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In the same manner that muscles benefit from the elasticity of tendons to be more energy

efficient and powerful, electric motors can benefit from elastic elements to improve the effi-

ciency and reliability of robots. For more than twenty years, roboticists have purposefully

used springs to connect the motor and the moving joint aiming for efficient and reliable mo-

tion. However, there is no clear understanding of how to select the torque-elongation profile

of the spring to minimize the motor energy consumption while satisfying motor speed-torque

limitations and maximum elongation of the spring. Existing methods cannot guarantee a

torque-elongation profile that is better than any other when analyzing arbitrary periodic

motion of the joint, and cannot guarantee that the speed-torque of the motor and elongation

of the spring are within safe limits when the parameters of the motor, tolerance in manufac-

turing of the spring, and definition of this periodic motion are uncertain. This dissertation

addresses this issue by formulating the design of the torque-elongation spring profile as a

robust convex optimization program. The resulting spring profile is guaranteed to be the

best among all increasingly monotonic profiles, linear or nonlinear, and satisfies motor and

spring constraints as long as the uncertainty stays within the uncertainty sets. As a case

study, this dissertation applies the proposed formulation to the design of a series elastic

actuator of a powered prosthetic ankle.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Robots have become ubiquitous in controlled industrial environments, but struggle to in-

teract in a less structured world. One of the biggest challenges in robotics is to design

systems capable of interacting with humans, which requires robots to operate in uncertain

environments (Yang et al., 2018). This challenge to design robots that cooperate with people

(co-robots) defies traditional practices in software and hardware. Co-robots require unprece-

dented adaptability and performance in order to operate in uncertain environments where

the safety of people and robots is of paramount importance (Bauer et al., 2008; Bicchi and

Tonietti, 2004). In addition, collaboration in remote environments may require robots un-

tethered from a power source. Thus, battery life becomes important, as it limits the time

during which the robot is able to operate (Yang et al., 2018). From the hardware perspective,

elasticity has the potential to improve battery life, safety, and reliability of co-robots.

In general, many components of the robot could be elastic, for example its links and

joints; one popular strategy uses elasticity at the link to connect the load and a rigid actu-

ator through an elastic element. This concept, pioneered by (Pratt and Williamson, 1995),

is known as series elastic actuators (SEAs); Fig. 1.1 illustrates a diagram and a commercial

product based on SEAs. In general, the rigid actuator could be an electric, hydraulic, or

pneumatic actuator; in this dissertation, the analysis considers only electric motors. Exam-

ples of co-robots using SEAs include powered prosthetic legs (Hollander et al., 2006; Rouse

et al., 2014), as well as humanoid robots (Hurst and Rizzi, 2008). In traditional SEAs, the

motor is connected to a high-ratio linear transmission. Then an elastic element connects the

transmission’s output to the load (Paine et al., 2014). Designs with a low ratio transmis-

sion are less common, but still possible due to the increasing supply of high torque motors

(Hirzinger et al., 2002; Schutz et al., 2016).

The architecture of SEAs offers important benefits to the actuation of co-robots. SEAs

favor the implementation of control strategies that promote safe mechanical interaction.

Impedance control is a renowned control framework for compliant robot interaction (Hogan,

1985), but it requires high-fidelity force control, which is challenging for highly geared, rigid

actuators. To remain stable, these actuators often implement low gains in force control,

resulting in poor force tracking, even at low frequencies, due to backlash and friction of

the transmission (Robinson, 2000). In contrast, force control for SEAs can be executed by

controlling the deflection of the elastic element (Robinson et al., 1999). This essentially

1



Electric Motor
+

Transmission
Load

Spring

Figure 1.1. Illustration of an SEA (left). Commercial SEA, HEBI Robotics (right). The
load connects to the motor through an elastic element; the motor position is different from
the position of the load.

changes the force control problem (which typically must use low gains) to a position control

problem with high gains, thereby reducing the force tracking error (Pratt and Williamson,

1995). Thus, improved force and impedance control fidelity can be obtained through the

implementation of series elasticity at the cost of a limited reduction in force bandwidth

(Pratt and Williamson, 1995).

In addition, springs can store elastic energy and release it with enormous power, which

can be exploited in SEA-based designs to reduce speed-torque requirements and potentially

the mass of the motor. The power per unit of mass of springs is orders of magnitude higher

than current electromagnetic actuators (Hurst and Rizzi, 2008). Therefore, in the ideal case

where a spring is sufficient to achieve the motion task, an SEA has the potential to be much

lighter than a rigid actuator. Even when positive work is required by a motor, series elasticity

can reduce the peak power requirements of the motor, allowing the use of a less powerful and

hence lighter motor (Hollander et al., 2006). Researchers have used this principle to reduce

actuator mass sevenfold in a powered ankle orthosis (Hollander et al., 2006). However,

reducing the motor mass may not reduce total actuator mass due to the extra components

required to include the elastic element. Therefore, decreasing total actuator mass depends

on the mechanical implementation of the spring.

The elastic element in an SEA decouples the reflected inertia of the rigid actuator and

the inertia of the load (Hurst and Rizzi, 2008), which improves safety during collisions. Safe

collisions with the environment and co-workers are fundamental to the design of co-robots

(Bicchi and Tonietti, 2004). Rigid inelastic collisions have large peak forces, which can be

a safety hazard for co-workers and can reduce the operating life of some robot components,

2



e.g., transmission and load bearing elements (Bicchi and Tonietti, 2004). SEAs are a popular

solution for reducing impulsive forces through elastic collisions, thereby protecting the actu-

ators from impacts (Pratt and Williamson, 1995). For example, the SEA-based prosthetic

ankle in (Au and Herr, 2008) reduced impact forces with the ground by more than 29%.

Series elasticity can increase battery life by reducing energy consumption of co-robots

(Hurst and Rizzi, 2008; Rouse et al., 2014; Ham et al., 2009; Realmuto et al., 2015). Energy

in a robotic application is either transferred to/from the load or dissipated. From the energy

consumption perspective, an elastic element connected in series is passive and cannot reduce

the energy required by the load, but it has the potential to reduce the energy dissipated for

a given task (Boĺıvar et al., 2017). Reduction of dissipated energy is important, especially in

tasks that are mainly dissipative such as level-ground locomotion. For example, in the case

of the MIT cheetah robot (Seok et al., 2015), 76% of total energy consumption is dissipated

by Joule heating of the motor windings, and the remaining 24% is dissipated by inelastic

collisions and other mechanical losses. Another example is the ankle of a 75 kg human,

which provides about 17 J per stride during normal walking, but a rigidly actuated prosthetic

ankle consumes 33 J (Boĺıvar et al., 2017). The extra 16 J is dissipated through electrical

and mechanical losses. The same motor connected in series with an elastic element requires

about 25 J per stride (Boĺıvar et al., 2017), i.e., a 50% reduction in the energy dissipated.

In the case of the second-generation UT-Dallas prosthetic leg (Elery et al., 2018), series

elasticity at the ankle joint can extend its battery life by 33% (Boĺıvar et al., 2017).

To summarize, co-robots can benefit from SEAs in order to reduce the energy lost during

impacts (Hurst and Rizzi, 2008), improve force control for human-robot interaction (Robin-

son et al., 1999), improve the safety of the human and robots (Bicchi and Tonietti, 2004),

move loads with higher velocities (Braun et al., 2013), reduce energy consumption of the

system (Vanderborght et al., 2006; Jafari et al., 2013; Ding and Park, 2017), and decrease

peak motor power (Jafari et al., 2011, 2013; Hollander et al., 2006), so a smaller/lighter

motor can be used. All these benefits are subject to the force-elongation profile of the SEA’s

elastic element.

Despite these advantages, the performance of an SEA system is sensitive to deviations

from its nominal operating conditions. During unexpected situations, SEAs can consume

more energy and/or draw higher peak power than rigid actuators (Grimmer and Seyfarth,

2011). The resulting overheating and battery drain is unacceptable for many applications,

especially wearable robots. Unexpectedly demanding tasks can also cause the spring to reach

its maximum elongation or bottom out, resulting in a loss of compliance and possible damage

to the robot and/or an interacting human. During the development of the ATRIAS biped
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robot (Hubicki et al., 2018), the most efficient choice of spring reached maximum deflection

at fast walking speeds. To prevent mechanical damage, stiffer springs had to be used at the

cost of efficiency. Conversely, the maximum deflection was the main consideration in the

choice of spring stiffness for the SEAs of NASA’s humanoid robot, Valkyrie (Paine et al.,

2015). This approach guarantees safety but neglects the potential for SEAs to reduce energy

consumption.

The potential of SEAs to reduce energy consumption and create safer co-robots depends

on the design of the elastic element, specifically its force-elongation profile. As previously

discussed, uncertainty in the operational conditions of the actuator impacts the actuator

constraints, e.g., speed-torque requirements of the motor and maximum elongation of the

spring, depending on the force-elongation profile of the spring. To this date, the design of the

spring stiffness relies on very limited frequency analysis or pure optimization methods that

lack the fundamental understanding of the benefits of elasticity. As a result, prior to this

dissertation, no reliable method was available for the design of the force-elongation profile

(linear or nonlinear) of series springs that is robust to task and actuator uncertainty.

Notation

The following notation applies to the mathematical expressions in this dissertation. The set

of real numbers is denoted by R, the non-negative real numbers as R+, and the positive

numbers R++. Scalar numbers in R are denoted with italics, vectors in bold lower-case

characters, and matrices with bold upper-case characters. For example, a, b are scalars; a, b

are vectors; and A,B are matrices. The vector 1 is an m dimensional vector with ones along

its entries. The dimension m is implied by context in the equations, unless explicitly stated

as 1m×1. Vector inequalities such as a ≤ 1 for a ∈ Rn apply element-wise, i.e., ai ≤ 1 for

i = 1, . . . , n. The matrix inequality A ≥ 0 indicates that the square matrix A ∈ Rn×n is

positive semi-definite, i.e., xTAx ≥ 0, ∀x ∈ Rn.

1.1 Introduction to energy consumption of SEAs

SEAs are mechatronic devices that transduce electrical energy into mechanical and vice versa.

From the energy perspective, they are similar to traditional electric motors; however, their

capability to store and release elastic energy creates an additional opportunity to reduce the

energy consumption and peak power of their electric motors. An SEA for mobile applications

typically consists of a battery, electronic motor drives, electric motor, gear train, and an
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Figure 1.2. Diagram of an SEA. Equations (1.1)-(1.2) illustrate the system’s equations of
motion.

elastic element. In practice, each of these components is capable of dissipating energy. For

example, the battery self-discharges, the motor drive produces Joule heat, friction in the

transmission generates heat, and the elastic elements are not purely elastic (i.e., dissipate

energy through their viscous behavior). This dissertation focuses on the energy consumed

by the motor since it is the largest consumption in the system. In addition, the energy

consumed by other elements of the SEA may be lumped in the expressions of energy of the

motor. For instance, viscous friction at the transmission can be considered as additional

motor viscous friction.

For a DC-motor, estimations of its energy consumption highly depend on the quality

of its dynamic model. Some models neglect the effects of motor inertia, viscous friction,

and the regeneration capabilities of modern electronic motor drives (Hollander et al., 2006;

Grimmer and Seyfarth, 2011). Neglecting these terms may be sufficient for estimating energy

consumption or motor power at constant speed or steady state, but it is inaccurate for

more dynamic motions (Verstraten et al., 2015). This dissertation targets applications with

significant changes in SEA rotational speed; thus, the estimation of energy consumption

considers the torques due to inertia, viscous friction, and power flowing to and from the

battery. The work of Verstraten et al. presents an experimental validation of the dynamic

model used in this dissertation (Verstraten et al., 2015).

1.1.1 Equations of motion of an SEA

The Fig. 1.2 illustrates the configuration of an SEA. Using the Newton-Euler method, the

corresponding balance of torques at the motor and load side provides the following equations
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of motion

Imq̈m = −bmq̇m + τm +
τs
ηr
, (1.1)

τs = g(ql, q̇l, q̈l, τe), (1.2)

where Im ∈ R++ is the inertia of the motor, bm ∈ R++ its viscous friction coefficient, τs ∈ R
the torque produced by the spring, r ∈ R++ the transmission ratio, η ∈ {x ∈ R : 0 < x ≤ 1}
the efficiency of the transmission, τm is the motor torque, and g : R4 → R defines the load

dynamics mapping the load position ql ∈ R, load velocity q̇l ∈ R, load acceleration q̈l ∈ R,

and the external torque applied to the load τe ∈ R to the torque produced by the spring.

(Spong, 1987; Verstraten et al., 2015, 2017). For instance, in the case of an inertial load with

viscous friction and an external torque, the load dynamics are defined by g(ql, q̇l, q̈l, τe) =

−Ilq̈l − blq̇l + τe, where Il is the inertia of the load, and bl its corresponding viscous friction

coefficient. The variables ql, q̇l, q̈l, τe denote the load trajectory in this dissertation. The

elongation of the elastic element is defined as δ = ql − qm/r. As seen in (1.1)-(1.2), the

elastic element is in series with the load and cannot modify the torque required to perform

the motion, τs, but it decouples the position of the motor and the load such that inertial

and viscous friction torques, Imq̈m + bmq̇m, could reduce the torque of the motor, τm. This

dynamic model can be expanded to include multiples degrees of freedom (DoF) as in (Spong,

1987), which will imply modifications to the function g(·) to include the coupling with other

links in a kinematic chain. Without loss of generality, this dissertation considers only the

single DoF formulation in (1.1)-(1.2), as the results extrapolate easily to multiple DoF with

adequate definitions of the function g(·).

1.1.2 Energy flow in an SEA

This section introduces the energy flow of SEAs to have a clearer insight into the role of

series elasticity in motor energy consumption. This dissertation focuses on SEAs powered by

a battery (or any power source that can provide and receive power) and an electric motor,

a typical scenario for portable devices such as wearable robots (Hurst and Rizzi, 2008). The

Fig. 1.3 illustrates the corresponding energy flow and main components of this arrangement.

Energy flow in an electric motor occurs in two principal modes of operation: actuator and

generator mode. As an actuator, the electric motor receives electrical energy from the battery

through the driver and converts it into mechanical energy and heat. Traditional motor drives

and mechanical transmissions are designed so that the electric motor can always operate in
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Winding Joule Heating         , Viscous Friction

Figure 1.3. Energy flow of an SEA: Dashed lines indicate that the energy path may or may
not exist depending on the construction of the device. For instance, energy flowing from the
drive to the battery requires drivers capable of regeneration. Energy flowing from the load to
the electric motor requires that the load is high enough to backdrive the motor-transmission
system.

this mode. A more interesting scenario occurs when the motor can also work as a generator.

For example, when the motor is decelerating a load, the kinetic energy of the load and elastic

energy of the spring is transferred to the motor’s rotor to store it as electrical energy in the

battery.

However, traditional SEAs may not function in generator mode. These designs typically

have linear transmissions with high reduction ratios. The reflected inertia of the motor after

the transmission, which is proportional to the reduction ratio squared, is normally very high

compared to the load. For example, three recent SEA designs reflect output inertia of 360 kg,

270 kg, and 294 kg for the UT-SEA (Paine et al., 2014), Valkyrie’s SEA (Zhao et al., 2015),

and THOR-SEA (Knabe et al., 2014) respectively, as indicated by (Schutz et al., 2016). As

a consequence, the system requires a high load to backdrive. An additional limitation is the

motor driver. In order to regenerate energy, motor drivers should be selected such that the

electrical energy recovered from the motion of the rotor can flow back to charge the battery

(Seok et al., 2015).

The results in this dissertation assume the SEA has been designed such that energy can

flow from the load to the energy source and vice versa. In other words, the load is high

enough to backdrive the motor, and adequate electronics allow energy to flow to and from
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the battery. In this case, the energy consumption of the motor, Em ∈ R, is given by

Em =

∫ tf

t0

( τ 2m
k2m︸︷︷︸

Winding
Joule
heating

+ τmq̇m︸ ︷︷ ︸
Rotor

mechanical
power

)
dt, (1.3)

where t0 and tf are the initial and final times of the trajectory respectively, and km ∈ R++

is the motor constant. Notice that the energy associated with Joule heating can be also

written as i2mR, since τm = imkt and km = kt/
√
R, where im ∈ R is the electric current

flowing through the motor, R ∈ R++ the motor terminal resistance, and kt ∈ R++ the motor

torque constant (Verstraten et al., 2015).

Alternative Expressions of Motor Energy Consumption

Some authors express energy consumption as (Hollander et al., 2006; Grimmer and Seyfarth,

2011)

Em =

∫ tf

t0

|τmq̇m|dt. (1.4)

This representation of energy consumption implies that the motor consumes energy even

when the product of τmq̇m is negative. This situation is unrealistic because it assumes that

energy is required from the power source when the motor absorbs energy from the load, i.e.,

acts as a generator. Even when the power source is not capable to absorb energy, such as

in traditional power supplies, the energy regenerated from the motor is dissipated through

Joule heating at the motor, motor drive, or a shunt regulator. In that case, the regenerated

energy is dissipated, and the energy consumption of the motor is

Em =

∫ tf

t0

max{τmq̇m, 0}dt. (1.5)

Note that (1.4) and (1.5) only account for the mechanical energy at the rotor of the motor.

A more accurate representation includes the winding Joule heating as in (1.3) (Rezazadeh

and Hurst, 2014; Verstraten et al., 2015). As discussed previously, winding losses through

Joule heating are significant for DC-Motors (Seok et al., 2015).

1.1.3 Effects of periodic motion on energy consumption

Periodic motion plays an important role in this dissertation; it will be fundamental to show

convexity of the optimization program that defines the optimal force-elongation profile of the
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spring. In this dissertation, periodic motion refers to load trajectories where ql, q̇l, q̈l, and τe

are the same at the initial, t0, and final time, tf . This definition is flexible enough to include

trajectories in lower limb biomechanics such as the load trajectories of the ankle during

walking, stair climbing, sit-to-stand and stand-to-sit, etc. In fact, one can argue that most

of the motion in co-robots can be decomposed in a series of periodic trajectories. Considering

periodic motion simplifies the expression of energy consumption in (1.3) as follows. Using

the expression of motor torque, τm, from (1.1) into the expressions of energy (1.3) leads to∫ tf

t0

τmq̇mdt =

∫ tf

t0

(
Imq̈m + bmq̇m −

τs
ηr

)
q̇mdt,

=

∫ tf

t0

(
bmq̇

2
m −

τsq̇m
ηr

)
dt+

��
��

�
��

��*0∫ q̇mf

q̇m0

Imq̇mdq̇m,

=

∫ tf

t0

(
bmq̇

2
m −

τs
ηr

(q̇m − rq̇l + rq̇l)

)
dt,

=

∫ tf

t0

(
bmq̇

2
m −

τsq̇l
η

)
dt+

�
�
�
�
��>

0∫ δf

δ0

τs
η
dδ,

=

∫ tf

t0

(
bmq̇

2
m −

τsq̇l
η

)
dt, (1.6)

where q̇mf
= q̇m0 and δf = δ0 due to periodic motion. This simplification illustrates an

important concept. For periodic motion, the kinetic energy due to inertia of the motor’s

rotor is equal to zero; as explained in the next chapter, eliminating this term will enable us

to show convexity of the optimization program.

How Does Series Elasticity Reduce Energy Consumption in an SEA?

Periodic motion and its corresponding expression for energy consumption of the rotor (1.6)

illustrates a fundamental principle for the energy consumption of SEAs: the mechanical

energy provided to or absorbed from the motion of the load (i.e.,
∫ tf
t0

τsq̇l
η
dt) is provided

or absorbed by the electric motor regardless of the force-elongation profile of the elastic

element. After all, the spring is an energetically passive element; it does not provide or

dissipates energy at the end of a periodic cycle. Replacing (1.6) into (1.3) yields

Em =

∫ tf

t0

(
τ 2m
k2m

+ bmq̇
2
m −

τsq̇l
η

)
dt,

meaning that the energy of an SEA categorizes in three terms: winding Joule heating, viscous

friction, and the energy required from the load (which is independent of the force-elongation
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profile of the spring). Thus, series elasticity only reduces the energy dissipated by the motor.

This is relevant for tasks that are mainly dissipative such as level-ground locomotion (Seok

et al., 2015). In practice, the dissipated energy through Joule heating at the motor winding

is significantly higher than other losses in the motor (Seok et al., 2015; Verstraten et al.,

2015). For a given motor, Joule heating is proportional to the square of motor torque.

Unfortunately, the influence of series elasticity into motor torque may be insignificant, as

it can only modify torque through the inertial and viscous friction torques at the shaft.

The opportunity to reduce torque increases for systems with a high reduction ratio, where

inertial and viscous friction torques from the motor could be significant. Thus, the reduction

of energy consumption using a series elastic element highly depends on the selection of the

motor, reduction ratio of the transmission, and the load trajectories.

1.2 Series elasticity to modify actuator constraints

Series elasticity not only modifies the energy consumption of the electric motor, it also

modifies the motor speed and torque requirements to accomplish a specific tasks. This

section discusses the effect of series elasticity into the actuator constraints, which is a key

element in the elastic element design.

1.2.1 Actuator constraints for SEAs

In this dissertation, the performance of SEAs is limited by the following three constraints:

maximum elongation of the spring, speed-torque relationship for DC-motors, and maximum

torque for DC motors. The maximum elongation of the spring, δmax, is fully defined by the

torque of the load, τl = −τs, and the torque-elongation profile of the spring. The constraint

due to maximum elongation of the spring states that δ ≤ δmax during the whole period

of operation. Limitations in spring elongation due to mechanical implementation of the

elastic element are typical; adequate selection of the torque-elongation profile is important

to guarantee that the spring remains elastic and does not reach its maximum elongation

or bottom out during operation. For example, the rotational spring in the open source

prosthetic leg at University of Michigan has a maximum elongation of 15° (Azocar et al.,

2018).

The constraint due to the speed-torque relationship of DC motors can be understood

from its electrical model. The Fig. (1.4) illustrates a diagram of this model. The electric

circuit behaves based on the following differential equation:

vs = imR + L
dim
dt

+ vemf, (1.7)
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Figure 1.4. Electric diagram of a DC-Motor. The series resistance and inductance represent
the electrical effects of the motor winding. The electromotive force voltage is proportional to
the rotational speed, vemf = ktq̇m. Each phase of a permanent magnet brushless DC motor
is also represented by this diagram.

where L is the inductance of the motor winding; vemf is the electromotive force voltage, which

is proportional to the rotational speed of the motor, vemf = ktq̇m; and vs is the voltage of

the power supply or battery. An advantage for the modeling of DC motors is that the motor

torque and current are related by τm = ktim. Replacing this relationship and vemf = ktq̇m

into (1.7) yields

τmR + L
dτm
dt

= vskt − k2t q̇m.

Neglecting the inductive effects on the winding or assuming steady state operation at almost

constant speed, i.e., vemf is constant and therefore dim
dt
≈ 0, yields the following speed-torque

relationship of DC-Motors:

τm = vs
kt
R
− q̇m

k2t
R
. (1.8)

For a given voltage input, this equation states that the maximum torque of the motor occurs

at stall, when q̇m = 0. During that condition the electromotive voltage is zero and the

current going through the winding is maximum. In other words, the electromotive voltage

reduces the current that can flow through the winding for a given input voltage; this is due

to the fact that during rotation the system simultaneously operates as a motor and as a

generator. The equation also states that the maximum speed of the motor occurs when it

rotates with no load, i.e., τm = 0. Replacing the equality in (1.8) with “≤” illustrate the

feasible range of motor torques for a given rotational speed and voltage source. The affine

relationship between torque and speed gives rise to the famous diamond shape that defines

the feasible space in the speed-torque space, Fig.(1.5).

In practice, the maximum torque, τmm, is well below the stall torque in (1.8). As current

increases, winding heat increases as well; therefore, the actual limit in torque is given by the
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Figure 1.5. Speed-torque relationship of DC motors. The diamond shape represents the

set of feasible speed and torque configurations from (1.8).The constant term
k2
t

R
defines the

slope that connects the maximum theoretical speed and torque of the motor. The maximum
torque, τmm, is defined as the maximum torque that can be achieved in intermittent use.
This value of torque depends on the current motor winding temperature, time that the
maximum torque will be executed, and temperature of the environment or thermal isolation
of the motor. Manufacturers typically provide the maximum continuous torque, τmc, as the
maximum torque that can be applied during continuous operation. The white region in the
velocity-torque space defines the continuous operational range of the motor.

current that is required to raise the winding temperature at its maximum admissible level.

Predicting the current limits according to winding temperature requires thermal models and

preferably thermal sensors in the winding; however, manufacturers often prescribe maximum

levels of current for continuous operation. This current defines the maximum continuous

torque of the electric motor, τmc.

1.2.2 Effects of series elasticity on motor torque and speed

A very important and sometimes underrated application of series elasticity is its potential

to modify speed-torque requirements for the electric motor. Reducing speed and torque

requirements of the motor has been indirectly addressed in the literature when using series

springs to reduce motor peak power, which is typically used to indicate motor performance.

However, summarizing motor performance only by its power capabilities could be misleading;

a feasible region in the speed-torque space defines more precisely the actual performance of

DC-motors, as seen in Fig. (1.5). Thus, a more accurate design should select the spring
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that guarantees that the motor speed and torque are within admissible levels. This could be

imposed as a constraint in an optimization-based design, as motor speed and torque depend

on the torque-elongation profile of the spring. Typically, the literature does not explore this

potential benefit from series elasticity, although, satisfying speed-torque requirements of the

motor could be even more important than reducing energy consumption or peak power. It

defines whether or not a trajectory could be accomplished with a given actuator.

1.3 State of the art

Optimal design of series elastic elements has been an active subject of research since the

early 2000s. There is a variety of design methods to date, they fit mostly into two cate-

gories: natural dynamics and parametric optimization. The following sections illustrate the

principles of each methodology and finishes with a discussion on their implementation.

1.3.1 Natural dynamics

Natural dynamics is one of the first attempts to analytically find the energy-optimal force-

elongation profile of the spring. If the load is considered to be inertial, the load-spring-

motor system will oscillate with a natural frequency after the spring elongates and the

motor remains stationary. Thus, it is possible to move the load while keeping the motor

stationary. The main concept of natural dynamics is to match the natural oscillation of the

load-spring-motor system as closely as possible with the required motion of the load. In this

way, the spring minimizes the motion of the motor and therefore its energy consumption. For

example, elastic components have been designed to match the natural dynamics of humanoid

robots during walking (Vanderborght et al., 2006), cutting tool heads (Grioli et al., 2015),

or sinusoidal motion of an inertial load (Verstraten et al., 2016).

Natural Dynamics Example: Sinusoidal Load Trajectory

The Fig. 1.6 illustrates a single robotic link actuated by an SEA. The goal of this example

is to find the value of spring stiffness, k, that minimizes the motion of the motor. To

achieve analytical results, the reference trajectory is limited to follow the sinusoidal motion:

ql = A sin(ωt). Following the notation in (1.2) and (1.1), and neglecting the energy losses at

the transmission, i.e., η = 1, the equations of motion are

g(ql, q̇l, q̈l) = −Ilq̈l − cos(ql)mglcm − blq̇l (1.9)

Imq̈m = τm +
g(ql, q̇l, q̈l)

r
− bmq̇m (1.10)
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Figure 1.6. Single link actuated by an SEA. The position of the load is designed to follow a
sinusoidal trajectory, i.e., ql = A sin(ωt).

where

g(ql, q̇l, q̈l) = k(ql −
qm
r

),

is the torque of the spring, Il is the moment of inertia of the link with respect to its axis of

rotation, bl is the viscous friction coefficient of the load, ql is the link angular position, m is

mass of the link, lcm distance from the axis of rotation to the center of mass of the link, and

k is the stiffness of the elastic element. An initial approach to minimize motion is to reduce

the velocity of the motor, which is proportional to the mechanical power at the rotor of the

motor pm = τmq̇m. Solving for qm from (1.9):

qm =

(
ql +

Ilq̈l + blq̇l − cos(ql)mglcm
k

)
r

q̇m =

(
q̇l +

Il
...
q l + blq̈l + sin(ql)mglcmq̇l

k

)
r

= r
(
k − Ilω2 + sin(A sin(ωt))mglcm

)
k−1Aω cos(ωt)− rblAω2 sin(ωt)

= α sin(ωt+ φ), (1.11)

where

α = rk−1
√

(blAω2)2 + (Aw(k − Ilw2 + sin(A sin(ωt))mglcm))2, (1.12)

φ = arctan(Aω(k − Ilw2 + sin(A sin(ωt))mglcm/(−blAω2)).
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The amplitude of the motor velocity in (1.12) can be minimized using standard methods

from calculus; finding the values of k that guarantee ∂α
∂k

= 0. Neglecting gravity terms for

simplicity, allows the following optimal value of k:

k =
b2l
Il

+ Ilω
2. (1.13)

We can obtain the value of the peak velocity by replacing the value of k from (1.13) into

the equation related to the amplitude of the speed (1.12),

max{q̇m} =
Ablωr√
b2l + I2l ω

2
. (1.14)

To evaluate velocity reduction of the motor we can check the ratio, rvel, between the peak

amplitude of the motor velocity with and without elastic element,

rvel =
bl√

b2l + I2l ω
2
. (1.15)

This ratio is always less than one. This illustrates that the motor peak velocity using an SEA

is always less than the motor peak velocity without elastic element. Torque of the motor

for the rigid and elastic actuators is similar; thus peak power decreases when using an SEA.

This example, adapted from (Grioli et al., 2015), shows the benefits of series elasticity.

1.3.2 Parametric optimization

Parametric optimization considers arbitrary reference trajectories and actuator constraints

(Rouse et al., 2014; Realmuto et al., 2015). In this approach, the elastic element is defined

over some parameters, e.g., stiffness of a linear spring, which become variables in a gradient-

based optimization to find the elastic element that minimizes a cost function. Linear SEAs

(Rouse et al., 2014; Hollander et al., 2006) have been designed using this approach and

parallel nonlinear elastic elements as well (Realmuto et al., 2015).

1.3.3 Limitations of the state of the art

Natural dynamics provides the right intuition for the reduction of energy consumption, but

it is limited to specific reference trajectories, and it is difficult to generalize its results for

arbitrary periodic motion or include actuator constraints. The method normally reduces the

motion of the electric motor, but this may not be the most energetically efficient solution.

The motor at constant position dissipates energy by Joule heating due to the counteracting
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torque required to keep the shaft in its position. A more complete solution will consider

motion of the motor by finding the natural dynamics of the two-mass spring system resulting

from the inertia of the motor and the load (Boĺıvar et al., 2017). Another limitation is due

to the fact that natural dynamics for nonlinear springs may not have analytical solutions;

this complicates the design of nonlinear series elasticity. As discussed in Section 1.2, series

elasticity can modify actuator requirements to satisfy its constraints. However, natural

dynamics does not provide a structured framework for the design of springs that satisfy

actuator constraints.

Parametric optimization allows an explicit consideration of the constraints, but results

are limited to the parameter’s space and may not be global. For example, the parallel elastic

element in (Realmuto et al., 2015) was parameterized by a polynomial function up to order

6 and optimized over its coefficients with respect to a multiobjective function of torque,

peak power, and energy consumption. The favored solution was a cubic nonlinear spring,

but this result is limited to the chosen parameterization. Moreover, if the problem is not

known to be convex, there is no guarantee that a gradient-based optimizer will find a global

optimum. Both natural dynamics and parametric optimization provide no guarantee that

the optimization results are global.

Existing methods to design the stiffness that minimize energy consumption of SEAs, such

as natural dynamics (Verstraten et al., 2016) and optimization formulations (Rouse et al.,

2014; Boĺıvar et al., 2017) assume nominal reference kinematic and kinetic trajectories of the

load. These nominal trajectories easily change during operation in human-robot interaction.

For example, in the design of an SEA for a powered prosthetic leg, the reference kinematic

and kinetic trajectories change as the subject walks with different speeds or wears differ-

ent accessories, such as a backpack. When the load conditions deviate from their nominal

values, the energy consumption and peak power of SEAs may not be optimal (Grimmer

and Seyfarth, 2011). Additionally, the speed and torque requirements for the motor may

be outside the motor’s specifications, i.e., the task becomes infeasible. For instances when

changing stiffness of the SEA makes the task feasible again, a possible solution is to replace

SEAs with variable stiffness actuators (VSAs) (Grioli et al., 2015). However, VSAs require

additional mechanisms to operate, increasing the mechanical complexity and potentially the

mass of the actuator. Thus, it is interesting to know if a fixed-stiffness SEA could satisfy

the actuator constraints despite uncertainty, and what trade-off such a robust design would

have with energy consumption.

Acknowledging uncertainty in the reference trajectories leads to more realistic and robust

designs. For example, in (Grimmer and Seyfarth, 2011), the optimal design of series stiffness
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considered deviation from the nominal trajectories for the application of powered prosthetic

legs. The SEA was optimized over both walking and running reference trajectories, but

the design did not consider the wide range of other possible tasks and did not analyze the

feasibility of the actuator. Uncertainty in the initial conditions, e.g., position and velocity

of the load, during robot-environment interaction motivated a robust optimization design

of compliance (Gasparri et al., 2016). The optimal compliance minimized interaction forces

between two manipulators accomplishing a handover task. Brown and Ulsoy (Brown and Ul-

soy, 2013) considered task uncertainty by defining the reference trajectory as a sample from

a probability distribution of reference trajectories. Their stochastic approach to designing

linear parallel elastic elements provided energy savings and constraint satisfaction for 90%

of the reference trajectories, but worst-case scenarios would violate the strict safety require-

ments of a co-robot. More arbitrary reference motions resulted in stiffer optimal solutions,

converging to a rigid actuator for totally arbitrary motion (Brown and Ulsoy, 2013). How-

ever, increasing stiffness may not be the solution when actuator constraints must be satisfied

despite uncertainty, as demonstrated later in this dissertation. Thus, a robust formulation is

required to guarantee feasibility of the actuator, i.e., the actuator satisfies the speed, torque,

and elongation constraints, even in the worst case conditions that could manifest during

operation.

1.4 Intellectual merit

The intellectual merit is founded in 1) a robust convex optimization framework for determin-

ing series elastic elements that globally minimize energy consumption and satisfy constraints

despite uncertainty, which enables 2) a potentially transformative design methodology for

SEAs that safely and efficiently perform a variety of tasks for ubiquitous interaction with

humans. The results in this dissertation rely on the theory of robust optimization. Cur-

rent theory on this field applies mainly to convex optimization problems, but the design of

series elastic elements has not been proved to be convex before the work included in this

dissertation.

Formulating energy consumption of a linear series elastic element as a convex function

leads to the necessary conditions to understand when a series elastic element can save energy,

and a non-parametric optimization determines the most energy that can possibly be saved

by a nonlinear spring. In addition, solvers for convex problems are fast enough to find

optimal solutions in real time; expressing the design of series elastic elements as a convex

optimization problem benefits devices that could modify stiffness during operation (e.g.,
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variable stiffness actuators (VSA)). These innovations in modeling, analysis, and design will

enable more versatile, scalable SEAs to be deployed in co-robots that remain efficient and

safe (e.g., never reach maximum spring deflection) over a wide range of interactions.

1.5 Organization of the dissertation

The fundamental equations that describe the dynamic behavior and energy consumption

of SEAs have been introduced in this preliminary chapter. These dynamic equations are

the building blocks to formulate the convex optimization programs for the design of linear

and nonlinear torque-elongation spring profiles that minimize energy consumption and peak

power in Chapter 2. Chapter 3 presents a robust formulation of these optimization pro-

grams after a short introduction to the main concepts in the field of robust optimization.

The application of the complete design methodology into the design of a SEA-powered pros-

thetic ankle is presented in Chapter 4. This chapter also discusses the trade-off between

minimization of peak power and energy consumption, along with suggestions for motor and

reduction ratio selection for this application. The subsequent chapter concludes the disser-

tation. Appendix A describes the MATLAB toolbox that contains the programming code

to solve the optimization programs from Chapters 2 and 3. It also has information on the

open-source repository that describes this toolbox in Code Ocean. The results in Chapter

4 are based on simulation results; appendix B discusses the fabrication of nonlinear springs

for an experimental implementation of the proposed strategies.
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CHAPTER 2

DESIGN OF ENERGY-EFFICIENT SERIES ELASTICITY 1

As discussed in Section 1.1.3, SEA-based co-robots can dissipate less energy than a rigid-

actuator co-robot. A significant portion of the dissipated energy at the actuator is due to

Joule heating, which is for the most part a linear function of actuator torque. Series elasticity

can reduce this torque in two forms: 1) modifying motor inertial and viscous friction torques

and 2) reducing motor velocity requirements, which will allow the use of a higher transmission

ratio and therefore lower motor torque. This approach requires a simultaneous optimization

of the spring stiffness and the reduction ratio. This dissertation focuses on the former

assuming that the transmission ratio and motor has already been chosen. Specifically, this

chapter explains the design of the torque-elongation profile for linear and nonlinear series

elasticity to minimize motor energy consumption, i.e., minimize winding Joule heating and

viscous friction losses.

This dissertation differentiates between a linear and a nonlinear spring and proposes a

unique optimization program for the design of the torque-elongation profile of each. Al-

though the optimal linear spring can be retrieved from the nonlinear methodology, using

the appropriate constraints, it is useful to consider the linear case separately. For instance,

the linear formulation shows the necessary conditions for the load trajectories and motor

parameters to guarantee energy savings when using series elasticity. In addition, the sim-

plicity of the linear formulation enables a faster computation of the optimal spring stiffness;

this is convenient for mechanisms that modify stiffness during operation. For the linear and

nonlinear cases the optimization program will be shown to be convex.

The chapter concludes with the definition of a convex optimization program for the design

of elastic elements that minimize peak power. Minimizing peak power is a standard objective

in the literature, but it may be deceiving depending on the design stage. Specifically, if the

electric motor and transmission have been selected, minimizing peak power does not improve

performance or reduce actuator mass. The last part of this chapter illustrates the advantages

and disadvantages when designing elastic elements to reduce peak power.

1Parts of this chapter have been adapted from (Bolivar Nieto et al., 2019). © 2019 IEEE. Adapted, with
permission, from Bolivar Nieto, E.A., S. Rezazadeh, and R. D. Gregg, Minimizing Energy Consumption
and Peak Power of Series Elastic Actuators: a Convex Optimization Framework for Elastic Element Design.
IEEE/ASME Transactions on Mechatronics. 24(3), 1334-1345.
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2.1 Design of linear series elasticity

The torque-elongation profile of a linear spring is defined by its stiffness value, k ∈ R++.

The goal of this section is to present a convex optimization program for the design of k that

minimizes motor energy consumption. From the optimization point of view, the optimization

variable k belongs to a one-dimensional space. With the speed of modern processors, finding

an optimal point in a one-dimensional space is a simple problem, even if the optimization

program is not convex. Thus, how useful is it to show convexity for this application? The

convex formulation guarantees a global optimal point, which is not the case for arbitrary

optimization programs. In addition, convexity is useful to obtain a computationally tractable

solution when the formulation has uncertainty in the parameters (more details in Chapter

3). Showing convexity will also illustrate the necessary conditions for the load trajectory

and motor configurations to reduce energy consumption and will provide a very intuitive

representation of the role of stiffness in the reduction of motor energy consumption. The

content of this section has been adapted from (Bolivar Nieto et al., 2019).

2.1.1 Energy consumption as a convex function of compliance

In the case of a linear spring, elongation and torque are related by τs = k(ql − qm/r),

where k is the stiffness constant. Using this relationship, the position of the motor and

corresponding time derivatives can be expressed as a function of the given load position and

the spring torque τs as follows:

qm = (ql − τs/k)r,

q̇m = (q̇l − τ̇s/k)r, (2.1)

q̈m = (q̈l − τ̈s/k)r.

Replacing these expressions into (1.1) and defining compliance as the inverse of stiffness,

α := 1/k, the expression of motor torque can be written as an affine function of compliance

as follows:

τm = γ1α + γ2, (2.2)

where

γ1 = − (Imτ̈sr + bmτ̇sr) , (2.3)

γ2 = Imq̈lr + bmq̇lr −
τs
ηr
, (2.4)
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are known constants that depend on the reference trajectory. Using the definition of τm in

(2.2) and assuming periodic motion (1.6), the expression of energy consumption of the motor

is the following convex-quadratic function of compliance:

Em =

∫ tf

t0

(
τ 2m
k2m

+ τmq̇m

)
dt,

=

∫ tf

t0

(
τ 2m
k2m

+ bmq̇
2
m −

τsq̇m
ηr

)
dt+

∫ tf

t0

Imq̇mdq̇m,

= aα2 + bα + c, (2.5)

where

a =

∫ tf

t0

(
γ21
k2m

+ bmr
2τ̇ 2s

)
dt,

b =

∫ tf

t0

(
2γ1γ2
k2m

− 2bmr
2q̇lτ̇s

)
dt,

c =

∫ tf

t0

(
γ22
k2m

+ bmq̇
2
l r

2 − q̇lτs
η

)
dt.

With this formulation the optimization variable that makes the problem convex is the spring

compliance, α.

Properties of the convex-quadratic function of compliance:

The quadratic expression (2.5) has the following properties:

1. d2Em/dα
2 = 2a ≥ 0, which follows from the definition of a. Therefore (2.5) is a convex

function of compliance (Boyd and Vandenberghe, 2004, p. 71).

2. Parameter c is the energy consumed by a rigid actuator performing the same task

without an elastic element, i.e.,

lim
k→∞

Em = c.

3. The optimal value of compliance that minimizes energy consumption for any periodic

trajectory is α = −b/(2a), neglecting actuator constraints (Fig. 2.1). This optimal

value can be computed in polynomial time. Note that the integrals in the definition of

a and b can be approximated with discrete-time summations.
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0 −b/a
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α
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0

b > 0

α

Em

Figure 2.1. Left: Energy consumption as a function of compliance, α, where the energy
savings (E.S.) region 0 ≤ α ≤ −b/a provides Em below the rigid level c. Right: Case of
motor and load that would not benefit energetically from series elasticity.

2.1.2 Necessary conditions for reduction of energy consumption

The sign of b determines whether the reference trajectories and motor configuration will

benefit from series elasticity in order to reduce energy consumption. The quadratic cost

function (2.5) leads to two possible scenarios for the effect of compliance α on motor energy

(Fig. 2.1). In the first case, dEm/dα is negative at α = 0; thus, series elasticity improves

actuator efficiency over some range of compliance. In the second case, this slope is positive at

α = 0, so energy increases with compliance; i.e., there is no energetic benefit to linear series

elasticity for the given task. Thus, using the modeling assumptions in (2.5), the necessary

and sufficient condition for a linear series spring to be energetically beneficial is that for the

load trajectory and motor parameters satisfy b < 0 in (2.5), i.e.,∫ tf

t0

(
2γ1γ2
k2m

− 2bmr
2q̇lτ̇s

)
dt < 0. (2.6)

2.1.3 Actuator constraints in the convex formulation

This section describes the actuator constraints in Section 1.2.1 as convex functions of the

spring compliance, α. In practice, optimization programs are solved using numerical solvers

such as Mosek or Gurobi (MOSEK-ApS, 2019; Gurobi Optimization, 2018). These solvers

deal with optimization variables of finite dimension to express the objective and constraints

functions. Consequently, we express continuous-time as discrete-time trajectories trajecto-

ries. Unless stated otherwise, all the variables previously defined are represented in discrete-
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time using vector notation; e.g., qm ∈ Rn is the discrete-time representation of qm(t) ∈ R
using n equally spaced time samples.

Constraining maximum elongation of the spring

Limited elongation of the elastic element is typical in SEA applications. An elastic element

reaching its maximum elongation could be dangerous for co-robots. When the spring bottoms

out, the elastic collisions with the environment become inelastic, which may be harmful for

the user and the robot itself. We express the elongation constraint as

‖τsα‖∞ ≤ δs,

where δs is the maximum elongation of the spring. This results in the constraint∥∥m(τs/m)α
∥∥
∞ ≤ δs,[

m(τs/m)

−m(τs/m)

]T
α ≤ 1δs,

d1α ≤ e1, (2.7)

where

d1 =

[
τs/m

−τs/m

]
, e1 = 1

δs
m
,

m is a scalar factor, and τs/m is a normalized expression of the spring torque per unit of

m, i.e., τs = mτs/m. This normalized expression will be useful in the next chapter for the

formulation of a robust solution of the constraints.

Maximum motor torque constraint

The limitations in peak torque of the motor are written as ‖τm‖∞ ≤ τmax, where τmax is the

maximum peak value of torque. Recall that the torque of the motor can be written as an

affine function of compliance (2.2), τm = γ1α + γ2. Thus, constraining the peak torque is

equivalent to the following affine constraint:

‖γ1α + γ2‖∞ ≤ τmax,[
γ1

−γ1

]
α ≤ 1τmax +

[
−γ2
γ2

]
,

d2α ≤ e2, (2.8)
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where

d2 =

[
Imτ̈s/mr + bmτ̇s/mr

−Imτ̈s/mr − bmτ̇s/mr

]
,

e2 =


τs/m
ηr
−τs/m
ηr

+

[
−Imrq̈l − bmrq̇l + 1τmax

Imrq̈l + bmrq̇l + 1τmax

]
1

m
.

Speed-torque relationship constraint

As an actuator, a DC motor simultaneously operates as an electric generator producing a

back-emf voltage. This back-emf voltage, which is proportional to the motor’s speed of ro-

tation, limits the current that can flow through the motor’s winding, which is proportional

to the torque produced by the motor. As a consequence, the maximum torque that a DC

motor generates is a function of the rotational speed (Section 1.2.1). This phenomenon is

summarized by the equation τm(R/kt) = vs − ktq̇m. Then for a DC motor to be feasible

τm(R/kt) = vs−ktq̇m (Rezazadeh and Hurst, 2014). The same inequality applies for positive

and negative values of speed and torque, therefore in total there are four inequalities to ex-

press the torque-velocity relationship constraints. The following affine constraint represents

these inequalities:

τm ≤ 1vs
kt
R
− k2t
R
q̇m,

γ1α + γ2 ≤ 1vs
kt
R
− k2t
R

(q̇l − τ̇lα)r,

d3aα ≤ e3a, (2.9)

where

d3a = Imτ̈s/mr + bmτ̇s/mr −
k2t r

R
τ̇s/m,

e3a =
τs/m
ηr

+

(
1vs

kt
R
− Imrq̈l − bmrq̇l −

k2t r

R
q̇l

)
1

m
.

Using positive and negative values of torque and speed we can define three similar versions of

the inequality (2.9), which we will denote using the vectors d3b,c,d
and e3b,c,d

. In summary, the

torque and velocity relationship constraints can be lumped into the single vector inequality

constraint

d3α ≤ e3, (2.10)

where

d3 = [dT3a,d
T
3b,d

T
3c,d

T
3d]

T , e3 = [eT3a, e
T
3b, e

T
3c, e

T
3d]

T .
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RMS torque and maximum speed

Long-term operation of an electric motor can generate excessive heat and can be harmful for

the actuator. Constraining the RMS torque is a typical method to guarantee that long-term

operation is safe for the device. In the proposed framework, the square of the RMS torque

can be written as a convex-quadratic function of compliance and therefore can be included as

a constraint. However, RMS torque also appears in the objective function (2.5). Therefore,

it is redundant to include it as a constraint. The constraint (2.10) already considers the

maximum speed of rotation of the motor, which is equivalent to τm(R/kt) ≤ vs− ktq̇m when

the motor torque, τm, is zero.

Lumping the constraints

Peak motor torque, peak motor velocity, speed-torque relationship constraints, and maxi-

mum elongation of the spring can be represented as the following vector inequalities:

dα ≤ el (2.11)

where

d = [dT1 ,d
T
2 ,d

T
3 ]T , el = [eT1 , e

T
2 , e

T
3 ]T . (2.12)

2.1.4 The convex optimization program for energy efficient linear SEAs

Using the objective function (2.5) and the constraints (2.11), we can formulate the following

optimization program that summarizes the design framework for energy efficient linear SEAs,

under nominal operational conditions:

minimize
α

aα2 + bα + c,

subject to dα ≤ el
(2.13)

2.2 Design of nonlinear series elasticity

Design of the nonlinear series spring that minimizes energy consumption is similar to the

linear formulation in Section 2.1. The methodology assumes that the load trajectory and pa-

rameters of the motor-transmission are known. The optimal torque-elongation profile should

represent a conservative spring; to this end, we constrain the spring torque to be a mono-

tonically increasing function of its elongation. As in Section 2.1, the resulting optimization

program is shown to be convex.
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The goal of the proposed method is to define the function f : R→ R that relates torque

and elongation of the spring, i.e.,

τs = f(δ).

The torque-elongation profile of the nonlinear spring is fully defined by a vector of spring

compliance and the equilibrium length of the spring. The equilibrium length is a constant

parameter that represents the preload on the spring and will not be considered as an opti-

mization variable, as it could be arbitrarily defined. Thus, in this section, the optimization

variable is the compliance vector, α ∈ Rn, which is defined as

αi =
dδi
dτsi

, i = 1, . . . , n

=
δ̇i
τ̇si
, i = 1, . . . , n (2.14)

where δ and τs are the elongation and torque of the spring. This definition applies for

τ̇si 6= 0. When τ̇si = 0, the spring compliance is defined to be zero. In this case, the spring

stiffness approaches infinity, the spring becomes a rigid link.

2.2.1 Energy consumption as a convex function of the compliance vector

The formulation of the optimization program starts with the definition of motor energy

consumption as a function of compliance, the optimization variable. Energy requirements

depend on the torque and speed of the motor, thus we start our derivation with the definition

of motor torque and speed as a function of the compliance vector.

Motor velocity and torque as functions of α

Rearranging (2.14), we obtain

τ̇siαi = δ̇i, i = 1, . . . , n

= q̇li − q̇mi

1

r
, i = 1, . . . , n

diag(τ̇s)α = q̇l − q̇m
1

r
.

Thus, motor velocity and acceleration can be written as the following affine functions of

compliance:

q̇m = a+Bα (2.15)

q̈m = c+Dα (2.16)
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where

a = q̇lr,

B = −diag(τ̇s)r,

c = q̈lr,

D = −diag(τ̈s)r.

Using (2.15) and (2.16) we can write motor torque as

τm = Imq̈m + bmq̇m −
τs
ηr

= e+ Fα (2.17)

where

e =

(
Imc+ bma−

τs
ηr

)
,

F = (ImD + bmB) .

Energy Consumption as a Function of α

With the definition of velocity (2.15) and torque (2.17) of the motor we define the motor

energy consumption as follows:

E =

∫ tf

t0

(
τ 2m
k2m

+ τmq̇m

)
dt

≈
(
τ Tmτm
k2m

+ bmq̇
T
mq̇m −

τ Ts q̇l
η

)
∆t

= αTGα+ hα+ w (2.18)

where

G =

(
F TF

k2m
+ bmB

TB

)
∆t

h =

(
2eTF

k2m
+ 2bma

TB

)
∆t

w =

(
eTe

k2m
+ bma

Ta− τ
T
s q̇l
η

)
∆t.

The Hessian of the cost function (2.18), d2E/dα2 = 2G, is a positive semi-definite matrix;

therefore, the function is convex with respect to α (Boyd and Vandenberghe, 2004, p. 71).
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Positive semi-definiteness can be shown from the definition of G. The Gramian matrices of

F and B, i.e., F TF and BTB, are positive semi-definite as shown by their singular value

decomposition, F = UΣV T , and

F TF = (UΣV T )T (UΣV T )

= V Σ2V T

where F ∈ Rn×n with rankF = r, U ∈ Rn×r, UTU = I, V ∈ Rn×r, V TV = I, and

Σ = diag(σ1, . . . , σr), with σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

2.2.2 Constraints for a conservative elastic element

Solving the optimization program defined by the objective function (2.18) may lead to an

elastic element that is not conservative, i.e., the elastic element stores or dissipates energy

after a full displacement cycle, ∫ δf

δ0

τsdδ 6= 0

. The Fig. 2.2 illustrates the torque-displacement diagram of a nonconservative spring.

In practice, elastic elements could dissipate energy (for instance, by viscous friction), but

the energy lost is negligible depending on the material and design of the spring. The design

methodology presented here assumes that the spring is conservative and has no energy losses.

To this end, the optimization program constraints the compliance vector, α, to generate a

torque-elongation relationship, f , that is monotonically increasing.

The optimization method includes the following constraint to represent a monotonically

increasing function:

(τsi − τsi−1
) > 0 =⇒ (δi − δi−1) > 0, (2.19)

(τsi − τsi−1
) < 0 =⇒ (δi − δi−1) < 0, (2.20)

(τsi − τsi−1
) = 0 =⇒ (δi − δi−1) = 0. (2.21)

for i = 2, . . . , n; when i = 1, then i− 1 = n because the motion is periodic. This constraint

is equivalent to
∆τs
∆δ

> 0.
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Figure 2.2. Nonconservative spring. At the end of a closed displacement cycle energy could
be stored or dissipated by the spring.

Note that elongation of the spring, δ, is an affine function of the compliance vector, i.e,

δ = ql −
qm
r

=

∫ tf

t0

ατ̇sdt+ δ0

≈
i=n∑
i=1

αiτ̇si + αi+1τ̇si+1

2
∆t+ δ0

=

(
α1τ̇s1

2
+ α2τ̇s2 + α3τ̇s3 + . . .+ αn−1τ̇sn−1 +

αnτ̇sn
2

)
∆t+ δ0;

the approximation is based on the trapezoidal method for numerical integration. In vector

form this is equal to

δ ≈ ∆t



0 . . . . . . . . . 0

τ̇s1
2

τ̇s2
2

0 . . . 0

τ̇s1
2

τ̇s2
τ̇s3
2

. . . 0

...
. . . 0

τ̇s1
2

τ̇s2 . . . τ̇sn−1

τ̇sn
2


α+ 1δ0

= Lα+ 1δ0 (2.22)
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The constraints (2.19) - (2.21) are a convex set defined by the a sum of affine functions

of α.

2.2.3 Actuator constraints as a convex function of the compliance vector

In this section, we show convexity of the actuator constraints. Following a similar procedure

as in Section 2.1.3, we consider the following actuator constraints: Maximum Elongation,

Maximum Torque, and the Speed-torque relationship of electric motors.

Maximum elongation

Elongation is defined from (2.22) as δ = Lα + 1δ0. Then to limit the maximum absolute

value of elongation, ‖δ‖∞ ≤ δmax, we impose the constraint[
L

−L

]
α ≤

[
1(δmax − δ0)
1(δmax + δ0)

]
(2.23)

Maximum torque

From the definition of motor torque (2.17), we can limit its maximum absolute value, ‖τm‖∞,

using [
F

−F

]
α ≤

[
1τmax − e
1τmax + e

]
(2.24)

Speed-torque relationship

As discussed in Section 1.2.1, for a four-quadrant motor, the speed and torque of the motor

should satisfy the following inequality:

|τm| ≤
kt
R
Vin −

k2t
R
|q̇m|. (2.25)

Using (2.17) and (2.15), we can write (2.25) as a function of α as follows:

F +
k2t
R
B

F − k2t
R
B

−F +
k2t
R
B

−F − k2t
R
B


α ≤



1
kt
R
Vin − e−

k2t
R
a

1
kt
R
Vin − e+

k2t
R
a

1
kt
R
Vin + e− k2t

R
a

1
kt
R
Vin + e+

k2t
R
a


(2.26)
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2.2.4 The convex optimization program for energy efficient nonlinear SEAs

Collecting the objective and constraints functions, we can write the optimization program

as follows:
minimize

α
αTGα+ hα+ w,

subject to Mα ≤ p
(2.27)

where M , p concatenate the constraints in (2.23), (2.24), and (2.26) in the following form:

M =



L

−L
F

−F
F +

k2t
R
B

F − k2t
R
B

−F +
k2t
R
B

−F − k2t
R
B



, p =



1(δmax − δ0)
1(δmax + δ0)

1τmax − e
1τmax + e

1
k2t
R
Vin − e−

k2t
R
a

1
k2t
R
Vin − e+

k2t
R
a

1
k2t
R
Vin + e− k2t

R
a

1
k2t
R
Vin + e+

k2t
R
a


2.2.5 Example: natural oscillation of a nonlinear spring

In this example, we apply the convex optimization framework in (2.27) to design the SEA’s

elastic element for the reference trajectory corresponding to the natural oscillation of a

nonlinear spring. The example compares the numerical results of the optimization with the

well established analysis of a mass-spring system. This comparison is a good starting point

to gain intuition into the design methodology. For instance, if the reference position of the

SEA corresponds to the natural oscillation of a nonlinear spring and the cost function is

the energy dissipated by viscous friction, the optimal elastic element should be the same as

the nonlinear spring used to generate the trajectories. This section illustrates this case and

compares it with the optimization results using the following cost functions: winding losses,

and total energy consumption.

The Fig. 2.3-(a) describes a single mass-spring system with a nonlinear spring, τs =

kcubicq
3
l + kql, and corresponding equation of motion τs = −Ilq̈l, where Il = 125 g·m2 is the

inertia of the load, kcubic = 40 N·m/rad3, and k = 10 N·m/rad. The main objective of this
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Load LoadMotor and
Transmission

(a) (b)

Figure 2.3. (a) Single-mass spring system. The elastic element describes the nonlinear spring
with τs = kcubicq

3
l + kql. (b) Double-mass single-spring system. The equilibrium position

of the elastic element is ql = qm/r, elongation is defined as δ = ql − qm/r. Motor and
transmission are considered to be backdrivable.

case study is to validate the optimization results against the known natural-oscillation of

a cubic spring. To simplify the analysis, we consider no actuator constraints and a no-loss

mechanical transmission, i.e., η = 1. The Fig. 2.4 illustrates the motion of the load for

an initial displacement, ql(0) = π/2 rad. This natural vibration is defined as our reference

motion. The SEA, Fig. 2.3-(b), can generate this motion with the motor holding its initial

position if the elastic element matches the nonlinear spring in Fig. 2.3-(a). However, this

approach may not be energetically efficient. If the load is high enough to backdrive the

system, the motor must apply a reactionary torque to hold its initial position. This torque

requires a current that generates heat losses at the motor’s winding due to Joule heating.

In contrast, we can solve the optimization problem in (2.27) to find the elastic element that

minimizes the total energy expenditure (i.e., winding losses and viscous friction). To evaluate

the proposed methodology, we solved the optimization problem for each of the following cost

functions: energy dissipated by winding Joule heating, energy dissipated by viscous friction,

and total energy consumption. Each of these cost functions is formulated from appropriate

modifications to the matrices G and h in (2.27). The resulting elastic elements, torques,

and positions of the motor are illustrated in Fig. 2.5. Table 2.1 summarizes the energy

expenditure for each case.

Minimizing viscous friction leads to the same elastic element as in Fig. 2.3-(a), which

validates the numerical results with respect to first principles. The energy required to pro-

duce the motion is then 20.175 J, which is all dissipated in the motor’s winding. In contrast,

minimizing the total energy consumption results in a cost of 9.579 J, 52% less compared to

the previous case. The elastic element is nonlinear but is not defined by τs = 40δ3 + 10δ,

and the motor no longer remains stationary. Minimizing only the energy dissipated by the
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Figure 2.4. The reference trajectory of the load is defined by the natural oscillation of
the single mass-spring system in Fig. 2.3-(a) with kcubic =40 N·m/rad3, k =10 N·m/rad,
Il =125 g·m2, and ql(0) = π/2 rad.

Table 2.1. Energy expenditure. Natural oscillation of cubic spring.

Cost Joule Viscous Total

function heating [J] friction [J] Energy [J]

Viscous friction 20.175 0.000 20.175

Winding losses 0.008 20.511 20.519

Total energy 4.972 4.607 9.579

motor’s winding leads to an elastic element that minimizes as much motor-torque as possible,

as seen in Fig. 2.5. This SEA spring approximates the natural dynamics of the double-mass

single-spring system defined by the inertia of the load and the motor.

2.3 Minimizing peak power

Often, the series elastic element is designed to minimize the peak power of the motor (Hol-

lander et al., 2006). Peak motor power is proportional to the mass of the motor; therefore,

minimizing it is beneficial to minimize the mass of the robot. However, it is very important

to recognize that minimizing peak power is only relevant when the motor and transmission

have not been selected. If those elements are set in the design, minimizing peak power could

be useless. Minimizing peak power may not minimize energy consumption and may not

reduce the speed or torque requirements in regions that are outside the feasible region of the
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Figure 2.5. Optimization results considering natural oscillation of a nonlinear spring as the
reference motion. The solid line corresponds to the elastic element that minimizes the energy
consumption due to viscous friction. It matches τs = 40δ3+10δ, the nonlinear spring used in
the single mass-spring system. The dotted line describes the elastic element that minimizes
winding losses due to Joule heating. The dashed line describes the elastic element that
minimizes both winding losses and viscous friction, i.e., total energy. The corresponding
energy expenditure is shown in Table 2.1.
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motor (Section 1.2.1). However, it is of interest to see if this objective function is convex

in our formulation. This section presents a convex approximation to the reduction of peak

power and provides insights on when to select peak power as the criteria for the design of

series springs. The work presented in this section has been adapted from (Bolivar Nieto

et al., 2019).

For the minimizing peak power we will use the motor position, qm, as the optimization

variable. In order to formulate a convex optimization framework, we approximate the con-

tinuous time derivative with a discrete time representation in (1.1). We discretize time for

one period of the reference motion into n points and approximate time derivatives using the

matrix operation q̇m ≈ Dqm, where qm, q̇m ∈ Rn is the discrete-time representation of qm

and q̇m, D ∈ Rn×n is

D =


0 1 0 0 · · · −1

−1 0 1 0 · · · 0
...

. . .
...

1 · · · −1 0

 1

2∆t
, (2.28)

and ∆t is the sample rate. Dqm is the discrete time derivative of qm based on the central

difference method. The first and last rows of D assume that qm represents a periodic

trajectory, i.e., qm(n+1)
= qm(1)

, where qm(i)
is the ith element of the vector qm. Then the

equations of motion, (1.1)-(1.2), can be approximated as

τm = (ImD2 + bmD)qm − τs
1

ηr
, (2.29)

Design of the elastic element to minimize peak power follows the same principles as in the

case of energy consumption. The analysis starts with the definition of mechanical power of

the electric motor, pm ∈ Rn, as a function of qm:

pm(i) = τm(i)q̇m(i),

=

(
(ImD2(i,∗) + bmD(i,∗))qm − τs(i)

1

ηr

)
D(i,∗)qm,

= qTm
(
ImD

T
2(i,∗)D(i,∗) + bmD

T
(i,∗)D(i,∗)

)︸ ︷︷ ︸
Gi

qm − τs(i)
1

ηr
D(i,∗)︸ ︷︷ ︸

−Hi

qm, (2.30)

= qTmGiqm +Hiqm, (2.31)

for i = 1, 2, ..., n, where D(i,∗) refers to the ith row of the matrix D ∈ Rn×n. In other words,

every element of the power vector, pm, is a quadratic expression of the motor position.
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In contrast to energy consumption, peak power, ‖pm‖∞, is not a convex function of

qm because, in general, the infinity norm of a set of quadratic functions is not convex. In

addition, every quadratic function in (2.31)may not be convex as shown by its Hessian, Gi, in

(2.30). This matrix is non-definite because the matrix ImD
T
2(i,∗)D(i,∗) may have positive and

negative eigenvalues. To keep the advantages of a convex optimization problem, we propose

a convex approximation to the expression of peak power. This approximation neglects the

torque due to inertia, and maximum power is considered instead of peak power, i.e., we

do not take the absolute value. Other approximations of peak power are reported in the

literature for numerical optimization, for instance, pseudo-power has been defined in (Hong

et al., 2017). The simulation results indicate that our convex approximation resembles the

actual expression of peak power, and that minimizing the convex version minimizes the

actual expression as well.

A convex approximation to peak power

Peak power can be approximated with maximum power to obtain a convex version of the cost

function. The max function, max{f1, f2, ..., fn}, is convex when each function f1, f2, ..., fn

is also convex (Boyd and Vandenberghe, 2004). This justifies the use of the max function

instead of the infinity-norm. In our case, each function fi corresponds to the quadratic

expression (2.31). These expressions are convex if and only if Gi is positive semi-definite.

From its definition (2.30), the matrix Gi is positive semi-definite if inertial torques are

neglected. With this in mind, we define pcvxm ∈ Rn, a convex approximation of actual power

pm, as follows:

pcvxm(i) := qTm
(
bmD

T
(i,∗)D(i,∗)

)︸ ︷︷ ︸
Gcvx

i

qm − τs(i)
1

ηr
D(i,∗)qm,

= qTmG
cvx
i qm +Hiqm.

With this approximation the convex optimization problem is written as

minimize
qm

max{pcvxm }, (2.32)

Convexity can be shown since every element in the vector pcvxm is a convex-quadratic function

of qm, i.e., the matrix Gcvx
i is positive semi-definite for all i since it is the Gramian matrix of

D(i,∗). The maximum of a set of convex functions is also convex (Boyd and Vandenberghe,

2004, p. 80). All the constraints are affine with respect to qm, therefore the optimization

problem is convex.
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Regularization to avoid high accelerations

The solution to the optimization problem (2.32) may result in a position trajectory, qm, with

very high accelerations. This has a great impact in the calculation of the actual peak power,

especially for SEAs using a high reduction-ratio transmission. One way to solve this is to

penalize solutions with high accelerations. This can be achieved by including acceleration of

the motor in the cost function as follows:

minimize
qm

max{pcvxm }+ γ1 ‖D2qm‖∞ (2.33)

where γ1 is a scalar constant that controls the influence of the peak acceleration relative to

the maximum of the convex expression of power. The optimization problem (2.33) remains

convex. The term γ1 ‖D2qm‖∞ corresponds to the infinity-norm function, which is convex,

composed by the linear expression D2qm. The composition of a convex function with an

affine function results in a convex function (Boyd and Vandenberghe, 2004).

Energy consumption using motor position as optimization variable

This section describes an alternative version of (2.18) using motor position as the optimiza-

tion variable. This version will be useful for the formulation of a multiobjective optimization

problem between peak power and energy consumption. Using the discrete-time formulation

of the dynamics (2.29) and the simplification of rotor mechanical power in (1.6), the energy

required by the motor (1.3) can be approximated in discrete form as

Em ≈
n∑
i=1

(
τ 2
m(i)

k2m
+ τm(i)

q̇m(i)

)
∆t,

=

(
τ Tmτm
k2m

+ bmq
T
mD

TDqm −
τ Ts q̇l
η

)
∆t. (2.34)

By defining τm/km = Fqm + c, where F = (ImD2 + bmD)/km and c = −τs/(ηkmr), we

rewrite (2.34) as

Em =
(
‖Fqm + c‖22 + bmq

T
mD

TDqm − τ Telaq̇l/η
)

∆t,

= qTmQeqm + Aeqm + ce, (2.35)

where

Qe =
(
F TF + bmD

TD
)

∆t, (2.36)

Ae =
(
2cTF

)
∆t, (2.37)

ce =
(
cTc− τ Telaq̇l/η

)
∆t. (2.38)

37



2.3.1 Multiobjective optimization: energy consumption and peak power

This section describes the optimization problem that simultaneously minimizes energy con-

sumption and peak power. These two objectives are not always competing; however, when

they do, a trade-off curve is useful to guide the design process. For example, a global mini-

mum that reduces energy consumption can lead to higher peak powers compared to actuators

without elastic elements. This motivates a multiobjective optimization framework where the

designer can choose the appropriate trade-off based on the design specifications. The pro-

posed methodology combines the optimization problems introduced in (2.35) and (2.32) to

generate the following multiobjective program:

minimize
qm

θγ2
(
qTmQeqm + Aeqm + ce

)
+ (1− θ) (max{pcvxm }+ γ1 ‖D2qm‖∞) ,

subject to A1qm < b1,

A2qm = b2,

h(qm) ≤ umax,

(2.39)

where γ2 is a the factor that scales the magnitude of energy consumption relative to peak

power, and θ ∈ [0, 1] is the factor that controls the trade-off between energy consumption

and peak power in the solution of the optimization problem. Using θ = 0 indicates that

only peak power will be minimized, and θ = 1 minimizes only energy consumption. It can

be shown that the solution to the optimization problem in (2.39) corresponds to a pareto

optimal point (Boyd and Vandenberghe, 2004, p. 178). The optimization problem remains

convex, since it is the positive sum of convex functions.

2.3.2 When to minimize peak power?

Peak power is a useful objective function when the motor and transmission ratio has not been

chosen in the design. Minimizing peak power may lead to the selection of a smaller motor to

achieve the same task. However, this practice may not be conclusive for the selection of the

adequate motor and transmission. If the motor and transmission have not been selected, it

is recommended to solve the feasibility problem in (2.27) for multiple choices of motor and

transmission. This will certainly determine whether a smaller motor could achieve the task.
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CHAPTER 3

ROBUST ENERGY-EFFICIENT DESIGN OF AN SEA 1

Many of the benefits of series elasticity are lost when the task deviates from its nominal

design conditions. In fact, one of the biggest reasons not to consider SEAs to reduce energy

consumption is their vulnerability against uncertainty. For instance, a robotic ankle powered

by an SEA may consume more energy than a robotic ankle without spring when the user

walks faster than the nominal speed considered for the design of the optimal SEA (Grimmer

and Seyfarth, 2011). In addition to higher energy consumption, uncertainty may require

speed or torques of the load that are outside the feasible or safe region of the actuator.

Robots can adapt to uncertainty by changing their inherent mechanical behavior. For

example, robots driven by VSAs adapt their inherent compliance according to the task,

but require additional mechanisms to control their variable compliance. Usually the energy

savings obtained from variable inherent compliance are small compared to the significant

mechanical complexity of traditional VSAs, making these actuators unpopular in practice

(Hurst and Rizzi, 2008). This unfortunate trade-off could be balanced by novel materials

such as dielectric elastomers. These elastomers provide inherent variable compliance in a

mechanically simple package (Allen et al., 2019; Bolivar et al., 2016). However, dielectric

elastomers are still in the process of development and are not yet commercially available.

Given the current mechanical complexity of VSA mechanisms, it is of interest to know if

robots with fixed mechanical behavior could be robust against uncertainty with a justifiable

trade-off in energy performance.

Section 1.3.3 introduces the state of the art of available methods for robust design of

elastic actuators. These methods do not consider the worst possible realization of uncertainty

for the feasibility of constraints; they provide a probabilistic confidence margin to satisfy

them. Safety margins are also popular for a robust mechanical design. However, they tend

to result in over-designed actuators because the safety factors lump without precision the

different kinds of uncertainty during operation.

In this section we propose an optimization-based design framework that guarantees sat-

isfaction of the constraints as long as the load trajectory and actuator parameters are within

1Parts of this chapter have been adapted from (Bolivar Nieto et al., 2019), © 2019 IEEE. Adapted, with
permission, from Bolivar Nieto, E.A., S. Rezazadeh, and R. D. Gregg, Minimizing Energy Consumption
and Peak Power of Series Elastic Actuators: a Convex Optimization Framework for Elastic Element Design.
IEEE/ASME Transactions on Mechatronics. 24(3), 1334-1345.
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the uncertainty sets. The design framework guarantees that the elongation, speed, and

torque constraints of the actuator are satisfied for the worst possible realization of uncer-

tainty. The design methodology leverages the convex formulations in Chapter 2 and could

be used to understand the benefits of nonlinear springs on the robustness of SEAs.

3.1 Introduction to robust optimization

Robust optimization is a branch of optimization theory that deals with the solution of

optimization programs with uncertainty in its parameters. It was originally developed to

support operation research algorithms, but it is currently an active topic of research with

a growing number of applications, such as robust control, statistics, and machine learning.

The seminal work of (Ben-Tal et al., 2009) provides a rigorous and very general treatment of

the field. In this section, we introduce the fundamental principles from robust optimization

that apply to our SEA spring design.

The general idea of robust optimization is to solve the following optimization program:

minimize
x

f(x,β)

subject to x ∈ X (β)

β ∈ Uβ
where f is the objective function that depends on the optimization variable x and the vector

of parameters β. The optimization variable is constrained to be within the set X (β) that

depends as well on the vector of parameters, β. The parameters β are unknown, but remain

within the uncertainty set Uβ. A robust solution to this optimization program guarantees

that x ∈ X for all possible realizations of β, and it minimizes the worst possible value of

the objective function, i.e.,

minimize
x

[
sup
β
f(x,β)

]
.

A robust feasible solution means that the constraints are satisfied as long as β ∈ Uβ. In

general, this optimization program can be solved for any definition of f , X , and U . However,

the optimal solution may not be computationally tractable. In fact, most of the research

efforts in robust optimization focus on the identification of optimization programs and un-

certainty sets that lead to a computationally tractable solution (Ben-Tal et al., 2009). For

example, for the case of uncertain conic programs, i.e.,

minimize
x

cTx

subject to b−Ax ∈ K, ∀{c, b,A} ∈ Uβ
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where K is a convex cone, tractable solutions have been identified for the following conditions:

1) when the cone K is as “simple” as possible, i.e., a non-negative orthant, as in the case of

linear optimization, or 2) when the uncertainty set Uβ is also easily defined, i.e., a polytope

defined by a finite amount of affine inequalities (Ben-Tal et al., 2009). As shown in this

section, the optimization programs in (2.13) and (2.27) fit into the second category; the

convex cone is a Lorentz-cone (which represents quadratic optimization programs) and the

uncertainty sets are a “simple” polytope defined by a reasonable amount of affine inequalities.

In this dissertation a robust solution refers to a robust feasible solution of the following

optimization program:

minimize
α

αTGα+ hα+ w,

subject to Mα ≤ p, ∀{M ,p} ∈ U
(3.1)

Although the optimization program in (3.1) does not consider uncertainty in the objective

function, this uncertainty can be included as uncertainty in the constraints using a slack

variable as follows:
minimize

α,t
t

subject to αTGα+ hα+ w ≤ t

Mα ≤ p, ∀{G,h, wM ,p} ∈ U .
However, in this dissertation we will consider uncertainty only in the affine parameters

M and p, i.e., simultaneous uncertainty in the left and right hand side of the inequality

constraints. It is traditional in the field to consider the uncertainty in the left and right

hand side as separate cases. However, there are scenarios in which the uncertain parameters

in β affect the left and right hand sides simultaneously. Thus, it is necessary to consider

both sources of uncertainty at the same time.

The robust solution to the optimization program (3.1) depends on the definition of the

uncertainty set. As discussed in Section 3.2, the uncertainty typical of the design of an SEA

is well identified as a polytope. This specific form of the uncertainty set allows us to write

the optimization program (3.1) as

minimize
α

αTGα+ hα+ w,

subject to sTi cui + dcicci ≤ 0, i = 1, . . . ,m. ∀si ∈ Usi
(3.2)

where si is the vector with the uncertain and dci the certain coefficients in row i in M and p,

the vector cui includes all the optimization variables that multiply the uncertain coefficients,

and cci is the vector of optimization variables that multiply coefficients that are certain. With
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this notation, the subscripts ci and ui denote certain and uncertain coefficients, respectively.

For example, if all the coefficients in row i are uncertain, then

sTi =
[
mT

i , pi
]
, cui =

[
α

−1

]
, dci = 0, cic = 0.

The distinction between certain and uncertain portions of the constraints will be useful to

avoid redundant constraints for the robust solution of (3.1). Redundant constraints may

lead to unnecessary infeasibility of the optimization program. The uncertainty set is defined

as

Usi = {si|Duisi ≤ dui}, and Us = Us1 × . . .× Usm .

Thus the optimization program in (3.2) is equivalent to:

minimize
α

αTGα+ hα+ w,

subject to

maximize
si

sTi cui

subject to Duisi ≤ di,

+ dcicci ≤ 0, i = 1, . . . ,m.
(3.3)

which represents a min-max optimization program. The computationally tractable solu-

tion of (3.3) relies on a transformation from the min-max to a min-min program using the

Lagrange dual of the inner maximization program. Note that maximizing an objective func-

tion is equivalent to minimizing the negative value of the function. With this in mind we

formulate the Lagrange dual as follows

Li(si,λ) = −cTuisi + λT (Duisi − di).

The dual function is then

g(λ) = inf
si
Li(si,λ)

= inf
si

[(
−cTui + λTDui

)
si
]
− λTdi,

which is an affine function of si. This function is unbounded below when

−cTui + λTDui 6= 0.

Otherwise, the infimum of the function is equal to −λTdi. Note that the Lagrange dual and

the primal program are equivalent due to zero duality gap; the program is convex and satisfies
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Slater's condition (Boyd and Vandenberghe, 2004, p. 226). Thus, using the Lagrange dual

of the inner maximization program, we can rewrite (3.3) as

minimize
α

αTGα+ hα+ w,

subject to


minimize

λi

dTi λi

subject to λi ≥ 0

DT
ui
λi = cui

+ dcicci ≤ 0, i = 1, . . . ,m.

which is equivalent to

minimize
α,λi

αTGα+ hα+ w,

subject to dTi λi + dcicci ≤ 0

λi ≥ 0

DT
ui
λi = cui, i = 1, . . . ,m.

(3.4)

The programs are equivalent because the optimal point in (3.4) is also optimal and feasible in

(3.3). The optimization program in (3.4) is also known as the robust counterpart of (3.3) and

provides a computationally tractable solution for the original uncertain program. However,

this robust counterpart could quickly increase the number of constraints, as it requires m

Lagrange variables per row of the matrix M , where m is the number of uncertain terms in

M and p.

Example

As an example of the previous result, we solve the following uncertain optimization program:

minimize
α

α2
1 + α2

2,

subject to aα1 ≥ 2, a ∈ [1, 10],

α1 ≤ b, b ∈ [3, 4].

(3.5)

We can get to the optimal solution to this program by inspection, which we will compare

against the solution obtained with the formulation in (3.4). The unconstrained cost function

has an optimal point at α = 0. Because the function is monotonically increasing, the optimal

point of the constrained program is the closest feasible point to α = 0. Considering the worst

possible case for the uncertain coefficients, i.e., a = 1, b = 3, the robust feasible solution is,

by inspection, α1 = 2, α2 = 0 (Fig. 3.1). Let’s formulate the robust counterpart to arrive
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f(α1, 0) = α2
1

f(2, 0) = 4

α1
α1

f(α)

Figure 3.1. Uncertain quadratic optimization program. The coefficients, constraints, and
cost function are defined in (3.5). The optimal value (f(2, 0) = 4) is at the boundary of the
feasible region (2/a ≤ α1 ≤ b).

at the same solution. First, we write the optimization program according to (3.3)

minimize
α

αT

[
1 0

0 1

]
α

subject to


maximize

a
− aα1

subject to

[
1

−1

]
− a ≤

[
1

10

]
+ 2 ≤ 0,


maximize

b
− b

subject to

[
1

−1

]
− b ≤

[
−3

4

]
+ α1 ≤ 0,

(3.6)

Using the notation in (3.4), the robust counterpart is

minimize
α,λ1,λ2

αT

[
1 0

0 1

]
α

subject to [−1 10]λ1 + 2 ≤ 0

λ1 ≥ 0

[1 − 1]λ1 = α1

[−3 4]λ2 + α1 ≤ 0

λ2 ≥ 0

[1 − 1]λ2 = 1
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This is a standard quadratic program and can be solved numerically using solvers like

Gurobi or Mosek (Gurobi Optimization, 2018; MOSEK-ApS, 2019). The optimal point

matches our results by inspection, α1 = 2, α2 = 0. Of course, the complexity of this particular

optimization program did not need the reformulation in (3.4). However, the method will

be extremely useful for more complex programs, which normally involve a higher number of

uncertain constraints as in our optimization problem for the design of SEAs. The application

of the robust counterpart formulation for the design of robust SEAs will be the topic of

discussion in the following sections.

3.2 Sources of uncertainty for SEAs

In general, every coefficient in the equations of motion (1.1), (1.2) is subject to uncertainty;

however, we will focus on the parameters that are more significant to the application of reha-

bilitation robotics, i.e., powered prosthetic legs and exoskeletons. The formulation in (3.4)

is broad enough to accommodate sources of uncertainty different from the ones considered

in this work. For the optimization programs in 2.27 and 2.13, we deal with the following five

sources of uncertainty:

1. Manufacturing of the spring. Uncertainty due to manufacturing of the spring is typical

given the limited manufacturing tolerance of suppliers. For instance, the University

of Michigan (collaborators in the NSF grant that funded this dissertation) reported

limited accuracy with the manufacturing of their rotational springs (Azocar et al.,

2018). Their rotational springs follow a disk design that comprises 24 parallel cantilever

springs organized radially (Fig. 3.2). Each disk has a (constant) stiffness≈ 100 N·m/rad

and is 4.3 mm thick. However, manufactured springs have an actual stiffness with a

standard deviation of about ± 10 % from the desired stiffness value (Azocar et al.,

2018).

2. Unmodeled dynamics, i.e., uncertain torque in the motor dynamics. This torque cor-

responds to τunc, which appears now in the following equations of motion:

τm = Imq̈m + bmq̇m −
τs
ηr

+ τunc

= e+ Fα,

where

e =

(
Imc+ bma−

τs
ηr

+ τunc

)
. (3.7)
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Figure 3.2. Linear spring disk design with FEA showing Von Misses stress (MPa) during
loading

This new definition of e replaces the definition in (2.17) and will be used for the rest

of this dissertation. The unmodeled dynamics torque, τunc, lumps unmodeled effects

at the motor and load side such as cogging torque and friction.

3. Efficiency of the transmission. This efficiency depends on the specific kind of transmis-

sion, e.g., spur gears, bevel gears, harmonic drive, etc. In the case of spur gear pairs,

a strong dependency in load torque exists, at low torques efficiency decreases quickly.

Regarding speed, low speeds yield higher efficiency (Verstraten et al., 2015). In our

model the efficiency is crudely modeled as a constant multiplicative factor, accounting

for uncertainty in this factor is critical for a realistic design.

4. Kinematics of the load.

5. Kinetics of the load. In rehabilitation robotics one of the biggest sources of uncer-

tainty is the definition of the motion tasks. Reference kinematics and kinetics vary

considerably in practice as users change walking speed; inclination during locomotion;

their mass, for instance, by carrying a backpack; or perform custom tasks that deviate

from traditional operation, e.g., dancing, jumping, or adapt their natural gait due to

irregular terrain. For instance, the joint position of a human ankle during level ground

walking varies with a standard deviation of ±5° (Winter, 1983),

3.3 Robust design of energy-efficient linear SEAs

The previous sources of uncertainty impact the solution of the optimization program (2.13)

for the design of linear SEAs. Specifically, we consider the effect of uncertainty in the

feasibility of the constraints. The goal is to prescribe the right value of compliance that

minimizes energy consumption and satisfies the constraints for every possible realization
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of uncertainty within the uncertainty sets. Uncertainty in our formulation means that the

reference kinematics and kinetics of the load, the manufacturing accuracy of the spring, the

efficiency of the transmission, and the unmodeled dynamics are not precisely known but

are restricted to belong to an uncertainty set, U . In our formulation, U is defined as the

Cartesian product

U = Uql × Uq̇l × Uq̈l × Um × Uη × Uτu × Ud,

where the uncertainty sets Uql , Uq̇l , Uq̈l , Um, Uη, Uτu , and Ud express all the possible real-

izations for the load position, velocity, and acceleration; the multiplicative factor of the load

torque; the efficiency of the transmission; the unmodeled dynamics; and the manufacturing

accuracy of the spring respectively.

For the position of the load, the uncertainty set is defined as follows:

Uql = {ql ∈ Rn : q̄l − 1εql ≤ ql ≤ q̄l + 1εql},

where q̄l ∈ Rn and εql ∈ R represent the nominal load trajectory and uncertainty of the load

position, respectively. In other words, the position of the load, ql, is within q̄l ± 1εql . Using

the respective nominal and uncertainty values ( ˙̄ql, ¨̄ql, η̄, τ̄u, εq̇l , εq̈l , εη, ετu), we use the same

definition for Uq̇l ,Uq̈l ,Uη, and Uτu . Uncertainty in the manufacturing of the spring is defined

as the factor (1 ± εd) that multiplies the spring compliance. Because it is a multiplicative

factor, uncertainty in the manufacturing of the spring is equivalent to uncertainty in the

coefficient vector d, in (2.11). Therefore the corresponding uncertainty set is defined by

Ud = {d ∈ Rp : d− εd|d| ≤ d ≤ d+ εd|d|},

where p is the number of constraints. Inequalities and absolute values for vectors are element-

wise. This uncertainty in the manufacturing of the spring implies that its stiffness is in the

set

k ∈ {k ∈ R : [(1 + εd)α]−1 ≤ k ≤ [(1− εd)α]−1}.

Uncertainty in the kinetic reference trajectories is defined by a nominal value and a uncer-

tain multiplicative factor. Precisely, the reference torque of the load τl is considered to be

τl = m(τl/m), where τl/m is a nominal value of τl per unit of m. Our uncertain multiplicative

factor, m, could be any element within the set

Um = {m ∈ R : 0 < m̄− εm ≤ m ≤ m̄+ εm},

where m̄ ∈ R is the nominal value of m and εm ∈ R is its corresponding uncertainty. In

other words, τl = (m̄± εm)τl/m.
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The robust formulation of the constraints

A robust feasible design should satisfy the constraints (2.11) for all possible realizations of

the uncertainty within the uncertainty set. Note that the uncertainty in the manufacturing

of the spring manifests as uncertainty in the vector d in (2.11). Thus, a robust feasible

design results in an optimal selection of α that satisfies

dα ≤ el, ∀ql, q̇l, q̈l,m, η, τu,d ∈ U . (3.8)

Because α > 0, a robust feasible solution can be obtained as a special case of (3.4). When

α > 0, constraints of the form

aiα ≤ bi,

are robustly solved when choosing ai and bi such that

bi
ai
≤ biu
aiu

, ∀ biu , aiu ∈ U .

In our formulation, this is equivalent to

d̄α ≤ el, (3.9)

where d̄ and el are the vectors that represent the worst case representation of the uncertainty.

These vectors are defined as follows:

d̄ = d+ εd|d|, el = [el
T
1
, el

T
2
, el

T
3

]T , (3.10)

where

el1 = 1
δs

m̄+ εm
,

el2 =

[
τl/m

−τl/m

]
1

(η̄ ± εη)
r + f

1

m̄± εm
,

f =

[
−Imr(q̈l + εq̈l)− bmr(q̇l + εq̇l) + 1(τu + τmax)

Imr(q̈l − εq̈l) + bmr(q̇l − εq̇l) + 1(τu + τmax)

]
,

el3 = [eT3a, e
T
3b, e

T
3c, e

T
3d]

T ,

e3a =
τl/m

(η̄ ± εη)r
+ (−Im(q̈l + εq̈l)r − bm(q̇l + εq̇l)r + 1

(
vin

kt
R

+ τu

)
− . . .

. . .
k2t r

R
(q̇l + εq̇l))

1

(m̄± εm)
,
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and the values for e3b, e3c , and e3d are defined using positive and negative values of torque

and speed in the definition of the torque-speed constraints. The sign of 1/(m̄± εm) de-

pends on the elements of the vector that it multiplies, as the multiplication applies element-

wise. When the element of the vector is positive, then the multiplication factor becomes

1/(m̄+ εm); when the element is negative, 1/(m̄− εm). The same idea applies to 1/(m̄± εη),
which describes the worst possible scenario to satisfy the inequality (3.9). In conclusion, we

can find the stiffness constant that minimizes energy consumption and satisfies the actuator

constraints despite uncertainty by solving the following quadratic program:

minimize
α

aα2 + bα + c,

subject to d̄α ≤ el
(3.11)

The content of this section has been adapted from (Bolivar Nieto et al., 2019).

3.4 Robust design of energy-efficient nonlinear SEAs

For the robust design on nonlinear SEAs, we account for the same sources of uncertainty as

described in Section 3.2. The first step for a robust formulation is to define the uncertainty

sets. In particular, the additive uncertainty in the spring compliance manifests in the vector

p as defined in (2.27), which is constrained to belong to the set

Uαn = {p ∈ Rm : p̄− abs(M1)εαa ≤ p ≤ p̄+ abs(M1)εαa},

where p̄ is the nominal right hand side vector of the inequality constraint and εαa ∈ R
the uncertain value in compliance. The abs() value applies element-wise. The unmodeled

dynamics torque is defined as

τunci ∈ Uτunci
= {τunci ∈ R : −ετunci

≤ τunci ≤ ετunci
}, i = 1, . . . , n.

Where ετunc ∈ Rn is the vector that defines its uncertainty. For the case of the efficiency of

the transmission:

η ∈ Uηn = {η ∈ R+ : η̄(1− εηn) ≤ η ≤ η̄(1 + εηn), 0 ≤ εηn ≤ 1}.

In other words, it has multiplicative uncertainty,

η = η̄(1± εη).

where η̄ is the nominal value and εη the uncertain multiplicative factor.
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The uncertainty sets for the kinematics and kinetics take a similar approach. Additive

and multiplicative uncertainty in the position, velocity, acceleration of the load, and the

torque of the load are considered as follows:

ql = q̄l(1± εqlm )± εqla
q̇l = ˙̄ql(1± εq̇lm )± εq̇la
q̈l = ¨̄ql(1± εq̈lm )± εq̈la
τs = τ̄s(1± ετsm )± ετsa .

The notation follows the same principle as in the other sources of uncertainty. Nominal

and uncertain values are defined with a bar and epsilon respectively, e.g., q̄l is the nominal

value of load position, εq̇lm is the multiplicative uncertainty in load velocity, and εq̈la the

additive uncertainty in load acceleration. For the linear and nonlinear design frameworks, we

assume that the uncertainty in position is independent of the uncertainty in its derivatives

and integrals. The same applies for the uncertainty in velocities and accelerations.

This particular selection of uncertainty sets allows us to lump all the uncertainty in the

right hand side of the inequality, Mα ≤ p, in (2.26). With all the uncertainty in the right

hand side, the robust counterpart could be easily identified by replacing p with its lowest

possible value due to uncertainty.

The robust formulation of the constraints

To include the uncertainty due to limited accuracy during manufacturing of the spring and

uncertain unmodeled dynamics torque, we write p1 as follows:

p1 = p− abs (M ) 1εαa −
[

0

16n×1

]
ετunc (3.12)

To account for the uncertainty in the efficiency of the transmission we modify the vector e

in (3.7) to be

e =

(
Imc+ bma−

τs
η̄(1± sign(τs)εηn)r

+ τunc

)
(3.13)

50



where the division is element-wise and the sign of ± prescribes the lowest possible value of

e. To account for the uncertainty in the kinematics we define p2 as follows:

p2 = p1 −



0

bmr(εq̇lmabs( ˙̄ql) + 1n×1εq̇la ) + Imr(εq̈lmabs(¨̄ql) + 1n×1εq̈la )

bmr(εq̇lmabs( ˙̄ql) + 1n×1εq̇la ) + Imr(εq̈lmabs(¨̄ql) + 1n×1εq̈la )

(bmr +
k2t
R
r)(εq̇lmabs( ˙̄ql) + 1n×1εq̇la ) + Imr(εq̈lmabs(¨̄ql) + 1n×1εq̈la )

...

(bmr +
k2t
R
r)(εq̇lmabs( ˙̄ql) + 1n×1εq̇la ) + Imr(εq̈lmabs(¨̄ql) + 1n×1εq̈la )


(3.14)

Using n as the number of samples in the discrete-time load trajectory. Finally, we include

the uncertainty in the kinetics to define the lowest possible value of p as p:

p = p2 −
1

η̄(1− εηnr)


0

ετsmabs(τs) + 1n×1ετsa
...

ετsmabs(τs) + 1n×1ετsa

 (3.15)

With this definition, the robust counterpart to the optimization program (2.27) is

minimize
α

αTGα+ hα+ w,

subject to Mα ≤ p
(3.16)
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CHAPTER 4

IMPLICATIONS FOR A POWERED PROSTHETIC ANKLE 1

This chapter applies the methodology from Chapters 2 and 3 into the series spring design for

a powered prosthetic ankle. This application is of interest, as the muscle-tendon system that

powers the human ankle resembles the architecture of an SEA. Most of the high energetic

efficiency of this joint is due to the storage and return of elastic energy at the Achilles

tendon, which connects in series with the calf muscles (Endo and Herr, 2014; Perry and

Burnfield, 2010). Thus, using a spring as an Achilles tendon and a motor as the calf muscles

is a biologically inspired strategy to power a prosthetic ankle. In addition, battery-powered

rehabilitation robotics regard energy efficiency and robustness as important criteria for their

design. The combination of all these factors makes a powered prosthetic ankle an appealing

case study for this dissertation.

The architecture of an SEA offers important benefits to the actuation of robotic systems.

The elastic element in an SEA decouples the reflected inertia of the rigid actuator and

the inertia of the load (Hurst and Rizzi, 2008). In addition, the spring can store elastic

energy and release it with enormous power. SEAs also work as a soft load cell, suitable

for measuring and controlling force generation (Robinson et al., 1999). Robots using SEAs

exploit these important characteristics in order to reduce the energy lost during impacts

(Hurst and Rizzi, 2008), improve the safety of the human and robots (Bicchi and Tonietti,

2004), move loads with higher velocities (Braun et al., 2013), reduce energy consumption of

the system (Vanderborght et al., 2006; Jafari et al., 2013; Ding and Park, 2017), and decrease

peak motor power (Jafari et al., 2011, 2013; Hollander et al., 2006), so a smaller/lighter motor

can be used. All these benefits are subject to the design of the SEA’s elastic element and

the motion task.

In terms of control, adding a series spring normally reduces the torque bandwidth of

the entire actuator. However, this should be analyzed in more detail, torque bandwidth

for rigid high-geared systems may be high, but the torque tracking performance is poor.

Using high-gear ratios amplifies the effect of difficult to model dynamics such as backlash

and friction, in the end, the control accuracy is far from ideal (Robinson, 2000). In addition,

1Parts of this chapter have been adapted from (Bolivar Nieto et al., 2019), © 2019 IEEE. Adapted, with
permission, from Bolivar Nieto, E.A., S. Rezazadeh, and R. D. Gregg, Minimizing Energy Consumption
and Peak Power of Series Elastic Actuators: a Convex Optimization Framework for Elastic Element Design.
IEEE/ASME Transactions on Mechatronics. 24(3), 1334-1345.
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motors operating at high velocities may be loud and noisy (Elery et al., 2018). Low-gear or

direct drive systems alleviate these effects by reducing the effects of friction and backlash at

the motor side, they offer outstanding torque control tracking, quiet operation because the

motor operates at low speeds (Elery et al., 2018), but dissipate a significant amount of heat

(Seok et al., 2015).

Despite the strong biological evidence and the known benefits of elasticity, there is no

actual consensus in the robotics community about the use of springs in series to actuate

the ankle joint. In general, the community acknowledges the benefits of series elasticity,

but the extra mechanical complexity and mass of the spring plus attachment mechanism

discourage the implementation of an SEA architecture. Prosthetic legs powered by SEAs

normally justify their selection in terms of energy savings, mass reduction, improved force

control, and reduction of impact loads (Rouse et al., 2014; Azocar et al., 2018; Hollander

et al., 2006; Au et al., 2009). However, these designs tend to be heavier than their rigid

counterparts; in addition, energy savings and satisfaction of motor speed-torque constraints

are not guaranteed when the load requirements deviate from the nominal conditions. As a

result, there are prosthetic leg designs that operate without a spring in series with the motor

(Lenzi et al., 2018, 2019; Tran et al., 2019; Sup et al., 2008; Shultz et al., 2016; Sup et al.,

2008).

In this chapter, we take advantage of the global optimal results from our methodology

and compare the linear spring designs against the nonlinear ones. The chapter begins with

an analysis of the speed-torque requirements for a healthy human ankle joint. These require-

ments become the reference load trajectories for the optimal spring design in Sections 4.3 and

4.4. Section 4.3 deals specifically with the optimal nonlinear spring neglecting uncertainty

in the design. Section 4.4 incorporates uncertainty in the optimal selection of the spring.

The trade-off between peak power and energy consumption is discussed in Section 4.5. The

chapter concludes in Section 4.6 with a discussion on the selection of motor and reduction

ratio in the context of an SEA powered ankle.

4.1 Actuator requirements for different locomotion tasks

In biomechanics, the gait cycle refers to the progression of the human lower limbs during

walking. A gait cycle can be categorized into five main divisions: initial double limb stance,

single limb stance, terminal double limb stance, swing, and double limb stance. In each

division, the ankle-foot complex provides important functions for locomotion. Here, we

summarize the critical functionality that an ideal powered prosthetic ankle should replace.
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Figure 4.1. Ankle power during the gait cycle corresponding to a 69.1 kg subject, as reported
in (Winter, 1983).

At initial contact or heel strike, the ankle-foot complex is positioned at 90° (neutral) to

guarantee upward tilt of the forefoot. This position is critical for the subsequent loading

response. During the loading phase the limb assumes rapid loading (60 % of body weight

in just 2 % of the gait cycle). In this phase, the ankle works as a shock absorber. During

mid-stance the main function of the ankle-foot complex is to act as a rocker for progression

(Perry and Burnfield, 2010). During terminal stance, the ankle provides the highest power

among all the joints and provides most of the energy required to project the body forward

(45 % to 60 % of the gait cycle, Fig. 4.1). Most of that energy has been stored as elastic

energy in the Achilles tendon during mid stance until heel rise. This functionality is key for

adequate metabolic energy consumption during walking (Collins et al., 2015). The elastic

component of the ankle has been also recognized in the literature by characterizing its torque-

displacement behavior using the stiffness and quasi-stiffness of a spring (Rouse et al., 2013;

Hansen et al., 2004).

A key factor for the design of a powered prosthetic ankle is its capability to resemble the

position and torque profile of a healthy ankle. The Fig. 4.2 illustrates the reference position

and torque trajectory for the actuator during level ground walking and running. Note that

these trajectories represent the mean values for multiple individuals. Identification of the

ideal reference positions and torques is still a challenge in the field, as the trajectories change

over time even for the same subject (Embry et al., 2018). For example, Fig. 4.3 illustrates the

effects of different walking speeds and user mass on the kinematics and kinetics of the average

human ankle. These reference torques and positions are also inputs to our optimization

methodology; thus, a design that is robust against these changes is of interest in practice.
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Figure 4.2. Motion of the human ankle during level ground walking (Winter, 1983) and
running (Novacheck, 1998). The gait cycle begins with heel contact of one foot and finishes
with the subsequent occurrence of the same foot.
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Figure 4.3. Motion of the human ankle during level ground walking as shown in (Winter,
1983). Slow, normal, and fast walking speeds are equivalent to cadences of 87, 105, and 123
steps per minute. In average, the ankle of a 75 kg subject walking at normal speed provides
about 17 J during a single gait cycle. In the lower figure, translucent regions denote the
minimum and maximum joint torques corresponding to 65 kg and 85 kg subjects.

4.2 Simulation setup

Each of the following case studies is based on simulation results using the following configu-

ration. The trajectory of the load, i.e., ql, q̇l, q̈l, and τs in (1.2), is given and the optimization

problem is numerically solved using CVX, a package for specifying and solving convex pro-
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Table 4.1. Simulation parameters based on the motor ILM85x26 from RoboDrive and EC30
from Maxon motor.

Parameter ILM85 EC30 Units

x26

Motor torque constant, kt 0.24 0.0136 N·m/A

Motor terminal resistance, R 323 102 mΩ
Rotor inertia, Imr 1.15 0.0333 kgcm2

Rotor assembly, Ima 0.131 0 kgcm2

Motor inertia, Im = Imr + Ima 1.246 0.0333 kgcm2

Gear ratio, r 22 720

Motor viscous friction, bm 60 6.66 µN·m·s/rad

Max. motor torque, τmax 8.3 0.337 N·m
Max. motor velocity, q̇max 1,500 20,000 rpm

Nominal power output, @48 V, 410 @30 V, 300 W

Peak power output, @(48 V, τmax), 1,259 @(30 V, τmax), 745 W

grams (Grant and Boyd, 2014, 2008). In all simulations, CVX executed the solver Mosek

(MOSEK-ApS, 2019) with precision settings cvx_precision best. For the case studies,

we used the parameters of a commercial high-torque frameless motor (Model: ILM 85x26,

RoboDrive, Seefeld, Germany, Table 4.1) and low-torque high speed motor (Model: EC30,

Maxon motor, Sachseln, Switzerland, Table 4.1), motivated by the motor selection of the

first and second generation of the powered prosthetic legs at the University of Texas at Dallas

(Quintero et al., 2018, 2016; Elery et al., 2018).

4.3 Minimizing energy consumption using a high reduction gearbox

As a first case study, we illustrate the design of a nonlinear SEA that minimizes energy

consumption for a high-speed low-torque motor using a high reduction ratio. To facilitate the

analysis, this case study does not consider uncertainty in the description of the optimization

program; we will consider uncertainty in the following sections. The optimal spring is the

optimal solution to the optimization program in (2.27), constraining only the maximum

velocity and torque of the motor based on the parameters of the EC30 motor in Table 4.1.
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Figure 4.4. Optimization results considering motion of the ankle as the reference trajectory.
Dotted, solid, and dashed lines indicate results for slow, normal, and fast level-ground walking
speeds, respectively. Translucent regions denote upper and lower bounds corresponding to
85 kg and 65 kg subjects.

In particular, we analyze the ankle trajectories for slow, normal, and fast walking speeds and

three subject weights: 65, 75, and 85 kg. These reference trajectories are shown in Fig. 4.3.
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Figure 4.5. Energy savings for the ankle reference trajectory. Results for slow, normal, and
fast level-ground walking for three different subject’s weights.

The optimal elastic elements along with the torques and positions of the motor are

illustrated in Fig. 4.4. As shown in Eqn. 1.6, the energy of the load (i.e.,
∫ tf
t0

τelaq̇l
η
dt) is

always provided by the motor regardless of the SEA’s elastic element. Therefore, energy

savings for an SEA will be considered as the reduction of dissipated energy between a rigid

motor without elastic element and an SEA. For example, during normal speed the ankle of a

75 kg subject provides about 17 J per stride; however, the EC30 motor with the characteristics

described in Table 4.1, without an elastic element, requires 33 J. The extra 16 J are dissipated

in the motor’s winding by Joule heating and viscous friction. In contrast, the same motor

connected in series with our optimal elastic element requires about 25 J per stride. The energy

dissipated will be 8 J, a reduction of about 50 % compared to a motor without an elastic

element. A similar analysis for different walking speeds and subject weights is summarized

in Fig. 4.5. Energy reduction is shown for all the cases considered. The optimal elastic

element is nonlinear, as shown in Fig. 4.4. This indicates that, for the given electric motor

and transmission, a quadratic elastic element would be the most efficient to generate the

ankle motion.

4.4 Energy-efficient robust design

In this section, we apply our methods to the design of an SEA for a powered prosthetic ankle

to minimize energy consumption while satisfying actuator constraints despite uncertainty.
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As discussed in Section 4.1, actuator designs for powered prostheses normally use average

kinetic and kinematic trajectories (Rouse et al., 2014; Au and Herr, 2008; Lenzi et al., 2018;

Elery et al., 2018). However, load conditions during human locomotion vary significantly

even for a single subject (Embry et al., 2016). Robust design is important in this application

as human locomotion and manufacturing methods are inherently uncertain. For instance,

the ankle joint position during human locomotion varies with a standard deviation of ±5°
(Winter, 1983), and the stiffness of a manufactured spring has a standard deviation of about

± 10 % from the desired stiffness value (Azocar et al., 2018).

In our formulation, we take advantage of the connection between uncertainty in the

kinematics and kinetics of the load and our definition of uncertainty sets in Section 3.3 to

obtain a robust feasible design. The parameters εql , εq̇l , εq̈l define the uncertainty in the

kinematics U{ql,q̇l,q̈l}. In this simulation case study, we define these parameters to be equal to

the reported standard deviation of the joint kinematics in (Winter, 1983). Our formulation of

uncertainty in the kinetics has a practical meaning in biomechanics. The reference torque of

the ankle joint is traditionally normalized by the mass of the user (Winter, 2009). Because our

definition of uncertainty in the kinetics is multiplicative, it is equivalent to uncertainty in the

user’s mass. As a result, it becomes relevant to rehabilitation and physical assistance robots

where users can vary or a single user can wear additional accessories, such as backpacks.

We select the uncertainty in the mass, εm, to be equal to the reported standard deviation

of the subjects’ mass in (Winter, 1983). The Fig. 4.6 illustrates the reference trajectories

and corresponding bounds of uncertainty. Uncertainty in the manufacturing of the spring,

εd, is equal to twice the standard deviation of the SEA spring stiffness of the open-source

prosthetic leg at University of Michigan (Azocar et al., 2018). The uncertain torque, ετu ,

is equal to 10 % of the maximum continuous motor torque. Uncertainty in the efficiency of

the transmission is based on experience, aiming for a realistic simulation case. Table 4.1

illustrates the parameters of the actuator and Table 4.2 the parameters of uncertainty.

4.4.1 Design using a linear SEA

This section describes the linear spring that solves the robust optimization in (2.13). To

contextualize our results, we analyze three possible actuator designs: (a) a rigid actuator

Maxon EC-30 without series elasticity, (b) an SEA using the same motor with optimal

stiffness that satisfies constraints only for the nominal data, and (c) an SEA with the same

motor that satisfies actuator constraints despite uncertainty using our robust formulation.

Using (1.1) and (1.2) we compute the motor speed and torque trajectories considering the
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Table 4.2. Uncertainty based on the variance reported in (Winter, 1983; Azocar et al., 2018).

Uncertainty in Units

Mass, εm ±8.8 kg

Reference position, εql ±5°
Reference velocity, εq̇l ±30 % rms average trajectory

Reference acceleration, εq̈l ±30 % rms average trajectory

Transmission efficiency, εη ±20 %

Unmodeled dynamics, ετu ±13.5 mN·m
Manufacturing of spring, εd ±20 %
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Figure 4.6. Position (top) and torque (bottom) of the human ankle during level ground walk-
ing (Winter, 1983). The solid line indicates the mean values for a 69.1 kg subject (Winter,
1983). The shaded region around the nominal trajectory illustrates the uncertainty in the
position εql = ±5° and the mass of the subject εm = ±8.8 kg. This uncertainty corresponds
to the standard deviation reported in (Winter, 1983).
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Table 4.3. Optimization results that indicate weak trade-off between robustness and energy
savings. Energy savings are relative to dissipated energy of the rigid actuator 11.7 J.

Design Optimal Stiffness Energy Savings

nominal (b) 217.4 N·m/rad 30.8%

robust feasible (c) 243.4 N·m/rad 30.45%

ankle kinematics and kinetics as the load. We used a Monte Carlo simulation with 10,000

trials to evaluate the effect of uncertainty using actuators (a), (b), and (c). The Fig. 4.7

illustrates the torque-speed plot for all the trials. For the actuator (a), the required speed and

torque do not stay within the specifications of the motor and therefore the rigid actuator is

infeasible. Including series elasticity, the design (b) makes the actuator feasible and dissipates

30.8% less energy compared to (a). This justifies the use of series elasticity, not only for

the reduction of energy consumption, but also to maintain the requirements within the

actuator specifications. The optimal stiffness of design (b) is 217.4 N·m/rad. However, this

design becomes infeasible when the reference trajectory deviates within the uncertainty set,

as shown in Fig. 4.7. Using our robust formulation, design (c) satisfies the constraints

despite uncertainty using a spring stiffness of 243.4 N·m/rad. Design (c) reduces 30.45% of

the dissipated energy compared to a 30.8% reduction in the case (b), where the reported

energy savings are relative to the rigid case. The small trade-off in performance using the

robust SEA is justified when feasibility of the constraints is satisfied. Table 4.3 summarizes

the results.

4.4.2 Design using a nonlinear SEA

This section describes the nonlinear spring that solves the robust optimization program

in (3.16) and compares the results between a linear and nonlinear robust design. Using

the values of the EC30 motor in Table 4.1 and the values of uncertainty in Table 4.2, we

obtained a quadratic nonlinear spring as shown in Fig. 4.8. The nominal and robust solutions

are identical because the optimal solution is at the boundary of the monotonically increasing

constraints (Section 2.2.2). These are the only constraints that assume nominal conditions

even in the robust formulation because they may lead to equality constraints. In general,

equality constraints with uncertain coefficients lead to an ill-posed optimization program. In

terms of performance, the nonlinear SEA reduces 34.6 % of energy consumption compared

to a rigid actuator, 4.15 % more savings than the robust linear solution. They also satisfy

the actuator constraints as long as the uncertainty remains within the uncertainty set.
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Figure 4.7. Speed and torque requirements of different actuators for a powered prosthetic
ankle. The region enclosed by the dotted line describes the speeds and torques that satisfy
the specifications of the motor, i.e., feasible region. The figure shows three possible actuator
designs: (a) rigid actuator Maxon EC-30 without series elasticity, (b) SEA using the same
motor with optimal stiffness that satisfies constraints only for the nominal data, and (c)
SEA with the same motor that satisfies actuator constraints despite uncertainty using our
formulation. The robust design (c) is the only actuator that satisfies the actuator constraints
for all possible values of uncertainty.

Table 4.4. Uncertainty based on the variance in (Winter, 1983; Azocar et al., 2018).

Uncertainty in Units

Mass, εm ±10 %

Reference velocity, εq̇l ±5 % rms average trajectory

Reference acceleration, εq̈l ±5 % rms average trajectory

Transmission efficiency, εη ±8 %

Unmodeled dynamics, ετu ±5 % nominal motor torque 2.6 N·m
Manufacturing of spring, εd ±10 %
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Figure 4.8. Optimal robust nonlinear spring. The nominal and robust solution are identical.
The optimal solution is at the boundary of the monotonically increasing constraints (Section
2.2.2), which are not affected by uncertainty in our formulation.

As another case study, we consider the design of a robotic ankle using the ILM85x26

motor for level-ground running (Fig. 4.2) under the uncertainty defined by the parameters

in Table 4.4. This case study shows the difference between the nominal and robust optimal

springs. The Figs. 4.9 and 4.10 illustrate the optimal robust spring that satisfies the con-

straints as long as uncertainty is within the prescribed sets. The prescribed robust spring

design in Fig. 4.9 is significantly stiffer than the nominal solution for elongations higher than

0.2 rad; however, during implementation, the robust spring could be softer than the nominal

solution at elongations higher than 0.2 rad when considering the manufacturing uncertainty

(εd ±10 %). In this case study, the uncertainty on the manufacturing of the spring modified

the spring profile mainly at high elongations. As illustrated in Fig. 4.10, the nominal solution

does not satisfy the speed constraints of the motor. This case study illustrates an unfeasible

spring design when neglecting uncertainty and denotes the importance of a robust solution.

In our approach, the designer can isolate and analyze the effect of different kinds of

uncertainty. As an example, using the EC-30 motor and the requirements for level-ground

walking, we analyze the independent effect of uncertainty due to limited manufacturing of the

spring and uncertain torque dynamics. In the case of uncertain manufacturing accuracy in

the spring, we obtained the optimal robust springs and torque-velocity profiles for the motor

as illustrated in Figs. 4.11 and 4.12 respectively. Our results indicate that the robust spring

could have a constant uncertainty in the spring stiffness of up to ±45 %, experimental values

are around ±10 % (Azocar et al., 2018). Similarly, the maximum uncertain dynamics torque
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Figure 4.9. Optimal nonlinear spring for the robust and nominal solution.

is ±150 mN·m, which is about 45 % the peak torque of the motor. The optimal robust spring

and velocity-torque requirements of the motor are in Figs 4.13 and 4.13. Interestingly, the

nominal and robust optimal springs are similar because the active constraint is the maximum

torque at the motor. The nominal elastic element already minimizes the rms value of torque

when minimizing joule heating, thus the robust solution does not have more margin to reduce

the motor torque.

When is it useful to consider a nonlinear SEA?

For the case studies analyzed in this section, a nonlinear SEA did not a show significant

improvement in terms of energy reduction compared to a linear SEA. For the design of

a powered prosthetic joint using any of the two motor-transmissions considered, a linear

spring provides the adequate trade off between mechanical complexity and energy savings.

However, different motor-transmission configurations or elongation constraints may justify a
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Figure 4.10. Speed-torque requirements for the optimal nonlinear spring for the robust and
nominal solution.

nonlinear spring. For instance, the maximum elongation of the spring could be constrained

such that the only feasible solution requires a nonlinear SEA, as shown in Section 4.4.2.

In general, the spring could be analyzed as a nonlinear dynamical system. Those sys-

tems characterize by having different frequency content between the input and the output.

Considering displacement as the input and torque as the output, nonlinear SEA can show

significant energy reduction when there is a difference in the frequency content of those two.

This is shown in the example of Section 2.2.5 and Fig 4.15.

Robustness comparison

In this section, we design the series elastic element for the nominal case constraining its

maximum elongation. This exemplifies the case where nonlinear series elasticity can achieve

tasks that linear SEAs or rigid actuators cannot accomplish. In this case study, the task

is defined by the kinematics and kinetics for the ankle joint of an 85 kg subject during
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Figure 4.11. Optimal nonlinear robust springs assuming uncertainty of ±45 % in the spring
stiffness. This could be interpreted as uncertainty in the modulus of the spring material or
limited accuracy in the manufacturing of the spring. The blue line represents the spring
profile for the nominal optimal solution.

running (Novacheck, 1998). In addition to the constraints in torque and velocity of the

motor (less than 8.3 N·m and 1500 rpm respectively, ILM85x26 motor in Table 4.1.), we

limit the maximum elongation of the spring to be less than 0.4 rad. This constraint may be

imposed by the geometry of the mechanism or maximum elongation of the spring. For the

rigid actuator, the task will require a peak torque of 9 N·m and maximum absolute speed of

1674 rpm, which is outside the motor’s specifications using a 48 V power source. The solution

of the linear spring approaches the characteristics of the rigid actuator as we constrain the

elongation. For the given elongation constraint the linear spring SEA is not feasible. In

contrast, the nonlinear spring in Fig. 4.16 elongates less than 0.4 rad, while the motor torque

and velocity remain within specifications. The dissipated energy using the optimal nonlinear

spring is 40.67 J per cycle and the peak power is 1161.96 W.
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Figure 4.12. Speed-torque requirements for the optimal nonlinear spring for the robust and
nominal solution with uncertainty of ±45 % in the spring stiffness.

4.5 Minimize peak power and energy while performing multiple tasks

In this section, we focus on the design of the elastic element solving the optimization program

in (2.39). As discussed in Section 2.3, minimizing peak power is useful only when the motor

and transmission have not been selected. The ideal way to use this optimization program

is to solve it for an initial motor and transmission configuration, then if the peak power is

significantly lower one can iterate finding a solution with a lower power motor. The process

iterates until the designer selects the lightest or lower power motor that solves the problem.

In this case study, we will only perform the first step of the iteration, assuming as a starting

point the characteristics of the motor and transmission defined in Table 4.1.

One of the advantages of the proposed methodology is the capability to analyze arbitrary

periodic reference trajectories. Taking advantage of this flexibility, the design of the elastic

element considers three different tasks for the prosthetic leg: level-ground walking or running

as shown in Fig. 4.2, and a combination of walking and running. The walking and running
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Figure 4.13. Optimal nonlinear robust spring with a uncertain dynamics torque of
±150 mN·m.

trajectory combines four steps of walking and one of running, which corresponds to the case

where the user runs 20% of the time and walks during the remaining portion of operation.

In this case, we only constrain the maximum absolute value of torque and velocity of the

motor to be within the specifications of the datasheet (Table 4.1). The analysis assumes

energy losses at the transmission, i.e., η = 0.8.

The multiobjective optimization involves analysis of the trade-off curves in Fig. 4.17.

Results are reported relative to the peak power and dissipated energy of a rigid actuator

performing the same task. The dissipated energy with a rigid actuator is 59.27 J and 33.75 J

per gait cycle for walking and running tasks, respectively, while its peak power reaches

325.29 W and 1111.12 W for these tasks. Note that the dissipated energy values are per

cycle, and because the walking period is longer than running (1.14 s walking (Winter, 1983)

and 0.66 s for running (Novacheck, 1998)), it dissipates more energy, even though the running

peak torques are higher (Fig. 4.2).
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Figure 4.14. Speed-torque requirements for the optimal nonlinear spring for the robust and
nominal solution with uncertain dynamics torque of ±150 mN·m.

Figure 4.15. A nonlinear series spring could reduce further motor energy consumption com-
pared to a linear spring when the load position and torque have different frequency content.
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Figure 4.16. Optimal nonlinear elastic element subject to elongation and motor constraints.
Local values of stiffness are reported in the graph. At small elongations the elastic element
is almost rigid (2562 kN·m/rad). A parametric representation of this elastic element would
involve a polynomial of high degree, which may be cumbersome for existing methods of
design.

To generate the trade-off curves in Fig. 4.17, CVX solved the optimization problem (2.39)

using 30 different values for θ ∈ [0, 1]. The points between θ = 0 and θ = 1 were sampled

from a sigmoid function to have an adequate distribution of points in the trade-off curves.

In the proposed methodology, γ1 and γ2 in (2.39) control the relative magnitude of the two

costs. γ1 scales the maximum acceleration with respect to the convex simplification of peak

power and γ2 scales energy consumption relative to peak power. Comparing the relative

magnitude of peak power and energy consumption, we defined γ1 = 0.02 and γ2 = 300.

4.5.1 The weak trade-off between peak power and energy consumption

For the given trajectories and motor configuration, there is a correlation between reduction

of convex power and peak power, as shown in Fig. 4.17. In addition, the relationship be-

tween energy consumption and peak power represents a weak trade-off in the multiobjective

optimization (Boyd and Vandenberghe, 2004, p. 182), i.e., a small increase in the dissipated

energy will imply a significant reduction of peak power. For example, in the walking gait

trade-off curve of Fig. 4.17, point (a) represents a reduction of 4.3% of dissipated energy

and an increase of 187% of peak power when compared to a rigid actuator. A significant

reduction of peak power is achieved by consuming a little more of energy, as seen in point

(b) where dissipated energy and peak power reduce 1.61% and 65.91% respectively. The

other two tasks use the same principle to define point (b), the solution of the multiobjective

optimization problem. The selection of this point depends on the priorities of the designer.
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Figure 4.17. Trade-off curves for the tasks of level ground walking, running, and walking and
running. Point (a) in each graph indicates the results when the cost function is only energy
consumption, i.e., θ = 1 in (2.39). Point (b) represents the optimal point based on the trade-
off analysis. Point (c) represents the results when the cost function is only maximum convex
power, i.e., θ = 0 in (2.39). Relative percentage is computed as 100(xoptim − xrigid)/xrigid,
where xoptim and xrigid are the dissipated energy or peak power from the optimization algo-
rithm and rigid case respectively. Peak power and its corresponding convex approximation
are denoted by ‖pm‖∞ and max{pcvxm } respectively. As a reference, we include the energy
and peak power savings using a linear series spring (legend: Linear).
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Figure 4.18. Each elastic element corresponds to the solution described by the optimal points
(b) in Fig. 4.17, i.e., represents the optimal point based on our trade-off analysis for each
trajectory. Each solution weights energy consumption and peak power differently as the
value of θ is different in each case.

For example, if energy consumption is the main cost to minimize, then point (a) should be

selected. For the case of peak power, point (c) may represent the best choice of the elas-

tic element. Point (c) is defined with respect to the convex approximation of peak power,

max{pcvxm }. Thus, it is possible to find optimal solutions with lower peak power and θ 6= 0,

e.g., point (b) for running and walking & running. The Fig. 4.18 illustrates the optimal elas-

tic element for each of the optimal trade-off points (b). These conservative elastic elements

are nonlinear and satisfy the torque and speed constraints of the motor.

The trade-off between peak power and energy consumption depends on the characteristics

of the load, motor, and transmission. For instance, for the results in Section 4.5, minimizing

peak power reduced both peak power and energy consumption for all the cases studied.

However, minimizing energy alone increased peak power. Using the high-speed low-torque

motor, with characteristics as in Table 4.1, has the opposite effect, where minimizing energy

consumption also decreased peak power. In particular, the elastic element reduced the peak

power of the Maxon motor from 450 W to 132 W when minimizing energy consumption. In

both cases, the energy consumption obtained by minimizing energy consumption or peak

power was similar. This indicates the weak trade-off in the multiobjective optimization.

Thus, if the motor and transmission have not been designed, minimizing peak power is
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preferred than minimizing energy consumption. Similar results are reported in (Grimmer

and Seyfarth, 2011) using linear springs.

4.6 Guidelines for selecting a motor and reduction ratio

The potential reduction of energy consumption by using series elasticity depends on the

effects of inertial and viscous torques at the motor end. For systems using transmissions

with high reduction ratios, these effects become significant. Note that the elastic element

can modify the position of the motor after the gearbox, thus it can modify its velocity and

acceleration. High reduction ratios also amplify the effects of unmodeled dynamics such as

static friction and backlash in the geartrain. This increases the error for torque tracking;

including an elastic element converts the torque tracking into a position tracking problem,

which is easier to solve with an electric motor using a high ratio transmission. In addition,

the elastic element protects the gear train from impacts. In conclusion, it is recommended

to use series springs for systems with a high transmission ratio.

For systems with low transmission ratio, normally driven by high torque motors, the

decision is not that straightforward. The series elastic element does not modify much of

the energy consumption. This is due to the fact that inertial and friction motor torques

scale with the square of the reduction ratio after the transmission; thus a low reduction

ratio decreases the effects of these torques with respect to the load torque. A low reduction

ratio also reduces the relevance of unmodeled dynamics increasing significantly the torque

control of direct drive systems without using elasticity. However, the series elastic element

can modify the position of the motor such that its speed is reduced as well. Reducing speed

is critical at certain portions of the trajectory as the motor is always limited in torque and

speed. Thus the benefit of series springs for systems with low reduction ratios is not on

the reduction of energy consumption but the modification of the motor speed profile. This

modification may allow the low reduction ratio SEA to achieve a task that the same motor

without elasticity could not satisfy by itself.
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CHAPTER 5

CONCLUSIONS

In this dissertation, the selection of the torque-elongation spring profile that minimizes SEA’s

energy consumption and satisfies its constraints is formulated as a couple of convex quadratic

programs. In the case of a nonlinear spring, this program is described by (2.27), and for the

linear case by (2.13). These design methods could be extended to find a solution that satisfies

actuator constraints despite uncertainty due to manufacturing of the spring, unmodeled

dynamics, efficiency of the transmission, and the kinematics and kinetics of the load. The

robust solution of these programs for the linear and nonlinear spring are defined by (3.11)

and (3.16) respectively. Note that springs are passive systems. Series elasticity only reduces

the energy dissipated at the motor, as shown in Section 1.1.2. Most of that energy is due to

Joule heating, which is proportional to current and motor torque. Thus, to minimize energy

consumption the series spring should be able to minimize torque.

The potential reduction of energy consumption by using series elasticity depends on the

effects of inertial and viscous torques at the motor end. For systems using transmissions with

high reduction ratios, these effects become significant. Thus, we observed significant energy

savings for systems with high ratio transmissions. Taking into account the energy savings,

the improvements in robustness, the potential reduction of impacts, and improvements in

torque tracking, it is recommended to use series springs for systems with a high transmission

ratio.

For systems with a low transmission ratio, normally driven by high torque motors, the

decision is not that straightforward. The series spring does not modify much of the energy

consumption. This is due to the fact that inertial and friction motor torques scale with the

square of the reduction ratio after the transmission; thus, a low reduction ratio decreases the

effects of these torques with respect to the load torque. A low reduction ratio also reduces

the relevance of unmodeled dynamics increasing significantly the accuracy of torque control

without using elasticity. However, the series elastic element can modify the position of the

motor such that its speed is reduced as well. Reducing speed is critical at certain portions

of the trajectory as the motor is always limited in torque and speed. Thus, the benefit

of series springs for systems with low reduction ratios is not on the reduction of energy

consumption, but the modification of the motor speed profile. This modification may allow

the low reduction ratio SEA to achieve a task that the same motor without elasticity could

not satisfy by itself.
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As a case study, we analyzed the robust feasible design for a powered prosthetic ankle.

Uncertainty from the recorded biomechanics naturally connected with the definition of the

uncertainty sets. The results illustrate that a small trade off between robustness and en-

ergy consumption justifies a robust feasible design. It is important to note that the robust

solution satisfies actuator constraints despite the uncertainty described in Table 4.2. Pre-

vious research (Brown and Ulsoy, 2013) did not consider a robust feasible solution of the

optimization problem, however, they analyzed the effect of uncertainty in the energetic cost.

Their results indicate that as the required motion of an SEA becomes more arbitrary, the

optimal spring stiffness that minimizes power consumption approaches infinity, showing that

the best design for a completely arbitrary task is a system without spring. In general, our

results indicated a similar trend: the more arbitrary or the bigger the uncertainty sets, the

stiffer the optimal design. However, when considering feasibility of the actuator, infinite

spring stiffness may lead to an infeasible actuator. Thus, a robust feasible optimal solution

cannot be obtained simply by increasing stiffness. Instead, it requires proper treatment of

uncertainty as presented in our convex optimization method.

In addition to energy consumption, the proposed methodology can be extended to mini-

mize a convex approximation of peak power. Minimization of peak power is of interest only

when the motor and transmission have not been selected. Lowering requirements in peak

power allows the designer to select a less powerful and lighter motor-transmission configura-

tion. Minimizing peak power and energy consumption leads to a multi-objective optimization

program. The trade-off between these two objectives depends on the characteristics of the

load, motor, and transmission. For instance, for the results in Section 4.5, minimizing peak

power produced a reduction in both peak power and energy consumption for all the cases

studied. However, minimizing energy alone increased peak power. Using a high-speed low-

torque motor had the opposite effect, where minimizing energy consumption also decreased

peak power. Though results depend on the characteristics of the load, motor, and transmis-

sion, we observed a weak trade-off between peak power and energy consumption as shown

in Fig. 4.17. Minimizing peak power lead to a reduction of energy consumption but not vice

versa. Thus, for this multi-objective program, it is recommended to minimize peak power

instead of energy consumption.

The convex approximation of peak power is close to the actual expression of power

depending on the motor configuration. For all the cases considered in this article (Fig. 4.17),

the approximation was accurate enough to provide a significant reduction of the actual

expression of peak power. However, using a high transmission ratio increases the relevance

of inertial torques in the definition of peak power. In this case the convex approximation
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is less likely to yield an accurate estimation. The designer can evaluate the performance of

the approximation offline to guide the design process. Using the convex approximation has

significant advantages with respect to the quality of the solution and the time required to

solve the optimization problem. In this case, the proposed convex QCQP program can be

efficiently solved in polynomial-time (Nesterov and Nemirovskii, 1994), which is useful for

an actuator that can modify its stiffness during operation, e.g., a VSA.

The convex-quadratic expressions of compliance in (2.5) and (2.27) are beneficial beyond

our robust formulation. The convexity and simplicity of the expression allow optimization al-

gorithms to find the optimal value of stiffness in polynomial time (Nesterov and Nemirovskii,

1994). This could be exploited by VSAs to calculate their reference stiffness values during

operation. In the linear case without considering constraints, the proposed convex-quadratic

expression has an analytical solution, which is useful to study the principles of series elas-

ticity. For instance, (2.6) describes the necessary conditions for periodic trajectories so that

series elasticity can reduce energy consumption. Future work should consider the optimal

simultaneous design of series and parallel elasticity. Parallel elasticity can reduce torque of

the motor regardless of the transmission ratio, and series elasticity reduces mostly the speed

requirements. Thus, series and parallel elasticity play an important and complementary role

on the robustness and energy consumption for a given task.
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APPENDIX A

SEA MATLAB DESIGN TOOLBOX

This appendix describes the Matlab toolbox used to solve the optimization programs from

Chapters 2 and 3. The toolbox runs in Matlab 2016b using Mosek (9.0.91) and CVX (Ver-

sion 2.1, December 2018, Build 1127). Both CVX and Mosek requiere a free academic or

commercial license.

The optimization toolbox consists mainly in the following four functions:

1. CVX linearSEA.m

2. CVX linearSEA robust.m

3. CVX nonlinearSEA.m

4. CVX nonlinearSEA robust.m

To provide the necessary inputs to the previous functions the user should configure the inputs

to the script linkParameters.m. The toolbox provides the function

main generatePeriodicTrajectories.m to generate periodic trajectories using a Fourier

decomposition of non-periodic trajectories.

A.1 Processing of input trajectory - main generatePeriodicTrajectories.m

1 %% Script to generate periodic trajectories using a Fourier decomposition

2 clc, clearvars, close all

3

4 human.task = 'walking'; %-- Gait {running, walking, stair ascent}
5 human.joint = 'ankle'; %-- Joint to analyze {knee, ankle}
6 human.mass = 1; %-- Mass of the user [Kg]

7

8 % fast cadence, slow cadence, normal cadence

9 human.wSpeed = 'normal cadence';

10 localFun GenerateAndSavePeriodicTrajectories(human)

11

12

13 %% -- Local function library

14 function localFun GenerateAndSavePeriodicTrajectories(human)
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15 mass = human.mass; %-- Mass of the user [Kg]

16 joint = human.joint; %-- Joint to analyze {knee, ankle}
17 nPoints = 1000;

18

19

20 if strcmp(human.task, 'running')

21 load dataset Novacheck

22 %--[2] T. F. Novacheck, The biomechanics of running,

23 %--Gait Posture, vol. 7, no. 1, Jan. 1998.

24 ciclePeriod = 1.3213 /2;

25

26 %-- Generate nPoints points to generate a grid

27 %-- Converting to [rad] for consistency with Winter data

28 ql = novacheck running.(joint).position *pi /180;

29 %-- Multiplying by user weight and (-1) to get Dorsiflexion positive

30 % torque as a positive number [Nm].

31 torque = -novacheck running.(joint).torque*mass;

32 time = linspace(0, ciclePeriod, nPoints).';

33 textFile = sprintf('%s %s %dkg', ...

34 human.task, human.joint, human.mass);

35 elseif strcmp(human.task, 'walking')

36 load dataset Winter

37 wSpeed = human.wSpeed;

38 %-------------------------------WINTER'S DATA SCALING

39 if strcmp(wSpeed,'normal cadence')

40 %--Cadence, Steps per minute. Winter page 12

41 spm = 105;

42 %--Sample time

43 sT = 60/spm*2/1001;

44 elseif strcmp(wSpeed,'fast cadence')

45 %Cadence, Steps per minute. Winter page 12

46 spm = 123;

47 %--Sample time

48 sT = 60/spm*2/1001;

49 elseif strcmp(wSpeed,'slow cadence')

50 %Cadence, Steps per minute. Winter page 12

51 spm = 87;

52 %--Sample time

53 sT = 60/spm*2/1001;

54 else

55 error('Please select a walking speed, e.g., normal, fast');
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56 end

57 %-- Angle of the ankle joint,Positive Angle (deg) => Dorsiflexion.

58 %-- Negative => Plantarflexion

59 ql = level walking.(wSpeed).(joint).position*pi/180;

60 %-- Torque of the ankle joint, Negative Torque => Dorsiflexion.

61 %-- Positive => Plantarflexion

62 torque = -level walking.(wSpeed).(joint).torque*mass;

63 time = [0:sT:sT*(1000)]';

64 %-Name of the file

65 textFile = sprintf('%s %s %s %dkg', ...

66 human.task, human.wSpeed, human.joint, human.mass);

67 elseif strcmp(human.task, 'stair ascent')

68 load dataset Riener

69 %-- Generate nPoints points to generate a grid

70 %-- Converting to [rad] for consistency with Winter's data

71 ql = riener.stairAscent.(joint).position *pi /180;

72 %-- Multiplying by user weight and (-1) to get Dorsiflexion positive

73 % torque as a positive number [Nm].

74 torque = -riener.stairAscent.(joint).torque*mass;

75 time = riener.stairAscent.(joint).time;

76 textFile = sprintf('%s %s %dkg', ...

77 human.task, human.joint, human.mass);

78 else

79 error('Select adequate taks')

80 end

81

82 periodic ql = fFourierDecomposition(time, ql, 200);

83 periodic torque = fFourierDecomposition(time, torque, 10);

84

85 %-- Find the lowest frequency different from 0

86 freqs = periodic ql.freq;

87 delFreq = min( freqs (freqs > 0 ) );

88

89 time = linspace(0, 1/delFreq, nPoints);

90 ql = periodic ql.signalAnalytic;

91 torque = periodic torque.signalAnalytic;

92

93 syms x

94

95 qld = diff(ql,x);

96 qldd = diff(qld,x);

80



97 torqueD = diff(torque,x);

98 torqueDD = diff(torqueD,x);

99

100 qlDisc = zeros(1,nPoints);

101 qldDisc = zeros(1,nPoints);

102 qlddDisc = zeros(1,nPoints);

103 torqueDisc = zeros(1,nPoints);

104 torquedDisc = zeros(1,nPoints);

105 torqueddDisc = zeros(1,nPoints);

106

107 tic

108 for i = 1:length(time)

109 qlDisc(i) = round(double(subs(ql,time(i))),10);

110 qldDisc(i) = round(double(subs(qld,time(i))),10);

111 qlddDisc(i) = round(double(subs(qldd,time(i))),10);

112 torqueDisc(i) = round(double(subs(torque,time(i))),10);

113 torquedDisc(i) = round(double(subs(torqueD,time(i))),10);

114 torqueddDisc(i) = round(double(subs(torqueDD,time(i))),10);

115 end

116 toc

117

118 save('Vikram', 'qlDisc', 'qldDisc', 'qlddDisc', 'torqueDisc',...

119 'torquedDisc', 'torqueddDisc', 'time');

120 end

A.2 Loading input parameters - linkParameters.m

1 function [robot,trajectory] = linkParameters(motor, varargin)

2 %LINKPARAMETERS Summary of this function goes here

3 % Detailed explanation goes here

4

5 %Efficiency of the transmission

6 robot.eta = 0.8;

7 %Max elongation [rad]

8 robot.maxElong = 1.5;

9

10 if strcmp(motor,'EC45')

11 robot.kt = 36.9/1000; %Torque constant motor [Nm/A]
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12 robot.R = 0.608; %Terminal resistance phase to ...

phase [ohms]

13 robot.iM = 181/1000/100ˆ2; %Inertia of the motor [Kg*mˆ2]

14 robot.r = 283; %Reduction ratio of the transmission

15 robot.bm = robot.iM*2; %Viscous damping of the motor [Nm*s]

16 robot.km = robot.kt/sqrt(robot.R); %Motor constant

17 %-

18 robot.voltage = 36;

19 %--Constraints

20 robot.maxVelo = robot.voltage/robot.kt; %Max motor velocity ...

1500 RPM [rad/sec]

21 robot.RatedTorque = 0.128; %Peak torque [Nm]

22 robot.peakTorque = robot.RatedTorque*5; %Peak torque [Nm]

23 elseif strcmp(motor,'EC30')

24 % 30V in leg 1, motor is rated for 24V

25 robot.voltage = 30; %Voltage power supply [Volts]

26 robot.kt = 13.6/1000; %Torque constant motor [Nm/A]

27 robot.R = 0.102; %Terminal resistance phase ...

to phase [ohms]

28 robot.iM = 33.3/1000/100ˆ2; %Inertia of the motor [Kg*mˆ2]

29 %(%knee 360, ankle 720, 425)

30 robot.r = 600; %Reduction ratio of the ...

transmission

31 robot.bm = robot.iM/2; %Viscous damping of the ...

motor [Nm*s]

32 robot.km = robot.kt/sqrt(robot.R); %Motor constant

33 %--Constraints

34 robot.maxVelo = robot.voltage/robot.kt; %Max motor velocity 1500 ...

RPM [rad/sec]

35 robot.RatedTorque = 0.135; %Peak torque [Nm]

36 robot.peakTorque = robot.RatedTorque*2.5; %Peak torque [Nm]

37 robot.L = 16.3e-6; %Inductance [uH]

38 elseif strcmp(motor,'ILM85x26')

39 robot.kt = 0.24; %Torque constant ...

motor [Nm/A]

40 robot.R = 323/1000; %Terminal resistance ...

[ohms]

41 rotorInerRD = 1.15*(1e-2)ˆ2; %Inertia of the rotor ...

(RoboDrive) [Kg*mˆ2]

42 rotorInerToby = 13098.7/1000*(1e-3)ˆ2; %Inertia of the rotor ...

(Toby) [Kg*mˆ2]
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43 robot.iM = rotorInerRD+rotorInerToby; %Inertia of the motor [Kg*mˆ2]

44 robot.r = 22;

45 robot.bm = robot.iM/2; %Drag torque

46 robot.km = robot.kt/sqrt(robot.R); %Motor constant

47 %--Constraints

48 robot.maxVelo = 1500*2*pi/60; %Max motor velocity 1500 RPM ...

[rad/sec]

49 robot.peakTorque = 8.3; %Peak torque [Nm]

50 % robot.peakTorque = 6.2; %Peak torque [Nm]

51 robot.RatedTorque = 2.6; %Peak torque [Nm]

52 robot.L = 920e-6; %Inductance [uH]

53 robot.voltage = 48; %Voltage power supply [Volts]

54 elseif strcmp(motor,'ILM70x18')

55 robot.kt = 0.18; %Torque constant ...

motor [Nm/A]

56 robot.R = 655/1000; %Terminal resistance ...

[ohms]

57 rotorInerRD = 0.34*(1e-2)ˆ2; %Inertia of the rotor ...

(RoboDrive) [Kg*mˆ2]

58 rotorInerToby = 13098.7/1000*(1e-3)ˆ2; %Inertia of the rotor ...

(Toby) [Kg*mˆ2]

59 robot.iM = rotorInerRD+rotorInerToby; %Inertia of the motor [Kg*mˆ2]

60 robot.r = 38;

61 robot.bm = robot.iM/2; %Drag torque

62 robot.km = robot.kt/sqrt(robot.R); %Motor constant

63 %--Constraints

64 robot.maxVelo = 2100*2*pi/60; %Max motor velocity 2100 ...

RPM [rad/sec]

65 robot.peakTorque = 4; %Peak torque [Nm]

66 robot.RatedTorque = 1.25; %Peak torque [Nm]

67 robot.L = 1350e-6; %Inductance [uH]

68 robot.voltage = 48; %Voltage power supply [Volts]

69 elseif strcmp(motor,'ILM85x04')

70 robot.kt = 0.04; %Torque constant motor ...

[Nm/A]

71 robot.R = 138/1000; %Terminal resistance [ohms]

72 rotorInerRD = 0.28*(1e-2)ˆ2; %Inertia of the rotor ...

(RoboDrive) [Kg*mˆ2]

73 rotorInerToby = 13098.7/1000*(1e-3)ˆ2; %Inertia of the rotor ...

(Toby) [Kg*mˆ2]
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74 robot.iM = rotorInerRD+rotorInerToby; %Inertia of the motor ...

[Kg*mˆ2]

75 robot.r = 160;

76 robot.bm = robot.iM/2; %Drag torque

77 robot.km = robot.kt/sqrt(robot.R); %Motor constant

78 %--Constraints

79 robot.maxVelo = 9000*2*pi/60; %Max motor velocity 2100 ...

RPM [rad/sec]

80 robot.peakTorque = 1.2; %Peak torque [Nm]

81 robot.RatedTorque = 0.43; %Peak torque [Nm]

82 robot.L = 120e-6; %Inductance [uH]

83 robot.voltage = 48; %Voltage power supply ...

[Volts]

84 end

85

86 robot.noLoadSpeed = robot.voltage/robot.kt;

87 robot.stallTorque = robot.voltage*robot.kt/robot.R;

88

89 if nargin ≥ 1

90 task = varargin{1}.task;
91 trajectory.task = task;

92 trajectory.constraints = varargin{1}.constraints;
93 joint = varargin{1}.joint;
94 mass = varargin{1}.userMass;
95 trajectory.joint = joint;

96 trajectory.mass = mass;

97 if ( strcmp(task, 'walking') | | strcmp(task, 'running')...

98 | | strcmp(task, 'stair ascent') )

99 % Uncertainty values for a robust solution

100 trajectory.mBar = mass; %Nominal mass of ...

user [kg]

101 trajectory.mUnc = 8.8; %Uncertainty in ...

mass [+- kg]

102 %-- Select walking speed from user or set to default

103 if (isfield(varargin{1}, 'wSpeed') && strcmp(task, 'walking'))

104 wSpeed = varargin{1}.wSpeed;
105 trajectory.wSpeed = wSpeed;

106 eval( sprintf('load %s %s %s 1kg', task, wSpeed, joint) );

107 else

108 eval( sprintf('load %s %s 1kg', task, joint) );

109 end
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110 trajectory.time = time.';

111 trajectory.ql = qlDisc.';

112 trajectory.qld = qldDisc.';

113 trajectory.qldd = qlddDisc.';

114 trajectory.torque = torqueDisc.'*mass;

115 trajectory.torqued = torquedDisc.'*mass;

116 trajectory.torquedd = torqueddDisc.'*mass;

117 elseif ( strcmp(task, 'CubicSpring') )

118 eval( 'load CubicSpring5k')

119 % eval( 'load CubicSpring' )

120 trajectory.time = time.';

121 trajectory.ql = qlDisc.';

122 trajectory.qld = qldDisc.';

123 trajectory.qldd = qlddDisc.';

124 trajectory.torque = torqueDisc.';

125 trajectory.torqued = torquedDisc.';

126 trajectory.torquedd = torqueddDisc.';

127 elseif ( strcmp(task, 'CubicLinearSpring') )

128 eval( 'load CubicLinearSpring')

129 trajectory.time = time.';

130 trajectory.ql = qlDisc.';

131 trajectory.qld = qldDisc.';

132 trajectory.qldd = qlddDisc.';

133 trajectory.torque = torqueDisc.';

134 trajectory.torqued = torquedDisc.';

135 trajectory.torquedd = torqueddDisc.';

136 elseif ( strcmp(task, 'VikramTest') )

137 eval( 'load Vikram')

138 trajectory.time = time.';

139 trajectory.ql = qlDisc.';

140 trajectory.qld = qldDisc.';

141 trajectory.qldd = qlddDisc.';

142 trajectory.torque = torqueDisc.';

143 trajectory.torqued = torquedDisc.';

144 trajectory.torquedd = torqueddDisc.';

145 else

146 error('Provide a proper reference task')

147 end

148

149 % per = 0.05;

150 % %Uncertainty in efficiency (eta +- etaUnc)
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151 % robot.etaUnc = per;

152 % %Multiplicative uncertainty in spring torque

153 % trajectory.tauSUnc m = 0.1;

154 % %Additive uncertainty in spring torque

155 % trajectory.tauSUnc a = rms(trajectory.torque)*per;

156 % %Uncertain dynamics - Uncertainty torque (+- tauUnc) [N.m]

157 % robot.tauUnc = robot.RatedTorque*per;

158 % %Uncertainty in position [rad]

159 % trajectory.qlUnc = 0;

160 % %Additive uncertainty in velocity [rad/s]

161 % trajectory.qldUnc a = rms(trajectory.qld)*per; ...

%rms(trajectory.qld)*0.3;

162 % %Multiplicative uncertainty in velocity [rad/s]

163 % trajectory.qldUnc m = per;

164 % %Uncertainty in acceleration [rad/sˆ2]

165 % trajectory.qlddUnc a = rms(trajectory.qldd)*per; ...

%rms(trajectory.qldd)*0.3;

166 % %Multiplicative uncertainty in acceleration [rad/sˆ2]

167 % trajectory.qlddUnc m = per;

168 % %Percentage of uncertainty compliance (1+-comp)

169 % robot.comUnc = 0.018*0.1; %10% of mean nominal solution

170 end

171 end

A.3 Implementation of QP programs - The four main functions of the toolbox

A.3.1 CVX linearSEA.m

1 function [optiRobot] = CVX linearSEA(robot, trajectory)

2 % CVX linearSEA Returns optimal linear SEA using nominal values of

3 % the trajectory and robot parameters.

4 %

5 % OptimalSEA = CVX linearSEA(robot, trajectory)

6 %

7 % -- INPUTS:

8 % robot: [struct] Parameters of the electric motor and robot

9 % system.

10 % trajectory: [struct] Desired load trajectory.

11 %
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12 % -- OUTPUTS:

13 % optiRobot [struct] Optimal SEA parameters and energy

14 % measurements

15 %

16 % See also CVX linearSEA robust, CVX nonlinearSEA, ...

CVX nonlinearSEA robust.

17

18 %--Loading robot parameters

19 iM = robot.iM;

20 r = robot.r;

21 bm = robot.bm;

22 eta = robot.eta;

23 vIn = robot.voltage;

24 R = robot.R;

25 kt = robot.kt;

26 % km = robot.km;

27 % time = trajectory.time;

28

29 %-- Loading load trajectory

30 ql = trajectory.ql;

31 qld = trajectory.qld;

32 qldd = trajectory.qldd;

33 % time = trajectory.time;

34 torEla = -trajectory.torque;

35 torElad = -trajectory.torqued;

36 torEladd = -trajectory.torquedd;

37 steps = length(ql);

38

39 %-- Loading coefficients for the cost function

40 [Ene, gamma1, gamma2] = localFunCoeffOptim(robot, trajectory);

41 %-- Loading coefficients for the constraints

42 [aIneq, bIneq] = localFunConstraints(robot, trajectory, gamma1, gamma2);

43

44 %% CVX optimization formulation

45 cvx begin quiet

46 % Mosek, Gurobi, SDPT3, sedumi

47 cvx solver Mosek

48 % best, default

49 cvx precision best

50

51 variable alpha1
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52

53 Energy = Ene.a*alpha1ˆ2 + Ene.b*alpha1 + Ene.c;

54

55 minimize (Energy)

56

57 %-- Lumped constraints

58 aIneq*alpha1 ≤ bIneq;

59

60 cvx end

61

62 %-- Checking if the solution of cvx can be used

63 if ¬any(strcmp(cvx status, {'Solved', 'Inaccurate/Solved',...

64 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
65 error(['CVX status:', cvx status]);

66 elseif any(strcmp(cvx status, {'Inaccurate/Solved',...
67 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
68 warning(['CVX status: ', cvx status, '// Elastic element: Robust ...

Linear']);

69 end

70 %% Post-processing

71 %--Motor performance

72 qm = (ql - torEla*alpha1)*r;

73 qmd = (qld - torElad*alpha1)*r;

74 qmdd = (qldd - torEladd*alpha1)*r;

75 tauM = iM*qmdd + bm*qmd - torEla./(r*eta);

76 elong = torEla*alpha1;

77

78 %-- CREATE POST PROCESSING FUNCTION

79 resultsCVX.qm = qm;

80 resultsCVX.qmd = qmd;

81 resultsCVX.qmdd = qmdd;

82 resultsCVX.elong = elong;

83 resultsCVX.tauM = tauM;

84 resultsCVX.solverStatus = cvx status;

85 resultsCVX.torqueElastic = torEla;

86

87 %-- Getting results

88 optiRobot = fOptimizationPostprocessing(robot, trajectory, resultsCVX);

89 optiRobot.ConElongInf = norm(elong,inf) - robot.maxElong;

90 optiRobot.ConQmdInf = norm(qmd,inf) - robot.maxVelo;

91 optiRobot.ConTauM = norm(tauM,inf) - robot.peakTorque;
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92 optiRobot.ConQ1 = tauM - (vIn*kt/R - ktˆ2/R*qmd);

93 optiRobot.ConQ1Max = max(optiRobot.ConQ1);

94 optiRobot.ConQ2 = -tauM - (vIn*kt/R - ktˆ2/R*qmd);

95 optiRobot.ConQ2Max = max(optiRobot.ConQ2);

96 optiRobot.ConQ3 = tauM - (vIn*kt/R + ktˆ2/R*qmd);

97 optiRobot.ConQ3Max = max(optiRobot.ConQ3);

98 optiRobot.ConQ4 = -tauM - (vIn*kt/R + ktˆ2/R*qmd);

99 optiRobot.ConQ4Max = max(optiRobot.ConQ4);

100 optiRobot.k = 1/alpha1;

101

102 %-- Check which constraint is at the boundary

103 %-- Checking that the max. value of the LHS of inequalities is less ...

than 0

104 const = max([optiRobot.ConElongInf; optiRobot.ConQmdInf; ...

optiRobot.ConTauM;...

105 optiRobot.ConQ1; optiRobot.ConQ2; optiRobot.ConQ3; optiRobot.ConQ4]);

106 if const ≤ 0

107 optiRobot.feasible = true;

108 else

109 optiRobot.feasible = false;

110 end

111

112 end

113

114 function [Ene, gamma1, gamma2] = localFunCoeffOptim(robot, trajectory)

115

116 %--Loading robot parameters

117 iM = robot.iM;

118 r = robot.r;

119 bm = robot.bm;

120 eta = robot.eta;

121 km = robot.km;

122 kt = robot.kt;

123 vIn = robot.voltage;

124 R = robot.R;

125

126 %-- Loading trajectory

127 % ql = trajectory.ql;

128 qld = trajectory.qld;

129 qldd = trajectory.qldd;

130 time = trajectory.time;
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131 torqueEla = -trajectory.torque;

132 torqueElad = -trajectory.torqued;

133 torqueEladd = -trajectory.torquedd;

134 % This function has access to the workspace of the parent function

135 % Therefore, the scope of x is the function to which this workspace

136 % belongs, and all functions nested to any level within that function.

137

138 %-- Defining parameters

139 gamma1 = -(iM*torqueEladd*r + bm*torqueElad*r);

140 gamma2 = iM*qldd*r + bm*qld*r - torqueEla/(eta*r);

141

142 Ene.a = trapz(time, (gamma1.ˆ2/kmˆ2 + bm*rˆ2*torqueElad.ˆ2));

143 Ene.b = trapz(time, (2*gamma1.*gamma2/kmˆ2 - 2*bm*rˆ2*qld.*torqueElad));

144 Ene.c = trapz(time, (gamma2.ˆ2/kmˆ2 + bm*qld.ˆ2*rˆ2 - qld.*torqueEla/eta));

145 Ene.gamma1 = gamma1;

146 Ene.gamma2 = gamma2;

147

148 % Power.a = bm*rˆ2.*torqueElad.ˆ2;

149 % Power.b = torqueEla.*torqueElad/eta - 2*bm*qld.*torqueElad*rˆ2;

150 % Power.c = bm*rˆ2*qld.ˆ2 - torqueEla.*qld / eta;

151 end

152

153 function [aIneq, bIneq] = localFunConstraints(robot, trajectory, ...

gamma1, gamma2)

154

155 constraints = trajectory.constraints;

156

157 if strcmp(constraints, 'nominal')

158 %--Loading robot parameters

159 iM = robot.iM;

160 r = robot.r;

161 bm = robot.bm;

162 eta = robot.eta;

163 vIn = robot.voltage;

164 R = robot.R;

165 kt = robot.kt;

166 % km = robot.km;

167 % time = trajectory.time;

168

169 qmdMax = robot.maxVelo;

170 elongMax = robot.maxElong;
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171 torqueMax = robot.peakTorque;

172

173 %-- Loading trajectory

174 ql = trajectory.ql;

175 qld = trajectory.qld;

176 qldd = trajectory.qldd;

177 % time = trajectory.time;

178 torEla = -trajectory.torque;

179 torElad = -trajectory.torqued;

180 torEladd = -trajectory.torquedd;

181

182 %-- Infinity norm of elongation less than max. elong

183 a1 = [torEla; -torEla];

184 b1 = [ones(length(torEla)*2, 1)*elongMax];

185

186 %-- Infinity norm of torque to be less than max. torque

187 a2 = [gamma1; -gamma1];

188 b2 = [torqueMax - gamma2; torqueMax + gamma2];

189

190 %-- Velocity Torque - Relationship

191 a41 = gamma1 - ktˆ2/R*r*torElad;

192 b41 = vIn*kt/R*ones(length(gamma1), 1)- ktˆ2/R*r*qld - gamma2;

193

194 a42 = gamma1 + ktˆ2/R*r*torElad;

195 b42 = vIn*kt/R*ones(length(gamma1), 1)+ ktˆ2/R*r*qld - gamma2;

196

197 a43 = -gamma1 - ktˆ2/R*r*torElad;

198 b43 = vIn*kt/R*ones(length(gamma1), 1)- ktˆ2/R*r*qld + gamma2;

199

200 a44 = -gamma1 + ktˆ2/R*r*torElad;

201 b44 = vIn*kt/R*ones(length(gamma1), 1)+ ktˆ2/R*r*qld + gamma2;

202

203 a4 = [a41; a42; a43; a44];

204 b4 = [b41; b42; b43; b44];

205 %-- Collect all the constraints

206 aIneq = [a1; a2; a4];

207 bIneq = [b1; b2; b4];

208 elseif strcmp(constraints, 'none')

209 aIneq = [];

210 bIneq = [];

211 end
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212

213

214 % %-- Collect all the constraints

215 % aIneq = [a1; a2];

216 % bIneq = [b1; b2];

217

218 % aIneq = [];

219 % bIneq = [];

220 end

A.3.2 CVX linearSEA robust.m

1 function [optiRobot] = CVX linearSEA robust(robot, trajectory)

2 % CVX linearSEA robust Returns optimal linear SEA using nominal and

3 % uncertain values of the trajectory and robot parameters.

4 %

5 % OptimalSEA = CVX linearSEA robust(robot, trajectory)

6 %

7 % -- INPUTS:

8 % robot: [struct] Parameters of the electric motor and robot

9 % system.

10 % trajectory: [struct] Desired load trajectory.

11 %

12 % -- OUTPUTS:

13 % optiRobot [struct] Optimal SEA parameters and energy

14 % measurements

15 %

16 % See also CVX linearSEA, CVX nonlinearSEA, CVX linearSEA.

17

18 %--Loading robot parameters

19 iM = robot.iM;

20 r = robot.r;

21 bm = robot.bm;

22 eta = robot.eta;

23 vIn = robot.voltage;

24 R = robot.R;

25 kt = robot.kt;

26 mBar = trajectory.mBar; %Nominal mass [Kg]

27
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28

29 %-- Nominal trajectory

30 ql = trajectory.ql;

31 qld = trajectory.qld;

32 qldd = trajectory.qldd;

33 torEla = -trajectory.torque;

34 torElad = -trajectory.torqued;

35 torEladd = -trajectory.torquedd;

36

37 %-- Loading coefficients for the cost function

38 Ene = localFunCoeffOptim(robot, trajectory);

39 %-- Loading robust coefficients for the affine contraints

40 [d, e] = robust constraints(trajectory, robot);

41

42 %% CVX optimization formulation

43 cvx begin quiet

44 % Mosek, Gurobi, SDPT3, sedumi

45 cvx solver Mosek

46 % best, default

47 cvx precision best

48

49 variables alpha1

50

51 minimize (Ene.a*alpha1ˆ2 + Ene.b*alpha1 + Ene.c)

52

53 subject to

54

55 d.*alpha1 ≤ e;

56

57 cvx end

58

59 %-- Checking if the solution of cvx can be used

60 if ¬any(strcmp(cvx status, {'Solved', 'Inaccurate/Solved',...

61 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
62 error(['CVX status:', cvx status]);

63 elseif any(strcmp(cvx status, {'Inaccurate/Solved',...
64 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
65 warning(['CVX status: ', cvx status, '// Elastic element: Robust ...

Linear']);

66 end

67 %% Post-processing
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68 %-- Running expressions again to avoid mistakes

69 qm = (ql - torEla*alpha1)*r;

70 qmd = (qld - torElad*alpha1)*r;

71 qmdd = (qldd - torEladd*alpha1)*r;

72 tauM = iM*qmdd + bm*qmd - torEla./(r*eta);

73 elong = torEla*alpha1;

74

75 %-- CREATE POST PROCESSING FUNCTION - Walking

76 resultsCVX.qm = qm;

77 resultsCVX.qmd = qmd;

78 resultsCVX.qmdd = qmdd;

79 resultsCVX.elong = elong;

80 resultsCVX.tauM = tauM;

81 resultsCVX.solverStatus = cvx status;

82 resultsCVX.torqueElastic = torEla;

83

84 %-- Getting results

85 optiRobot = fOptimizationPostprocessing(robot, trajectory, resultsCVX);

86 optiRobot.ConElongInf = norm(elong,inf) - robot.maxElong;

87 optiRobot.ConQmdInf = norm(qmd,inf) - robot.maxVelo;

88 optiRobot.ConTauM = norm(tauM,inf) - robot.peakTorque;

89 optiRobot.ConQ1 = tauM - (vIn*kt/R - ktˆ2/R*qmd);

90 optiRobot.ConQ1Max = max(optiRobot.ConQ1);

91 optiRobot.ConQ2 = -tauM - (vIn*kt/R - ktˆ2/R*qmd);

92 optiRobot.ConQ2Max = max(optiRobot.ConQ2);

93 optiRobot.ConQ3 = tauM - (vIn*kt/R + ktˆ2/R*qmd);

94 optiRobot.ConQ3Max = max(optiRobot.ConQ3);

95 optiRobot.ConQ4 = -tauM - (vIn*kt/R + ktˆ2/R*qmd);

96 optiRobot.ConQ4Max = max(optiRobot.ConQ4);

97 optiRobot.k = 1/alpha1;

98

99 %-- Are all the constraints satisfied?

100 %-- Checking that the max. value of the LHS of inequalities is less ...

than 0

101 const = max([optiRobot.ConElongInf; optiRobot.ConQmdInf; ...

optiRobot.ConTauM;...

102 optiRobot.ConQ1; optiRobot.ConQ2; optiRobot.ConQ3; optiRobot.ConQ4]);

103 if const ≤ 0

104 optiRobot.feasible = true;

105 else

106 optiRobot.feasible = false;
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107 end

108

109 end

110

111 function [Ene] = localFunCoeffOptim(robot, trajectory)

112

113 %--Loading robot parameters

114 iM = robot.iM;

115 r = robot.r;

116 bm = robot.bm;

117 eta = robot.eta;

118 km = robot.km;

119 kt = robot.kt;

120 vIn = robot.voltage;

121 R = robot.R;

122

123 %-- Loading trajectory

124 % ql = trajectory.ql;

125 qld = trajectory.qld;

126 qldd = trajectory.qldd;

127 time = trajectory.time;

128 torqueEla = -trajectory.torque;

129 torqueElad = -trajectory.torqued;

130 torqueEladd = -trajectory.torquedd;

131 % This function has access to the workspace of the parent function

132 % Therefore, the scope of x is the function to which this workspace

133 % belongs, and all functions nested to any level within that function.

134

135 %-- Defining parameters

136 gamma1 = -(iM*torqueEladd*r + bm*torqueElad*r);

137 gamma2 = iM*qldd*r + bm*qld*r - torqueEla/(eta*r);

138

139 Ene.a = trapz(time, (gamma1.ˆ2/kmˆ2 + bm*rˆ2*torqueElad.ˆ2));

140 Ene.b = trapz(time, (2*gamma1.*gamma2/kmˆ2 - 2*bm*rˆ2*qld.*torqueElad));

141 Ene.c = trapz(time, (gamma2.ˆ2/kmˆ2 + bm*qld.ˆ2*rˆ2 - qld.*torqueEla/eta));

142 Ene.gamma1 = gamma1;

143 Ene.gamma2 = gamma2;

144

145 % Power.a = bm*rˆ2.*torqueElad.ˆ2;

146 % Power.b = torqueEla.*torqueElad/eta - 2*bm*qld.*torqueElad*rˆ2;

147 % Power.c = bm*rˆ2*qld.ˆ2 - torqueEla.*qld / eta;
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148 end

149

150 function [aSqrtRo, bSqrtRo, cSqrtRo] = ...

localFunRobustQuadraCons(trajectories,...

151 robot)

152

153 %--Loading robot parameters

154 iM = robot.iM;

155 r = robot.r;

156 bm = robot.bm;

157 eta = robot.eta;

158 % vIn = robot.voltage;

159 % R = robot.R;

160 % kt = robot.kt;

161 % km = robot.km;

162 % time = trajectory.time;

163

164 trajNam = fieldnames(trajectories);

165

166 aSqrtRo = zeros(numel(trajNam), 1);

167 bSqrtRo = zeros(numel(trajNam), 1);

168 cSqrtRo = zeros(numel(trajNam), 1);

169

170 for i = 1:numel(trajNam)

171 time = trajectories.(trajNam{i}).time;
172 %-- Loading trajectory

173 % ql = trajectories.(trajNam{i}).ql;
174 qld = trajectories.(trajNam{i}).qld;
175 qldd = trajectories.(trajNam{i}).qldd;
176 % time = trajectory.time;

177 torqueEla = trajectories.(trajNam{i}).torque;
178 torqueElad = trajectories.(trajNam{i}).torqued;
179 torqueEladd = trajectories.(trajNam{i}).torquedd;
180

181 %-- Defining parameters

182 gamma1 = -(iM*torqueEladd*r + bm*torqueElad*r);

183 gamma2 = iM*qldd*r + bm*qld*r - torqueEla/(eta*r);

184 ∆T = time(end) - time(1);

185

186 aSqrtRo(i) = ∆T*trapz(time, gamma1.ˆ2);

187 bSqrtRo(i) = ∆T*trapz(time, 2*gamma1.*gamma2);
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188 cSqrtRo(i) = ∆T*trapz(time, gamma2.ˆ2);

189 end

190 end

A.3.3 CVX nonlinearSEA.m

1 function [optiRobot] = CVX nonlinearSEA(robot, trajectory)

2 % CVX nonlinearSEA Returns optimal nonlinear SEA using nominal values of

3 % the trajectory and robot parameters.

4 %

5 % OptimalSEA = CVX nonlinearSEA(robot, trajectory)

6 %

7 % -- INPUTS:

8 % robot: [struct] Parameters of the electric motor and robot

9 % system.

10 % trajectory: [struct] Desired load trajectory.

11 %

12 % -- OUTPUTS:

13 % optiRobot [struct] Optimal SEA parameters and energy

14 % measurements

15 %

16 % See also CVX linearSEA robust, CVX linearSEA, CVX nonlinearSEA robust.

17

18 [cost] = nonlinear SEA cost(robot, trajectory);

19

20 %--Constraints

21 [Aineq, bineq] = nonlinear SEA constraints(robot, trajectory, cost);

22

23 %-- Computing the sqrt of matrix Q

24 % % http://cvxr.com/cvx/doc/advanced.html?highlight=square pos

25 % [Qsqrt, ¬, S] = chol( Q0 energy );

26 % Qsqrt = Qsqrt*S;

27

28 cvx begin quiet

29 %-Mosek, Gurobi, SDPT3, sedumi

30 cvx solver Mosek

31

32 %-best, default

33 cvx precision best
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34

35 variable alpha1(length(cost.h),1)

36

37 minimize((alpha1.')*cost.G*alpha1+cost.h*alpha1+cost.k)

38 % minimize (square pos(norm(Qsqrt*qm)) + C energy*qm)

39 subject to

40 Aineq*alpha1 ≤ bineq;

41 cvx end

42

43 %-- Checking if the solution of cvx can be used

44 if ¬any(strcmp(cvx status, {'Solved', 'Inaccurate/Solved',...

45 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
46 error(['CVX status:', cvx status])

47 elseif any(strcmp(cvx status, {'Inaccurate/Solved',...
48 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
49 warning(['CVX status: ', cvx status])

50 end

51

52 %- Loading parameters

53 r = robot.r;

54 time = trajectory.time;

55 % ∆T = time(2) - time(1);

56

57 %- Loading trajectories

58 ql = trajectory.ql(1:end-1);

59 % qld = trajectory.qld(1:end-1);

60

61 %--Torque done by the spring on the load

62 torque = -trajectory.torque(1:end-1);

63 torqued = -trajectory.torqued(1:end-1);

64

65 %-Index when torque is the closest to zero

66 minTorqueIndx = find(abs(torque) == min(abs(torque)));

67

68 %-Defining elongation and setting elongation equal to zero when torque ...

is close

69 %to zero.

70 elong = cumtrapz(time(1:end-1), torqued.*alpha1);

71 elong = elong - elong(minTorqueIndx);

72

73 qm = (ql - elong)*r;
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74 qmd = cost.a+cost.B*alpha1;

75 qmdd = cost.c+cost.D*alpha1;

76

77 qm(end + 1) = qm(1);

78 qmd(end + 1) = qmd(1);

79 qmdd(end + 1) = qmdd(1);

80

81 %-- Post processing the results

82 optiRobot = fPostProcessing(qm, qmd, qmdd, cvx status, robot, trajectory);

83 optiRobot.compliance = alpha1;

84 %-Periodic motion

85 optiRobot.compliance(end+1) = optiRobot.compliance(1);

86

87 % fprintf('\n--------\n')
88 % fprintf('Nonlinear Nominal:\n')
89 % fprintf('Optimization ...

Cost[J]:\t%3.2f\tEnergy[J]:\t%3.2f\n',cvx optval,...

90 % optiRobot.energy total)

91

92 end

A.3.4 CVX nonlinearSEA robust.m

1 function [optiRobot] = CVX nonlinearSEA robust(robot, trajectory)

2 % CVX nonlinearSEA robust Returns optimal nonlinear SEA using nominal and

3 % uncertain values of the trajectory and robot parameters.

4 %

5 % OptimalSEA = CVX nonlinearSEA robust(robot, trajectory)

6 %

7 % -- INPUTS:

8 % robot: [struct] Parameters of the electric motor and robot

9 % system.

10 % trajectory: [struct] Desired load trajectory.

11 %

12 % -- OUTPUTS:

13 % optiRobot [struct] Optimal SEA parameters and energy

14 % measurements

15 %

16 % See also CVX linearSEA robust, CVX nonlinearSEA, CVX linearSEA.
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17

18 %--Energy optimization

19 [cons] = nonlinear SEA cost(robot, trajectory);

20 %--Constraints

21 [Aineq, bineq] = ...

22 nonlinear SEA constraints robust(robot, trajectory, cons);

23

24 %-- Computing the sqrt of matrix Q

25 % % http://cvxr.com/cvx/doc/advanced.html?highlight=square pos

26 % [Qsqrt, ¬, S] = chol( Q0 energy );

27 % Qsqrt = Qsqrt*S;

28

29 cvx begin quiet

30 %-Mosek, Gurobi, SDPT3, sedumi

31 cvx solver Mosek

32

33 %-best, default

34 cvx precision best

35

36 variable alpha1(length(cons.h),1)

37

38 minimize((alpha1.')*cons.G*alpha1+cons.h*alpha1+cons.k)

39 % minimize (square pos(norm(Qsqrt*qm)) + C energy*qm)

40

41 subject to

42 Aineq*alpha1 ≤ bineq;

43 cvx end

44

45 %-- Checking if the solution of cvx can be used

46 if ¬any(strcmp(cvx status, {'Solved', 'Inaccurate/Solved',...

47 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
48 error(['CVX status:', cvx status])

49 elseif any(strcmp(cvx status, {'Inaccurate/Solved',...
50 'Inaccurate/Unbounded', 'Inaccurate/Infeasible'}))
51 warning(['CVX status: ', cvx status])

52 end

53

54 %- Loading parameters

55 r = robot.r;

56 time = trajectory.time;

57 % ∆T = time(2) - time(1);
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58

59 %- Loading trajectories

60 ql = trajectory.ql(1:end-1);

61 % qld = trajectory.qld(1:end-1);

62 %--Torque done by the spring on the load

63 torque = -trajectory.torque(1:end-1);

64 torqued = -trajectory.torqued(1:end-1);

65

66 %-Index when torque is the closest to zero

67 minTorqueIndx = find(abs(torque) == min(abs(torque)));

68

69 %-Defining elongation and setting elongation equal to zero when torque ...

is close

70 %to zero.

71 elong = cumtrapz(time(1:end-1), torqued.*alpha1);

72 elong = elong - elong(minTorqueIndx);

73

74 qm = (ql - elong)*r;

75 qmd = cons.a+cons.B*alpha1;

76 qmdd = cons.c+cons.D*alpha1;

77

78 qm(end + 1) = qm(1);

79 qmd(end + 1) = qmd(1);

80 qmdd(end + 1) = qmdd(1);

81

82 %-- Post processing the results

83 optiRobot = fPostProcessing(qm, qmd, qmdd, cvx status, robot, trajectory);

84 optiRobot.compliance = alpha1;

85 %Periodic

86 optiRobot.compliance(end+1) = optiRobot.compliance(1);

87

88 % fprintf('\n--------\n')
89 % fprintf('Robust:\n')
90 % fprintf('Optimization Cost:\t%3.2f\tEnergy[J]:\t%3.2f\n',cvx optval,...

91 % optiRobot.energy total)

92

93 end
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Open source software - CodeOcean

A working implementation of the design toolbox has been uploaded to CodeOcean. This

CodeOcean repository is accessible in this link .
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APPENDIX B

IMPLEMENTATION OF NONLINEAR SPRINGS

This appendix provides some references for the implementation of custom nonlinear springs.

The manufacturing of springs with custom torque-elongation profile presents practical chal-

lenges. For instance, manufacturing the spring prescribed in Fig. 4.16 requires additional

mechanical design as off-the-shelf springs normally have a linear torque-elongation relation-

ship. However, manufacturing of nonlinear springs has been already explored in robotic

applications (Hawkes and Cutkosky, 2018). Jutte and Kota (Jutte and Kota, 2008) intro-

duced a generalized nonlinear spring synthesis methodology for any prescribed nonlinear

load-displacement function. Custom springs can also be designed using topology optimiza-

tion, especially for hyperelastic structures (Chen et al., 2017). Vanderborght et al. (Van-

derborght et al., 2013) summarized available techniques to produce nonlinear springs; cam,

hypocycloid, and double-slider mechanisms coupled with linear springs are some examples

of these techniques (Realmuto et al., 2015; Thorson and Caldwell, 2011; Park et al., 2009).

It is important to note that some of these techniques may introduce energy losses, such as

dissipated heat due to friction in the mechanisms, and result in elastic elements that may

not be conservative. Materials with inherent nonlinear elasticity, such as polymers, may ex-

hibit viscoelastic behavior with its respective energy losses (Bolivar et al., 2016). To account

for these losses, the cost functions in the proposed formulation can be extended to include

viscous friction losses in the spring, and the optimization problem remains convex. However,

the proposed methodology does not include these losses explicitly as elastic elements are

very efficient in practice (Hubicki et al., 2016).

Another approach to achieve nonlinearity is to modify linear torsion spring to have non-

linear capabilities by utilizing multiple spring disks engaging at staggered equilibrium angles

(Fig. B.1). This approach has been proposed by our collaborators at U. Michigan. Through

this approach, we can create piecewise linear approximations of nonlinear spring profiles.
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Figure B.1. Example piecewise linear approximation of a nonlinear spring profile that can
be achieved using our stackable spring disks, engaging linear springs at different equilibrium
positions. More stackable disks in parallel, engaging at different equilibrium positions can
be used to achieve a better approximation of a nonlinear spring profile.
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