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Cardiac Arrhythmias are cardiac abnormalities that arise as a consequence of irregularities

in the electrical conduction system of the heart. In this dissertation, a comprehensive

set of machine learning techniques, complemented by logical analysis, are presented

for accurate detection of fifteen different cardiac arrhythmias - both ventricular and

supraventricular. This includes, along with normal sinus rhythm, (1) ventricular

fibrillation (VF), (2) ventricular tachycardia (VT), (3) premature ventricular complexes

(PVC), (4-6) ventricular bigeminy/trigeminy/quadrigeminy, (7) ventricular couplets, (8)

atrial fibrillation, (9) supraventricular ectopic beats (SVEB), (10-12) supraventricular

bigeminy/trigeminy/quadrigeminy, (13) supraventricular couplets, (14) supraventricular

tachycardia and (15) bradycardia.

In this dissertation, information from single-lead electrocardiogram (ECG) signals is utilized

to create a rich set of arrhythmia-specific features to aid in the development of highly

accurate arrhythmia detection models. ECG is a waveform representation of the heart’s

electrical activity and cardiac arrhythmias often manifest as morphological variations on

the ECG. Prior to performing any arrhythmia analysis, the incoming ECG signal is pre-

processed to remove low frequency and high frequency artifacts using Stationary Wavelet
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Transforms and Denoising Convolutional Autoencoders. This is complemented by signal

quality assessment using Convolutional Neural Networks where ECG segments corrupted by

high grade motion artifacts are identified and suppressed from further arrhythmia analysis.

Following this, detection of Ventricular Fibrillation and Sustained Ventricular Tachycardia

is implemented using a Random Forests classifier. Next, beat detection using a combination

of Convolutional Autoencoders and adaptive thresholding is carried out to accurately detect

R-peak locations which is key to performing robust arrhythmia analysis. Subsequently,

algorithms for detection of PVC-beat-based ventricular arrhythmias are implemented using

Semisupervised Autoencoders combined with Random Forests and logical analysis. This is

followed by atrial fibrillation detection using Markov models in conjunction with Random

Forests. Finally, logical sequence analysis techniques are applied to detect additional SVEB-

based supraventricular arrhythmias.

The algorithms presented in this dissertation achieve a sensitivity of 98.85%, positive

predictive value (PPV) of 95.77% and F-Score of 96.82% in detecting ventricular

fibrillation/sustained ventricular tachycardia episodes on records from MIT-BIH Malignant

Ventricular Ectopy Database and American Heart Association Database. In terms of R-

peak detection, 99.63% sensitivity, 99.88% PPV and 99.75% F-Score is achieved on the

MIT-BIH Arrhythmia Database (MITDB) records. Following this, the PVC detection

algorithm achieves sensitivity, PPV and F-Score values of 93.17%, 94.41% and 93.78% on

the MITDB records. Similarly, the SVEB detection algorithm achieves sensitivity, PPV

and F-Score values of 92.11%, 83.77% and 87.74% on the MITDB records. In the context of

atrial fibrillation detection, a sensitivity of 96.88%, PPV of 98.87% and F-Score of 97.86%

is obtained on the MIT-BIH Atrial Fibrillation records.

The working of afore-mentioned algorithms is demonstrated by deploying them in a

cloud platform, AutoECG - a web service that facilitates online arrhythmia detection
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by analyzing ECGs uploaded by authorized users. AutoECG is device-agnostic and

can process ECG data of varying duration (30s to 24 hours). Following ECG analysis,

the AutoECG software generates an arrhythmia summary report for further review

by qualified medical practitioners. This affirms the translational nature of the research

presented in this dissertation.
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CHAPTER 1

INTRODUCTION

The cardiovascular system consists of the heart and a group of blood vessels, that comprises

the arteries, veins and capillaries. The cardiovascular system is responsible for regulating

blood circulation throughout the human body which is key to carrying out several bodily

functions. Efficient blood circulation ensures proper transportation of oxygen as well as

nutrients to different parts of the human body along with timely removal of metabolic

wastes. Hence proper functioning of the cardiovascular system is essential for survival and

conditions that result in abnormal functioning of the cardiovascular system can have serious

short-term and long-term consequences on an individual’s health and life. The dissertation

presents a comprehensive description of research work that focuses on development of

accurate algorithms for detection of a particular class of cardiac abnormalities, termed

Cardiac Arrhythmias.

Cardiac Arrhythmias are cardiac abnormalities that arise as a consequence of

irregularities in the electrical conduction system of the heart. The Sino-Atrial (SA) node,

also known as heart’s natural pacemaker, initiates electrical impulses that traverse through

the cardiac chambers in an ordered manner, resulting in completion of one cardiac cycle

i.e., one heartbeat. Any deviation from normal conduction sequence of these electrical

impulses, in terms of conduction rate, regularity or excitation by sources other than the

SA node, results in cardiac arrhythmias. Cardiac arrhythmias can be short term or

persistent, symptomatic or asymptomatic and benign or life-threatening, depending on

the type and cause of dysrhythm. More than four million Americans are affected by some

form of arrhythmia with increased prevalence among the elderly population. Prevalence

of Premature Ventricular Complexes (PVCs) is about 69% in adults over 75 years while

atrial Fibrillation is prevalent in about 2.7 million Americans and is expected to reach 12.1
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Figure 1.1. Structure of the human heart. (Source: (Betts et al., 2013).)

million by 2030. These arrhythmias are highly correlated with congestive heart failure,

stroke, high BP and possible sleep apnea. Oftentimes, delayed diagnosis can increase

severity of these arrhythmias and therefore, timely and accurate detection of arrhythmias

is vital for patient care and well-being in the long term. The research work explained in

this dissertation is a contribution in this direction where a comprehensive set of machine

learning techniques, primarily Deep Learning and Random Forests based and complemented

by logical analysis techniques, have been developed for accurate detection of fifteen different

cardiac arrhythmias in a fully automated manner. Implementing a fully automated system

minimizes burden on physicians and helps them prioritize their patients thus allowing them

to attend to more patients as well as speeding up diagnosis and treatment. Such systems

also have the advantage that they can be easily integrated into telemedicine platforms for

remote delivery of healthcare services.
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This chapter is organized as follows: Section 1.1 provides a formal description of cardiac

functionality. This is followed by Section 1.2 that provides useful information about the

arrhythmias that are the primary focus of this dissertation. Section 1.3 describes the

generation, components and characteristics of ECG signal while a brief description of the

fundamental concepts of machine learning and its use in arrhythmia classification is given

in Section 1.4.

1.1 Cardiac Functionality

The human heart is a hollow muscular organ located in the region between the lungs,

approximately in the middle of the chest (Aehlert, 2018). The human heart consists of

four main chambers: the right atrium, the left atrium, the right ventricle and the left

ventricle. The atria (singular, atrium) correspond to the two upper chambers of the heart.

De-oxygenated blood from different parts of the body reach the heart via the right atrium

while oxygen-rich blood is received by the left atrium from the lungs. Blood flows into the

ventricles through the Atrio-Ventricular (AV) valve. The ventricles refer to the two lower

chambers of the heart. Pumping blood is the primary responsibility of the ventricles. De-

oxygenated blood from the right atrium is pumped back to the lungs via the right ventricle

while the oxygenated blood from the left atrium is pumped out to the rest of the body.

Figure 1.1 shows the structure of the human heart∗.

The heart can be visualized as a pump that is responsible for circulating blood

throughout the body. An internal wall, septum, acts as a divider between the right and

left atria (atrial septum) and similarly between the right and left ventricles (ventricular

septum). This enables the heart to function as two pumps, each with its own purpose.

Specifically, the right side of the heart (right atrium and right ventricle) takes care of

∗Image reproduced/adapted under Creative Commons Attribution License 4.0 license.
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pumping de-oxygenated blood (received from rest of the body) to the lungs and carry

oxygenated blood from the lungs to the left side of the heart. This action is termed

pulmonary circulation. The left side of the heart (left atrium and left ventricle) is

responsible for pumping oxygenated blood (received from the lungs) to the rest of the

body. This is referred to as systemic circulation.

The above pumping process, when repeated continuously, results in a cardiac cycle.

The cardiac cycles consists of both the pulmonary circulation and the systemic circulation.

There are two phases for each chamber as part of the cardiac cycle, namely Systole and

Diastole. During systole, the chambers are contracting and blood is pumped out whereas

diastole is associated with blood filling in the chambers, indicating a period of relaxation for

the chambers. In particular, during ventricular diastole, the right ventricle gets filled with

de-oxygenated blood while the left ventricle receives oxygen-rich blood, from right atrium

and left atrium respectively. And during ventricular systole, the right ventricle contracts

which expels oxygen-deficient blood to the lungs via the pulmonary arteries while the left

ventricle’s contractile action pumps oxygen-rich blood to the rest of the body through

the aorta and its branches. Irregularity of the the afore-mentioned systolic and diastolic

processes, as a consequence of abnormalities in cardiac muscles, valves or the conduction

system results in cardiac dysfunctions and can have an adverse effect on the efficacy of the

heart as a pump. In particular, abnormalities that arise as a consequence of irregularities

in the heart’s electrical conduction system result in Cardiac Arrhythmias , which is the

focus of this dissertation.

1.1.1 Electrical Conduction System

Usually, an electrical impulse in a human cell is generated as a consequence of stimulation

by a nerve. The heart’s electrical conduction system, on the other hand, has specialized
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cells called pacemaker cells that are capable of generating impulses without requiring

nerve stimulation. This property of pacemaker cells to generate electrical impulses

without requiring external stimulation is termed automaticity. Proper automaticity requires

concentrations of Sodium (NA+), Potassium (K+) and Calcium (Ca2+) to be maintained

at the right levels.

Movement of these ion particles across cell membranes result in changes in voltage, also

known as membrane potential which is responsible for regulating the heart’s functionality

as a pump. At rest, smaller potassium ions leak out of a cardiac cell, while large negatively

charged proteins remain inside the cell along with phosphates. Hence the inside of the

cell is more negatively charged with respect to the outside. This negatively charged state

(inside the cell) is known as Polarization. Electrical impulse transmission occurs as a

consequence of pacemaker cells ”firing”. This is achieved by flow of electrolytes across

the cell membrane. During this phase, positively charged sodium and potassium ions flow

inside the cardiac cell resulting in higher positive charge inside the cells with respect to the

outside. This flow of ions across the cell membrane is termed Depolarization. Depolarization

is a pre-requisite for the cardiac muscles (atria and ventricles) to contract which results in

expulsion of blood. (It must be noted that muscle contraction is a mechanical event that is

dependent on the occurrence of depolarization which is an electrical activity.) On the other

hand, Repolarization refers to the cardiac cell returning back to its normal/initial state i.e.,

polarized state. This phase involves outflow of positively charged sodium and potassium

cells from the cardiac cell, thus making the inside more negative once again.

1.1.2 The Heartbeat

The Sino-Atrial (SA) node , also known as the heart’s natural pacemaker, is located

in he right atrium just beneath the superior vena cava and is responsible for initiating
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a heartbeat. The SA node consists of specialized pacemaker cells and initiates a normal

heartbeat by generating an electrical impulse. The SA node has the highest firing rate

compared to other pacemaker sites of the heart and thus its status as the heart’s natural

pacemaker. On average, the SA node has a firing rate of 60 to 100 beats-per-min (bpm).

This rate is also termed the average heart rate. It must be noted that the average heart

rate varies from individual to individual and what may constitute as normal heart rate for

one individual may not necessarily be normal for others.

The electrical impulses that are generated by the SA node traverse along the left

and right atrial muscles cell by cell in a waveform like pattern that results in atrial

depolarization. This makes the atria contract and consequently blood starts getting

pumped into the ventricles. In the meantime, the electrical impulses continue traversing

the cardiac cells and reach another set of specialized conducting cells, called the

Atrioventricular (AV) node which is responsible for slowing down the conduction

rate. This allows the atria to completely empty blood into ventricles, thus ensuring that

atrial contraction is completed before ventricular contraction can begin. Following this, the

electrical impulses reach the His-Purkinje system and continue downwards to the heart’s

apex and integrate with ventricular muscle cells resulting in ventricular depolarization.

Consequently ventricular contraction occurs and blood is pumped out of the ventricles.

Following this, ventricles undergo repolarization which brings them back to normal state

and they are ready for the next wave of electrical impulses (originating in the SA node

ideally). This whole process constitutes a single heartbeat and keeps repeating forever.

The normal periodic occurrence of the heartbeat cycle is known as Sinus Rhythm and

any deviation from sinus rhythm patterns would lead to occurrence of arrhythmias .

Figure 1.2 shows the cardiac cycle and corresponding manifestation of electrical activity

on an electrocardiogram†.

†Image reproduced/adapted under Creative Commons Attribution License 4.0 license.
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Figure 1.2. Cardiac cycle. (Source: (Betts et al., 2013).)

1.2 Arrhythmias

Any deviation from the afore-mentioned sequence of electrical impulse

generation/conduction results in an arrhythmia. This deviation can be due to either (i)

abnormalities in impulse conduction and/or (ii) abnormalities in impulse formation. The

former category includes blocks of conduction, re-entry of impulses to cells that are already

excited in the current cycle, etc. Conduction blocks include fully blocked pathways as

well as partial blocks. In partial blocks, the electrical impulses are conducted at a much

slower rate than usual. Myocardial infarction and ischemia are often the consequence of

blocks. Arrhythmias related to conduction blocks include AV blocks, bradycardia, etc.

On the other hand, disorders of impulse formation refer to irregularities that occur as

a consequence of irregular/unusual electrical impulse formation. Since the SA node is
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the designated (natural) pacemaker, any impulse formation by cells other than the SA

pacemaker cells can result in these type of abnormalities. These include ectopic beats such

as ectopic ventricular beats, premature atrial complexes, etc.

Arrhythmias that originate in the ventricles are termed Ventricular Arrhythmias

whereas those that originate above the ventricles are termed Supraventricular

Arrhythmias. The latter includes both atrial (originating in the atria) and junctional

(originating in the AV junction) arrhythmias. A third category of arrhythmias is known

as Sinus Arrhythmias and occurs as a consequence of irregularities in the SA node. In

this dissertation, algorithms are developed for accurate detection of fifteen different types

of arrhythmias and include all the above three types of dysrhythms. They are as follows:

1. Ventricular Fibrillation and Sustained Ventricular Tachycardia

2. Premature Ventricular Complexes

3. Ventricular Bigeminy

4. Ventricular Trigeminy

5. Ventricular Quadrigeminy

6. Ventricular Couplets

7. Ventricular Runs

8. Atrial Fibrillation

9. Supraventricular Ectopy

10. Supraventricular Bigeminy

11. Supraventricular Trigeminy
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12. Supraventricular Quadrigeminy

13. Supraventricular Couplets

14. Supraventricular Runs and Sinus Tachycardia

15. Sinus Bradycardia

The different phases of cardiac electrical activity such as depolarization, repolarization,

etc., during normal sinus rhythm as well as in the presence of arrhythmias, can be captured

on an Electrocardiogram (ECG). In fact, ECGs are routinely used for monitoring an

individual’s cardiac activity either through visual inspection or using computer algorithms

and arrhythmias frequently manifest as morphological variations on an ECG.

1.3 Electrocardiogram

The electrocardiogram (ECG) is a graphical recording of the heart’s electrical activity and

is the most commonly used tool for arrhythmia analysis. The different phases of the heart’s

electrical activity are represented as different types of waveforms on the ECG and presence

of arrhythmias results in morphological changes of these waveforms. Thus ECG signal data

contains rich information pertaining to the heart’s functionality and provides useful insights

about presence of arrhythmias. Apart from helping understand arrhythmias, the ECG also

serves various other purposes such as analyzing effects of medications, evaluating cardiac

injuries, monitoring heart rate, detecting ischemic damages, etc., among other things.

1.3.1 ECG electrodes

ECGs are obtained using electrodes that are placed in various positions and the tracing of

electrical activity between a pair of electrodes is termed a lead . Different lead orientations
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help view heart from different perspectives and hence provide information about different

cardiac regions. Specifically, the leads help analyze the cardiac electrical activity in two

planes, namely, frontal and horizontal planes.

As the name suggests, the frontal planar leads look at the heart from the front of the

body. there are two types of frontal leads: Standard limb leads and Augmented limb

leads . The standard limb leads include Leads I, II and III while the augmented limb leads

include Leads aVR, aVL and aVF. On the other hand, horizontal planar leads view the

heart from the top i.e., if the human body were sliced horizontally and hence the name. This

includes six chest leads, also called precordial leads, viz. V1, V2, V3, V4, V5 and V6. Each

of the twelve lead orientations help capture the heart’s electrical activity from a certain

specific perspective. In this research, ECG information from lead II orientation is used as

lead II is most ideal for capturing the QRS complex which is the most characteristic and

important fiducial marker in an ECG. The QRS complex is the predominantly used ECG

waveform feature for heart rate computations and the arrhythmia algorithms developed in

this research rely heavily on heart rate metrics, thus rendering lead II as the most logical

choice.

1.3.2 Components of an ECG

As mentioned earlier in 1.1.2, different phases of cardiac activity manifest as different

waveforms on the ECG. These waveform components primarily comprise:

1. Isoelectric Line

2. P-wave

3. QRS complex

4. T wave

10



Figure 1.3. Components of an electrocardiogram. (Source: (Betts et al., 2013)).

Figure 1.3 shows the primary components of an electrocardiogram‡. The following

subsections provide a brief description of the above four waveform types:

Isoelectric line

The isoelectric line or the baseline represents the condition where there is no electrical

activity. Deflections above and below the baseline correspond to depolarization activity

depending on electrical activity towards or away from the positive electrode. The isoelectric

line is used as a reference to determine the amplitude of each wave deflection and can be

used to identify unusual amplitude changes such as abnormally-peaked P-waves, inverted T-

waves, etc. Oftentimes, the isoelectric line is superimposed with a low frequency component

which results in what is known as baseline wander. Baseline wander is a low frequency

artifact and is explained in more detail in Chapter 2.

‡Image reproduced/adapted under Creative Commons Attribution License 4.0 license.
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P-wave

The P-wave represents atrial depolarization of the heart. This is the first waveform

manifestation of the electrical impulse generated from the SA node. On lead II, this is

seen as a positively deflected inverted ’v’. The up-slope (first half) refers to right atrial

depolarization and the second half (down-slope) corresponds to left atrial depolarization.

The P-wave usually has a smoothened peak and has the lowest amplitude among the ECG

fiducial points. Abnormal P-waves can often be a pointer to enlarged atria and unusually

tall or pointed P-waves could indicate heart failure, atrial fibrillation, supraventricular

ectopy, etc. Inverted P-waves on lead II often correspond to junctional ectopy.

QRS complex

The QRS complex is the most characteristic feature in an ECG and corresponds to the

ventricular depolarization phase of the heartbeat cycle. Since ventricles have a much

larger muscle area and mass compared to the atria, the QRS complex has a significantly

higher magnitude and appears much larger than P-waves on the ECG. Thus, although

atrial repolarization and ventricular depolarization occur almost simultaneously, atrial

repolarization activity gets hidden under the larger QRS complex and is usually not visible

on the ECG. As the name suggests, the QRS complex is a complex that is made up of

three waveforms, viz. Q-wave, R-wave and S-wave. The Q-wave and S-wave are negative

deflections from the isoelectric line The R-wave is usually the first positive deviation, after

the P-wave, from the isoelectric line and the peak location of the R-wave is termed as

R-peak . Under normal conditions, the QRS complex is expected to have a duration of

0.11s or less. In reality, the QRS complex has different morphologies depending on the

lead from which it is measured. In order to glean useful arrhythmia information using

QRS complex information, the lead information must also be provided. For instance, often
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times the QRS complex may be negative in certain lead orientations such as leads V, V2,

etc., owing to their orientation w.r.t to the net ventricular depolarization vector, but this

is not indicative of any arrhythmia on its own. In this research, we use lead II and in lead

II, under normal conditions, the QRS complex has a positive R-wave and negative Q- and

S-waves. Thus a negative QRS complex in lead II is indicative of a cardiac abnormality

and would necessitate further medical investigation.

The R-peak is the most significant ECG fiducial point and is often considered to be

representative of a QRS complex as a whole. The distance between consecutive R-peaks,

termed as the RR-interval provides useful insights into underlying heart rate dynamics

and is frequently used for evaluating an individual’s cardiac health. In this dissertation, the

RR-interval information serves as the primary source of ECG information for performing

arrhythmia analysis and hence accurate detection of QRS complexes is a pre-requisite for

developing robust arrhythmia detection techniques.

T-wave

The T-wave represents ventricular repolarization. It usually has the same deflection as that

of the preceding QRS complex and hence on lead II, it appears as a positively deflected

wave under normal cardiac activity. The T-wave is not perfectly symmetric with a shallower

slope for the first half and a steeper slope for the second half. The offset (end) of T-wave

is identified by return to the baseline and indicates end of one cardiac cycle i.e., a single

heart beat. In the presence of abnormalities such as premature ventricular complexes, etc.,

the T-wave has an opposite polarity to that of the QRS complex. Oftentimes, unusually

tall T-waves might be indicative of hyperkalemia, which refers to excessive concentration of

potassium (K+) in the blood. Taller T-waves can mimic QRS complexes and can affect the

performance of a QRS detector. Hence care must be taken to avoid misclassifying T-waves

as QRS complexes.
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1.4 Machine learning for ECG analysis

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that involve decision

making based by learning from data (Goodfellow et al., 2016). A long-standing definition

for what constitutes learning is given in (Mitchell, 1997) as follows: ”A computer program

is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with E.”

The term ”experience” can be associated with domain-specific data and ”Tasks” could

refer to performing some decision making such as classification or regression. Finally,

the ”performance measure” can be any statistical metric such as sensitivity, specificity,

accuracy, etc. which evaluate how well the algorithm has learnt to perform its intended

task. Machine learning problems can be broadly divided into three categories, namely

Supervised learning, Unsupervised learning and Reinforcement learning (Bishop, 2006).

Supervised learning is the process of learning a function that maps an input to its target

labels. Depending on the type of target labels, the task can be either regression (continuous

valued targets) or classification (discrete/categorical valued targets). Some examples of

supervised learning algorithms are Logistic Regression, Linear Regression, Support Vector

Machines, Decision Trees, Random Forests, Convolutional Neural Network classifiers, etc.

(Goodfellow et al., 2016; James et al., 2013; Mitchell, 1997). Unsupervised learning involves

learning patterns without the aid of any target labels (Goodfellow et al., 2016). This

category includes machine learning techniques clustering, autoencoder-based representation

learning (Goodfellow et al., 2016), dimensionality reduction using principal components

analysis (Joliffe and Morgan, 1992), visualization techniques such as t-SNE (Maaten and

Hinton, 2008), etc. Reinforcement learning consists of learning to make decisions so as to

maximize rewards (Goodfellow et al., 2016).

In this dissertation, a combination of supervised learning and unsupervised learning

techniques are implemented to perform robust arrhythmia analysis. Autoencoder based
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deep learning models (Goodfellow et al., 2016) are used in Chapter 2 through Chapter 4.

Section 2.3.1 gives a brief description of the types of autoencoders used in this research.

Another supervised learning technique used prominently in this research is Random Forests,

which is an ensemble learning approach. Random Forests based arrhythmia detection

models are used in the detection of several ventricular (Chapter 4) arrhythmias as well as

atrial fibrillation (Chapter 5). A brief introduction about Random Forests is presented in

Section 4.3.1. In terms of previously published work in the field of ECG analysis, context-

specific literature review is presented in Chapter 3 through Chapter 5. A more generic

review of ML techniques employed in the analysis of cardiovascular systems can be found

in (Sevakula et al., 2020).

The remainder of this dissertation is organized as follows. Chapter 2 discusses

algorithms for signal pre-processing which includes ECG denoising and signal quality

analysis. Next, Chapter 3 discusses techniques for performing efficient beat detection.

This is followed by description of ventricular arrhythmia detection algorithms in Chapter 4.

Subsequently, supraventricular arrhythmia detection algorithms are presented in Chapter 5.

Chapter 6 provides a brief discussion regarding a cloud-based arrhythmia detection platform

termed AutoECG. Finally, the dissertation concludes with Chapter 7 that provides a

summary of the topics discussed in this dissertation along with exploring avenues for future

research.
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CHAPTER 2

ECG SIGNAL PRE-PROCESSING

2.1 Introduction

The electrocardiogram (ECG) signal acquisition process is subject to interference due to

several factors that can often compromise the integrity of the measured signal. This includes

patient movements, electrode disconnects, powerline interference, muscle noise, etc. Hence,

it is imperative that the ECG signal be pre-processed for noise removal (denoising) and

signal quality analysis prior to performing any arrhythmia analysis. This chapter focuses

on the techniques developed in this work for this purpose.

There are primarily three types of artifacts that affect the quality of arrhythmia

classification or any kind of ECG analysis for that matter. They are:

1. Low frequency noise

2. High frequency noise

3. Electrode Motion(EM) noise

Low frequency and high frequency noise generally occupy frequency bands that do not

overlap with QRS complex frequencies and hence can be suppressed without compromising

useful QRS information and fall under the category of ECG denoising while EM noise

cannot be suppressed without losing valuable ECG information and can only be managed.

ECG segments deemed to be too noisy i.e., corrupted to a large extent by EM noise,

are omitted from further arrhythmia analysis to mitigate occurrence of false positives.

The approaches required to handle the above artifacts vary for each type. The following

section provides a brief review of techniques used for handling the afore-mentioned classes

of artifacts. This is followed by a comprehensive description of the ECG denoising and

noise classification methodologies implemented in this work.
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2.2 Low frequency noise suppression

Low frequency noise refers to superposition of low frequency components (usually less

than 1Hz) with the ECG signal. This results in wandering/drifting of the isoelectric line.

Hence this artifact is termed as baseline wander or baseline drift. Factors causing baseline

wander artifacts include patient movement, respiratory factors such as breathing, changes in

electrode impedance, etc. Since the frequency range of baseline wander is usually less than

1Hz, suppressing this artifact does not result in loss of any useful information required for

analysis of the arrhythmias pertaining to this work. For ensuring reliable baseline wander

removal, Stationary Wavelet Transform is used. The technique is explained below.

2.2.1 Stationary Wavelet Transforms

The most commonly used tool for spectral analysis of signals to aid in filtering operations is

the Fourier transform. But the Fourier transform assumes the input signal is stationary i.e.,

all frequency components occur at all time instants. This, therefore, limits the application

of Fourier transform to non-stationary or transient signals such as the ECG. Transient

signals have different frequency components dominating different sections of the signal and

hence require more sophisticated tools to perform efficient spectral analysis. The solution

to this is the Discrete Wavelet Transform (DWT). DWT is a signal processing tool that

provides efficient time-frequency representation of a signal. The term wavelet refers to a

small wave or a template (mother wavelet) which is matched with the input signal. The

template is stretched and compressed by a finite factor (usually 2) to analyze the input

signal at multiple levels of resolution. Stationary Wavelet Transform (SWT) (Nason and

Silverman, 1995) is a variant of DWT where there is dyadic compression in the frequency

domain without any downsampling in the time domain. The wavelet coefficients therefore

have the same length (duration) as that of the input at each scale which helps reduce
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resolution errors at higher scales (lower frequencies). The SWT step can be viewed as a

means to compute the effective band-pass for the signal at each scale.

Figure 2.1. SWT decomposition of ECG signal. (SWD - Stationary Wavelet Detail)

2.2.2 Methodology

All the models described in this work have been trained and validated using signals

sampled at 360Hz. Therefore the incoming ECG signal is first resampled at 360Hz before

performing any task. Following signal resampling, SWT is applied to the signal. In

this work, the Daubechies3 (Db3) (Daubechies, 1992) is used as the mother wavelet for

computing SWT detail coefficients. Since the signals are resampled at 360Hz, frequency

components upto 180Hz can be re-constructed from the SWT detail coefficients, as per

Nyquist-Shannon theorem for sampling signals. Nine-level SWT is applied to the resampled

signal. Owing to dyadic compression in the frequency domain, this results in the first eight

levels corresponding to frequency components in the [0.7Hz to 180Hz] (see Figure 2.1).
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Therefore, reconstructing the signal using coefficients from only the first eight levels leads

to suppression of all frequencies below 0.7Hz. This results in removal of the major low

frequency components that correspond to baseline wander artifacts. Although this does

not ensure filtering out of frequencies upto 1Hz, it must be noted that reconstructing the

signal using only the first seven detail coefficients leads to suppression of frequencies upto

1.4Hz (as a consequence of dyadic compression) and this could compromise useful ECG

information. Hence the first eight levels are retained to perform efficient low frequency

noise removal in this work.

2.3 High frequency noise suppression

High frequency (HF) noise refers to corruption of ECG signal by spectral components

generally higher than 30Hz. This makes the isoelectric line appear extremely chaotic and

can often mask useful ECG fiducial markers such as the P-wave, T-wave, etc. Although

the bandwidth of HF noise is outside the useful QRS complex range, it can still result

in false beat detection, which can result in unreliable arrhythmia analysis. This becomes

especially significant for beat detection methods that adaptively update their thresholds, as

the one used in this work (see Chapter 3). Factors causing HF artifacts include powerline

interference (50Hz/60Hz), thermal noise, muscle (EMG) artifacts, etc.

Similar to the baseline wander removal approach described in Section 2.2.2, HF noise

can, in theory, be removed by suppressing SWT detail coefficients that correspond to

frequencies 30Hz and above. This would be equivalent to retaining only the detail

coefficients from level-4 to level-8 to reconstruct the HF-noise suppressed signal. But there

is an inherent disadvantage to this approach. SWT can be viewed as a sequence of band-

pass filtering operations and since a band-pass filter is essentially a cascaded version of

high-pass and low-pass filters, the low-pass filtering process (removing level-1 to level-3
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SWT detail coefficients), results in mitigation of QRS amplitudes and makes the QRS

complexes shallower and wider. In fact, any low-pass filtering technique would give rise to

this type of undesired effect on the QRS complex. Although this is not a deterrent to the

beat detection process itself, this can often result in a large number of false positives while

performing PVC classification (see Chapter 4), as PVC beats are primarily characterized by

shallower slopes and wider QRS complexes. Therefore, it is necessary to adopt an adaptive

denoising technique that removes HF noise while retaining QRS complex amplitudes and its

sharpness. To achieve that, a deep-learning based approach, using Denoising Convolutional

Autoencoders, is developed in this work. Section 2.3.1 gives a brief overview of autoencoders

including denoising autoencoders (Vincent et al., 2008; Bengio et al., 2013; Goodfellow

et al., 2016). Section 2.3.2 then describes the technique developed in this work for HF-

noise removal.

Figure 2.2. Simple Undercomplete Autoencoder Architecture

2.3.1 Autoencoders

Autoencoders (AE) are a class of neural networks that fall under the category of

unsupervised learning (Goodfellow et al., 2016). Typically, an autoencoder attempts to
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replicate its input at its output and hence the data required to train autoencoders is 

characterized by lack of separate output labels. This is an indication of the unsupervised 

nature of these networks. An autoencoder learns an encoding function h = f(x) (encoder) 

and a decoding function, g, which uses the learnt encodings to generate an output y = g(h). 

Then the loss between y and x is minimized so that only the most useful encodings required 

for generating useful reconstructions are learnt. A very simple autoencoder architecture is 

shown in Figure 2.2. As can be seen from this figure, the AE architecture has an encoder 

component and a decoder component. Typical implementations often have multiple layers, 

for both the encoder and decoder components, and usually the decoder architecture is a 

mirror reflection of the encoder architecture. The encoder attempts to learn an effective 

low-dimensional representation while the decoder tries to recreate the input data from 

these low-dimensional embeddings. Oftentimes, it is of significance to train an autoencoder 

network to learn only the most useful features of the input data and hence the encoding layer 

usually has a lower dimension than the input dimension. Such autoencoders are referred 

to as Undercomplete Autoencoders and they are trained such that they are forced to 

learn only the most informative low-dimensional encodings of the input data required to 

reconstruct the input. All autoencoders used in this work are undercomplete autoencoders 

and henceforth, the term ”autoencoder” implies an undercomplete autoencoder in this 

work, unless specified otherwise.

The autoencoder network can be seen a specialized version of feed-forward networks 

and hence can be trained using backpropagation (Rumelhart et al., 1986) with a suitable 

optimizer (Goodfellow et al., 2016). The data fed to the output layer is usually the same 

as that fed to the input layer, so that the network learns to reproduce this input. It is 

important to ensure that this reconstruction is not identical but a very close approximation 

to the input data. Otherwise the network might just be copying input to output without 

learning anything of value about the underlying input distribution.
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Figure 2.3. Convolutional Autoencoder architecture

A variant of vanilla (regular) autoencoders is the denoising autoencoder (DAE). In

this, data is first corrupted by adding random Gaussian noise to it. This noise-corrupted

data acts as the input and the original clean data acts as the output to the DAE network.

This ensures that the DAE network learns to extract useful information from the noisy input

data. Another variant of autoencoders is the Convolutional Autoencoder (CAE) (Masci

et al., 2011). The CAE network can be viewed as a combination of a convolutional neural

network (CNN) and a vanilla autoencoder. The encoder is characterized by convolutional

and pooling layers with decreased spatial dimensionality and increasing depth (channels

per layer) corresponding to increased feature maps. The decoder network is the opposite of

the encoder network i.e., the decoder has increased spatial dimensionality (by upsampling)

and decreased depth. to be more precise the last layer of the decoder has the same depth

as that of the input data (see Figure 2.3). The advantage of the CAE architecture over

vanilla autoencoders is that neurons (nodes) of a feature map in a convolutional layer share

the same parameters which makes the network translation-invariant and hence can capture

similar patterns at any location in the input. This helps overcome the dimension hopping
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problem that occurs with regular vanilla autoencoder (or any regular feed-forward neural

network) as well reducing the model size.

2.3.2 Methodology

In this work, a One-Dimensional Denoising Convolutional Autoencoder (1D-DCAE), is

implemented to achieve robust HF noise suppression. The data for training and validating

the 1D-DCAE HF-noise model is obtained from the MIT-BIH Arrhythmia Database

(MITDB) (Goldberger et al., 2000; Moody and Mark, 2001). There are 48 records in total

in the MITDB database and each of these records contain two-lead ECG signals. These

signals are sampled at 360Hz and are thirty minutes long in duration. ECG signals from

twenty-two records belonging to the MITDB database were used to form the training data

and ECG signals from another twenty-two records in the same database were used to

form the validation data (De Chazal et al., 2004). Throughout this work, when using the

MITDB records, ECG signals from lead MLII (Modified Limb Lead II) alone are used for

analysis. The records used for the training and validation data are shown in Table 2.1.

Table 2.1. MITDB Dataset split for Training and Validation

Dataset Records

MITDB-DS1 101,106,108,109,112,114,115,116,118,119,122,
(training) 124,201,203,205,207,208,209,215,220,223,230

MITDB-DS2 100,103,105,111,113,117,121,123,200,202,210,
(validation) 212,213,214,219,221,222,228,231,232,233,234

24



Each of the ECG signals from the records in Table 2.1 are used to prepare the training

and validation data for the 1D-DCAE network as follows:

1. Each ECG signal is first subjected to baseline wander suppression as described in

Section 2.2.2.

2. The BW-suppressed ECG signal is then divided into non-overlapping segments,

ECGbw, each 650ms in duration.

3. Random Gaussian noise with zero mean and unit variance is added to each of these

segments. This constitutes the noisy input data ECGbw−ns for the 1D-DCAE network

4. The output for the 1D-DCAE network is the original, noise-free BW-suppressed data,

ECGbw.

This network is trained end-to-end using the Adam optimizer (Kingma and Ba, 2014)

with an initial learning rate of 0.001. Mini-batch gradient descent is used to train the

network with a mini-batch size of 64 and an epoch size of 200. Optimal model weights are

chosen based on the accuracy obtained on the validation dataset and the weights that give

the best performance on the validation dataset are used in the final model. This ensures

that the 1D-DCAE network does not overfit on the training data and instead learns to

extract useful ECG components from HF noise. The 1D-DCAE network with these best

weights is the HF-noise suppression model, HFnoisemodel.

2.3.3 Denoising new incoming ECG signals

An incoming ECG signal first undergoes resampling at 360 Hz. This is followed by

baseline wander removal as described in Section 2.2.2. Then this signal is divided into non-

overlapping segments, each 650ms, in duration and passed as input to HFnoisemodel. The
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output of this model are the HF-noise suppressed segments. The non-overlapping denoised

segments are concatenated in the same order as they were divided and the resultant one-

dimensional signal is the final denoised ECG signal.

This concludes the ECG denoising section. Figure 2.4 shows an example of a denoised

ECG segment from record 203 in the MITDB database. The next section describes this

work’s approach to tackling the third type of artifact, i.e., EM noise, which determines

the quality or utility of the denoised signal for arrhythmia analysis. Henceforth in this

dissertation, the terms ”signal” or ”input signal” refer to the denoised ECG signal unless

specified otherwise.

Figure 2.4. Denoised ECG segment using SWT and 1D-DCAE

2.4 Signal Quality Analysis

After ECG denoising, signal quality analysis is performed to reduce arrhythmia

misclassifications. This refers to electrode motion (EM) noise detection in particular. EM

artifacts need more attention as exaggerated presence of EM artifacts could potentially

hinder accurate beat detection. EM artifacts are usually caused by severe patient movement
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and/or electrode displacements and often mimic QRS complexes in their morphology.

Figure 2.5 shows an example of an ECG signal corrupted by EM noise. These artifacts

usually occupy the same spectral bandwidth as that of QRS complexes. Hence it is not

a good idea to attempt to filter out EM noise as this may result in loss of actual QRS

complex information as well. Instead, it is more efficient to identify (classify) ECG segments

exhibiting significant EM interference and suppress further ECG analysis in these segments.

The task of identifying extremely noisy segments is an important precursor to performing

reliable arrhythmia analysis and in this work, a One-Dimensional Convolutional Neural

Network (1D-CNN) model (Goodfellow et al., 2016; LeCun et al., 1995) is developed for

detection of ECG segments that are characterized by a high degree of EM noise.

Figure 2.5. Example of EM noise

2.4.1 Data preparation

The data for training the CNN model for EM noise detection is obtained from the MITDB

database and follows the training/ validation split shown in Table 2.1. Since the signals
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in the MITDB database are relatively clean and lack any significant EM noise presence,

synthetic EM noise data, available in the MIT-BIH Noise Stress Test Database (NSRTDB)

(Goldberger et al., 2000; Moody et al., 1984), is added to the signals in the MITDB

database to create the noisy input data. This is accomplished using the nst function

(physionet.org/physiotools/wag/nst-1.htm), available as part of Physionet’s WFDB

software package. The nst() function takes as input a clean ECG signal and a purely noise

(EM) signal, along with their respective sampling frequencies, and outputs a noisy ECG

signal, as per (2.1). The nst() function also takes as input the desired signal-to-noise ratio

(SNR), in decibels (dB), for the output signal.

noisyECG = cleanECG + A ∗ noiseEM +B (2.1)

where, noisyECG refers to the synthetically created noisy ECG signal, cleanECG refers

to the original EM-noise-free ECG signal, noiseEM refers to the pure EM noise signal, A

refers to the gain applied to he noiseEM signal and B refers to the offset (DC shift).

The nst(), by default, uses the first five minutes of the (clean) ECG signal to learn the

QRS complex characteristics necessary to automatically compute parameters A and B in

(2.1) so as to create an output noisy signal with the desired SNR value. Specifically, the

nst() function outputs a synthetic noisy signal characterized by alternating noisy and clean

segments - each two minutes long in duration - starting from 5:00 (the fifth minute). As

an example, for a signal in the MITDB database, the nst() function would result in an

output signal with noisy data from 5:00 to 7:00, 9:00 to 11:00, 13:00 to 15:00 and so on.

Thus, creating synthetic EM noise with several different SNR values, results in a rich set of

alternating noisy and clean data. More information about the nst() function can be found

at (physionet.org/physiotools/wag/nst-1.htm)

The 1D-CNN network developed in this work for EM noise classification uses

information from both the noisy ECG signal and its SWT level-4 detail coefficients, (see
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Section 2.2.2). The level-4 coefficients correspond to the frequency range [11.25Hz to

22.5Hz], which is where QRS energy is highly concentrated. Thus providing this information

to the 1D-CNN network, along with the ECG signal, helps the network learn to distinguish

between EM noise artifacts and true QRS complexes. Figure 2.6 shows the architecture of

the CNN model used for EM nosie detection.

Figure 2.6. Convolutional Neural Network architecture for detection of electrode motion
artifacts.

The process governing the generation of training and validation data is as follows.

1. Denoise the raw ECG signal using the techniques described in Sections 2.2.2 and

2.3.2.

2. Create synthetic noisy ECG signals using the earlier described process for SNR values

of -4dB.

3. Compute the SWT level-4 detail coefficients (see Section 2.2.2) for this synthetic

signal.

4. Divide the synthetic signal into M non-overlapping segments, each 10 seconds in

duration (3600 samples at 360Hz). Here M is the number of 10-second ECG segments

present in the synthetic signal.
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5. Similarly, divide the SWT level-4 detail coefficient signal into M non-overlapping

segments, each 10 seconds in duration.

6. Pair up each 10-second noisy segment with its corresponding SWT-level-4 10-second

segment to form a [M x 3600 x 2] input.

7. Repeat steps 1 to 6 for SNR values in the set [-2dB, 0dB, 2dB, 4dB]

8. Repeat steps 1 to 7 for all signals in the MITDB database.

2.4.2 Training the 1D-CNN network

The above data preparation process results in a data matrix Dem of size Kx3600x2, where

K is the total number of 10-segments obtained as a result of the synthetic data generation

process. In this work the value of K is 19800 with 9900 examples belonging the training set

9900 examples belonging to the validation set. The data examples in Dem that belong to the

training set are used to train the CNN model while examples belonging to the validation set

are used to determine optimal network weights that aid in robust EM noise classification.

The network is trained using backpropagation and Adam optimizer with initial learning

rate of 0.005. Rectified Linear Units (ReLU) activation function (Goodfellow et al., 2016)

is applied to the hidden layers while softmax activation function is applied to the output

layer. Mini-batch gradient descent is used for updating network weights with a mini-natch

size of 64 and L2-regularization with a regularization coefficient of 0.01 is applied to the

hidden layers (except MaxPooling layers) to reduce overfitting.

2.4.3 Results

Table 2.2 shows the performance of the 1D-CNN EM noise classification model on the

training and validation datasets in terms of Sensitivity (Se), Positive Predictive Value

(PPV) and F-Score (Fsc). The equations for these metrics are given in (2.2) through (2.4).
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Se =
TP

TP + FN
∗ 100 (2.2)

PPV =
TP

TP + FP
∗ 100 (2.3)

F1 =
2 ∗ TP

(2 ∗ TP ) + FP + FN
∗ 100 (2.4)

where, TP refers to the True Positives i.e., correctly classified noisy segments, FP

refers to False Positives i.e., clean segments misclassified as noise and FN refers to False

Negatives i.e., noisy segments that are misclassified as being clean.

Table 2.2. Evaluation on MITDB and INCARTDB Datasets

Dataset Se PPV F1

MITDB-DS1
(Training dataset)

99.69% 99.94% 99.82%

MITDB-DS2
(Validation dataset)

99.61% 99.59% 96.60%

Along with class labels, the 1D-CNN classifier also outputs prediction probability for

each 10s segment. This can be interpreted as the confidence with which 1D-CNN network

makes a prediction (noisy or clean). Usually segments with score greater than or equal

to 0.5 are classified as noise and those with scores less than 0.5 are classified as clean.

In this work, segments with scores exceeding 0.9 (high probability i.e., extremely noisy)

are considered to be of poor quality and are hence omitted from further analysis. Figure

2.7 provides the confusion matrix information for EM classification performance on the
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Figure 2.7. Confusion matrix for EM noise classification on the validation dataset

validation dataset. In this figure, the rows(upper case NOISY and CLEAN) represent the true

labels and the columns represent the predicted labels (lower case noisy and clean).

This concludes the signal quality analysis section and the signal pre-processing section

of this dissertation overall. The subsequent three chapters describe QRS complex

detection (Chapter 3), Ventricular Arrhythmia detection (Chapter 4) and Supraventricular

Arrhythmia detection (Chapter 5).
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CHAPTER 3

ECG BEAT DETECTION

3.1 Introduction

Beat detection∗ is vital to the field of automated cardiac monitoring and acquires further

importance in the context of cardiac arrhythmia detection. Accurate beat detection

algorithms using QRS complex information from electrocardiogram (ECG) signals result in

useful heart rate variability analysis that subsequently leads to accurate detection of cardiac

arrhythmias and other abnormalities. This gains special significance in today’s world

dominated by non-invasive wearable ECG sensors for real-time cardiac monitoring outside

of hospitals and other emergency care centers. These sensors are worn by individuals on a

continual basis while performing day-to-day activities. Therefore, there is a high probability

that the signals obtained from these sensors are corrupted by external noise, thereby

rendering the beat detection process error-prone and thus cumbersome. This external noise

can be attributed to, but not limited to, artifacts due to movements necessitated by an

individual’s routine activities, sensor disconnects, wireless signal transmission interference,

baseline wander, powerline interference, muscle movements, etc., resulting in corruption

of vital ECG information as described in Chapter 2. Hence it is necessary to develop

algorithms that perform well in such scenarios with minimal false detections. Secondly,

it is extremely vital that the algorithm can adapt to varying heart rates exhibited by

various cardiac arrhythmias when present. In the presence of arrhythmia, the heart rate

is not constant and keeps fluctuating depending upon the type, severity and the number

∗Several portions of this chapter have been reproduced/adapted with permission from material
published in (Kalidas and Tamil, 2017): V. Kalidas and L. Tamil, ”Real-time QRS detector
using Stationary Wavelet Transform for Automated ECG Analysis,” 2017 IEEE 17th International
Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, 2017, pp. 457-461, doi:
10.1109/BIBE.2017.00-12. c©2017 IEEE.
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of concurrently occurring arrhythmias. Given these factors, it is imperative that beat

detection algorithms are extremely robust to noise without compromising on detection

accuracy, especially under arrhythmic conditions.

As mentioned in Section 1.3, the QRS complex is the most significant fiduciary point

in an ECG and the R-peak (peak of R-wave) is often used as a representative marker

for the QRS complex as a whole. Hence the QRS detection algorithm explained in

this chapter focuses on detecting these R-peak locations accurately. To achieve this, a

combination of Convolutional Autoencoders (CAEs) and adaptive thresholding is used in

a two-stage approach. Combining CAEs with a simple number of adaptive parameters

enables the algorithm to robustly detect QRS complexes in the presence of noise as well

as in the presence of arrhythmias. he performance of the algorithm was evaluated on the

MIT-BIH Arrhythmia database (MITDB) and St. Petersburg 12-lead INCART database

(INCARTDB) (Goldberger et al., 2000; Moody and Mark, 2001). It must be noted that

the terms QRS complex, R-peak and beat will be used interchangeably throughout this

dissertation and they all refer to the R-peak location in general.

This chapter is organized as follows. Section 3.2 provides a brief overview of previously

published methods in literature for beat detection. Section 3.3 explains the beat detection

algorithm in detail with the necessary equations and threshold settings along with brief

explanation about the datasets used. The performance evaluation results of the algorithm

are reported in section 3.4. The chapter finally concludes with a brief discussion on the

scope and future improvements of our algorithm in section 3.5.

3.2 Literature Review

In literature, various approaches have been proposed for beat detection that generally in-

corporate a combination of one or more of techniques such as adaptive thresholding (Pan
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and Tompkins, 1985; Christov, 2004; Lai et al., 2015; Hamilton and Tompkins, 1986),

Hilbert transform (Benitez et al., 2000), multi-scale morphological transformation (Sun

et al., 2005), wavelet analysis (Merah et al., 2015; Mart́ınez et al., 2004; Li et al., 1995;

Bahoura et al., 1997), etc. Most the algorithms cited in literature are offline algorithms.

Offline algorithms (Benitez et al., 2000; Merah et al., 2015; Mart́ınez et al., 2004), have

the inherent disadvantage in real-time analysis. Also, most of the offline algorithms work

well on longer durations of ECG signal (Li et al., 1995). Longer segments are more stable

to pre-processing steps such as band-pass filtering and normalization and as such, are less

susceptible to transient noise and taller T-waves. At the same time, they are not always

sensitive to transient changes in ECG morphologies that are characteristic of arrhythmic

episodes. This could often result in skipping of arrhythmic or low-amplitude beats. On the

other hand, online real-time algorithms are highly suitable for evolving ECG morphologies

and thus can detect arrhythmic beats more accurately. They have adaptive parameters

that usually work well with most signals. The processing and response time is relatively

very short as well, of the order of three to ten seconds. There is a growing interest in

the field of real-time beat detection and hence the need to constantly improve existing

methods to continuously improve performance. The methods of (Pan and Tompkins, 1985)

and (Hamilton and Tompkins, 1986) were the earliest published in the field of real-time

QRS detection that demonstrated very high detection accuracy. Later, (Christov, 2004)

proposed a real-time algorithm using combined adaptive thresholds that included back-

search for missed beats, thus achieving improved detection performance. Also, wavelet-

based techniques (Merah et al., 2015; Mart́ınez et al., 2004; Li et al., 1995; Bahoura

et al., 1997) started gaining attention for ECG delineation purposes. Wavelet transforms

(WT) allow simultaneous time-frequency analysis of a non-stationary signal at different

resolutions that makes them suitable for ECG signal analysis. Their ability to capture

transient changes effectively makes them a good choice for arrhythmia detection. Most
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of the wavelet based techniques in literature such as (Mart́ınez et al., 2004; Li et al.,

1995; Bahoura et al., 1997) use Discrete Wavelet Transforms (DWT) due to their faster

computation and decreased redundancy, compared to Continuous Wavelet Transforms

(Merah et al., 2015). A variant of DWT, namely Stationary Wavelet Transform (SWT)

(Pesquet et al., 1996; Nason and Silverman, 1995) has recently gained popularity in the field

of ECG analysis (Merah et al., 2015; Li and Lin, 2009). SWT is similar to Discrete Wavelet

Transform (DWT) with the exception that there is no decimation in the time domain. Only

a dyadic subsampling of scales (frequency domain) is performed. Hence there is translation

invariance and lack of resolution loss at lower frequencies, which are major bottlenecks of

DWT (Laguna et al., 1997; Nason and Silverman, 1995). This increases redundancy in

coefficients but the advantage is that the additional artifacts induced due to time-domain

downsampling at higher scales are mitigated.

3.3 Methodology

Prior to performing any beat detection, signal pre-processing as described in Chapter 2 and

ventricular fibrillation detection as described in Chapter 4 are implemented to minimize

false beat detections. Following this, detection of QRS complexes is carried out in a two-

stage process. The first stage involves use of a One-dimensional Convolutional Autoencoder

(described in Section 2.3.1) to extract potential QRS complex locations. These locations

may, at times, include ECG components that are not QRS complexes but mimic them

closely such as unusually tall T-waves, voltage spikes, etc. To avoid mislabeling these

components as R-peaks, an adaptive thresholding approach is adopted which forms the

second stage. These two stages are briefly explained in the following subsections.
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3.3.1 Stage I: Initial beat segmentation using Convolutional Autoencoders

In this stage the denoised ECG signal is first divided into non-overlapping ten-second

segments. Each of these segment is scaled in the [-1, 1] range. This results in the creation

of a ECG data matrix X of size Nx3600 where N is the number of non-overlapping ten-

second segments in the ECG signal and 3600 represents ten seconds of ECG data at 360 Hz

sampling frequency. Thus the ith row in this matrix corresponds to the ith (non-overlapping)

ten-second ECG segment in the input signal. This matrix is then fed as input to a One-

dimensional Convolutional Autoencoder (1D-CAE) network, termed the beat extraction

network, whose architecture is shown in Figure 3.1.

Figure 3.1. Convolutional Autoencoder network architecture for initial beat extraction.

Training the 1D-CAE beat extraction model

The 1D-CAE beat extraction network is trained in a manner similar to a Denoising

Convolutional Autoencoder described in Section 2.3.1. ECG signals from the MIT-BIH

Arrhythmia Database (MITDB) are used to the train and validate the learnt model. The

MITDB database contains 48 ECG records in total. Each record consists of two-lead ECG

38



signal data sampled at 360 Hz and signal from each lead is thirty minutes long in duration.

ECG data from MLII lead is used for training and validating the 1D-CAE beat extraction

model and the training/validation split is identical to that followed in Section 2.3.2. For

convenience, this split is reproduced here in Table 3.1.

Table 3.1. MITDB Dataset split for Training and Validation

Dataset Records

MITDB-DS1 101,106,108,109,112,114,115,116,118,119,122,
(training) 124,201,203,205,207,208,209,215,220,223,230

MITDB-DS2 100,103,105,111,113,117,121,123,200,202,210,
(validation) 212,213,214,219,221,222,228,231,232,233,234

As can be seen in Figure 3.1, the input and output layers of the 1D-CAE network

each have 3600 nodes, corresponding to 3600 samples of ECG data. Hence for an input

data matrix X of size Nx3600, this network outputs an output data matrix Y of size

Nx3600. Rectified Linear Units (ReLU) activation is applied to each node in each of the

four hidden layers (two hidden layers in the encoder network and two hidden layers in

the decoder network). On the other hand, hyperbolic tangent function is applied to each

node in the output layer so that the output node values are constrained in the range [-1,

1]. Mean squared error (mse) is used as the loss function to be minimized and gradient-

descent based optimization is carried out using the Adam optimization function with an

initial learning rate of 0.001. The network is trained to read an input denoised ten-second

ECG segment and learn to copy potential QRS complex samples (in the input) to the
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output while suppressing (zeroing out) the amplitudes of other ECG components. While

the training set examples are used for updating the network parameters, the validation set

examples are used to evaluate the model after every parameter update and the network

parameters that give the least loss on the validation data set are chosen as the optimal

network parameters. The 1D-CAE model with these optimal parameters constitutes the

optimal beat extraction model and is labeled beatmodel. the output from beatmodel is used

in stage two for implementing adaptive thresholding in order to minimize false beats and

missed beats. Figure 3.2 shows an example depicting the input and output of the 1D-CAE

beat extraction network.

Figure 3.2. Input and output for the 1D-CAE beat extraction model. Top. Input ten-
second denoised ECG segment. Bottom. Output of the model. It can be seen that only
QRS complexes (tall peaks) are copied to the output while other ECG components such
as P-waves and T-waves are essentially nullified in the output.

3.3.2 Stage II: Adaptive Thresholding

Following beat segmentation in the previous section, adaptive thresholding is implemented

to accurately identify beat locations (indices) and minimize occurrence of false beats and
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missed beats. The output matrix Y from beatmodel consists of N ten-second beat vectors

with potential QRS complexes enhanced and other ECG components suppressed. From

each for these vectors, the corresponding R-peak locations must be detected while being

robust to noise and simultaneously being able to identify low amplitude true beats. The

adaptive thresholding stage is implemented to achieve these two goals. The adaptive

thresholding stages consists of five major phases:

1. Initial peak detection

2. Missed beat detection

3. False beat removal

4. Threshold update

5. Final R-peak location update

Before delving into details about the five phases, some useful initializations and

definitions are presented below:

Initialization and Definitions

1. Fs : Sampling frequency of the denoised ECG signal i.e., 360 Hz (since all signals are

resampled at 360 Hz prior to signal pre-processing - see Section 2.2.2).

2. pk thr : R-peak threshold - Minimum R-peak amplitude threshold for identifying

potential R-peaks. Initialized to 0.25 for learning stage.

3. rr thr : RR-interval threshold - Minimum RR-interval threshold between two

consecutive R-peaks. Initialized to (0.25*Fs) samples i.e., 250 milliseconds for

learning stage since physiological constraints require two heartbeats to be spaced

at least 250 milliseconds from each other temporally.
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4. missed thr : Minimum separation threshold between consecutive peaks for identifying

missed beats.

5. temp locs : Vector storing temporary peak locations (indices) for the current beat

vector

6. pk vec: Vector storing peak amplitudes for the current beat vector

7. ppi vec: Vector storing peak-to-peak intervals for the current beat vector

8. ecg locs : Initial empty vector for storing actual R-peak locations.

The five phases stated earlier are explained next for the ith beat vector in Y .

Phase 1: Initial peak detection

1. Scan the ten-second beat vector to identify peak locations with minimum amplitude

of pk thr units and separated by at least rr thr samples.

2. Update temp locs with locations of above found peaks.

3. Update pk vec with amplitudes of these peaks.

4. Update ppi vec with peak-to-peak interval (PPI) values computed from these peaks.

PPI values are simply the successive difference values between peak locations

(indices).

Phase 2: Missed Beat Detection

1. Determine interval values from ppi vec which exceed a predefined threshold,

missed thr, computed as follows:
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if (i = 1):

missed thr = (1.5 ∗ Fs) (3.1)

else:

missed thr = (1.5 ∗ ppi thr) (3.2)

Equation (3.1) corresponds to the learning stage i.e., the first ten-second beat vector

(hence, i = 1). Equation (3.2) corresponds to the remaining beat vectors (i.e., i > 1).

2. Scan each interval found in step 1 for peaks with a minimum amplitude of 0.05 units.

3. Update temp locs, pk vec and ppi vec vectors appropriately with the new peaks found

in the previous step

Phase 3: False beat removal

Along with detecting actual QRS complexes, the above described missed beat detection

phase might have detected peaks that may not correspond to true QRS complexes. These

include tall T-waves, voltage spikes, trivial EM noise peaks, etc.. and are collectively termed

false beats. To minimize such false beat detections, the following steps are implemented:

1. Determine interval values from ppi vec which are smaller than a predefined threshold,

falsebeat thr, computed as follows:

if (i = 1):

falsebeat thr = (0.33 ∗ Fs) (3.3)

else:

falsebeat thr = (0.35 ∗ ppi thr) (3.4)

Equation (3.3) corresponds to the learning stage i.e., the first ten-second beat vector

(hence, i = 1). Equation (3.4) corresponds to the remaining beat vectors (i.e., i > 1).
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2. For the intervals found in the previous step, obtain the corresponding pair of peak

indices and peak amplitudes (since each peak-to-peak interval is computed from a

pair of peaks) for each interval from temp locs and pk vec respectively.

3. For each pair of peak indices and peak amplitudes obtained in the previous step,

retain the peak index with the higher peak amplitude and delete the other one.

4. Update temp locs, pk vec and ppi vec vectors accordingly.

Phase 4: Threshold update

1. Update rr thr and pk thr thresholds to be used for the next successive beat vector

as follows:

RR-interval threshold update

rr thr = max((0.25 ∗ Fs), 0.5 ∗ (rr thr) + 0.5 ∗ (median(ppi vec))) (3.5)

R-peak threshold update

pk thr = 0.5 ∗ (median(pk vec)) (3.6)

Phase 5: Final R-peak location update

The peak index values in temp locs, after undergoing missed beat detection and false beat

removal, are determined to be the final R-peak locations and are appended to the ecg locs

vector.

Each of the above five phases are successively applied to each ten-second beat vector in

Y (output from beatmodel), using thresholds from the preceding cycle. The first ten-second

beat vector is considered to be the learning stage that aids in learning the average RR-

interval and R-peak thresholds for the ECG signal (since different individuals have different
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Figure 3.3. Flow diagram depicting the complete adaptive thresholding stage.

heart rates). It is important to note that if a ten-second beat vector’s corresponding ten-

second input ECG segment had been classified as too noisy i.e., had been assigned an EM

noise classification score greater than 0.9 (see Section 2.4, then missed beat detection, false

beat removal and threshold update phases are omitted for that particular beat vector. A

flow diagram concisely depicting the adaptive thresholding stage is shown in Figure 3.3.

3.4 Results

The above described QRS complex detection algorithm was evaluated on the MIT-

BIH Arrhythmia database (MITDB), the St.Petersburg’s 12-lead INCART Database

(INCARTDB) and the MIT-BIH Atrial Fibrillation Database (AFDB). There are 48 two-

lead ECG records in the MITDB database, with the ECG signals sampled at 360 Hz.

Similarly the INCARTDB database contains 75 twelve-lead ECG records, with the ECG

signals sampled at 257 Hz. THE AFDB database on the other hand is a long-term

monitoring database and contains 23 two-lead ECG records, sampled at 250 Hz and signal

in each lead is approximately 10 hours long in duration. Since this dissertation is focused on

45



Table 3.2. QRS detection performance on MITDB, INCARTDB and AFDB records

Database
(Sampling
frequency)

Total
beats

Se PPV Mean error
(# of samples)

MITDB
(360 Hz)

109494 99.63% 99.88% 5.03 ms
(<2 samples)

INCARTDB
(257 Hz)

175906 99.53% 99.61% 8.00 ms
(˜2 samples)

AFDB
(250 Hz)

1090874 99.48% 97.35% 12.70 ms
(<4 samples)

developing arrhythmia detection algorithms using information from only single-lead ECGs,

signals from MLII lead for the MITDB database, Lead V for the INCARTDB database

and lead ECGI for the AFDB database were used resulting in 109494 beats for the MITDB

records, 175906 beats for the INCARTDB records and 1090874 beats for the AFDB records.

The algorithm achieves a sensitivity of 99.63% and a positive predictive value (PPV) of

99.88% on ECG records in the MITDB database, while achieving a sensitivity of 99.53%

and PPV of 99.61% on the INCARTDB ECG records. For ECG records in the AFDB

database, the beat detection algorithm achieves a sensitivity of 99.48% and a PPV of

97.35%. Although the AFDB database is not a widely used database to report QRS

detection performance, it plays a significant role in the context of the work presented in

this dissertation. ECG signals in the AFDB database contain a large number of atrial

fibrillation (described in Chapter 5 episodes which are most prominently characterized by

irregular heart rate changes i.e., randomly changing RR-interval values. Hence techniques

for detection of QRS complexes (or R-peaks)in the presence of atrial fibrillation must be

highly adaptive to these random RR-interval transitions. The beat detection algorithm
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presented in this chapter satisfies this requirement very well as evidenced by the accuracy

values shown in Table 3.2, thus guaranteeing efficient performance under rapidly changing

heart rate conditions which is often indicative of arrhythmias. Figure 3.4 shows an example

demonstrating beat detection by the proposed approach. It can be seen that the initial

peak detection step misses four beats (in orange ellipses). These are identified during the

missed beat detection stage, thus ensuring that all the beats are detected correctly. In fact,

the beats missed in the initial peak detection are premature ventricular complexes (PVCs),

an abnormal beat whose detection is vital. PVCs are discussed in detail in Section 4.4.

Figure 3.4. Example demonstrating beat detection. Top. Initial peak detection. Bottom.
Final beat locations after missed beat detection.

Figure 3.5 shows an example of the algorithm effectively adapting to varying RR-interval

values. The top plot shows a five-minute ECG segment and the bottom plot shows the

true RR-interval series and the algorithm’s adaptively learnt RR-interval thresholds. The

47



Figure 3.5. Example demonstrating adaptive learning of RR-interval changes.

ECG segment has an atrial fibrillation episode from around the 90s mark to about 240s.

Correspondingly the RR-interval values vary irregularly in the bottom plot (labeled as

Reference RR-interval series). It can be seen that the algorithm’s learnt RR-thresholds

(labeled as Algorithm’s RR-interval threshold series) track the true RR-interval values and

are almost always lower than the true RR-intervals. This ensures that the algorithms

maximizes detection of true R-peaks while missing only very few, if any, of them. The

last column in Table 3.2 shows the mean absolute error between the true R-peak locations

and algorithm detected R-peak locations. It can be seen that this error is about two to

four samples for all the three databases. Figure 3.6 shows the histograms depicting the

absolute error for beats belonging to the three databases. Each of these databases contains

a combination of ventricular and supraventricular dysrhtyhms and the beat detection

algorithm continues to function accurately under these conditions, thus demonstrating its

ability to adapt to different types of arrhythmias.
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Figure 3.6. Histograms depicting absolute error in detection of beats for each database.

3.5 Conclusion

In this chapter, an algorithm for automated detection of QRS complexes in an ECG signal

is presented. The algorithm incorporates a combination of one-dimensional convolutional

autoencoders and adaptive thresholding to achieve accurate results in the presence of noise

as well as under different arrhythmic conditions. Three different databases containing

records with multiple classes of arrhythmias are evaluated upon to demonstrate the

performance of the beat detection approach. The algorithm requires the first ten seconds of

the incoming ECG signal to be fairly clean as it is used as the learning template. Otherwise,

there could be a slight degradation in the algorithm’s performance.

This concludes the description of the beat detection stage. The upcoming two

chapters delve into the arrhythmia detection component of this research. In that regard,
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ventricular arrhythmia detection techniques are presented in Chapter 4, followed by that

of supraventricular arrhythmias in Chapter 5.
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CHAPTER 4

VENTRICULAR ARRHYTHMIAS

4.1 Introduction

Ventricular arrhythmias refer to cardiac rhythms that originate in the ventricles. The

ventricles may generate electrical impulses either (i) as a consequence of irritable sites that

can result in premature beats or due to Sino-atrial (SA) node failing to discharge impulses

or impulses from the SA node not getting conducted properly/getting blocked completely.

The former category of beats is labeled Premature Ventricular Complexes (PVCs) and the

latter is termed Ventricular Escape beats. This chapter is focused on detecting arrhythmias

that fall in the former category i.e., those that occur due to presence of PVCs.

Premature Ventricular Complexes (PVCs) are ectopic heart beats that occur as a

consequence of electrical impulses originating from ventricles rather than the Sino-Atrial

(SA) node (see Chapter 1. They can be viewed as premature depolarization of the cardiac

cells (Ahn, 2013). Under normal conditions, electrical impulses originate from the SA node

and are propagated through the heart via the atria, atrio-ventricular node, Purkinjee fibres

and the ventricles. This represents one cardiac cycle or one heart beat (see Chapter 1).

In the presence of PVCs, these impulses abnormally originate from irritable sites in the

ventricles instead. This results in premature and abnormal heart beats that disrupt normal

sinus rhythm. PVCs can be distinguished from other beats based on their QRS morphology

on electrocardiogram (ECG) signals. In terms of their manifestation on ECGs, PVCs are

characterized by wider QRS complexes (exceeding 0.12s) (Aehlert, 2018) with T-waves

having an opposite polarity to that of the QRS complex along with absence of P-waves.

PVCs are impulses that originate in the ventricles and therefore atrial depolarization does

not take place which explains the absence of P-waves. PVCs can be uniform or multiform

(see Figure 4.1) in their appearance, depending on the origin of electrical impulse discharge
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in the ventricles. Uniform PVCs refer to PVCs that originate from the same irritable site in

the ventricles. On the other hand, multiform PVCs occur due to impulses being discharged

from several irritable sites in the ventricles. PVCs are often followed by a compensatory

pause but this is not a strict condition. PVCs can occur in healthy individuals as well as

in individuals with structural heart disease (Ahn, 2013; Aehlert, 2018). PVC prevalence is

estimated to be around 40% to 75% according to (Ng, 2006; Kennedy et al., 1985) with

the elderly population being relatively more susceptible (Aehlert, 2018). PVCs can often

devolve into life-threatening conditions such as ventricular tachycardia (VT) and ventricular

fibrillation (VF) and can potentially lead to heart failure if left untreated. The American

Heart Associate Heart Disease and Stroke Statistics - Update 2015 (Mozaffarian et al.,

2015) reports that about 23% of out-of-hospital cardiac arrests exhibit an initial rhythm

of VF or VT. Therefore timely and accurate detection of PVCs assumes vital importance

in the context of cardiac arrhythmia analysis.

Figure 4.1. Example of Premature Ventricular Complexes. The red markers indicate PVCs.
It can be seen that the first two PVCs are of similar morphology (uniform PVCs) and the
third one has a different morphology compared to the first two (multiform PVCs).

The ventricular arrhythmias discussed in this chapter can be classified into two

groups, namely, beat-independent ventricular arrhythmias and beat-dependent ventricular

arrhythmias. The former group refers to arrhythmia conditions which do not require beat
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detection while the latter group includes arrhythmias that have beat detection as a pre-

requisite step. They are as follows:

1. Beat-independent Ventricular Arrhythmias

(i) Ventricular Fibrillation and Sustained Ventricular Tachycardia

2. Beat-dependent Ventricular Arrhythmias

(i) Premature Ventricular Complexes

(ii) Ventricular Couplets

(iii) Ventricular Runs

(iv) Ventricular Bigeminy

(v) Ventricular Trigeminy

(vi) Ventricular Quadrigeminy

This chapter∗ is organized as follows: Section 4.2 presents a survey of methods that have

been proposed in literature in the field of ventricular arrhythmia detection. This is followed

by a detailed description of a ventricular fibrillation/sustained ventricular tachycardia

detection algorithm in Section 4.3. Subsequently, an in-depth explanation of algorithms

focused on detection of premature ventricular complexes and associated beat-dependent

arrhythmias is provided in Section 4.4. Finally, concluding remarks are presented in Section

4.5.

∗Several portions of this chapter have been reproduced/adapted with permission from material accepted
for publication at the 42nd IEEE Engineering in Medicine and Biology Conference 2020. c©2017 IEEE
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4.2 Literature Review

Many methods have been proposed in literature for detection of ventricular fibrillation and

sustained ventricular tachycardia. This includes techniques that employ time-domain and

frequency-domain analysis along with wavelet analysis. The authors of (Thakor et al.,

1990) propose a threshold-based approach where a binary sequence is generated for the

ECG signal and a sequential hypothesis testing is applied to the sequence’s time-interval

based probability distribution values. another approach (Chen et al., 1987) use a two-

step process based on autocorrelation analysis and regression test for detection of VF.

Complexity measure based techniques based on comparison and accumulation are presented

in (Zhang et al., 1999). Similarly, the methods of (Moraes et al., 2002) employ a two-

step process for VF detection. The first step is consists of a VF Filter Leakage method

(Kuo, 1978). This is complemented by a complexity measure analysis to distinguish

between VF and VT. The authors of (Barro et al., 1989) present a simple frequency-

domain based approach using a simple set of four parameters for effective VF detection.

Wavelet-based techniques are proposed in the works of (Addison et al., 2000; Watson et al.,

2000; Balasundaram et al., 2011). In terms of methods that combine time and frequency

domain approaches, the authors in (Krasteva and Jekova, 2005) propose a real-time VF/VT

detection algorithm using a twelve-feature set combining seven features from band-pass

filtering and five features from ECG peak detection steps. Another method that combines

time-domain and frequency-domain processing of ECG signals for VF/VT detection is

presented in (Kalidas and Tamil, 2016). This method uses Support Vector Machines (SVM)

for classifying the features and was developed as part of the Annual Physionet/Computing

in Cardiology Challenge 2015: Reducing False Arrhythmia Alarms in the ICU ((Clifford

et al., 2015). In fact, the works of (Plesinger et al., 2015; Kalidas and Tamil, 2016; Fallet

et al., 2015) were the top-ranked papers at the competition and included algorithms for
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detection of five life-threatening ventricular arrhythmias. Another SVM-based approach

for detection of VF episodes is proposed in (Alonso-Atienza et al., 2012). Similarly, the

authors of (Li et al., 2013) present a SVM-based algorithm for detection of VF/VT episodes

using a total of fourteen features. Another machine learning approach for VF detection

using neural networks is the basis approach described in (Clayton et al., 1994). Finally, a

comprehensive comparison and review of ventricular fibrillation detection techniques can

be found in (Clayton et al., 1993; Jekova, 2000; Amann et al., 2005).

In terms of detection of premature ventricular complexes, several methods have been

proposed in literature. The authors of (De Chazal et al., 2004) compute eight different

feature sets derived from analysis of ECG morphology, RR-intervals and other heartbeat

dynamics and use Linear Discriminant classifiers on these feature sets for performing final

PVC classification. A combination of wavelet analysis and RR-interval analysis is described

in (Llamedo and Mart́ınez, 2011) for automated PVC detection. Another technique that

applies wavelet analysis and Linear Discriminant Analysis (LDA) forms the basis of PVC

detection in (Senhadji et al., 1995). An approach combining clustering with Hermite

functions and self-organizing maps is proposed in (Lagerholm et al., 2000). A K-Nearest

Neighbor based PVC detection algorithm that uses twenty six features is presented in

(Christov et al., 2005). In the method proposed by (Sayadi et al., 2009), Bayesian filtering

techniques are used to classify PVC bets using beat morphology information. Techniques

that rely on implementation of neural network architectures can be found in the methods

adopted by (Yeap et al., 1990; Hu et al., 1993; Osowski and Linh, 2001). In the recent

past deep learning has gained significance in the context of classifying ventricular beats.

Convolutional neural network (CNN) based algorithm that uses information from raw ECG

signals for accurate PVC detection can be found in (Zubair et al., 2016; Kiranyaz et al.,

2016; Ince et al., 2009). These three methods use the first five minutes of ECG data as a

learning template and hence this enables their methods to achieve very good performance
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in terms of developing patient-adaptive PVC detection algorithms. The authors of (de

Chazal and Reilly, 2006) propose another patient adaptive PVC detection approach using

linear discriminant analysis. In this the Another patient adaptive system that also allows

for expert assistance is described in (Llamedo and Martinez, 2012). In this approach an

initial classification is performed using the methods developed in (Llamedo and Mart́ınez,

2011) that uses RR-interval and beat morphology features along with a linear discriminant

classifier. Following this Expectation Maximization Clustering is performed to group the

beats into different clusters each with a signature beat label. After this, an expert re-assigns

a subset of beats in each cluster that are misclassified. The accuracy of their approach

increases with increase in the number of beats that get re-annotated by the expert, which

is expected. Another such approach that allows for expert assistance using Kalman filters

is described in (Oster et al., 2015).

4.3 Ventricular Fibrillation and Sustained Ventricular Tachycardia

Ventricular Fibrillation (VF) is a subclass of ventricular arrhythmias that is characterized

by chaotic or fibrillatory cardiac activity. The heart is essentially quivering in the presence

of VF and is unable to pump blood effectively. There is an absence of pulse and no

discernible ECG features such as P-wave, QRS complexes, T-waves, etc. are present.

The lack of useful of features is the reason VF detection has been categorized as a beat-

independent approach here. On the ECG, they appear as oscillatory waveforms with

frequency of about 5 Hz (i.e., nearly 300 bpm - too high to effectively pump blood).

Several factors can cause VF and this includes acute coronary syndromes, hypertrophy,

severe cardiac failure, adverse effects of medications, external factors such as electrocution,

etc. On the other hand, Sustained Ventricular Tachycardia (VT) refers to rapid occurrence

of PVCs, at a rate between 150 bpm to 250 bpm, usually for more than 30s. Sustained VT
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is often a precursor to VF and at high heart rates, QRS complexes and other waveforms

are often not clearly distinguishable on the ECG. Depending on the morphology of PVCs,

VT episodes may be monomorphic (consecutive PVCs with same shape and amplitude)

or polymorphic (consecutive PVCs with varying shape and amplitude). Sustained VT can

often indicate presence of myocardial ischemia (Aehlert, 2018). Both sustained VT and VF

are shockable rhythms and hence defibrillation is the most commonly adopted approach for

treating individuals with sustained VT and VF. Both sustained ventricular tachycardia and

ventricular fibrillation, when left undetected or untreated, can devolve into asystole and

pulseless electrical activity (Aehlert, 2018) which are a non-shockable rhythms and even

a defibrillator may not be helpful in these circumstances (Aehlert, 2018; Jekova, 2007).

Hence early detection of sustained VT and VF is very much necessary to increase the

individual’s chance of survival. Figure 4.2 and Figure 4.3 show electrical activity and ECG

manifestation during sustained VT and VF†.

In this section, a machine learning model using Random Forests (RF) for accurate

detection of sustained ventricular tachycardia and ventricular fibrillation is described. The

features that act as input to the RF classifier include both time-domain and feature-domain

features. The following subsections explain the approach in detail.

4.3.1 Random Forests

Random Forests is a machine learning algorithm that consists of growing an ensemble of

binary decision trees for performing regression/ classification. Introduced in (Breiman,

2001a), Random Forests algorithm is described by the authors as a modification of bagging

which creates a forest of de-correlated trees and averages their predictions. Decision tree

models generally suffer from high-variance and thus averaging out predictions from multiple

†Images reprinted with permission from Mayo Foundation for Medical Education and Research.

59



Figure 4.2. Electrical activity and ECG manifestation during Ventricular Tachycardia.
(Source: mayoclinic.org. c©Mayo Foundation for Medical Education and Research.)

decision trees, each with the same variance, leads to a decrease in overall variance (Hastie

et al., 2009a). The process of growing these decision trees is based on bagging (bootstrap

aggregation), which is a technique for reducing the variance of an estimated prediction

function. Here, bagging primarily involves creating several data subsets from the training

data by random subsampling with replacement. Each of these data subsets is then used to

train a decision tree model separately. Additionally, for each tree, only a random subset

of predictors/features is used for creating the decision model. For each tree thus grown, a

predictor is chosen to make a decision split at a particular node. This is usually done based

on either the information gain/entropy or the Gini impurity that selects the best predictor

for that particular node (James et al., 2013). This process is repeated at each node in a tree

and subsequently multiple trees are trained. Final decisions are made based on averaging

(for regression) or majority voting (for classification) of individual tree predictions. Since
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Figure 4.3. Electrical activity and ECG manifestation during Ventricular Fibrillation.
(Source: mayoclinic.org. c©Mayo Foundation for Medical Education and Research.)

data subsampling and predictor subsampling for each tree is carried out randomly on a

forest of trees, this algorithm is termed Random Forests. The inherent randomness in the

training data (data subsampling and predictor subsets) results in reduced overfitting (Hastie

et al., 2009a) and places a limit on the generalization error (Breiman, 2001a). Random

Forest models are often viewed as a competitive alternative to boosting techniques such

as Adaboost while being significantly more robust to noise and easier to train. More

information about Random Forests can be found in (Breiman, 2001a; Hastie et al., 2009a;

James et al., 2013).

4.3.2 Datasets

The datasets for training and validating the Random Forests based classifier are obtained

from ECG records present in the MIT-BIH Malignant Ventricular Ectopy Database

(VFDB) and the American Heart Association Database (AHADB). The VFDB dataset

contains rhythm-annotated 22 two-lead ECG recordings, each signal 30 minutes long and

sampled at 250 Hz. The rhythms present in these records primarily include ventricular
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Table 4.1. Datasets for training and validating sustained VT and VF detection model

Type Dataset Records VT/VF
examples

Non-VT/VF
examples

Training VFDB Odd-numbered 2100 5422

AHADB 1024 2536

3124 7958

Validation VFDB Even-numbered 1256 6356

AHADB 1172 2368

2428 8724

fibrillation, sustained ventricular tachycardia, ventricular flutter, atrial fibrillation, asystole,

high grade ventricular activity and noise. Similarly, the AHADB dataset consists of ECG

recordings representing ventricular arrhythmias. From this database, records 8201 through

8210 are used in this dissertation as contain significant number of sustained VT and

VF episodes. Each of these ten records contains annotated two-lead ECG recordings,

each signal 35 minutes in duration and sampled at 250 Hz. For the purpose of model

development, distinction is not made between sustained ventricular tachycardia, ventricular

fibrillation and ventricular flutter and these episodes are collectively labeled as VT/VF

examples, while the remaining rhythms are labeled as Non-VT/VF examples. Table 4.1

provides a concise summary of these datasets.

4.3.3 Feature Extraction

Prior to feature extraction for VT/VF detection, the signal is subject to ECG denoising

and EM noise classification as described in Chapter 2. Following that, the denoised signal is
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segmented into non-overlapping five-second epochs. From each five-second epoch, a total of

seven features are derived. This feature derivation includes time-domain, frequency-domain

and stationary wavelet transform (SWT) analysis. They are described below:

1. max freq : Dominant frequency from Fourier analysis computed using Fast Fourier

Transform (FFT). This feature is the primary frequency component (in Hz) present

in the normalized FFT for the 5s epoch. In the presence of sustained VT/VF, this

will take a value in the range 2.5Hz to 8Hz, corresponding to approximately 150 bpm

to 500 bpm which is the clinical heart rate range for sustained VT/VF episodes.

2. xft ratio: Ratio of FFT ranges. This feature refers to the ratio between (i) FFT values

corresponding to the range [2.5, 8] Hz and (ii) FFT values corresponding to the range

[0, 20] Hz. This feature essentially indicates the extent to which clinically significant

VT/VF frequency components dominate the frequency content of the five-second

epoch.

3. ccf6 : Pearson’s Correlation Coefficient between the five-second epoch and its level-6

SWT detail coefficients, computed using Daubechies3 (’Db3’) wavelet as the mother

wavelet. At 360 Hz sampling frequency and using dyadic compression in the frequency

domain, level 6 detail coefficients correspond to the frequency range [2.8, 5.6] Hz.

Hence this feature measures how correlated the ECG epoch is with respect to the

SWT level-6 coefficients. In the presence of VT/VF, this value is expected to be

relatively large.

For one-dimensional vectors X and Y ; this feature is computed as below (Johnson

and Wichern, 2002):

Cov(X, Y ) =

∑m
k=1(Xk −X)(Yk − Y )

m− 1
(4.1)
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RXY =
Cov(X, Y )√

Cov(X,X)Cov(Y, Y )
(4.2)

where,

- m in (4) is the number of samples in X (or Y ),

- X refers to the five-second ECG epoch and Y refers to its SWT level-6 detail

coefficients (both have the same length, m)

- X refers to the mean (i.e., average) of X

- Y refers to the mean of Y .

It must be noted that the term Cov(X,X) in the denominator of 4.2 is simply the

variance of X. Similarly Cov(Y, Y ) refers to the variance of Y .

4. ccf7 : Pearson’s Correlation Coefficient between the five-second epoch and its level-7

SWT detail coefficients, computed using Daubechies3 (’Db3’) wavelet as the mother

wavelet. At 360 Hz sampling frequency and using dyadic compression in the frequency

domain, level-7 detail coefficients correspond to the frequency range [1.4, 2.8] Hz.

Hence this feature measures how correlated the ECG epoch is with respect to the

SWT-level7 coefficients. In the presence of VT/VF, this value is expected to be

relatively large. This feature is computed similar to that of ccf6, except that Y in

(4.1) and (4.2) refers to SWT level-7 detail coefficients.

5. ccf67 : Pearson’s Correlation Coefficient between the five-second epoch and the

signal reconstructed using both SWT level-6 and level-7 coefficients. This feature

is computed in a similar manner as the preceding two features, except that that Y in

(4.1) and (4.2) refers to the reconstructed signal.

6. peak corr : Peak auto-correlation value. This is the maximum amplitude of auto-

correlation sequence computed for the five-second ECG epoch. The auto-correlation
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sequence is computed as follows:

CorrX [l] =
∑
k

X[k]X[k + l] (4.3)

where,

- l is the lth sample in CorrX . The length of CorrX is (2NX − 1) where NX is length

of X i.e., the length of the ECG epoch. Since the ECG epoch is five seconds long,

NX is equal to 1800 (at 360 Hz sampling frequency).

7. auc corr : This refers to the sum of the auto-correlation (computed using (4.3))

coefficients . This is computed as follows:

sum corr =

2NX−1∑
k=1

CorrX [k] (4.4)

In the presence of sustained VT/VF, both peak corr and auc corr are expected to be

relatively large. This can be attributed to the fact that the ECG is almost sinusoidal

(owing to oscillatory waveforms) in the presence of sustained VT/VF and are therefore

expected to be show a high degree of auto-correlation.

4.3.4 Sustained VT and VF classification

The seven features computed in Section 4.3.3 are input to a Random Forest classifier. This

classifier was trained using the examples present in the training dataset (See Table 4.1).

Hyperparameter tuning using Grid search was performed to identify the best parameters

for the Random Forest model. The hyperparameter tuning search space for Random

Forests included four primary hyperparameters is given in Table 4.2. The last column

in the table shows the best combination of parameters chosen i.e., the model trained with

the combination of these particular parameter values was determined to achieve the best

performance on the validation dataset (see Table 4.1. This model is labeled V TV Fmodel.

65



Table 4.2. Hyperparameter tuning search space for VT/VF Random Forests model

Hyperparameter Range of values Best value

Number of trees [10,15,20,25,...,100] 50

Maximum tree depth [5,10,15,..., 50,None] 19

Maximum features [auto, 7] (auto : square root
of number of features)

7

Class weight [‘balanced’, None] ’balanced’

The Number of trees parameter refers to the number of trees in the Random Forests

model. The Maximum tree depth parameter refers to the maximum depth of each tree. This

is an important hyperparameter to select as deeper trees generally result in overfitting. The

third hyperparameter, Maximum features refers to the number of features to be randomly

selected for performing splits at each node (Hastie et al., 2009b). The last hyperparameter

is the Class weight. This refers to the weight assigned to each class and plays a significant

role in removing biases when dealing with imbalanced classes. By default, the ’balanced’

option assigns weights inversely proportional to the class frequencies. It can be seen from

Table 4.2 that the grid search selected the ’balanced’ option for the Class weight parameter.

This is because the training dataset is inherently imbalanced with an imbalance ratio of

about 1:2.5.

4.3.5 Results

The performance of V TV Fmodel was evaluated on the training and validation datasets and

the corresponding results are shown in . As shown in Table 4.1, the training dataset

consists of a total of 3124 VT/VF examples and 7958 Non-VT/VF examples. Similarly,
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the validation dataset consists of 2428 VT/VF examples and 8724 Non-VT/VF examples.

ECG signals from both the leads were used for creating the datasets but they were used

independent of each other so as to increase the data count for training and validation

purposes.

Table 4.3. Performance of VT/VF model on VFDB and AHADB datasets

Dataset Se PPV FSc Sp Remarks

Training 98.85 96.17 97.49 98.45 Odd-numbered
records from VFDB

and AHADB

Validation 97.90 95.77 96.82 98.80 Even-numbered
records from VFDB

and AHADB

The results are presented in terms of Sensitivity (Se), Positive predictive value (PPV),

F-Score (FSc) and Specificity (Sp). The equations for these metrics are given in (4.5)

through (4.8).

Se =
TP

TP + FN
∗ 100 (4.5)

PPV =
TP

TP + FP
∗ 100 (4.6)

FSc =
2 ∗ TP

(2 ∗ TP ) + FP + FN
∗ 100 (4.7)

Sp =
TN

TN + FP
∗ 100 (4.8)

where, TP refers to the True Positives i.e., correctly classified VT/VF examples, FP

refers to False Positives i.e., Non-VT/VF examples misclassified as VT/VF, TN refers
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Figure 4.4. Confusion matrix depicting model performance on training dataset

Figure 4.5. Confusion matrix depicting model performance on validation dataset

to True Negatives i.e., correctly classified Non-VT/VF examples and FN refers to False

Negatives i.e., VT/VF examples that are misclassified as Non-VT/VF.

Figures 4.4 and 4.5 show the confusion matrices depicting the performance of

V TV Fmodel on the training and validation datasets respectively. In these figures, the

rows(upper case VT/VF and NON VT/VF) represent the true labels and the columns represent

the predicted labels (lower case vt/vf and non vt/vf).

Figure 4.17 shows a two-dimensional mapping of the seven PVC features. This 2D-

representation is computed using the popular visualization technique called t-SNE, which

short for t-Distributed Stochastic Neighbor Embedding ((Maaten and Hinton, 2008)). From

this plot it can be seen that the PVC and non-PVC representations form (almost) disjoint

class-specific clusters thus indicating the usefulness of the seven features for distinguishing

PVC beats from non-PVC beats.
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Figure 4.6. Scatterplot showing 2D-representation of the seven VT/VF features using
t-SNE.

This concludes the section on algorithm description for ventricular fibrillation and

sustained ventricular tachycardia detection. The subsequent sections present detailed

description of algorithms for detection of beat-dependent arrhythmias that are inherently

dependent on accurate detection of premature ventricular complexes.

4.4 Premature Ventricular Complexes

In this section, a novel metadata-augmented deep-learning based method is presented

to accurately detect PVCs from single lead ECG signals using a combination of a

Semisupervised Autoencoder (SSAE) (Goodfellow et al., 2016) and Random Forest models

(Breiman, 2001b). Raw ECG beat segments along with manual features derived from

69



three consecutive beats are used to train the SSAE network so as to efficiently learn

three-dimensional class-specific encodings (stage 1). The learnt encodings, along with the

manually computed beat-triplet features, are then input to a Random Forests classifier for

final PVC classification (stage 2). Figure 4.7 shows the block diagram summarizing the

approach. The following sections describe the approach in detail.

4.4.1 Datasets

The PVC classifier is trained, validated and tested using ECG signals from records in the

MIT-BIH Arrhythmia Database (MITDB) (Moody and Mark, 2001) and the St.Petersburg

INCART 12-lead Arrhythmia Database (INCARTDB) (Goldberger et al., 2000), available

from the Physionet database (Goldberger et al., 2000). The MITDB database consists of

48 two-lead ECG records, sampled at 360Hz and 30 minutes in duration. The INCARTDB

database consists of 75 twelve-lead ECG records, sampled at 257Hz and 30min in duration.

AAMI (ANSI/AAMI EC57:2012, 2012) standards are followed for beat labelling. Forty-four

records from MITDB are split into training (MITDB-DS1) and validation (MITDB-DS2)

datasets as described in (Llamedo and Mart́ınez, 2011). The remaining four records i.e.,

102, 104, 107 and 217, have been omitted from analysis owing to presence of paced beats as

per AAMI recommendations. The training/validation split is as per table 2.1 described in

Chapter 2. For convenience, the information is reproduced in Table 4.4. The INCARTDB

records, on the other hand, form the test dataset. In this work, Fusion and Supraventricular

beats are considered as non-PVC beats while unclassified (Q) and aberrated beats are

omitted from analysis. ECG signals from leads MLII and lead-II are used for MITDB and

INCARTDB databases respectively.
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Table 4.4. MITDB Dataset split for Training and Validation

Dataset Records

MITDB-DS1 101,106,108,109,112,114,115,116,118,119,122,
(training) 124,201,203,205,207,208,209,215,220,223,230

MITDB-DS2 100,103,105,111,113,117,121,123,200,202,210,
(validation) 212,213,214,219,221,222,228,231,232,233,234

Figure 4.7. Block diagram for PVC classification

4.4.2 Signal Pre-processing

The techniques described in Chapter 2 (Sections 2.2.2 and 2.3.2) are used to denoise the

ECG signal (baseline wander removal and high frequency noise suppression). Following

this, electrode motion (EM) noise classification is performed as per Section 2.4 in Chapter

2. Subsequently beat detection (see Chapter 3) is performed and these beat locations are

then used to create the features required for accurate PVC classification.
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4.4.3 Feature extraction

The algorithm developed in this work requires atleast three consecutive beats for performing

PVC classification, owing to the manner in which the features are computed. For training,

validating and testing the models used in PVC classification, R-peak locations are used

from the corresponding manual annotations available at Physionet for records in each

dataset. For each R-peak, two ECG beat segments, namely P and Q, are derived from

the denoised ECG signal. Beat segment P is obtained using a window of 250ms prior

to the R-peak location and 400ms afterward (a total of 235 samples at 360Hz sampling

frequency). Similarly, beat segment Q is obtained using a window of 125ms prior to the

R-peak location and 125ms afterward (91 samples). These two segments are used to create

inputs for training a semisupervised autoencoder.

Beat-triplet features

As it can be observed, the autoencoder has two input layers. The first set of input is simply

the 235 samples of beat segment P. The second set of inputs to the autoencoder comprises

four features computed from three consecutive R-peaks (ri, ri−1, ri−2):

(i) RR-interval in terms of heart rate (HR). RR-interval is simply the duration between

the two consecutive R-peaks given by (4.9). For each R-peak ri; this feature is

computed as follows:

rri = ri − ri−1 (4.9)

HRi = (Fs ∗ 60)/rri (4.10)

where, Fs is the sampling frequency i.e., 360Hz.

(ii) Successive Difference of RR-intervals in percentage (%) (SDRR). This is the

percentage change in duration between two consecutive RR intervals:
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SDRRi =
rri − rri−1
rri−1

∗ 100 (4.11)

(iii) Correlation Coefficient (Ri,i−1). This feature is computed using beat segments Qi

and Qi−1 that correspond to R-peaks ri and ri−1. For one-dimensional vectors Qi

and Qi−1; this feature is computed as below (Johnson and Wichern, 2002):

Cov(X, Y ) =

∑m
k=1(Xk −X)(Yk − Y )

m− 1
(4.12)

Ri,i−1 =
Cov(Qi, Qi−1)√

Cov(Qi, Qi)Cov(Qi−1, Qi−1)
(4.13)

where m in (4.12) is the number of samples in Qi (or Qi−1).

(iv) The last feature is the Skewness of Cross-correlation (SCC ). As the name implies,

this is skewness (Zwillinger and S.Kokoska, 2000) of the cross-correlation sequence

computed between segments Qi and Qi−1. Cross-correlation (CorrX,Y ) of two

sequences, X and Y, is computed as:

CorrX,Y [l] =
∑
k

X[k]Y [t+ l] (4.14)

where l is the lth sample in CorrX,Y . The length of CorrX,Y is mX+mY −1, where mX

and mY are the number of samples in X and Y respectively. SCCi is then computed

as follows:

µ3(X) =
1

M

M∑
k=1

(Xk −X)3 (4.15)

Skew(X) =
µ3(X)

(Cov(X,X))3/2
(4.16)
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SCCi = Skew(CorrQi,Qi−1
) (4.17)

where M is the number of samples in X, µ3(X) is the third central moment of X

(Zwillinger and S.Kokoska, 2000). Additionally, the sequence CorrQi,Qi−1
is scaled in

the range [-1,1] before using it in (4.17).

Figure 4.8. Architecture of the Semisupervised Autoencoder network
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Semi-supervised Autoencoder (SSAE) network

In this work, a neural-network based semisupervised autoencoder is implemented to

efficiently learn three-dimensional encodings of individual ECG beat morphologies that

will be used as features for final PVC classification. The network is semisupervised in that

the architecture consists of an autoencoder component (unsupervised learning) (Goodfellow

et al., 2016) and a binary classifier neural network (supervised learning) (Goodfellow et al.,

2016) embedded together. Unlike traditional autoencoders, the architecture here actually

uses manually computed features (Input Layer 2 in Figure 4.8) along with raw ECG data

(Input Layer 1 in Figure 4.8). This helps the network to not only learn low-dimensional

encodings of beat morphologies but also ensures that these encodings are suitable to be

used as features for distinguishing PVC from non-PVC beats. It should be noted that the

binary classifier component used here is for generating class-specific encodings only and

not for final PVC classification. The overall architecture of the SSAE network is shown

in Figure 4.8. The input to Input Layer 1 is the raw ECG samples of segment P (scaled

in the range [-1,1]), described in Section 4.4.3. The input to Input Layer 2 consists of

the beat-triplet features (Section 4.4.3). Input Layer 2 is concatenated with the output of

Encoding Layer to form the overall input to the binary classifier component (see Figure

4.8). The target data for Output Layer 1 (autoencoder’s decoder output) is identical to

the input of Input Layer 1. Output Layer 2 is the binary classifier component’s output and

its target data corresponds to the output class (label) of each beat i.e., PVC or non-PVC.

Ideally, the output of this layer should be [0, 1]T for PVC beats and [1, 0]T otherwise.

SSAE-derived features

The records in the MITDB-DS1 dataset are used for training the SSAE network. This

hybrid network is trained end-to-end using backpropagation (Rumelhart et al., 1986).
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ReLU (Rectified Linear Units) (Goodfellow et al., 2016) activation function is used for

the hidden layers while ”tanh” and ”softmax” activations (Goodfellow et al., 2016) are

applied to Output Layer 1 and Output Layer 2 respectively. Layer weights that gave

the best performance, in terms of F-score, on the validation dataset (MITDB-DS2) are

selected and the SSAE network with these layer weights is labeled SSAEbest . The three-

dimensional encodings (output of Encoding Layer) from the SSAEbest model constitute the

SSAE-derived features.

4.4.4 PVC Classification

The SSAE-derived features (see Section 4.4.3) along with beat-triplet features (see Section

4.4.3), all computed from records in MITDB-DS1 dataset, are used for training a binary

Random Forests model for detecting PVC beats. Hyper-parameter tuning using Grid

Search is employed for selecting the best Random Forests model for PVC classification. The

hyperparameter tuning search space for Random Forests included four primary parameters

as given in Table 4.5. Explanations for the hyperparameters are the same as provided in

Section 4.3.4.

Table 4.5. Hyperparameter tuning search space for PVC Random Forest model

Hyperparameter Range of values Best value

Number of trees [10,11,12,...,250] 162

Maximum tree depth [5,10,15,..., 50, None] None

Maximum features [auto, 7] (auto : square root
of number of features)

auto

Class weight [‘balanced’, None] ’balanced’
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This concludes the section on PVC detection algorithm description. The occurrence of

PVCs in certain specific patterns gives rise to different ventricular arrhythmias. Since

these patterns are clearly defined in medical literature (Aehlert, 2018), simple logical

analysis that searches for these patterns is implemented to detect the presence of these

arrhythmias. It must be remembered that this logical analysis step is based on beat label

information obtained in the PVC classification stage and hence the detection accuracy for

these arrhythmias inherently depends on the accuracy of PVC detection, which is provided

later in Section 4.4.10. These arrhythmias and the logic required to detect them are briefly

discussed below.

4.4.5 Ventricular Bigeminy

Ventricular Bigeminy (VBI) refers to the occurrence of alternating PVC and non-PVC

beats. To confirm ventricular bigeminy, presence of atleast three consecutive pairs of Non-

PVC/PVC beats is required. If PVC beats are denoted as V and non-PVC beats are

denoted as N, then the algorithm searches for the pattern [NVNVNV...]. Hence atleast six

beats are required to detect presence of VBI episodes. The occurrence of two consecutive

N beats marks the end of a ventricular bigeminy episode. To detect another episode, the

algorithm once again searches for the sequence [NVNVNV...] in the remaining beats. Once

the sequence is found, it marks the onset of another VBI episode and continues scanning

until it encounters two consecutive N beats which marks the offset of this new episode. This

process is repeated for all the remaining beats in the input ECG signal. Figure 4.9 shows

an example of a ventricular bigeminy episode.

4.4.6 Ventricular Trigeminy

Ventricular Trigeminy (VTRI) refers to the occurrence of a PVC beat after every two

consecutive non-PVC beats. To confirm ventricular trigeminy, presence of atleast three
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Figure 4.9. Example of Ventricular Bigeminy episode. The red markers indicate PVC beats
and green markers indicate Non-PVC beats

consecutive triplets of the form [NNV] is required. To detect a Ventricular Trigeminy

episode, the algorithm searches for the pattern [NNVNNVNNV...]. Hence atleast nine beats

are required for detection of VTRI episodes. The occurrence of any beat-triplet other

than [NNV] beat-triplet marks the end of a ventricular trigeminy episode. To detect

another episode, the algorithm once again searches for the sequence [NNVNNVNNV...] in

the remaining beats. Once the sequence is found, it marks the onset of another VTRI

episode and continues scanning until it encounters a beat-triplet other than [NNV] which

marks the offset of this new episode. This process is repeated for all the remaining beats

in the input ECG signal. Figure 4.10 shows an example of a ventricular trigeminy episode.

4.4.7 Ventricular Quadrigeminy

Ventricular Quadrigeminy (VQUAD) refers to the occurrence of a PVC beat after every

three consecutive non-PVC beats. To confirm ventricular quadrigeminy, presence of atleast

three consecutive quadruplets of the form [NNNV] is required. To detect a ventricular

trigeminy episode, the algorithm searches for the pattern [NNNVNNNVNNNV...]. Hence

atleast twelve beats are required for detection of VQUAD episodes. The occurrence of any

beat-quadruplet other than [NNNV] beat-triplet marks the end of a ventricular quadrigeminy

78



Figure 4.10. Example of Ventricular Trigeminy episode. The red markers indicate PVC
beats and green markers indicate Non-PVC beats

episode. To detect another episode, the algorithm once again searches for the sequence

[NNNVNNNVNNNV...] in the remaining beats. Once the sequence is found, it marks the onset

of another VQUAD episode and continues scanning until it encounters a beat-quadruplet

other than [NNNV] which marks the offset of this new episode. This process is repeated

for all the remaining beats in the input ECG signal. Figure 4.11 shows an example of a

ventricular quadrigeminy episode.

Figure 4.11. Example of Ventricular Quadrigeminy episode. The red markers indicate PVC
beats and green markers indicate Non-PVC beats
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4.4.8 Ventricular Runs

Ventricular runs refer to occurrence of three or more consecutive PVCs at heart rates

greater than 100 bpm. At heart rates greater than 120 bpm, these rhythms are also known

as Short Ventricular Tachycardia episodes. In fact, when ventricular runs persist for a

duration greater than 30s at heart rates exceeding 150 bpm, it leads to sustained VT

episodes.

Figure 4.12. Example of Ventricular Run episode. The red markers indicate PVC beats
and green markers indicate Non-PVC beats

To detect ventricular runs, the algorithms searches for groups of three or more

consecutive PVC beats. For every group of three or more consecutive PVC beats, the

mean heart rate is computed as follows:

RRgroup =
1

n− 1

n−1∑
k=1

rrk (4.18)

HRgroup =
Fs ∗ 60

RRgroup

(4.19)

where,

- n is the number of PVCs in the beat group.

- rrk is the kth RR-interval in the group, computed using (4.9).

- Fs is the sampling frequency.
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If the value of HRgroup exceeds 100 bpm, that group of beats is labeled as a ventricular

run episode. Figure 4.12 shows an example of a ventricular run episode.

4.4.9 Ventricular Couplets

Ventricular couplets or pairs refer to occurrence of exactly two consecutive PVCs at heart

rates greater than 100 bpm. To detect ventricular couplets, the algorithm simply searches

for the presence of [VV] pattern in the beats and each such pair is marked as a ventricular

couplet episode. Figure 4.13 shows an example of a ventricular couplet episode.

Figure 4.13. Example of Ventricular Couplet episode. The red markers indicate PVC beats
and green markers indicate Non-PVC beats

Table 4.6. Dataset information for PVC classification

Type Dataset PVC Non PVC Total

Training MITDB–DS1 3680 47055 50735

Validation MITDB-DS2 3218 46370 49588

Test INCARTDB 19990 155684 175674
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4.4.10 Results

The performance of the algorithm was evaluated on the MITDB and INCARTDB

databases. The MITDB-DS1 dataset has 3680 PVC and 47055 non-PVC examples.

Similarly, the MITDB-DS2 dataset consists of 3218 PVC and 46370 non-PVC examples

while the INCARTDB dataset consists of 19990 PVC and 155684 non-PVC examples.

This information is summarized in Table 4.6. Table 4.7 shows the performance scores of

the algorithm. The results are provided in terms of Sensitivity (Se), positive predictive value

(PPV) and F-Score (FSc). These metrics are computed using (4.5) through (4.7). It can be

seen that our algorithm achieves a sensitivity of 100.00%, PPV of 98.55% and FSc of 99.27%

on the training (MITDB-DS1) dataset. Similarly it achieves a sensitivity of 92.67%, PPV

of 95.88% and FSc of 94.10% on the validation (MITDB-DS2) dataset while achieving a

sensitivity of 88.08%, PPV of 94.76% and FSc of 91.30% on the test (INCARTDB) dataset.

Since the SSAE network also has a binary classifier component, initial PVC classification

performance using the SSAE network was evaluated. The corresponding results are shown

in Table 4.8. It can be seen from this table that using the SSAE network alone results

in decreased values of precision (PPV) and subsequently decreased F-Score (FSc) values

compared to the final results in Table 4.7. This was the primary motivation behind using

the additional Random Forests model for final PVC classification. The accuracy statistics

in Table 4.7 and Table 4.8 reflect the performance of the PVC classification on features

derived using manual R-peak annotations for the MITDB and INCARTDB records. Since

this dissertation is focused on developing a fully automated arrhythmia analysis system, it is

imperative that the above described algorithm performs well on R-peaks obtained using an

automated R-peak detection approach. In that regard, Table 4.9 shows the performance of

the PVC classification algorithm using R-peaks that were determined by the beat detection

algorithm presented in Chapter 3. The results in this table are shown for all the records in

each database.
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Figure 4.17 shows a two-dimensional mapping of the seven PVC features. This 2D-

representation is computed using the popular visualization technique called t-SNE, which

short for t-Distributed Stochastic Neighbor Embedding ((Maaten and Hinton, 2008)). From

this plot it can be seen that the PVC and non-PVC representations form (almost) disjoint

class-specific clusters thus indicating the usefulness of the seven features for distinguishing

PVC beats from non-PVC beats.

Figure 4.14. Confusion matrix depicting model performance on training dataset

Figure 4.15. Confusion matrix depicting model performance on validation dataset

Figures 4.14, 4.15 and 4.16 show the confusion matrices depicting the performance of

the PVC classification model on the training, validation and test datasets respectively.

In these figures, the rows(upper case PVC and NON PVC) represent the true labels and the

columns represent the predicted labels (lower case pvc and non pvc).
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Table 4.7. Performance evaluation on MITDB and INCARTDB Datasets using the SSAE-
RF model

Dataset Se PPV FSc

MITDB-DS1
(Training dataset)

100.00% 98.55% 99.27%

MITDB-DS2
(Validation dataset)

92.67% 95.58% 94.10%

MITDB
(Overall)

96.58% 97.20% 96.89%

INCARTDB
(Test dataset)

88.08% 94.76% 91.30%

Table 4.8. Performance Evaluation on MITDB and INCARTDB Datasets using only the
SSAE network

Dataset Se PPV FSc

MITDB-DS1
(Training dataset)

96.37% 85.93% 91.03%

MITDB-DS2
(Validation dataset)

96.02% 83.33% 91.07%

MITDB
(Overall)

96.42% 84.70% 90.18%

INCARTDB
(Test dataset)

92.26% 89.90% 91.07%
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Figure 4.16. Confusion matrix depicting model performance on test dataset

Figure 4.17. Scatterplot showing 2D-representation of the seven PVC features using t-SNE.

Figure 4.18 shows an example of PVC detection in a 5-second ECG segment. The top

plot shows the denoised ECG with the algorithm’s PVC and non-PVC classifications along

with reference PVC labels. The bottom plot shows the classification scores of the Random

85



Table 4.9. Performance evaluation on MITDB and INCARTDB Datasets using algorithm-
based R-peak annotations

Dataset Se PPV FSc

MITDB 93.17% 94.41% 93.79%

INCARTDB 88.55% 89.06% 88.80%

Figure 4.18. Detection of multi-form PVCs in a 5-second ECG segment extracted from
record 200 in the MITDB-DS2 dataset.

Forests model for each beat. Scores above the 0.5 threshold correspond to PVC beats. It

can be seen that the PVCs in this example have varied morphologies (the first one has

positive QRS polarity while the remaining two PVCs exhibit negative QRS polarity), and

86



Table 4.10. Comparison with State-of-the-art Methods for records in the MITDB-DS2
Dataset

Method Se PPV FSc

(Llamedo and Mart́ınez, 2011) 83.0% 88.0% 85.4%

(Llamedo and Martinez, 2012) 89.0% 87.0% 88.0%

(de Chazal and Reilly, 2006)a 94.3% 94.3% 94.3%

(Oster et al., 2015)b 92.7% 96.2% 94.5%

(Kiranyaz et al., 2016)c,d 93.9% 90.6% 92.2%

(Ort́ın et al., 2019)d 95.4% 88.8% 92.0%

SSAE-RF classifier 92.7% 95.6% 94.1%
(this dissertation)

a500 beats per record were used for training
bSemi-supervised approach with expert assistance
cFirst five minutes per record were used for training
dResults are for entire MITDB database (MITDB-DS1 and MITDB-DS2)

the algorithm detects all of them. This demonstrates the algorithm’s ability to robustly

detect multiform PVCs.

Comparison with other methods

We compared the performance of the algorithm developed in this work with other state-

of-the-art techniques in literature for PVC classification. Table 4.10 and Table 4.11 show

the comparison statistics for MITDB-DS2 and INCARTDB databases respectively.It must

be noted that for the purpose of comparisons, results provided in Table 4.7 are used as the

other works report their results based on manual R-peak annotations. It can be seen that

the PVC classification algorithm described in this chapter performs comparably or better
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Table 4.11. Comparison with State-of-the-art Methods for records in the INCARTDB
Dataset

Method Se PPV F1

(Llamedo and Mart́ınez, 2011)a,b 82.0% 88.4% 85.1%

(Llamedo and Martinez, 2012)a,b 88.0% 96.0% 91.8%

(Oster et al., 2015)b,c 95.4% 99.3% 97.3%

SSAE-RF classifier 88.1% 94.8% 91.3%
(this dissertation)

aFusion beats are considered as PVCs
bMulti-lead ECG information used (leads II and V1)
cSemi-supervised approach with expert assistance

than the other methods. It has to be noted the algorithms of (Oster et al., 2015) are not

automatic (they involve expert assistance) while the authors of (Llamedo and Martinez,

2012) use multi-lead (leads II and V1) rather than single-lead ECG information from the

INCARTDB records in their approach. Also the authors of (de Chazal and Reilly, 2006)

and (Kiranyaz et al., 2016) include a subset of beats from the MITDB-DS2 dataset as part

of their training data (see footnotes for Table 4.10 and Table 4.11).

4.5 Conclusion

In summary, this chapter presents algorithms for automated detection of ventricular

arrhythmias. Beat-independent arrhythmias such as ventricular fibrillation and sustained

ventricular tachycardia are detected using time-domain and feature-domain features along

with SWT analysis. These features are input to a Random Forests classifier to achieve

accurate VT/VF detection performance on VFDB and AHADB ECG records. Following

description of VT/VF rhythms, a novel technique for automatic detection of beat-
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dependent arrhythmias based on PVC beats is presented. A combination of semisupervised

autoencoders and random forests is used for achieving accurate PVC detection results on

the MITDB and INCARTDB ECG records. The PVC detection approach described in this

chapter demonstrates superior performance over current-state-of-the art techniques that

utilize only single-lead ECG data and that do not require expert assistance. A limitation

of the proposed PVC detection approach is the requirement that the ECG recording belong

to lead-II. The SSAE network is trained with ECGs recorded using lead-II configuration and

since ECG beat morphologies could vary with different lead orientations, the accuracy may

vary accordingly (negative-polarity QRS complexes such as in lead V1 might result in false

positives, for instance). Since lead-II configuration is the primarily used setup for gaining

insights into QRS complex (beat) morphology in single-lead ECG systems, the algorithm’s

preference for using data from lead-II configuration is justified. Using the beat labels from

the PVC classification stage, logical analysis-based techniques for detection of additional

five ventricular arrhythmias viz., ventricular bigeminy, ventricular trigeminy, ventricular

quadrigeminy, ventricular runs and ventricular couplets, is presented. This concludes the

description of algorithms for detecting ventricular arrhythmias. The next chapter provides

in-depth analysis of algorithms that focus on detecting supraventricular arrhythmias.
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CHAPTER 5

SUPRAVENTRICULAR ARRHYTHMIAS

5.1 Introduction

Supraventricular arrhythmias refer to cardiac rhythms that originate in the cardiac cells

above the ventricles. This includes the atrio-ventricular (AV) node, atria and the Sino-

Atrial (SA) node. The electrical impulses may be abnormally conducted from any of these

sites. When the atria initiate cardiac cycles by abnormally firing electrical impulses, it

results in occurrence of Premature Atrial Complexes (PACs). On the other hand, when

these ectopic beats are initiated in the AV node, this results in occurrence of Premature

Junctional Complexes (PJCs). Although the SA node is the heart’s natural pacemaker, still

there may be irregularities associated with its impulse discharge. For example, the SA node

may fire slower than usual due to conduction blocks which could result in Sinus Bradycardia.

Similarly, abnormally rapid electrical discharges from the SA node could result in presence

of Sinus Tachycardia. In this dissertation, no distinction is made between PACs and PJCs

in terms of detection and are together termed Supraventricular Beats (SVEBs). The

supraventricular arrhythmias discussed in this chapter are as follows:

1. Atrial Fibrillation

2. Supraventricular Ectopic Beats

3. Supraventricular Bigeminy

4. Supraventricular Trigeminy

5. Supraventricular Quadrigeminy

6. Supraventricular Couplets
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7. Supraventricular Runs

8. Sinus Bradycardia

Although atrial fibrillation (AF) is theoretically a sequence of supraventricular ectopic

beats and hence a supraventricular arrhythmia, in this dissertation, AF is detected using

fixed-length ECG segments (60 epochs) whereas SVEBs and remaining arrhythmias are

detected on a beat-by-beat basis. Hence AF detection is carried out first followed by

detection of SVEBs and other arrhythmias∗.

5.2 Atrial fibrillation

The American Heart Association defines atrial fibrillation (AF) as a “supraventricular

tachyarrhythmia that is characterized by uncoordinated atrial activation with consequent

deterioration of mechanical function” (January et al., 2014; Kirchhof et al., 2016). Multiple

theories have been put forth to explain the trigger mechanisms for atrial fibrillation. The

common thread to all these theories is the existence of multiple focal points of atrial

excitation, instead of just the Sino-Atrial node, which is the heart’s natural pacemaker.

These multiple focal points are a result of impulse re-entry, which is viewed as a disorder

of impulse propagation, rather than impulse formation (Veenhuyzen et al., 2004). This

leads to disorganized atrial activity resulting in stochastic changes in heart rates. Figure

5.1) shows the electrical activity and corresponding ECG manifestation during AF†. In

the presence of AF, an individual’s heart rate fluctuates in a highly irregular manner

∗Several portions of this chapter have been reproduced/adapted with permission from material
published in (Kalidas and Tamil, 2019): V. Kalidas and L. Tamil, ”Detection of Atrial Fibrillation Using
Discrete-State Markov Models and Random Forests,” Computers in Biology and Medicine, Oct 2019, vol.
113, doi:10.1016/j.compbiomed.2019.103386. c©2019 Elsevier Ltd

†Image reprinted with permission from Mayo Foundation for Medical Education and Research.
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and the atrial rates can vary anywhere between 240 and 300 beats per minute (bpm).

Figure 5.2 shows an example of ECG segment with AF episode. It can be seen that

the RR-interval behavior is random during AF presence. AF episodes can be sustained

or self-terminating and are usually grouped into various categories depending on episode

duration (January et al., 2014). Occurrence of two or more episodes of AF is termed

Recurrent AF whereas episodic occurrences that terminate spontaneously within seven

days are termed as Paroxysmal AF. When the arrhythmia lasts for more than seven days,

it is categorized as Persistent AF and episodes lasting more than a year are labeled as

Permanent AF. Although there does exist a significant number of instances where AF

is not associated with any other detectable cardiac dysfunction, for about two-thirds of

patients, AF is usually associated with other cardiac abnormalities (Zoni-Berisso et al.,

2014). AF is also known to contribute to a five-fold increase in strokes and can turn

life-threatening if not properly diagnosed and treated. This is especially the case in the

presence of asymptomatic AF, also known as silent AF, where no visible symptoms are

present. AF episodes often lead to other disorders apart from stroke such as heart failure,

hemodynamic impairment and thromboembolic events (January et al., 2014). AF also

impacts cognitive functioning, leading to decreased quality of life and increased healthcare

costs (Zoni-Berisso et al., 2014). AF is one of the most commonly occurring arrhythmias,

affecting about 1–2% of the general population and its occurrence varies with age and

gender. The incidence proportion of AF is between 0.12% and 0.16% among individuals

younger than 49 years, approximately 4% in individuals in the age group of 60–70 years and

about 10%–17% among those older than 80 years (Kirchhof et al., 2016; Zoni-Berisso et al.,

2014). Also, the prevalence of AF is slightly higher in males compared to females (a ratio

of 1.2:1) (Kirchhof et al., 2016), and paroxysmal AF is more prevalent in younger adults.

In 2010, 20.9 million men and 12.6 million women were estimated to suffer from AF, with

increased prevalence in developed countries. It is expected that 25% of middle–aged adults
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in the U.S. and Europe will develop AF and by the year 2030, 14–17 million individuals

in U.S. are estimated to be affected by AF. The rate of prevalence of AF in U.S. is

expected to increase with 120,000 to 215,000 patients being additionally diagnosed every

year. This increase in AF prevalence can be attributed to multiple factors including aging

population, improved diagnosis techniques and advanced patient monitoring systems that

help detect silent and paroxysmal AF episodes better, along with significant strides made in

understanding the science behind atrial fibrillation (Zoni-Berisso et al., 2014). Automated

methods for classification of AF episodes generally rely on the information extracted

from electrocardiogram (ECG) signals. The absence of periodically occurring P-waves

or presence of fibrillatory f-waves in ECG (seen as undulations of the isoelectric baseline)

coupled with irregular heart rate fluctuations are primary indicators of AF. Despite the

significant progress made in understanding the factors contributing to occurrence of atrial

fibrillation episodes, development of automated techniques to detect AF episodes remains

far from achieving satisfactory results due to several factors. First, there are several other

arrhythmias that typically mimic AF in terms of their manifestation on the ECG as well

as possessing similarities in terms of spectral content, extent of heart rate variability, etc.

Secondly, the presence of external noise, especially owing to electrode/patient movements,

hinders the performance of AF classifiers severely, giving rise to increased misclassification

rates, and this gains further significance in the context of today’s wearable sensors.

Currently, there is a growing interest in the use of wearable sensors for ECG recording and

subsequent arrhythmia monitoring (Zhao et al., 2018). The modern-day wearable sensors

offer cost-effective and hassle-free solutions for vital monitoring purposes, but are extremely

susceptible to noise interference and are highly sensitive to motion artifacts. These afore-

mentioned factors necessitate the need to develop an AF classifier that is highly robust to

noise while being capable of accurately identifying AF rhythms, especially in the presence

of other similar arrhythmias. These challenges serve as the primary motivation for the work
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presented here. In this chapter, an RR-interval analysis technique to detect AF episodes

from single-lead ECG signals is presented. The discrete-state transitions in the RR-interval

time series are modeled as an eight-state Markov process. The use of Markov models offers

the advantage that sequential pattern changes in heart rates can be effectively captured,

thus aiding in better distinction between AF and other arrhythmias with prominent heart

rate variations. These Markov probabilities, along with other statistical parameters that

help quantify randomness in RR-interval transitions, are input to a Random Forests based

AF classifier for initial AF classification.

Figure 5.1. Electrical activity and ECG manifestation during Atrial Fibrillation. (Source:
mayoclinic.org. c©Mayo Foundation for Medical Education and Research.)

5.2.1 Literature Review

Several algorithms have been proposed in literature for detection of atrial fibrillation

episodes. Automated AF detection techniques usually involve analyzing ECG signals to
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Figure 5.2. RR-interval behavior during AF presence. Top. ECG segment with AF episode.
Bottom. Corresponding RR-interval series.

estimate the degree of irregularity in the RR-interval sequence, which is a characteristic

feature of AF (other than in the presence of paced heart rates). In that regard, the

authors of (Carrara et al., 2015) propose use of linear and non-linear heart rate dynamics to

distinguish AF rhythms from normal sinus rhythms and sinus rhythms with frequent ectopic

beats. In another RR-interval based approach (Moody, 1983), the sequence of RR intervals

during AF is modeled as a three-state Markov process, namely short, regular and long.

The RR-intervals were assigned to one of these states based on the relation of the current

RR-interval with the exponentially averaged mean RR-interval. Histogram analysis on

distributions of RR intervals and first difference of RR-intervals are the basis of the approach

adopted in (Tateno and Glass, 2001), where reference distributions were created for AF and

non-AF classes and at test time, the RR-interval distributions were matched with these

reference distributions using Kolmogorov-Smirnov test for goodness-of-fit (Stephens, 1974).

Other ventricular rate-based methods include studying Lorenz plots (Sarkar et al., 2008)

of RR intervals, where successive RR-intervals are scatter-plotted against each other. The

scatter-plots are more spread out in the presence of AF whereas they stay in one or more
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tight clusters in its absence. AF classification methods based purely on evaluation of RR-

interval entropy have also been found to perform reasonably well in the past (Lake and

Moorman, 2011; Liu et al., 2018; Zhao et al., 2018). These entropy-based approaches rely

on the template-matching (vector similarity) property of RR-segments in an ECG epoch,

where lack of template similarity under a given tolerance indicates presence of AF rhythms

(Lake and Moorman, 2011; Liu et al., 2018; Zhao et al., 2018). The advantage of using

RR-interval based techniques is that the determination of R-peak locations and subsequent

computation of heart rate metrics are robust to most noise sources except electrode motion

artifacts. On the other end of the spectrum, heart-rate independent approaches do not

include any beat detection procedures but they utilize information from atrial activity

and such techniques include analyzing P-wave absence (Ladavich and Ghoraani, 2015),

measuring average F-wave activity (Du et al., 2014), analyzing wavelet features (Ródenas

et al., 2015; Asgari et al., 2015) and implementing echo state neural networks for QRST

cancellation (Petrenas et al., 2012). Use of P-wave and f-wave information can help prevent

false detections in the presence of arrhythmias with continuously varying heart rates. Both

heart-rate based methods and heart-rate-independent techniques have their limitations.

The ECG lead orientation often results in mitigated amplitudes of regular and normal P-

waves. The distinction between f-waves and isoelectric baseline noise is rendered difficult by

frequent overlap of their spectral bandwidths, resulting in poor atrial activity analysis. On

the other hand, examination of irregularities in the ventricular heart rate is complicated in

the presence of other arrhythmias with significant heart rate variations such as frequently

occurring premature ventricular contractions (PVCs) and non-arrhythmic factors such as

electrode motion artifacts that often mimic QRS complex morphologies. These factors can

render QRS detection algorithms inaccurate at times. Over the past decade or so, with

rapid advances in data collection, storage and GPU capabilities, multiple techniques using

deep learning as well as ensemble learning methods have been proposed for AF classification.
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Most notably, the annual Physionet/Computing in Cardiology Challenge for 2017 (Clifford

et al., 2017) focused on identifying AF episodes in short term ECG recordings. The top-

ranked results of this challenge and their respective methods are described in (Hong et al.,

2017; Teijeiro et al., 2017; Zabihi et al., 2017; Datta et al., 2017). Methods described in

(Hong et al., 2017; Teijeiro et al., 2017) leverage deep learning techniques to develop an

AF classifier capable of performing reliably in the presence of other arrhythmias. The

algorithm discussed in (Zabihi et al., 2017) describes an approach based on training a

Random Forests classifier on heart rate dependent features for AF classification. Cascaded

binary classifiers using the Adaboost learning algorithm(Freund and Schapire, 1995) form

the basis of the work described in (Datta et al., 2017). Apart from the algorithms proposed

for the challenge, several other contributions in the field of automated AF classification have

also adopted deep learning-based approaches lately. Recently, the authors of (Rajpurkar

et al., 2017) have proposed a convolutional neural network (CNN) based deep learning

approach to distinguish different arrhythmias. Their model was trained using privately

collected ECG data and its performance was evaluated on the MITDB database. In

another deep learning related approach (Xia et al., 2018), stationary wavelet transforms

and CNN architectures were combined to train a classifier capable of identifying AF

episodes in very short ECG segments (5s long). Although deep learning techniques

offer an attractive alternative to hand-computed feature extraction, limited availability

of labeled AF datasets acts as a major bottleneck for training robust deep learning models

for AF classification. In comparison, the approach described in this chapter towards AF

classification is characterized primarily by implementing a combination of Markov models

and Random Forests classifiers to perform noise assessment and RR-interval based AF

classification. The inconsistency in the detection of P-waves and delineation of fibrillatory

f-waves from noisy ECG recordings contributed to omitting atrial activity analysis in the

approach described in this chapter. The use of an eight-state Markov matrix for AF
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classification, complemented by Random-Forest based feature-learning ensures that the

AF detection algorithm can effectively distinguish AF from other arrhythmias. As can

be observed in Section 5.2.7, the algorithm achieves comparable or better performance

than other state-of-the-art AF classification algorithms on the standard databases. The

AF detection algorithm, along with results and discussion, is described in the following

sections.

5.2.2 Datasets

The Random Forests model used for AF classification was trained, validated and tested

using features derived from datasets available in the Physionet database (Goldberger et al.,

2000). For training the AF classification model, ECG records from the MIT-BIH Atrial

Fibrillation Database (AFDB) (Moody, 1983) were used. On the other hand, ECG records

from the MIT-BIH Arrhythmia Database (MITDB) (Moody and Mark, 2001) were used

to form the test dataset. More information regarding the databases is provided in Section

5.2.6.

5.2.3 Signal Pre-processing

The techniques described in Chapter 2 (Sections 2.2.2 and 2.3.2) are used to denoise the

ECG signal (baseline wander removal and high frequency noise suppression). Following

this, electrode motion (EM) noise classification is performed as per Section 2.4 in Chapter

2. Subsequently beat detection (see Chapter 3) is performed to determine R-peak locations.

This is succeeded by ventricular arrhythmia detection as described in Chapter 4.
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5.2.4 Features for initial AF classification

The R-peak indices i.e., beat locations, labeled rpk, are used to create RR-interval analysis

based features vectors to detect AF presence. The derivation of these features is described

subsequently.

First, the input signal is segmented into 60s epochs with a 30s sliding window. For each

60s epoch, the corresponding R-peaks stored in rpk are used to create feature vectors using

the steps described below.

1. The RR-interval time-series is computed as follows:

rrn−1 = rn − rn−1, 2 ≤ n ≤ N (5.1)

where,

- N is the total number of R-peaks in the epoch

- rn is index of nth R-peak in the epoch - rr is the RR-interval series. It must be

noted that R-peaks classified as PVCs are excluded from this computation.

2. The successive difference of RR-intervals (∆RR) in percentage values, rrper, is next

calculated as follows:

rrper(n−1) = 100 ∗ (rrn − rrn−1)
rrn−1

, 2 ≤ n ≤ N − 1 (5.2)

3. The rrper series is discretized into 8 different states as per Table 5.1. This discretized

series is labeled as rrd with the rrper boundaries for each state having been determined

empirically.
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Table 5.1. State assignment table for ∆RR transitions.

∆RR values (rrper) State (rrd)

(-∞, -50) 1

[-50, -30) 2

[-30, -15) 3

[-15, +15) 4

[+15, +45) 5

[+45, +75) 6

[+75, +100) 7

[+100, +∞) 8

AF features I - Markov matrix features

A 8-by-8 discrete-state Markov matrix B for the rrd state sequence is computed as follows:

∀i, j ∈ [1, ..., 8]

Bij = P (nextstate = j|currentstate = i) (5.3)

8∑
j=1

Bij = 1, 1 ≤ i ≤ 8 (5.4)

In the presence of AF, the Markov matrix B is more densely populated than in the

presence of other arrhythmia with similar magnitude of heart rate variation, such as

ventricular bigeminy/trigeminy/quadrigeminy, etc (see Chapter 4). This can be attributed

to the fact that the variations between successive RR-interval values are random in AF

episodes and do not follow any specific pattern. On the other hand the variations in heart
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rates for ventricular bigeminy/trigeminy, etc. is more regular and deterministic in which

case the matrix B is sparsely populated.

Figure 5.3 shows an ECG segment completely dominated by AF rhythm. The

corresponding Markov matrix (bottom plot) has values that are spread about the center of

the matrix in a largely random fashion, indicating lack of discernible patterns in the heart

rate variations. On the other hand, Figure 5.4 represents a 60s long ECG epoch containing

episodes of ventricular trigeminy, ventricular bigeminy and normal sinus rhythm coupled

with a few ectopic beats. Although there is significant amount of heart rate variation here

as well, evidenced by the rrper series (in the middle subplot), the corresponding Markov

matrix in the bottom plot looks vastly different. Here, most of the transition probability

values are concentrated near the left-bottom and top-right corners of the matrix indicating

the presence of specific sequential patterns in the RR-interval series. The elements of this

8-by-8 discrete-state Markov matrix form the first 64 features for AF classification.

The other feature obtained from the Markov matrix B is the total number of zero-valued

elements present in it. This quantity reflects a measure of sparsity of the Markov matrix

and in the presence of AF, this value is expected to be remain minimal.

AF features II - other RR-interval features

Apart from the features derived from the Markov matrix as described above, eight other

RR-interval based features are also computed to help distinguish AF from other similar

rhythms effectively. They are as follows:

1. Entropy of the rrd state sequence, which indicates the extent of randomness in the

RR-interval transitions. This entropy measure is computed using natural logarithm

as follows:

ess = (−1) ∗
8∑

k=1

[p(sk) ∗ logep(sk)] (5.5)
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where, ess is entropy of the rrd state sequence and p(sk) is the probability of

occurrence of kth state in the rrd state sequence.

2. The p-value of Kolmogorov-Smirnov test (Stephens, 1974) for normality, applied to

the rrper series. The null hypothesis (H=0) is that the rrper series follows a normal

distribution which is the case for AF. The test is conducted at significance level of 5%

and the p-values when the AF is present is generally much greater than 0.05 (Tateno

and Glass, 2001).

3. Coefficient of variation of the RR-interval series, computed as per the equation below:

coeffvar =
σRR

µRR

∗ 100 (5.6)

where, σRR is the standard deviation of RR-interval series without the smallest and

largest intervals. Similarly, µRR is the mean of the RR series without the smallest

and largest intervals (Tateno and Glass, 2001).

4. The remaining two features are based on heart-rate quartiles derived from the RR-

interval series. They include the (i) difference between second and first quartiles, and

(iv) the difference between third and second quartiles.

5. All the above features together form a 70-element feature vector for each epoch.

Subsequently, an [M x 70] matrix is created where M is the total number of 60s

epochs in the ECG signal (with 30s slide interval). This feature matrix is fed as

input to a Random Forests based classifier that classifies each row of the feature

matrix (i.e., each epoch) as either exhibiting AF presence or not.
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5.2.5 AF Classification

The 70 features derived in Section 5.2.4 are used for training a binary Random Forests

classifier for detecting PVC beats. Five-fold cross validation is performed and hyper-

parameter tuning using Grid Search is employed for selecting the best model parameters for

AF classification. The hyperparameter tuning search space for Random Forests included

four primary parameters as given in Table 5.2. Explanations for the hyperparameters are

the same as provided in Section 4.3.4.

Table 5.2. Hyperparameter tuning search space for AF Random Forests model

Hyperparameter Range of values Best value

Number of trees [10,11,12,...,250] 116

Maximum tree depth [5,10,15,..., 50, None] None

Maximum features [auto, 5,10,15,...,70] (auto :
square root of number of

features)

15

Class weight [‘balanced’, None] ’None’

5.2.6 Results

The performance of the AF detection algorithm was evaluated on the MIT-BIH Atrial

Fibrillation Database (AFDB) and the MIT-BIH Arrhythmia Database (MITDB). The

AFDB database (Moody, 1983) has 23 two-lead ECG records, each sampled at 250 Hz

and having a duration of approximately 10 h (except record 06453 which has a duration of

approximately 9 h). The MITDB database (Moody and Mark, 2001) contains 48 two-lead

ECG records, each sampled at 360 Hz and 30 min long. Out of these 48 records, eight
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Figure 5.3. Atrial Fibrillation true positive classification

Table 5.3. Five-fold cross validation results for all Grid search combinations

Fold Training set F-Score Validation set F-score

Fold 1 98.68% + 0.51% 98.17% + 0.23%

Fold 2 98.69% + 0.53% 98.10% + 0.18%

Fold 3 98.79% + 0.48% 97.39% + 0.26%

Fold 4 98.70% + 0.52% 98.06% + 0.21%

Fold 5 98.68% + 0.51% 98.26% + 0.25%

records have substantial AF presence. Signals from lead ECGI for AFDB and lead MLII

for MITDB databases are used respectively. evaluation. Atrial Flutter and Junctional
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Figure 5.4. True negative classification of ventricular arrhythmias

arrhythmias in the AFDB records are grouped as non-AF in this evaluation. Since 60s

epochs are used in the AF detection algorithm here, it would be unfair to compare the

results with beat-to-beat annotations. Hence, instead the true beat-to-beat annotations

are converted into 60s-epoch annotations. A 60s epoch was annotated as having AF only if

at least 50% of the beats in that epoch were originally annotated as AF beats. Using this

approach, 135 AF epochs and 1304 non-AF epochs were obtained for the MITDB database.

Similarly, 5528 AF epochs and 8226 non-AF epochs were obtained for the AFDB database.

The cross-validation results for all combinations in the Grid Search are presented in

Table 5.3. From these the best combination of parameters, shown in last column of Table

5.2 was chosen and an RF model with these parameters was retrained on the entire AFDB

training dataset and labeled AFmodel. The evaluation results of AFmodel are summarized
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Figure 5.5. False positive suppression of ventricular arrhythmias

in terms of sensitivity (Se), Specificity (Sp), positive predicitive value and F-score (FSc)

metrics in Table 5.5. The equations for computing the above three evaluation metrics are

as follows:

Se =
TP

TP + FN
∗ 100 (5.7)

Se =
TN

TN + FP
∗ 100 (5.8)
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Table 5.4. Dataset information for AF classification

Type Dataset AF Non AF Total

Training AFDB 5528 8226 13754

Test MITDB 135 1304 1439

PPV =
TP

TP + FP
∗ 100 (5.9)

FSc =
2 ∗ TP

(2 ∗ TP ) + FP + FN
∗ 100 (5.10)

where, Se refers to sensitivity, Sp refers to specificity and FSc refers to FScore for AF

detection. TP refers to the number of true positives i.e., correctly detected AF segments,

FN refers to number of false negatives i.e., AF epochs misclassified as non-AF, TN refers

to the number of true negatives i.e., correctly detected non-AF segments and FP refers to

the number of false positives, i.e., non-AF epochs misclassified as AF.

A sensitivity of 96.88%, specificity of 99.26%, PPV of 98.87% and an F-Score of 97.87%

was obtained on the AFDB database. Similarly, a sensitivity of 99.26%, a specificity of

97.10%, PPV of 77.91% and an F-Score of 87.30% was obtained on the MITDB database.

The relatively lower F-scores on the MITDB database compared to the AFDB database

can be attributed to the high imbalance in the proportion of non-AF and AF annotations

(nearly 10:1).

5.2.7 Comparison with other AF methods

The performance of the above-described AF detection algorithm is compared with other

state-of-the-art methods whose results have been reported on the AFDB and/or MITDB
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Table 5.5. Performance evaluation on AFDB and AFDB Datasets

Dataset Se Sp PPV FSc

AFDB
(Training dataset)

96.88% 99.26% 98.87% 99.27%

MITDB
(Test Dataset)

99.26% 97.10% 77.91% 87.30%

databases. These statistics are provided in Table 5.2.7. It can be seen that the AFmodel

performs comparably or better than thee other algorithms. The first three methods

listed after the first method (AFmodel) in Table 5.2.7 are heart-rate dependent and do

not utilize atrial activity information. In fact, the work presented in (Moody, 1983) is

one of the earliest publications in the field of automated AF analysis. Their algorithm

considers a three-state (short, regular and long) Markov model for analyzing the RR-

interval sequence and the transition probabilities are compared with that of reference AF

transition probabilities for rhythm identification. The authors explain that the use of

a Markov model in isolation results in unacceptably high false positive rates and hence

they include a filtering and interpolation stage along with an ectopic beat removal step to

improve their accuracy. Although reducing data storage, the definition of only three states

for RR-intervals could sometimes lead to missing crucial heart rate variation information

which can consequently render it difficult to distinguish AF from other similar rhythms. In

the method proposed in (Tateno and Glass, 2001), the distribution of δRR intervals for the

ECG signal is tested against reference distributions of δRR intervals corresponding to AF

and non-AF rhythms respectively. Kolmogorov-Smirnov goodness-of- fit tests were used

for AF detection. This approach needs storage of reference distributions, thus requiring

additional memory. Another potential drawback is that reference distributions as such

do not capture the sequential patterns in δRR intervals that typically distinguish other
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Table 5.6. Comparison with other state-of-the-art methods

Method Remarks Database Se Sp

AF model
HRDa

AFDB 96.8% 99.2%

(this dissertation) MITDB 99.2% 97.1%

(Moody, 1983) HRDa
AFDB 93.5% N/A

MITDB N/A N/A

(Tateno and Glass, 2001) HRD
AFDB 94.4% 97.2%

MITDB 88.2% 87.0%

(Dash et al., 2009) HRD
AFDB 94.4% 95.1%

MITDB 90.2% 91.2%

(Asgari et al., 2015) HRIb
AFDB 97.0% 97.1%

MITDB N/A N/A

(Ladavich and Ghoraani, 2015) HRI
AFDB 98.1% 91.7%

MITDB N/A N/A

(Babaeizadeh et al., 2009) HRD+AAc
AFDB 93.0% 98.0%

MITDB N/A N/A

(Xia et al., 2018) HRD+AA
AFDB 98.8% 97.9%

MITDB N/A N/A

aHeart Rate Dependent methods
bHeart Rate Independent methods
cAA indicates atrial activity analysis
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rhythms from AF. This could result in increased false positive rates. The authors of (Dash

et al., 2009) use statistical techniques to capture the beat-to- beat variability to aid detect

AF. These include Root Mean Square of Successive RR Differences (RMSSD), turning

points ratio (TPR) and Shannon entropy metrics. They reason that using these statistical

tools ensures that their algorithm is less reliant on the diversity of the training data. They

also include an ectopic beat filtering step to remove premature beats. The corresponding

results shown in Table 5.2.7 are after ectopic beat removal. Although not shown in Table

5.2.7, they report an increase of around 22% in specificity on the MITDB database (200

series) and a decrease of around 6% in sensitivity after ectopic beat removal (Dash et al.,

2009). The approaches of the next two methods are purely entropy based, where AF

classification is based on entropy measures corresponding to template matching of RR-

segments (Liu et al., 2018; Zhao et al., 2018). The results of (Liu et al., 2018) indicate

a higher sensitivity than our approach, but this comes at a significantly lower specificity

for both the databases under consideration in Table 5.2.7, especially the MITDB database.

The authors carried out analysis for three window types, namely, 12-beat, 30-beat and

60-beat windows. In Table 5.2.7, we have shown the results for only the 60-beat windows

which provided the best accuracy amongst their three window choices. For the MITDB

database, their results are provided separately for the MITDB- 100 series and MITDB-

200 series in their paper. Therefore, we recomputed the specificity for the overall MITDB

database using the statistics provided in Tables 1 and 2 in (Liu et al., 2018). The sensitivity

on the MITDB database is used directly from Table 1 in (Liu et al., 2018) as this reflects

their overall sensitivity. The algorithms in (Zhao et al., 2018) are also developed using

similar entropy-based techniques. Their results are computed for 30-beat windows and

it can be seen that their accuracy on the AFDB database is lower than that of the AF

classification algorithm developed in this dissertation. The results on the MITDB database

were not available for their work. The subsequent two methods i.e., that of (Ladavich and
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Ghoraani, 2015; Asgari et al., 2015) are rate-independent and hence do not perform any

beat detection. They report similar performance metrics as ours on the AFDB database.

The slightly higher sensitivity ( 1%) reported by (Ladavich and Ghoraani, 2015) can be

attributed to the use of a smaller window size of 7 beats for AF detection, compared to

60s epochs used by algorithm developed in this dissertation. But the use of this smaller

window size results in decreased specificity (91.7%) and PPV (79.2%), as reported by the

authors. The results of (Asgari et al., 2015) are based on 2-fold cross-validation on the

AFDB database and evaluations on the MITDB database have not been reported. The

next two methods listed in Table 5.2.7 i.e., that of (Babaeizadeh et al., 2009; Couceiro et al.,

2008) implement both beat detection as well as atrial activity analysis in their methods.

As it can be seen, our algorithm has a much higher sensitivity than theirs on the AFDB

database. Additionally, the authors in (Moody, 1983) do not report a specificity for their

method. Instead they report a positive predictive value (PPV) of 85.9% on the AFDB

database. Similarly, PPV metrics of 96.1%, 79.2% and 98% on the AFDB database are

reported by (Tateno and Glass, 2001; Ladavich and Ghoraani, 2015; Babaeizadeh et al.,

2009) respectively. In comparison, AFmodel achieves a PPV of 98.87% for the AFDB

database. A deep learning-based approach listed at the end of Table 5.2.7 (Xia et al.,

2018), consists of Deep Convolutional Neural Network based AF classifiers. They use 5s

epochs for AF detection that can help detect very short AF episodes. They propose two

kinds of inputs for their deep learning models, (i) using Short-Term Fourier Transforms and

(ii) using SWT, respectively. Both the techniques provide similar accuracies. Their results

are based on ten-fold cross-validation performed on the AFDB database. A sensitivity

of 98.3% and a specificity of 98.2% is reported on the AFDB database, which is slightly

better than our sensitivity and slightly lower than our specificity. It would be interesting

to see their results on the MITDB database as well which would help in assessing their

algorithm’s ability to generalize across multiple databases. In fact, most algorithms in Table

116



5.2.7 report metrics evaluated on the AFDB database (usually cross-validated) and not on

other databases such as the MITDB database, thus offering limited information regarding

generalization capabilities of their respective techniques. Other recent contributions in

the field of automated AF detection also use deep learning (Hong et al., 2017; Teijeiro

et al., 2017; Rajpurkar et al., 2017) and ensemble approaches (Datta et al., 2017) to

develop AF classifiers. In the deep-learning based approach of(Rajpurkar et al., 2017),

the authors trained a CNN-based arrhythmia detector using privately collected ECG data

that achieved an AF detection F-score of 66.7% on the MITDB database. It is worth

noting that their classifier was trained to classify fourteen different arrhythmias and not

just atrial fibrillation. The AF classification algorithms published in (Hong et al., 2017;

Teijeiro et al., 2017; Zabihi et al., 2017; Datta et al., 2017) were developed and validated on

the Physionet/Computing in Cardiology Challenge 2017 training and test datasets. Their

algorithms were top ranked in the challenge, achieving F-scores in excess of 83% on the

test dataset. They do not report accuracy statistics on the AFDB and MITDB databases,

and hence they have not been included in Table 5.2.7 for comparison.

This concludes the AF detection stage. The subsequent sections describe algorithms

for detection of supraventricular ectopic beats and associated arrhythmias.

5.3 Supraventricular Ectopic Beats

As mentioned at the beginning of the chapter (prior to Section 5.2), Supraventricular

Ectopic Beats (SVEBs) include both PACs and PJCs. SVEB detection is performed on

a beat-by-beat basis and is implemented through logical analysis techniques. They are as

follows:

1. Pre-process the incoming ECG signal as described in Chapter 2.
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2. Perform ventricular fibrillation/sustained ventricular tachycardia (VF/VT) detection

as described in Section 4.3

3. Identify ECG segments with VF/VT and omit them for further analysis.

4. Perform R-peak (beat) detection as described in Chapter 3 and store the R-peak

locations in a vector r peaks. Mark each R-peak as unvisited.

5. Compute RR-interval between the first two R-peaks using equation (5.1) and store

this value in the vector rr series. Mark these two R-peaks as non-SVEB indicating

these R-peaks are not supraventricular beats.

6. If no unvisited R-peaks remain in r peaks, then go to step 7. Else, select the next

unvisited R-peak r i in r peaks and implement the following steps:

(i) Check if r i is a PVC beat. If so, mark it as non-SVEB and go back to Step 6.

Else, continue.

(ii) Check if r i is part of an AF segment. If so, mark it as non-SVEB and go back

to Step 6. Else, continue.

(iii) Compute RR-interval rr i using (5.1).

(iv) Check to see if this RR-interval is less than a pre-defined threshold thr sveb.

This threshold is defined as:

thr sveb = thr ∗ rr med (5.11)

where,

- rr med is the median of the ten most recent values in the vector rr series. If

rr series vector contains less than ten values, then take the median of all the

values in the vector to compute rr med.
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Table 5.7. Performance evaluation of SVEB algorithm on MITDB Dataset

Dataset Se PPV FSc

MITDB 92.11% 83.77% 87.74%

- thr is a scaling factor set to 0.875 by default. Note that changing this value

will accordingly change the balance between false positives and false negatives.

(v) If the value of rr i is less than thr sveb, then mark r i as SVEB i.e., indicating

that this R-peak is a supraventricular beat and go to Step 6. Else, mark r i as

non-SVEB and append the value rr i to rr series.

7. Return the r peak vector with R-peak locations along with SVEB/non-SVEB labels for

each R-peak.

Figure 5.6. Flow diagram depicting SVEB detection algorithm.

119



This concludes the section on SVEB detection algorithm description and the results for

the same are tabulated in Table 5.7. Figure 5.6 shows a simple flow diagram depicting the

steps involved in SVEB detection. The occurrence of SVEBs in certain specific patterns

gives rise to different supraventricular arrhythmias. Since these patterns are clearly defined

in medical literature (Aehlert, 2018), simple logical analysis that searches for these patterns

is implemented to detect the presence of these arrhythmias. It must be remembered

that this logical analysis step is based on beat label information obtained in the SVEB

classification stage and hence the detection accuracy for these arrhythmias inherently

depends on the accuracy of SVEB detection. These arrhythmias and the logic required

to detect them are briefly discussed below.

5.3.1 Supraventricular Bigeminy

Supraventricular Bigeminy (SVBI) refers to the occurrence of alternating SVEB and non-

SVEB beats. To confirm supraventricular bigeminy, presence of atleast three consecutive

pairs of Non-SVEB/SVEB beats is required. If SVEB beats are denoted as S and non-

SVEB beats are denoted as N, then the algorithm searches for the pattern [NSNSNS...].

Hence atleast six beats are required to detect presence of SVBI episodes. The occurrence

of two consecutive N beats marks the end of a supraventricular bigeminy episode. To detect

another episode, the algorithm once again searches for the sequence [NSNSNS...] in the

remaining beats. Once the sequence is found, it marks the onset of another SVBI episode

and continues scanning until it encounters two consecutive N beats which marks the offset

of this new episode. This process is repeated for all the remaining beats in the input ECG

signal.
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5.3.2 Supraventricular Trigeminy

Supraventricular Trigeminy (STRI) refers to the occurrence of a SVEB beat after every two

consecutive non-SVEB beats. To confirm supraventricular trigeminy, presence of atleast

three consecutive triplets of the form [NNS] is required. To detect a supraventricular

Trigeminy episode, the algorithm searches for the pattern [NNSNNSNNS...]. Hence atleast

nine beats are required for detection of SVTRI episodes. The occurrence of any beat-triplet

other than [NNS] beat-triplet marks the end of a supraventricular trigeminy episode. To

detect another episode, the algorithm once again searches for the sequence [NNSNNSNNS...]

in the remaining beats. Once the sequence is found, it marks the onset of another SVTRI

episode and continues scanning until it encounters a beat-triplet other than [NNS] which

marks the offset of this new episode. This process is repeated for all the remaining beats

in the input ECG signal.

5.3.3 Supraventricular Quadrigeminy

Supraventricular Quadrigeminy (SVQUAD) refers to the occurrence of a SVEB beat after

every three consecutive non-SVEB beats. To confirm supraventricular quadrigeminy,

presence of atleast three consecutive quadruplets of the form [NNNs] is required. To

detect a supraventricular trigeminy episode, the algorithm searches for the pattern

[NNNSNNNSNNNS...]. Hence atleast twelve beats are required for detection of SVQUAD

episodes. The occurrence of any beat-quadruplet other than [NNNS] beat-triplet marks the

end of a supraventricular quadrigeminy episode. To detect another episode, the algorithm

once again searches for the sequence [NNNSNNNSNNNS...] in the remaining beats. Once the

sequence is found, it marks the onset of another SVQUAD episode and continues scanning

until it encounters a beat-quadruplet other than [NNNS] which marks the offset of this new

episode. This process is repeated for all the remaining beats in the input ECG signal.
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5.3.4 Supraventricular Runs

Supraventricular runs refer to occurrence of three or more consecutive SVEBs at heart

rates greater than 100 bpm. At heart rates greater than 120 bpm, these rhythms are also

known as Supraventricular Tachycardia episodes. This includes sinus tachycardia, atrial

tachycardia and junctional tachycardia. To detect supraventricular runs, the algorithm

searches for groups of three or more consecutive SVEB beats. For every group of three or

more consecutive SVEB beats, the mean heart rate is computed as follows:

RRgroup =
1

n− 1

n−1∑
k=1

rrk (5.12)

HRgroup =
Fs ∗ 60

RRgroup

(5.13)

where,

- n is the number of SVEBs in the beat group.

- rrk is the kth RR-interval in the group, computed using (5.1).

- Fs is the sampling frequency.

If the value of HRgroup exceeds 100 bpm, that group of beats is labeled as a

supraventricular run episode.

5.3.5 Supraventricular Couplets

Supraventricular couplets or pairs refer to occurrence of exactly two consecutive SVEBs

at heart rates greater than 100 bpm. To detect supraventricular couplets, the algorithm

simply searches for the presence of [SS] pattern in the beats and each such pair is marked

as a supraventricular couplet episode.
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5.3.6 Sinus Bradycardia

Sinus bradycardia (SBR) refers to the condition where the SA node fires slower than normal

for a patient’s age (Aehlert, 2018). Heart rates lower than 50 bpm usually fall under the

category of SBR. When the heart rates goes below 40 bpm, it is termed Extreme Bradycardia

(Clifford et al., 2015) or Severe Sinus Bradycardia (Aehlert, 2018). To detect SBR, the

algorithm searches for groups of five or more consecutive beats whose mean heart rate

(computed using (5.13)) is less than 50 bpm. For every such group found, the algorithm

does the following:

(i) Check if the beats in the group include VF/VT segments or PVC beats or AF beats.

(ii) If none of the above conditions are met, then label that group of five or more

consecutive beats as a Sinus bradycardia episode.

5.4 Conclusion

Automated techniques for accurate AF classification represent a continually improving

area of biomedical research. A stable AF classifier is expected to be robust to noise while

remaining extremely precise in distinguishing AF rhythms from other arrhythmias as well

as normal rhythms. The work described in this chapter is a contribution in that direction.

Probabilities from an eight-state Markov matrix (modelling transitions in RR-intervals)

along with other RR-interval features in 60s epochs were used to train a new Random

Forests model for the purpose of AF detection. From Table 5.2.6, it can be observed

that the AF detection algorithm described in this chapter achieves consistently high

values of sensitivity, specificity and F-Scores on different sets of databases with different

sampling frequencies - MITDB (360 Hz) and AFDB (250 Hz). This confirms the ability
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of the proposed algorithm to generalize well across multiple databases irrespective of the

underlying sampling rate as long as this information is provided as input to the algorithm.

This concludes the description of supraventricular arrhythmias. The next chapter

presents a cloud-based ECG analysis platform for performing online cardiac arrhythmia

detection.
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CHAPTER 6

AUTOECG

6.1 Introduction

The research presented in Chapters of this dissertation is translational in nature and

can be used in real-world settings. This is demonstrated by deploying the algorithms

described in Chapter 2 through Chapter 5 in a fully functional cloud platform - AutoECG.

AutoECG is a first-of-its-kind web service that facilitates automated cardiac arrhythmia

detection using information extracted from single-lead electrocardiogram (ECG) signals.

As described in Chapter 1, the algorithms developed in this dissertation, and therefore

deployed in AutoECG, are capable of detecting the following fifteen cardiac arrhythmias:

1. Ventricular Fibrillation and Sustained Ventricular Tachycardia

2. Premature Ventricular Complexes

3. Ventricular Bigeminy

4. Ventricular Trigeminy

5. Ventricular Quadrigeminy

6. Ventricular Couplets

7. Ventricular Runs

8. Atrial Fibrillation

9. Supraventricular Ectopy

10. Supraventricular Bigeminy
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11. Supraventricular Trigeminy

12. Supraventricular Quadrigeminy

13. Supraventricular Couplets

14. Supraventricular Runs and Sinus Tachycardia

15. Sinus Bradycardia

More than four million Americans are affected by some form of arrhythmia. Atrial

Fibrillation is prevalent in about 2.7 million Americans and is expected to reach 12.1 million

by 2030. Prevalence of Premature Ventricular Complexes (PVCs) is about 69% in adults

over 75 years. These arrhythmias are highly correlated with congestive heart failure, stroke,

high blood pressure and possible sleep apnea. Oftentimes, delayed diagnosis can increase

severity of these arrhythmias. Under these circumstances, it imperative to develop a system

such as AutoECG that aids in continuous ECG monitoring to help provide timely care

and treatment in out-of-hospital settings. According to the American Heart Association

(AHA) Heart Disease and Stroke Statistics 2015 Update (Mozaffarian et al., 2015), there

were 326,000 Out-of-Hospital Cardiac Arrest (OHCA) incidents in the United States in

2014 with a median age of 66 years. Approximately only 60% of these OHCA incidents are

treated by Emergency Medical Services (EMS) personnel out of which 25% of them do not

report any symptoms. In fact, 69.5% of OHCA incidents occur at residences according to

the report. The services of AutoECG gain immense significance in the context of these

facts. More importantly, the software deployed in AutoECG includes algorithms that are

capable of accurately detecting ventricular arrhythmias such as PVC, VF, VT and other

ventricular rhythms and it has been reported that 23% of OHCA incidents exhibit an initial

irregular rhythm of VF or VT. (see Chapter 4). This reiterates the significance and utility

of the AutoECG platform.
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The codebase deployed in AutoECG, pertaining to arrhythmia detection algorithms,

is written in Python 3.6. The entire AutoECG software (in beta testing stage) is

implemented on a 64-bit dual-core Intel(R) Xeon(R) Platinum 8175M CPU processor

operating at a clock frequency of 2.50 GHz. This hardware platform is provided by Amazon

Web Services (https://aws.amazon.com/) in the form of Infrastructure as a Service (IaaS).

The services of AutoECG are available for testing at https://autoecg.utdallas.edu.

Figure 6.1. AutoECG Platform Architecture

6.2 System Architecture

The AutoECG architecture, depicted in Figure 6.1, consists of (i) an ECG acquisition stage,

(ii) an arrhythmia analysis stage and (iii) a results review stage. They are briefly described

below:
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Prior to using the AutoECG platform, users are required to login using their

username/password credentials. All user accounts (users, doctors, technicians, etc.) hosted

in AutoECG are securely protected via Auth0 and data access is compartmentalized

depending on user type and access level.

1. ECG Acquisition: In this stage, the ECG data is read from the user. The AutoECG

platform accepts ECG data in the form of a single-column comma-separated values

(.csv) file. Upon uploading the ECG, the user is required to enter the sampling

frequency which is required for computing heart rate metrics. Once this is completed,

the ECG data is processed for arrhythmia analysis.

Figure 6.2. AutoECG Algorithm Flow

2. Arrhythmia Analysis: In this stage, raw ECG data is first extracted from the

uploaded .csv file. Following this, arrhythmia analysis for detection of the above

mentioned fifteen arrhythmias is performed as follows:
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(i) ECG denoising: ECG de-noising is performed using the techniques described

in Section 2.2.2 for low frequency noise removal and Section 2.3.2 (high-frequency

noise suppression.

(ii) EM noise classification: Following ECG denoising, signal quality analysis is

implemented using the techniques described in Section 2.4. In this stage, ECG

segments with very high grade noise artifacts are identified and suppressed from

any further arrhythmia analysis.

(iii) Ventricular Fibrillation detection: Next, detection of ventricular

fibrillation/sustained ventricular tachycardia (VF/VT) is carried out using the

methodology described in Section 4.3. This stage does not require beat detection

and hence is done prior to beat detection.

(iv) Beat detection: After VF/VT detection is completed, beat detection is

performed using the approach laid out in Chapter 3. The subsequent steps utilize

this beat information for achieving accurate arrhythmia detection performance.

(v) Detection of PVCs and associated arrhythmias: Following beat detection,

detection of PVC beats is implemented using the methods explained in Section

4.4. Using this PVC beat information, additional PVC-dependent arrhythmias

are subsequently detected using logical analysis as described towards the end

Section 4.4.

(vi) Atrial Fibrillation detection: Following PVC detection, detection of atrial

fibrillation (AF) episodes is carried out using the methodology presented in

Section 5.2.

(vii) Detection of other supraventricular arrhythmias: This is the last phase of

the arrhythmia detection cycle and in this phase, detection of supraventricular
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ectopic beats (SVEBs) and SVEB-dependent arrhythmias is carried out using

logical analysis techniques as described in Section 5.3.

This concludes the arrhythmia analysis stage. Figure 6.2 shows the flow diagram

representing the arrhythmia analysis stage.

3. Results Review: The results from the arrhythmia analysis stage are formatted in

the form of a user-readable ECG Analysis Report that contains useful information as

follows:

(a) Summary statement stating all the arrhythmias detected by the algorithm.

(b) Average heart rate (in bpm)

(c) Number of PVCs and SVEBs

(d) Overall duration of high grade noise episodes

(e) Onset and offset of individual high grade noise episodes

(f) Overall duration of individual arrhythmias

(g) Onset and offset of all episodes for each arrhythmia that is detected in the

arrhythmia analysis stage.

This summary report can be downloaded by the users in .pdf format. An example

summary report is presented at the end of the chapter, following Section 6.3. This

report shows arrhythmia analysis results for the uploaded ECG file - tri.csv (see

Filename field in the report). The AutoECG software detects the presence of

ventricular bigeminy (VBI) and ventricular trigeminy (VTRI) in the extracted ECG

and this is highlighted in the ECG Analysis Summary section of the report. The

Analysis Results section provides more detailed information such as processing
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time, ECG duration, average heart rate, arrhythmia episodes, etc. More importantly,

the subsections Ventricular Bigeminy and Ventricular Trigeminy in the report

provide the corresponding onset and offset timestamps for each of the VBI and VTRI

episodes detected by the algorithms along with reporting the overall time duration

for each arrhythmia. It has to noted that the findings in the ECG Analysis Report

should not be used in any diagnostic capacity by the user and that the user must

contact a physician/medical practitioner for further review of the report.

6.3 Conclusion

In conclusion, this chapter presents a cloud-based ECG analysis platform, termed

AutoECG, that hosts the arrhythmia analysis algorithms developed as part of this

dissertation (Chapter 2 through Chapter 5). The algorithms deployed in AutoECG

are device-agnostic and are well-equipped to analyze data from a diverse range of ECG

acquisition devices. Additionally, the AutoECG system is designed to handle ECG signals

spanning 30 seconds to 24 hours, thus facilitating real-time analysis (wearables) as well as

overnight monitoring (hospitals, bedside monitoring, etc.). Implementing a fully automated

arrhythmia system such as AutoECG minimizes burden on physicians and helps them

prioritize their patients thus allowing them to attend to more patients as well as speeding

up diagnosis and treatment. Such systems also have the advantage that they can be easily

integrated into telemedicine platforms for remote delivery of healthcare services.
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ECG Analysis Report05/26/2020

*** Disclaimer: We DO NOT store any information regarding user ECG data or the corresponding analysis results
on our server. This work is part of academic research and hence the results contained in this document should  
not be used in any diagnostic capacity.

----x----x----

Filename : tri.csv
Source   : Web Upload

ECG Analysis Summary
--------------------

This ECG shows signs of ventricular bigeminy and ventricular trigeminy.

Analysis Results
----------------

Processing time (hh:mm:ss)              : 00:00:10

ECG duration (hh:mm:ss)                 : 00:00:30

Noisy segments                          : 0 (0 hours, 0 minutes and 0 seconds)

Number of beats                         : 33
Average heart rate                      : 66.37 bpm

Number of probable PVCs                 : 11
Number of probable PACs                 : 0

Sustained VT/VF episodes                : 0 (0 hours, 0 minutes and 0 seconds)

Short VT episodes                       : 0 (0 hours, 0 minutes and 0 seconds)

Ventricular couplet episodes            : 0 (0 hours, 0 minutes and 0 seconds)

Ventricular bigeminy episodes           : 1 (0 hours, 0 minutes and 6 seconds)
 
        >> Episode 1    : 00:00:03 to 00:00:10

Ventricular trigeminy episodes          : 1 (0 hours, 0 minutes and 12 seconds)
 
        >> Episode 1    : 00:00:10 to 00:00:23

Ventricular quadrigeminy episodes       : 0 (0 hours, 0 minutes and 0 seconds)

Other ventricular episodes              : 0 (0 hours, 0 minutes and 0 seconds)

Atrial fibrillation episodes            : 0 (0 hours, 0 minutes and 0 seconds)

Sinus bradycardia episodes              : 0 (0 hours, 0 minutes and 0 seconds)

Supraventricular tachycardia episodes   : 0 (0 hours, 0 minutes and 0 seconds)

Supraventricular couplet episodes       : 0 (0 hours, 0 minutes and 0 seconds)
     
                                                                                   continued on next page ...
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Supraventricular bigeminy episodes      : 0 (0 hours, 0 minutes and 0 seconds)

Supraventricular trigeminy episodes     : 0 (0 hours, 0 minutes and 0 seconds)

Supraventricular quadrigeminy episodes  : 0 (0 hours, 0 minutes and 0 seconds)
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CHAPTER 7

CONCLUSION

In summary, this dissertation has presented in detail several machine learning based

algorithms, primarily Deep Learning and Random Forests, complemented by logical

analysis, for accurate detection of fifteen different cardiac arrhythmias using information

derived from single lead electrocardiogram (ECG) signals. These algorithms have been

thoroughly discussed from Chapter 2 through Chapter 6.

Prior to description of these algorithms, a brief introduction about the heart’s electrical

system, its significance in regulating cardiac functionality and its manifestation on ECGs is

described in Chapter 1 along with a succinct description of the ECG fiduciary points such as

P-waves, QRS complexes, etc. The subsequent five chapters provide in-depth explanations

pertaining to the arrhythmia analysis approaches developed in this research. The methods

presented in these chapters form the core of this dissertation.

Chapter 2 discusses an important ECG pre-processing step that is crucial to achieving

robust arrhythmia detection performance. This refers to the task of ECG denoising and

signal quality analysis. The former deals with removal of low-frequency and high-frequency

noise. Low frequency noise, also known as baseline wander, is suppressed through the

application of Stationary Wavelet Transforms (See Section 2.2.2) to the ECG signal. This

is complemented by adoption of a deep learning approach to perform high-frequency noise

suppression (see Section 2.3.2). This involves implementing a Denoising Convolutional

Autoencoder that is trained to extract useful ECG signal information in the presence of

high-frequency artifacts. Following this, signal quality analysis is performed to identify

ECG segments corrupted by high-grade noise artifacts, primarily electrode motion artifacts.

To achieve this, a Convolutional Neural Network based binary classifier is developed and

ECG segments deemed to be too noisy by the classifier are omitted from further arrhythmia

analysis (See Section 2.4).
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Next, Chapter 3 presents a two-stage beat (R-peak) detection algorithm. In the first

stage, a Convolutional Autoencoder (CAE) based beat extractor model is developed. This

CAE based beat extractor model is trained to extract potential QRS complexes from ECG

signals while suppressing other ECG components such as P-waves, T-waves, etc. This

is followed by a second stage that applies adaptive thresholding on these potential QRS

complexes. This latter stage is implemented in five steps viz., (i) initial peak detection,

(ii) missed beat detection, (iii) false beat removal, (iv) threshold updating and (v) final

R-peak detection. The CAE based beat extraction stage ensures that P-wave and T-

waves are not misclassified as R-peaks while the adaptive thresholding stage ensures that

occurrence of false beats (due to noisy ECG segments) and missed beats (due to low

amplitudes and/or abnormal beat morphology) are minimized, thus ensuring accurate R-

peak detection performance. This is key to performing robust arrhythmia detection cycle as

the performance of majority of the arrhythmia detection algorithms described in Chapter

4 and Chapter 5 inherently depends on the accuracy of the beat detection step.

The subsequent chapter (Chapter 4) exclusively focuses on algorithms for detection

of ventricular arrhythmias. The first half of the chapter deals with analysis of beat-

independent arrhythmias (see Section 4.3). This includes sustained ventricular tachycardia,

ventricular fibrillation and ventricular flutter (VT/VF). In this regard, seven time-,

frequency- and wavelet-domain features are computed that are input to a Random-Forest

based machine learning model for achieving efficient VT/VF classification. The remainder

of the chapter discusses a hybrid approach to the detection of premature ventricular

complexes (PVCs) and associated beat-dependent ventricular arrhythmias (see Section 4.4).

RR-interval and beat morphology based features are computed to perform accurate PVC

classification using a combination of semi-supervised Autoencoders and Random Forests

based machine learning techniques. The results of PVC classification are then used to detect
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five other ventricular arrhythmias viz., (i) ventricular bigeminy, (ii) ventricular trigeminy,

(iii) ventricular quadrigeminy, (iv) ventricular runs and (v) ventricular couplets.

Following description of ventricular arrhythmias, Chapter 5 provides an in-depth

description of supraventricular arrhythmia detection algorithms. Once again, the first

half of the chapter exclusively focuses on detection of atrial fibrillation (AF) episodes (see

Section 5.2). A machine-learning based approach employing a combination of discrete-state

Markov models and Random forests to detect AF episodes is presented here. The proposed

features based on an eight-state Markov model for AF classification result in comparable or

better AF detection performance than other state-of-the-art AF detection techniques. The

remainder of the chapter then delves into detection of other supraventricular arrhythmias

that are primarily dependent of detection of supraventricular ectopic beats (SVEBs) (see

Section 5.3). In this section, logical analysis techniques are presented for detection of

SVEBs and six other supraventricular arrhythmias viz., (i) supraventricular bigeminy, (ii)

supraventricular trigeminy, (iii) supraventricular quadrigeminy, (iv) supraventricular runs,

(v) supraventricular couplets and (vi) sinus bradycardia.

Finally, Chapter 6 presents a cloud-based arrhythmia detection platform known as

AutoECG. The algorithms described in Chapter 2 through Chapter 5 are deployed in

AutoECG which facilitates online arrhythmia analysis using information from single-lead

ECGs that can be uploaded by authorized users via https://autoecg.utdallas.edu. The

chapter provides a concise description of a three-stage system architecture that captures the

essence of AutoECG’s functionality. A flow diagram depicting the implementation of the

arrhythmia algorithms is also presented in the chapter along with an example arrhythmia

summary report that is generated by the AutoECG platform post-analysis for further

review by doctors and other medical practitioners.
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7.1 Limitations and future work

The algorithms described in this dissertation do have a few limitations that can act as

fodder for future research. The ECG low frequency noise suppression stage filters out ECG

components below 0.7 Hz. Although this does not affect the accuracy of the methods

described in this dissertation, this could pose a problem when it comes to analyzing

ECGs for other arrhythmias not includes in this dissertation. For instance, detection

of ST-segment elevation and ST-segment depression require frequencies as low as 0.05

Hz. Another limitation is that segments classified to be too noisy are omitted from

further analysis which may result in skipping detection of arrhythmias in those segments.

Next, deep learning models developed in this dissertation are exclusively trained on signals

from lead-II configuration such as that of PVC detection. Hence the algorithms have

the limitation that ECG signals be acquired from lead-II setup which may not always be

possible. Some of the limitations of the AF detection approach include skipping detection

of very short AF episodes owing to the use of 60s epochs. Also, since any sort of atrial

activity analysis is omitted, the algorithm’s accuracy inherently depends on the quality of

beat detection although the beat detection technique used here is accurate (Chapter 3) and

satisfactory for the purpose of AF classification.

Many improvements can be incorporated in the future that can further increase the

accuracy of the algorithms presented in this dissertation. For instance, in the future,

information from multi-lead signals can be used instead of single-lead ECGs to create a

more rich set of features that could result in better arrhythmia detection performance.

Next, algorithms for detection of a more diverse range of arrhythmias could be added to

the existing algorithms. This would necessitate more efforts in terms of data collection and

annotation, especially in cases of rare arrhythmias. Also, improved signal acquisition setups

can result in accurate P-wave detection that could result in efficient atrial activity. This
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can further help reduce false alarms and increase overall AF detection accuracy. Currently,

the AutoECG platform requires users to manually upload ECGs along with the correct

sampling frequency which present opportunities for errors. To alleviate this, a bluetooth

enabled ECG sensor setup as illustrated in Figure 6.1 in Chapter 6 in the upper half of

ECG acquisition stage can result in seamless transfer and subsequent analysis of ECG

data and therefore help minimize data upload errors and other human-induced errors.

Finally, a technician portal that can be implemented as illustrated in the bottom half of

the Results Review stage in Figure 6.1 can serve as a medium for updating annotations and

aiding on-the-fly model retraining for improving performance of the algorithms deployed

in AutoECG.
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