0, then the equilibrium occurs at

(p∗, q∗, r∗, γ
∗
1 , γ

∗
2 , γ

∗
3) = (p, 0, 0, γ1, 0, 0).

Here the fourth integral again gives g=0. From the second integral we have 4p2 = 2aγ1 + k,

and from the third integral with h = 0, p has to be zero,which leads to the equilibrium

becoming (0, 0, 0, −k
2a
, 0, 0). This together with the second integral give k = ±2a which gives

us the final result (0, 0, 0,±1, 0, 0) for the equilibrium. Since at this point the determinant

of stability matrix is zero, this is a stable equilibrium.

2.4.3 Conclusion

Putting all stability diagrams together, the conclusion is that in space of real numbers, the

only stable equilibriums of this system are (0, 0, 0, 1, 0, 0) and (0, 0, 0,−1, 0, 0).
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2.4.4 Bifurcation diagram of Goryachev-Chaplygin top

In order to investigate the stability of the equilibrium solutions of the Goryachev- Chaplygin

system, we are following the footsteps of Mamaev, Bolsinov and Borisov in [8]. To con-

struct the bifurcation diagram of Goryachev-Chaplygin top, a representation of the system

in separating variables is used. These canonical variables are defined on the symplectic leaf

M0 = {M, γ|γ2 = 1, (M, γ) = 0}

with constant zero area, M = (p,q, r) and γ = (γ1, γ2, γ3). The definitions are as follows:

p = 2
√
p1p2sin

q1 − q2
2

, q = 2
√
p1p2cos

q1 − q2
2

, r = p1 − p2,

γ1 =
p1sinq1 + p2sinq2

p1 + p2
, γ2 =

p1cosq1 + p2cosq2
p1 + p2

,

and

γ3 =
−2
√
p1p2

p1 + p2
cos

q1 + q2
2

.

Here, q1, q2 ∈ [0, 2π) are the angular variables and p1, p2 > 0 are their momenta, respectively.

Consequently, the variables pi and qi are defined on a half-cylinder. The Hamiltonian and

the first integral corresponding to this change of variables are:

H =
2

p1 + p2
(p31 + p32 −

µ

2
(p1sinq1 + p2sinq2)),

F =
4p1p2
p1 + p2

(p21 − p22 −
µ

2
(sinq1 − sinq2)).

It’s easy to see that we have a common level set

Mh,f = {M, γ|H = h, F = f}

of the functions is described by

ϕ1(q1, p1) = p1(p
2
1 −

µ

2
sinq1 −

h

2
)− f

4
= 0,
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ϕ2(q1, p1) = p2(p
2
2 −

µ

2
sinq2 −

h

2
) +

f

4
= 0.

Since these equations are invariant under the change of variables f to −f and ϕ1 to ϕ2 and

ϕ2 to ϕ1, we only need to look at the case f > 0, so we have the following level curves:

ϕ̄(p, q) = p(p2 − µ

2
sinq − h

2
)

which are closed on the cylinder and depending on h being between −µ and µ or being

greater than µ, they have different forms.

Now, we know that degeneration of curves above happens when the rank of the map drops.

Investigating the degeneration of ϕ1 = 0, and later ϕ2 = 0 we get two cases, with the first

one being 
∂ϕ1

∂p1
=
∂ϕ1

∂q1
= 0

ϕ1 = 0 , ϕ2 = 0

and the second one being 
∂ϕ2

∂p2
=
∂ϕ2

∂q2
= 0,

ϕ1 = 0 , ϕ2 = 0,

in both of which, if we let 2p1 = λ and respectively 2p2 = λ , we get:

f = λ3 , h = ±µ+
3

2
λ2.

Here µ corresponds to the constant 4 in the bifurcation diagram. This result leads to the

following figure:
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Figure 2.1: Bifurcation diagram of the Goryachev-Chaplygin case

2.5 Dependence of first integrals

Let us list the first integrals we got as follows:



4(p2 + q2) + r2 = 2aγ1 + k, (1)

4(pγ1 + qγ2) + rγ3 = 0, (2)

γ21 + γ22 + γ23 = 1, (3)

r(p2 + q2) + apγ3 = g.(4)
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To investigate what happens if a pair of first integrals are dependent, we introduce:

m1 = 4(p2 + q2) + r2 − 2aγ1 − k = 0,

m2 = 4(pγ1 + qγ2) + rγ3 = 0,

m3 = γ21 + γ22 + γ23 − 1 = 0,

m4 = r(p2 + q2) + apγ3 − g = 0.

we know thatm1, m2, m3, m4 are functionally independent, if we show that ∆m1, ∆m2, ∆m3,

∆m4 are linearly independent. This is equivalent to the following determinant becoming zero,

i.e., ∣∣∣∣∣∣∣∣∣∣∣∣∣

8p 8q 2r −2a 0 0

4γ1 4γ2 γ3 4p 4q r

0 0 0 2γ1 2γ2 2γ3

2rp+ aγ3 2rq p2 + q2 0 0 ap

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Our MATLAB calculations show that this matrix has rank 4 and doesn’t drop rank, affirming

that the integrals are functionally independent.

2.6 When does the hyper-elliptic, genus 2 case convert to elliptic case and drop

genus?

Definition 10. The resultant of two univariate polynomials over a field or over a commuta-

tive ring is commonly defined as the determinant of their Sylvester matrix. More precisely,

let

A = a0x
d + a1x

d−1 + · · ·+ ad

and

B = b0x
e + b1x

e−1 + · · ·+ be
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be nonzero polynomials of degrees d and e respectively. Let us denote by Pi the vector space

(or free module if the coefficients belong to a commutative ring) of dimension i whose elements

are the polynomials of degree strictly less than i. The map

ϕ : Pe × Pd → Pd+e

such that

ϕ(P,Q) = AP +BQ

is a linear map between two spaces of the same dimension. Over the basis of the powers of x

(listed in descending order), this map is represented by a square matrix of dimension d+ e,

which is called the Sylvester matrix of A and B (for many authors and in the article Sylvester

matrix, the Sylvester matrix is defined as the transpose of this matrix; this convention is not

used here, as it breaks the usual convention for writing the matrix of a linear map). [39]

The resultant of A and B is thus the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0

...
...

. . . a0
...

...
. . . b0

ad ad−1 · · ·
... be be−1 · · ·

...

0 ad
. . .

... 0 be
. . .

...

...
...

. . . ad−1
...

...
. . . be−1

0 0 · · · ad 0 0 · · · be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which has e columns of ai and d columns of bj (the fact that the first column of a’s and the

first column of b’s have the same length, that is d = e, is here only for simplifying the display

of the determinant).
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In the solution provided by Goryachev and Chaplygin, we have:
U2
1 = 4u3 − (k + 2a)u− g

U2
2 = 4u3 − (k − 2a)u− g.

As a reminder, a = mgx0
C

, k is the constant of integration in the first integral and g is the

constant of integration in the 4th integral. Now, the genus will drop when U2
1 and U2

2 have

a common root or when either of U2
1 or U2

2 have a double root. U2
1 and U2

2 have a common

root, when their resultant is zero. That is:

res(U2
1 , U

2
2 ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 0 −k − 2a −g 0 0

0 4 0 −k − 2a −g 0

0 0 4 0 −k − 2a −g

4 0 −k + 2a −g 0 0

0 4 0 −k + 2a −g 0

0 0 4 0 −k + 2a −g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

But, res(U2
1 , U

2
2 ) = 1024a3g = 0, which means we need either g = 0 which is when the

constant of integration in the 4th integral is zero or when a = mgx0
C

= 0. Since mg represents

the weight of the rigid body and it can never be zero, we conclude x0 = 0.

U2
1 has a double root when the resultant (determinant of the 5 × 5 Sylvester matrix) we

obtain from U2
1 and

dU2
1

du
is zero, i.e.,

res(U2
1 ,
dU2

1

du
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 0 12 0 0

0 4 0 12 0

−k − 2a 0 −k − 2a 0 12

−g −k − 2a 0 −k − 2a 0

0 −g 0 0 −k − 2a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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This happens when −512a3 − 768a2k − 384ak2 + 1728g2 − 64k3 = 0.

Similarly U2
2 has a double root when

res(U2
2 ,
dU2

2

du
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 0 12 0 0

0 4 0 12 0

−k + 2a 0 −k + 2a 0 12

−g −k + 2a 0 −k + 2a 0

0 −g 0 0 −k + 2a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This means U2
2 has a double root when 512a3 − 768a2k + 384ak2 + 1728g2 − 64k3 = 0
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CHAPTER 3

TOPOLOGICAL ANALYSIS OF ISOENERGY SURFACES OF THE

KIRCHHOFF CASE ON e(3)

The aim of this chapter is to study the topology of the Kirchhoff case of a rigid body in

an ideal incompressible fluid, subject to the additional symmetry conditions as explained

in Chapter 1. A modern account of the rigid body dynamics and various generalizations

can be found in [5, 18, 19] and references therein. The topological methods were applied

to rigid body dynamics for example in [23], [34], [4], [30], [15], [13], [24], [26], [27], [9] and

the references therein. In particular, the topological methods were applied to rigid body

dynamics in fluid in [28], [29], [25].

Our approach belongs to the setting proposed and developed by the Moscow State

University topology school, by A. T. Fomenko, A. V. Bolsinov and their students and col-

laborators. It was broadly presented in [4]. From the methodological point of view, the

topological analysis of the Kirchhoff system is interesting because its Hamiltonian has a

nontrivial mixed quadratic term, which set it a bit outside the boundaries of the material

presented in [4]. Nevertheless, by applying a theorem of Smale (see [37] and below), and

slightly generalizing the technique from [4], we reduce the topological study of isoenergy

3-manifolds to a combinatorial analysis of the Reeb graphs of the reduced potential. An-

other challenge is the number of natural parameters present in this system – which is equal

to three. The crux of the matter which allowed us to perform a quite explicit topological

analysis relied on the surprising fact that the study of the so-called reduced potential got

reduced to a study of a fifth degree polynomial which naturally factorizes into a linear term

and a biquadratic function, see (3.35).

We introduced the Casimirs, the Hamiltonian and extra integral of the Kirchhoff system in

Chapter 1 and defined the parameters of the Hamiltonian (1.27), precisely in (1.28). Con-

sidering those definition, we can make a couple of conclusions in the following that will be
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useful in investigating the topology of Kirchhoff system, given different relationships between

the parameters a, b and c.

In the following, we are going to study now the topology of the isoenergy manifolds of

the Kirchhoff case, as we studied in [12].

3.1 Topology of isoenergy 3-manifolds

Let us consider a systems with a Hamiltonian of the form (1.30) with I and C being symmet-

ric matrices and B an arbitrary one. An isoenergy manifold Q3 is defined to be a common

level surface of the functions f1, f2 and the Hamiltonian H in the Euclidean space R6(M,P).

Since we assume that f1 = 1, different manifolds Q3 are determined by two parameters g

and h, the values of the functions f2 and H:

Q3
g,h = {(M,P)|f1 = 1, f2 = g,H = h}.

The description of the topological types of Q3 is related to the bifurcation diagram for

the Casimir f2 and the Hamiltonian H. Consider the mapping

F = f2 ×H : S2 × R3 → R2(g, h).

The critical values of F form the bifurcation diagram Σ ⊂ R2(g, h). The pre-image of

an arbitrary point (g, h) 6∈ Σ is a non-singular isoenergy manifold Q3
g,h. As a result, the

complement of Σ in the plane R2(g, h) is divided into connected components. For all points

(g, h) from the same region, the topological type of the corresponding isoenergy manifolds

Q3
g,h is the same.

The two-dimensional Poisson sphere is given in R3(P) by the equation P 2
1 +P 2

2 +P 2
3 =

1. Let π(M,P) = P be the projection from R6(M,P) onto S2 ⊂ R3(P). Consider the

projection π(Q3) of an isoenergy manifold Q3. Given that π(Q3) is homeomorphic to the

sphere with m holes, the Smale theorem ([37] and [4]) gives:
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(1) If m = 0, then Q3 is diffeomorphic to RP3.

(2) If m = 1, then Q3 is diffeomorphic to S3.

(3) If m > 1, then Q3 is diffeomorphic to m− 1 copies of (S1 × S2).

3.1.1 Reduced potential for Hamiltonians with quadratic mixed term

In (1.19), the matrices I,B and C are diagonal, thus the Hamiltonian is of the form:

H1 =
1

2
(a−11 M2

1 + a−12 M2
2 + a−13 M2

3 ) + b1M1P1 + b2M2P2 + b3M3P3 + U(P ), (3.1)

where U(P ) represents potential energy of the system. For a fixed value of the energy,

H1 = h, we have

a−11 M2
1 + a−12 M2

2 + a−13 M2
3 + 2(b1M1P1 + b2M2P2 + b3M3P3) = 2(h− U(P )). (3.2)

We transform (3.2) by completing the squares using the change of variables√
a−11 M1 + b1

√
a1P1 = M̂1,

√
a−12 M2 + b2

√
a2P2 = M̂2,

√
a−13 M3 + b3

√
a3P3 = M̂3.

We see that a given point in the Poisson sphere, P = (P1, P2, P3) ∈ S2 belongs to π(Q2
h,g) if

and only if there exists a common solution to the equations:

M̂1

2
+ M̂2

2
+ M̂3

2
= 2(h− U(P )) + b21a1P

2
1 + b22a2P

2
2 + b23a3P

2
3

and
3∑
i=1

M̂iPi
√
ai = g +

3∑
i=1

biP
2
i ai.

Proposition 1. Given a point of the Poisson sphere, P = (P1, P2, P3) ∈ S2. The plane

f2(M,P ) = g intersects the ellipsoid (3.2) in R3(M) if and only if(
g +

3∑
i=1

biP
2
i ai

)2

≤
3∑
i=1

(
2(h− U(P )) + b21P

2
1 a1 + b22P

2
2 a2 + b23P

2
3 a3
)
P 2
i ai.
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We therefore introduce:

Definition 1. The function

ϕg(P ) =
1

2

(
g +

3∑
i=1

biP
2
i ai

)2

3∑
i=1

P 2
i ai

+ U(P )− 1

2
(b21P

2
1 a1 + b22P

2
2 a2 + b23P

2
3 a3) (3.3)

is called the reduced potential of the Hamiltonian (3.1).

The above definition extends the notion of reduced potential from [4] to the case of

Hamiltonians with quadratic mixed terms. Knowing the reduced potential of the system

and the above mentioned Smale’s theorem, reduce the study of the topology of isoenergy

manifolds to the construction of the Reeb graph of the reduced potential ϕg(P ), [4]. The

Reeb graph is a simple combinatorial object which describes the structure of the extremal

points of a given function. The description of the topology of isoenergy manifolds thus

reduces to a simple analysis of extremal points of the reduced potential, construction of its

Reeb graph, and combinatorial analysis of the graph. The set of isoenergy manifolds would

be empty when the Hamiltonian is less than the minimum value of the reduced potential.

Otherwise, the isoenergy manifold will be either RP3 or several copies of S1 × S2 or S3. As

in [4], we get:

Theorem 3. Let the reduced potential ϕg(P ) be defined in (3.3). Then:

(1) If h > max ϕg(P ), then Q3
g,h ' RP3.

(2) If min ϕg(P ) < h < max ϕg(P ) and h is a regular value of ϕg(P ), then the set

{ϕg(P ) ≤ h} is a disjoint union of two-dimensional manifolds with boundary Bi1 , . . . , Bim

embedded into the Poisson sphere, where Bk is a 2-disk with k holes. In this case, the

isoenergy manifold Q3
h,g is a smooth three-dimensional manifold which is homeomor-

phic to a disjoint union of three dimensional manifolds Ni1 , ..., Nim, where N0 is the
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three-dimensional sphere, and Nk(k ≥ 1) is the connected sum of k copies of S1 × S2.

If one cuts the Reeb graph at a level h, the number of connected components of the

lower part of the graph is equal to the number of connected components of Q3
g,h. If the

connected component of the lower part of the graph has k boundary points (not count-

ing the original vertices of the graph), then the corresponding connected component is

homeomorphic to the connected sum of k− 1 copies of S1×S2 for k > 1 and to S3 for

k = 1.

(3) If h < min ϕg(P ), then Q3
g,h is empty.

3.1.2 Reduced potential for the Kirchhoff case. Bifurcation diagrams

We are going to apply the above considerations to the Kirchhoff case with the Hamiltonian

(1.27):

H =
1

2
(M2

1 +M2
2 + aM2

3 ) + b(M1P1 +M2P2) +
1

2
c(P 2

1 + P 2
2 ).

Here Î = diag(1, 1, 1
a
), B̂ = diag(b, b, 0), Ĉ = diag(c, c, 0) and U(P ) = 1

2
c(P 2

1 + P 2
2 ).

We get:

ϕg(P) =
(g + b(P 2

1 + P 2
2 ))2

2〈ÂP,P〉
+
c− b2

2
(P 2

1 + P 2
2 ), (3.4)

on the Poisson sphere, which is called the reduced potential for the Kirchhoff case. The

reduced potential in this case can be seen as a function of P3 only, see formula (3.32) below.

It determines the topology of isoenergy manifolds Q3
h,g according to theorem 3.

In order to find the bifurcations of the map f2 × H, we need to describe the critical

points of the mapping. The critical points of the mapping f2 × H : S2 × R3 → R2 satisfy

the following ([4]):

gradH = µ1grad f1 + µ2grad f2, f1 = 1, (3.5)
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where µ1and µ2 are some real numbers. This leads to the following two equations, first from

the derivatives with respect to M and then to P :

µ2P3 = aM3, (3.6)

2µ1P3 = µ2M3. (3.7)

(1) Assume P3 6= 0. We get from the previous two equations:

2aµ1 = −µ2
2. (3.8)

From (3.5), we get also

M1 = (µ2 − b)P1, (b− µ2)M1 = P1(2µ1 − c), (3.9)

M2 = (µ2 − b)P2, (b− µ2)M2 = P2(2µ1 − c). (3.10)

Thus

(b− µ2)
2P1 = −P1(2µ1 − c), (3.11)

(b− µ2)
2P2 = −P2(2µ1 − c). (3.12)

(1.1) Assume P1 = P2 = M1 = M2 = 0. Then P3 = ±1, M3 = ±µ2/a, and

h =
µ2
2

2a
, g = ±µ2

a
.

We get µ2
2 = a2g2 and substituting in the above formula for h, we get the parabola

Π1:

Π1 : h(g) =
a

2
g2. (3.13)

(1.2) Assume P 2
1 + P 2

2 6= 0. From (3.11) one gets

(b− µ2)
2 = c− 2µ1. (3.14)
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Using (3.8), we get

µ2
2 ≥ −ac, (3.15)

and

µ2
2(a− 1)− 2abµ2 + a(b2 − c) = 0. (3.16)

(1.2.1) Assume a 6= 1. Then (3.16) is a quadratic equation with the discriminant

Da = 4a(b2 − c(1− a)). For (3.16) to have real solutions, the condition is

Da ≥ 0⇔ b2 ≥ c(1− a). (3.17)

We get

h =
µ2
2 − b2 + c

2
+ P 2

3

µ2
2(1− a2) + b2a2 − ca2

2a2
, (3.18)

g = (µ2 − b) + P 2
3

(µ2

a
− µ2 + b

)
. (3.19)

We get

P 2
3 = a

g − µ2 + b

µ2(1− a) + ba
, (3.20)

with the condition

0 ≤ a
g − µ2 + b

µ2(1− a) + ba
≤ 1. (3.21)

Substituting (3.20) into (3.18) we get a line h = h(g), which, together with

the conditions (3.21) defines a line segment Λ:

Λ : h = h(g) =
µ2
2 − b2 + c

2
+

g − µ2 + b

µ2(1− a) + ba

µ2
2(1− a2) + b2a2 − ca2

2a
. (3.22)

The line segment Λ is defined, according to (3.21), for g, such that

ĝ0 ≤ g ≤ ĝ1, ĝ0 = µ2 − b, ĝ1 =
µ

a
. (3.23)

If Da = 0, which is equivalent to b2 = c(1 − a), then µ2 = ab/(a − 1) and

ĝ0 = ĝ1 = b/(a− 1). Thus, in this case the segment Λ degenerate to a point

of tangency of parabolas Π0 and Π1.
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If Da > 0, which is equivalent to b2 > c(1− a), then the equation (3.16) has

two distinct solutions for µ2, denoted µ
(i)
2 , i = 1, 2. They will lead to two line

segments Λ(i), i = 1, 2, defined with equations (3.22) and (3.23) with µ = µ
(i)
2 ,

i = 1, 2.

(1.2.2) Assume a = 1 and b 6= 0. Then

µ2 =
b2 − c

2b
.

From

M1 = −b
2 + c

2b
P1, M2 = −b

2 + c

2b
P2, M3 =

b2 − c
2b

P3,

one gets

Λ1 : h = h(g) =
µ2
2 − b2 + c

2
+

(g + b− µ2)(bµ2 − c)
2b

, (3.24)

with the conditions:

b > 0 : − b
2
− c

2b
< g <

b

2
− c

2b
,

b < 0 :
b

2
− c

2b
< g < − b

2
− c

2b
.

(3.25)

The subcase a = 1, b = 0 due to (3.16) leads to c = 0 and gives the parabola

Π0 = Π1 : h = h(g) =
g2

2
,

forms the bifurcation diagram.

(2) Assume P3 = M3 = 0. Then P 2
1 + P 2

2 = 1 and:

M1 = (µ2 − b)P1, M2 = (µ2 − b)P2, M3 = P3 = 0.

Thus:

h =
(µ2 − b)2

2
+ b(µ2 − b) +

c

2
, (3.26)

g = µ2 − b. (3.27)
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Thus, the bifurcation diagram contains the parabola Π0:

Π0 : h = h(g) =
g2

2
+ bg +

c

2
. (3.28)

Summarizing the above results, we get:

Proposition 2. The bifurcation diagram of the mapping f2 × H consists of the union of

two parabolas Π0 : h = 1
2
g2 + bg + c

2
,and Π1 : h = a

2
g2 and in the case b2 > c(1 − a) two

line segments Λ(i), i = 1, 2, defined for a 6= 1 with (3.22) and (3.23) and for a = 1 one line

segment Λ1 given with (3.24) and (3.25).

Example 1. Let us consider the case a > 1, b < 0, c = 0 and study the line segments Λ(i),

i = 1, 2 with (3.22) and (3.23). We get

µ
(1)
2 =

b
√
a√

a− 1
, µ

(2)
2 =

b
√
a√

a+ 1
; (3.29)

ĝ
(1)
0 =

b√
a− 1

, ĝ
(2)
0 = − b√

a+ 1
; (3.30)

ĝ
(1)
1 =

b√
a(
√
a− 1)

, ĝ
(2)
0 =

b√
a(
√
a+ 1)

. (3.31)

One can easily get:

ĝ
(1)
0 < ĝ

(1)
1 < ĝ

(2)
1 < 0 < ĝ

(2)
0 ,

see Fig. 3.7.

Proposition 3. For various values of the parameters a, b, c, such that a > 0, c ≥ b, the

bifurcation diagrams of the mapping f2 ×H are presented by the following figures:
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Figure 3.1: The case when a = 1, b 6= 0, c > 0

Figure 3.2: The case when a = 1, b 6= 0, c < 0

50



Figure 3.3: The case when a = 1, b = 0, c >
0

Figure 3.4: The case when a = 1, b = c = 0

Figure 3.5: The case when a > 1, b = c = 0 Figure 3.6: The case when a < 1, b = c = 0
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Figure 3.7: The case when a > 1, b < 0, c = 0

Figure 3.8: The case when a < 1, b < 0, c = 0
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Figure 3.9: The case when c > 0, a 6= 1, b2 >

c(1− a) with g1,2 =
b∓
√
b2−c(1−a)
a−1

Figure 3.10: The case when b ≤ c < 0, a 6=
1, b2 > c(1− a) with g1,2 =

b∓
√
b2−c(1−a)
a−1
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Figure 3.11: The case when c > 0, b > 0, a <
1, b2 = c(1− a)

Figure 3.12: The case when c > 0, b < 0, a <
1, b2 = c(1− a)

Figure 3.13: The case when b ≤ c < 0, a >
1, b2 = c(1− a)

Figure 3.14: The case when c > 0, a <
1, b2 < c(1− a)
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Figure 3.15: The case when c < 0, a > 1, b2 < c(1− a)

3.1.3 Analysis of the reduced potential and the Reeb graphs

Let us define Reeb graphs officially here. For this purpose, we first need to introduce Morse

functions.

Consider a smooth function f(x) on a smooth manifold Xn, and let x1, x2, ..., xn be smooth

regular coordinates in a neighborhood of a point p ∈ Xn. The Point p is called critical if the

differential

df =
∑ ∂f

∂xi
dxi

vanishes at the point p. The critical point is called non-degenerate if the second differential

d2f =
∑ ∂2f

∂xi∂xj
dxidxj

is non-degenerate at this point. This is equivalent to the fact that the determinant of the

second derivative matrix is non-zero.

Definition 11. A smooth function is called a Morse function if all its critical points are

non-degenerate.[4]
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Now, given that f is a Morse function of a compact smooth manifold xn, for any a ∈ R,

consider the level surface f−1(a) and its connected components, which will be called fibers.

As a result, on the manifold there appears the structure of a foliation with singularities. By

declaring each fiber to be a point and introducing the natural quotient topoloy in the space

Γ of fibers, we obtain some quotient space that can be considered as the base of the foliation.

For a Morse function Γ is a finite graph.

Definition 12. The graph Γ is called the Reeb graph of the Morse function f on the manifold

Xn. A vertex of the Reeb graph is the point corresponding to the singular fiber of the function

f . [4]

To demonstrate this in an example, let us consider the two-dimensional torus, embedded

in R3 as shown in figure 3.16 and take the natural height function to be a Morse function

on this torus. Then, its Reeb graph has the form shown to the right of the torus. Similarly,

the Reeb graph of the sphere with two handles is shown to the right of it in figure 3.16.

Figure 3.16: Reeb graph of a torus and sphere with two handles
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Let us now go back to the concept of reduced potential and plot the different possible

Reeb graphs in case of different values of the parameters a, b and c.

The reduced potential for the Kirchhoff case (3.4) can be written as a function of P3

only:

ϕg(P3) =
1

2

(
( b

2

a
− c

a
+ c)P 4

3 + ( c
a
− b2

a
− 2c− 2bg)P 2

3 + g2 + bg + c

1 + ( 1
a
− 1)P 2

3

)
. (3.32)

Let us note that ϕg is an even function and after taking the derivative with respect to P3

and simplification, we get:

ϕ′g(P3) =
P3fg(P

2
3 )

4a(1 + ( 1
a
− 1)P 2

3 )2
. (3.33)

where

fg(x) = (b2 + (a− 1)c)(
1

a
− 1)x2 + 2(b2 + (a− 1)c)x+ (a− 1)g2 − 2bg − b2 − ac, (3.34)

is a quadratic function. Thus the analysis of extremal points of the reduced potential and

the structure of its Reeb graph is based on the analysis of a polynomial of order five

P3fg(P
2
3 ), (3.35)

which is a product of a linear factor and a biquadratic. This fact is essential for the effec-

tiveness of the results which we are going to obtain.

In order to investigate the structure of the Reeb graphs corresponding to the reduced

potential, we treat the quartic fg(P
2
3 ) as a bi-quadratic. We consider the different possible

scenarios depending on parameters a > 0, b and c, c ≥ b, according to Remark 2 and Lemma

1. We also assume P3 ∈ [−1, 1] since P3 is the third coordinate of a point on the unit Poisson

sphere.

Lemma 2. The polynomial fg given in (3.34) with a > 0 has at most one root in the interval

(0, 1).
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Proof. Suppose that x1, x2 ∈ (0, 1) are solutions of the equation fg = 0. Then a 6= 1 and

T = (x1 + x2)/2 should satisfy 0 < T < 1. From (3.34) we have T = a/(a− 1). From 0 < T

we get a > 1. Then from T < 1 we get contradiction.

From the previous Lemma the options for fg and the Reeb graphs are described by the

following Lemma.

Lemma 3. There are four potential types of the behaviour of the polynomial fg given by

(3.34) on the interval (0, 1) with a > 0:

I Type I: fg < 0 on (0, 1);

II Type II: fg > 0 on (0, 1);

III Type III: fg(0) < 0 and fg(1) > 0;

IV Type IV: fg(0) > 0 and fg(1) < 0.

The following Reeb graphs and topologies correspond to each of the types I, II, III, IV:

Figure 3.17: The Reeb graph and topology
of type I

Figure 3.18: The Reeb graph and topology
of type II

Figure 3.19: The Reeb graph and topology
of type IIIa

Figure 3.20: The Reeb graph and topology
of type IIIb
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Figure 3.21: The Reeb graph and topology
of type IVa

Figure 3.22: The Reeb graph and topology
of type IVb

The types I and II correspond to the situations with no solutions of the equation fg(x) =

0 in the interval (0, 1), while the types III and IV correspond to the situations with one

solution of the equation fg(x) = 0 in the interval (0, 1). The next Lemma will show that the

type IV is impossible in the Kirchhoff case.

Lemma 4. For a > 0, the condition fg(0) > 0 implies fg(1) > 0.

Proof. The condition fg(0) > 0 is equivalent to

(a− 1)ag2 − 2abg − b2a− a2c > 0.

The condition fg(1) < 0 is equivalent to

(a− 1)ag2 − 2abg + b2 − c > 0.

The conditions fg(0) > 0 and fg(1) < 0 imply

b2 < c(1− a). (3.36)

The parabolas describing fg(1) and fg(0) as quadratic functions in g are simultaneously

convex and their discriminants are both negative under the condition (3.36). Thus, under

this condition, they cannot have opposite signs as functions of g. Thus, the statement

follows.
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Corollary 1. In the Kirchhoff case the Reeb graphs of the type IV (presented at 3.21, and

3.22) are impossible.

Lemma 5. (I) The conditions for type I are:

(a− 1)ag2 − 2abg + b2 − c < 0, (3.37)

(a− 1)ag2 − 2abg − b2a− a2c < 0. (3.38)

(II) The conditions for type II are:

(a− 1)ag2 − 2abg + b2 − c > 0, (3.39)

(a− 1)ag2 − 2abg − b2a− a2c > 0. (3.40)

(III) The conditions for type III are:

(a− 1)ag2 − 2abg + b2 − c > 0, (3.41)

(a− 1)ag2 − 2abg − b2a− a2c < 0, (3.42)

which imply

b2 > c(1− a). (3.43)

By applying theorem 3 and Lemmata 2, 3, 4, and 5, we get the following

Proposition 4. For the Kirchhoff case, possible Reeb graphs with the corresponding topolo-

gies are of types I, II, IIIa, and IIIb. They are presented in the figures: 3.17, 3.18, 3.19, and

3.20.

Example 2. Assume a = 1 and b > 0. Then as before µ2 = (b2 − c)/(2b), and

Λ1 : h = h(g) =
µ2
2 − b2 + c

2
+

(g + b− µ2)(bµ2 − c)
2b

,

with:

g0 = − b
2
− c

2b
, g1 =

b

2
− c

2b
.
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The parabolas Π0 and Π1 intersect at the pint with its g-coordinate equal to ĝ = −c/(2b).

Thus, we consder the followong zones for g:

g < g0, g0 < g < ĝ, ĝ < g < g1, g1 < g.

By applying the above results, we get the following Reeb graphs in each of the zones:

g < g0 : II, g0 < g < ĝ : IIIb, ĝ < g < g1 : IIIa, g1 < g : I.

Then the connected component of the complement of the bifurcation diagram as numerated

in Fig. 3.1 have the following corresponding topologies:

1− S3 ∪ S3; 2− RP3; 3− S1 × S2; 4− S1 × S2 ∪ S1 × S2; 5− ∅.

As one can see at Fig. 3.23, some connected components of the complement of the

bifurcation diagram belong to more that one zone (compare with Fig. 3.1). Their topologies

can be determined using corresponding Reeb graphs in more than one way. But, the result

does not depend on that choice.

Figure 3.23: Zones, Reeb graphs, regions and topologies for a = 1, c ≥ b > 0.
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Synthesizing the results from Propositions 3 and 4, as we did in Example 2, we finally

get this theorem.

Theorem 4. The topologies of the isoenergy manifolds Q3
g,h are described depending on the

values of the parameters and regions of the corresponding bifurcation diagrams as follows,

with the types of the Reeb graphs listed from the left to the right:

1 Case A, Fig. 3.1, the Reeb graph types: II, IIIb, IIIa, I; topologies per region: 1-S3∪S3;

2-RP3; 3-S1 × S2; 4-S1 × S2 ∪ S1 × S2; 5-∅.

2 Case A1, Fig. 3.2, the Reeb graph types: I, IIIa, IIIb, II; topologies per region: 1-

S1 × S2; 2-RP3; 3-S3 ∪ S3; 4-S1 × S2 ∪ S1 × S2; 5-∅.

3 Case B, Fig. 3.3, the Reeb graph type: I; topologies per region: 1-S3 ∪S3; 2-RP3; 3-∅.

4 Case C, Fig. 3.4, the Reeb graph: a single point; topologies per region: 1-RP3; 2-∅.

5 Case C2, Fig. 3.5, the Reeb graph type: II; topologies per region: 1- S1 × S2; 2-RP3;

3-S1 × S2; 4-∅.

6 Case C3, Fig. 3.6, the Reeb graph type: I; topologies per region: 1-S3 ∪ S3; 2-RP3;

3-S3 ∪ S3; 4-∅.

7 Case C4, Fig. 3.7, the Reeb graph types: II, IIIb, IIIa, I, IIIa, IIIb, II; topologies per

region: 1- S1×S2; 2-RP3; 3-S3∪S3; 4-S1×S2; 5-S1×S2∪S1×S2; 6-S1×S2∪S1×S2;

7-∅.

8 Case C5, Fig. 3.8, the Reeb graph types: II, IIIb, IIIa, I; topologies per region: 1-

S3 ∪ S3; 2-RP3; 3-S1 × S2; 4-S1 × S2 ∪ S1 × S2; 5-∅.

9 Case D, Fig. 3.9, the Reeb graph types: II, IIIa, IIIb, I, IIIa, IIIb, II; topologies per

region: 1-S1×S2; 2-RP3; 3-S1×S2; 4-S1×S2∪S1×S2; 5-S3∪S3; 6-S1×S2∪S1×S2;

7-∅.
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10 Case D1, Fig. 3.10, the Reeb graph types: II, IIIb, IIIa, I; topologies per region: 1-

S3 ∪ S3; 2-RP3; 3-S1 × S2; 4-S1 × S2 ∪ S1 × S2; 5-∅.

11 Case E, Fig. 3.11, the Reeb graph types: I, I; topologies per region: 1-S3 ∪ S3; 2-RP3;

3-S3 ∪ S3; 4-∅.

12 Case E2, Fig. 3.12, the Reeb graph types: I, I; topologies per region: 1-S3∪S3; 2-RP3;

3-S3 ∪ S3; 4-∅.

13 Case E1, Fig. 3.13, the Reeb graph types: II, II; topologies per region: 1-S1 × S2;

2-RP3; 3-S1 × S2; 4-∅.

14 Case F , Fig. 3.14, the Reeb graph type: I; topologies per region: 1-S3 ∪ S3; 2-RP3;

3-∅.

15 Case F1, Fig. 3.15, the Reeb graph type: II; topologies per region: 1-S1 × S2; 2-RP3;

3-∅.

63



CHAPTER 4

BIFURCATION ANALYSIS OF THE POINCARÉ CASE ON so(4) AND THE

KIRCHHOFF CASE ON e(3)

The Poincaré model of a rigid body with an ellipsoidal cavity filled with an ideal incompress-

ible liquid has a Hamiltonian of the same form as the Kirchhoff Hamiltonian (1.29) with the

additional conditions similar to (1.32), and with the underlying Poisson algebra being so(4)

[5]. We have studied the bifurcation analysis of the Poincaré model on the Lie algebra so(4)

in detail with an account of critical points leading to conclusions about the momentum

mapping and the bifurcation diagrams given different conditions on the parameters of the

Poincaré model[12].

4.1 Momentum map for the Poincaré model of rigid body on so(4)

The Poincaré case is integrable. Thus, we are going to study also the bifurcation diagram

of the map φg = H × K : M4
1,g → R2(h, k), where the maps H : M4

1,g → R(h) and

K : M4
1,g → R(k) are restrictions of the Hamiltonian H (1.27) and the first integral K from

(1.25) respectively. Here M4
1,g is a symplectic manifold, the common level surface of two

Casimirs M4
1,g = f−11 (1)∩f−12 (g). The corresponding family of momentum mappings has the

form

φg : M4
1,g → R2(h, k), x 7→ (H(x), K(x)).

Thus, the mapping φg depends on the parameter g. The rank of a critical point of the

momentum mapping is the rank of the differential of the momentum mapping at this point. It

is clear that for the system under consideration, the ranks of critical points of the momentum

mapping φg are zero or one. We consider these two cases separately.
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4.1.1 Critical points of rank 0

In order to find the critical points of rank zero, we need to find out when the skew gradients

sgradH and sgradK both vanish simultaneously. As a result, let us consider the following

calculations of Poisson bracket:

{M1, H} = (a− 1)M2M3 − b (P2M3 + P3M2)− cP2P3

{M2, H} = (1− a)M1M3 + b (P1M3 + P3M1) + cP1P3

{M3, H} = 0

{P1, H} = −P3M2 − bP2P3 + aP2M3 − κbM2M3 − κcP2M3

{P2, H} = P3M1 + bP1P3 − aP1M3 + κbM1M3 + κcP1M3

{P3, H} = P1M2 − P2M1 + κc (M1P2 −M2P1)

Therefore, the field sgradH is written on so(4) explicitly:

{M1, H} = (a− 1)M2M3 − b(P2M3 + P3M2)− cP2P3.

{M2, H} = (1− a)M1M3 + b(P1M3 + P3M1) + cP1P3.

{M3, H} = 0.

{P1, H} = −P3M2 − bP2P3 + aP2M3 − bM2M3 − cP2M3.

{P2, H} = P3M1 + bP1P3 − aP1M3 + bM1M3 + cP1M3.

{P3, H} = P1M2 − P2M1 + c(M1P2 −M2P1).

Similarly, we need to write the field sgradK. Since F = M3, we have:

{M1,M3} =
∂M1

∂M1

∂M3

∂M3

{M1,M3} = M2

{M2,M3} =
∂M2

∂M2

∂M3

∂M3

{M2,M3} = −M1
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{M3,M3} = 0

{P1,M3} =
∂P1

∂P1

∂M3

∂M3

{P1,M3} = −{M3, P1} = P2

{P2,M3} =
∂P2

∂P2

∂M3

∂M3

{P2,M3} = −{M3, P2} = −P1

{P3,M3} =
∂P3

∂P3

∂M3

∂M3

{P3,M3} = 0

The skew gradient of K = M3 is:

{M1, K} = M2.

{M2, K} = −M1.

{M3, K} = 0.

{P1, K} = P2.

{P2, K} = −P1.

{P3, K} = 0.

Proposition 5. For the Lie algebra so(4), the set of points where both skew gradient vector

fields, sgradH and sgradK with Hamiltonians H and K vanish simultaneously, is the family

of points (0, 0,M3, 0, 0, P3) in the space R6(H,K).

Theorem 5. For the Lie algebra so(4), the image of critical points of rank 0 is:

h =
a

4
(1±

√
1− 4g2) + bg and k = ±1±

√
1− 4g2

2
,

for −1
2
< g < 1

2
.
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4.1.2 Critical points of rank one

The bifurcation diagram of an integrable system is defined to be the region of possible motion

depicted on the plane of the first integrals (h, k) where the curves are images of the critical

points of rank one. For the purpose of finding the critical points of rank one, we need to

find out where sgradH and sgradK are linearly dependent while at least one of them is not

zero.

The critical points of rank 1 are found using the minors of the following matrix:



{M1, H} {M1, F}

{M2, H} {M2, F}

{M3, H} {M3, F}

{P1, H} {P1, F}

{P2, H} {P2, F}

{P3, H} {P3, F}



The calculations using

H =
1

2
(M2

1 +M2
2 +M2

3 ) + b(M1P1 +M2P2) +
1

2
c(P 2

1 + P 2
2 )

and

F = M3

gives:
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

(a− 1)M2M3 − b(P2M3 + P3M2)− cP2P3 M2

(1− a)M1M3 + b(P1M3 +M1P3) + cP1P3 −M1

0 0

−P3(M2 + bP2) +M3(aP2 − κbM2 − κcP2) P2

P3(M1 + bP1) +M3(κbM1 + κcP1 − aP1) −P1

(κc− 1)(M1P2 −M2P1) 0


In order to find the critical points of rank 1, we need all principal minors of this matrix to

become 0 and in this case the least complicated minor is ∆1,6 = (κc− 1)(M1P2−M2P1). As

long as κc− 1 6= 0, for this minor to be 0, we have two cases:

1)M2 = 0 andM1P2 = 0

2)M2 6= 0 and P1 =
M1P2

M2

.

These are the only cases provided we choose to do the calculations on the standard Lie group

so(4) when κ = 1 and c 6= 1.

Let us investigate case 1) in detail with comparison to all other minors. Letting M2 = 0 = M1

and assume κ = 1, we have:



−bP2M3 − cP2P3 0

bP1M3 + cP1P3 0

0 0

−bP2P3 + aM3P2 − cM3P2 P2

bP3bP1 +M3(cP1 − aP1) −P1

0 0


And from here, we get the following principal minors needing to be zero:
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∆1,4 = P 2
2 (−bM3 − cP3)

∆1,5 = P1(bP2M3 + cP2P3)

∆2,5 = bP 2
1M3 + cP 2

1P3 +M3(cP1 − aP1)

∆2,4 = bP2P1M3 + cP1P2P3

∆4,5 = P1(−bP2P3 + aM3P2 − cM3P2) + bP2P3P1 +M3P2(cP1 − aP1))

Letting ∆1,5 = 0 looking at all other principal minors , we have two new cases:

1i)P1 = P2 = 0,

This means the first family of solutions would be:

(M1,M2,M3, P1, P2, P3) = (0, 0,M3, 0, 0, P3).

Or

1ii)bM3 = −cP3 and c = a,

and this results in the second family of points which would be

(M1,M2,M3, P1, P2, P3) = (0, 0,M3, P1, P2,−
b

c
M3).

Now, we need to investigate the case M1 = P2 = 0 which leads to the following matrix:

(a− 1)M2M3 − bP3M2 M2

bP1M3 + cP1P3 0

0 0

−P3M2 +M3bM2 0

bP3P1 +M3P1(c− a) −P1

0 0


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Investigating the minors, we have

∆1,2 = M2P1(bM3 + cP3)

∆1,4 = M2
2 (−P3 + bM3)

∆1,5 = −P1((a− 1)M2M3 − bP3M2)−M2(bP3P1 +M3P1(c− a))

∆2,5 = −P1(bP1M3 + cP1P3)

Similarly, case 2) was investigated in more detail. This is when M2 6= 0 and P1 = M1P2

M2
.

Proposition 6. On the Lie algebra so(4), the set of points at which the skew-gradients of the

Hamiltonian (1.27) and the first integral K = M3 are dependent is the union of the following

family of points in the space R6(M,P):

(I) M1 = P1 = 0 and M3(c− 1)P2M2 − bP 2
2 + bM2

2 = (cP 2
2 −M2

2 )P3.

(II) M1 = P1 = P2 = 0 and P3 = −bM3.

(III) M1 = M3 = P1 = P3 = 0.

(IV) M1 = P1 = 0 and M2 = −bP2 and P3 = −bM3.

(V) M1 = P1 = 0 and P3 = −bM3 where c = 1.

(VI) P1 = P2 = 0 and P3 = −bM3.

(VII) M1P2 = M2P1 and M3(c− 1)P2M2 − bP 2
2 + bM2

2 = (cP 2
2 −M2

2 )P3.

The intersection of each family of critical points from Proposition 6 with M4
1,g gives

a set of critical points of the momentum mapping Φg. The images of these sets in the

plane R2(h, k) form the bifurcation diagram Σh,k. In order to find the bifurcation curves

corresponding to Φg, to each of the families of equations in Proposition 6, the four equations

in (1.26) are added and then the variables M1,M2,M3, P1, P2, P3 are eliminated from the

system of equations. The lengthy calculations lead to the following:
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Proposition 7. The critical values the momentum mapping Φg obtained from Proposition

6 are defined by the equations on the plane R2(h, k) as follows:

(I) h = 1
2
(1− (a− 1)k2).

(II) h = 1
2
(g2 + 2bg + 1) = 1

2
[(g + b)2 + 1− b2].

(III) h = 1
2
( c
b2
− 1 + k2(1 + a− c

b2
)).

(IV) h = 1
2

+ (a+ b2 − 1)k2 + bg + g2+b2k4+2gbk2

2(1−k2) .

(V) h = 1
2
(1 + (a− 1)k2).

(VI) h = 1
2
.

(VII) h = 1
2
(1 + cg2).

Remark 3. Without loss of generality, we can assume g ≥ 0 since the coordinate transfor-

mation

(M1,M2,M3, P1, P2, P3) 7→ (−M1,M2,M3, P1,−P2,−P3)

preserves the Casimir f1 = M2 + P2 and the integral K, the Hamiltonian H = H(a, b, c)

transforms to Ĥ = H(a,−b, c) and changes the sign of the Casimir f2 = 〈M,P〉.

Theorem 6. The bifurcation diagrams of the map φg = H ×K : M4
1,g → R2(h, k) are given

through the following cases:
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Figure 4.1: c > 0 and b2 > 1− a and b 6= 0

Figure 4.2: c < 0 and b2 > 1− a and b 6= 0
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Figure 4.3: c > 0 and b2 < 1− a and b 6= 0

Figure 4.4: c < 0 and b2 < 1− a and b 6= 0

4.2 Momentum map for the Kirchhoff case on e(3) of rigid body motion in fluid

The Kirchhoff case of Kirchhoff equations was investigated together with Chaplygin case in

[32]. Here we are going to find the critical points of the momentum mapping of Kirchhoff
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case of Kirchhoff equations and explore the the momentum mapping of this case. The

Kirchhoff case is completely integrable with two first integrals, the Hamiltonian H and

K = M3, see for example [5, 18, 19]. We are going to study the bifurcation diagram

of the map φg = H × K : M4
1,g → R2(h, k), where the maps H : M4

1,g → R(h) and

K : M4
1,g → R(k) are restrictions of the Hamiltonian H (1.27) and the first integral K from

(1.25) respectively. Here M4
1,g is a symplectic manifold, the common level surface of two

Casimirs, i.e., M4
1,g = f−11 (1) ∩ f−12 (g). The corresponding family of momentum mappings

has the form

φg : M4
1,g → R2(h, k), x 7→ (H(x), K(x)).

Thus, the mapping φg depends on the parameter g. The rank of a critical point of the

momentum mapping is the rank of the differential of the momentum mapping at this point. It

is clear that for the system under consideration the ranks of critical points of the momentum

mapping φg are zero or one. In this section, we have studied the bifurcation analysis of

the Kirchhoff case on the Lie algebra e(3) with the need for a resultant determinant to be

computed using MATLAB and other piece of momentum mapping given as relations on h

and k [12].

4.2.1 Critical points of rank zero on the Lie algebra e(3)

Let us keep in mind the Hamiltonian and extra integral in Kirchhoff’s case:

H =
1

2
(M2

1 +M2
2 + aM2

3 ) + b(M1P1 +M2P2) +
1

2
c(P 2

1 + P 2
2 )

and

F = M3.

Since we are working on the Lie algebra e(3) here, we will also be making use of the Casimirs

P2 = 1 (4.1)
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and

M1P1 +M2P2 +M3P3 = g. (4.2)

In order to find the critical points of rank zero, we need to find out when the skew gradients

sgrad H and sgrad K both vanish simultaneously. In general, the field sgrad H is written

explicitly in the following:

{M1, H} = (a− 1)M2M3 − b(P2M3 + P3M2)− cP2P3

{M2, H} = (1− a)M1M3 + b(P1M3 + P3M1) + cP1P3

{M3, H} = 0

{P1, H} = −P3M2 − bP2P3 + aP2M3 − κbM2M3 − κcP2M3

{P2, H} = P3M1 + bP1P3 − aP1M3 + κbM1M3 + κcP1M3

{P3, H} = P1M2 − P2M1 + κc(M1P2 −M2P1).

Letting κ = 0 for the Lie algebra e(3), we have:

{M1, H} = (a− 1)M2M3 − b(P2M3 + P3M2)− cP2P3

{M2, H} = (1− a)M1M3 + b(P1M3 + P3M1) + cP1P3

{M3, H} = 0

{P1, H} = −P3M2 − bP2P3 + aP2M3

{P2, H} = P3M1 + bP1P3 − aP1M3

{P3, H} = P1M2 − P2M1.

Also, since K = M3, the skew gradient of K is written explicitly in the follwoing manner:

{M1, K} = M2

{M2, K} = −M1

{M3, K} = 0

{P1, K} = −{M3, P1} = P2

{P2, K} = −{M3, P2} = −P1
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{P3, K} = 0.

Proposition 8. Letting κ = 0 considering the Lie algebra e(3), the set of points where

both skew gradient vector fields, sgrad H and sgrad K with Hamiltonians H and K vanish

simultaneously, is the following family of points in the space R6(H,K):

(0, 0,M3, 0, 0, P3).

Theorem 7. For κ = 0, the image of critical points of rank 0 is

h =
a

2
g2 and k = ±g.

4.3 Critical points of rank one on the Lie algebra e(3)

In order to find the critical points of rank one, we need to find out for what values of the

variables, the skew gradients of the Hamiltonian and the skew gradients of the extra integral

K = M3 are independent. Therefore, the critical points of rank one are found using the

minors of the following matrix:



{M1, H} {M1, K}

{M2, H} {M2, K}

{M3, H} {M3, K}

{P1, H} {P1, K}

{P2, H} {P2, K}

{P3, H} {P3, K}.


This leads to the following matrix:
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

(a− 1)M2M3 − b(P2M3 + P3M2)− cP2P3 M2

(1− a)M1M3 + b(P1M3 +M1P3) + cP1P3 −M1

0 0

−P3(M2 + bP2) + aM3P2 P2

P3(M1 + bP1)− aM3P1 −P1

−(M1P2 −M2P1) 0


. (4.3)

This means the following minors are acquired:

∆1,2 = bM3(M1P2 −M2P1) + cP3(M1P2 −M2P1)

∆1,4 = −P 2
2 (bM3 + cP3) +M2(M2P3 − P2M3)

∆1,5 = M2(P1M3 −M1P3) + P1P2(bM3 + cP3)

∆2,4 = M1(P2M3 −M2P3) + P1P2(bM3 + cP3)

∆2,5 = M1(M1P3 −M3P1)− P 2
1 (bM3 + cP3)

∆1,6 = M2(M1P2 −M2P1)

∆2,6 = −M1(M1P2 −M2P1)

∆4,5 = P3(P1M2 −M1P2)

∆4,6 = P2(M1P2 −M2P1)

∆5,6 = −P1(M1P2 −M2P1).

From the minors above and further calculations we end up with the following proposition.

The set of points of rank 1 is the set of points which are not of rank 0 and at which the

skew-gradients of the Hamiltonian (1.27) and the first integral K = M3 are dependent, see

[4].
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Proposition 9. The set of points of rank 1 is the union of the following families of points

in the space R6(M,P) :

I The generic case

M1P2 = M2P1 and ∆2,4 = 0 (4.4)

with M1 6= 0 or P2 6= 0 and P3 6= ±1. The points satisfy the relation:

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (M1,M2, k,

(P 2
3 − 1)M1

kP3 − g
,
(P 2

3 − 1)M2

kP3 − g
, P3) (4.5)

II Singular case P1 = P2 = 0 and P3 = ±1 with M1 6= 0:

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (M1, 0, k, 0, 0,±1).

III Singular case P1 = M1 = 0:

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (0,± g − kP3√

1− P 2
3

, k, 0,±
√

1− P 2
3 , P3).

IV Singular case P1 = M1 = P3 = 0:

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (0,M2, k, 0,±1, 0).

V Singular case M1 = M2 = 0, P1 6= 0:

Va If P2 = 0 then

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (0, 0, k,±

√
1− g2

k2
, 0,

g

k
).

Vb If P2 6= 0 then

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (0, 0, k, P1, P2,−b

k

c
).

VI Singular case P2 = M2 = 0:

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (± g − kP3√

1− P 2
3

, 0, k,±
√

1− P 2
3 , 0, P3).
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Proof. We are going to focus on the generic case. Assuming

∆2,4 = 0, P1M2 = M1P2, (4.6)

we have:

M1(P2M3 −M2P3) + P1P2(bM3 + cP3) = 0.

One checks

∆1,4 = M2(M2P3−P2M3)−P 2
2 (bM3+cP3) = M2(M2P3−P2M3)+

P2M1

P1

(P2M3−M2P3) = 0.

This means ∆14 = 0 if P1 6= 0. The other minors also vanish under the assumptions (4.7):

∆1,2 = bM3(M1P2 −M2P1) + cP3(M1P2 −M2P1) = (bM3 + cP3)(M1P2 −M2P1) = 0.

Similarly

∆1,5 = M2(P1M3 −M1P3) + P1P2(bM3 + cP3) = M3(M2P1 −M1P2) = 0.

Also,

∆2,5 = M1(M1P3 −M3P1)− P 2
1 (bM3 + cP3) = M1(M1P3 −M3P1)−

P1M1P2

M2

(bM3 + cP3)

= M2M1(M1P3 −M3P1) +M2
1 (P2M3 −M2P3) = M1M3(M1P2 −M2P1) = 0,

provided M2 6= 0. It is straightforward that under the assumptions (4.7),

∆1,6 = ∆2,6 = ∆4,5 = ∆4,6 = ∆5,6 = 0.

We conclude that, when

P1M2 = P2M1,∆2,4 = 0 and P1,M2 6= 0,

the matrix (4.3) is of rank 1. Then, the singular cases follow directly.
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Assuming

∆2,4 = 0, P1M2 = M1P2, (4.7)

we have:

M1(P2M3 −M2P3) + P1P2(bM3 + cP3) = 0,

and now:

∆1,4 = M2(M2P3 − P2M3)− P 2
2 (bM3 + cP3)

= M2(M2P3 − P2M3) +
P2M1

P1

(P2M3 −M2P3)

= M2 [(M2P3 − P2M3) + (P2M3 −M2P3)] = 0.

This means ∆14 = 0 if P1 6= 0.

Let us now investigate the other minors under the assumptions (4.7).

∆1,2 = bM3(M1P2 −M2P1) + cP3(M1P2 −M2P1)

= (bM3 + cP3)(M1P2 −M2P1) = 0.

And

∆1,5 = M2(P1M3 −M1P3) + P1P2(bM3 + cP3)

= M2(P1M3 −M1P3)−M1(P2M3 −M2P3) =

= M3(M2P1 −M1P2) = 0.

Also,

∆2,5 = M1(M1P3 −M3P1)− P 2
1 (bM3 + cP3)

= M1(M1P3 −M3P1)−
P1M1P2

M2

(bM3 + cP3).

This gives

M2M1(M1P3 −M3P1) +M2
1 (P2M3 −M2P3)

= M1(M1P2M3 −M2P1M3)
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M1M3(M1P2 −M2P1) = 0, provided M2 6= 0.

It is easy to see that under the assumptions (4.7),

∆1,6 = ∆2,6 = ∆4,5 = ∆4,6 = ∆5,6 = 0.

We conclude that, when

P1M2 = P2M1,∆2,4 = 0 and P1,M2 6= 0,

the matrix (4.3) is of rank 1.

In order to find the curves corresponding to Φg, to each of the families of equations in

proposition 9, the Hamiltonian, extra integral and the Casimirs are added and then the

variables M1,M2,M3, P1, P2, P3 are eliminated from the system of equations.

Lemma 6. If polynomials F1 and F2 both have a common zero at x,then their resultant is

zero:

res(F1, F2) = 0.

Proposition 10. The images under the momentum mapping Φg of families of critical points

from proposition 9 are respectively contained in the curves defined by the equations on the

plane R2(h, k)as follows:

1. Under the conditions (4.4), the relation between h, k is given as R(h, k) = res(F1, F2) =

0 which depends on the parameters a, b, c, g;

2. h = ag2

2
.

3. The values for P3 are given by F3(P3) = 0 with the condition that −1 < P3 < 1, when

F3(P3) := cP 5
3 +bkP 4

3 +P 3
3 (k2−2c−k)+P 2

3 (−kg−2bk+2gk)+P3(c−k2−g2)+k(b−g) = 0.

4. For k = 0, we have h = g2

2
+bg+ c

2
, and for k 6= 0, we have b = −g and h = −g2

2
+ a

2
k2+ c

2
.
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5. If M1 = M2 = P2 = 0, P1 6= 0, then we have h = 1
2
ak2 − cg2

2k2
+ c

2
and if M1 = M2 =

0, P1 6= 0, P2 6= 0, then h = k2

2
(a− b2

c
) + c

2
and g = −bk2

c
.

6. If M2 = P2 = 0, P1 6= 0, P2 6= 0, we have F3(P3) := cP 5
3 + bkP 4

3 + P 3
3 (k2 − 2c − k) +

P 2
3 (−kg − 2bk + 2gk) + P3(c− k2 − g2) + k(b− g) = 0, with −1 < P3 < 1.

Proof. In order to prove the case 1, we proceed in the following way:

From (4.4), we have

M1(M2P3 − P2M3) = P1P2(bM3 + cP3)

and with the extra integral k = M3, we obtain

P 2
1 (bk + cP3) = M2

1P3 (4.8)

and then with reference to (4.5) and under the condition that P1,M1,M2 6= 0. we have:

P1 =
(P 2

3 − 1)M1

kP3 − g
. (4.9)

Now, combining equations (4.8) and (4.9), we obtain:

(P 2
3 − 1)2M2

1 (bk + cP3)−M2
1P3(kP3 − g)2 + (P 2

3 − 1)M2
1k(kP3 − g) = 0,

which results in

F1(P3) := cP 5
3 + bkP 4

3 +(k−k2−2c)P 3
3 +(2kg−2bk−g)P 2

3 +(c−g2−k2)P3 +(bk+gk) = 0.

(4.10)

Let us keep(4.10) in mind for the time being and work with the Hamiltonian and rewrite it

using our Casimirs, so that we have

h =
1

2
(M2

1 +
M2

1P
2
2

P 2
1

+ ak2) + b(g − kP3) +
1

2
c(1− P 2

3 ). (4.11)

Multiplying (4.11) by 2P 2
1 , we obtain:

2hP 2
1 = M2

1P
2
1 +M2

1 (1− P 2
3 − P 2

1 ) + ak2P 2
1 + 2bP 2

1 (g − kP3) + cP 2
1 (1− P 2

3 )
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2hP 2
1 = M2

1 (1− P 2
3 ) + ak2P 2

1 + 2bgP 2
1 − 2bkP 2

1P3 + cP 2
1 − cP 2

1P
2
3

[
2h− ak2 − 2bg + 2bkP3 − c+ cP 2

3

]
P 2
1 = M2

1 (1− P 2
3 ).

Finally we arrive at:

P 2
1 =

M2
1 (1− P 2

3 )

2h− ak2 − 2bg + 2bkP3 − c+ cP 2
3

. (4.12)

Let us combine equations (4.9) and (4.12) now and therefore, we have:

(P 2
3 − 1)2M2

1

(kP3 − g)2
=

M2
1 (1− P 2

3 )

2h− ak2 − 2bg + 2bkP3 − c+ cP 2
3

.

Under the condition M1 6= 0 and P 2
3 6= 1, we obtain:

(P 2
3 − 1)(2h− ak2 − 2bg + 2bkP3 − c+ cP 2

3 ) = k2P 2
3 − 2kgP3 + g2,

which results in:

F2(P3) := cP 4
3 +2bkP 3

3 +(2h−(a+1)k2−2bg−2c)P 2
3 +(2kg−2bk)P3−2h+ak2+2bg+c = 0.

(4.13)

The polynomials F1 and F2 from (4.10) and (4.13) both have a common zero at P3.

This means we can apply lemma 6. This means that the determinant of the 9× 9 Sylvester

matrix found from the coefficients of polynomials(4.10) and (4.13)is zero.

In our case, having polynomials of degrees 5 and 4 with

F1(P3) = a0P
5
3 + a1P

4
3 + a2P

3
3 + a3P

2
3 + a4P3 + a5

and

F2(P3) = b0P
4
3 + b1P

3
3 + b2P

2
3 + b3P3 + b4,
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for the resultant of F1 and F2, we get a Sylvester determinant of the form:

R(h, k) := res(F1, F2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 0 0 b0 0 0 0 0

a1 a0 0 0 b1 b0 0 0 0

a2 a1 a0 0 b2 b1 b0 0 0

a3 a2 a1 a0 b3 b2 b1 b0 0

a4 a3 a2 a1 b4 b3 b2 b1 b0

a5 a4 a3 a2 0 b4 b3 b2 b1

0 a5 a4 a3 0 0 b4 b3 b2

0 0 a5 a4 0 0 0 b4 b3

0 0 0 a5 0 0 0 0 b4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.14)

This equation is of the form

R(h, k) =
∑

anmh
nkm,

with n ≤ 5, m ≤ 14 and n + m ≤ 14. The full equation that was obtained using the MAT-

LAB software is included in the Appendix.

In order to prove case 2, let P1 = P2 = 0 and P3 = ±1, while M1 6= 0. In order for

∆1,4 = 0, we need

M2
2P3 = 0,

which gives

M2 = 0 and ± k = g.

The Hamiltonian relation in this case becomes h = 1
2
(M2

1 + ag2) which results in

M1 = ±
√

2h− ag2.

In order for ∆2,5 to vanish, we need M1P3 = 0 which leads to M1 = 0. This means we have

(M∗
1 ,M

∗
2 ,M

∗
3 , P

∗
1 , P

∗
2 , P

∗
3 ) = (0, 0, k, 0, 0,±1),
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and as a result

h =
ag2

2
.

Now, let us prove the case 3. Assuming P1 = M1 = 0, and requiring ∆1,4 = 0, we get

P 2
2 (bk + cP3) = M2(M2P3 − kP2)

(1− P 2
3 )(bk + cP3) = M2

2P3 − k(g − kP3),

resulting in

M2
2 =

(1− P 2
3 )(bk + cP3) + k(g − kP3)

P3

, where P3 6= 0. (4.15)

Taking the (4.2) into account, we have:

M2P2 = g − kP3,

leading to

M2
2P

2
2 = (g − kP3)

2,

which leads to

M2
2 =

(g − kP3)
2

1− P 2
3

, where P2 6= 0. (4.16)

From (4.15) and (4.16), we get

(1− P 2
3 )2(bk + cP3) + k(1− P 2

3 )(g − kP3) = P3(g − kP3)
2,

resulting in

F3(P3) := cP 5
3 +bkP 4

3 +P 3
3 (k2−2c−k)+P 2

3 (−kg−2bk+2gk)+P3(c−k2−g2)+k(b−g) = 0

with −1 < P3 < 1. Let us now look at case 4 and apply the conditions of the case as in

P1 = M1 = P3 = 0, this means that from Casimirs (4.1)and (4.2), we conclude:

M2P2 = g, P2 = ±1,
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which results in M2 = ±g. Now, in order for ∆1,4 to vanish, we have

bk = −kg,

leading to

k = 0 or b = −g.

This results in

h =
1

2
(g2 + ak2) + bg +

c

2
,

leading to

k = 0, h =
g2

2
+ bg +

c

2
,

and

k 6= 0, b = −g and h =
−g2

2
+
a

2
k2 +

c

2
.

For case 5, there are two scenarios to look at. For both cases, the assumption is that

M1 = M2 = 0, P1 6= 0. Applying this assumption to ∆2,4 = 0, we get

P2 = 0 or P3 = −bk
c
.

In subcategory of case 5 when P2 = 0, from Casimirs (4.1) and (4.2) we have :

kP3 = g,

which gives

P3 =
g

k
,

and therefore

P1 = ±
√

1− g2

k2
.

Finally,

a
k2

2
− c g

2

2k2
+
c

2
.
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For subcategory of case 5 when P2 6= 0, P3 = −bk
c
, we have

P 2
1 + P 2

2 = 1− b2k2

c2
;P3 =

g

k
= −bk

c
.

As a result we have

cg = −bk2,

leading to

k2 = −cg
b
,

and finally

h =
1

2
(ak2) +

c

2
(1− b2k2

c2
),

and

g = −bk
2

c
.

And finally to prove 6, the conditions M2 = P2 = 0 and M1P2 = M2P1 already guarantee

∆1,4 = 0, too. We therefore have

h =
1

2
(M2

1 + ak2) + b(g − kP3) +
c

2
(1− P 2

3 ).

Now to satisfy ∆2,5 = 0, we need

M2
1P3 − kM1P1 = P 2

1 (bk + cP3)

giving

M2
1P3 − k(g − kP3) = (1− P 2

3 )(bk + cP3),

which leads to

M2
1 =

(1− P 2
3 )(bk + cP3) + k(g − kP3)

P3

.

We then have

M2
1P

2
1 = (g − kP3)

2
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which gives

M2
1 =

(g − kP3)
2

1− P 2
3

,

and finally

F3(P3) := cP 5
3 +bkP 4

3 +P 3
3 (k2−2c−k)+P 2

3 (−kg−2bk+2gk)+P3(c−k2−g2)+k(b−g) = 0

with −1 < P3 < 1.

88



APPENDIX

THE FULL EQUATION OF RESULTANT MATRIX R(h, k)

The equation we obtain from the resultant as stated in Chapter 4 in (4.14) is given here:

R(h, k) = −c(−c4g4+2c4g6−c4g8−16b6k8+6b4k11+64b6k9−3b4k12−64b6k10−c4k4+4c4k5+

2c3k7 − 6c4k6 − 4c3k8 + 4c4k7 − c2k10 + 2c3k9 − c4k8 − 4bc3g5 + 6bc3g7 − 2bc3g9+

32b5cg7 − 32b5cg9 − 4ab4k10 − 2ab2k13 + ab2k14 + 16ab4k12 − 3ac3k6+

12ac3k7 + 4ac2k9 − 14ac3k8 − 8ac2k10 + 4ac3k9 + ac3k10 + 2a2ck11−

a3ck10 − 4a2ck12 + 4a3ck11 − 2a2ck13 − 2a4ck11 − 8a3ck13 + 8a4ck12−

a3ck14 − 6a4ck13 − a5ck12 − 4a4ck14 + 4a5ck13 − 4a5ck14 − 8b4ck7+

3b2ck10 + 24b4ck8 − 2b2ck11 − 8b4ck9 + b2ck12 − 16b4ck10 − 32cg2h5+

4c3g4h+ 32cg4h5 − 6c3g6h+ 2c3g8h+ 16b5gk8 − 32b5gk9 + 24b5gk10 + 2c3g6k+

4cg4k7 − cg2k10 − 2cg4k8 + 8b4hk8 + 4b2hk11 − 2b2hk12 − 32b4hk10 + 8ch3k4−

32ch4k3 + 32ch5k2 + 6c3hk4− 32ch3k5 + 128ch4k4− 128ch5k3− 24c3hk5 + 8ch2k7− 96ch4k5+

128ch5k4 − 8c2hk7 + 28c3hk6 − 16ch2k8 + 64ch3k7 − 64ch4k6 + 16c2hk8 − 8c3hk7 − 8ch2k9+

8ch3k8 − 2c3hk8 − 4b2c2g6 − 8b2c3g6 + 4b2c2g8 − 16b3c2g7 + 16b4c2g6 + 8b2c3g8+

16b3c2g9 − 16b4c2g8 + 4a2b2k12 + 8a2b4k10 − 2a3b2k11 − 10a2b2k13 − 32a2b4k11+

9a3b2k12 + 3a2b2k14 + 32a2b4k12 − 10a3b2k13 − a4b2k12 + 4a4b2k13 − 4a4b2k14−

3a2c2k8 − 2a2c3k7 + 12a2c2k9 + 8a2c3k8 − 8a2c2k10 − 10a2c3k9 − 4a3c2k9 − 8a2c2k11+

4a2c3k10 + 16a3c2k10 + a2c2k12 − 16a3c2k11 − a4c2k10 + 4a4c2k11 − 4a4c2k12−

8b2c3k5−2b2c2k7 +32b2c3k6 +8b2c2k8−40b2c3k7−16b4c2k6−10b2c2k9 +16b2c3k8 +64b4c2k7+
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12b2c2k10 − 64b4c2k8 + 16c2g2h4 − 4c2g4h2 + 16c2g4h3 − 8c3g4h2 − 16c2g4h4 + 4c2g6h2−

16c2g6h3 +8c3g6h2−8b4g4k5 +8b2g4k8 +8b3g5k6−8b4g2k8 +28b4g4k6 +16b5g3k6−32b5g5k4+

48b6g2k6−48b6g4k4+16b6g6k2−2b2g2k11−8b2g4k9−8b3g3k9+32b3g5k7−32b4g2k9+20b4g4k7+

24b4g6k5 − 136b5g3k7 + 152b5g5k5 − 16b5g7k3 − 192b6g2k7 + 192b6g4k5 − 64b6g6k3+

b2g2k12+2b2g4k10−18b3g5k8+30b4g2k10−36b4g4k8+36b4g6k6+96b5g3k8−64b5g5k6+40b5g7k4+

208b6g2k8 − 240b6g4k6 + 112b6g6k4 − 16b6g8k2 + 2c4g2k2 − c3g2k4 − 4c4g2k3+

16b2h3k5−16b2h4k4+2c3g2k5−2c3g4k3−72b2h3k6+64b2h4k5+6c2g2k7−6c2g4k5+4c2g6k3−

6c3g2k6 − 8c3g4k4 + 11c3g6k2 + 4c4g2k5 + 4c4g4k3 + 16b2h2k8 + 80b2h3k7 − 64b2h4k6+

32b4h2k6−4c2g2k8−10c2g4k6 +14c2g6k4 +6c3g2k7 +16c3g4k5 +4c3g6k3−2c4g2k6−3c4g4k4−

2c4g6k2 − 40b2h2k9 − 128b4h2k7 + 2c2g2k9 + 6c2g4k7 + 4c2g6k5 − c3g2k8 − 4c3g4k6−

5c3g6k4 − 2c3g8k2 + 12b2h2k10 + 128b4h2k8 − 12c2h2k4 + 32c2h3k3 − 16c2h4k2 − 8c3h2k3+

48c2h2k5− 128c2h3k4 + 64c2h4k3 + 32c3h2k4− 32c2h2k6 + 128c2h3k5− 64c2h4k4− 40c3h2k5−

32c2h2k7+16c3h2k6+4c2h2k8−ack12+2chk10−8ab2c2k7+32ab2c2k8−56ab2c2k9−2a2b2ck9+

48ab2c2k10 + 10a2b2ck10 − 34a2b2ck11 + 8a3b2ck10 + 44a2b2ck12 − 32a3b2ck11+

32a3b2ck12 − 64bc2g3h3 − 48bc2g5h2 − 320b2cg4h3 + 64bc2g5h3 + 48b2c2g6h+ 320b3cg5h2−

64b3c2g5h+ 48bc2g7h2 + 320b2cg6h3 − 48b2c2g8h− 320b3cg7h2 + 64b3c2g7h− 8ab3g3k7−

8ab4g2k7 + 8ab4g4k5 + 12ab2g2k10 − 4ab2g4k8 + 40ab3g3k8 − 8ab3g5k6 + 52ab4g2k8−

64ab4g4k6−64ab5g3k6+32ab5g5k4−8a2b3gk9−16ab2g2k11+12ab2g4k9−14ab3g3k9+12ab3g5k7−

104ab4g2k9 + 184ab4g4k7 − 32ab4g6k5 + 256ab5g3k7 − 128ab5g5k5 + 36a2b3gk10 + 4ab2g2k12−

5ab2g4k10 − 14ab3g3k10 + 16ab3g5k8 + 16ab4g2k10 − 68ab4g4k8 + 36ab4g6k6 − 288ab5g3k8+

192ab5g5k6 − 32ab5g7k4 − 40a2b3gk11 − 8a3b3gk10 − 2a2b3gk12 + 32a3b3gk11−
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32a3b3gk12 + 5ac3g2k4 − 2ac3g4k2 − 2ac2g2k6 − 14ac3g2k5 − 24ab2h2k7 + 32ab2h3k6+

6ac2g2k7 − 4ac2g4k5 + 2ac2g6k3 + 4ac3g2k6 + 8ac3g4k4 + 3ac3g6k2+

108ab2h2k8 − 128ab2h3k7 + 2ac2g2k8 − 2ac2g4k6 + 9ac2g6k4 + 6ac3g2k7 − 8ac3g4k5+

8ac3g6k3−a2cg2k8−120ab2h2k9 +128ab2h3k8 +4ac2g2k9−14ac2g4k7 +18ac2g6k5−ac3g2k8+

6ac3g4k6 + ac3g6k4 − ac3g8k2 + 4a2cg2k9 − 2a2cg4k7 + 12a2b2hk9 + a3cg2k8 + 2ac2g2k10+

6ac2g4k8+4ac2g6k6+13a2cg2k10−4a2cg4k8−54a2b2hk10−6a3cg2k9−10a2cg2k11+10a2cg4k9+

60a2b2hk11 + 13a3cg2k10 − 5a3cg4k8 + 8a3b2hk10 + 2a4cg2k9 − a2cg2k12−

2a2cg4k10+8a3cg2k11−2a3cg4k9−32a3b2hk11−9a4cg2k10−5a3cg2k12+3a3cg4k10+32a3b2hk12+

14a4cg2k11− 4a4cg4k9 + a5cg2k10 + a4cg2k12− 4a5cg2k11 + 5a5cg2k12− a5cg4k10 + 8bc3g3k2−

48ac2h2k5+32ac2h3k4−4bc2g3k4−18bc3g3k3−8b2c3g4k+192ac2h2k6−128ac2h3k5+18bc2g3k5−

8bc2g5k3 − 34bc3g3k4 + 28bc3g5k2 − 4b2cg4k4 − 4b2c2g6k − 16b3c2gk5 − 16b3c2g5k−

192ac2h2k7+128ac2h3k6−42bc2g3k6+18bc2g5k4+18bc2g7k2+42bc3g3k5+2bc3g5k3−48a2ch2k7+

80a2ch3k6 + 24a2c2hk7 − 4b2cg2k7 + 12b2cg4k5 + 40b2c3g6k − 24b3cg5k3 + 72b3c2gk6+

16b4cg2k5 − 8b4cg4k3 + 12bc2g3k7 − 6bc2g5k5 + 40bc2g7k3 + 2bc3g3k6 + 8bc3g5k4 + 8bc3g7k2+

192a2ch2k8 − 320a2ch3k7 − 96a2c2hk8 − 6b2cg2k8 + 4b2cg4k6 + 28b2cg6k4 + 36b2c2g8k−

32b3cg3k6+80b3cg5k4−80b3c2gk7+64b3c2g7k+8b4cg2k6+40b4cg4k4−72b4cg6k2−64b4c2g6k+

96b5cg3k4−96b5cg5k2+8bc2g3k8+26bc2g5k6+20bc2g7k4−144a2ch2k9+320a2ch3k8+96a2c2hk9−

40a3ch2k8+8a3c2hk8−8b2cg2k9−36b2cg4k7+88b2cg6k5−142b3cg3k7+88b3cg5k5+64b3cg7k3+

24b3c2gk8 − 112b4cg2k7 − 288b4cg4k5 + 344b4cg6k3 − 384b5cg3k5 + 384b5cg5k3 − 96a2ch2k10+

160a3ch2k9−32a3c2hk9+12b2cg2k10+15b2cg4k8−28b2cg6k6+150b3cg3k8−90b3cg5k6+92b3cg7k4+

128b4cg2k8 + 192b4cg4k6 − 104b4cg6k4 + 88b4cg8k2 + 416b5cg3k6 − 480b5cg5k4 + 224b5cg7k2−
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160a3ch2k10 + 32a3c2hk10 − 8b2ch2k5 − 64b2ch3k4 + 16b2c2hk5 + 40b2ch2k6+

256b2ch3k5 − 64b2c2hk6 − 136b2ch2k7 − 256b2ch3k6 + 112b2c2hk7 + 176b2ch2k8 − 96b2c2hk8−

32b3gh2k5 + 64b3gh3k4 + 144b3gh2k6 − 256b3gh3k5 + 16b3g3hk5 + 16b4g2hk5 − 16b4g4hk3−

24b2g2hk8 + 8b2g4hk6 − 160b3gh2k7 + 256b3gh3k6 − 80b3g3hk6 + 16b3g5hk4 − 104b4g2hk6+

128b4g4hk4 + 128b5g3hk4 − 64b5g5hk2 + 32b2g2hk9 − 24b2g4hk7 − 8b3gh2k8 + 28b3g3hk7−

24b3g5hk5 + 208b4g2hk7 − 368b4g4hk5 + 64b4g6hk3 − 512b5g3hk5 + 256b5g5hk3 − 8b2g2hk10+

10b2g4hk8 + 28b3g3hk8 − 32b3g5hk6 − 32b4g2hk8 + 136b4g4hk6 − 72b4g6hk4+

576b5g3hk6 − 384b5g5hk4 + 64b5g7hk2 − 8cg2h3k2 − 32c2g2h3k − 10c3g2hk2+

8c3g2h2k−4cg2h2k4+48cg2h3k3−144cg2h4k2+4c2g2hk4−64c2g2h4k+28c3g2hk3+16cg2h2k5−

104cg2h3k4 + 224cg2h4k3 − 160cg2h5k2 − 8cg4h2k3 + 40cg4h3k2 − 12c2g2hk5+

8c2g4hk3−16c2g4h3k−8c3g2hk4−16c3g4hk2+24c3g4h2k+52cg2h2k6−64cg2h3k5+16cg2h4k4−

16cg4h2k4 + 16cg4h3k3 − 4c2g2hk6 + 4c2g4hk4 − 18c2g6hk2 + 32c2g6h2k − 12c3g2hk5+

16c3g4hk3−40cg2h2k7+40cg2h3k6+40cg4h2k5−24cg4h3k4−8c2g2hk7+28c2g4hk5−36c2g6hk3+

2c3g2hk6 − 12c3g4hk4 − 2c3g6hk2 − 4cg2h2k8 − 8cg4h2k6 − 4c2g2hk8 − 12c2g4hk6−

8c2g6hk4 − 8achk9 + 16achk10 + 8achk11 + 8a2b2c2k8 − 32a2b2c2k9 + 32a2b2c2k10+

96b2c2g4h2 − 96b2c2g6h2 − 2a2b2g2k9 + 8a2b3g3k7 + 9a2b2g2k10 − 4a2b2g4k8−

44a2b3g3k8 − 32a2b4g2k8+

24a2b4g4k6 + 2a3b2g2k9 + 4a2b2g2k11 + 90a2b3g3k9− 20a2b3g5k7 + 128a2b4g2k9− 96a2b4g4k7−

10a3b2g2k10 + 8a3b3g3k8 − 6a2b2g2k12 + 3a2b2g4k10 − 26a2b3g3k10 + 10a2b3g5k8−

136a2b4g2k10 + 128a2b4g4k8 − 24a2b4g6k6 + 18a3b2g2k11 − 4a3b2g4k9 − 32a3b3g3k9+

a4b2g2k10 − 4a3b2g2k12 + a3b2g4k10 + 40a3b3g3k10 − 8a3b3g5k8 − 4a4b2g2k11 + 5a4b2g2k12−
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a4b2g4k10 + 4a2c2g2k6 − a2c2g4k4 + 2a2c3g2k5 − 16a2c2g2k7 − 6a2c3g2k6 − 2a2c3g4k4−

24a2b2h2k8 + 20a2c2g2k8 + a2c2g6k4 + 2a2c3g2k7 + 6a2c3g4k5 + 4a3c2g2k7 + 96a2b2h2k9−

2a2c2g2k9 − 2a2c2g4k7 + 8a2c2g6k5 + 2a2c3g2k8 − 2a2c3g4k6 + 2a2c3g6k4 − 15a3c2g2k8−

2a3c2g4k6 − 96a2b2h2k10 + 8a2c2g2k10 − 3a2c2g4k8 + 6a2c2g6k6 + 16a3c2g2k9 + 2a3c2g4k7+

a4c2g2k8 + 3a3c2g2k10 − 2a3c2g4k8 + 2a3c2g6k6 − 4a4c2g2k9 + 5a4c2g2k10−

a4c2g4k8 − 4b2c2g2k4 + 8b2c2g4k2 + 16b2c3g2k3 + 34b2c2g2k5 − 36b2c2g4k3 − 40b2c3g2k4+

16b2c3g4k2 + 32b3c2g3k3 − 24a2c2h2k6 − 50b2c2g2k6 − 6b2c2g4k4 + 44b2c2g6k2+

16b2c3g2k5 − 48b2c3g4k3 − 48b3c2g3k4 − 8b3c2g5k2 + 48b4c2g2k4 − 48b4c2g4k2 + 96a2c2h2k7−

14b2c2g2k7 − 46b2c2g4k5 + 76b2c2g6k3 + 8b2c3g2k6 + 48b2c3g4k4 + 16b2c3g6k2−

168b3c2g3k5 + 88b3c2g5k3 − 192b4c2g2k5 + 192b4c2g4k3 − 96a2c2h2k8 + 2b2c2g2k8+

122b2c2g4k6 + 26b2c2g6k4 + 36b2c2g8k2 + 184b3c2g3k6 − 16b3c2g5k4 + 80b3c2g7k2+

208b4c2g2k6 − 240b4c2g4k4 + 112b4c2g6k2 + 32b2c2h2k4 − 128b2c2h2k5 + 128b2c2h2k6−

16b2g2h3k3 + 16b2g2h4k2 − 8b2g2h2k5 + 80b2g2h3k4 − 64b2g2h4k3 + 32b3g3h2k3−

64b3g3h3k2 + 36b2g2h2k6 − 144b2g2h3k5 + 80b2g2h4k4 − 16b2g4h2k4 + 32b2g4h3k3−

16b2g4h4k2 − 176b3g3h2k4 + 256b3g3h3k3 − 128b4g2h2k4 + 96b4g4h2k2 + 16b2g2h2k7+

32b2g2h3k6 − 8b2g4h3k4 + 360b3g3h2k5 − 320b3g3h3k4 − 80b3g5h2k3 + 64b3g5h3k2+

512b4g2h2k5 − 384b4g4h2k3 − 24b2g2h2k8 + 12b2g4h2k6 − 104b3g3h2k6 + 40b3g5h2k4−

544b4g2h2k6 + 512b4g4h2k4 − 96b4g6h2k2 + 16c2g2h2k2 − 64c2g2h2k3 + 120c2g2h3k2−

24c3g2h2k2 + 80c2g2h2k4− 128c2g2h3k3 + 80c2g2h4k2 + 8c3g2h2k3− 8c2g2h2k5− 24c2g2h3k4−

8c2g4h2k3 + 16c2g4h3k2 + 8c3g2h2k4 − 8c3g4h2k2 + 32c2g2h2k6 − 12c2g4h2k4+

24c2g6h2k2 − 2ab2ck9 + 7ab2ck10 − 16ab4ck8 − 8ab2ck11 + 64ab4ck9 + 15ab2ck12−
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64ab4ck10 + 160bcg3h4 + 8bc2g5h+ 16bc3g5h− 160bcg5h4 − 8bc2g7h− 16bc3g7h− 160b4cg6h+

160b4cg8h+ 32ab5gk8 − 4ab3gk11 − 128ab5gk9 − 2ab3gk12 + 128ab5gk10 + 6acg2k9−

2acg4k7 − 5acg2k10 + 11acg4k8 − 16ab2hk10 − 32ab4hk8 − 2acg2k11 − 4acg4k9+

40ab2hk11 + 128ab4hk9 − 12ab2hk12 − 128ab4hk10 − 4bc3gk4 − 12ach2k6+

64ach3k5 − 80ach4k4 + 12ac2hk6 + 8ac3hk5 + 20bc3gk5 − 2bc3g5k + 48ach2k7 − 256ach3k6+

320ach4k5 − 48ac2hk7 − 32ac3hk6 + 4bc2g7k − 20bc3gk6 + 192ach3k7−

320ach4k6 + 32ac2hk8 + 40ac3hk7 + 4bcg5k5 + 4bc2gk8 − 4bc3gk7 + 18bc3g7k+

6a2chk8 + 8b3cgk7 − 96ach2k9 + 128ach3k8 + 32ac2hk9 − 16ac3hk8 − 4bcg3k8 + 26bcg5k6−

4bc2gk9 + 8bc3gk8 − 24a2chk9 − 12b3cgk8 − 32b5cgk6 − 12ach2k10 − 4ac2hk10 − 4bcg3k9−

8bcg5k7 + 16a3chk9 + 20b3cgk9 − 32b4cg8k + 128b5cgk7 − 128b5cg7k + 48a2chk11−

64a3chk10 − 8b3cgk10 − 128b5cgk8 + 6a2chk12 + 48a3chk11 + 10a4chk10+

32a3chk12 − 40a4chk11 + 40a4chk12 + 4b2chk7 − 14b2chk8 + 32b4chk6+

16b2chk9 − 128b4chk7 − 30b2chk10 + 128b4chk8 − 64b5ghk6 + 8b3ghk9 + 256b5ghk7+

4b3ghk10 − 256b5ghk8 + 32cg2h4k + 128cg2h5k − 64cg4h4k − 4c2g6hk − 12cg2hk7+

4cg4hk5 − 16c3g6hk + 10cg2hk8 − 22cg4hk6 + 4cg2hk9 + 8cg4hk7 − 8abc2gk6−

4abcg3k6 + 36abc2gk7 + 8abc3gk6 + 18abcg3k7 − 4abcg5k5 − 38abc2gk8 − 16abc3gk7−

4a2bcgk8+14abcg3k8+6abcg5k6+8abc3gk8+32ab3cgk8+16a2bcgk9−28abcg3k9+56abcg5k7+

2abc2gk10 − 112ab3cgk9 − 8a2bcgk10 − 12a3bcgk9 − 6abcg3k10 − 12abcg5k8+

128ab3cgk10 − 20a2bcgk11 + 48a3bcgk10 − 6a2bcgk12 − 36a3bcgk11 − 10a4bcgk10−

26a3bcgk12 + 40a4bcgk11 − 40a4bcgk12 + 8ab2chk7 − 40ab2chk8 + 136ab2chk9−

176ab2chk10 + 32ab3ghk7 − 144ab3ghk8 + 160ab3ghk9 + 8ab3ghk10 + 4acg2hk6 − 16acg2hk7+
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8acg4hk5 − 52acg2hk8 + 16acg4hk6 + 40acg2hk9 − 40acg4hk7 + 4acg2hk10 + 8acg4hk8−

16bcgh2k4 + 96bcgh3k3 − 160bcgh4k2 − 96bcg3h3k + 16bc2ghk4 + 64bcgh2k5 − 384bcgh3k4+

640bcgh4k3 + 8bcg3hk4 − 640bcg3h4k − 72bc2ghk5 + 4bc2g5hk − 16bc3ghk4 − 32bcgh2k6+

288bcgh3k5 − 640bcgh4k4 − 36bcg3hk5 + 8bcg5hk3 + 224bcg5h3k + 76bc2ghk6 + 32bc3ghk5−

64bc3g5hk − 32b3cg5hk − 80bcgh2k7 + 208bcgh3k6 − 28bcg3hk6 − 12bcg5hk4 − 68bc2g7hk−

16bc3ghk6 − 64b3cghk6 − 24bcgh2k8 + 56bcg3hk7 − 112bcg5hk5 − 4bc2ghk8 + 224b3cghk7+

160b3cg7hk + 640b4cg6hk + 12bcg3hk8 + 24bcg5hk6 − 256b3cghk8 − 32a2b2c2g2k6+

24a2b2c2g4k4+128a2b2c2g2k7−96a2b2c2g4k5−136a2b2c2g2k8+128a2b2c2g4k6−24a2b2c2g6k4+

24a2b2g2h2k6−96a2b2g2h2k7+120a2b2g2h2k8−24a2b2g4h2k6+24a2c2g2h2k4−96a2c2g2h2k5+

120a2c2g2h2k6 − 24a2c2g4h2k4 − 128b2c2g2h2k2 + 512b2c2g2h2k3 − 544b2c2g2h2k4+

512b2c2g4h2k2 + 12abc2g3k4 − 4abc2g5k2 − 46abc2g3k5 − 2abc2g5k3 − 8abc3g5k2 − 4ab2cg2k6+

4ab2cg4k4 + 40abc2g3k6 + 22abc2g5k4 + 4abc2g7k2 − 32abc3g3k5 + 32abc3g5k3+

20ab2cg2k7 − 44ab2cg4k5 − 16ab3cg3k5 + 16ab3cg5k3 + 32ab3c2gk6 + 4a2bcg3k6−

12a2bc2gk7 − 38abc2g3k7 + 30abc2g5k5 + 34abc2g7k3 + 32abc3g3k6 + 8abc3g7k2−

32ab2cg2k8 + 128ab2cg4k6 − 20ab2cg6k4 + 96ab3cg3k6 − 160ab3cg5k4 − 128ab3c2gk7+

112ab4cg2k6−176ab4cg4k4 +80ab4cg6k2−28a2bcg3k7 +58a2bc2gk8 +48abc2g3k8 +4abc2g5k6+

30abc2g7k4 − 68ab2cg2k9 + 46ab2cg4k7 + 48ab2cg6k5 − 280ab3cg3k7 + 520ab3cg5k5−

80ab3cg7k3 + 128ab3c2gk8 − 448ab4cg2k7 + 704ab4cg4k5 − 320ab4cg6k3 + 72a2bcg3k8−

20a2bcg5k6 − 68a2bc2gk9 + 48a2b3cgk8 + 12a3bcg3k7 − 8a3bc2gk8 + 36ab2cg2k10−

87ab2cg4k8+90ab2cg6k6+48ab3cg3k8−144ab3cg5k6+112ab3cg7k4+464ab4cg2k8−816ab4cg4k6+

496ab4cg6k4 − 80ab4cg8k2 + 20a2bcg3k9 + 4a2bcg5k7 + 6a2bc2gk10 − 192a2b3cgk9−
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58a3bcg3k8 + 32a3bc2gk9 − 34a2bcg3k10 + 28a2bcg5k8 + 192a2b3cgk10 + 102a3bcg3k9−

28a3bcg5k7 − 32a3bc2gk10 + 10a4bcg3k8 − 4a3bcg3k10 + 6a3bcg5k8 − 40a4bcg3k9+

50a4bcg3k10 − 10a4bcg5k8 + 96ab2ch2k6 − 32ab2c2hk6 − 384ab2ch2k7 + 128ab2c2hk7+

384ab2ch2k8 − 128ab2c2hk8 − 48a2b2chk8 + 192a2b2chk9 − 192a2b2chk10 + 8ab2g2hk7−

96ab3gh2k6−32ab3g3hk5−36ab2g2hk8+16ab2g4hk6+384ab3gh2k7+176ab3g3hk6+128ab4g2hk6−

96ab4g4hk4−16ab2g2hk9−384ab3gh2k8−360ab3g3hk7+80ab3g5hk5−512ab4g2hk7+384ab4g4hk5+

48a2b3ghk8 + 24ab2g2hk10 − 12ab2g4hk8 + 104ab3g3hk8 − 40ab3g5hk6 + 544ab4g2hk8−

512ab4g4hk6 + 96ab4g6hk4 − 192a2b3ghk9 + 192a2b3ghk10 + 12acg2h2k4 − 64acg2h3k3+

80acg2h4k2−16ac2g2hk4+4ac2g4hk2−8ac3g2hk3−72acg2h2k5+288acg2h3k4−320acg2h4k3+

64ac2g2hk5 + 24ac3g2hk4 + 8ac3g4hk2 + 156acg2h2k6 − 448acg2h3k5 + 400acg2h4k4−

60acg4h2k4+128acg4h3k3−80acg4h4k2−80ac2g2hk6−4ac2g6hk2−8ac3g2hk5−24ac3g4hk3−

6a2cg2hk6 + 96acg2h2k7 − 32acg2h3k6 − 24acg4h2k5 + 8ac2g2hk7 + 8ac2g4hk5−

32ac2g6hk3− 8ac3g2hk6 + 8ac3g4hk4− 8ac3g6hk2 + 36a2cg2hk7− 60acg2h2k8 + 36acg4h2k6−

32ac2g2hk8+12ac2g4hk6−24ac2g6hk4−78a2cg2hk8+30a2cg4hk6−16a3cg2hk7−48a2cg2hk9+

12a2cg4hk7 + 72a3cg2hk8 + 30a2cg2hk10 − 18a2cg4hk8 − 112a3cg2hk9 + 32a3cg4hk7−

10a4cg2hk8 − 8a3cg2hk10 + 40a4cg2hk9 − 50a4cg2hk10 + 10a4cg4hk8 + 16bcg3h2k2−

48bc2gh2k3+64bc2gh3k2−24bc2g3hk2+48bc2g3h2k−112bcg3h2k3+464bcg3h3k2+232bc2gh2k4−

256bc2gh3k3 + 92bc2g3hk3 + 256bc2g3h3k + 8b2cg2hk4 − 8b2cg4hk2 + 96b2cg4h2k+

288bcg3h2k4 − 816bcg3h3k3 + 800bcg3h4k2 − 80bcg5h2k2 − 272bc2gh2k5 + 256bc2gh3k4−

80bc2g3hk4 − 44bc2g5hk2 + 96bc2g5h2k + 64bc3g3hk3 − 40b2cg2hk5+

88b2cg4hk3 + 1280b2cg4h3k + 192b3cgh2k4 + 32b3cg3hk3 − 64b3c2ghk4 + 80bcg3h2k5+
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32bcg3h3k4 +16bcg5h2k3−48bcg5h3k2 +24bc2gh2k6 +76bc2g3hk5−60bc2g5hk3−64bc3g3hk4+

64b2cg2hk6 − 256b2cg4hk4 + 40b2cg6hk2 − 288b2cg6h2k − 144b2c2g6hk − 768b3cgh2k5−

192b3cg3hk4 + 320b3cg5hk2 − 1280b3cg5h2k + 256b3c2ghk5 + 256b3c2g5hk − 224b4cg2hk4+

352b4cg4hk2−136bcg3h2k6+112bcg5h2k4−96bc2g3hk6−8bc2g5hk4−60bc2g7hk2+136b2cg2hk7−

92b2cg4hk5 − 96b2cg6hk3 + 768b3cgh2k6 + 560b3cg3hk5 − 1040b3cg5hk3 − 256b3c2ghk6+

896b4cg2hk5 − 1408b4cg4hk3 − 72b2cg2hk8 + 174b2cg4hk6 − 180b2cg6hk4 − 96b3cg3hk6+

288b3cg5hk4−224b3cg7hk2−928b4cg2hk6+1632b4cg4hk4−992b4cg6hk2−2abcgk10−4abcgk11+

64ab3c2g3k4 + 32ab3c2g5k2 + 12a2bc2g3k5 − 120ab2c2g2k7 + 88ab2c2g4k5 + 72ab2c2g6k3+

256ab3c2g3k5 − 128ab3c2g5k3 − 54a2bc2g3k6 − 12a2bc2g5k4 − 22a2b2cg2k7 + 24a2b2cg4k5+

36ab2c2g2k8 + 28ab2c2g4k6 + 56ab2c2g6k4 + 24ab2c2g8k2 − 288ab3c2g3k6 + 192ab3c2g5k4−

32ab3c2g7k2 + 54a2bc2g3k7 + 24a2bc2g5k5 + 100a2b2cg2k8 − 142a2b2cg4k6 − 128a2b3cg3k6+

80a2b3cg5k4 + 8a3bc2g3k6 + 20a2bc2g3k8 + 4a2bc2g5k6 + 12a2bc2g7k4 − 110a2b2cg2k9+

322a2b2cg4k7 − 72a2b2cg6k5 + 512a2b3cg3k7 − 320a2b3cg5k5 − 32a3bc2g3k7 − 48a3b2cg2k8+

40a3b2cg4k6 − 64a2b2cg2k10 − 56a2b2cg4k8 + 46a2b2cg6k6 − 560a2b3cg3k8 + 448a2b3cg5k6−

80a2b3cg7k4 + 40a3bc2g3k8 − 8a3bc2g5k6 + 192a3b2cg2k9 − 160a3b2cg4k7−

200a3b2cg2k10 + 208a3b2cg4k8 − 40a3b2cg6k6 + 24ab2g2h2k5 − 32ab2g2h3k4 − 120ab2g2h2k6+

128ab2g2h3k5 + 96ab3g3h2k4 + 216ab2g2h2k7 − 160ab2g2h3k6 − 48ab2g4h2k5 + 32ab2g4h3k4−

384ab3g3h2k5 − 12a2b2g2hk7 − 48ab2g2h2k8 + 12ab2g4h2k6 + 480ab3g3h2k6 − 96ab3g5h2k4+

60a2b2g2hk8 − 48a2b3g3hk6 − 108a2b2g2hk9 + 24a2b2g4hk7 + 192a2b3g3hk7 − 8a3b2g2hk8+

24a2b2g2hk10 − 6a2b2g4hk8 − 240a2b3g3hk8 + 48a2b3g5hk6 + 32a3b2g2hk9 − 40a3b2g2hk10+
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8a3b2g4hk8 + 48ac2g2h2k3 − 32ac2g2h3k2 − 180ac2g2h2k4 + 128ac2g2h3k3 − 24ac2g4h2k2+

192ac2g2h2k5 − 160ac2g2h3k4 + 24ac2g4h2k3 + 32ac2g4h3k2 + 48a2cg2h2k5−

80a2cg2h3k4 − 24a2c2g2hk5 + 36ac2g2h2k6 − 24ac2g4h2k4 + 24ac2g6h2k2 − 216a2cg2h2k6+

320a2cg2h3k5 + 90a2c2g2hk6 + 12a2c2g4hk4 + 336a2cg2h2k7 − 400a2cg2h3k6 − 96a2cg4h2k5+

80a2cg4h3k4 − 96a2c2g2hk7 − 12a2c2g4hk5 + 40a3cg2h2k6 − 8a3c2g2hk6 + 24a2cg2h2k8−

18a2c2g2hk8 + 12a2c2g4hk6 − 12a2c2g6hk4 − 160a3cg2h2k7 + 32a3c2g2hk7 + 200a3cg2h2k8−

40a3cg4h2k6 − 40a3c2g2hk8 + 8a3c2g4hk6 − 216bc2g3h2k2 − 88b2cg2h2k3 + 384b2cg2h3k2−

16b2c2g2hk3 + 216bc2g3h2k3− 320bc2g3h3k2 + 400b2cg2h2k4− 1536b2cg2h3k3− 568b2cg4h2k2−

56b2c2g2hk4 + 104b2c2g4hk2 − 384b2c2g4h2k − 512b3cg3h2k2 + 128b3c2g3hk2+

80bc2g3h2k4+16bc2g5h2k2−440b2cg2h2k5+1600b2cg2h3k4+1288b2cg4h2k3−1664b2cg4h3k2+

240b2c2g2hk5−176b2c2g4hk3+2048b3cg3h2k3−512b3c2g3hk3−256b2cg2h2k6−224b2cg4h2k4+

184b2cg6h2k2 − 72b2c2g2hk6 − 56b2c2g4hk4 − 112b2c2g6hk2 − 2240b3cg3h2k4+

1792b3cg5h2k2 + 576b3c2g3hk4 − 384b3c2g5hk2 + 16abcghk6 − 64abcghk7 + 32abcghk8+

80abcghk9 + 24abcghk10 + 96abc2g3h2k2 − 384abc2g3h2k3 − 576ab2cg2h2k4 + 480ab2cg4h2k2+

128ab2c2g2hk4 − 96ab2c2g4hk2 + 480abc2g3h2k4 − 96abc2g5h2k2 + 2304ab2cg2h2k5−

1920ab2cg4h2k3 − 512ab2c2g2hk5 + 384ab2c2g4hk3 + 240a2bcg3h2k4 − 48a2bc2g3hk4−

2400ab2cg2h2k6 + 2496ab2cg4h2k4 − 480ab2cg6h2k2 + 544ab2c2g2hk6 − 512ab2c2g4hk4+

96ab2c2g6hk2 − 960a2bcg3h2k5 + 192a2bc2g3hk5 + 288a2b2cg2hk6 − 240a2b2cg4hk4+

1200a2bcg3h2k6 − 240a2bcg5h2k4 − 240a2bc2g3hk6 + 48a2bc2g5hk4 − 1152a2b2cg2hk7+

960a2b2cg4hk5 + 1200a2b2cg2hk8 − 1248a2b2cg4hk6 + 240a2b2cg6hk4 − 144abcgh2k5+

320abcgh3k4 − 16abcg3hk4 + 48abc2ghk5 + 576abcgh2k6 − 1280abcgh3k5 + 112abcg3hk5−
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232abc2ghk6 − 432abcgh2k7 + 1280abcgh3k6 − 288abcg3hk6 + 80abcg5hk4 + 272abc2ghk7−

192ab3cghk6+72a2bcghk7−312abcgh2k8−80abcg3hk7−16abcg5hk5−24abc2ghk8+768ab3cghk7−

288a2bcghk8 + 136abcg3hk8 − 112abcg5hk6 − 768ab3cghk8 + 216a2bcghk9 + 80a3bcghk8+

156a2bcghk10− 320a3bcghk9 + 320a3bcghk10 + 144abcg3h2k3− 320abcg3h3k2− 96abc2gh2k4−

48abc2g3hk3−696abcg3h2k4 +1280abcg3h3k3 +384abc2gh2k5 +216abc2g3hk4 +48abc2g5hk2+

88ab2cg2hk5 − 96ab2cg4hk3 + 1224abcg3h2k5 − 1600abcg3h3k4 − 336abcg5h2k3+

320abcg5h3k2−384abc2gh2k6−216abc2g3hk5−96abc2g5hk3−400ab2cg2hk6 +568ab2cg4hk4+

512ab3cg3hk4 − 320ab3cg5hk2 − 240a2bcgh2k6 − 72a2bcg3hk5 + 48a2bc2ghk6 − 48abcg3h2k6+

72abcg5h2k4 − 80abc2g3hk6 − 16abc2g5hk4 − 48abc2g7hk2 + 440ab2cg2hk7 − 1288ab2cg4hk5+

288ab2cg6hk3 − 2048ab3cg3hk5 + 1280ab3cg5hk3 + 960a2bcgh2k7 + 348a2bcg3hk6−

192a2bc2ghk7+256ab2cg2hk8+224ab2cg4hk6−184ab2cg6hk4+2240ab3cg3hk6−1792ab3cg5hk4+

320ab3cg7hk2−960a2bcgh2k8−612a2bcg3hk7 +168a2bcg5hk5 +192a2bc2ghk8−80a3bcg3hk6+

24a2bcg3hk8 − 36a2bcg5hk6 + 320a3bcg3hk7 − 400a3bcg3hk8 + 80a3bcg5hk6).

Tables A.1 and A.2 show the coefficients of the terms solely the in the variables k and h
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respectively.

Table A.1: The coefficients of terms in the resultant polynomial that are solely terms in k

Terms Coefficients

k −c(2c3g6 − 8b2c3g4 − 4b2c2g6 − 16b3c2g5 + 40b2c3g6 + 64b3c2g7 + 36b2c2g8 + ...)
k2 −c(16b6g6 − 16b6g8 + 2c4g2 + 11c3g6 − 2c4g6 − 2c3g8 − 2ac3g4 + 3ac3g6 + ...)
k3 −c(−16b5g7 − 64b6g6 − 16b6g8 − 4c4g2 − 2c3g4 + 4c2g6 + 4c4g4 + 4c3g6 + ...)
k4 −c(c5 + 32b5g5 − 48b6g4 + 40b5g7 − c3g2 + 14c2g6 − 5c3g6 + 32ab5g5 + ...)
k5 −c(4c4 − 8b2c3 − 8b4g4 + 24b4g6 + 152b5g5 + 192b6g4 + 2c3g2 − 32ab4g6 + ...)
k6 −c(−6c43ac3 + 32b2c3 − 16b4c2 + 8b3g5 + +28b4g4 + 16b5g3 + 48b6g2 + ...)
k7 −c(c3 + 4c4 + 12ac3 − 8b4c+ 4cg4 − 2a2c3 − 2b2c2 − 40b2c3 + 64b4c2 + 32b3g5 + ...)
k8 −c(−16b6 − 4c3 − c4 − 14ac3 + 24b4c+ 16b5g − 2cg4 − 3a2c2 + 8a2c3 + 8b2c2 + ...)
k9 −64b6c− 2c4 − 4ac3 − 4ac4 + 8b4c2 − 12a2c3 + 10a2c4 + 4a3c3 + 10b2c3 + ...
k10 64b6c+ c3 + 4ab4c
k11 −2a2c2

k12 3b4c− 16ab4c
k13 2ab2c
k14 −ab2c

Table A.2: The coefficients of terms in the resultant polynomial that are solely terms in h

Terms Coefficients

h −c(4c3g4 − 6c3g6 + 2c3g8 + 48b2c2g6 − 64b3c2g5 + 8bc2g5 − 160b4cg6 + 160b4cg8)
h2 −c(−4c2g4 − 8c3g4 + 4c2g6 + 8c3g6 − 48bc2g5 + 320b3cg5 + 48bc2g7 − 320b3cg7 + ...)
h3 −c(16c2g4 − 16c2g6 − 64bc2g3 − 320b2cg4 + 64bc2g5 + 320b2cg6)
h4 −c(−16c2g4 + 160bcg3 − 160bcg5 + 16c2g2)
h5 −32c2g4 + 32c2g2
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