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ABSTRACT 
 
 
 Supervising Professor: Dr. Nasser Kehtarnavaz 
 
 
 
 
Human action or gesture recognition has been extensively studied in the literature spanning a wide 

variety of human-computer interaction applications including gaming, surveillance, healthcare 

monitoring, and assistive living.  Sensors used for action or gesture recognition are primarily either 

vision-based sensors or inertial sensors. Compared to the great majority of previous works where 

a single modality sensor is used for action or gesture recognition, the simultaneous utilization of a 

depth camera and a wearable inertial sensor is considered in this dissertation. Furthermore, 

compared to the great majority of previous works in which actions are assumed to be segmented 

actions, this dissertation addresses a more realistic and practical scenario in which actions of 

interest occur continuously and randomly amongst arbitrary actions of non-interest. In this 

dissertation, computationally efficient solutions are presented to recognize actions of interest from 

continuous data streams captured simultaneously by a depth camera and a wearable inertial sensor. 

These solutions comprise three main steps of segmentation, detection, and classification. In the 

segmentation step, all motion segments are extracted from continuous action streams. In the 

detection step, the segmented actions are separated into actions of interest and actions of non-
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interest. In the classification step, the detected actions of interest are classified. The features 

considered include skeleton joint positions, depth motion maps, and statistical attributes of 

acceleration and angular velocity inertial signals. The classifiers considered include maximum 

entropy Markov model, support vector data description, collaborative representation classifier, 

convolutional neural network, and long short-term memory network. These solutions are applied 

to the two applications of smart TV hand gestures and transition movements for home healthcare 

monitoring. The results obtained indicate the effectiveness of the developed solutions in detecting 

and recognizing actions of interest in continuous data streams. It is shown that higher recognition 

rates are achieved when fusing the decisions from the two sensing modalities as compared to when 

each sensing modality is used individually. The results also indicate that the deep learning-based 

solution provides the best outcome among the solutions developed. 
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CHAPTER 1 

INTRODUCTION 

The subject of human gesture or action recognition has been extensively studied in the literature 

spanning many human-computer interaction applications such as gaming, visual surveillance, 

health monitoring and assistive living. Gesture or action recognition involves automatic detection 

and recognition of human gestures or actions by a computer program based on data acquired from 

a sensor.  

Different sensors have been utilized to perform gesture or action recognition. The sensors used are 

primarily either vision-based sensors, including conventional video cameras as well as depth 

cameras, or inertial sensors. In the great majority of action recognition solutions presented in the 

literature, either a vision sensor or an inertial sensor is used. It is well-established that there are 

limitations associated with an individual sensing modality when operating under realistic 

conditions. For instance, video cameras are sensitive to lighting conditions, camera position, and 

pose privacy issues. Depth cameras, e.g., Microsoft Kinect, have a limited field of view and are 

sensitive to ambient light. Inertial sensors, which incorporate accelerometers and gyroscopes, 

generate inertial signals that are dependent on their placement on the body and suffer from inertial 

drift during prolonged hours of operation. In general, under realistic operating conditions, there is 

no single sensing modality that can cope with various real-world situations that occur in practice. 

Furthermore, low inter-class variations and high intra-class variations of the actions performed for 

a particular application pose challenges for a single modality sensing approach.  Consequently, 

there has been a growing interest in using fusion of different sensing modalities to achieve more 

robust human action or gesture recognition under realistic operating conditions. The scope of this 
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dissertation involves the fusion of the two sensing modalities of a depth camera and a wearable 

inertial sensor.  

Most existing works on action or gesture recognition involve recognizing actions or gestures that 

are segmented into a single action, that is when the start and the end of an action are already known 

or manually identified. In practice, detection and recognition of actions of interest need to be 

carried out within continuous action streams that contain actions of interest occurring randomly 

amongst arbitrary actions of non-interest. For example, when a person performs a smart TV hand 

gesture in the middle of a random set of actions, such a gesture is not segmented, and it is far more 

challenging to detect and recognize it as compared to the situations in which this action or gesture 

is manually segmented and recognition is carried out based on the segmented action.  

To detect actions of interest in continuous action streams, it is first required to segment all actions, 

both actions of interest and actions of non-interest. Then, the segmented actions are to be detected 

or labelled as actions of interest or actions of non-interest. Finally, the labelled actions of interest 

need to be classified. Based on the fusion of the two differing sensing modalities of a depth camera 

and a wearable inertial sensor, this dissertation aims at addressing the more realistic and 

challenging problem of human action or gesture recognition when actions occur continuously and 

randomly among actions of non-interest.  In essence, the novelty or contribution of this dissertation 

lies in the development of computationally efficient solutions to detect and recognize actions of 

interest in continuous action streams using fusion of information from a depth camera and a 

wearable inertial sensor. The gestures and actions examined in this dissertation include recognition 

of hand gestures in the smart TV application and recognition of body transition movements in the 

home healthcare monitoring application.  
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The chapters of this dissertation are organized based on three journal and four conference papers 

that have already been published, with each chapter or paper addressing the dissertation objective 

from a different perspective. Each chapter provides an abstract, an introduction, the methodology 

developed, a discussion of the results obtained, and a conclusion. 

More specifically, Chapter 2 presents an approach to detect and recognize actions of interest in 

continuous action streams using skeleton joint positions that are obtained from a depth camera  and 

inertial signals that are obtained from a wearable inertial sensor. First, an initial decision about an 

action being an action of interest and its classification is made by skeleton joint positions, and then 

inertial signals are used to remove false detections.   

Chapter 3 discusses a detection and recognition approach using skeleton joint positions and depth 

images. Detection is performed using skeleton joint positions based on a one-class classifier to 

identify a segmented action as an action of interest or an action of non-interest. Then, recognition 

of detected actions of interest is performed using two collaborative representation classifiers, one 

operating on skeleton joint positions and the other operating on depth images.  

Chapter 4 provides a more general approach to the ones developed in Chapters 2 and 3 where both 

of the sensing modalities of depth camera and inertial sensor are used to perform detection and 

recognition in parallel. Fusion is conducted for both detection and recognition. The first fusion is 

carried out for detection by filtering out or discarding the actions of interest that are detected by 

just one of the two sensing modalities. The second fusion is carried out on the recognition 

outcomes of the two sensing modalities. The application of the smart TV gestures is considered in 

this chapter.  
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Chapter 5 targets the data flow synchronization aspects of running in real-time the fusion system 

covered in Chapter 4 on a modern laptop.  

Chapter 6 introduces a deep learning–based sensing fusion system to detect and monitor transition 

movements between body states as well as falls for the home healthcare monitoring application. 

The fusion system developed detects and recognizes actions of interest in continuous action 

streams.  

Chapter 7 presents the effect of data augmentation on the outcome of the deep learning-based 

approach covered in Chapter 6 by examining three different datasets.  

Chapter 8 brings the approaches presented in the previous chapters under one most effective 

solution towards addressing the main theme of this dissertation. This chapter presents a deep 

learning-based sensing fusion solution to detect and recognize actions of interest in continuous 

action streams. A convolutional neural network (CNN) is used for depth images along one path 

and a CNN+LSTM (long short-term memory) network is used for inertial signals along another 

path to perform detection and recognition. A decision-level fusion is then performed on the 

outcomes of the two paths.  

Finally, Chapter 9 summarizes the dissertation contributions and states possible future extensions. 
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CHAPTER 2 

REAL-TIME CONTINUOUS ACTION DETECTION AND RECOGNITION USING 

DEPTH IMAGES AND INERTIAL SIGNALS* 
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Electronics (ISIE), pp. 1342-1347, Edinburgh, June 2017.)  
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ABSTRACT 

This chapter presents an approach to detect and recognize actions of interest in real-time from a 

continuous stream of data that are captured simultaneously from a Kinect depth camera and a 

wearable inertial sensor. Actions of interest are considered to appear continuously and in a random 

order among actions of non-interest.  Skeleton depth images are first used to separate actions of 

interest from actions of non-interest based on pause and motion segments. Inertial signals from a 

wearable inertial sensor are then used to improve the recognition outcome. A dataset consisting of 

simultaneous depth and inertial data for the smart TV actions of interest occurring continuously 

and in a random order among actions of non-interest is studied and made publicly available. The 

results obtained indicate the effectiveness of the developed approach in coping with actions that 

are performed realistically in a continuous manner.   
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2.1 INTRODUCTION 

Human action recognition is an extensively researched topic with a wide span of applications such 

as human-computer interaction, gaming, and rehabilitation. Different sensors or sensing modalities 

have been used for human action recognition including video cameras, depth cameras, and inertial 

sensors. For example, video camera images were used in [1] to perform human action recognition 

using 3D SIFT (Scale Invariant Feature Transform) based descriptors; depth camera images were 

used in [2] to conduct human action recognition using depth motion maps; and skeleton data from 

depth cameras were used in [3] to characterize different human actions. In [4-7], human action 

recognition was performed by using temporal and statistical features of inertial signals acquired 

from wearable inertial sensors. In [8-11], the data from both a depth camera and an inertial sensor 

were used simultaneously to achieve human action recognition with high accuracy. 

It is important to note that the bulk of the research on action recognition has involved recognizing 

actions that are segmented into single actions. That is to say, data to process contain only a single 

action of interest. However, in practice, in applications such as smart TV and gaming, one needs 

to deal with recognizing an action of interest in real-time when there is a continuous stream of 

activities by a subject.  In such cases, it becomes more challenging to accurately detect and 

recognize actions of interest. Our objective in this chapter is to address this more challenging 

problem, that is to say, data to process are not segmented single actions but non-segmented actions 

of interest that appear continuously and in random order among actions of non-interest. Hence, in 

this work, both the detection and recognition processes are addressed within the same framework. 

First, actions of interest are separated from actions of non-interest and then the detected actions of 

interest are classified or recognized in real-time. In [12], a continuous recognition approach was 
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discussed using only a depth camera, however, the continuous dataset used contained only actions 

of interest with no actions of non-interest randomly occurring between actions of interest. 

This chapter presents an approach for real-time detection and recognition of actions of interest 

from a continuous data stream of activity by simultaneous utilization of a depth camera and an 

inertial sensor. Such data streams are considered to contain actions of interest randomly occurring 

among some arbitrary actions of non-interest. There are two main attributes that distinguish this 

work from the previous works on action recognition: (i) compared with the scenario of performing 

only actions of interest, a more realistic scenario of continuous activity is considered where actions 

of interest are performed continuously and in a random order among actions of noninterest, and 

(ii) a depth camera and an inertial sensor are used simultaneously for such a scenario.  

The remainder of the chapter is organized as follows: Section 2.2 provides a description of the two 

differing sensor modalities used. Section 2.3 describes the continuous dataset collected and 

examined for the experiments. The details of the approach developed are then provided in Section 

2.4 followed by the results and their discussion in Section 2.5. Finally, the chapter is concluded in 

Section 2.6. 

2.2 SENSORS UTILIZED 

The sensors used in the developed approach include a Kinect v2 depth camera and a wearable 

inertial sensor. The Kinect camera is a depth camera that is widely used for human action 

recognition. A picture of this camera is shown in Figure 2.1(a). The Kinect SDK [13], which is a 

publicly available software package, provides 3D spatial positions of 25 skeleton body joints that 

are derived from depth images. Figure 2.1(c) shows the skeleton joints that Kinect v2 generates 

from captured depth images. As will be explained in Section 2.4, our approach uses these joint 
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positions to segment a continuous stream of activity into pauses and motions as a prelude to action 

recognition. 

The wearable inertial sensor used is a small wireless body sensor discussed in [14]. A picture of 

this inertial sensor is shown in Figure 2.1(b). The sensor generates 3-axis acceleration and 3-axis 

angular velocity signals, which are wirelessly transmitted to a laptop via a Bluetooth link. It is 

worth mentioning that although wearing multiple inertial sensors on different parts of the body can 

  

(a)                                        (b)          

 

(c) 

Figure 2.1. (a) Kinect depth camera (b) wearable inertial sensor (c) human body skeleton joints 
obtained by Kinect v2 
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increase the robustness of the system, due to the intrusiveness and thus the practicality aspect 

associated with wearing multiple inertial sensors, only one inertial sensor is used in this work. 

2.3 CONTINUOUS ACTIONS DATASEST 

Since the aim of this work is the recognition of some actions of interest from a continuous stream 

of activity, and given that there is no publicly available dataset that provides both a continuous and 

simultaneous stream of depth and inertial data, we have put together such a continuous dataset for 

the wrist actions involved in smart TV gestures. The dataset incorporates continuous streams of 

data that are simultaneously collected from the two differing modality sensors mentioned in 

Section 2.2. The smart TV gestures include ‘Waving a Hand’, ‘Flip to Left’, ‘Flip to Right’, 

‘Counterclockwise Rotation’ and ‘Clockwise Rotation’. 

For data collection, the subjects performed the actions in front of a Kinect v2 camera while wearing 

the wearable inertial sensor on their right wrist. The data from the two sensors were synchronized 

by using the time stamp scheme described in [9]. For training, the subjects were asked to perform 

a single action of interest at a time and both depth and inertial data were recorded simultaneously. 

During actual operation or testing, the subjects were asked to perform the actions of interest in a 

continuous manner while randomly performing actions of non-interest in-between the actions of 

interest. Examples of actions of non-interest included picking up a water bottle, drinking water, 

wearing a pair of glasses, etc.  As a result, a typical data stream consisted of both actions of interest 

and actions of non-interest appearing in a random order. Note that the subjects were given complete 

freedom to choose their own actions of non-interest while staying within the field of view of the 

Kinect camera. 
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Two scenarios were considered for data collection. The first scenario was done in a subject-specific 

manner in which the training and testing data were collected for the same subject. During training, 

a subject was asked to repeat each of the 5 actions of interest 15 times. For testing, continuous sets 

of actions were performed 6 times. In each set, the subject performed the 5 actions of interest with 

several actions of non-interest conducted randomly in-between the actions of interest in a 

continuous manner. 

The second scenario was done in a subject-generic manner, i.e., training and testing data were 

collected from 5 different subjects. For training, the 5 subjects were asked to perform each of the 

5 actions of interest 5 times, resulting in a total of 125 data streams consisting of simultaneous 

depth and inertial data. For testing, each subject performed the actions of interest with some actions 

of non-interest conducted randomly in-between the actions of interest in a continuous manner. This 

continuous dataset is made available for public use and can be downloaded from 

http://www.utdallas.edu/~kehtar/UTD-CAD-Both.htm. It is worth noting that this dataset is 

different than the one we previously reported in [9], which includes segmented single actions. 

2.4 DEVELOPED CONTINUOUS ACTION DETECTION AND RECOGNITION 

APPROACH 

The approach developed in this chapter relies on breaking down a continuous stream of skeleton 

activity data into pauses and motions, similar to the approach reported in [15-17]. A variable length 

Maximum Entropy Markov Model (MEMM) classifier is used in order to detect the presence of 

an action of interest in continuous data streams. This classifier operates similar to a Hidden Markov 

Model (HMM) classifier but is computationally more efficient to enable real-time operation. The 

acceleration and rotation signals from the wearable inertial sensor are used to remove false positive 
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cases or to improve the recognition outcome by using a Collaborative Representation Classifier 

(CRC) as discussed in [18]. A block diagram of the components of the developed approach appears 

in Figure 2.2. Note that the detection or segmentation task only uses the skeleton data, while both 

the skeleton and inertial data are used for the recognition task. 

2.4.1 Training  

Any continuous action is described as a sequence of pauses and motions. A training model similar 

to the one discussed in [17] is used to segment an activity sequence into pause and motion 

segments. In what follows, it is discussed how the model is modified in order to deal with a 

continuous data stream. 

Pauses and motions from skeleton data are obtained by computing the length-invariant Normalized 

Relative Orientation (NRO) of the joints with respect to their rotating joints as follows: 

𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 =
𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗
�𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗�

 (2.1) 

where 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 denote 3D locations of the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ joints, respectively, and 𝑗𝑗 is the joint about 

which joint 𝑖𝑖 rotates and ‖∙‖ denotes the Euclidean distance.  

 

Figure 2.2. Components of the developed continuous action detection and recognition 
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Let (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑡𝑡 , … ,𝐹𝐹𝑛𝑛)represent a sequence of NRO features, where 𝐹𝐹𝑡𝑡 =

(𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁1 ,𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁2 ,𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁3 , … )𝑡𝑡 indicates the NRO features of the joints at frame 𝑡𝑡. Based on a reference 

NRO (𝐹𝐹𝑟𝑟), a so called potential energy at frame 𝑡𝑡 is computed as follows: 

𝑃𝑃𝑃𝑃(𝑡𝑡) = ‖𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑟𝑟‖2 (2.2) 

Then, the following potential difference at frame t is obtained: 

𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑃𝑃(𝑡𝑡 − 1) (2.3) 

If the potential difference of data frames becomes less than a very low value close to zero (for 

example, for the dataset collected in this chapter, 0.04 was found low enough to identify the start 

and end of all the motion segments), they are labeled as a pause segment, otherwise they are labeled 

as a motion segment. An example of pause and motion segments for the action ‘Waving a Hand’ 

is shown in Figure 2.3. The horizontal portions represent pause segments and varying portions 

represent motion segments. 

Based on pause and motion segments, a codebook for pauses and motions is then set up which is 

used for action recognition via a variable-length MEMM classifier. Basically, an action is 

characterized by its sequence of motion segments. 

 

Figure 2.3. Pause and motion segments in the action ‘Waving a Hand’ 
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Similar motion segments occur in some actions of interest, for example the actions ‘Waving a 

Hand’ and ‘Flip to Left’ begin similarly, i.e., their first motion segments are similar. Hence, unlike 

[17], clustering is first applied to motion segments using a Gaussian Mixture Model (GMM) to 

group similar motion segments. The cluster representatives are used for action detection. The 

clustering is carried out by dividing each motion segment into three equal portions. Then, the 

averaged features from each of these three portions of motion segments are computed and used to 

cluster motion segments of an action into 𝑀𝑀 clusters. 

Next, the transition probabilities amongst the clusters are obtained. Since a pause segment is 

present between two motion segments, for every pair of motion clusters 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀2, the mean 

feature of the pause segments is obtained and stored in a so-called ‘dynamic cluster’ 

𝐷𝐷𝐶𝐶(𝑀𝑀𝑀𝑀1,𝑀𝑀𝑀𝑀2). This way, a codebook of motion and pause clusters is generated from the training 

data.  

2.4.2 Detection and Recognition 

The task of continuous action detection and classification or recognition is carried out using 

likelihood probabilities. As the skeleton data is generated frame by frame, the corresponding NROs 

are generated, and potential differences are used to classify the segments as pause or motion 

segments. Whenever a motion segment ends, the likelihood probabilities of the motion segments 

are obtained for each motion cluster. The likelihood probability of a motion segment for a motion 

cluster  𝑚𝑚 of an action 𝑛𝑛 is obtained as follows: 

𝐷𝐷(𝑛𝑛,𝑚𝑚) = �𝐹𝐹𝐹𝐹 −𝑀𝑀𝑀𝑀𝑚𝑚,𝑛𝑛�
2
 (2.4) 
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𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛,𝑚𝑚) =
1
𝐷𝐷(𝑛𝑛,𝑚𝑚)�

∑ ∑ 1
𝐷𝐷(𝑛𝑛,𝑚𝑚)�𝑚𝑚𝑛𝑛

 (2.5) 

where 𝐹𝐹𝐹𝐹 denotes the feature vector corresponding to the three portions of a motion segment and  

𝑀𝑀𝑀𝑀𝑚𝑚,𝑛𝑛 denotes the feature vector of the  𝑚𝑚𝑡𝑡ℎ motion cluster of the  𝑛𝑛𝑡𝑡ℎ action. 

Similarly, the likelihood of a pause segment to lie between the motion clusters 𝑚𝑚1 and 𝑚𝑚2 of an 

action 𝑛𝑛 is obtained as follows: 

𝐶𝐶(𝑛𝑛,𝑚𝑚1,𝑚𝑚2) = ‖𝐹𝐹𝐹𝐹 − 𝑃𝑃𝑃𝑃𝑛𝑛(𝑚𝑚1,𝑚𝑚2)‖2 (2.6) 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛,𝑚𝑚1,𝑚𝑚2) =
1
𝐶𝐶(𝑛𝑛,𝑚𝑚1,𝑚𝑚2)�

∑ ∑ ∑ 1
𝐶𝐶(𝑛𝑛,𝑚𝑚1,𝑚𝑚2)�𝑚𝑚2𝑚𝑚1𝑛𝑛

 (2.7) 

where 𝐹𝐹𝐹𝐹 denotes the mean feature vector of a  pause segment and 𝑃𝑃𝑃𝑃𝑛𝑛(𝑚𝑚1,𝑚𝑚2) represents the 

feature vector of the pause cluster associated with the motion clusters 𝑚𝑚1 and 𝑚𝑚2 of the 𝑛𝑛𝑡𝑡ℎ action. 

Once the likelihood probabilities are obtained, the variable-length MEMM classifier is used to 

assign the probability of a motion segment for each of the action classes. If the probability of a 

motion segment is greater than a set threshold, to be discussed later, the presence of an action of 

interest is indicated and the segment is assigned to the action class with the likelihood probability 

greater than the threshold. 

2.4.3 Inertial Data 

The probability threshold impacts the detection and recognition outcome for a continuous data 

stream. If the threshold is set too low, the rate of incorrect detections will be high, i.e., many actions 

of non-interest will be classified as actions of interest. On the other hand, if the threshold is set too 

high, actions of interest will be missed. It is therefore important to set the threshold such that the 
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highest number of actions of interest are detected while minimizing the number of wrong 

detections. 

The data from the inertial sensor are used to improve the detection accuracy by ruling out false 

detections. A CRC classifier is used here for this purpose. Whenever the likelihood probability of 

a particular motion segment using the skeleton data is greater than the threshold, the inertial data 

are used to verify the detection. Based on the CRC classifier, a residual error for each class is 

obtained and the segment is assigned to the class corresponding to the minimum error. If the 

detected action for a particular segment using the inertial data is the same as the one obtained using 

the skeleton data, that particular segment is considered to belong to that action, otherwise it is 

considered to be an action of non-interest. 

2.5 RESULTS AND DISCUSSION 

In this section, the results of the developed approach on continuous data streams are reported.  

Since one cannot match the sequence predicted in a continuous data stream to serve as the ground 

truth, the evaluation framework proposed in [19] is used here. That is, a true positive was flagged 

whenever an action was detected within a window of 4 frames from the ground truth, while a false 

positive was flagged when the predicted action lied outside the window of 4 frames or when the 

action classified did not match the ground truth. The actions in the dataset examined contained a 

maximum of 4 motion segments, hence the number of motion clusters per action was set to 4, or 

𝑀𝑀 = 4, for the experimentations reported below. 

For each continuous data stream, the number of true positives, false positives and false negatives 

were found and the performance was evaluated based on F1 score discussed in [20-21]. This score 

is derived from the precision and recall indices that are defined as follows: 
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𝑃𝑃 =
#𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹
 (2.8) 

𝑅𝑅 =
#𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹
 (2.9) 

𝐹𝐹1 = 2
𝑃𝑃 ∙ 𝑅𝑅

(𝑃𝑃 + 𝑅𝑅)
 (2.10) 

where 𝑃𝑃 denotes the precision index, 𝑅𝑅 the recall index, #𝑇𝑇𝑇𝑇 the number of true positives, #𝐹𝐹𝐹𝐹 

the number of false positives, and #𝐹𝐹𝐹𝐹 the number of false negatives. 

For the subject-specific scenario, the precision values, recall values and F1 scores that were 

obtained for different values of the probability threshold p with and without using the inertial data 

are listed in Tables 2.1, 2.2 and 2.3, respectively. As can be seen from these tables, for high 

threshold values, there were very few false positive detections resulting in a high value of 

precision.  For such cases, some of the true positives were wrongly rejected when using the inertial 

data, which led to a drop in the recall value. Furthermore, many of the true positives could not be 

identified, hence the F1 score became low. As the threshold probability p was decreased, the F1 

score and the recall value improved since more and more true positives were detected. However, 

upon further decreasing the threshold probability p, the number of true positives did not increase 

much but the number of false positives grew, which was reflected in the decrease in the F1 score. 

As can be observed from the tables, the precision values, recall values and F1 scores improved 

when both the skeleton and inertial data were used. Note that the improvement when using the 

inertial data was more for the precision values as compared to the recall values. This is because 

the inertial data was used for the purpose of rejecting false positives. 
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The precision values, recall values and F1 scores for the subject-generic scenario with different 

values of the threshold probability p are listed in Tables 2.4, 2.5 and 2.5, respectively. These tables 

show the results with and without using the inertial data.  

The best performance in both the scenarios was observed at the threshold probability of p=0.45, 

and at this threshold, the improvement in the F1 score by using the inertial data was about 8% for 

the subject specific scenario and 2% for the subject generic scenario. Due to large variations of the 

same actions associated with different subjects, in general, the subject specific scenario is 

recommended for any practical deployment. 

Table 2.1. Precision values for subject specific scenario 

p values Without 
Inertial With Inertial 

p=0.60 85.2% 94.1% 
p=0.55 82.4% 89.9% 
p=0.50 80.5% 89.1% 
p=0.45 74.7% 87.1% 
p=0.40 64.0% 76.4% 
p=0.35 51.6% 67.0% 

 
Table 2.2. Recall values for subject specific scenario 

p values Without 
Inertial With Inertial 

p=0.60 61.6% 61.2% 
p=0.55 77.4% 75.1% 
p=0.50 86.7% 84.5% 
p=0.45 92.5% 93.5% 
p=0.40 92.9% 96.1% 
p=0.35 93.8% 97.1% 

 
Table 2.3. F1 scores for subject specific scenario 

p values Without 
Inertial With Inertial 

p=0.60 71.5% 74.2% 
p=0.55 79.8% 81.9% 
p=0.50 83.5% 86.7% 
p=0.45 82.7% 90.2% 
p=0.40 75.7% 85.1% 
p=0.35 66.5% 79.3% 
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An important point to note here is that action detection and recognition were performed 

continuously in real-time (30 frames per second). For each incoming depth image frame and 

inertial signals, the features were extracted and pause and motion segments were obtained in real-

time. The classification was performed when a motion segment was completed. An example of the 

depth and inertial data for an action of interest and an action of non-interest in a test sequence is 

shown in Figures 2.4 and 2.5, respectively. The vertical lines in Figure 2.5 exhibit the segments 

associated with the actions of interest and actions of non-interest in the potential difference 

Table 2.4. Precision values for subject generic scenario 

p values Without 
Inertial With Inertial 

p=0.55 95.9% 100.0% 
p=0.50 93.1% 97.7% 
p=0.45 85.1% 92.0% 
p=0.40 68.6% 78.5% 
p=0.35 55.4% 68.5% 
p=0.30 43.2% 53.2% 

 
Table 2.5. Recall values for subject generic scenario 

p values Without 
Inertial With Inertial 

p=0.55 56.8% 56.0% 
p=0.50 70.8% 69.6% 
p=0.45 82.4% 79.2% 
p=0.40 89.2% 90.8% 
p=0.35 93.2% 96.0% 
p=0.30 95.6% 97.2% 

 
Table 2.6. F1 scores for subject generic scenario 

p values Without 
Inertial With Inertial 

p=0.55 71.3% 71.7% 
p=0.50 80.4% 81.3% 
p=0.45 83.7% 85.1% 
p=0.40 77.5% 84.2% 
p=0.35 69.5% 80.0% 
p=0.30 59.6% 68.8% 
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function. The other two graphs in this figure show the acceleration along the z-direction for an 

action of interest and an action of non-interest. A videoclip of the developed continuous action 

    
(a) 

    
(b) 

Figure 2.4. (a) Snapshots of depth images from an action of interest ‘Flip to Left’ (b) an action 
of non-interest ‘picking up and reading a book’ 

 

 

Figure 2.5. Potential difference (top curve) and acceleration along z-axis (bottom curves) in an 
activity sequence consisting of actions of interest and actions of non-interest 
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detection and recognition approach running in real-time can be viewed at 

www.utdallas.edu/~kehtar/ContinuousAction.avi. 

2.6 CONCLUSION 

In this chapter, a real-time action detection and recognition approach has been introduced which 

is capable of processing a continuous stream of depth images and inertial signals, a more 

challenging scenario than the conventional single action scenario normally reported in the 

literature. Continuous data implies actions of interest occur in a continuous manner while having 

actions of non-interest randomly located in-between them. The developed approach was applied 

to a continuous dataset for the smart TV application by simultaneously using a Kinect depth 

camera and a wearable inertial sensor. The results obtained show the effectiveness of the developed 

approach when activities are done continuously. In our future work, we plan to apply this approach 

to other applications or other sets of actions of interest.  

http://www.utdallas.edu/%7Ekehtar/ContinuousAction.avi
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ABSTRACT 

This chapter presents a human action recognition approach using a depth camera for situations 

when actions of interest are performed in a continuous and random manner among actions of non-

interest. The developed approach first performs detection of actions of interest by separating 

actions of interest from actions of non-interest in an on-the-fly manner and then classifies the 

detected actions of interest. Skeleton joint positions from depth images are used to achieve the 

detection of actions of interest. Recognition of detected actions of interest is then achieved by 

fusing the outcome of two classifiers, one classifier using skeleton joint positions and the other 

classifier using depth images. A continuous dataset consisting of actions of interest associated with 

the smart TV application is collected and made publicly available. The results obtained by applying 

the developed approach to this dataset indicate its effectiveness in detecting and recognizing 

actions of interest from continuous data streams. 
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3.1 INTRODUCTION 

Human action recognition is an extensively researched topic in computer vision that has been 

utilized in many human-computer interaction applications. The literature includes a wide 

collection of papers involving the use of the Kinect depth camera for human action recognition, 

e.g., [1-5].  In these works, various features such as action graphs, random occupancy patterns 

(ROP), space-time occupancy patterns (STOP), depth motion maps (DMM), histogram of oriented 

gradients (HOG) have been extracted from depth images to achieve action recognition. 3D 

skeleton joint positions from depth images have also been used for action recognition, e.g., [6-7]. 

These joint positions are made available via the Microsoft Software Development Kit v2 [8]. 

Kinect v2 is capable of providing the 3D spatial locations of 25 skeleton body joints. In [9], both 

depth images and skeleton joint positions were used simultaneously for action recognition. 

It is important to note that the considerable amount of research that has been conducted on human 

action or gesture recognition has focused primarily on recognizing actions that appear as single or 

isolated actions. It still remains a challenge to deal with continuous streams of activities composed 

of both actions of interest and actions of non-interest that appear in a random order. Continuous 

streams of activities constitute a more realistic scenario in many human-computer interaction 

applications such as smart TV and gaming.  

A continuous action recognition approach using a depth camera was covered in [10]. However, 

the dataset examined only contained actions of interest. This chapter deals with a more challenging 

situation where both actions of interest and actions of non-interest occur continuously and in a 

random order. As a result, both the problems of action detection and action recognition are 

addressed at the same time to allow recognizing actions of interest among actions of non-interest 
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in an on-the-fly manner. The developed approach first detects the presence of actions of interest 

from continuous data streams and then classifies them. The major contribution of this chapter is 

the development of a human action recognition approach, that is capable of dealing with 

recognizing actions of interest among actions of non-interest in continuous data streams by 

simultaneously using depth and skeleton information captured by a Kinect depth camera. 

The rest of the chapter is organized as follows: The continuous dataset collected to analyze the 

developed approach is described in Section 3.2. Section 3.3 provides a detailed description of the 

approach. The experimental results are reported in Section 3.4, and the chapter is concluded in 

Section 3.5. 

3.2 CONTINUOUS DATASET 

This work involves the detection and recognition of actions of interest from a continuous data 

stream consisting of actions of interest and actions of non-interest that appear in a random order 

with respect to each other. Apart from the video datasets provided in [11-12] that are captured by 

video cameras, there is no publicly available dataset that provides continuous data streams from a 

depth camera. Hence, as part of this work, a dataset for the wrist actions involved in smart TV 

gestures was collected and is made publicly available. This dataset can be downloaded from this 

link http://www.utdallas.edu/~kehtar/UTD-CAD.htm.  

The actions of interest for the smart TV application consist of ‘Waving a hand’, ‘Flip to Left’, 

‘Flip to Right’, ‘Counterclockwise Rotation’, and ‘Clockwise Rotation’. For training, the subjects 

were asked to perform these actions of interest one action at a time. While for testing, the subjects 

were asked to perform these actions of interest continuously among various actions of non-interest 

in a random order. Subjects had the freedom to choose their own actions of non-interest. Example 
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actions of non-interest included drinking water, eating snacks, stretching, walking around and 

reading a book. 

Two scenarios were considered for data collection: subject-specific and subject-generic. For the 

subject-specific scenario, the training and testing were done by the same subject. For the training 

dataset, each of the actions of interest was done 15 times. For the testing dataset, the actions of 

interest were done randomly among actions of non-interest for 6 continuous data streams. For the 

subject-generic scenario, 5 different subjects were asked to repeat each of the actions of interest 5 

times during the training. For the testing dataset, for each subject, a continuous data stream was 

collected which consisted of all the actions of interest randomly done among actions of non-

interest. 

3.3 DEVELOPED CONTINUOUS ACTION DETECTION AND RECOGNITION 

The action detection and recognition approach developed in this chapter involves first segmenting 

and detecting actions of interest from a continuous data stream of skeleton joint positions and then 

classifying such detected actions of interest by utilizing both skeleton joint positions and depth 

images. The developed approach comprises three main steps: segmentation, detection and 

classification. The segmentation step involves identifying the presence of an action in a continuous 

data stream. These actions can be actions of interest or actions of non-interest. Next, in the 

detection step, a segmented action is labeled as an action of interest or an action of non-interest. 

This is achieved by using the method of support vector data description (SVDD) described in [13]. 

Then, in the classification step, the detected actions of interest are classified by using both the 

skeleton joint positions and depth images. A variable-length Maximum Entropy Markov Model 

(MEMM) classifier [14] is used for classification of skeleton information, while a Collaborative 
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Representation Classifier (CRC) [15] is used for classification of depth information. Basically, in 

this chapter, different existing techniques are integrated into a real-time approach to perform both 

detection and recognition of actions of interest among actions of non-interest performed in a 

continuous manner. A block diagram of the steps involved in the developed approach is shown in 

Figure 3.1. In what follows, more details of these steps are mentioned.  

3.3.1 Segmentation Step 

Segmentation of actions is achieved using skeleton joint positions via a technique similar to the 

one discussed in [14, 16]. The so called normalized relative orientations (NRO) of the joints are 

 

Figure 3.1. Block diagram of the developed continuous action detection and recognition 
approach 
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extracted and used as features for segmentation. The NRO of a joint 𝑖𝑖 is computed with respect to 

its rotating joint 𝑗𝑗 as follows:  

𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 =
𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗
�𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗�

 (3.1) 

where 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 denote the respective 3D locations of joints 𝑖𝑖 and 𝑗𝑗 and ‖∙‖ represents the Euclidean 

distance. Let 𝐹𝐹𝑡𝑡 = (𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁1 ,𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁2 ,𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁3 , … )𝑡𝑡 be the vector of all the joints NROs at frame 𝑡𝑡. Based 

on a sequence of NRO feature vectors (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑡𝑡, … ), a potential energy function at the 𝑡𝑡𝑡𝑡ℎ 

frame is obtained as follows: 

𝑃𝑃𝑃𝑃(𝑡𝑡) = ‖𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑟𝑟‖2 (3.2) 

where 𝐹𝐹𝑟𝑟 denotes a reference NRO feature vector, which is considered here to be the first frame in 

the sequence. This potential energy function is compared to a user specified threshold. If the 

potential energy of the frames appears below this threshold, it is set to zero. This threshold is set 

experimentally. For example, for the dataset collected, a threshold in this range [1.05, 2.90] for the 

subject-specific scenario and a threshold in this range [3.70, 5.00] for the subject-generic scenario 

 

Figure 3.2. Potential energy of a continuous data stream 
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generated accurate detection. An example of the potential energy function for a continuous data 

stream is shown in Figure 3.2. As can be seen from this figure, consecutive frames with positive 

values are marked as a segmented action. Segmenting frames in this manner provides the start and 

end of an action, which are then used to detect whether that action is an action of interest or not.  

3.3.2 Detection Step 

Detection of actions of interest from a segmented action is done based on a one-class SVDD 

classifier. The basic concept behind SVDD is to find a spherical boundary enclosing all the data 

of interest. Consider a training dataset 𝑋𝑋 consisting of 𝑁𝑁 data samples 𝑥𝑥𝑚𝑚, 𝑋𝑋 = {𝑥𝑥𝑚𝑚,𝑚𝑚 = 1, … ,𝑁𝑁}. 

If 𝑅𝑅 is the radius and 𝑎𝑎 is the center of the smallest sphere encircling all the data samples, the 

following quantity is minimized in SVDD [13, 17] 

𝐻𝐻(𝑅𝑅,𝑎𝑎, 𝜉𝜉𝑚𝑚) = 𝑅𝑅2 + 𝛾𝛾 � 𝜉𝜉𝑚𝑚

𝑁𝑁

𝑚𝑚=1

 (3.3) 

subject to the constraints 

‖𝜙𝜙(𝑥𝑥𝑚𝑚) − 𝑎𝑎‖2 ≤ 𝑅𝑅2 + 𝜉𝜉𝑚𝑚, for all 𝑚𝑚 (3.4) 

and 

𝜉𝜉𝑚𝑚 ≥ 0 (3.5) 

where 𝜉𝜉𝑚𝑚 is a slack variable that penalizes outliers, 𝛾𝛾 is a parameter which controls a trade-off 

between volume and error and the notation 𝜙𝜙 indicates a nonlinear transformation to a higher 

dimensional kernel space. The interested reader is referred to [13] for more details on SVDD. 

Once an action is considered from a continuous data stream, the potential energy of that action is 

divided into three equal portions and the average NROs from these three portions are used as 𝑋𝑋 
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in the above SVDD minimization. To examine a segmented action, the average NROs of its three 

equal portions are computed and mapped according to the nonlinear transformation. The distance 

of the feature vector from the center of the sphere is found. If this distance is less than the radius 

of the sphere, the corresponding action is considered to be an action of interest. 

3.3.3 Classification Step 

Next, the detected actions of interest are classified using a variable-length MEMM classifier for 

the skeleton information and a CRC classifier for the depth information. The operation of the 

MEMM classifier is similar to that of a Hidden Markov Model (HMM) classifier, but it is 

computationally more efficient than HMM.  

For classification of skeleton data, a potential difference at frame t is computed from the potential 

energy function as follows: 

𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑃𝑃(𝑡𝑡 − 1) (3.6) 

If this potential difference is less than a value close to zero, segments of an action are labeled as 

pause segments, otherwise they are labeled as motion segments. For the dataset examined in this 

work, the value 0.04 allowed separating pause and motion segments. An example of the pause and 

motion segments for a segmented action ‘Flip to left’ is shown in Figure 3.3.  

Based on pause and motion segments, a codebook is then setup, which is used to perform 

recognition. The details associated with the training of the MEMM classifier is provided in [16] 

with the difference that in this work, the clustering as part of the training is applied to motion 

segments, not pause segments. As a result, instead of considering motion segments between every 

pair of pause clusters, the mean of pause segments between every pair of motion clusters is 
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considered. Recognition of a segmented action is then carried out based on likelihood probabilities 

as discussed in [16].  

Classification of the depth data is done by first extracting depth motion maps (DMM) as described 

in [18]. DMMs are derived from 2D projection maps corresponding to the front, side and top views 

of 3D depth data. For a depth sequence of n frames, a DMM is obtained as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷 = �|𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘+1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘|
𝑛𝑛−1

𝑘𝑘=1

 (3.7) 

Similar to [19], a l2-regularized CRC is utilized here to classify actions of interest based on DMMs. 

Finally, the decision-level fusion approach discussed in [20] is adopted using uniformly distributed 

classifier weights. The label of the segmented action is assigned to be the class with the largest 

probability. 

3.4 RESULTS AND DISCUSSION  

This section presents the results of the developed detection and recognition approach on the 

continuous dataset collected. Noting that there exists no approach in the literature that performs 

 

Figure 3.3. Pause and motion segments in the action ‘Flip to left’ 
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both detection and recognition of actions of interest when performed in a continuous and random 

manner among actions of non-interest, the evaluation of the approach developed in this chapter is 

carried out via commonly used recognition measures. The average duration of a continuous data 

stream in the examined dataset is about 40s with the actions of interest occupying 10s of this 

duration on average and the actions of non-interest occupying the remaining time of 30s.  

The outcome of the segmentation and detection steps is reported in Table 3.1. For the subject-

specific scenario, there were a total of 30 actions of interest in the 6 continuous data streams. In 

this scenario, all the 30 actions of interest were correctly detected, while there was only one action 

of non-interest that was wrongly detected as an action of interest. Similarly, all the 25 actions of 

interest in the subject-generic scenario were correctly detected, with only one action of non-interest 

wrongly detected as an action of interest. 

For the overall detection and recognition results, since a sequence in a continuous data stream is 

unknown or cannot be matched to the ground truth, the evaluation of the overall approach was 

done using the widely used precision 𝑃𝑃, recall 𝑅𝑅 and 𝐹𝐹1 score measures. These measures are 

defined as follows [21-22]: 

𝑃𝑃 = #𝑇𝑇𝑇𝑇
(#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹)�  (3.8) 

𝑅𝑅 = #𝑇𝑇𝑇𝑇
(#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹)�  (3.9) 

𝐹𝐹1 = 2𝑃𝑃 ∙ 𝑅𝑅
(𝑃𝑃 + 𝑅𝑅)�  (3.10) 

Table 3.1. Outcome of the segmentation and detection steps 
Scenario Actions of interest correctly 

detected 
Actions of non-interest 

detected as action of interest 
Subject-specific 30/30 1 
Subject-generic 25/25 1 
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where #𝑇𝑇𝑇𝑇 denotes the number of true positives, #𝐹𝐹𝐹𝐹 the number of false positives, and #𝐹𝐹𝐹𝐹 the 

number of false negatives. 

As mentioned in [23], whenever an action was found within a window of four frames, it was 

marked as a true positive, whereas the actions of non-interest wrongly detected as actions of 

interest or the actions of interest that were misclassified were marked as false positives. Actions 

of interest not detected or not correctly recognized were marked as false negatives.  

The precision, recall and F1 score measures obtained for the subject-specific and subject-generic 

scenarios are reported in Tables 3.2 and 3.3, respectively. These tables also show the results of the 

situations when the classification was performed using the skeleton and depth information 

individually or separately. As can be seen from these tables, the values of the precision, recall and 

𝐹𝐹1 score measures were increased when both the skeleton and depth information were used 

together due to correcting some of the misclassifications.  

It is important to emphasize that detection was performed whenever an action was segmented in 

a continuous data stream and classification was performed whenever that action was labeled as 

an action of interest. An example of an action of interest and an action of non-interest from a test 

sequence is shown in Figure 3.4. 

Table 3.2. Precision, recall and F1 score measures for subject-specific scenario 
Modality used for classification Precision Recall F1 score 

Skeleton only 80.4% 83.1% 81.7% 
Depth only 62.5% 64.5% 63.5% 

Skeleton+Depth 85.6% 88.3% 86.9% 
 

Table 3.3. Precision, recall and F1 score measures for subject-generic scenario 
Modality used for classification Precision Recall F1 score 

Skeleton only 77.2% 80.2% 78.7% 
Depth only 69.2% 72.0% 70.5% 

Skeleton+Depth 86.8% 90.0% 88.3% 
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3.5 CONCLUSION 

In this chapter, an action detection and recognition approach has been developed which is capable 

of dealing with continuous data streams captured by a depth camera. Such data streams for the 

smart TV application were collected which consisted of five actions of interest performed 

continuously and in a random order among various actions of non-interest. The results obtained 

indicate the effectiveness of the developed approach in separating actions of interest from actions 

of non-interest and classifying them in an on-the-fly manner. In our future work, it is planned to 

apply this approach to other applications involving different sets of actions of interest. 

 

  

    
(a) 

    
(b) 

Figure 3.4. (a) Snapshots of depth images from an action of interest ‘Flip to Right’ (b) an 
action of non-interest ‘writing on a board’. 
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ABSTRACT 

This chapter presents a real-time detection and recognition approach to identify actions of interest 

involved in the smart TV application from continuous action streams via simultaneous utilization 

of a depth camera and a wearable inertial sensor. Continuous action streams mean when actions of 

interest are performed continuously and randomly among arbitrary actions of non-interest. The 

developed approach consists of a detection part and a recognition part. In the detection part, two 

support vector data descriptor classifiers corresponding to the two sensing modalities are used to 

separate actions of interest from actions of non-interest in continuous action streams. The actions 

detected as actions of interest by both of the sensing modalities are then passed to the recognition 

part. In this part, actions of interest are classified by fusing the decisions from two collaborative 

representation classifiers, one classifier using skeleton joint positions and the other classifier using 

inertial signals. The developed approach is applied to the hand gestures in the smart TV 

application. The experimental results obtained indicate the effectiveness of the developed 

approach to detect and recognize smart TV gestures in continuous action streams. 
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4.1 INTRODUCTION 

Human action recognition is finding its way into many consumer electronics products for gaming, 

video surveillance, content-based video retrieval, health monitoring, and assistive living. 

Information from various sensing modalities, such as RGB cameras, depth cameras, and wearable 

inertial sensors, have been used in the literature to recognize human actions. Many approaches 

utilizing information from image sequences captured by conventional RGB cameras have been 

proposed for action or gesture recognition, e.g., [1]–[3]. As noted in [4], the major limitations 

associated with using RGB cameras lies in the high computational demand when processing RGB 

images and in the challenges associated with obtaining 3D data. With the introduction of low-cost 

depth cameras, extensive research has been carried out using depth images and skeleton joint 

positions obtained from these cameras, e.g., [5]–[8]. Information from inertial signals acquired 

from wearable inertial sensors have also been widely used for action or gesture recognition, e.g., 

[9], [10]. 

It is important to note that in most existing works, action recognition is performed when actions 

of interest appear as segmented or isolated actions. That is to say, during the testing or operation 

phase, actions of interest are considered to be segmented from an activity sequence, or the start 

and end of the actions are considered known. A more realistic scenario constitutes performing 

action or gesture recognition from a continuous stream of activities where the actions or gestures 

of interest appear continuously and randomly among arbitrary actions of non-interest. It is a more 

challenging task to detect and recognize actions or gestures of interest from such continuous 

streams of activities. In [11], detection of actions from a continuous dataset was discussed, 

however, the dataset used only consisted of actions of interest with no randomly occurring actions 
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of non-interest, and a person standing still was considered to be the only action of non-interest. In 

[12], [13], the detection and localization of actions from continuous image frames or video clips 

were carried out in an offline manner. Due to the high computational demand of processing RGB 

images, the real-time or on-the-fly operation of such approaches requires the use of dedicated 

image processing hardware. Here, no dedicated image processing hardware is utilized. Here, it is 

worth mentioning that recently there has been a considerable amount of increase in the use of 

convolutional neural networks (CNN) for action or gesture recognition, e.g., [14] –[16]. However, 

these approaches have not addressed the real-time aspect, which is the thrust of this work. 

This chapter presents a real-time approach to detect and recognize actions or gestures of interest 

occurring in continuous action streams using both depth and inertial information. Continuous 

action streams constitute actions of interest occurring continuously and in a random order among 

arbitrary actions of non-interest. Skeleton joint positions from depth images obtained from a depth 

camera and inertial signals obtained from a wearable inertial sensor are used simultaneously to 

first separate actions of interest from actions of non-interest in continuous action streams and then 

to classify the detected actions of interest. Hence, the process of both detection and recognition are 

addressed at the same time in this approach in an online or real-time manner. To reduce the false 

detection of actions of non-interest, only the actions or gestures of interest that are detected by 

both skeleton joint positions and inertial signals are passed onto the recognition part. Recognition 

is performed by fusing the decision outcomes of two classifiers, one classifier using skeleton joint 

positions and the other using inertial signals. The simultaneous utilization of skeleton joint 

positions and inertial signals has allowed robust action or gesture recognition to be achieved in a 

computationally efficient or real-time manner. 
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In our previous work in [17], a detection and recognition approach was developed where the 

detection was done using only skeleton joint positions and inertial signals were used to verify the 

recognition outcome based on skeleton joint positions.  In this chapter, detection and recognition 

are done in parallel for both skeleton joint positions and inertial signals.  Furthermore, a different 

detection classifier is used here as compared to [17]. In our previous work in [18], only depth 

images were used to devise a detection and recognition approach. 

The detection and recognition approach developed in this chapter is designed for subject-specific 

scenarios, meaning that the action recognition system is trained for a specific subject and then 

tested on the same subject while the subject carries out a continuous stream of activities. For 

commercial products, the subject-specific setting considered here constitutes a more realistic 

setting noting that there is a large intra-class variation of the same actions when they are performed 

by different subjects as part of arbitrary continuous streams of activities. 

The depth camera used in this work is a Kinect v2, which captures depth images with a resolution 

of 512×424 pixels at a rate of approximately 30 frames per second. Its publicly available software 

package Kinect SDK [19] is capable of tracking the 3D spatial positions of 25 skeleton joints from 

the depth images generated by this camera. 

The wearable inertial sensor that is used in this work is a small wireless body sensor discussed in 

[20]. The sensor generates 3-axis acceleration and 3-axis angular velocity at a sampling rate of 

200Hz. These signals are wirelessly transmitted to a laptop via a Bluetooth link. The statistical 

features obtained from these signals are used for the detection of actions of interest from 

continuous action streams. It is worth pointing out that many other commercially available 
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wearable inertial sensors can be used here in place of this inertial sensor to provide the same inertial 

signals. 

The fusion of the outcomes of the two sensing modalities is conducted in both the detection and 

the recognition parts. In the detection part, the actions that are labeled as actions of interest by only 

one of the two sensing modalities are rejected. Only the actions of interest that are detected by 

both of the sensing modalities are labeled as actions of interest. A fusion in the recognition part is 

done by fusing the decisions made by two collaborative representation classifiers (CRC), one 

classifier operating on skeleton joint positions and the other classifier operating on inertial signals. 

The major contributions of this work include: (i) real-time detection and recognition of actions or 

gestures of interest in realistic continuous action streams when actions or gestures of interest occur 

randomly and continuously among arbitrary actions of non-interest, and (ii) fusion of information 

from two differing sensing modalities of depth camera and inertial sensor to enable a more robust 

smart TV gesture detection and recognition compared to using a single sensing modality. 

The remainder of the chapter is organized as follows. A description of the continuous dataset 

collected to analyze the developed approach is provided in Section 4.2. In Section 4.3, the details 

of the developed detection and recognition approach using the two differing sensing modalities are 

discussed. The experimental results and their discussions are then reported in Section 4.4. Finally, 

the chapter is concluded in Section 4.5. 

4.2 CONTINUOUS DATASET 

The aim of this work is to detect and recognize actions or gestures of interest associated with the 

smart TV application from continuous action streams using both skeleton joint positions and 

inertial signals. The datasets TVSeries [21] and Hollywood-2 [22] that appear in the literature 
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provide continuous action streams from a video camera without any depth and inertial information. 

Hence, in order to study the performance of our approach, we have put together a dataset by 

simultaneously collecting continuous action streams from a depth camera and a wearable inertial 

sensor. 

The wrist actions or gestures involved in the smart TV application were considered to put together 

this dataset. These wrist actions or gestures include: ‘Waving a Hand’, ‘Flip to Left’, ‘Flip to 

Right’, ‘Counterclockwise Rotation’ and ‘Clockwise Rotation’. Subjects were asked to wear the 

wearable inertial sensor on their right wrist while standing in front of the depth camera to perform 

these actions or gestures. The synchronization of the data from the depth camera and the inertial 

sensor was done based on the time stamp scheme described in [23]. Figure 4.1 illustrates the 

experimental setup for the collection of the continuous dataset. 

The dataset was collected in a subject-specific manner, that is training and testing were carried out 

for the same subject. For training, a subject was asked to perform actions of interest one action at 

a time and the data were captured from the depth camera and the wearable inertial sensor 

 

Figure 4.1. Experimental setup showing the depth camera and the wearable inertial sensor 
used 
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simultaneously. The training data involved 10 repetitions of each of the 5 actions of interest by a 

subject. For testing, the same subject was asked to perform the actions of interest among arbitrary 

actions of non-interest in a continuous and random order. A total of 5 such continuous action 

streams from a subject were considered to report the testing results. The data collection was 

repeated for 12 different subjects: 9 males and 3 females. No prior instructions were given to the 

subjects regarding the actions of non-interest and they had the complete freedom to choose their 

own actions of non-interest while staying in the field of view of the depth camera. Some actions 

of non-interest performed by the subjects included drinking water, reading a book, pointing at 

some object, writing on the board, etc. A typical duration of the collected continuous action streams 

is about 92s with the actions of interest occupying a total duration of about 16s out of 92s. Sample 

depth image frames with the background subtracted for an action or gesture of interest and some 

   
(a) 

   
(b) 

Figure 4.2. Example background subtracted depth images from (a) different frames of an 
action of interest ‘Counterclockwise Circle’ and (b) actions of non-interest, from left to right: 

‘Lifting a water bottle, drinking water and putting it back’ 
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actions of non-interest are shown in Figure 4.2. This dataset is made available for public use and 

can be downloaded from this link: http://www.utdallas.edu/~kehtar/UTD-CAD-Specific.htm. 

4.3 DEVELOPED DETECTION AND RECOGNITION APPROACH 

The developed detection and recognition approach is based on the fusion of information from 

skeleton joint positions and inertial signals. The process begins by performing segmentation and 

detection based on skeleton joint positions and inertial signals separately. Only the actions of 

interest detected by both of the sensing modalities are considered for recognition. Action 

recognition is achieved by fusing the decisions of two CRC classifiers, one classifier using skeleton 

joint positions and the other using inertial signals. Hence, the processing pipeline can be 

considered to comprise the following main modules or components: segmentation and detection, 

and classification 

Segmentation of actions using skeleton joint positions is carried out by using the so-called potential 

difference of the skeleton feature vectors [24]. The technique of support vector data description 

(SVDD) [25] is used to label the segmented actions as either actions of interest or actions of non-

interest. In parallel or simultaneously, segmentation based on the inertial signals is carried out by 

using the acceleration difference signal. Detection of actions of interest from the segmented actions 

is carried out using SVDD. 

The classification or recognition of detected actions of interest is performed using two l2-

regularized CRC classifiers [26] separately for skeleton joint positions and inertial signals. A 

decision fusion is then applied to the outcome of the two classifiers. A detected test action is 

assigned to the class that best approximates it. The entire processing pipeline is designed to be 

computationally efficient allowing it to run in real-time on a laptop platform with no dedicated 

http://www.utdallas.edu/%7Ekehtar/UTD-CAD-Specific.htm
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image processing hardware. Figure 4.3 displays a block diagram of the developed detection and 

recognition approach. These blocks are discussed in more details in the subsections that follow. 

4.3.1 Segmentation using Skeleton Joint Positions 

To obtain features or a feature vector from skeleton joint positions, as proposed in [27], the 

Normalized Relative Orientation (NRO) of each joint, that is the relative position of each joint 

with respect to the joint about which it rotates, is computed. This makes the features obtained from 

the skeleton joints invariant to the camera position and the height of a subject. If  𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 represent 

 

Figure 4.3. Block diagram of the developed continuous action detection and recognition 
approach 
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the respective 3D locations of a joint 𝑖𝑖 and a joint 𝑗𝑗, the NRO of the joint 𝑖𝑖 relative to its rotating 

joint 𝑗𝑗 is computed as follows [24]: 

𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 =
𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗
�𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗�

 (4.1) 

where ‖∙‖ denotes the Euclidean distance. For example, the NRO of the ankle joint is obtained 

with respect to the knee joint, the NRO of the knee joint is obtained with respect to the hip joint, 

and so on. 

Let (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝑡𝑡 , … ,𝐹𝐹𝑛𝑛) represent a sequence of NRO features, where 𝐹𝐹𝑡𝑡 =

(𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁1 ,𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁2 ,𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁3 , … )𝑡𝑡 indicates the NRO features of the joints at frame 𝑡𝑡. Based on a reference 

NRO 𝐹𝐹𝑟𝑟, a potential energy function at frame 𝑡𝑡 is computed as follows: 

𝑃𝑃𝑃𝑃(𝑡𝑡) = ‖𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑟𝑟‖2 (4.2) 

Here, the first frame in the sequence is used as the reference NRO.  

The potential energy function is then thresholded. That is, if the potential energy function at a 

particular frame appears below a specified threshold value (discussed later in the parameter setting 

part of the results section), it is set to zero and the condition is considered to be a pause segment. 

Consecutive frames with zero value of potential energy are marked as pause segments while 

consecutive frames with positive values of potential energy are marked as action segments. An 

action segment appears in between pause segments. Whenever an action is identified, detection 

based on SVDD is activated to see whether that action is an action of interest or an action of non-

interest. An example of a potential energy function exhibiting segmented actions in a continuous 

action stream is shown in Figure 4.4. 
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4.3.2 Segmentation using Inertial Signals 

To obtain segmented actions from inertial signals, the acceleration signal is utilized. Acceleration 

at frame 𝑡𝑡 is computed as follows: 

𝑎𝑎(𝑡𝑡) = �𝑎𝑎𝑥𝑥(𝑡𝑡)2 + 𝑎𝑎𝑦𝑦(𝑡𝑡)2 + 𝑎𝑎𝑧𝑧(𝑡𝑡)2 (4.3) 

where 𝑎𝑎𝑥𝑥(𝑡𝑡),𝑎𝑎𝑦𝑦(𝑡𝑡),𝑎𝑎𝑧𝑧(𝑡𝑡) denote the 3D accelerations at frame 𝑡𝑡. Based on a reference acceleration 

𝑎𝑎(𝑟𝑟), an acceleration difference function is obtained as follows: 

𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝑎𝑎(𝑡𝑡) − 𝑎𝑎(𝑟𝑟) (4.4) 

Here, the acceleration at the first frame of a sequence is used as the reference. The acceleration 

difference function is then thresholded. Signal frames below a specified threshold value (discussed 

later in the parameter setting part of the results section) are identified as pause segments. 

Consecutive frames with non-zero acceleration difference make up an action segment. An example 

of an acceleration difference function for a continuous action stream is shown in Figure 4.5. Note 

 

Figure 4.4. An example potential energy function of a continuous action stream 
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that angular velocity difference, instead of acceleration difference, can also be used for the same 

purpose. 

4.3.3 SVDD based Detection 

Segmenting actions from a continuous action stream is followed by labeling them as actions of 

interest or actions of non-interest. This detection step is done based on a one-class SVDD classifier. 

SVDD allows finding a spherical boundary that encloses all the data of interest. Training an SVDD 

classifier involves finding the center and the radius of the spherical boundary. During testing, if a 

sample falls inside the boundary, it is regarded as data of interest. 

Based on a training set 𝑋𝑋 comprising 𝑁𝑁 samples,  𝑋𝑋 = {𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘 ∈ ℝ𝐷𝐷 ,𝑘𝑘 = 1, … ,𝑁𝑁}, as discussed in 

[25], [28], the radius 𝑅𝑅 and the center 𝑏𝑏 of the spherical boundary enclosing all the samples are 

obtained by solving the following minimization problem: 

min
𝑅𝑅,𝑏𝑏,𝜉𝜉

�𝑅𝑅2 + 𝛾𝛾�𝜉𝜉𝑘𝑘

𝑁𝑁

𝑘𝑘=1

� (4.5) 

 

Figure 4.5. An example acceleration difference function of a continuous action stream 
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subject to the constraints 

‖𝜙𝜙(𝑥𝑥𝑘𝑘) − 𝑏𝑏‖2 ≤ 𝑅𝑅2 + 𝜉𝜉𝑘𝑘, for all 𝑘𝑘 (4.6) 

and 

𝜉𝜉𝑘𝑘 ≥ 0, for all 𝑘𝑘 (4.7) 

where 𝜉𝜉𝑘𝑘 is a variable penalizing outliers, 𝛾𝛾 is a parameter controlling a trade-off between volume 

and misclassification error, and 𝜙𝜙 represents a nonlinear transformation to a higher dimensional 

kernel space. In [29], the solution of this minimization problem is provided using the Lagrange 

multiplier method. 

For testing an unknown sample  𝑦𝑦 ∈ ℝ𝐷𝐷, the distance of this sample from the center of the spherical 

boundary is computed. If the sample lies within the boundary of the sphere, it is accepted as data 

of interest, otherwise it is rejected. For action detection when using skeleton joint positions, the 

potential energy function is divided into three equal portions. The average NROs from these three 

equal portions are then used as X in the above SVDD minimization problem. For the inertial 

signals, the statistical features of mean, variance, standard deviation and root mean square for the 

acceleration and angular velocity signals along all the three directions, similar to the features used 

in [30], are used as X in the above SVDD minimization problem. Only those actions that are 

detected as actions of interest by both skeleton joint positions and inertial signals are considered 

further in the recognition part. This improves the detection accuracy as actions of non-interest 

wrongly detected as actions of interest by one of the two sensing modalities get ruled out in this 

manner. 
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4.3.4 Recognition via CRC 

Recognition based on skeleton joint positions and inertial signals is done by using two CRC 

classifiers. A CRC classifier is a computationally efficient classifier that has proven effective in 

image processing applications [31]. To keep the computational complexity low, as discussed in 

[26], l2-regularization is considered instead of the conventional l1-regularization. 

Let 𝑍𝑍 = [𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑁𝑁] ∈ ℝ𝑑𝑑×𝑁𝑁 denote 𝑁𝑁 training samples with 𝑧𝑧𝑚𝑚 ∈ ℝ𝑑𝑑. A CRC classifier 

represents a test sample 𝑤𝑤 ∈ ℝ𝑑𝑑 as a linear combination of all the training samples, that is 

𝑤𝑤 = 𝑍𝑍𝑍𝑍 (4.8) 

where 𝛼𝛼 ∈ ℝ𝑁𝑁 represents a coefficient vector corresponding to the training samples. The test 

sample is classified by solving the following l2-regularized minimization problem as discussed in 

[26], [32]: 

𝛼𝛼� = arg min
𝛼𝛼
‖𝑤𝑤 − 𝑍𝑍𝑍𝑍‖22 + λ‖𝛼𝛼‖22 (4.9) 

where λ denotes a regularization parameter. The closed form solution of (9) is given by [32] 

𝛼𝛼� = (𝑍𝑍𝑇𝑇𝑍𝑍 + λ𝐼𝐼)−1𝑍𝑍𝑇𝑇𝑤𝑤 (4.10) 

where 𝐼𝐼 denotes the identity matrix. If 𝑍𝑍𝑐𝑐 is the set of all the training samples belonging to a class 

𝑐𝑐 ∈ [1, … ,𝐶𝐶] and 𝛼𝛼�𝑐𝑐 is the corresponding coefficient vector, a reconstruction error 𝑒𝑒𝑐𝑐(𝑤𝑤) can be 

computed for each class as follows: 

𝑒𝑒𝑐𝑐(𝑤𝑤) = ‖𝑤𝑤 − 𝑍𝑍𝑐𝑐𝛼𝛼�𝑐𝑐‖2 (4.11) 

The test sample 𝑤𝑤 is then assigned to the class having the least reconstruction error. 
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For recognition based on skeleton joint positions, the potential energy function is divided into 𝑁𝑁𝑆𝑆 

equal size temporal portions. The average NROs from these portions are used as 𝑍𝑍 in the CRC 

classification. 

For recognition based on inertial signals, the acceleration and angular velocity signals are divided 

into 𝑁𝑁𝐼𝐼 equal size temporal portions. The statistical features of mean, variance, standard deviation, 

and root mean square for the acceleration and angular velocity signals along all the three directions 

per temporal portion are used as 𝑍𝑍 in the CRC classification. 

4.3.5 Decision Fusion 

To take into consideration the decision made by each CRC classifier, a decision fusion is carried 

out. Due to its high computational efficiency, the logarithm opinion pool (LOGP) technique is 

used here similar to the fusion performed in [31], [33]. Each CRC classifier generates an error 

vector indicating the reconstruction error for each class. Let 𝑒𝑒𝑆𝑆 and 𝑒𝑒𝐼𝐼 represent the error vectors 

generated by the CRC classifiers based on the skeleton joint positions and inertial signals, 

respectively. Let 𝛽𝛽 ∈ [1, … ,𝐶𝐶] represent the class label. As described in [32], the individual 

posterior probabilities 𝑝𝑝𝑆𝑆(𝛽𝛽|𝑤𝑤) and 𝑝𝑝𝐼𝐼(𝛽𝛽|𝑤𝑤) of the two classifiers for a test sample 𝑤𝑤 can be 

obtained based on a Gaussian mass function as follows: 

𝑝𝑝𝑆𝑆(𝛽𝛽|𝑤𝑤) = exp (−𝑒𝑒𝑆𝑆),     𝑝𝑝𝐼𝐼(𝛽𝛽|𝑤𝑤) = exp (−𝑒𝑒𝐼𝐼) (4.12) 

These posterior probabilities with the errors normalized to one are used in the LOGP technique to 

set up this probability [30] 

𝑃𝑃(𝛽𝛽|𝑤𝑤) = 𝑝𝑝𝑆𝑆(𝛽𝛽|𝑤𝑤)𝛼𝛼𝑆𝑆 ∙ 𝑝𝑝𝐼𝐼(𝛽𝛽|𝑤𝑤)𝛼𝛼𝐼𝐼  (4.13) 
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where 𝛼𝛼𝑆𝑆 and 𝛼𝛼𝐼𝐼 denote weights associated with the two classifiers. Here, these weights are 

considered to be the same, that is 𝛼𝛼𝑆𝑆 = 𝛼𝛼𝐼𝐼 = 1
2
. The class label assigned to a test sample is 

considered to be the one which has the maximum probability 𝑃𝑃(𝛽𝛽|𝑤𝑤), that is 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑤𝑤) = arg max
𝛽𝛽∈[1,…,𝐶𝐶]

𝑃𝑃(𝛽𝛽|𝑤𝑤) (4.14) 

Note that the probabilities obtained in (12) and (13) are normalized by their sum over all the classes 

before they are used. 

4.4 EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents the experimental results of the developed detection and classification 

modules on the continuous smart TV gesture dataset described earlier when using the two sensing 

modalities of depth camera and inertial sensor simultaneously. Note that fusion of these two 

differing sensing modalities is done both in the detection and the recognition or classification part. 

The next section provides procedures or guidelines for selecting the parameters used in the 

developed approach. 

4.4.1 Parameter Setting 

As mentioned earlier, during segmentation, the potential energy and acceleration difference 

functions are thresholded. Proper values of these thresholds can be determined by collecting a 

validation continuous action stream for each subject. The maximum potential energy value and the 

maximum acceleration difference value of the pause segments from the validation stream can be 

used to serve as the threshold to separate pause and action segments. In our experimentations, the 
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threshold obtained in the above manner for the potential energy were found to be in the range 

[0.25, 3] and those for the acceleration difference were found to be in the range [0.15, 0.5]. 

As noted earlier, SVDD is used to define a spherical boundary enclosing the actions of interest 

performed by a specific subject. The samples that fall within this boundary are labeled as actions 

of interest, while the ones falling outside this boundary are rejected or considered to be actions of 

non-interest. To determine the center and the radius of the spherical boundary, a transformation of 

the sample points to a higher dimensional space is performed using a Gaussian kernel. The standard 

deviation parameter 𝜎𝜎 of the Gaussian kernel determines the smoothness of the boundary obtained 

by SVDD [28]. The value of 𝜎𝜎 is chosen per specific subject such that all the actions of interest in 

a continuous validation stream are detected and all the actions of non-interest are rejected. For the 

skeleton data, 𝜎𝜎 = 3 for subject 9 and 𝜎𝜎 = 5 for all the other subjects were found to separate 

actions of interest and actions of non-interest. For the inertial data, 𝜎𝜎 = 1𝑒𝑒6 for subjects 1, 4 and 

5, 𝜎𝜎 = 1𝑒𝑒5 for subjects 2, 6, 7, 10 and 11 and 𝜎𝜎 = 1𝑒𝑒4 for subjects 3, 8, 9 and 12 were found to 

separate actions of interest and actions of non-interest. 

The values of 𝑁𝑁𝑆𝑆 and 𝑁𝑁𝐼𝐼 in the recognition part were determined as follows. For each subject, a 

sweep of values was examined for both the potential energy function and acceleration difference 

function. Appropriate values were obtained via a five-fold cross-validation over the training set. 

For each value of 𝑁𝑁𝑆𝑆 and 𝑁𝑁𝐼𝐼, the training data for each subject was randomly divided into training 

and validation sets in a 4:1 ratio, and the recognition rate was obtained. This was repeated 100 

times for each value of 𝑁𝑁𝑆𝑆 and 𝑁𝑁𝐼𝐼. Then, the 𝑁𝑁𝑆𝑆 and 𝑁𝑁𝐼𝐼 values providing the highest recognition 

rate per subject were chosen. The average of the recognition rates over 100 trials across different 

values of 𝑁𝑁𝑆𝑆 and 𝑁𝑁𝐼𝐼 for one of the subjects is shown in Figure 4.6. 
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Another parameter is the regularization parameter 𝜆𝜆 of the CRC classifiers. The value of 𝜆𝜆 was 

chosen based on a five-fold cross validation over the training set per specific subject. Different 

values of 𝜆𝜆 were used in the CRC classifiers and the one generating the highest recognition rate 

was chosen. Figure 4.7 shows the recognition rates obtained for different values of 𝜆𝜆 for one of the 

subjects. The selected values of 𝑁𝑁𝑆𝑆, 𝑁𝑁𝐼𝐼 and 𝜆𝜆 for the skeleton (𝜆𝜆𝑠𝑠) and inertial (𝜆𝜆𝐼𝐼) modalities per 

subject are indicated in Table 4.1.  

 

Figure 4.6. Average recognition rates of cross validation over different values of 𝑁𝑁𝑆𝑆 and 𝑁𝑁𝐼𝐼 
for subject 3 

 

Figure 4.7. Average recognition rates of cross validation over different values of  𝜆𝜆 for 
subject 4 
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4.4.2 Detection Outcome 

As described earlier, detection of actions of interest from a continuous action stream is carried out 

based on two SVDD classifiers, one operating on skeleton joint positions and the other on inertial 

signals. The actions detected as actions of interest by both the SVDD classifiers are considered to 

be the fusion outcome of the detection part. Table 4.2 reports the number of correctly detected 

actions of interest, referred to as true detections and the number of falsely detected actions of non-

interest, referred to as false detections, for each subject by the SVDD classifiers corresponding to 

the skeleton joint positions and the inertial signals individually. Note that per subject there were a 

total of 25 actions of interest in the 5 continuous action streams. The fusion outcomes of the 

detection part are also reported in this table, which incorporates rejecting those actions that are 

detected by only one of the two classifiers. As can be observed from this table, the fusion in the 

detection part led to rejecting all the wrongly detected actions of non-interest. In other words, there 

Table 4.1. Values of 𝑁𝑁𝑆𝑆, 𝑁𝑁𝐼𝐼, 𝜆𝜆𝑆𝑆 and 𝜆𝜆𝐼𝐼  chosen based on cross-validation per subject 
Subject 𝑵𝑵𝑺𝑺 𝑵𝑵𝑰𝑰 𝝀𝝀𝑺𝑺 𝝀𝝀𝑰𝑰 

1 1 2 4e-2 7e-5 
2 6 2 3e-2 2e-5 
3 4 4 2e-1 2e-5 
4 6 3 2e-1 4e-4 
5 4 2 2e-1 1e-5 
6 6 6 9e-2 3e-5 
7 7 3 1e-1 3e-5 
8 7 2 1e-2 3e-5 
9 7 3 1e-1 6e-5 
10 4 3 1e1 9e-5 
11 6 4 3e-5 1e-5 
12 4 3 1e-1 5e-5 
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was no action of non-interest that was labeled as an action of interest when using both of the 

sensing modalities. 

4.4.3 Continuous Action Recognition Outcome 

In the recognition part, classification is performed on those actions of interest that are detected by 

both of the SVDD classifiers. The ground truth actions were identified by visual segmentation 

from the continuous action streams. Actions of interest correctly classified were marked as true 

positives. Actions of non-interest wrongly detected as actions of interest as well as misclassified 

actions of interest were marked as false positives. Actions of interest that were not detected and 

the ones that were not correctly classified were marked as false negatives. The overall performance 

of the approach is evaluated here based on the widely used measures of precision, recall, and 𝐹𝐹1 

score [34]–[36]. Precision measures the fraction of true positives over all detections. Let #𝑇𝑇𝑇𝑇 

Table 4.2. Detection outcome based on skeleton joint positions only, inertial signals only 
and fusion of the two 

 Skeleton Joint 
Positions Only Inertial Signals Only 

Fusion of Skeleton Joint 
Positions and Inertial 

Signals 
Subject TD FD TD FD TD FD 

1 25 0 25 4 25 0 
2 25 2 25 2 25 0 
3 25 2 25 3 25 0 
4 25 0 25 1 25 0 
5 25 3 25 1 25 0 
6 25 1 25 3 25 0 
7 25 0 25 0 25 0 
8 24 0 25 6 24 0 
9 25 0 25 2 25 0 

10 25 0 23 18 23 0 
11 25 0 25 2 25 0 
12 25 0 25 14 25 0 

TD: True Detections, FD: False Detections 
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represent the number of true positives, #𝐹𝐹𝐹𝐹 the number of false positives and #𝐹𝐹𝐹𝐹 the number of 

false negatives, then precision 𝑃𝑃 is defined as 

𝑃𝑃 =
#𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹
 (4.15) 

The recall measure 𝑅𝑅 reflects the fraction of true positives detected among actions of interest and 

is defined as 

𝑅𝑅 =
#𝑇𝑇𝑇𝑇

#𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹
 (4.16) 

Considering the 25 actions of interest in the continuous action streams, the term #𝑇𝑇𝑇𝑇 + #𝐹𝐹𝐹𝐹 for 

each subject was 25. The measure 𝐹𝐹1 score is the harmonic average of precision and recall, that is 

𝐹𝐹1 = 2
𝑃𝑃 ∙ 𝑅𝑅

(𝑃𝑃 + 𝑅𝑅)
 (4.17) 

Per subject, the precision, recall and 𝐹𝐹1 scores were obtained using the skeleton joint positions 

and the inertial signals separately or individually, and by using the fusion of the two sensing 

modalities. These measures are reported in Table 4.3 for the subjects examined. A noticeable 

improvement can be seen in this table due to the fusion of the two sensing modalities compared to 

the situations when using a single or an individual sensing modality. Table 4.4 reports the overall 

precision, recall and 𝐹𝐹1 scores computed over all the subjects. As evident from this table, an 

overall improvement of more than 10% was gained in the 𝐹𝐹1 score when using the fusion of the 

two sensing modalities. 

The recognition confusion matrices for the classification based on only the skeleton joint positions, 

only the inertial signals, and the fusion of the two are shown in Tables 4.5, 4.6 and 4.7, 

respectively. In these tables, WH denotes the gesture ‘Waving a Hand’, FL denotes the gesture 
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‘Flip to Left’, FR denotes the gesture ‘Flip to Right’, CCR denotes the gesture ‘Counterclockwise 

Rotation’ and CR denotes the gesture ‘Clockwise Rotation’. Note that the reported confusion 

Table 4.3. Precision, recall, and F1 scores per subject 
Subject Modality Used Precision Recall F1 score 

1 
Skeleton only 84.0% 84.0% 84.0% 
Inertial only 79.3% 92.0% 85.1% 

Skeleton & Inertial 96.0% 96.0% 96.0% 

2 
Skeleton only 55.5% 60.0% 57.6% 
Inertial only 92.5% 100% 96.1% 

Skeleton & Inertial 100% 100% 100% 

3 
Skeleton only 74.0% 80.0% 76.9% 
Inertial only 78.5% 88.0% 83.0% 

Skeleton & Inertial 88.0% 88.0% 88.0% 

4 
Skeleton only 92.0% 92.0% 92.0% 
Inertial only 69.2% 72.0% 70.5% 

Skeleton & Inertial 96.0% 96.0% 96.0% 

5 
Skeleton only 82.1% 92.0% 86.7% 
Inertial only 92.3% 96.0% 94.1% 

Skeleton & Inertial 100% 100% 100% 

6 
Skeleton only 80.7% 84.0% 82.3% 
Inertial only 78.5% 88.0% 83.1% 

Skeleton & Inertial 92.0% 92.0% 92.0% 

7 
Skeleton only 80.0% 80.0% 80.0% 
Inertial only 92.0% 92.0% 92.0% 

Skeleton & Inertial 100% 100% 100% 

8 
Skeleton only 83.3% 80.0% 81.6% 
Inertial only 74.2% 92.0% 82.1% 

Skeleton & Inertial 100% 96.0% 97.9% 

9 
Skeleton only 68.0% 68.0% 68.0% 
Inertial only 88.8% 96.0% 92.3% 

Skeleton & Inertial 96.0% 96.0% 96.0% 

10 
Skeleton only 72.0% 72.0% 72.0% 
Inertial only 45.2% 76.0% 56.7% 

Skeleton & Inertial 100% 92.0% 95.8% 

11 
Skeleton only 76.0% 76.0% 76.0% 
Inertial only 88.8% 96.0% 92.3% 

Skeleton & Inertial 96.0% 96.0% 96.0% 

12 
Skeleton only 76.0% 76.0% 76.0% 
Inertial only 61.5% 96.0% 75.0% 

Skeleton & Inertial 96.0% 96.0% 96.0% 
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matrices correspond to the recognition after rejecting the actions that were not detected by both 

the sensing modalities, while the reported precision, recall and 𝐹𝐹1 scores correspond to the 

performance of the entire approach consisting of both the detection and recognition parts. 

Noting that existing datasets that provide simultaneous data from depth and inertial sensors contain 

actions that are already segmented, it was not possible to apply the developed detection and 

Table 4.4. Overall precision, recall, and F1 scores across all the subjects 
Modality Used Precision Recall F1 score 
Skeleton only 76.9% 78.7% 77.8% 
Inertial only 76.3% 90.3% 82.8% 

Skeleton & Inertial 96.6% 95.7% 96.2% 
 

Table 4.5. Confusion matrix for classification using skeleton joint positions only (in %) 
Action of interest WH FL FR CCR CR 

WH 74.1 6.9 17.3 1.7 - 
FL - 86.4 8.5 5.1 - 
FR 5.0 1.7 91.6 1.7 - 

CCR 3.3 8.3 15.0 66.7 6.7 
CR 6.7 - 11.6 6.7 75.0 

 
Table 4.6. Confusion matrix for classification using inertial signals only (in %) 

Action of interest WH FL FR CCR CR 
WH 98.3 - - 1.7 - 
FL 1.7 91.5 3.4 - 3.4 
FR 6.7 3.3 85.0 1.7 3.3 

CCR 3.3 - 1.7 95.0 - 
CR 8.4 3.3 - 3.3 85.0 

 

Table 4.7. Confusion matrix for classification using fusion of skeleton joint positions and 
inertial signals (in %) 

Action of interest WH FL FR CCR CR 
WH 98.3 1.7 - - - 
FL - 100 - - - 
FR 1.7 - 95.0 3.3 - 

CCR 1.7 - 1.7 93.3 3.3 
CR 1.7 - 1.7 - 96.6 
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recognition approach to them. In order to provide a comparison, the recognition part of the 

developed approach was applied to the UTD-MHAD dataset [23], which is a multimodal dataset 

consisting of 27 actions performed by 8 subjects. The data from odd subjects were used for 

training, and the data from even subjects were used for testing. Table 4.8 shows the comparison of 

the accuracies with two other computationally efficient approaches. As seen from this table, a 

higher accuracy is achieved when using the developed approach. 

4.4.4 Processing Time 

It is important to note that the developed action recognition system detects and recognizes actions 

of interest in an on-the-fly or real-time manner. The detection module is executed whenever the 

segmentation of an action gets done across a continuous action stream. The recognition module is 

executed whenever an action is detected as an action of interest. All these operations are carried 

out online as data samples are received in real-time from the depth camera and the inertial sensor. 

The implementation coding was done in MATLAB. The average processing time of the major 

components in these modules are listed in Table 4.9. These processing times are for a laptop 

equipped with 2.6GHz processor with 16GB RAM without using any dedicated image processing 

hardware. As noted in the table, the total processing time of the major components is only about 

6.7ms, which meets the real-time frame processing rate of the depth camera at 30ms per frame. A 

video clip of the approach running in real-time can be viewed at this link: 

http://www.utdallas.edu/~kehtar/RTContinuousAction.avi. 

http://www.utdallas.edu/%7Ekehtar/RTContinuousAction.avi
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4.5 CONCLUSION 

In this chapter, a computationally efficient action or gesture detection and recognition approach 

has been introduced which is capable of dealing with continuous action streams consisting of 

actions of interest occurring continuously and randomly among arbitrary actions of non-interest. 

Two differing sensing modalities of a depth camera and a wearable inertial sensor are used 

simultaneously to enable a robust performance via fusion of the skeleton joints and inertial data 

for both detection and recognition. The developed approach has been applied to the actions of the 

smart TV application in a subject-specific setting. The reported experimental results have 

demonstrated the effectiveness of the approach in detecting and recognizing smart TV gestures 

from continuous action streams. As future work, we plan to apply this approach to other 

applications involving a different set of actions of interest.  

Table 4.8. Recognition accuracy on UTD-MHAD dataset 
Method Accuracy (%) 

ELC-KSVD [37] 76.2 

Kinect and Inertial [23] 79.1 

Developed  approach 86.3 

 

Table 4.9. Average processing times of different components or modules 

Component Processing Time  
(in ms) 

Detection using depth camera 0.4/action 

Detection using inertial sensor 1.2/action 

Classification using depth camera 2.5/action 

Classification using inertial sensor 2.6/action 
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ABSTRACT 

This chapter presents the data flow synchronization aspects of running a fusion system on a modern 

laptop in real-time. The fusion system uses two differing modality sensors of a Kinect depth 

camera and a wearable inertial sensor to detect and recognize a number of actions of interest from 

continuous action streams. This system is utilized to detect and recognize smart TV gestures when 

they are performed in a random and continuous manner among various actions of non-interest. It 

is shown that the processing times associated with the components of the developed fusion system 

lead to the real-time operation of the system on modern laptops.  
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5.1 INTRODUCTION 

Human action/gesture recognition is an extensively researched topic in the literature. Different 

modality sensors, such as video cameras, depth cameras, and inertial sensors, have been used for 

this purpose. For example, video cameras were utilized in [1-2], depth cameras were utilized in [3-

5], and inertial sensors were utilized in [6-7] to achieve human action/gesture recognition. It is 

well known that one modality sensor or camera cannot cope with all possible situations that occur 

in practice. Thus, to achieve more robust recognition under realistic operating conditions, in our 

previous works in [8-10], the two different modality sensors of a depth camera and a wearable 

inertial sensor were used together or simultaneously to perform human action/gesture recognition.  

In applications such as smart TV and gaming, it is required to automatically segment/detect as well 

as recognize actions of interest from continuous streams of activities. In [11-12], we developed 

two approaches to detect and recognize actions of interest from continuous streams of activities. 

A continuous stream denotes a number of actions of interest occurring randomly amongst arbitrary 

actions of non-interest in a continuous manner. The thrust of this chapter is on the data flow 

synchronization aspects of the detection and recognition system developed in our previous works. 

Such synchronization aspects are critical for having an actual real-time working fusion system. 

The algorithm implemented in this system uses both skeleton joint positions obtained from a 

Kinect depth camera and inertial signals obtained from an inertial sensor in parallel to perform 

detection and recognition. Detection is performed by both the sensing modalities and the common 

actions of interest detected by both the modalities are then recognized based on a decision-level 

fusion technique via two classifiers: one classifier operating on features derived from skeleton 

joint positions, and the other classifier operating on features derived from inertial signals. 
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 The actions of interest considered in this work are the five smart TV gestures of ‘Waving a Hand’, 

‘Flip to Left’, ‘Flip to Right’, ‘Counterclockwise Rotation’ and ‘Clockwise Rotation’. A subject-

specific scenario for testing is considered in this work, that is training and testing are carried out 

by the same subject. 

The rest of the chapter is organized as follows: An overview of our continuous action detection 

and recognition approach is provided in Section 5.2. The synchronization and implementation 

aspects of this approach are then discussed in Section 5.3. Section 5.4 includes the results of the 

experimentations carried out. Finally, the chapter is concluded in Section 5.5. 

5.2 OVERVIEW OF DETECTION AND RECOGNITION FUSION SYSTEM 

The sensor modalities used in the developed fusion system include a Kinect v2 camera and a 

wearable inertial sensor. The Kinect camera is a depth camera that captures depth images at an 

approximate rate of 30 frames per second and a resolution of 512×424 pixels. This camera is 

connected to a laptop via a USB port. The software tool Kinect SDK [13] provides the 3D positions 

of 25 skeleton joints. The wearable inertial sensor used is a small wireless body sensor reported in 

[14] which generates 3-axis acceleration and 3-axis angular velocity signals at a sampling rate of 

200Hz. These signals are transmitted to a laptop via a Bluetooth link.  

The algorithm run by the system first detects actions of interest from continuous action streams 

using skeleton joint positions and inertial signals individually. The fusion at the detection stage 

then takes only those actions that are detected by both the sensing modalities to perform 

recognition. Recognition is performed by two collaborative representation classifiers (CRC) [8] 

using skeleton joint positions and inertial signals separately, and the decisions of the two classifiers 

are fused to recognize the detected actions of interest. 
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Initially, segmentation of any action (whether an action of interest or an action of non-interest) 

from continuous action streams is performed based on skeleton joint positions using normalized 

relative orientations (NRO) of the skeleton joints [15]. As described in [12], the NROs of the joints 

are used to obtain a potential energy function. This potential energy function is compared to a 

threshold and the frames with a potential energy greater than this threshold are marked as action 

segments and those below it are marked as pause segments. 

In parallel, segmentation of actions from continuous action streams is performed based on a 

difference acceleration signal computed using a reference acceleration signal. The difference 

acceleration signal is compared to a threshold. Frames with difference acceleration greater than 

the threshold are marked as action segments and the ones with difference acceleration below it are 

marked as pause segments.  The actions segmented using the two modalities are then grouped into 

actions of interest or actions of non-interest using two one-class support vector data descriptor 

(SVDD) classifiers [16-17], one classifier using NROs obtained from skeleton joint positions as 

the features, and the other using the statistical features of mean, variance, standard deviation and 

root mean square of the difference acceleration signal as the features. The actions that are detected 

as actions of interest by both the modalities are then passed onto the recognition stage. 

For recognition of the detected actions of interest, two computationally efficient 𝑙𝑙2-regularized 

CRC classifiers are used. One CRC classifier uses the joint NROs as the features for those frames 

marked as part of an action of interest. Another CRC classifier uses the statistical features of 

inertial signals as the features.  
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The recognition decision is made by a decision fusion of the two classifiers via the logarithm 

opinion pool (LOGP) technique [18]. The recognized action is considered to be the one which 

generates the maximum probability obtained by the LOGP technique. 

5.3 IMPLEMENTATION ASPECTS OF THE FUSION SYSTEM 

As mentioned earlier, the publicly available Kinect SDK allows access to various features of 

Kinect including 25 skeleton body joints. The OpenCV library in C++ was used here to track these 

joints. Capturing of inertial signals from the wearable inertial sensor was also performed in the 

same program.  

Due to the availability of various toolboxes in MATLAB like SVDD toolbox, the coding of the 

developed approach was done in MATLAB. Hence, a data flow synchronization technique was 

required to import data in MATLAB as soon as they were captured in C++. The following 

subsections discuss the process of training the system and the synchronization technique adopted 

to allow the flow of data between the two coding parts written in MATLAB and C++.  

5.3.1 Training Process 

The training was performed in an offline manner by asking a subject under test to wear the inertial 

sensor on his/her right wrist and stand in front of the Kinect v2 camera to perform the smart TV 

gestures. The subject was asked to repeat each of the five actions of interest 10 times and the data 

from both the sensors were recoded. It is important to note that actions of non-interest were not 

needed to be performed by the subject during the training phase. 
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5.3.2 Synchronization Technique for Actual Operation 

During the actual operation or testing, the same subject performs the actions of interest in between 

some arbitrary actions of non-interest continuously in front of the Kinect camera while wearing 

the inertial sensor on the wrist. The acquisition of data from both the sensors is done in C++. The 

skeleton joint positions at each frame are read as binary files and saved in a folder. In addition, 

each sample of the 3-axis acceleration and 3-axis angular velocity signals from the inertial sensor 

is stored in a text file.  

The MATLAB code begins by looking for the first frame of the skeleton joint positions in the 

folder and the first sample of the inertial signals in the text file. The search across skeleton joint 

positions and inertial signals is done in parallel as the rate of capturing data from the two sensors 

is different. Whenever the MATLAB code finds the first frame of the skeleton joint positions in 

the folder, it imports it into the MATLAB environment and increments the frame counter to look 

for the next frame. In parallel, the sample counter is incremented whenever the MATLAB code 

finds the current sample of the inertial signal being processed. The block diagram of the data flow 

synchronization process is shown in Figure 5.1. 

As the frame and sample numbers increase, the size of the folder containing the binary files 

corresponding to the skeleton joint positions and the size of the text file containing the inertial 

signal samples increase. Hence, the computational complexity of looking for the binary file 

corresponding to a particular frame and inertial readings for a particular sample also increases. In 

order to keep the computational complexity low for the purpose of the system being able to operate 

in real-time, the binary files in the folder are deleted after every 100th frame considering that they 

have already been copied by the MATLAB code. That is, when the binary file corresponding to 
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frame 𝑖𝑖 is recorded in the folder, the file corresponding to frame 𝑖𝑖 − 100 is deleted. This makes 

sure that the size of the folder containing these files never grows. Similarly, the size of the text file 

containing the inertial signal readings is maintained by deleting the reading corresponding to 

sample 𝑗𝑗 − 1000 whenever the reading corresponding to sample 𝑗𝑗 is recorded. The reason for 

keeping the buffer size for inertial signals high is that the sampling rate of the inertial sensor is 

higher as compared to the depth camera or sensor. 

As the data from the two sensors are gathered in the MATLAB code, a moving average filter of 

window size 3 is applied to smoothen the data. The window size is kept small in order to avoid 

any processing delay. The filtered data are then used in the detection and recognition modules. 

There is a time stamp index value associated with each frame of the skeleton joint positions that 

provides the corresponding sample number of the inertial signals. Hence, while processing frame 

𝑖𝑖, all the inertial samples from the index value at frame 𝑖𝑖 − 1 to the index value at frame 𝑖𝑖 are 

processed. The raw data in the MATLAB code are erased once the features from the skeleton joint 

positions at a particular frame and the inertial signals at a particular sample are gathered. 

 

Figure 5.1. Block diagram of data flow synchronization  
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5.4 EXPERIMENTAL RESULTS 

To evaluate the performance of the developed real-time continuous action detection and 

recognition fusion system, subjects under test were asked to perform continuous action streams 

consisting of actions of interest and actions of non-interest in front of a Kinect camera while 

wearing the inertial sensor. Each continuous action stream comprised the five actions of interest 

performed exactly once. A total of 30 such continuous action streams were collected and examined 

for the subject under test. The detection and classification accuracies of these action streams are 

reported in Table 5.1. Detection accuracy indicates the percentage of actions of interest detected 

from the continuous streams, while the classification accuracy indicates the percentage of correctly 

classified actions of interest among the detected actions. Of the 150 actions of interest in 30 

continuous action streams performed, on average, 146 actions per subject were correctly detected 

resulting in a detection accuracy of 97.3%. The confusion matrix of the recognition rates obtained 

is shown in Table 5.2.  In this table, WH denotes the gesture ‘Waving a Hand, FL denotes the 

gesture ‘Flip to Left’, FR denotes the gesture ‘Flip to Right’, CCR denotes the gesture 

‘Counterclockwise Rotation’ and CR denotes the gesture ‘Clockwise Rotation’. 

Table 5.3 shows the average processing times of the major components of the real-time fusion 

system. These times are reported for a laptop with 2.6GHz Intel Core i7 CPU and 12GB RAM. 

Note that the reported detection and classification times are not frame based as these modules are 

not executed per frame. Detection is performed whenever an action is segmented from a 

continuous action stream and classification is performed whenever the segmented action is 

detected as an action of interest. Also, note that the reported depth data flow time includes the time 

to extract depth and skeleton data from binary files and storing them in the correct format in 
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matrices, which results in a higher processing time compared to the inertial data flow. The total 

processing time is noted to be 33.3ms, which meets the frame processing rate of about 30 depth 

image frames per second, thus generating a smooth real-time operation. 

Figure 5.2 shows an example of a depth frame as it appears during the data acquisition and after 

the simultaneous data flow to the MATLAB code. A video clip of the system running in real-time 

can be viewed at http://www.utdallas.edu/~kehtar/SmartTVGestures-synchronization.avi.  

5.5 CONCLUSION 

This chapter has addressed the data flow synchronization aspects of running a fusion system in 

order to perform continuous human action/gesture detection and recognition in real-time. The 

Table 5.1. Detection and recognition accuracies 
 Accuracy 

Detection 97.3% 
Recognition 92.5% 

 
Table 5.2. Confusion matrix of recognition rates (in %) 

Action of interest WH FL FR CCR CR 
WH 100.0 - - - - 
FL 7.1 92.9 - - - 
FR 3.4 - 96.6 - - 

CCR 3.3 - 3.3 93.4 - 
CR 6.7 3.3 - 10.0 80.0 

 

Table 5.3. Average processing times of the major components of the real-time fusion system 
Component Average processing time (in ms) 

Depth data flow to MATLAB 14.1 
Inertial data flow to MATLAB 8.9 

Detection using depth data 1.6 
Classification using depth data 4.1 

Detection using inertial data 1.8 
Classification using inertial data 2.8 
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fusion system uses a Kinect depth camera and a wearable inertial sensor. The developed system is 

applied to the smart TV application to detect and classify the five actions of interest in this 

application from continuous action streams consisting of these actions of interest performed 

randomly and continuously among arbitrary actions of non-interest. The data flow synchronization 

reported in this chapter has led to a smooth flow of data between the MATLAB and C++ code 

parts. 

  

  
 

Figure 5.2. An example depth frame as it appears at the same time in the MATLAB and C++ 
code parts 
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ABSTRACT 

This chapter presents a convolutional neural network-based sensor fusion system to monitor six 

transition movements as well as falls in healthcare applications by simultaneously using a depth 

camera and a wearable inertial sensor. Weighted depth motion map images and inertial signal 

images are fed as inputs into two convolutional neural networks running in parallel, one for each 

sensing modality. Detection and thus monitoring of the transition movements and falls are 

achieved by fusing the movement scores generated by the two convolutional neural networks. The 

results obtained for both subject-generic and subject-specific testing indicate the effectiveness of 

this sensor fusion system for monitoring these transition movements and falls. 
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6.1 INTRODUCTION 

Among various population groups, recovering patients and elderly people require a high level of 

healthcare services, which is partially due to their mobility constraints. There has been a steady 

increase in healthcare costs for these population groups. As a result, there has been a shift in 

healthcare services from healthcare facilities to home environments [1]. An example of this shift 

is seen in human activity monitoring systems for healthcare applications. Deployment of 

monitoring systems in homes not only saves healthcare costs, but also provides elderly or patients 

with the independence of staying at home rather than staying in healthcare facilities [2]. An 

application of home-based monitoring systems involves fall detection. Falls, especially in elderly 

population, can be detrimental to their lives causing severe injuries and disabilities and may even 

lead to deaths [3]. Research has shown that 70% of the accidental deaths in the elderly population 

over the age of 75 are caused by falls [4]. Incorporating detection of falls in activity monitoring 

systems would lead to providing timely assistance and thus preventing life threatening delays. 

Human action or gesture recognition plays a key role in activity monitoring systems for assistive 

living. Different types of sensors, e.g., vision and inertial [5-6], have been used to perform action 

or gesture recognition. In general, as noted in [7], a single modality sensing cannot deal with 

various realistic situations that occur in practice. Several action recognition sensor fusion systems 

have been developed by our research group in [8-12] by using two different modality sensors at 

the same time in order to achieve robust recognition under realistic operating conditions. 

This work presents a monitoring system for the purpose of detecting or recognizing transition 

actions or movements, including falls, in healthcare applications. The actions of interest here 

include transitions between sitting, standing and lying down states. The system is designed to 
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detect transitions occurring between these body states as well as the time spent in a particular state. 

To gain robustness, similar to our previous works, the information from a depth camera and a 

wearable inertial sensor are utilized at the same time or are fused together to detect transition 

movements as well as falls.  

 In previous fusion systems we have developed in [8-12], different classifiers including Maximum 

Entropy Markov Model (MEMM), Collaborative Representation Classifier (CRC) and Hidden 

Markov Models (HMM) were used to perform action or gesture recognition. Considering that 

Convolutional Neural Networks (CNNs) have recently gained widespread utilization for 

recognition applications [13], in this work we have developed a CNN-based sensor fusion system 

for detecting transition movements and falls. 

The remainder of the chapter is organized as follows: Section 6.2 provides a description of the 

system setup and the dataset collected by it. Section 6.3 presents the details of the developed CNN-

based sensor fusion system to perform monitoring of transition movements as well as falls. The 

results obtained by the system are discussed in Section 6.4. Finally, the chapter is concluded in 

Section 6.5. 

6.2 SENSOR FUSION SYSTEM AND ITS DATASET 

The inertial sensor used here is a small wireless wearable sensor reported in [14], which is capable 

of generating 3-axis acceleration signals and 3-axis angular velocity signals. Note that many other 

existing inertial sensors can be used in place of this inertial sensor. We have opted to use a depth 

camera instead of a video camera to avoid any privacy issue as no faces are identifiable in depth 

images. Basically, this sensor fusion system consists of a laptop computer, a Kinect v2 camera, 

and a wearable inertial sensor worn around the waist.   
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Since this system uses data from a Kinect depth camera and a wearable inertial sensor 

simultaneously, these exists no publicly available dataset where depth images and inertial signals 

for transition movements and falls are captured at the same time. Hence, to analyze the 

performance of the developed CNN-based sensor fusion system, a dataset was collected by the 

system. This dataset consists of the 6 transition actions or movements of ‘stand-to-sit’, ‘sit-to-

stand’, ‘sit-to-lie’, ‘lie-to-sit’, ‘stand-to-lie’, ‘lie-to-stand’ as well as ‘fall’. Figure 6.1 shows an 

illustration of the sensor used and the transition movements between the body states monitored by 

the system. 

 

 

(a) 

 

(b) (c) 

Figure 6.1. (a) Kinect depth camera, (b) wearable inertial sensor, and     (c) illustration of the 
transistion movements and fall between the body states:  St-S (stand-to-sit), St-L (stand-to-

lie), S-St (sit-to-stand), S-L (sit-to-lie), L-S (lie-to-sit), L-St (lie-to-stand), F (fall)   
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A Kinect camera was installed at the corner of a room in which a bed had been placed. 12 different 

subjects were asked to wear the inertial sensor on their waist and perform the above mentioned 6 

transition and fall actions. The depth images and inertial signals from the Kinect depth camera and 

the inertial sensor, respectively, were collected simultaneously and synchronized using the time 

stamp scheme discussed in [9]. The subjects were asked to repeat each of the 7 actions (6 transition 

movements plus fall) 10 times, resulting in a total of 70 transition movement samples per subject. 

The dataset is made available for public use and can be downloaded at this link 

www.utdallas.edu/~kehtar/UTD-Dataset-Transitions&Falls.htm.  

6.3 CNN-BASED TRANSITION MOVEMENTS DETECTION 

The developed CNN-based transition movement detection system incorporates two detection or 

recognition paths, one CNN for each sensing modality. The decision from each path is fused to 

reach a final detection outcome. The first step in each detection or recognition path involves 

generating appropriate images for the CNN of that path. For the depth camera path, so called 

weighted depth motion map (DMM) images as described in [15] are generated and used based on 

depth images captured by the depth camera. For the inertial sensor path, images are formed by 

row-wise stacking of signals that are translation and rotation invariant based on acceleration and 

angular velocity signals captured by the inertial sensor. The following subsections describe the 

formation of the images in the two CNN paths and the CNN architectures used. 

6.3.1 Weighted DMM Images as First Path Images 

Based on depth images, weighted DMM images are obtained by first projecting depth images onto 

three 2D projection maps corresponding to the front, side, and top views. In order to retain the 

http://www.utdallas.edu/%7Ekehtar/UTD-Dataset-Transitions&Falls.htm
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temporal information in depth images, the projection maps are weighted as described in [15].  In 

this work, only the projection map corresponding to the front view is considered in order to gain 

computational efficiency. For a transition movement or action over 𝑁𝑁 depth image frames, a 

weighted DMM is computed as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷 = ��𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖+1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖�
𝑁𝑁−1

𝑖𝑖=1

∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑖𝑖 + 1) (6.1) 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 denotes the 2D projection map corresponding to the front view for the 𝑖𝑖𝑡𝑡ℎ depth image 

frame and N denotes the number of image frames in one action sequence. Motion areas of the 

projection map are weighted linearly in this work, that is the weight function of 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑖𝑖) = 𝑖𝑖 𝑁𝑁⁄  

is considered. Weighting motion areas ensures that they appear brighter as the frame number in a 

transition movement or action sequence increases. Example weighted DMM images for the 

transition movements and fall are shown in Figure 6.2. Note that the size of the weighted DMM 

images is 512 × 424, which is the same as the size of the depth images captured by the Kinect 

depth camera. Weighted DMM images are resized to 100 × 100 to reduce the computational 

complexity for the CNN-based detection. 

6.3.2 Inertial Signal Images as Second Path Images 

For each transition movement, the acceleration and angular velocity signals are captured via the 

wearable inertial sensor. First, in order to make these signals invariant to the way the inertial sensor 

is worn on the body, the 18 heuristic orientation invariant transformation signals proposed in [16], 

9 computed based on the overall acceleration and 9 computed based on the overall angular velocity, 

are concatenated row-wise to form a signal image as shown in Figure 6.3. Each row of this signal 
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image is normalized to have values between 0 and 1. Since the length of each action sequence is 

different, in order to have the same size for all the images, the size of each signal image is mapped 

to a common size of 18 × 100. Note that the captured time series signals are converted to images 

here to form the CNN input. 

6.3.3 CNN Architectures 

The architecture of the two CNNs is different, one is designed for weighted DMM images and the 

other is designed for signal images. Each CNN provides scores for the transition movements and 

falls. These scores are combined to form a fused detection score.  Figure 6.4 illustrates the CNN 

 

Figure 6.2. Example weighted DMM images of the transition movements and fall - from top 
left to botton right: ‘stand-to-sit’, ‘sit-to-stand’, ‘sit-to-lie’, ‘lie-to-sit’, ‘stand-to-lie’, ‘lie-to-

stand’, and ‘fall’ 
 

 

Figure 6.3. Example of a signal image generated from acceleration and angular velocity 
inertial signals 
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architectures in the two paths. Using the weighted DMMs, the first convolutional layer convolves 

the input images of size 100×100 with 32 filters of size 3×3. The convolution outputs are passed 

through a rectified linear unit (ReLU) activation layer. The second convolutional layer constitutes 

32 filters of size 3×3 applied to the output of the ReLU layer. Another ReLU activation layer is 

used for mapping the output of the convolutional layer, followed by subsampling using a max 

pooling layer. The output of the pooling layer is then flattened, and a dense layer is used to map 

the output to a 1024×1 vector followed by a ReLU activation layer. The last layer is a fully 

connected layer, which uses a softmax activation to map the previous output into scores for the 

transition movements.  

 A similar architecture is used for the inertial signal images, except that the first two convolutional 

layers consist of 64 filters of size 7×7 and 64 filters of size 5×5, resepectively. There is an 

additional convolution layer comprising 64 filters of size 3×3 before the subsampling layer. 

Similar to the architecture used for the weighted DMMs, a dense layer is used to map the flattened 

output of the subsampling layer to a 1024×1 vector which is followed by a ReLU layer. Finally, 

the movement scores are obtained using a fully connected layer that uses a softmax activation. 

 

Figure 6.4. Developed CNN architectures of the sensor fusion system 
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The fusion of the two modalities is performed by accumulating the scores of the fully connected 

layers of the two CNNs. The movement with the maximum total score is then considered to be the 

detected movement. 

6.4 EXPERIMENTAL RESULTS AND DISCUSSION  

To examine the performance of the developed CNN-based sensor fusion system, we compared the 

outcome of the developed system to the outcome of our previously developed sensor fusion system 

discussed in [9]. Two different scenarios were considered in the experimentations. The first 

scenario involved a subject-generic testing based on the leave-one-out approach. In this scenario, 

the movements from one of the subjects were considered for testing and the movements from 

another subject were considered for validation and the movements of the remaining 10 subjects 

were used for training. This process was repeated for each subject, and the results were averaged. 

The second scenario involved a subject-specific testing in which training, validation and testing 

were done using the same subject. For each subject, 70% of the movement samples was used at 

random for training, 10% for validation, and the remaining 20% for testing. Again, this process 

was repeated for each subject and the results were averaged. 

The weights of the CNN networks were learned by using a gradient descent optimizer with a 

learning rate of 1e-4. In order to control the overfitting of the CNN to the training data, the dropout 

scheme as explained in [17] was utilized. Note that the training data, especially in the subject-

specific scenario, is normally insufficient for CNN training. Hence, the data augmentation scheme 

discussed in [18] was used in order to include some variations in the training data. 

The detection outcome on the dataset stated earlier were compared with the fusion system 

introduced by Chen et al. in [9], in which depth images and inertial signals were also used at the 
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same time by using two CRC classifiers. In order to provide a fair comparison, the samples used 

as validation in our CNN-based fusion system were used to obtain the parameter value λ of the 

CRCs. The detection or recognition accuracies of the two fusion systems for the subject-generic 

and subject-specific scenarios averaged over all the subjects are reported in Table 6.1. A noticeable 

improvement over the previously developed system can be seen in the detection accuracies when 

using the CNN-based system.    

Table 6.1. Detection accuracies of transition movements and falls 
Scenario Fusion System Accuracy (%) 

Subject-generic Chen et al. [9] 88.1 
CNN-based  96.5 

Subject-specific Chen et al. [9] 88.7 
CNN-based  97.6 

 
Table 6.2. Confusion matrix exhibiting detection rates (in %) for the subject-generic scenario 

 St-S St-L S-St S-L L-S L-St F 
St-S 99.2 0.8 - - - - - 
St-L 0.8 96.7 - 2.5 - - - 
S-St 0.8 - 91.7 - - 7.5 - 
S-L - 0.8 - 95.9 2.5 0.8 - 
L-S - - - - 95.8 4.2 - 
L-St - 0.8 0.8 - 2.5 95.9 - 
F - - - - - - 100.0 
St-S: stand-to-sit, St-L: stand-to-lie, S-St: sit-to-stand,                       
S-L: sit-to-lie, L-S: lie-to-sit, L-St: lie-to-stand, F: fall 

 
Table 6.3. Confusion matrix exhibiting detection rates (in %) for the subject-specific 

scenario 
 St-S St-L S-St S-L L-S L-St F 
St-S 95.8 4.2 - - - - - 
St-L - 100.0 - - - - - 
S-St - - 91.7 - - 8.3 - 
S-L - 4.2 - 95.8 - - - 
L-S - - - - 100.0 - - 
L-St - - - - - 100.0 - 
F - - - - - - 100.0 
St-S: stand-to-sit, St-L: stand-to-lie, S-St: sit-to-stand,                       
S-L: sit-to-lie, L-S: lie-to-sit, L-St: lie-to-stand, F: fall 
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The confusion matrices using the CNN-based system for the subject-generic and subject-specific 

scenarios are shown in Tables 6.2 and 6.3, respectively. In general and as seen in these tables, the 

subject-specific scenario generates higher detection rates compared to the subject-generic scenario 

due to the fact that data variation for the same subject is normally lower in the subject-specific 

scenario compared to the subject-generic scenario. Note that the subject-specific scenario is the 

scenario that is considered more suited for actual deployment in assistive living applications. As 

can be observed from the tables, the highest overlap in both subject-generic and subject-specific 

scenarios occurs between the transition movements of ‘lie-to-stand’ and ‘sit-to-stand’. This is due 

to the fact that the transition movement ‘lie-to-stand’ consists of the transition movements of ‘lie-

to-sit’ and ‘sit-to-stand’ getting performed in series. Also, it is worth stating that as seen in the 

confusion matrices the transition movement  ‘stand-to-lie’ and ‘fall’ do not overlap, although they 

may seem to be similar. There are three reasons for this: (i) lying in our case denotes lying on a 

bed while falls denote dropping on the floor from a standing position, (ii) a sudden change in 

acceleration normally appears in falls but not in lying down, and (iii) in lying down the transition 

occurs by first sitting and then lying whereas in falls no sitting occurs. 

6.5 CONCLUSION 

In this chapter, a CNN-based sensor fusion system to detect and thus monitor transition movements 

between body states as well as falls in healthcare applications has been developed which runs on 

any modern laptop computer. Images that are created from the data captured by a depth camera 

and a wearable inertial sensor are fed into two convolutional neural networks to achieve a robust 

detection of the transition movements and falls. The results obtained indicate the effectiveness of 

this sensor fusion system towards detecting the transition movements and falls.  
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ABSTRACT 

This chapter covers a deep learning-based decision fusion approach for action or gesture 

recognition via simultaneous utilization of a depth camera and a wearable inertial sensor. The deep 

learning approach involves using a convolutional neural network for depth images captured by a 

depth camera and a combination of convolutional neural network and long-short term memory 

network for inertial signals captured by a wearable inertial sensor, followed by a decision-level 

fusion. Due to the limited size of the training data, a data augmentation procedure is carried out by 

generating depth images corresponding to different orientations of the depth camera and by 

generating inertial signals corresponding to different orientations of the inertial sensor placement 

on the body. The results obtained indicate the positive impact of the decision-level fusion as well 

as the data augmentation on the recognition accuracies. 
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7.1 INTRODUCTION 

In the past decade, human action or gesture recognition has been extensively studied in the 

literature using different sensing modalities involving video cameras, depth cameras, and inertial 

sensors, e.g., [1-3]. As discussed in [4], action recognition can reach higher accuracies under 

realistic operating conditions by fusing the two sensing modalities of depth and inertial. As an 

alternative to the classifiers reported in [5-6] for the fusion of depth and inertial sensing in action 

recognition, a deep learning-based approach is considered in this chapter. A convolutional neural 

network (CNN) is used to achieve recognition using depth images captured by a depth camera, 

and a combination of CNN and long-short term memory (LSTM) network is used to achieve 

recognition using inertial signals captured by a wearable inertial sensor. A decision-level fusion is 

then performed on the recognition outcomes of these networks. 

The datasets examined in this work include the publicly available datasets provided in [6-8]. These 

datasets consist of synchronized data from a Kinect depth camera and a wearable inertial sensor 

described in [9]. The SmartTV dataset provided in [6] contains 5 hand gestures performed by 12 

subjects. The Transition Movements dataset provided in [7] contains 7 body transition movements 

performed by 12 subjects. The UTD-MHAD dataset provided in [8] contains 27 actions consisting 

of a comprehensive set of movements performed by 8 subjects. 

As discussed in [10], deep learning networks require a considerable amount of training data to 

perform effectively. Since the above datasets are rather limited in size for the purpose of adequately 

training a deep learning network, this work presents a data augmentation procedure to substantially 

increase the sizes of the datasets in order to achieve a more effective training of the networks. 

In what follows, after describing an overview of the architectures of the deep learning networks 
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used, it is discussed how the training set in the above datasets are augmented to increase the size 

of the training sets by nearly 100 times. A comparison in terms of recognition accuracy is then 

made in the results section between individual sensing modality and fusion decisions without and 

with the data augmentation. 

7.2 DEEP LEARNING-BASED FUSION  

In this section, a decision-level fusion using two deep learning networks, one for depth images and 

one for inertial signals, is described. A CNN network is used for depth images while a 

CNN+LSTM network is used for inertial signals. For the first network, weighted depth motions 

maps (WDMMs) [11] derived from depth images are used as inputs. For the second network, 

images formed by stacking inertial signals are used as inputs.  

In order to cope with the limited size of the datasets, a data augmentation procedure is considered 

based on a simulator to generate more data reflecting different orientations of the depth camera 

and different orientations of the inertial sensor. In the subsection that follows, more details of the 

two deep learning architectures are stated followed by a section on the data augmentation 

procedure. 

7.2.1 CNN and CNN+LSTM Architectures 

An illustration of the layers of the CNN network used for depth images is shown in Figure 7.1(a). 

This network takes the WDMM images of a sequence, resized to 50 × 50 images, as its input. 

WDMM images are obtained by projecting depth images onto three orthogonal planes 

corresponding to the front, side and top views. To gain computational efficiency, only the 

projection images corresponding to the front view are used here. For a sequence of 𝑁𝑁 depth images, 
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let 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 represent the projection map corresponding to the front view at frame 𝑛𝑛. Then, WDMM 

is computed as follows [11]: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = �|𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛+1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛|
𝑁𝑁−1

𝑛𝑛=1

∗ (𝑛𝑛 + 1)/𝑁𝑁 (7.1) 

As compared to the originally defined DMMs in [8], WDMMs assign higher weights to later 

movements in an action, thus allowing the temporal characteristics of the action to be captured.  

As a result, 2D convolution layers are used here to capture the spatial characteristics of WDMMs. 

As shown in Figure 7.1(a), the network uses 2 convolution layers, each of which are followed by 

a batch normalization layer, a Rectified Linear Unit (ReLU) layer and a subsampling or max 

pooling layer. The outputs of these layers are then passed onto a fully connected layer. A softmax 

function is used in the output layer generating a probability score for each class. 

The architecture of the CNN+LSTM network used for inertial signals is shown in Figure 7.1(b). 

This network takes 8 time-series inertial signals as its input and passes them through 1D 

convolution and LSTM layers. The 8 time-series inertial signals consist of the 3-axis acceleration, 

the 3-axis angular velocity, the overall acceleration and the overall angular velocity signals. If 

𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧 denote the 3-axis acceleration at a frame, the overall acceleration 𝑎𝑎 is obtained as 

follows: 

𝑎𝑎 = �𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑎𝑎𝑧𝑧2 (7.2) 

Similarly, if 𝑔𝑔𝑥𝑥,𝑔𝑔𝑦𝑦,𝑔𝑔𝑧𝑧 denote the 3-axis angular velocity at a frame, the overall angular velocity 

𝑔𝑔 is obtained as follows: 

𝑔𝑔 = �𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 + 𝑔𝑔𝑧𝑧2 (7.3) 
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The network is composed of a series of two 1D convolution layers and an LSTM layer. The 

convolution layers are followed by a batch normalization layer, ReLU layer and 1D max pooling 

layer. The output of these layers is passed onto a LSTM layer with 32 cells, followed by a fully 

connected layer. A softmax function is used in the output layer generating a probability score for 

each class. 

The two networks are trained individually. For a test sequence, the class scores at the output layers 

of the CNN network operating on depth images and the CNN+LSTM network operating on inertial 

signals are multiplied to obtain a decision fusion score. The test sequence is assigned to the class 

with the highest fusion score. 

  

                       (a)                      (b) 
Figure 7.1.  (a) CNN architectures for depth images, (b) CNN+LSTM architecture for inertial 

signals 



 

103 

7.3 DATA AUGMENTATION 

As mentioned earlier, considering that deep learning networks require a considerable amount of 

data for their training, in order to cope with the limited size of the datasets, a data augmentation 

procedure is considered here. To perform augmentation on the depth data, different orientations or 

viewpoints of the camera are generated from the collected depth data. In other words, additional 

training data are generated by rotating the depth images in a way as if those images were captured 

from a different orientation or viewpoint of the depth camera. Different orientations or viewpoints 

of the camera are simulated by adding rotations about the three axes. Since a bounding box is 

placed around the WDMMs before resizing them, translating the depth camera would not lead to 

additional training data. 

To imitate different viewpoints of the camera, a pixel (𝑥𝑥,𝑦𝑦) in a depth image is first converted to 

the 3D world coordinates (𝑋𝑋,𝑌𝑌,𝑍𝑍) with 𝑍𝑍 denoting the depth value at the pixel (𝑥𝑥,𝑦𝑦) by using the 

following equations [12]: 

𝑋𝑋 = 𝑍𝑍(𝑥𝑥 − 𝐶𝐶𝑥𝑥)/𝑓𝑓𝑥𝑥 (7.4) 

𝑌𝑌 = 𝑍𝑍(𝑦𝑦 − 𝐶𝐶𝑦𝑦)/𝑓𝑓𝑦𝑦 (7.5) 

where (𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦) represents the center of the depth image and 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the focal lengths of the 

camera. For the Kinect v1 depth camera, 𝑓𝑓𝑥𝑥 = 580 and 𝑓𝑓𝑦𝑦 = 580 and for the Kinect v2 depth 

camera, 𝑓𝑓𝑥𝑥 = 365 and 𝑓𝑓𝑦𝑦 = 365. 

Let the rotations of the camera about the three directions of  𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 be represented by 𝛼𝛼, 𝛽𝛽 and 

𝛾𝛾,respectively. Then, the transformation matrices can be written as follows [12]: 

𝑅𝑅𝑇𝑇𝑇𝑇 = �

1 0 0 0
0 cos (𝛼𝛼) −sin (𝛼𝛼) 𝑍𝑍 ∙ sin (𝛼𝛼)
0 sin (𝛼𝛼) cos (𝛼𝛼) 𝑍𝑍 ∙ (1 − cos(𝛼𝛼))
0 0 0 1

� (7.6) 
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𝑅𝑅𝑇𝑇𝑇𝑇 = �

cos (𝛽𝛽) 0 sin (𝛽𝛽) −𝑍𝑍 ∙ sin (𝛽𝛽)
0 1 0 0

−sin (𝛽𝛽) 0 cos (𝛽𝛽) 𝑍𝑍 ∙ (1 − cos(𝛽𝛽))
0 0 0 1

� (7.7) 

𝑅𝑅𝑇𝑇𝑇𝑇 = �

cos (𝛾𝛾) −sin (𝛾𝛾) 0 0
sin (𝛾𝛾) cos (γ) 0 0

0 0 1 0
0 0 0 1

� (7.8) 

The transformation to the new coordinates (𝑋𝑋′,𝑌𝑌′,𝑍𝑍′) after the rotations is then obtained as 

follows: 

�

𝑋𝑋′
𝑌𝑌′
𝑍𝑍′
1

� = 𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇 �

𝑋𝑋
𝑌𝑌
𝑍𝑍
1

� (7.9) 

Data augmentation using WDMMs is achieved by considering random values of 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾. In 

addition to rotations about all the three axes, rotations about just one of the three axes and about 

any two of the three axes are also considered. To turn off the rotation about any of the axes, its 

corresponding rotation angle is set to zero, thus resulting in an identity transformation matrix for 

that axis. Figure 7.2 shows an original WDMM for the action ‘flip-to-left’ and examples of 

WDMMs generated for different viewpoints of the camera. 

  
        (a) Original (b) 𝛼𝛼 = 5°,𝛽𝛽 = 5°, 𝛾𝛾 = 5° 

  
(c) 𝛼𝛼 = 10°,𝛽𝛽 = 10°, 𝛾𝛾 = 10° (d) 𝛼𝛼 = 15°,𝛽𝛽 = 15°, 𝛾𝛾 = 15° 

Figure 7.2.  WDMM augmentation examples  
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A similar data augmentation procedure is carried out for the inertial signals. Different orientations 

of the inertial sensor placement on the body are considered. For a given inertial training sequence, 

new sequences are generated by considering different orientations of the sensor on the body. Let 

𝜃𝜃,𝜑𝜑,𝜌𝜌 represent the three axes rotation variations of the inertial sensor (called yaw, pitch and roll) 

from its original placement. Then, the transformation rotation matrices are obtained as follows 

[13]: 

𝑅𝑅𝑥𝑥 = �
1 0 0
0 cos(𝜃𝜃) −sin (𝜃𝜃)
0 sin (𝜃𝜃) cos(𝜃𝜃)

� (7.10) 

𝑅𝑅𝑦𝑦 = �
cos (𝜑𝜑) 0 sin (𝜑𝜑)

0 1 0
−sin (𝜑𝜑) 1 cos (𝜑𝜑)

� (7.11) 

𝑅𝑅𝑧𝑧 = �
cos (𝜌𝜌) −sin (𝜌𝜌) 0
sin (𝜌𝜌) cos (𝜌𝜌) 0

0 0 1
� (7.12) 

Let 𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝑎𝑎𝑧𝑧 be the original 3-axis accelerations associated with a data sample. The new 

acceleration values 𝑎𝑎𝑥𝑥′, 𝑎𝑎𝑦𝑦′,𝑎𝑎𝑧𝑧′ after the rotations are obtained by using the following 

transformation equation: 

�
𝑎𝑎𝑥𝑥′
𝑎𝑎𝑦𝑦′

𝑎𝑎𝑧𝑧′
� = 𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧 �

𝑎𝑎𝑥𝑥
𝑎𝑎𝑦𝑦
𝑎𝑎𝑧𝑧
� (7.13) 

The same transformation is considered for angular velocity signals. Similar to depth sequences, 

for randomly generated values of 𝜃𝜃,𝜑𝜑, and 𝜌𝜌, new sequences are generated by rotations about just 

one axis, about all combinations of two axes and about all the three axes. Additional inputs to the 

deep learning networks are then formed from the newly generated signals. An example of 

12° rotation of the inertial signals about all the axes is shown in Figure 7.3. 
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7.4 EXPERIMENTAL RESULTS 

The evaluation of the fusion approach was conducted by examining the three datasets: SmartTV, 

Transition Movements, and UTD-MHAD. The leave-one-out cross validation method was 

considered, in which the data from one of the subjects was removed from the training set and used 

for the validation. This process was repeated for all the subjects and the validation outcomes were 

averaged. The data augmentation was performed just on the training data, not the testing data. Both 

the collected training data and augmented training data were used for training the deep learning 

  

  

  

 
Figure 7.3.  Inertial signals augmentation examples 
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networks. For testing, the scores of the output layers of the two networks were multiplied in order 

to obtain the decision-level fusion scores. A test sequence was assigned to the class that generated 

the maximum fusion score. It is worth mentioning here that in addition to a decision-level fusion, 

a feature-level or data fusion was also considered in this work by inputting the data from the two 

sensors into a common network. It was found that the decision-level fusion by far was more 

effective than the feature-level or data fusion. 

The recognition accuracies were obtained without and with the data augmentation as well as by 

using the individual sensing modalities. These accuracies are reported in Table 7.1. As can be seen 

from this table, the highest recognition accuracies were obtained by the fusion of depth and inertial 

sensing with the data augmentation. It is also worth noting that even when using an individual 

sensing modality, the data augmentation led to improvements of the recognition accuracies. The 

impact of the data augmentation was most noticeable for the UTD-MHAD dataset, which contains 

the data from the least number of subjects and most number of actions amongst the three datasets. 

It is worth pointing out that the accuracies reported in this table differ from the ones reported in 

[6] due to the following differences: (i) In [6], skeleton joint positions were used not the more 

generic depth images. Skeleton joints would work only for applications in which skeleton joints 

appear with no overlap. (ii) The testing done in [6] was performed in a subject specific manner, 

that is training and testing were performed on the same subject, while the testing done here was 

performed in a subject generic manner. 

To provide an example of the performance improvement per action due to the data augmentation, 

the fusion recognition accuracies for the sport actions of the UTD-MHAD dataset are shown in 



 

108 

Figure 7.4 as a bar chart with and without using the data augmentation. The bar charts for the other 

datasets exhibit similar behavior and are not included here due to the lack of space. 

7.5 CONCLUSION  

In this chapter, a deep learning-based decision fusion approach for action recognition has been 

described based on depth images from a depth camera and inertial signals from a wearable inertial 

Table 7.1. Recognition accuracies for different datasets when using individual sensing 
modalities versus decision fusion of the modalities 

Dataset Mode # of training 
samples 

Depth 
camera only 

Inertial 
sensor only 

Decision-level 
fusion 

SmartTV 

Without 
Augmentation 

600 68.5% 75.0% 81.0% 

With 
Augmentation 

63600 69.5% 80.0% 86.8% 

Transition 
Movements 

Without 
Augmentation 

840 98.1% 89.8% 98.2% 

With 
Augmentation 

89040 98.3% 93.8% 99.1% 

UTD-
MHAD 

Without 
Augmentation 

861 65.9% 52.6% 78.1% 

With 
Augmentation 

91266 75.9% 81.5% 89.2% 

 

 

Figure 7.4. Bar chart showing fusion recognition accuracies for the sport actions in the 
UTD-MHAD dataset with and without the data augmentation 
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sensor. To deal with the limited size of the datasets studied, a data augmentation procedure has 

been developed which substantially increased the size of the datasets (by a factor of 102). The 

augmentation of depth images was achieved by mimicking different viewpoints of the depth 

camera, while the augmentation of inertial signals was achieved by imitating different orientations 

of the inertial sensor placement on the body. The results obtained by applying the developed fusion 

system to three publicly available synchronized depth and inertial datasets have shown that fusing 

the decisions of two deep learning networks, one operating on depth images and the other on 

inertial signals, improves the accuracy of recognition compared to the situations when individual 

sensing are used and is further improved by using the data augmentation procedure.  
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ABSTRACT 

This chapter presents a deep learning-based sensing fusion system to detect and recognize actions 

of interest from continuous action streams that contain actions of interest occurring continuously 

and randomly among arbitrary actions of non-interest. The sensors used in the fusion system 

consist of a depth camera and a wearable inertial sensor. A convolutional neural network is utilized 

for depth images obtained from the depth sensor and a combination of convolutional neural 

network and long short term memory network is utilized for inertial signals obtained from the 

inertial sensor. Each sensing modality first performs segmentation of all actions and then detection 

of actions of interest for a particular application. A decision-level fusion of the two sensing 

modalities is carried out to achieve the recognition of the detected actions of interest. The 

developed fusion system is examined for two applications: one involving transition movements 

for home healthcare monitoring and the other involving smart TV hand gestures. The results 

obtained show the effectiveness of the developed fusion system in dealing with realistic continuous 

action streams. 
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8.1 INTRODUCTION 

Human action or gesture recognition has enabled natural interfacing between humans and 

computers, and has already found its way into consumer electronics products.  Many applications 

have benefitted from human action or gesture recognition. For example, human action recognition 

has been increasingly used for activity monitoring of the elderly population in home environments 

to address the steady increase in healthcare costs [1].  

Different sensing modalities including RsGB cameras, e.g., [2], [3], depth cameras, e.g., [4], [5], 

and inertial sensors, e.g., [6], [7], have been mostly utilized individually for human action or 

gesture recognition. As discussed in our previous works [8]-[10], action or gesture recognition can 

be made more robust by fusing decisions from two differing modality sensors as compared to a 

single modality sensor.  

In the great majority of works reported in the literature on action or gesture recognition, actions or 

gestures of interest are already segmented from action streams. To operate a human computer 

interaction system in a real-world setting, it is required that the actions of interest are detected from 

unseen continuous action streams in which they occur randomly and continuously amongst 

arbitrary actions of non-interest or no action. This real-world setting is by far a more challenging 

scenario as compared to the scenario where action streams are segmented manually such that 

segments contain only one action of interest. Detection of actions of interest from continuous 

action streams requires first segmenting all possible actions, regardless whether they are actions 

of interest or actions of non-interest, followed by identifying and classifying the actions of interest 

for a particular application. In our previous works [11]-[13], several fusion approaches were 

developed to detect and recognize smart TV gestures from continuous action streams by using 
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skeleton joint positions obtained from a depth camera and inertial signals obtained from an inertial 

sensor. In [14], a data flow synchronization technique was developed to enable the real-time 

implementation of our fusion approaches.  

Most of the previously developed fusion systems use handcrafted features together with  classifiers 

such as Hidden Markov Model (HMM), Collaborative Representation Classifier (CRC), and 

Maximum Entropy Markov Model (MEMM) [11]-[15]. With the growing popularity of deep 

learning neural networks due to their high performance in various recognition tasks, in particular 

Convolutional Neural Networks (CNN)  [16] and  Long Short Term Memory (LSTM) networks 

[17], a CNN+LSTM-based fusion system to automatically detect and recognize actions of interest 

from continuous action streams has been developed in this work. The developed fusion system is 

used to detect actions of interest from continuous action streams for two applications including 

human body transition movements monitoring and smart TV hand gesture recognition. The actions 

of interest in the transition movements monitoring application involve transitions between the 

body states of sitting, standing and lying down. Considering the importance of fall detection 

monitoring for elderly and patients [18], in addition to the transition movements, falls are also 

monitored and detected here.    

The fusion system developed in this chapter utilizes a depth camera and a wearable inertial sensor 

simultaneously to perform continuous action detection and recognition. Unlike video cameras, 

depth cameras do not provide identifying facial information thus avoiding any privacy concern. A 

continuous action dataset is also made available in this chapter for public use. This dataset consists 

of synchronized depth images and inertial signals associated with body transition movements as 

well as falls that are performed in a continuous and random manner in between various actions of 
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non-interest. In addition to this dataset, our continuous action dataset (named UTD-CAD) in [13], 

which consists of smart TV hand gestures performed continuously and randomly in between 

various actions of non-interest is also examined here. Noting that training a CNN or LSTM 

network often requires very large datasets, a data augmentation step is carried out to address the 

limited size of the above continuous datasets for CNN and LSTM training. 

Basically, this work constitutes the first attempt at developing a deep learning-based fusion system 

based on a depth camera and an inertial sensor for the purpose of detecting and recognizing actions 

of interest of an application that are performed continuously and randomly in between arbitrary 

actions of non-interest.  

The rest of the chapter is organized as follows. An overview of related works appears in Section 

8.2. Section 8.3 covers a description of the transition movements dataset collected for this study, 

which is provided for public use. Section 8.4 covers the details of the developed deep learning-

based fusion system. The experimental results and their discussion are then presented in Section 

8.5. Finally, the chapter is concluded in Section 8.6. 

8.2 OVERVIEW OF RELATED WORKS  

The bulk of research on action or gesture recognition involves the use of a single modality sensor. 

However, there are limitations associated with using a single modality sensor when performing 

action or gesture recognition in real-world settings [19] due to high intra-class variations and low 

inter-class variations in the actions performed for a particular application. No modality sensing 

can cope with such variations perfectly or flawlessly. Fusion is a way to address  such limitations 

of using a single modality sensing. In [15], a fusion system using information from a depth camera 

and an inertial sensor was developed to achieve more robust gesture recognition. In [8], depth 
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motion maps derived from depth images and statistical features derived from inertial signals were 

fused to achieve improved action recognition. The use of three data modalities of depth images, 

skeleton joint positions, and inertial signals was reported in [10]. 

Furthermore, in most action or gesture recognition approaches, actions or gestures are considered 

to be segmented actions or gestures with the start and end of the actions or gestures already known 

or manually identified. In [11], we reported an approach to detect and recognize actions of interest 

performed continuously and randomly amongst unknown actions of non-interest using skeleton 

joint positions obtained from a depth camera and inertial signals obtained from a wearable inertial 

sensor. Skeleton joint positions were used to perform detection and recognition while inertial 

signals were used to enhance the performance of recognition by removing false positives. In [12], 

we used skeleton joint positions to detect actions of interest from continuous action streams while 

recognition was achieved by fusing the outcomes of two CRC classifiers, one acting on skeleton 

joint positions and the other on depth images. In [13], [14], we reported a fusion approach at both 

detection and recognition stages based on skeleton joint positions and inertial signals. In these 

works, the detection of actions of interest from continuous actions streams was achieved using 

one-class Support Vector Data Descriptor (SVDD) classifiers and the classification of the detected 

actions of interest was achieved using CRC classifiers. 

Recently, deep learning neural networks, in particular CNN and LSTM, have been increasingly 

used for action and gesture recognition based on a single modality sensor. For example, weighted 

hierarchical depth motion maps (WHDMM) were used in a three channel CNN in [20] to improve 

the recognition performance. In [21], a 3D CNN was used to learn the spatio-temporal features 

from raw depth sequences and it was combined with the feature vectors obtained from skeleton 
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joint positions. In [22], both CNN and LSTM networks were considered for depth image sequences 

to achieve recognition. In [23], inertial signals from a set of body worn sensors were used and fed 

as images into a CNN network to recognize human activity. In [24], CNN and LSTM layers were 

combined to achieve action recognition using information from multiple wearable inertial sensors. 

In [25], shallow features of inertial signals were used along with deep features extracted by a CNN 

network to achieve recognition. 

The work reported in this chapter differs from all of the previous works in the following manner. 

In comparison to single modality sensor solutions reported in the literature to perform action 

recognition, a fusion system is developed in this work by using CNN and LSTM networks to detect 

and recognize actions of interest from continuous action streams. Detection and recognition are 

performed for each of the two sensing modalities in parallel followed by a decision-level fusion. 

CNN is used to learn the spatio-temporal features from depth images, while both CNN and LSTM 

are used to learn the temporal features from inertial signals. 

8.3 CONTINUOUS DATASETS 

Considering the unavailability of a public domain continuous dataset where depth images and 

inertial signals are captured simultaneously, a dataset is collected in this work for the transition 

movements application and is made available for public use. The depth images in the dataset are 

captured by a Microsoft Kinect v2 depth camera at a rate of approximately 30 frames per second 

and a resolution of 512×424. Examples of background subtracted depth images captured by this 

camera are provided in [13]. The camera is connected to a laptop computer via a USB port. The 

inertial signals are captured by the wearable initial  sensor reported in [26] at a rate of 200Hz. 

These signals consist of 3-axis acceleration and 3-axis angular velocity signals, which are 
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transmitted via a Bluetooth link to the laptop computer running the fusion system software. The 

data from the two sensors are synchronized based on the time stamp scheme described in [27]. 

Basically, time stamps of depth image frames are used as reference and inertial signals samples 

with the time stamp closest to a particular depth image frame are aligned with that depth image 

frame. 

To collect data, a bed was placed in a room that had the depth camera installed at the room corner 

near the ceiling. The inertial sensor was worn on the waist while performing the actions. The 

dataset collected consists of 6 transition movements between the body states of sitting, standing 

and lying down, as well as falling down, thus forming these actions of interest ‘stand-to-sit’, ‘sit-

to-stand’, ‘stand-to-lie’, ‘lie-to-stand’, ‘sit-to-lie’, ‘lie-to-sit’, and ‘fall’. Figure 8.1 illustrates these 

transition movements between the body states. The continuous testing dataset was collected from 

5 different subjects and a total of 5 continuous sets were collected from each subject resulting in a 

 
Figure 8.1. Illustration of transition movements between the body states as well as fall in the 
continuous transition movements dataset: stand-to-lie, lie-to-stand, stand-to-sit, sit-to-stand, 

lie-to-sit, sit-to-lie, and fall 
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total of 25 continuous testing sets. Each continuous set contains the above 7 actions of interest 

performed in a continuous and random manner in between arbitrary actions of non-interest such 

as stretching, reading a book, drinking water, eating, combing, etc. The subjects were given 

complete freedom to perform any actions of non-interest as per their choice. 

The collected continuous dataset was used only for testing or the operation phase. Training of the 

neural networks was performed using the segmented transition movement and fall actions provided 

in [28]. This dataset consists of segmented action data from 12 subjects. The continuous transition 

movement dataset collected in this work is made available for public use at this link: 

www.utdallas.edu/~kehtar/UTD-Dataset-ContinuousTransitionMovements.htm. 

For the smart TV application, the continuous dataset for the smart TV hand gestures in [13] is used 

here. The actions or gestures of interest in this dataset consist of ‘waving a hand’, ‘flip to left’, 

‘flip to right’, ‘counterclockwise rotation’ and ‘clockwise rotation’. For these gestures, the inertial 

sensor was worn on the wrist. This dataset contains 5 continuous gesture streams each containing 

the above 5 gestures from 12 subjects.  

8.4 DEVELOPED DEEP LEARNING-BASED CONTINUOUS DETECTION AND 

RECOGNITION FUSION SYSTEM 

The developed fusion system carries out detection and recognition for each of the two differing 

sensing modalities of a depth camera and an inertial sensor, followed by a decision level fusion. 

The depth camera path uses a CNN network, while the inertial sensor path uses a CNN+LSTM 

network to perform detection and recognition. Segmentation is carried out along each modality 

path. The segmented actions are then passed through the CNN or CNN+LSTM networks of their 

respective paths to detect actions of interest or actions of non-interest and then to classify the 

http://www.utdallas.edu/%7Ekehtar/UTD-Dataset-ContinuousTransitionMovements.htm
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detected actions of interest. A decision-level fusion is conducted based on the output of the two 

paths. Figure 8.2 illustrates a block diagram of the overall detection and recognition fusion system. 

Note that detection here means identifying the segmented actions as actions of interest or as actions 

of non-interest, while recognition means classifying the detected actions of interest. 

8.4.1 Segmentation 

For segmentation of the transition movements in the depth sensor path, the centroid (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) of the 

background subtracted depth images is obtained as follows: 

𝑐𝑐𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝑚𝑚𝑖𝑖
𝑁𝑁
𝑖𝑖=1

,        𝑐𝑐𝑦𝑦 = ∑ 𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝑚𝑚𝑖𝑖
𝑁𝑁
𝑖𝑖=1

 (8.1) 

where (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) denotes a pixel location with 𝑚𝑚𝑖𝑖 representing its intensity value. A sequence of 

centroids 𝐶𝐶 = (𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑡𝑡 , … ) is then obtained where  𝐶𝐶𝑡𝑡 = (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦)𝑡𝑡 represents the centroid at 

frame 𝑡𝑡. A centroid difference 𝐶𝐶𝑑𝑑𝑡𝑡  at  𝑡𝑡𝑡𝑡ℎ frame is then obtained as follows: 

𝐶𝐶𝑑𝑑𝑡𝑡 = 𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−1 (8.2) 

Noise related small fluctuations of centroid differences during no action are eliminated by setting 

centroid difference values below 5% level of the maximum centroid difference to zero. Frames 

 

Figure 8.2. Block diagram of the detection and recognition fusion system 
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with centroid differences above this level are used to denote the presence of movement or action. 

An example of centroid differences for a continuous action stream is shown in Figure 8.3. 

A similar segmentation process is carried out to segment actions using the inertial signals. If 

𝑔𝑔𝑥𝑥𝑡𝑡 ,𝑔𝑔𝑦𝑦𝑡𝑡 ,𝑔𝑔𝑧𝑧𝑡𝑡 denote the 3D angular velocities at a frame 𝑡𝑡, the angular velocity 𝐺𝐺𝑡𝑡 at this frame is 

obtained as follows: 

𝐺𝐺𝑡𝑡 = �𝑔𝑔𝑥𝑥𝑡𝑡
2 + 𝑔𝑔𝑦𝑦𝑡𝑡

2 + 𝑔𝑔𝑧𝑧𝑡𝑡
2 

(8.3) 

Let 𝐺𝐺 = (𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑡𝑡 , … ) represent a sequence of angular velocities. An angular velocity 

difference 𝐺𝐺𝑑𝑑𝑡𝑡  at frame 𝑡𝑡 is then obtained as follows: 

𝐺𝐺𝑑𝑑𝑡𝑡 = 𝐺𝐺𝑡𝑡 − 𝐺𝐺𝑡𝑡−1 (8.4) 

Noise related small fluctuations of angular velocity differences during no action are eliminated by 

setting angular velocity differences below 5% level of the maximum angular velocity difference 

to zero. Frames with angular velocity differences above this level are used to denote the presence 

of movements or actions. An example of angular velocity differences for a continuous action 

stream is shown in Figure 8.4. 

 

Figure 8.3. An example of centroid differences of a continuous action stream 
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For continuous smart TV hand gesture dataset, the same technique described in [13] is employed 

for segmentation. It is to be noted that the hand gestures involved in the continuous smart TV 

gestures dataset have the same starting and ending point. In other words, all the actions of interest 

start and end at more or less the same reference point. Hence, it is unnecessary to obtain the 

centroid or angular velocity differences for the purpose of capturing the peaks and dips of an action 

stream. Thresholding of the signals is sufficient to detect the start and end of the hand gestures. 

Furthermore, since the smart TV gestures are performed relatively close to the camera, skeleton 

joint positions are used as they provide more reliable information for segmentation instead of the 

depth image centroids considering that centroid positions do not change much when performing 

the hand gestures. 

8.4.2 CNN Architecture for Depth Images 

A two stream CNN is used here to detect and recognize actions based on depth images, that is 

there are two separate streams that use depth images to detect and recognize actions of interest 

from continuous action streams. The first stream takes raw background subtracted depth images 

 

Figure 8.4. An example of angular velocity differences of a continuous action stream 
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as its input and uses 3D convolutional layers to obtain deep features from the segmented actions 

as was reported in [21]. The raw images are resized to a common size of 32×32 and a fixed number 

of frames is evenly extracted from each action sequence. These resized depth images are used as 

the input to the first stream. For the transition movements dataset, 15 depth images per action 

sequence are used as the input noting that the average length of each action of interest is 15 frames. 

Similarly, 25 depth images are used for the continuous smart TV hand gesture dataset. 

As discussed in [25], when the dataset size is limited, one CNN stream alone is not able to capture 

the hierarchy of features in its entirety. Hence, another stream of CNN is used by considering 

handcrafted features of the segmented actions as its inputs. These features are the weighted depth 

motion map (DMM) images of the actions. To obtain the weighted DMM images, the depth images 

are projected onto three orthogonal planes corresponding to the front, side and top views. In order 

to keep the computational complexity low, only the projection onto the front view is utilized here. 

The projection map is weighted to obtain the DMM image. If 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 represents the front view 

projection map for 𝑛𝑛𝑡𝑡ℎ frame, for a sequence of 𝑁𝑁 depth frames, the weighted DMM is computed 

as follows [29]: 

𝐷𝐷𝐷𝐷𝐷𝐷 = �|𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛+1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛|
𝑁𝑁−1

𝑛𝑛=1

∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑛𝑛 + 1) (8.5) 

The motion areas are weighted linearly, that is 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑛𝑛) = 𝑛𝑛 𝑁𝑁⁄ . The advantage of using 

weighted DMMs instead of traditional DMMs [8] is that motion areas around later frames appear 

brighter than earlier frames, thus making it easier to differentiate between the reversed transition 

movements such as ‘sit-to-stand’ and ‘stand-to-sit’, which would otherwise have a similar DMM. 

An example of a weighted DMM image from the transition movements dataset and an example 
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from the smart TV gesture dataset are shown in Figure 8.5. The weighted DMM images are resized 

to 50×50 and used as the input to the second CNN stream. 

The overall architecture of the two CNN streams is shown in Figure 8.6. The first CNN stream 

comprises two 3D convolutional layers. The first layer convolves the raw depth images with 16 

convolution filters of size 5×5×5. The output is passed through a 3D subsampling layer employing 

max pooling. The second convolutional layer convolves the output of the pooling layer with 8 

filters of size 5×5×5 and passes it to another 3D subsampling layer. The second CNN stream 

convolves the input weighted DMM images with 16 2D convolution filters of size 5×5. The outputs 

of the convolution layer are subsampled and passed onto another 2D convolution layer comprising 

5 filters of size 5×5, followed by another subsampling layer using max pooling. Rectified linear 

unit (ReLU) activation is used at each 2D and 3D convolution layer. The output of each CNN 

stream is flattened and concatenated before passing it to a dense layer, which maps it to a 512 × 1 

vector based on the ReLU activation. The last layer is a fully connected layer using a sigmoid 

activation, which generates scores for the output classes. 

  
(a) (b) 

Figure 8.5. Examples of weighted DMM images: (a) action ‘stand-to-sit’ from the transition 
movements dataset, (b) action ‘waving a hand’ from the smart TV gesture dataset 
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8.4.3 CNN+LSTM Architecture for Inertial Signals 

An architecture similar to the above two-stream CNN architecture is used for inertial signals, 

except that the second stream directly uses the handcrafted features with no further feature 

extraction. The first stream uses CNN and LSTM layers and the second stream directly uses the 

handcrafted inertial features. The input to the first stream is 8 time-series signals corresponding to 

the 3-axis acceleration signals, the 3-axis angular velocity signals, the overall acceleration signal, 

and the overall angular velocity signal. The overall angular velocity is obtained by computing the 

angular velocity at each frame via Equation (8.3) and the overall acceleration is obtained using the 

acceleration 𝐴𝐴𝑡𝑡 at each frame 𝑡𝑡 of a sequence as follows: 

𝐴𝐴𝑡𝑡 = �𝑎𝑎𝑥𝑥𝑡𝑡
2 + 𝑎𝑎𝑦𝑦𝑡𝑡

2 + 𝑎𝑎𝑧𝑧𝑡𝑡
2 (8.6) 

where 𝑎𝑎𝑥𝑥𝑡𝑡 ,𝑎𝑎𝑦𝑦𝑡𝑡 ,𝑎𝑎𝑧𝑧𝑡𝑡  denote the 3D accelerations at frame 𝑡𝑡. These 8 time-series signals are sampled 

to obtain a total of 200 samples per sequence. These signals are normalized and sent to the 

CNN+LSTM stream as stacked inertial signal images of size 200×8. 

 

Figure 8.6. CNN architecture used for continuous action detection and recognition based on 
depth images 
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The handcrafted features used in the second stream involve the statistical features of the inertial 

signals. The above 8 time-series signals are divided into 3 equal sized temporal segments and 

similar to [25], the statistical features of mean, variance, standard deviation, root mean square, 

median, minimum¸ and maximum of the segments of these signals, and mean, variance, standard 

deviation, and root mean square of the segments of their first derivatives are used as the 

handcrafted signals. 

The overall architecture of the CNN+LSTM network used for the inertial signals is shown in 

Figure 8.7. The inertial signal images are first convolved with 16 1D filters of size 15 to obtain 

features from the time-series signals based on the ReLU activation. The output is subsampled using 

1D max pooling and passed onto the LSTM layer with 64 cells. The output of the LSTM layer is 

then used along with the handcrafted features from the second stream to form a single vector. A 

dense layer maps this vector to a vector of size 512 × 1 based on the ReLU activation. The output 

of the dense layer is finally passed onto a fully connected layer that uses a sigmoid activation 

generating scores for the output classes. 

 

Figure 8.7. CNN+LSTM architecture used for continuous action detection and recognition 
based on inertial signals 
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For the continuous smart TV gesture dataset, another 1D convolution layer with 8 filters of size 9 

and a subsampling layer is used before the LSTM layer to capture the entire dynamics of the hand 

gestures. Since the size of the time-series signals gets reduced further by adding another 

subsampling layer, only 16 LSTM cells are used here. The handcrafted features used for this 

dataset are the statistical features of mean, variance, standard deviation, root mean square, 

median, minimum¸ and maximum of the three equal sized segments of the 8 time-series signals. 

Here, it is worth stating that different architectures and parameters were examined to reach the 

architectures utilized here by using a subset of the training data as the validation data. One to three 

convolution layers with different numbers and sizes of filters were considered. Different numbers 

of LSTM cells were also examined. The architectures reported above  for depth images and inertial 

signals were found to be the most effective ones. Apart from examining different architectures for 

decision-level fusion, a feature-level or data fusion was also considered by passing the data from 

the two sensors to a common network. It was found that the decision-level fusion by far was more 

effective than the feature-level or data fusion. 

8.4.4 Continuous Detection and Recognition 

A technique similar to the one reported in [30] is adopted here to perform detection and recognition 

from continuously segmented actions. Given a segment 𝑆𝑆𝑘𝑘 with 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘  representing its starting 

point and 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘  its stopping point, an examination action set 𝐴𝐴𝑘𝑘 = {𝐴𝐴𝑘𝑘0 ,𝐴𝐴𝑘𝑘1 , …𝐴𝐴𝑘𝑘𝑙𝑙 , … ,𝐴𝐴𝑘𝑘𝐾𝐾−1} is 

formed where  𝐴𝐴𝑘𝑘𝑙𝑙   represents an action whose starting point is 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘−𝑙𝑙 . The stopping point of all the 

actions in 𝐴𝐴𝑘𝑘 is 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 . Hence, whenever a segment is obtained from a continuous action stream, it 

is examined along with K-1 prior segments to detect the presence of an action of interest. Only the 
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actions formed from these segments whose length lies within the range of actions of interest are 

examined further. Based on the number of segments that normally occur in the transitions 

movements actions of interest, 𝐾𝐾 = 5 was found to work best for depth image segments and 𝐾𝐾 =

10 was found to work best for inertial signal segments. Similarly, depth images with a length 

falling in the frame range of {8, 40} and the ones segmented from inertial signals having a length 

falling in the sample range of {70, 750} were found to work best. The experimentations reported 

in the next section are based on using these values.  

The detection and recognition of the actions of interest are performed based on the output scores 

of the fully connected layer. Note that a softmax activation is not used here at the fully connected 

layers. The reason is that softmax activation would result in the output scores that add up to one. 

A sigmoid activation is used instead along with the mean squared error loss function. This ensures 

that all the classes are trained individually and this way the output scores at the fully connected 

layer do not need to add up to one. The main advantage of modifying the loss function and 

activation at the fully connected layer is that detection and recognition of actions of interest can 

be performed at the same time using the same network. This modification results in a low score 

throughout all the classes for most actions of non-interest. Also, an action with more than one high 

score class is indicative of the presence of actions of non-interest. 

Based on the output scores at the fully connected layers in the two paths, an initial detection of 

actions of interest is performed. Based on the output scores of the depth image path, only the 

actions with scores >0.9 are labeled as potential actions of interest. Similarly, for the output scores 

in the inertial signal path, the actions which have the first scores >0.9 and the second scores <0.1 

are labeled as potential actions of interest. Only the actions that qualify as potential actions of 
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interest from the two paths are passed onto the next stage. The output scores from the two paths 

are then multiplied to obtain the fusion scores. The actions which have fusion scores >0.8 for 

exactly one class and fusion scores <0.1 for the rest of the classes are clearly indicative of actions 

of interest. Such actions are labeled as actions of interest and are classified or placed in the class 

with the highest score. Note that performing detection both before the fusion and during the fusion 

results in the rejection of the great majority of actions of non-interest. 

8.4.5 Data Augmentation for Limited Datasets 

Since training a CNN or LSTM network requires a very large amount of training data, a data 

augmentation step was performed in order to address the limited size of the dataset for training the 

CNN or LSTM networks. In case of depth images, the training samples were flipped, rotated and 

translated to generate multiple new training samples from a single sample. These operations were 

applied to both depth image sequences and weighted DMMs simultaneously to produce 

synchronized training samples. In case of inertial signals, white noise was added to random frames 

at the beginning or end or both at the beginning and end of the action streams. In addition to the 

data augmentation, a dropout ratio of 0.5 was used throughout the networks to control overfitting 

as discussed in [31]. 

8.5 EXPERIMENTAL RESULTS AND DISCUSSION 

The effectiveness of the developed deep learning-based continuous action detection and 

recognition fusion system was examined on the two continuous datasets: continuous transition 

movements dataset and continuous smart TV hand gesture dataset. As mentioned earlier, the 

training of the CNN and CNN+LSTM networks was performed using the segmented datasets. Both 
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the networks were trained individually from the two input layers to the fully connected output 

layer. The Adam optimizer was used to train the networks using the mean squared error loss 

function. For testing, the segmentation was carried out by using both of the sensing modalities and 

only the actions that qualified as potential actions of interest by both the modalities were passed 

onto the decision fusion stage to conduct the removal of false positives and to reach the final 

decision. The coding for both the training and testing of the developed continuous detection and 

recognition system was done in Python. 

Here, it is worth mentioning that apart from the continuous datasets examined, all other existing 

datasets that provide simultaneous data from both a depth and an inertial sensor contain segmented 

or isolated actions, and thus it is not possible to test the performance of the detection and 

recognition system on these datasets. However, the developed fusion approach was  compared 

with the existing fusion based recognition approaches in [32], [27], [13] by using the UTD-MHAD 

dataset [26]. The fusion of CNN for depth images and CNN+LSTM for inertial signals was 

performed by multiplying the scores of their fully connected layers and the assigned class label 

was considered to be the one with the highest score. The UTD-MHAD dataset is a multimodal 

dataset comprising 27 actions performed by 8 subjects. To provide a fair comparison with the 

approach in [27], the data from the odd numbered subjects were used for training, while the data 

from the even numbered subjects were used for testing. The results obtained using different 

approaches are reported in Table 8.1. As can be seen from this table, even with the limited size of 

the dataset, a higher accuracy was achieved with the developed deep learning-based fusion system. 

In order to see the effect of using two streams for recognition, the segmented data from the three 

datasets (UTD-MHAD, Continuous Transition Movements and Continuous Smart TV Gestures) 
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were divided into a training and a validation set. The training sets were used to train the networks 

associated with single streams and the two networks associated with both streams. The recognition 

accuracies of the validation sets are reported in Table 8.2. As can be seen from this table, the use 

of both streams led to higher accuracies compared to single streams.  

To examine the performance of the overall system on the two continuous datasets, the ground truth 

actions were manually identified from the continuous action streams by visual inspection. The 

performance evaluation was based on the widely used measures of precision, recall and F1 score 

[33]. First, the detected actions were marked as either true positives or false positives. The actions 

of interest detected within a window of five frames from the ground truth and correctly classified 

were marked as true positives. The actions with no overlap with the ground truth, or the ones 

misclassified were marked as false positives. The ground truth actions which were not detected by 

the system, or the ones detected but not correctly classified were marked as false negatives. Based 

on the number of true positives 𝑁𝑁𝑇𝑇𝑇𝑇, the number of false positives 𝑁𝑁𝐹𝐹𝐹𝐹 and the number of false 

Table 8.1. Recognition accuracy for UTD-MHAD dataset 
Method Accuracy (%) 

ELC-KSVD [32] 76.2 
Kinect and Inertial [27] 79.1 
Skeleton Joints and Inertial [13] 86.3 
Developed Deep Learning-based Fusion 92.8 

 

Table 8.2. Recognition accuracies when using single streams versus both streams 

Dataset Using first 
stream only 

Using second 
stream only Using both streams 

UTD-MHAD 87.4% 87.4% 92.8% 
Continuous Transition 

Movements 98.1% 95.2% 99.3% 

Continuous Smart TV 
Gestures 80.3% 75.7% 86.3% 
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negatives 𝑁𝑁𝐹𝐹𝐹𝐹 across all the continuous action streams, the measures of precision 𝑃𝑃, recall 𝑅𝑅 and 

F1 scores were computed as follows [33]: 

𝑃𝑃 =
𝑁𝑁𝑇𝑇𝑇𝑇

𝑁𝑁𝑇𝑇𝑇𝑇 + 𝑁𝑁𝐹𝐹𝐹𝐹
 (8.7) 

𝑅𝑅 =
𝑁𝑁𝑇𝑇𝑇𝑇

𝑁𝑁𝑇𝑇𝑇𝑇 + 𝑁𝑁𝐹𝐹𝐹𝐹
 (8.8) 

𝐹𝐹1 = 2
𝑃𝑃 ∙ 𝑅𝑅

(𝑃𝑃 + 𝑅𝑅)
 (8.9) 

The results obtained for these measures are discussed further in the subsections that follow. 

8.5.1 Continuous Transition Movements Dataset 

The continuous action streams in the continuous transition movements dataset were segmented 

using centroid differences of the depth images and angular velocity differences of the inertial 

signals. The testing was repeated for each subject by not using the subject in training. A threshold 

falling in the range [1, 2] that corresponded to 5% of the maximum value was applied to remove 

negligible centroid differences in the continuous action streams. A threshold of 0.5 that 

corresponded to 5% of the maximum value was applied to remove angular velocity differences in 

the continuous action streams. 

The measures of precision, recall and F1 score obtained by the developed deep learning-based 

fusion system for all the subjects are reported in Table 8.3. This table also shows the overall or 

average precision, recall and F1 score obtained across all the subjects. This measure was also 

obtained by using a single modality of depth camera and inertial sensor and an improvement of 

more than 15% was achieved in F1 score when the fusion of the two modalities was used as 

compared to the cases where a single modality (either depth camera or inertial sensor) was used 

individually based on the same CNN or CNN+LSTM networks. This is due to the fact that the 
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fusion system was able to reject most of the false positives that were detected by a single modality. 

An example showing the ground truth centroid difference signal and the detected actions is shown 

in Figure 8.8. The confusion matrix indicating the recognition performance of the fusion system 

is reported in Table 8.4 indicating an overall recognition accuracy of 98.8%. As indicated in this 

Table 8.3. Precision, recall, and F1 score for the continuous transition movements dataset 
 Precision Recall F1 Score 

Subject 1 91.3% 90.0% 90.3% 
Subject 2 96.9% 88.6% 92.5% 
Subject 3 94.2% 92.9% 93.5% 
Subject 4 83.3% 100% 90.9% 
Subject 5 86.1% 88.6% 87.3% 
Average 90.4% 92.0% 90.9% 

 

 

Figure 8.8. An example of detected actions of interest versus the ground truth for the centroid 
difference signal in a continuous action stream 

 
Table 8.4. Confusion matrix for the continuous transition movements dataset (in %) 

 St-S St-L S-St S-L L-S L-St F 
St-S 100 - - - - - - 
St-L - 96 - 4 - - - 
S-St - - 100 - - - - 
S-L - 4 - 96 - - - 
L-S - - - - 100 - - 
L-St - - - - - 100 - 

F - - - - - - 100 
St-S: stand-to-sit, St-L: stand-to-lie, S-St: sit-to-stand,                       
S-L: sit-to-lie, L-S: lie-to-sit, L-St: lie-to-stand, F: fall 
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table, most misclassifications occurred due to the fact that the action ‘lie-to-stand’ can be regarded 

as a combination of the actions ‘lie-to-sit’ and ‘sit-to-stand’ performed in series, and the action 

‘stand-to-lie’ can be regarded as a combination of the actions ‘stand-to-sit’ and ‘sit-to-lie’ 

performed in series. As a result, these actions were sometimes misdetected. 

8.5.2 Continuous Smart TV Gesture Dataset 

As mentioned earlier, since the continuous smart TV gesture dataset consists of hand gestures, it 

was easier to segment these hand gestures using the skeleton joint positions and inertial signals via 

the technique described in [13]. Once the segmentation was done, the deep learning-based fusion 

system was used to identify the actions of interest in order to provide a comparison with the 

subject-specific results reported in [13]. The subject-specific scenario means the system is trained 

using the segmented data of the subject for whom testing is performed. The measures of precision, 

recall and F1 score were obtained and averaged for the 12 subjects in the dataset and compared to 

the results obtained by the SVDD and CRC-based continuous detection and recognition approach 

reported in [13]. Table 8.5 provides the comparison of the measures between the fusion approaches 

in [13] and the one developed here. It should be noted that the approach developed in [13] utilizes 

skeleton joint positions while the approach developed here utilizes depth images. Although 

skeleton joint positions are more informative, the use of depth images is more general purpose in 

terms of applicability to different action recognition applications since in practice skeleton joint 

positions appear overlapping in many action recognition applications. To allow proper tracking of 

the skeleton joints, the joints should be visible at all times with no overlap. In practice, however, 

overlapping occurs in many action recognition applications. The confusion matrix of the 
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recognition performance for the continuous smart TV dataset is provided in Table 8.6 indicating 

an overall recognition accuracy of 97.6%. 

8.5.3 System Operation Processing Time 

The times to process segments and obtain their handcrafted features were measured on a laptop 

computer running the fusion system with the depth camera connected to it via a USB port and the 

wearable inertial sensor connected to it via a Bluetooth link. This laptop was equipped with a 

4.2GHz processor and 64GB RAM. It was found that the computation of the weighted DMMs 

from the actions obtained from the depth segments and the final scores of the CNN network took 

94ms on average. Similarly, the formation of the handcrafted statistical features from the inertial 

segments and the final score computation using the CNN+LSTM networks took 3ms on average. 

As a result, the detection and recognition of actions of interest from the continuous action streams 

was made 100ms after the completion of an action. It is worth mentioning here that this time 

represents the algorithmic complexity of the system to perform continuous detection and 

Table 8.5. Precision, recall, and F1 score for the continuous smart TV gesture dataset 
 Precision Recall F1 Score 

[13] 96.6% 95.7% 96.2% 
Deep Learning 

Fusion  97.5% 96.5% 97.0% 

 
Table 8.6. Confusion matrix for the continuous smart TV gesture dataset (in %) 

 WH FL FR CCR CR 
WH 100 - - - - 
FL - 98.3 1.7 - - 
FR - 1.7 96.6 1.7 - 

CCR - 1.7 - 93.3 5 
CR - - - - 100 

WH: waving a hand, FL: flip to left, FR: flip to right,  
CCR: counterclockwise rotation, CR: clockwise rotation 
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recognition via a modern laptop without the need to use any additional dedicated processing 

hardware. Two video clips of the operation of the fusion system running in real-time on continuous 

action streams corresponding to the two applications considered can be viewed at these links: 

www.utdallas.edu/~kehtar/DeepLearningFusionSystem-TransitionMovements.avi  and 

www.utdallas.edu/~kehtar/DeepLearningFusionSystem-SmartTV.avi . 

8.6 CONCLUSION 

In this chapter, a deep learning-based fusion system to detect and recognize actions of interest from 

continuous action streams has been developed. Continuous action streams reflect the way actions 

are performed in real-world situations, that is when actions of interest are performed continuously 

and randomly among arbitrary and unknown actions of non-interest. The system uses depth images 

from a depth camera and inertial signals from a wearable inertial sensor. Decision-level fusion is 

applied to the actions of interest that are detected by both of the modalities in order to reject actions 

of non-interest and classify the detected actions of interest. The developed fusion system has been 

examined for two applications: one involving transition movements for home healthcare 

monitoring and the other for smart TV hand gestures. The results obtained indicate the 

effectiveness of the developed fusion system in the detection and recognition of actions of interest 

in realistic continuous action streams. 

  

http://www.utdallas.edu/%7Ekehtar/DeepLearningFusionSystem-TransitionMovements.avi
http://www.utdallas.edu/%7Ekehtar/DeepLearningFusionSystem-SmartTV.avi
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CHAPTER 9 

CONCLUSION AND FUTURE WORK 

The thrust of this dissertation has been to detect and recognize actions of interest in continuous 

action streams by using a depth camera and a wearable inertial sensor within a decision fusion 

framework. More specifically, the major contributions of this dissertation include:  

1- Compared to the great majority of existing action detection and recognition approaches 

where actions of interest are assumed segmented, a more realistic scenario is addressed in 

this dissertation where actions of interest take place continuously and randomly amongst 

arbitrary unknown actions of non-interest. 

2- In the great majority of existing works on action detection and recognition, only a single 

modality sensor is used. To achieve a more robust action detection and recognition when 

operating under realistic conditions, two differing modality sensors of a depth camera and 

a wearable inertial sensor are used by fusing the decisions that are made based on each of 

these sensors.   

3- Two continuous datasets containing synchronized data from a depth camera and an inertial 

sensor are collected and made available for public use. 

4- After developing and examining a number of fusion approaches, it is found that the deep 

learning-based approach discussed in Chapter 8 provides the most effective solution 

compared to the other solutions discussed in the other chapters. 

As possible future work, this research work can be extended in the following ways:  

1- In addition to or in place of a depth camera, the fusion framework can be extended to video 

cameras. There is a wealth of detection and recognition techniques available in the 
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literature for video images that can be added to the developed fusion framework to enhance 

the robustness of continuous action detection and recognition.  

2- Adding a missing data capability to the framework to take into consideration situations 

when the data get missing from one of the sensors, for example  when a subject moves out 

of the field of view of the camera, the decision made by that sensor is disabled and only 

the decision made by the other sensor is used. 

3- Applying the developed fusion framework to other applications and tuning various 

components of the framework to those applications towards enhancing the robustness of 

detection and recognition under realistic operating conditions. 
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