
MULTIMODAL TRAFFIC MODELING IN RIYADH, SAUDI ARABIA:

A COEVOLUTIONARY, BEST CASE ANALYSIS

by

Abdullah N. Binthunaiyan

APPROVED BY SUPERVISORY COMMITTEE:

__
 Dr. Denis J. Dean, Chair

__
 Dr. Brian J. L. Berry

__
 Dr. Yongwan Chun

__
 Dr. Anthony R. Cummings

Copyright 2018

Abdullah N. Binthunaiyan

All Rights Reserved

MULTIMODAL TRAFFIC MODELING IN RIYADH, SAUDI ARABIA:

 A COEVOLUTIONARY, BEST CASE ANALYSIS

by

Abdullah N. Binthunaiyan, BS, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

GEOSPATIAL INFORMATION SCIENCES

THE UNIVERSITY OF TEXAS AT DALLAS

May 2018

iv

ACKNOWLEDGMENTS

Many have guided, supported, and inspired me to do this research. My advisor and committee

chair, Dr. Denis J. Dean, worked very hard with me on this research and provided brilliant

suggestions and solutions for every obstacle I have faced. Dr. Dean is the dean for the School of

Economic, Political and Policy Sciences and he teaches and works on very important research

and scientific projects. Despite all his commitments, he was available whenever I asked for help.

He worked with me a lot to improve the methodology, techniques, and even the text. I also

acknowledge and thank my committee members, Dr. Brian Berry and Dr. Yongwan Chun, and

Dr. Anthony Cummings who provided me with useful feedback on modeling issues and on the

study as a whole.

I also would like to thank all the other GISC faculty members: Dr. Michael Tiefelsdorf, Dr.

Daniel Griffith Dr. Fang Qiu, Dr. Bryan Chastain. In addition, many thanks to my colleagues and

classmates who gave me support and feedback. I find it important to mention and acknowledge

the wonderful people whom I don’t personally know, but they provided me with tremendous

support and help; especially Dr. Kai Nagel and Marcel Rieser from the MATSim blog and Q&A

community. In addition, I would like to thank my friend, Hassan Ahmad, for his advice on Java

coding.

I would not have been able to pursue my PhD studies without the support of the NIC top

management, especially the former NIC’s General Manager and now the MOI’s Assistant to the

Minister for IT; thus, I would like to present my deepest appreciation to HHP Dr. Bandr AlSaud

as well as the leadership of my country who support and sponsor education at all levels. Data

used in this study was provided by the ArRiyadh Development Authority (ADA); many thanks to

Eng. Adel Alfassam and Eng. Abdulrahman Alqahtani from ADA for their support.

Last but not least, I would like to thank my mother for her love, support, and prayers. I also

would like to thank my wife and daughters for being understanding and patient.

May 2018

v

MULTIMODAL TRAFFIC MODELING IN RIYADH, SAUDI ARABIA:

 A COEVOLUTIONARY, BEST CASE ANALYSIS

Abdullah N. Binthunaiyan, PhD

The University of Texas at Dallas, 2018ct

Supervising Professor: Denis J. Dean

Navigational systems lack an option that allow users to choose a route from source to destination

regardless of travel modes as long as the time is minimized. This implies that navigational

systems might not search all feasible routes for minimizing the objective function in this type of

routing problem. In this study, we developed two shortest path models; one is time-dependent

“car” mode shortest path model and the other is time-dependent “mixed” mode shortest path

model. Both models respect capacities of the modes, whether it is the street network or the train

vehicles, when recommending the shortest path. Both models respect the queueing phenomenon

by which users who make first arrival to a node or a link get to depart before those who make a

latter arrival.

We tested both models using a real transportation network. We used a multiagent transportation

simulation software called MATSim to simulate traffic on this network and test our shortest path

models. Towards this endeavor, we showed a methodology of how to convert and model

multimodal transportation datasets from their original shapefile format to a MATSim network

format. Then we tested both models to find out more insight about the computational complexity

and resulting trips’ durations of the mixed-mode route guidance application compared to the car

mode.

We found that it is possible to construct a route-finding system that allows for a mixed-modes

travel option (with capacity and scheduling constraints) and takes into account the temporal

vi

aspect of travel network behaviors, while limiting the computational requirements to a level at

which the system could be implemented in the real-world urban environment of a portable

navigational device or a cell phone. We also found that such system can result in significant time

savings for users who use it. In addition, we presented the critical role of network structure and

capacities, or traffic loads, in calculating the shortest path. The more traffic jams in a city, the

stronger the case of using a mixed-mode route guidance application becomes.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation ... 2

1.3 Study Objectives ... 3

1.4 Research Questions ... 5

CHAPTER 2 LITERATURE REVIEW ... 6

2.1 Transportation Geography .. 6

2.1.1 Game Theory ... 6

2.1.2 Queuing Theory Applications in Transportation ... 8

2.1.3Traffic Flow Theory .. 10

2.2 Navigational Applications: Review of the Current State .. 12

2.3 Computational Capabilities of Smart phones ... 14

CHAPTER 3 METHODOLOGY ... 18

3.1 Study Area .. 19

3.1.1 Street data set ... 24

3.1.2 Train mode (links and stations) data sets ... 24

3.1.3 Walkways data set.. 25

3.2 General overview of the Multi-Agent Transport Simulation Software (MATSim) 26

3.3 Implementing Multi-Agent Traffic Simulation for Testing Shortest Path Models 27

3.3.1 Creating the Multimodal and Car Mode Transportation Networks from Street,

Train, and Walkways data sets .. 28

3.3.2 Using Java Open Street Maps Editor to convert shapefiles into OSM format 28

3.4 MATSim Requirements for simulating and testing the multimodal time-dependent

 shortest-path algorithm ... 30

3.4.1 MATSim Network ... 31

3.4.2 Population File ... 33

3.4.3 Transit Vehicles ... 34

3.4.4 Transit Schedule ... 35

3.4.5 Configuration File .. 35

viii

CHAPTER 4 RESULTS AND DISCUSSIONS .. 41

4.1 Results of the Scenario 1: 15,000 Agents ... 41

4.1.1 Scenario 1-A: Time-Dependent, Capacity-Aware, Car-Mode,

Shortest-Path Model 5.2.1 Shrinking Rate ... 42

4.1.2 Scenario 1-B: Capacity-, Mode-, Schedule-, and Time-Dependent

Shortest-Path Model.. 47

4.2 Results of Scenario 2: 45,000 Agents ... 52

4.2.1 Scenario 2-A: Time-Dependent, Capacity-Aware, Car-Mode,

Shortest-Path Model 5.2.1 Shrinking Rate ... 52

4.2.2 Scenario 2-B: Time-Dependent, Capacity-Aware, Car-Mode,

Shortest-Path Model 5.2.1 Shrinking Rate ... 57

4.3 Results of Scenario 3: 75,000 Agents ... 63

4.3.1 Scenario 2-A: Time-Dependent, Capacity-Aware, Car-Mode,

Shortest-Path Model 5.2.1 Shrinking Rate ... 63

4.3.2 Scenario 2-B: Time-Dependent, Capacity-Aware, Car-Mode,

Shortest-Path Model 5.2.1 Shrinking Rate ... 68

CHAPTER 5 CONCLUSIONS .. 78

5.1 Summary and Conclusions ... 78

5.2 Future Work .. 80

APPENDIX A: GEOMETRIC SIMILARITY OF GENERATED SHORTEST PATHS 82

APPENDIX B: MATSIM NETWORK FILE STRUCTURE, AN EXAMPLE 84

APPENDIX C: GLOBAL MODULE’S COORDINATES TRANSFORMATION 87

APPENDIX D: CONFIGURATION FILE .. 90

REFERENCES ... 92

BIOGRAPHICAL SKETCH .. 97

CURRICULUM VITAE ... 98

ix

LIST OF FIGURES

Figure 2.1: Fundamental traffic flow diagram ... 11

Figure 3.1: All major and residential streets of Riyadh city ... 20

Figure 3.2: Layout of Riyadh City’s Rail Network System.. 20

Figure 3.3: Primary streets in Riyadh city .. 21

Figure 3.4: Major streets of Riyadh city as well as the rail system, with the study area

 represented by the bold black line ... 22

Figure 3.5: Origin and destination locations within the study area .. 23

Figure 3.6: Walk mode links ... 25

Figure 3.7: MATSim's Coevolutionary Framework .. 26

Figure 3.8: A screen shot for JSOM which we used to open our transportation

network's shapefiles and save them as .osm ... 29

Figure 3.9: XML structure of the streetsAOI.osm file .. 30

Figure 3.10: An example for MATSim network XML's data structure 31

Figure 3.11: Editing the street links of the open street map file ... 31

Figure 3.12: Screenshot of MATSim’s Network Editor used to open the XML

 network file ... 32

Figure 3.13: One person's plan in population file that is used for multimode scenarios 34

Figure 3.14: One person's plan in population file that is used for car-mode scenarios 34

Figure 3.15: Transit_Vehicles Input Data File ... 34

Figure 3.16: Typical data structure for a transit schedule XML file .. 35

Figure 3.17: Settings of the Global module .. 36

Figure 3.18: Settings of the Controller module .. 37

x

Figure 3.19: Settings of the QSIM module ... 37

Figure 3.20: Settings of the PlanCalcScore module ... 38

Figure 3.21: Settings of the PlanCalcScore module ... 39

Figure 4.1: Average utility score per iteration for scenario 1-A .. 43

Figure 4.2: Average trips’ distances for all the 200 iterations for all 15,000 trips,

 scenario 1-A ... 44

Figure 4.3: Histogram for trip departures and arrival as well as en-route trips for

 scenario 1-A .. 46

Figure 4.4: Average utility score per iteration (scenario 1-B) ... 47

Figure 4.5: Average trips’ distances for all 200 iterations of the 15,000 trips in

 scenario 1-B ... 48

Figure 4.6: Iteration 200 of Scenario 1-B, users who were assigned mixed-mode routes 49

Figure 4.7: Iteration 200 of Scenario 1-B, number of users who were assigned car-mode 49

Figure 4.8: Average utility score per iteration, scenario 2-A .. 52

Figure 4.9: Average trips’ distances for all the 200 iterations for all the 45,000 trips

 of scenario 2-A .. 53

Figure 4.10: Iteration number 1 of scenario 2-A, number of agents who departed,

 arrived, and those who are stile n-route ... 54

Figure 4.11: Iteration 200, Trip departures, arrival and en-route trips for scenario 2-A 57

Figure 4.12: Average utility score per iteration (scenario 2-B) ... 58

Figure 4.13: Average trips’ distances for all the 200 iterations for scenario 2-B 59

Figure 4.14: Iteration 200, users who were assigned mixed mode routes (scenario 2-B) 60

Figure 4.15: Iteration 200, users who were assigned only car mode (scenario 2-B) 60

Figure 4.16: Average utility score per iteration (scenario 3-A) ... 63

xi

Figure 4.17: Iteration 1, number of users who were assigned only car mode

 (scenario 3-A) .. 64

Figure 4.18: Average trips’ distances for all the 200 iterations (scenario 3-A) 65

Figure 4.19: Numbers of departures, arrival, and those who are en-route. (scenario 3-A) 68

Figure 4.20: Average utility score per iteration (scenario 5.3.2) ... 69

Figure 4.21: Average trips’ distances for all the 200 iterations (scenario 3-B) 70

Figure 4.22: iteration 200, users who were assigned mixed mode routes (scenario 4.3.2) 71

Figure 4.23: iteration 200, number of users who were assigned car-mode (scenario 4.3.2) 71

Figure 4.24: Screenshot of the simulation video for scenario 5.3.1 ... 77

Figure A-1: Dean et al (2015) method of comparing routes ... 83

xii

LIST OF TABLES

Table 4.1: Numbers of agents who have finished departure, arrival,

 or are still in route for scenario 1-A ... 46

Table 4.2: Numbers of agents who have finished departure, arrival,

 or are still in route based on their assigned mode of travel (scenario 2-B) 51

Table 4.3: Numbers of agents who have finished departure, arrival, or are still

 in route for scenario 2-A, Iteration 200 ... 56

Table 4.4: Numbers of agents who have finished departure, arrival,

 or are still in route based on their assigned mode of travel (scenario 2-B) 62

Table 4.5: Numbers of agents who have finished departure, arrival,

 or are still in route for (scenario 3-A) .. 67

Table 4.6: Numbers of agents who have finished departure, arrival,

 or are still in route based on their assigned mode of travel (scenario 3-B) 73

Table 4.7: Summary of simulations' results .. 74

Table 4.8: Average run-time breakdown of scenario 3-A .. 75

Table 4.9: Average run-time breakdown of scenario 3-A .. 75

1

CHAPTER 1

INTRODUCTION

1.1 Background

Modeling transportation networks presents an attractive topic for researchers from many fields.

Transportation networks are characterized by and composed of many elements. Among their

components are the geographic arrangement of the network and the interactions between its

agents (infrastructure, users, and external agents such as the weather or even navigational

systems providers). These components and interactions determine the method and speed at which

people navigate through the transportation network. Scientists from different disciplines such as

Geographic Information Science (GISc), networks and graph theory, queuing theory, operations

research, and game theory have all contributed to the literature on these topics.

 Minimizing the cost of travel has long been an area of interest among researchers. One

recurring theme within this area is the shortest-path problem. The invention of portable

navigational devices has allowed users of transportation networks to address the shortest-path

problem in real time. The wide adoption of smart phones and the ubiquitous nature of the

Internet have caused a paradigm shift in the way these relatively new navigational systems are

used. New mobile applications for navigation have been developed and are widely and freely

available on smart phones. However, although the transportation network in most urbanized

areas is composed of multi-modal networks (e.g., streets, rails, buses), to the best of the author’s

knowledge, most of the widely used portable navigational devices and navigation applications do

not allow the user to optimize his/her route by using multiple modes of travel.

Optimization problems are frequently addressed by employing a search mechanism that

finds the best solution amongst a set of feasible ones. In the shortest-path problem, the solution is

usually the path that minimizes an objective function that calculates distance, time, or some other

negative impact of travel. In a multi-modal situation, the optimal solution to this problem could

be a path that consists of a private mode of travel for part of the trip and a public one in another

part.

2

The proposed research aims to create a model that minimizes travel time while allowing

for multimodal travel to reach a destination. The practicality of this model in terms of its

computational complexity will be tested. Important restrictions and complexities that could affect

such a model will also be addressed.

1.2 Motivation

Recent surveys and reports indicate changes in employment and population patterns (Rapino and

Fields 2013). These patterns suggest that urban populations will increase and average commuting

times will also increase in most urban areas. With increased commuting times, there is an

increasing need to enhance the capabilities of navigational models and algorithms. One obvious

enhancement is to design models to find optimal modes of travel, that is, to search the whole

multimodal transportation network.

For this multimodal search model to be usable, it must keep track of the capacity and

scheduling constraints of public transportation systems. In addition, it should prioritize routing

based on the time of inquiry. That is, users who are routed at time t will be in the service queue

of either mode before users who are routed at a later time; for example, t+1. For instance, it

would be pointless to route a user through a rail station where the incoming vehicle is already

filled with passengers. Users need to be informed about the time cost of going through a rail

station, which includes time spent waiting for an accessible rail vehicle to serve him/her.

Similarly, a routing algorithm user would not prefer to be routed through roads that are jammed

with traffic if the rail system will take him/her to the destination in a shorter time.

 New within-cities travel behaviors further extend the justification for considering

multimodal networks in navigational apps. There is an increased demand for shared ridership and

public transit. For instance, Uber, a new economy taxi company, recently announced that it

provides rides to one million people per day (Uber 2014). We speculate that many of these

passengers would use mixed modes of travel (Uber and rail rides) if they could arrive at their

destinations in a shorter time or at a lower monetary cost. In fact, a recent study by the American

Public Transportation Association found that the more people use Uber or similar services, “the

3

more likely they are to use public transit” (American Public Transportation Association 2016, 3).

Based on such trends, I speculate that more private car users will use public transit to fulfill part

of their commuting trips, especially in crowded cities.

1.3 Study Objectives

This research seeks to contribute to the domain of transportation routing and navigation models

by innovating a shortest-path algorithm that is both multimodal and capacity aware. The

algorithm will also address the flow characteristic of multimodal transportation systems by

including the queueing effect at the time of arrival. In order to make this model suitable for

implementation on hand-held computing devices, the proposed model combines methods from

knowledge domains such as queueing theory, GISc, operations research, and game theory.

The proposed model will also be designed to address the time-dependent nature of

shortest-path calculations within the context of multi-modal transportation systems. Thus, the

new model will demonstrate capacity-, queue-, mode-, and schedule-aware qualities.1 As noted

by Goodchild (2000) “few efforts have been made to create databases that com-bine modes, by

representing both road and rail networks and their interconnections, for example, but these would

be essential for multimodal routing.” Therefore, we will create a data structure to model the

transportation network’s interconnection in a way that can be efficiently queried by our proposed

shortest path model.

 The time-saving benefits of expanding the solution space to include more than one mode

of transportation system will be examined as well as the characteristics of the resulting shortest

paths. To analyze these time savings benefits, our model will be designed in a way that addresses

a best-case scenario. In this scenario, the traveler, could pick up a car at both ends of a rail trip

towards his/her destination. This case is usually rare, but it actually exists for those travelers who

1 These are the boundaries within which the proposed model works. While capacity for the street network refers to

the actual flow of vehicles, a street could allow at the street’s speed limit; in the case of the rail system, capacity

refers to the limit load of passengers a rail vehicle could accommodate during a rail trip. Being queue-aware means

that the algorithm can recognize that the number of a rail system’s users waiting for a rail to come and pick them up

from a rail station will be served in the temporal order they arrive to the rail station. The model is mode-aware in the

sense that it can classify the overall transportation network based on the mode of service. The schedule-aware model

refers to the rail system schedule of operation.

4

commute to work and do not own cars, for example. Analyzing the proposed model given such

best-case assumption is important because it gives an upper limit to possible time savings of

using such model over a car-mode only route guidance application.

Another objective of this research is to examine how the produced results are affected by

the scheduling constraints of the public transportation system. Scheduling of public

transportation is an important network element. Because cities share scheduling data, this

element has begun to appear in public transit navigational systems (Google, Inc. 2016). This

element has special importance in multimodal shortest-path algorithms, because it facilitates

realistic searching for the time-dependent shortest route.

 A comparison between (1) a time-dependent, capacity-aware, and car-mode only

shortest-path model and (2) the proposed time-dependent, capacity-, multimode-, and schedule-

aware, shortest-path model will address both how computationally complex the proposed model

is. Quantifying the difference between the shortest-path algorithms represented in (1) and (2) will

help in determining whether the algorithm specified with the constraints in (2) will suit the

computational capacity of hand-held devices like smart phones. The suitability of such an

algorithm to be implemented using other computational resources, such as cloud computing, will

be addressed as well.

In addition, this study aims to document a method of preparing and combining

multimodal transportation data sets – usually not found in the same place for most cities – to be

used in traffic simulation experiments. This is particularly important for ArcGIS users who are

not familiar with other open-source spatial data-editing tools like Java Editor for Open Street

Maps, which is used as the main spatial data platform by traffic simulation programs like

AnyLogic or MATSim. It is equivalently important for those users who want to study areas

where street data is not accurate in the open street maps website but can be found at high quality

in the ArcGIS-based format.The next section discusses the research questions that are formulated

based on the study’s motivations and objectives.

5

1.4 Research Questions

The spatial problem under investigation is to study the feasibility of optimizing the shortest path

between a source and a destination in the presence of three transportation modes that could be

used together or separately, depending on the schedule and capacity of all modes. These three

modes of travel are namely the private cars on the road network and the public transit that

operates on rail networks, as well as walking pathways that connects both previous modes. The

addition of capacity and scheduling constraints for the rail network might cause a significant

increase in the model’s runtime. Testing for such an environment that simulates traffic on a real

transportation network will allow to further test the benefits of adding such complexity to the

widely used routing systems. In order to assess the proposed model, further insights need to be

gained regarding the following research questions:

1- Does the proposed best-case model result in closer-to-optimal routes compared

to a best case, standard, time-dependent, car-mode, capacity-aware, shortest-

path, Dijkstra-based model?

2- From a run-time perspective, how does the proposed algorithm differ from the

standard (Dijkstra-based) capacity -, and car-mode, time-dependent shortest-

path model?

The answers to the above questions will be used to address the more general,

fundamental question of this research, which is thus:

Is it possible to construct a route-finding system that allows for a multimodal travel option

(with capacity and scheduling constraints) that takes into account the temporal aspect of

travel network behaviors, while limiting the computational requirements to a level at which

the system could be implemented in the real-world urban environment of a portable

navigational device or a cell phone?

This question will be analyzed and addressed later in the results section. The next section

discusses different perspectives of the of the routing problem as found in our literature review.

6

CHAPTER 2

LITERATURE REVIEW

Different tools and analysis procedures have been utilized in the study of transportation. For

example, graph theory is a methodology for analyzing networks mostly within a mathematical

framework (Bondy and Murty 1976) and is widely used in the study of transportation geography.

In addition, adjacency and connectivity matrices are powerful tools for modeling connectivity in

transportation geography (McNally 2007). Similarly, different tools and theories that were

essentially developed in different fields have been employed to analyze routing problems in

traffic networks. The next subsections present brief discussions on the relevant topics from those

fields for this research.

2.1 Transportation Geography

Transportation is an economic activity in which most people engage. The main purpose of

transportation is to overcome the space that separates us. In this context, transportation is a field

of application rather than a science. In the geographic context, transportation geography is a sub-

field of geography that studies the movement of people, freight, and information (Rodrigue,

Comtois and Slack 2006). There are four main components to transportation: mode,

infrastructure, networks, and flows. These components of transportation are usually analyzed

individually or together to provide insights into the transportation phenomena of interest.

Most studies of the shortest-path problem in transportation networks are focused on the

flow and mode components of transportation. Those two components have been addressed more

directly in fields such as game theory (Kaufman, Jason and Smith 1998), queueing theory (Xu, et

al. 2014), and optimization algorithms (Bertsekas 1998).

2.1.1 Game Theory

Game theory is a collection of analytical tools designed to formulate and facilitate the

understanding of many situations in which decision makers interact (Osborne and Rubinstein

1994). One of the earliest principles in game theory were Wardrop’s first and second principles

7

of traffic assignment (Correa and Stier-Moses 2010). Later versions of the principles became

prominent in game theory literature (as the first and second principles of equilibrium. Wardrop’s

first principle, known also as “user equilibrium” stresses that routes that are selected by travelers

are more efficient than any other empty routes, that they did not select, between the origin and

destination points. (Correa and Stier-Moses 2010). It states that “The journey times on all routes

actually used are equal, and less than those which would be experienced by a single vehicle on

any unused route.” Therefore, “no driver can unilaterally reduce his/her travel costs by shifting to

another route.” This traffic flow pattern is referred to as selfish Wardrop equilibrium or user

equilibrium. Wardrop’s second principle of equilibrium is sometimes referred to as system

optimal. It states that “at equilibrium the total journey time is minimized.” (Wardrop 1952).

Other researchers have investigated the relationships between game theory and

transportation (Hollander and Prashker 2006). Fisk (1984) makes use of Nash and Stackelberg

equilibria to draw a connection between game theory and various problems in transportation-

systems modelling. He demonstrated that game theory may be used to model and solve

transportation problems. Generalizing the notion of Wardrop equilibria, Schulz and Stier-Moses

(2003) proposed a solution for network games with uncertain travel times. The players involved

are the transportation users who seek to minimize their travel times by choosing a path with the

best worst-case travel time. Ivanov et al. (2013) suggested a game between two navigational

systems and proved that a Nash Equilibrium explicitly exists in such a game. They did not,

however, present the practical details of designing how this game is translated into an algorithm

that could be used to find optimal paths. Bhaskar et al. (2009) showed the possibility of multiple

solutions, i.e. multiple equally good solutions, in routing games of individual transportation

system users.

 The applicability of game-theory tools in transportation network studies is still debatable.

Most of the analytical methods that prove that a solution exists rely on weak or unrealistic

assumptions. However, the amount of research that addresses transportation routing problems

from a game-theory perspective is quite large. The notion of equilibrium, which has been proven

analytically to exist within the different settings of game theory, is the same idea traffic

managers try to achieve to minimize the congestion that occurs in transportation systems.

8

However, how to encode game theoretic analytical solutions into a multimodal navigational

system is not well understood.

 In summary, game theory provides an analytical approach that can be used in studying

different traffic situations. However, these models cannot capture many traffic situations and

patterns, as they rely on very constrained assumptions. Most game theory routing results are

based on sets of assumptions about the users, and more importantly about the network that are

sometimes far from reality. While the objective of using game theory models in transportation is

to achieve equilibrium in traffic assignments and thus increase overall mobility, the same notion

of equilibrium could be achieved by viewing the problem in a different setting2 that might be

more efficient to encode in a navigational system.

2.1.2 Queuing Theory Applications in Transportation

The mathematical theory that investigates how people wait in traffic congestion is referred to as

queuing theory (Kleinrock 1975). A quick look at the transportation patterns within an urban

area reveals that cars and people form queues as part of their commuting activities. Queues are

formed in streets when the rate of arrival for cars is greater than the capacity that these roads can

handle. Queues of people are formed in the case of rail stations when people’s demand for rail

service exceeds the capacity and/or schedule specifications of the rail system at a given station.

The proposed model could be envisioned as a set of interdependent queues.

Many queueing models depict different traffic situations. For example, delays resulting

from queues at highway entrance ramps differ from the delays resulting from traffic light stops at

intersections. Cascetta (2009) described deterministic and stochastic queueing models for

different parts of street networks. Application of these queueing models to navigation systems

that deal with real, and usually large, transportation systems is computationally complex. These

models must integrate information about variables such as traffic flow (i.e. number of cars per

unit distance per unit time), drivers’ behavior, link (route) choice, type of vehicles in the traffic,

2 The natural computing field of study known as co-evolutionary algorithms is used to model selfish drivers in the

traffic simulation program used in this research.

9

type of the trip3, and the type of street segment (highway, ramp, etc.); such integration is both

conceptually and computationally complex.

The key here is to understand that the appropriate mathematical models that govern the

rail system’s operation and the traffic assignment through this mode within the capacities

constraints of its vehicles are queue-based ones (Xu, et al. 2014). Furthermore, the queuing

concept that regulates the routing of users in the rail is a finite customer population, with a single

server. The server here is the rail vehicle that transports users who are in it or waiting at the next

stop station to be served or transported. Let’s assume that each rail vehicle has a capacity of 500

users4 and that each stop station has a limited occupancy level of 500 users to wait for the next

vehicle. Then, our system could be viewed as demonstrating a finite population in which users

are in train vehicles or in queues at the stop stations or somehow arriving at the station.

Like in the road-network systems, there are many models of queues that are formed in

rail networks as passengers move from the stairs to enter rail stations to the stairs they use to

walk out of the destination’s rail station (Chen, et al. 2012). On a normal day, the movement of a

passenger within the rail system occurs in different stages at different speeds: walking into a

station, waiting for a train, in train moving at the train’s speed, and walking out. This stage of

travel has been addressed as data model element called “switch point” by Liu but time taken to

traverse this network element has not yet been fully modeled (Liu 2010). However, we believe

that the most significant stage that needs to be addressed in a multimodal shortest-path model is

the time delay until the passenger gets into the rail vehicle after being routed to the rail mode.

Combining private and transit routing systems based on a good approximation of such time

would result in more accurate time-dependent shortest-path algorithms.

3 Trip type refers to the goal of making the trip, such as going to work or visiting a friend. Many transportation

studies assert that trip type affects the user’s driving behavior and route choice. This becomes an important element

in traffic assignment.
4 I chose the number 500 because, in my study area, the rails are designed to have a capacity of 500 persons.

10

2.1.3 Traffic Flow Theory

Traffic engineering employs many mathematical techniques to model the rate at which traffic

flows. Traffic flow models are very popular among transportation specialists as a tool to study

transportation phenomena. While these models are not used to explain scheduled operation of

rail system, they are widely used to illustrate and explain how traffic bottlenecks form and what

delay they cause over the links on which they develop. The part in which the model proposed in

this study relates the flow capacities of the street network with the time dependency5 nature of

traffic can be better understood through traffic flow theory models. For example, the time

dependency in the proposed model means that, at different times t0, t1, t2, t3,…, tk , the shortest

path between the same origin and destination points might differ. The reason for this potential

difference is that the traffic load on the network changes the time cost of travel.

 Traffic flow is defined as the number of vehicles that pass through a specific point during

a specific time window. The adopted time window in most studies is one hour. Adopting such

time window, traffic flow is measured in vehicles per hour. Traffic flux, traffic intensity, traffic

volume, and traffic throughput are other terms used in traffic literature to mean the same thing

(Maerivoet and Moor 2005). Traffic flow rate on a street link is related to the number of vehicles

that occupy a unit length of that link. This number is referred to as the density and is usually

measured in cars per mile or kilometer. Figure 2.1 shows a well-known diagram called the

fundamental traffic flow diagram.

When the density is at a specific level, called the critical density, all vehicles at the link

are assumed to move at the free-flow speed of that link. At this level, the critical density nc, the

flow rate of the link is at its maximum. When the critical density is exceeded, the actual traffic

flow rate is forced to decrease. The reason for this decrease is that users on each network link

can no longer maintain a safe time of separation (referred to as safe time of impact6) between

consecutive cars. If the density of a link keeps increasing, there will come a time at which the

5 This includes scheduling of rail system.
6 Safe time of impact is the time equivalent of the safe distance at a given traffic flow condition that should be

maintained between two consecutive cars if the car in front comes to a sudden stop.

11

flow will become zero which means that the speed over this link is also zero (Maerivoet and

Moor 2005).

Figure 2.1: Fundamental traffic flow diagram

The importance of such conceptualization of traffic flow is that it could be used to derive

a relationship between the speed of a vehicle and the density on a given street link that is

overloaded (Badii 2014). Therefore, traffic engineers are usually concerned about calculating the

maximum flow qmax when they design a new bridge or street with a specific number of lanes and

predefined speed limits. The maximum flow parameter is also needed in most traffic simulation

models. Sometimes this parameter is referred to as flow capacity.

 Shortest path models that are based on the fundamental traffic flow diagram can provide

good prediction of optimal routes especially in highways. However, they require an extensive

amount of time and effort to be implemented and tested when many queries of these models, just

like the route-guidance applications, are considered. That is, these models are not suitable for

large-scale scenarios (Thunig and Nagel 2017). Moreover, the core assumption they are based on

is violated at network elements like street intersections, roundabouts, or T-junctions. In addition,

dynamic traffic assignment is not easily derived, and thus implemented, by utilizing the concepts

of the fundamental traffic flow diagram. Therefore, this study employs agent-based simulation

12

techniques that rely more on queuing models to test the proposed multimodal shortest path

model.

2.2 Navigational Applications: Review of the Current State

The ability to predict flow changes that take place in the network has influenced many

theoretic and industrial advancements in incorporating traffic conditions such as effects of spill

back jams and queues into the routing problem. Different techniques and strategies have been

employed to estimate the possible speed on a given street when the number of vehicles exceeds

its critical density. Google Maps, for example, predicts traffic conditions based on automatic

crowd sourcing of the collective speed of cars moving on streets. This crowd sourcing happens

by granting the Google Maps app access to the users’ location on their smart phones (Google

Official Blog 2009).

A large amount of research has been done addressing topics such as intelligent

transportation systems, route recommendation applications, and optimal paths. Recently, a

common goal of such studies has been to make navigation applications smarter by increasing

their ability to predict future traffic conditions and make near-real-time route recommendations

based on these predictions. Today, location-enabled mobile phones are also used to enhance time

cost estimations of traveling through many streets in the world (Google Official Blog 2009).

Users of route-guidance applications, such as Google Maps, enjoy shortest-path routing

with traffic condition estimations as well as re-route options. However, these applications

provide recommendations for the shortest path based on the user’s preselected preference of the

mode of transportation. In addition, routing options in the major routing applications such as

Google Maps and Here do not include an option which the user could choose to use two modes

of travel between origin and destination points.

In addition to the route-guidance applications that are designed to serve street network

users, route-guidance applications are available that serve users of the rail systems. Such

applications are usually referred to as transit navigational systems. These systems are in some

cases an extension of the traditional ones used to guide car drivers, or they could be stand-alone

applications designed to only serve the users of the rail systems, like the Moovit or Transit apps.

13

 To the best of the author’s knowledge, some of the most widely used transit navigational

systems (namely Transit, Here, Moovit, and Google Maps Transit) do not recommend routes that

incorporate the time effects of the possible queues at rail stations. Approximating the time delay

at rail stations in a way similar to that which has been done for the highway ramps or streets

intersections would make multimodal shortest-path algorithms more accurate. This is especially

possible with the emergence of electronic ticketing kiosks that scan paper tickets and electronic

tickets (on mobile apps) before allowing a person to enter the rail station (Trainline 2016). One

result of this technology is that the number of individuals waiting for the next train to come is

actually known and could be communicated with a queue-aware routing system if it is made

available as a mobile application.

Google has recently started Google Maps Transit (Google Inc. 2015), which enables the

users of Google Maps to navigate their route based on the public transportation system mode of

travel. Data requirements for such options come from collaboration with cities around the world

which provide Google their public transportation schedule. Google Maps then enables users to

observe public transportation navigation over its mapping platform. However, the user has no

option of combining both public and private modes to get the best shortest-path time-dependent

travel plan.

Another navigation application called Waze, recently acquired by Google, uses social

crowd sourcing to determine traffic conditions and then re-route its users to the best-available

routes. This application provides a user-friendly interface for its users and a ranking system to

get immediate traffic conditions. However, it does not route or re-route its users to any public

transportation mode. Other mobile applications (MxData and Transit) integrate the scheduling of

public transportation with new-generation taxi companies like Uber. This feature helps

commuters request a taxi after they leave the rail station towards another area that is not close by.

Within cities traveling behavior have changed in a way that “smart phones have become

central to travelers’ decision-making” (Iacobucci, Hovenkotter and Anbinder 2017, 75). The

same authors mentioned in the same paper that “Even Google Maps does not integrate all

available modes into a particular set of directions.” (Anbinder at. el. 2017, 75). In fact, most

14

popular navigational applications do not allow the typical user who uses his/her private car to

choose public transport for a portion of the trip from point A to point B. We argue that such a

feature could be developed to benefit private users who could be recommended to weigh their

options of continuing their journey in a congested traffic or park in the next subway station and

use the rail.

2.3 Computational Capabilities of Smart phones

Large part of this study focusses on how well, from a computational perspective, can a smart

phone handle the computational needs of a multimodal route-guidance application. To address

such a question, we need to know what is a standard computational power of the smart phones at

the time of doing this study. Most, if not all, hand held devices like smart phones or personal

navigational devices use a type of processors known in the integrated circuits (IC) and

semiconductors industry as low-power or mobile processors. The term System on Chip (SOC) is

also used to describe mobile processors because they include different types of processing unites

(Central Processing Units and Graphical Processing Units) that perform many computing

functions.

There are many mobile processors manufacturers, yet the market of mobile processors

used by smart phone is largely dominated by three vendors (The Linley Group 2015). This might

be a result of the nature of competition in the smart phones market. In our review of processing

capabilities of mobile processors, we found that smart phones like Google Pixel 2, LG V30,

Samsung Galaxy S8, or Microsoft Lumia 950 are all powered by octa-core processors from

Qualcomm (Qualcomm 2017) (Microsoft 2017). Apple on the other hand, designed its own

processor, called A11 Bionic, for its iPhone X that was released in 2017. In the next paragraphs,

we will present two examples of how Qualcomm or A11 Bionic processor support the

functionality of two of the famous smart phones, Apple iPhone X and Google Pixel 2.

Apple’s iPhone X is equipped with a processor called A11 Bionic chip. This phone has a 3

GB of random access memory (RAM) and a storage capacity of up to 256 GB. The company’s

15

website states that A11 Bionic processor can perform 600 billion computing operations7 per second

(Apple 2017). We could not get an estimate about how many operations are triggered by a routing

query, but Apple stated in its iPhone X webpage that taking a picture, which includes a geo-tagging

operation, while adjusting for vibration could consume billions of computing operations per second

(Apple 2017). The graphics processing unit (GPU) of the A11 Bionic processor is 30% better than the

A10 fusion that Apple used for its iPhone 7 (Apple 2017).

On the other hand, Google Pixel 2 is equipped with a Snapdragon 835 processor made by

Qualcomm. The phone has a 4 GB of RAM and up to 128 GB of storage capacity. This processor

on this phone has a performance speed of up to 2.34 GHz. This processor is 35% smaller and

25% more power-efficient than the previous model, Snapdragon 821. The snapdragon 835

processor is 25% faster than the 821 model in terms of graphics rendering. Although

improvements in graphic rendering capabilities is targeting the high demand for gaming and

video streaming applications, it also helps the users of online mapping as well.

Processing power is utilized by a smart phone to meet its core functions like calling, texting,

or password check. This processing power is also needed to run the applications added by the users

like games and video streaming as well as route-guidance applications. Both smart phones discussed

above are capable of streaming ultra-high definition (UHD) videos and can detect facial movements

as well many other computationally-complicated tasks. All these tasks can be done with mobile

processors that are 10 nano-meter in size in both phones.

As discussed in previous section, route-guidance applications provide very advanced

routing functionalities. Both iPhone X or Pixel 2 support location-related functionalities by being

compatible with famous global navigational systems, enabling e-compass applications, and

providing sensor-based micro location services. These technical specifications support both

indoor and outdoor route-guidance applications as well as many other location-based

applications. Google’s Pixel 2 is enabled with a service in which the user can ask the device

about the traffic condition on the route between two places (Google 2017).

7 Apple X webpage does not state the A11 Bionic processor processing speed in GHz.

16

In most of these applications, especially the route-guidance, the user usually expects to

get a recommended route drawn on his phone’s screen within reasonable time. This time is

important to our study because it determines what is an acceptable run-time for a route-guidance

query. We asked some of the major navigational systems discussed in the previous section about

such metric. Out of the companies we asked, we received only one response. The response from

the navigational application and services provider was as follows:

“In most cases the time from sending a route calculation request to receiving a response will be
< 1 second. There are many factors that influence the time however:

Is the route calculation taking place locally (i.e. on the iPhone) or on a remote routing server

In the case where the route calculation is taking place on a remote routing server, the network
performance plays a key role

The mode of transport (car, pedestrian, public transit etc.)

In the case of car, is traffic being taken into account

The type of route requested (fastest v’s shortest)

The complexity of the route (e.g. mostly rural/highway, or dense urban environment)”

 The comment above from one of the industry-leading navigational applications provider

illustrates that the run-time of a route-guidance query could be impacted by the network

topology, the traffic loads on the network, the mode of travel, the time-dependency nature of the

requested route, and whether the calculations are done on the smart phone itself or on a remote

server where a network connection will be needed. As mention earlier, we have not seen any

route-guidance application that enables the use of mixed modes of travel in the searching for the

fastest route between two locations. This study is an effort to investigate if the computational

complexity of such functionality is a major barrier for it to be added to a smart phone-compatible

navigational application. The question is whether the computational capabilities that can be

encompassed within a hand-held devise such as a smart phone could allow for such functionality.

In 1965, Gordon Moore8 observed that the number of transistors on a microchip doubles

every 18 months (intel 2017). Whether Moore’s observation continues to be true in the coming

years or slow in its pace remains a big question. However, we have noticed that many of the

smart phones have not changed, significantly, in dimensions or weight for the past few years

8 He is intel cofounder and his observation is also known as Moore’s Law

17

although the computational power and the size of the microprocessors powering them have

improved rapidly. Thus, we expect the dimensions to remain about the same in the near future,

mainly because wide screens are needed to enhance the user-experience of many popular

applications. The improvements in processing power, which are expected to continue, will either

allow reduction of prices or allow for supporting more functionalities by these phones. One of

the functionalities that could be made available due to improvements in processing power might

be multimodal route-guidance.

18

CHAPTER 3

METHODOLOGY

In order to conduct a valid test of the computational complexity of the proposed model, a real

street network will be used, as suggested by Noon and Zhan (1998). Most studies that test

shortest-path algorithms use randomly generated networks. However, real street networks might

have different characteristics that affect the computational complexity of the algorithms. For this

reason, the network used in this study for testing purposes is a real multimodal transportation

network. Transportation datasets for the city of Riyadh, Saudi Arabia, are used for the purpose of

testing the research questions.

 In addition, simulation techniques are used to compare how users of the proposed

capacity-, mode-, schedule-, and time-dependent shortest-path model will be routed through the

multimodal transportation network against users who use a single-mode, time-dependent

shortest-path model. The problem addressed by this study involves decision making at the

individual level, since every user is assumed to be using a route-guidance single-mode or

multimodal application. Both scenarios involve interaction between transportation network users

and continuous competition over network resources. Simulation-based techniques help in

studying our models without oversimplifying the assumption related to the environment in which

they are designed to operate. However, simulation techniques require very advanced

computational power.

The simulation technique used in this study could be implemented using many agent-

based modeling programs. An open-source, multi-agent traffic simulation software known as

MATSim9 was selected for use in this study. MATSim is considered as the closest way of

employing the Wardrop first and second equilibrium principles. In addition, it is flexible and

dynamic, since it is open source. Furthermore, it allows the user to specify the shortest-path

algorithm to be used by the agents as a base model for their movement on the network, whereas

9 MATSim stands for Multi Agent Transportation Simulation (MATSim 2017). This software employs co-

evolutionary algorithms in traffic assignment that approximate the behavior of selfish drivers.

19

other reviewed packages restrict the modeler to use only one built-in shortest-path algorithm. In

addition, MATSim has a data input design structure that allows elastic input, which in turn

makes it capable of handling different traffic scenarios (Gao 2009).

Within MATSim, unimodal shortest path algorithm will best serve as the basis for

developing the new multimodal shortest-path model. This consideration needs to be addressed

first before setting the parameters and the constraints of the shortest-path algorithms to be

discussed and compared in this research. Magzhan and Jani (2013) tested the algorithms by

Dijkstra, Floyd-Warshall, and Bellman-Ford and found that they perform relatively the same in

terms of run time and that they only produce one solution. Because it is an exact (and arguably

the most often used) shortest-path algorithm, this research employed the Dijkstra algorithm as a

base model for both single-mode and multimodal shortest-path scenarios. The adjustments

necessary to make it a time-dependent as well as a capacity-, mode-, and schedule-aware model

will be explained in the reminder of this chapter. The next section discusses study area and data

used.

3.1 Study Area

Analysis of the research question could be performed with any multimodal (rail and road) urban

transportation network. We decided to conduct this study using Riyadh city transportation

datasets. These datasets have been provided by the ArRiyadh Development Authority (ADA).

The capacity constraint for the rail vehicles is given by the ADA: 500 riders per rail vehicle, with

an additional standing capacity of 50. The availability of other attributes, like the number of

lanes for each street segment and speed limits, enhances the reality of the network. Figures 3.1

and 3.2 present the street network and rail network datasets, respectively.

20

Figure 3.1: All major and residential streets of Riyadh city

Figure 3.2: Layout of Riyadh City’s Rail Network System

21

For testing purposes, we decided to use part of the city’s transportation network to

conduct our study. The selected portion contains streets and rail lines in business and residential

areas. This choice excludes areas like the international airport and the south and southwestern

parts of the city as well as some peripheral areas that are still being developed. In addition, all

streets that are classified as minor were excluded. This was done to speed up the data preparation

and to follow the common practice of starting a project with manageable scope and

requirements, then scaling up as we learn more. Figure 3.3 shows the Riyadh street network after

minor residential road removal, and Figure 3.4 shows the transportation network bounded by the

study area’s boundary line.

Figure 3.3: Primary streets in Riyadh city

22

Figure 3.4: Major streets of Riyadh city as well as the rail system, with the study area

represented by the bold black line

After specifying the study area, we needed to select points of origins and destinations that

were used to simulate trips guided by the shortest-path models described earlier. Dean et al.

(2015) proposed a method for selecting the locations of pairs of origins and destinations to test

optimal route finding algorithms across a landscape that contains high-cost (to travel through)

features. In their experiment, the researchers selected pairs of origins and targets that were as far

apart as possible within their study area. This selection criterion ensured that the surface between

the source and destination contained all of the costs that their proposed algorithm would

minimize.

23

In this research, we decided to select 30 pairs of origin and destination points to test the

models discussed earlier. While the origin points were randomly selected within downtown

business districts, destination points were semi-randomly selected in a way that ensured that they

fall close to both the major road travel corridors of the city and the train stations. In addition, the

destination points were selected from the residential areas at different ranges of distance from the

city center. This selection design ensured that the shortest path models were tested over different

ranges of distances between origins and destinations and also different spatial proximities to the

rail network. It also ensures that we can realistically test the computational complexities of both

finding the fastest route and recommending an alternative route after the traffic level changes.

Finally, we decided to exclude the rail system’s yellow line, because it is used mainly to

transport users from the far northeast side to the airport, an area that is not needed for commuting

between the origin and destination locations. Figure 3.5 shows the points of origin and

destination locations within our study area.

Figure 3.5: Origin and destination locations within the study area

24

After clipping transportation datasets to cover only the study area and specifying

locations for origins and destinations, we further created a separate layer dedicated for walking

mode, in which users walk to and from train mode and car mode. Initially, this data set was not

provided by the ArRiyadh Development Authority (ADA), because it did not exist. Therefore,

we needed to create this data because it represents a logical linkage between the car and train

modes of travel. The next subsections provide a deeper look into the attributes of the

transportation datasets of our study area including the one we created for walking mode.

3.1.1 Street data set

The first element of the multimodal transportation network that we used to conduct this research

is the street data set. We assumed that users would use primary streets and would tend to avoid

small residential streets on their trips. By adopting this assumption, we eliminated the street links

that are classified as minor residential. This choice significantly reduced the size of the network

from over 217,000 links to about 36,000 for the whole city.

The road network that we obtained from ADA contained many attributes. The most

important attributes for our purpose are the ones defining the speed limit over the street link, the

number of lanes of that link, and whether the link is going one way or if it could be used for

travel in both directions. We deleted most of the unnecessary attributes from the street shape

file. A critical attribute that was missing from the ADA data but needed for the simulation was

the mode of travel over any link in the multimodal network. The street data we obtained did not

include this data, so, we added an attribute field and named it “mode” and set its value to “car”

over all street links.

3.1.2 Train mode (links and stations) data sets

The train network is composed of 6 lines and 85 stations. We eliminated the yellow line and

some other train links and stations that are out of the study area. The attributes that we used from

this dataset were the line IDs for links that describe the subtype of the rail (known as its color

that specifies its spatial, or service, coverage). We added to that dataset an attribute field and

named it “mode” and set its value to “train” over all train links. We did the same for the stations

feature class, and we only used their X Y location in our modeling.

25

 3.1.3 Walkways data set

As we mentioned earlier, walking links that connect the car and train travel networks

needed to be created. Two sets of walking pathways were created, and their topological

correctness in terms of how they are connected to both modes (streets and train lines) was

validated. These linkages were created using the editor tool within ArcGIS 10.5. We benefited

from the ESRI multimodal network model (ESRI 2017) to define how the car mode and rail

mode were topologically linked by the walking mode. Thus, we created pathways for the

walking mode that were composed of two types of links: one link connects streets to nearby train

stations, and the other link connects nearby train stations together. Then both walk mode feature

classes were combined into one feature class named “walkways” using the Append tool in

ArcGIS. Like in the streets links case above, we added a “mode” attribute field and set its value

to “walk” over all walking links. Figure 3.6 shows an example of walking mode links.

Figure 3.6: Walk mode links

26

3.2 General overview of the Multi-Agent Transport Simulation Software (MATSim)

The optimization problem discussed here involves users or agents competing for the resources

they need to travel along their perceived shortest path. Competition for resources along any

travel route is governed by queuing modeling, and the choice of traveling along any link is

governed by game theoretic models. Algorithms that work as a basis for such settings are known

in the computer science literature as coevolutionary algorithms (Coello et. al., 2007). Essentially,

coevolutionary algorithms are used to model problems, “for which no function for evaluating

potential solutions is present or known. Instead, algorithms rely on the aggregation of outcomes

from interactions among evolving entities in order to make selection decisions” (Popovici, et al.

2012). Moreover, coevolutionary simulation environments are suitable for modeling situations in

which the best solution for an agent is dependent, in part, on the best solutions for the other

agents.

The coevolutionary environment is suitable for developing the proposed model.

Fortunately, a software called Multiagent Transportation Simulation (MATSim) uses a

coevolutionary algorithm to simulate traffic and search for users’ equilibrium solution over

changing traffic loads during a specific time frame (Andreas et.al., 2016). The basic idea of the

coevolutionary algorithm as it is employed by MATSim is that agents co-evolve to compete for

network resources based on each agent’s predefined utility function in a way that achieves best

results for every agent or user. Figure 3.7 how the coevolutionary framework is implemented by

MATSim in which agents iteratively and collectively learn to select routes that maximizes their

utility.

Figure 3.7: MATSim's Coevolutionary Framework (Andreas et.al., 2016)

27

In section 2.1.3 of this document we mentioned that queue-based models are practical in

terms of capturing traffic phenomenon at network components like roundabouts, T-junctions, or

traffic lights. MATSim uses a queue-based mobility simulation engine called QSIM that models

time dependencies and other first-in first-out (FIFO) characteristics of traffic networks

(Axhausen, Horni and Nagel 2016).

It should be noted that MATSim employs spatial queue models for modeling vehicles

that enter a link (Thuniga and Nagel 2017). In spatial queue models, as opposed to point queue

models, vehicles occupy space. If a link is filled with cars, the following car will not be allowed

to enter this link. In high traffic situations, all the following cars that are not allowed to enter a

link due to (1) capacity constraints and/or (2) cars’ dimensions, will spill back into upstream

links.

MATSim is not limited to testing shortest path models for single trips from an origin to a

destination location. In fact, MATSim is mostly used to simulate and optimize daily “plans” of

trips done by agents. These trips include, for example, going from home to work, to grocery

stores, then back to home, and later going to a theater. These trips can all be listed for each agent

with their typical durations, start times, and end times. In these situations, MATSim searches for

optimized trips’ plans for all agents, given their constraints and preferences. A state of

equilibrium is reached when “agents cannot further improve their plans unilaterally” (Andreas et.

al. 2016).

3.3 Implementing Multi-Agent Traffic Simulation for Testing Shortest Path Models

To implement the capacity-, mode-, and schedule-aware and time-dependent shortest-path model

as well as the capacity-aware, car-mode, time-dependent, shortest-path model using MATSim,

several data preparation steps need to be taken. The transportation network datasets discussed

earlier in sections 3.1.1, 3.1.2, and 3.1.3 are not structured in a way that allow multimodal

navigation. Thus, we started by combining these datasets into one network dataset in which

modes are assigned appropriately.

The following subsections discuss how we prepared a simulation-ready multimodal

transportation network dataset using the previously discussed datasets.

28

3.3.1 Creating the Multimodal and Car Mode Transportation Networks from Street,

Train, and Walkways data sets

The transportation datasets that we have prepared using ArcGIS into the MATSim XML network

data structure. There is no tool in ArcGIS that performs this kind of conversion. In the next

section, we detail how we overcame this issue.

3.3.2 Using Java Open Street Maps Editor to convert shapefiles into OSM format

Most traffic simulations performed with MATSim benefit from open-access and high-quality

transportation network data freely available at openstreetsmap.org. Unfortunately, open street

map data for our study area are of poor quality compared to the data we obtained in shapefile

format from ADA. This might be the case for many cities around the world. While there are

ways to read open street map networks and convert them into MATSim XML network format,

there is no reliable way to do this for ArcGIS network datasets or ESRI shapefiles10. The lack of

an available conversion tool that converts shapefile format to MATSim XML network data

format is a limitation of both ArcGIS and MATSim.

 A network data set is defined within ArcGIS by two basic elements: edges and junctions

(ESRI 2010). MATSim uses this same basic assumption. However, in MATSim, all attributes of

the network elements that are used for traffic flow and routing are contained in one XML file. In

the case of ArcGIS, the attributes that are used to solve a routing problem (like cost, restrictions,

and speed) are contained in separate line and point source files. Moreover, this information

cannot be viewed or manipulated by inspecting the combined network dataset that is created

from the multiple source files, even within ArcGIS, unless we inspect these source files

individually. To solve this issue, we needed to convert the files that are used to build the network

dataset in ArcGIS to open street map (.osm) format, then convert the resulting open street map

file into a MATSim-ready XML format.

We found that the most efficient way to accomplish this was to use Java Open Street Map

Editor (JOSM) to open the shapefile (.shp) that constitutes a part of our network, whether it is a

10 Interestingly, we found that MATSim network can be exported to shapefile format (.shp); however, MATSim

network editor cannot read shapefile format. We also found that there is no conversion tool that converts shapefiles

to open street maps; however, Java Editor for Open Street Map can be used to import any shapefile and then saves it

as open street map format (.osm).

29

line feature class (link) or a point feature class(node), then save that file in an open street map

format (.osm). Figure 3.8 shows a screenshot of the study area map being opened and saved in

open street map format using JOSM.

Figure 3.8: A screen shot for JSOM which we used to open our transportation network's

shapefiles and save them as .osm

When we save the line feature class that represents the street network in .osm format, the

result is a single file that contains a set of nodes that exist at each intersection and a set of links

that represents the streets themselves. The information in the new .osm file is very similar to the

information that we would get from converting the street shape file into a topologically defined

ESRI coverage file. Figure 3.9 shows the XML format of the street feature class of the study area

after saving it as an open street file format.

30

Figure 3.9: XML structure of the streetsAOI.osm file

3.4 MATSim Requirements for simulating and testing the multimodal time-dependent

shortest-path algorithm

Although the MATSim XML network data file represents the cornerstone of transportation

simulation in MATSim, other data inputs are still needed. Before listing the data inputs that are

needed for MATSim to run the simulation, it is important to note that data inputs may differ

depending on the simulation scenario. MATSim can use as many as three data inputs: a

configuration file (called a config file), a network file, and a population file. In the next

subsections, we discuss how we built these files as well as other input data that are necessary for

our study.

31

3.4.1 MATSim Network

The MATSim network XML file has structure shown below in figure 3.10:

Figure 3.10: An example for MATSim network XML's data structure

This format is slightly different from the open street map data structure shown in Figure 3.8.

In order for us to transform our multimodal transportation network into a format that MATSim

can use to simulate the scenarios we have discussed earlier we needed to do the following:

1- We needed to edit the previously created open street map files that represent our

multimodal network (streets with origins and destinations locations, walkways, stations,

and train lines) by adding a tag to the label <way> of type11 <highway> and give it a

value of “residential” for all links in every file. This was done by using the find-and-

replace editing tool in Notepad++12. Figure 3.11 shows how this step is done in

Notepad++.

Figure 3.11: Editing the street links of the open street map file.

11 In Open Street Map, it is called attribute pairs key tag, and the letter k is used to define the name of the attribute.
12 Find: <way> and replace with: <tag k="highway" v="residential"/> </way>. This is to define a one-way link.

MATSim handles only one-way links (Axhausen, Horni and Nagel 2016). In the case of two-ways link, MATSim

internally creates duplicate lines and assigns a direction to each one

32

2- After making this change, we used a script to make a binary format change for each .osm

file into MATSim XML format.

3- For the single-mode scenario, we only needed to convert the streetsAOI.osm file.

4- We repeated this process (1 and 2) with all files for multimode network datasets.

5- Then we opened all the XML files and edited all the numbers that represent node IDs and

link IDs in a way that made these IDs unique. Then, we copied all nodes under the label

<node> and all the ways under the label <way> in one XML file. Then we saved it in the

same file folder that contains the other MATSim input files.

6- To confirm the network was created correctly, from the command prompt, we ran the

following command:

“java -Xmx512m -cp “FolderPath”\matsim-0.8.1\networkEditor-0.8.1\networkEditor-

0.8.1.jar; “FolderPath”\matsim-0.8.1\matsim-0.8.1.jar

org.matsim.contrib.networkEditor.run.RunNetworkEditor”

The above command will result in opening the MATSim network editor window, from

which we could open the newly created MATSim XML network and verify its structure.

Figure 3.12 shows a screenshot of MATSim’s Network Editor.

Figure 3.12: Screenshot of MATSim’s Network Editor that we used to open the XML

network data file.

33

An excerpt of the MATSim XML network data file that we have just build is shown in

Appendix B. An important assumption that we made about how we answer our research

questions is that agents could move freely between different modes of travel as long as that this

achieves a fast arrival to their destinations. With this assumption, agents can leave their own cars

at a train station and get on a train vehicle, and then get off the train to walk towards the street

and get an immediate “car” ride towards the destination. Agents in MATSim’s terminology are

either represented by cars moving in the streets or pedestrians walking on links that allow

walking mode or passengers traveling on a train vehicle. Although this assumption rarely exists

in reality, it helps in focusing our study to answer the research questions.

After preparing the MATSim network XML, the next section presents how we created

the population file that defines how agents move from the origin locations to destination

locations.

3.4.2 Population File

The population file contains agents whose trips will be simulated on the network that we have

discussed in the previous section. Each agent in the population file is labeled as <person>. For

every person, there are several attributes13 that describe the travel plan of that person, like the

location of origin, type of origin facility, and allowable modes of travel. Figures 3.11 and 3.12

show excerpts of our population file. Two versions of the population file were created: one in

which the mode was set to “pt” to be used to test the proposed model, and the other in which

mode was set to “car” to test the base-car-only model. The transportation plan for every user or

agent, defined by the population file, may include whole daily activities that may add up to as

much as 24 hours in duration and consist of two or more stops. In both of our scenarios, all

agents’ plans contained only two stops or act types: work and home. As shown in Figures 3.13

and 3.14, we specified different end times for work. In all scenarios, all agents were assigned a

“work end time” of between 13:30 to 14:30. However, agents may select different departure

times as they learn about the network conditions14.

13 In some literature, these attributes are referred to as nested tags.
14 In terms of its capacities and traffic loads at their times of departure.

34

Figure 3.13: One person's plan in population file that is used for multimode scenarios

Figure 3.14: One person's plan in population file that is used for car-mode scenarios

To build this population XML file, we used a script that contains 30 loops so that we

generate agents for each pair of origin-destination location.15

3.4.3 Transit Vehicles

This input data file is important in the case of public transportation traffic simulations. In this

file, we defined the type of vehicles used in the study area’s rail system, their capacities, and the

time needed to load or unload travelers. All train vehicles in our transit system are assumed to be

of the same type and specifications. Figure 3.15 shows the structure of this input data file.

Figure 3.15: Transit_Vehicles Input Data File

15 Other more methods for generating population include generating population from census data. (Andreas,

Axhausen and Nagel 2016)

35

3.4.4 Transit Schedule

This input file is very important to simulate public transport. It is used to provide information

about four main attributes: transit line, transit stops, transit route, and departure times. For

example, in the defining a route, we provide information about the sequence of stops and the

links followed, arrival and departure times, as well as time offsets that are expected to delay

those arrival and departure times. Figure 3.16 shows a typical data structure for a transit schedule

XML file.

Figure 3.16: Typical data structure for a transit schedule XML file.

The next section discusses a necessary input data file for any MATSim simulation, the

configuration file.

3.4.5 Configuration File

The configuration file is used to define or establish a connection between the other input data

files, also referred to as simulation modules, and MATSim. It is also used to allow the user to

define simulation parameters that define and govern the behavior of the agents. In this file, these

modules that govern the behavior are specified with two parameters: the first is the name of the

module,16 and the second is a value for the parameter or a path link to the files that contain data

that represents the values of that parameter. There are many types of data inputs or modules that

could be used for simulating traffic in MATSim. In this study, two config.xml files were created,

one with a defined module for transit mode and another where the transit mode was disabled.

16 Some modules are built in within MATSim, like the controller, and the user is only required to set the value of its

parameters (like the number of iterations). Some modules are built by the user and fed to MATSim by setting their

values as a path link that points to their location like the network module.

36

The following subsections provide a brief description of the config.xml modules17 used in this

study and the way they are specified for the traffic simulation scenarios described earlier in

section 7 (experimental design).

1- Global Module:

This module is important because it tells MATSim where the network data is

located on the globe. MATSim uses the Pythagoras theorem for calculating

distances between any two points. Therefore, a Cartesian coordinate system is

needed (Axhausen, Horni and Nagel 2016). Since the study area data was

converted from its format of open street map, which is in the WGS-84 coordinate

system, we created a script that performs coordinate system conversion from

WGS-84 to UTM-Zone 38.

This script is based on Dr. Steven Dutch’s “Convert Geographical Units”

webpage (Dutch 2017).

Appendix C shows script for this module that we recommend using with

MATSim for simulating traffic in Saudi Arabia. We used the file location of that

script as a value for the parameter that defines the coordinate system. Figure 3.17

shows the global module settings of both scenarios analyzed in this study.

Figure 3.17: Settings of the Global module

2- The Controller Module

This module is used to set the output directory, which MATSim then uses to

present the simulation’s results. It is also used to specify the base shortest path

algorithm used for routing agents in their trips. Moreover, it is used to specify the

17 The results of the simulations are largely influenced by the modules we describe here. Thus, reading this section

carefully (the config.xml input data file) helps improve understanding of the results of the simulations.

37

number of simulations’ iterations and the mobility engine (mobsim)18 that is used

for simulating traffic flows. Figure 3.18 shows the global module settings of both

scenarios analyzed in this study.

Figure 3.18: Settings of the Controller module

3- QSIM Module

This module is the default mobility simulation engine built-in MATSim. In this

module, the user specifies the times of the agents’ daily plan that is simulated.

Figure 3.18 shows this module’s settings in both of the scenarios implemented in

this study. Although agents in the population file start departing from the origin

towards destination locations between time 13:00 and 15:30, the simulation end

time is set to be 17:00 to give the last departing agent enough time to arrive at its

destination. We decided to set the simulation to end at 17:00 because it is

unrealistic for users in our study area to spend over one and half hour from an

origin to a destination location. Even if the network is overloaded to cause such

situation, our research focuses on different aspects that can be achieved more

efficiently with reasonably enough simulation duration time.

Figure 3.19 shows the QSIM module settings of both scenarios analyzed in this

study.

Figure 3.19: Settings of the QSIM module

18 Other simulation engines that are not built into MATSim can be used as well.

38

4- Plan’s Score Calculator Module

This module specifies the advantages the agents should achieve, like time or

money savings, and select their routes based on these objectives. Within MATSim

configuration settings, this module is named “PlanCalcScore”. In this module, we

specified attributes’ scores in a way that encourages agents to select fastest-time

routes. Figure 3.20 shows an excerpt of this module’s specifications.

Figure 3.20: Settings of the PlanCalcScore module

The parameters specified in this module are used to calculate the marginal utility

of going from work to home, or an activity i, using the shortest path models that

are implemented in this study is calculated using the following function:

𝑈𝑖 = 𝑈𝑙𝑎𝑡,𝑖 + 𝑈𝑒𝑎𝑟,𝑖 + 𝑈𝑝𝑒𝑟,𝑖 + 𝑈𝑤𝑎𝑖𝑡,𝑖 (3.1)

Every agent tries to maximize its marginal utility at every iteration of the

simulation. In brief, the parameters that we have specified above are:

- Late Arrival: arriving late to a destination.

- Early Departure: departing early to a destination.

- Performing: making the activity, or the trip19.

- Waiting: time spent before an activity or a public transport becomes

available.

This module is important to the learning process that agents undergo throughout

the simulation’s iterations. In every iteration, MATSim produces up to 6 different

routes and scores their utility20. With these plans being produced, the agents then

perform an iterative learning process that technically continues as many as the

19 Recommended to be set at +6 in the case of not defining a mode choice logit model (Axhausen, Horni and Nagel

2016). We did not specify such model and the mode selection in all of the multimodal scenarios in this study are

strictly based on the fastest time to destination.
20 The plan with worst score is deleted from the agent’s memory for the next iteration. The reader is recommended

to read (Nagel, Axhausen, et al. 2016) for more discussion on this plan generation and removal approach of

MATSim.

39

specified number of iterations. This process was described by Flotterod (2016) in

the following steps:

- Iterate:

1- Based on the plan’s score and the previously observed network conditions,

Agents select a travel plan.

2- Agents execute this plan.

3- Agents observe the resulting network conditions, and learn for the next

iteration

This iterative learning process is important in understanding how agents select

their routes. As we will see in the results section, executed plans are not

necessarily the ones with the highest utility score. But in a well-designed

simulation, the average utility score of the executed plans should be very close to

the one of the best plan after few iterations. (Flotterod 2016) described this notion

of learning through iterations as “moving MATSim closer to its solution point.”

Our study benefited from such setting in the sense that we are testing the

computational complexities in the presence of a functionality of rerouting users

when network conditions change.

5- Transit Module

This module is specific to the config file that is used when public transit routing is

an option.21 While the transit mode value can be set as one or more modes directly

within this module, the vehicle specifications and transit schedule are usually

assigned a value of a path to the folder that contains their XML file names. Figure

3.21 shows an excerpt of this module description.

Figure 1.21: Settings of the PlanCalcScore module

21 This module is disabled in the case of simulating the single mode.

40

In addition to these configuration modules, other modules that establish a connection

between MATSim and the other input files. Appendix D contains the full settings of the

configuration files that are used to test both the time-dependent, capacity-aware, car-mode

shortest path and the proposed capacity-, mode-, schedule-, and time-dependent shortest-path

models described earlier. So far, we have presented how to prepare ArcGIS-based transportation

network data to perform a multiagent traffic simulation. Moreover, we described how to build

and configure the necessary data input files that are required by the simulation software used in

this study.22

22 Studies that have different objectives will most likely require different settings.

41

CHAPTER 4

RESULTS AND DISCUSSIONS

To answer the research questions, we decided to test the model utilizing three different loads on

the network, or in another word, three different numbers of agents. For each different number of

agents’ scenario, we performed two simulations. The first simulation tested the base time-

dependent, capacity-aware, car-mode, shortest-path model. The second simulation tested the

proposed capacity-, mode-, schedule-, and time-dependent shortest-path model. For each of these

tests, we created a population input data file to describe the trip preferences for each agent.

The numbers of population (agents) we tested in the three scenarios are 15,000 agents in

the first scenario, 45,000 agents in the second scenario, and 75,000 agents in the third scenario.

Other than the number of agents and their configuration setting which specifies whether or not

they could use mixed modes of travel. All input data and software configurations were kept the

same between scenarios. We ran 200 iterations for each simulation. All simulations were

completed on a computer running Windows 7 with 16 GB of random access memory. The

following subsections summarize the results for each case.

To answer our research question, we decided to simulate traffic during the rush hour

when schools’ closing times overlap with break times for major businesses and the closing time

for government offices. In Riyadh, these activities occur from 1:00 PM to 3:30 PM. During this

period, we tested both discussed models three times. In each scenario, we initiated 500, 1500,

and 2500 trips from each origin point to its paired destination point. With these different loads of

traffic, we were able to establish more informed answers to the research questions. The next

section provides a brief overview of the simulation software that we used in this study and how

the simulations of our scenarios were implemented.

4.1 Results of Scenario 1: 15,000 Agents

In this scenario, we ran the simulation using 15,000 agents. we ran two versions of this scenario.

In the first, agents are allowed to only use the car mode of travel. In the second, we the

42

simulation was configured to allow agents to use mixed-modes of travel. The next subsections

present the results of both simulations of this scenario.

4.1.1 Scenario 1-A: Time-Dependent, Capacity-Aware, Car-Mode, Shortest-Path Model

In this simulation, all agents can use only the car mode. In addition, the utility function that each

agent sought to maximize stresses the rapid arrival to a destination and discourages waiting in

queues of traffic. For every simulation’s iteration, some agents might encounter delays in some

links or nodes that are on their path from origin to destination points. The strategy defined by the

utility function of the shortest path models used in this study encourages agents to try to avoid

such links and nodes in the next simulation’s iteration.

The utility score is discussed here to show that routes are selected based on the preferences

defined in our models. Then we show other metrics, namely run time, average trip duration,

average trip distance, and traffic assignment and mode usage.

4.1.1.1 Average Utility Score23

The average utility score for all executed shortest paths in this scenario converged at around

43.7. In each iteration, MATSim produces an output plan file. In this file, several alternative

routes are provided and prioritized in terms of their appropriateness for each agent. Whether the

route is selected or not depends largely on the utility score.24 The score presented here is of an

absolute unit and it is calculated based on the function defined in the configuration file discussed

earlier. Figure 4.1 shows the average utility score per iteration for this scenario.

23 Also referred to as plan score. It has no unit but the larger the score the better it is.
24 The higher the score, the better the route. Usually the highest score is referred to as the “best” score. After agents

execute a plan with the “best” score and observe the network conditions, they try a different plan in the next iteration

in a try to improve the trip duration.

43

Figure 4.1: Average utility score per iteration for scenario 1-A.

We notice that the score improves as more iterations of the simulation are executed. This

is due to the learning process during which each agent uses the effect on links’ free-flowing

speeds introduced by other agents in the previous iteration to adjust the route, mode, or departure

time in the current iteration. In the end, the process reached a user-equilibrium state by which

users seem unable to further improve their utility score beyond 43.72 by making allowed

changes to their trips.25 The convergence in this scenario shows that user equilibrium can be

searched for if we have 15,000 users of agents within the computational power detailed above

and run time, which will be discussed later. In this scenario, convergence started approximately

after the 120th iteration, for which the score is 43.3.

4.1.1.2 Run time of the simulation

The simulation was executed for 200 iterations. The total run time for all iterations in this

simulation is 41 minutes and 26.031 seconds. The average run time for all iterations was found to

be 11 seconds. The summation of the average run time of all iterations is smaller than the overall

run time, because the simulation as a whole performs other tasks that include writing aggregated

results of all iterations to the output folder.

25 As explained in Section 4.4.5, all agents have been assigned the same utility function specification. They only

differ in their origin-destination trip specifications, their departure times, or both.

44

4.1.1.3 Average Trip Duration

The metric of average trip duration is very important to our study. If we can conclude that the

average trip duration in the case of capacity-, mode-, schedule-, and time-dependent shortest-

path model is similar to or less than the average trip duration in the case of time-dependent,

capacity-aware, car-mode, shortest-path model, then we can present a strong case to promote the

usage of the earlier model for navigational applications.

In this scenario of the time-dependent, capacity-aware, car-mode, shortest-path model for

15,000 agents, the average trip duration after the 200th iteration is found to be 23 minutes and 59

seconds. We only reported this metric for iteration 200 because, unlike the utility score and

distances, this metric does not get reported for all iterations in one graph or text file by MATSim,

a limitation of MATSim that will be discussed later.

4.1.1.4 Average Trip Distances

Although we simulated traffic over a diverse range of distances, it is still important to report this

metric and compare it across different models at different traffic loads to see if any insight could

be gained about these models across different scenarios. For this specific scenario, the average

distance for the 15,000 trips after the 200th iteration is 17549.4 meters. Figure 4.2 shows the

average distances for all 200 iterations.

Figure 4.2: Average trips’ distances for all the 200 iterations for all 15,000 trips

45

4.1.1.5 Traffic Assignment and Mode Usage

MATSim produces very useful information:

i- Number of users who started their trips for a prespecified time-slots (default is every

5-minutes).

ii- The mode of travel those users are employing.

iii- Number of users who arrived at their destinations.

iv- Number of users who are stuck, and the mode they are using.

The importance of these information in our study is to gain a deeper insight on whether

the use of mixed-mode route-guidance could improve travel experienced by its users compared

to if the users are guided by only a car-mode route guidance model.

 Table 4.1 shows the numbers of agents who have finished departure, arrival, or are still

in route during each time interval simulated. We notice that all routes are free-flowing26 for

agents at their start time of travel or during their trips. In addition, figure 4.3 shows a histogram

for trip departures and arrival as en-route trips for this scenario. We noticed that at time 14:45

en-route trips line coincides with arrival trips which indicates that simulation has ended because

all agents have arrived successfully to their destinations.

26 Because the number of “stuck car” is 0.

46

Table 4.1:Numbers of agents who have finished departure, arrival, or are still in route for

scenario 1-A

Figure 4.3: Histogram for trip departures and arrival as well as en-route trips for scenario

1-A

time departures_all arrivals_all stuck_all en-route_all departures_car arrivals_car stuck_car en-route_car

13:00:00 9557 0 0 9557 9557 0 0 9557

13:05:00 889 138 0 10308 889 138 0 10308

13:10:00 1059 719 0 10648 1059 719 0 10648

13:15:00 1054 1654 0 10048 1054 1654 0 10048

13:20:00 833 2181 0 8700 833 2181 0 8700

13:25:00 541 2463 0 6778 541 2463 0 6778

13:30:00 424 2443 0 4759 424 2443 0 4759

13:35:00 281 2036 0 3004 281 2036 0 3004

13:40:00 161 1448 0 1717 161 1448 0 1717

13:45:00 80 841 0 956 80 841 0 956

13:50:00 46 521 0 481 46 521 0 481

13:55:00 36 290 0 227 36 290 0 227

14:00:00 17 132 0 112 17 132 0 112

14:05:00 6 52 0 66 6 52 0 66

14:10:00 7 31 0 42 7 31 0 42

14:15:00 2 28 0 16 2 28 0 16

14:20:00 3 8 0 11 3 8 0 11

14:25:00 3 4 0 10 3 4 0 10

14:30:00 1 5 0 6 1 5 0 6

14:35:00 0 1 0 5 0 1 0 5

14:40:00 0 4 0 1 0 4 0 1

14:45:00 0 1 0 0 0 1 0 0

Total 15000 15000 0 15000 15000 0

47

4.1.2 Scenario 1-B: Capacity-, Mode-, Schedule-, and Time-Dependent Shortest-Path

Model (15,000 Agents)

In this scenario, we used the same number of agents as the previous one (15,000), but agents are

allowed to use mixed modes of travel.

4.1.2.1 Run time of the simulation

The overall simulation’s run time was found to be 43 minutes and 22.64 seconds. The average

run time for all iterations was 12 seconds.

4.1.2.2 Average Utility Score

The average utility score for the executed plan at the 200th iteration is 43.85 compared to 43.72

in scenario 2-A. Figure 4.4 shows the average utility score per iteration for this scenario.

Figure 4.4: Average utility score per iteration (scenario 1-B)

4.1.2.3 Average Trip Duration

In this scenario, the average trip duration in the 200th iteration was found to be 21 minutes and 21

seconds. This is about 1 minute and 40 seconds less than the previous scenario, in which only car

mode is allowed.

48

4.1.2.4 Average Trip Distances

The average trip distances for all 15,000 agents at the 200th iteration is 17516.43 meters,

compared to 17549.4 meters in the previous simulation (scenario1-A). Figure 4.5 summarizes the

average distances for all iterations of this scenario.

Figure 4.5: Average trips’ distances for all 200 iterations for all the 15,000 trips in scenario

1-B

4.1.2.5 Traffic Assignment and Mode Usage

In the 200th iteration of this scenario, 12,307 agents (82.047%) were routed through car mode

only, and the remaining agents (2693, 17.953%) were assigned mixed modes of travel toward

their destinations. Most agents who selected mixed modes of travel did so at the start of the

simulation (2,027 agents). This is because our model discourages waiting in queues. In all

discussed scenarios, most traffic queues form at the beginning of the simulation, when all agents

try to exit the workplace through a one-way street link, then going either north or east toward

their destinations.

49

Figure 4.6 shows a graph of iteration 200 for the users who were assigned mixed-mode routes

referred to in the graph as “pt,” and figure 4.7 shows a graph of the same iteration for users who

were routed through car-mode only throughout their trips in this scenario.

Figure 4.6: Iteration 200 of Scenario 1-B, users who were assigned mixed-mode routes

Figure 4.7: Iteration 200 of Scenario 1-B, number of users who were assigned car-mode

only during the same run.

50

Table 4.2 shows the numbers of agents who have finished their departure or arrival or are

still en-route as well as their assigned mode of travel (either car only or mixed) for each time

interval throughout the simulation. We notice that all routes are free-flowing for agents who

were assigned either car-only mode or mixed-mode travel. This indicates that 15,000 agents

departing from 30 nearby locations is probably a small number for a rush-hour period. This was

shown earlier in section 4.1.1.5, where we saw that all agents are assigned to car-only mode,

because they have no other option, yet the number of agents who are stuck in the network was

still zero. However, in this scenario, we saw some agents being recommended to use mixed

modes of travel at this low level of traffic. This is consistent with the travel duration results

where we found that, in this section, the travel duration is less in the case of mixed modes of

travel compared to the car mode. Such a result presents a strong case for adopting and using

mixed-mode models in navigational applications. .

51

Table 4.2: Numbers of agents who have finished departure, arrival, or are still in route based on their assigned mode of travel.

(scenario 2-B)
time departures_all arrivals_all stuck_all en-route_all departures_car arrivals_car stuck_car en-route_car departures_pt arrivals_pt stuck_pt en-route_pt

13:00:00 9364 0 0 9364 7337 0 0 7337 2027 0 0 2027

13:05:00 979 765 0 9578 865 134 0 8068 114 631 0 1510

13:10:00 1096 749 0 9925 963 737 0 8294 133 12 0 1631

13:15:00 1067 2461 0 8531 942 1589 0 7647 125 872 0 884

13:20:00 758 2272 0 7017 687 2044 0 6290 71 228 0 727

13:25:00 569 2394 0 5192 502 2236 0 4556 67 158 0 636

13:30:00 402 2117 0 3477 346 1939 0 2963 56 178 0 514

13:35:00 247 1410 0 2314 217 1257 0 1923 30 153 0 391

13:40:00 177 969 0 1522 155 866 0 1212 22 103 0 310

13:45:00 127 660 0 989 110 592 0 730 17 68 0 259

13:50:00 81 507 0 563 67 429 0 368 14 78 0 195

13:55:00 58 224 0 397 52 167 0 253 6 57 0 144

14:00:00 34 142 0 289 30 104 0 179 4 38 0 110

14:05:00 18 114 0 193 15 79 0 115 3 35 0 78

14:10:00 10 85 0 118 6 59 0 62 4 26 0 56

14:15:00 6 50 0 74 6 27 0 41 0 23 0 33

14:20:00 3 37 0 40 3 23 0 21 0 14 0 19

14:25:00 2 16 0 26 2 12 0 11 0 4 0 15

14:30:00 1 15 0 12 1 6 0 6 0 9 0 6

14:35:00 1 7 0 6 1 2 0 5 0 5 0 1

14:40:00 0 3 0 3 0 2 0 3 0 1 0 0

14:45:00 0 2 0 1 0 2 0 1 0 0 0 0

14:50:00 0 0 0 1 0 0 0 1 0 0 0 0

14:55:00 0 1 0 0 0 1 0 0 0 0 0 0

Total 15000 15000 0 12307 12307 0 2693 2693 0

52

4.2 Results of Scenario 2: 45,000 Agents

In this scenario, we ran the simulation in a similar fashion as we did in scenario 1 but we used

45,000 agents here instead of 15,000. The results of this scenario (both car mode and mixed-

modes) are discussed in the following subsections.

4.2.1 Scenario 2-A: Time-Dependent, Capacity-Aware, Car-Mode, Shortest-Path Model

4.2.1.1 Average Utility Score

The average utility score for all executed shortest paths in this scenario converged to around

36.9. we notice that this score is lower than the previous scenario (43.72 in scenario 1-A). This

indicates that more waiting times or/and later arrivals have been encountered by agents. In this

scenario, convergence started approximately after the 70th iteration in which the score is 36.6.

Figure 4.8 shows the average utility score per iteration for this scenario.

Figure 4.8: Average utility score per iteration, scenario 2-A

We noticed that at the first 20 iterations, average executed and best scores went from -90 to

about +30. This is because of the way scoring is defined in the configuration file. Not performing

the trip, late arrivals, or waiting in queues can all impact the utility score. When this average

score jumps from a small number to a large number (-90 to +30), then there is an indication that

53

some agents are accumulating most of the (dis)utilities that we defined in the utility function27.

We notice that agents learnt and adapted to the network conditions after the 20th iteration. We did

not see such a behavior in the previous scenario (section 4.1) when the traffic load was 15,000

agents. Because the network structure and capacities are the same as in the previous scenario, it

is the size of traffic loads in this scenario that caused this phenomenon. We will explore other

metrics and then discuss this behavior in the context of network structure and capacities.

4.2.1.2 Run-time of the simulation

The simulation was executed for the whole 200 iterations. The total run-time for this simulation

is 127 minutes and 20.55 seconds. The average run-time for all iterations was found to be around

36 seconds.

4.2.1.3 Average Trip Duration

In this scenario, the average trip duration after the 200th iteration has been found to be 45

minutes and 43 seconds. It is larger than the average time in the previous scenario (scenario 1-

A).

4.2.1.4 Average Trip Distances

For this specific scenario, the average distance for the 45,000 trips after the 200th iteration is:

17976.4 meters. Figure 4.9 shows the average trips’ distances for all the 200 iterations.

Figure 4.9: Average trips’ distances for all the 200 iterations for all the 45,000 trips of

scenario 2-A

27 It also indicates that MATSim’s iterative learning process is fast.

54

 We notice in figure that average trip distances did not converge to about 18,000 meters

until after the 20th iteration. From this graph, we can identify that the reason is that some agents

did not make an arrival to their destination, or in MATSim’s terminology did not perform the

trip. Figure 4.10 shows a histogram for trip departures and arrival as well as en-route trips for the

first iteration of this scenario. As specified in the simulation’s configuration file, simulation is

scheduled to end at time 17:00, and we see in this graph that the simulation ended while about

12,000 agents (green line) are still en-route.

 The reason these agents were not able to make an arrival in a reasonable time is that these

agents were trying to execute a travel plan of a high score. But the score in the first iterations

does not capture traffic waiting times or late departures that are caused by many vehicles trying

to move through the same links. Such un-awareness of traffic conditions caused these agents to

get stuck in bad routes until the simulation ended; therefore, the distances of their trips were not

counted in calculating the average distance in the first 20 iterations. However, the iterative-

learning approach of MATSim causes this problem to disappear and all agents will be assigned

better routes as we see later in figure 4.11.

Figure 4.10: Iteration number 1 of scenario 2-A, number of agents who departed or arrived

as well as those who are stile n-route.

55

4.2.1.5 Traffic Assignment and Mode Usage:

Table 4.3 shows the numbers of agents who have finished departure, arrival, or are still in route.

We notice that all routes are free-flowing for agents at their start time of travel or during their

trips. Although routes are reported here to be free-flowing, the fact that average trip time is larger

than when the number of agents is 15,000 indicates that agents are forced to travel at lower speed

here. Figure 4.11 shows a histogram for trip departures and arrival as en-route trips for this

scenario. As shown in table 4.3 and figure 4.11, simulation ended at time 16:00 (before 17:00

that we’ve specified in the configuration file as “simulation shut-down time”) because all agents

have arrived successfully to their destinations.

56

Table 4.3: Numbers of agents who have finished departure, arrival, or are still in route for

scenario 2-A, Iteration 200

time departures_all arrivals_all stuck_all en-route_all departures_car arrivals_car stuck_car en-route_car

13:00:00 24742 0 0 24742 24742 0 0 24742

13:05:00 1395 136 0 26001 1395 136 0 26001

13:10:00 1399 640 0 26760 1399 640 0 26760

13:15:00 1347 1513 0 26594 1347 1513 0 26594

13:20:00 1321 2006 0 25909 1321 2006 0 25909

13:25:00 1311 2181 0 25039 1311 2181 0 25039

13:30:00 1300 2154 0 24185 1300 2154 0 24185

13:35:00 1260 2361 0 23084 1260 2361 0 23084

13:40:00 1234 2319 0 21999 1234 2319 0 21999

13:45:00 1270 2474 0 20795 1270 2474 0 20795

13:50:00 1207 2391 0 19611 1207 2391 0 19611

13:55:00 1045 2479 0 18177 1045 2479 0 18177

14:00:00 966 2498 0 16645 966 2498 0 16645

14:05:00 827 2615 0 14857 827 2615 0 14857

14:10:00 733 2593 0 12997 733 2593 0 12997

14:15:00 729 2223 0 11503 729 2223 0 11503

14:20:00 606 1774 0 10335 606 1774 0 10335

14:25:00 522 1672 0 9185 522 1672 0 9185

14:30:00 395 1533 0 8047 395 1533 0 8047

14:35:00 335 1641 0 6741 335 1641 0 6741

14:40:00 263 1466 0 5538 263 1466 0 5538

14:45:00 230 1143 0 4625 230 1143 0 4625

14:50:00 175 900 0 3900 175 900 0 3900

14:55:00 137 742 0 3295 137 742 0 3295

15:00:00 89 607 0 2777 89 607 0 2777

15:05:00 63 664 0 2176 63 664 0 2176

15:10:00 42 574 0 1644 42 574 0 1644

15:15:00 18 485 0 1177 18 485 0 1177

15:20:00 15 447 0 745 15 447 0 745

15:25:00 16 351 0 410 16 351 0 410

15:30:00 6 252 0 164 6 252 0 164

15:35:00 0 158 0 6 0 158 0 6

15:40:00 0 4 0 2 0 4 0 2

15:45:00 0 1 0 1 0 1 0 1

15:50:00 2 1 0 2 2 1 0 2

15:55:00 0 1 0 1 0 1 0 1

16:00:00 0 1 0 0 0 1 0 0

Total 45000 45000 0 45000 45000 0

57

Figure 4.11: Iteration 200, Trip departures and arrival as well as en-route trips for

scenario 2-A

4.2.2 Scenario 2-B: Capacity-, Mode-, Schedule-, and Time-Dependent Shortest-Path

Model (45,000 Agents)

In this scenario, we used the same number of agents as the previous scenario (45,000), but

allowed agents to use mixed modes of travel.

4.2.2.1 Run time of the simulation:

The overall simulation’s run time was found to be 129 minutes and 16.53 seconds, and the

average run time for all iterations is 37 seconds.

4.2.2.2 Average Utility Score:

The average utility score for the executed plan at the 200th iteration is 41.67 compared to 36.9 in

the previous scenario (scenario 2-A). This indicates that, on average, agents made faster arrivals

because less waiting times were encountered by them as a result of allowing them to use mixed-

modes of travel. Figure 4.12 shows the average utility score per iteration for this scenario.

58

Figure 4.12: Average utility score per iteration (scenario 2-B)

 We notice that the score is increasing in a more gradual manner than in scenario 2-A. This is

because agents are taking more time, or iterations in MATSim’s terminology, to learn and

explore available routes since searching the public transit mode in this scenario is now enabled.

We also notice that the average scores during first 20 iterations are higher compared to those of

scenario 2-A because all agents in this scenario made arrival to their destinations throughout all

iterations.

4.2.2.3 Average Trip Duration

In this scenario, the average trip duration in the 200th iteration was found to be 26 minutes and 38

seconds. This is about 19 minute and 5 seconds less than the previous scenario (scenario 2-A)

where only car mode is allowed.

59

4.2.2.4 Average Trip Distances

The average trip distances for all the 15,000 agents at the 200th iteration is 17891.45

meters compared to 17976.4 meters in the previous simulation (scenario 2-A). Figure 4.13

summarizes average distances for all iterations.

Figure 4.13: Average trips’ distances for all the 200 iterations for scenario 2-B

4.2.2.5 Traffic Assignment and Mode Usage:

In this scenario, specifically in the 200th iteration, the car legs graph shows that 24,553 agents

(54.56 %) were routed through car mode only, and the remaining agents (20,447 45.44%) were

assigned mixed-modes of travel towards their destinations.

Figure 4.14 shows a histogram of iteration 200 for users who were assigned mixed mode

routes, referred to in the graph as “pt”, and figure 4.15 shows the same histogram for users who

were routed through only car mode only throughout their trips in this scenario.

60

Figure 4.14: Iteration 200, Number of users who were assigned mixed mode routes

(scenario 2-B)

Figure 4.15: Iteration 200, number of users who were assigned only car mode

(scenario 2-B).

61

Table 4.4 shows the numbers of agents who have finished departure, arrival, or are still in

route, as well as their assigned mode of travel (either car only or mixed) for each time interval

since the start of simulation until it finished. We notice that agents who were assigned either car

only mode or mixed mode did not fill any link or a rail station up to its capacity. While none of

the agents in both scenarios (2-A and 2-B) got stuck while en-route, the average duration to

make an arrival was less in scenario 2-B when mixed-modes of travel was searched for the

shortest-path. That is why the simulation in scenario 2-A lasted until 16:00 for the last agent to

arrive to his destination while in scenario 2-B it lasted until 15:20. Again, this result present a

strong case for implementing mixed-mode routing in the navigational applications.

62

Table 4.4: Numbers of agents who have finished departure, arrival, or are still in route based on their assigned mode of travel.

(scenario 2-B)

time departures_all arrivals_all stuck_all en-route_all departures_car arrivals_car stuck_car en-route_car departures_pt arrivals_pt stuck_pt en-route_pt

13:00:00 29672 0 0 29672 13093 0 0 13093 16579 0 0 16579

13:05:00 1836 2437 0 29071 955 137 0 13911 881 2300 0 15160

13:10:00 1778 741 0 30108 1134 642 0 14403 644 99 0 15705

13:15:00 1762 7938 0 23932 1218 1493 0 14128 544 6445 0 9804

13:20:00 1526 6234 0 19224 1081 2030 0 13179 445 4204 0 6045

13:25:00 1372 3848 0 16748 1045 2058 0 12166 327 1790 0 4582

13:30:00 1304 4010 0 14042 1066 2257 0 10975 238 1753 0 3067

13:35:00 1077 3088 0 12031 893 2123 0 9745 184 965 0 2286

13:40:00 942 2877 0 10096 810 1874 0 8681 132 1003 0 1415

13:45:00 874 2244 0 8726 752 1807 0 7626 122 437 0 1100

13:50:00 777 1957 0 7546 684 1644 0 6666 93 313 0 880

13:55:00 669 1797 0 6418 572 1555 0 5683 97 242 0 735

14:00:00 459 1712 0 5165 401 1536 0 4548 58 176 0 617

14:05:00 324 1460 0 4029 294 1323 0 3519 30 137 0 510

14:10:00 262 1267 0 3024 232 1154 0 2597 30 113 0 427

14:15:00 173 1160 0 2037 149 1071 0 1675 24 89 0 362

14:20:00 79 903 0 1213 68 810 0 933 11 93 0 280

14:25:00 52 515 0 750 49 444 0 538 3 71 0 212

14:30:00 31 331 0 450 28 274 0 292 3 57 0 158

14:35:00 16 216 0 250 15 164 0 143 1 52 0 107

14:40:00 8 105 0 153 7 70 0 80 1 35 0 73

14:45:00 2 64 0 91 2 43 0 39 0 21 0 52

14:50:00 4 45 0 50 4 21 0 22 0 24 0 28

14:55:00 1 28 0 23 1 10 0 13 0 18 0 10

15:00:00 0 13 0 10 0 7 0 6 0 6 0 4

15:05:00 0 6 0 4 0 4 0 2 0 2 0 2

15:10:00 0 2 0 2 0 2 0 0 0 0 0 2

15:15:00 0 1 0 1 0 0 0 0 0 1 0 1

15:20:00 0 1 0 0 0 0 0 0 0 1 0 0

Total 45000 45000 0 24553 24553 0 20447 20447 0

63

4.3 Results of Scenario 3: 75,000 Agents

In this scenario, we ran the simulation in a similar fashion to the previous scenarios but with

75,000 agents. The results of this scenario (both car mode and mixed-modes) are discussed in the

following subsections.

4.3.1 Scenario 3-A: Time-Dependent, Capacity-Aware, Car-Mode, Shortest-Path Model

4.3.1.1 Average Utility Score:

The average utility score for all executed shortest paths in this scenario converged to around

21.34. we notice that this score is lower than the previous scenarios (scenario 1-A and 2-A).

Figure 4.16 shows the average utility score per iteration for this scenario. This indicates that

more waiting times have been encountered by agents. In this scenario, convergence started

approximately after the 181st iteration in which the score is 20.5. However, this graph is not as

smooth as in the previous scenarios for car-only mode. This can be attributed to the large number

of agents that cause more traffic jams across more links than in the previous cases; and thus,

more re-planning and re-routing is required for agents in every iteration. We saw such trend at

the first 20 iterations in scenario 2-A before the curve started to smooth out but we did not see

this trend in scenario 1-A.

Figure 4.16: Average utility score per iteration (scenario 3-A)

64

We notice in this scenario that the score increased from about -200 around 0 after 30

iterations. We saw such behavior in scenario 2-A but it is more sever here because of lager

number of agents. Figure 4.17 shows the traffic assignment of this scenario’s first iteration. We

notice that the simulation ended while about 40, 000 agents are still en-route. As agents learn

through iterations, they will adjust departure times and selected better routes, and as a result,

more agents will make an arrival causing the average utility score to improve.

Figure 4.17: Iteration 1, number of users who were assigned only car mode (scenario 3-A).

4.3.1.2 Run-time of the simulation:

The simulation was executed for the whole 200 iterations. The total run-time for this simulation

is: 190 minutes and 37.41 seconds. The average run-time for all iterations was found to be

around 55 seconds.

4.3.1.3 Average Trip Duration

In this scenario, the average trip duration after the 200th iteration has been found to be: 75

minutes and 7 seconds. It is larger than the average time in the previous car-mode only scenarios

65

(scenario 1-A, and scenario 2-A). moreover, the number of simulated trips is 73.363 trips (or

agents). The remaining agents were not able to make an arrival to their final destination because

they were stuck in route or waiting to leave their locations of origin until time 17:00, which is the

simulation’s end time.

4.3.1.4 Average Trip Distances

For this specific scenario, the average distance for the 75,000 trips after the 200th iteration is:

17594.33 meters. Figure 4.18 shows the average distances for all the 200 iterations. Although it

is less than the previous car-mode only scenarios (scenarios 4.1.1 and 4.2.1), yet it is not an

indicative measure of any improvement in this scenario because 8 agents here could not make a

departure and another 1663 agents did not make an arrival. Thus, a total of 1671 agents were not

counted in calculating the average distance here28.

Figure 4.18: Average trips’ distances for all the 200 iterations (scenario 3-A)

4.3.1.5 Traffic Assignment and Mode Usage:

Table 4.5 below shows the numbers of agents who have finished departure, arrival, or are still in

route. We notice that all routes are free-flowing for agents at their start time of travel or during

28 It should be noted though that the routes for these agents have been computed. But the time duration of the

simulation ended before these routes have been executed. While the distance and trip-duration calculation are

affected in this situation, the run-time is not.

66

their trips. Although routes are reported here to be free-flowing, the fact that average trip time is

larger than when the number of agents is 15,000 indicates that agents are forced to travel at lower

speed here. Figure 4.19 shows a histogram for trip departures and arrival as en-route trips for this

scenario. Simulation ended at 17:00 although some agents are either “stuck” in the network or

have not yet departed their origins due to queues at the “exit gate” of their locations of origin.

67

Table 4.5: Numbers of agents who have finished departure, arrival, or are still in route for

(scenario 3-A)

time departures_all arrivals_all stuck_all en-route_all departures_car arrivals_car stuck_car en-route_car

13:00:00 38997 0 0 38997 38997 0 0 38997

13:05:00 2287 134 0 41150 2287 134 0 41150

13:10:00 2236 641 0 42745 2236 641 0 42745

13:15:00 2077 1483 0 43339 2077 1483 0 43339

13:20:00 1973 1835 0 43477 1973 1835 0 43477

13:25:00 1917 2005 0 43389 1917 2005 0 43389

13:30:00 1807 2038 0 43158 1807 2038 0 43158

13:35:00 1667 2087 0 42738 1667 2087 0 42738

13:40:00 1501 2107 0 42132 1501 2107 0 42132

13:45:00 1517 2112 0 41537 1517 2112 0 41537

13:50:00 1474 2159 0 40852 1474 2159 0 40852

13:55:00 1371 2247 0 39976 1371 2247 0 39976

14:00:00 1327 2231 0 39072 1327 2231 0 39072

14:05:00 1221 2274 0 38019 1221 2274 0 38019

14:10:00 1167 2266 0 36920 1167 2266 0 36920

14:15:00 1094 2231 0 35783 1094 2231 0 35783

14:20:00 1041 2200 0 34624 1041 2200 0 34624

14:25:00 916 2351 0 33189 916 2351 0 33189

14:30:00 836 2306 0 31719 836 2306 0 31719

14:35:00 857 2317 0 30259 857 2317 0 30259

14:40:00 768 2236 0 28791 768 2236 0 28791

14:45:00 692 2285 0 27198 692 2285 0 27198

14:50:00 647 2289 0 25556 647 2289 0 25556

14:55:00 577 2215 0 23918 577 2215 0 23918

15:00:00 544 1895 0 22567 544 1895 0 22567

15:05:00 522 1843 0 21246 522 1843 0 21246

15:10:00 465 1801 0 19910 465 1801 0 19910

15:15:00 442 1836 0 18516 442 1836 0 18516

15:20:00 370 1767 0 17119 370 1767 0 17119

15:25:00 367 1829 0 15657 367 1829 0 15657

15:30:00 332 1835 0 14154 332 1835 0 14154

15:35:00 257 1860 0 12551 257 1860 0 12551

15:40:00 228 1783 0 10996 228 1783 0 10996

15:45:00 224 1685 0 9535 224 1685 0 9535

15:50:00 171 1583 0 8123 171 1583 0 8123

15:55:00 174 1178 0 7119 174 1178 0 7119

16:00:00 160 991 0 6288 160 991 0 6288

16:05:00 125 954 0 5459 125 954 0 5459

16:10:00 118 839 0 4738 118 839 0 4738

16:15:00 101 722 0 4117 101 722 0 4117

16:20:00 88 582 0 3623 88 582 0 3623

16:25:00 66 529 0 3160 66 529 0 3160

16:30:00 57 474 0 2743 57 474 0 2743

16:35:00 54 302 0 2495 54 302 0 2495

16:40:00 45 261 0 2279 45 261 0 2279

16:45:00 36 266 0 2049 36 266 0 2049

16:50:00 46 247 0 1848 46 247 0 1848

16:55:00 33 251 0 1630 33 251 0 1630

17:00:00 0 1 1629 0 0 1 1629 0

Total 74992 73363 1629 74992 73363 1629

68

Figure 4.19: Number of users’ departures and arrival as well as those who are en-route.

(scenario 3-A)

4.3.2 Scenario 3-B: Capacity-, Mode-, Schedule-, and Time-Dependent Shortest-Path

Model (75,000 Agents)

In this scenario, we used a population file that has same number of agents as the previous one

(scenario 3-A), but the settings in both the population and configuration files are defined to allow

agents to use mixed modes of travel. In this section, we report the same metrics as in the

previous scenario (car mode only).

4.3.2.1 Run time of the simulation:

The overall simulation’s run time was found to be 177 minutes and 38.94 seconds, and the

average run time for all iterations is: 51 seconds. It is interestingly less than the car-mode only

scenario (scenario 3-A). this is due to the nature of the computation done by the co-evolutionary

algorithm of MATSim; more agents, means more traffic and thus more interactions between

agents and hence re-planning of their trips. When we have less traffic, because some agents

selected other modes in part of their trips, the re-planning process of the re-routing took less run-

time.

69

The result found in this scenario is not expected, but very encouraging. It hints that the major

computational issues for such settings of routing models are linked to the number of users who

query the navigational applications and their preferences (utility function).

4.3.2.2 Average Utility Score:

The average utility score for the executed plan at the 200th iteration is 40.98 compared to 21.34

in the previous scenario (scenario 3-A). This is a significant improvement in the travel

experience of agents who used mixed-mode of travel. Figure 4.20 shows the Average utility

score per iteration for this scenario.

Figure 4.20: Average utility score per iteration (scenario 5.3.2)

4.3.2.3 Average Trip Duration

In this scenario, the average trip duration in the 200th iteration was found to be 27 minutes and 53

seconds. This is about 47 minute and 14 seconds less than the previous scenario (scenario 3-A)

where only car mode is allowed. Again, this presents a strong case for why users should consider

using a route-guidance application that searches mixed modes of travel for the shortest path.

70

4.3.2.4 Average Trip Distances

The average trip distances for all the 75,000 agents at the 200th iteration is 18229.66 meters.

Figure 4.21 shows average distances for all iterations.

Figure 4.21: Average trips’ distances for all the 200 iterations (scenario 3-B)

4.3.2.5 Traffic Assignment and Mode Usage:

In this scenario, specifically in the 200th iteration, the car legs graph shows that 27682 agents

(36.91 %) were routed through car mode only, and the remaining agents (47318 agents, 63.09%)

were assigned mixed-modes of travel towards their destinations.

Figure 4.22 shows a histogram of iteration 200 for users who were assigned mixed mode

routes referred to in the graph as “pt”, and figure 4.23 shows a histogram of the same iteration

for users who were routed through only car mode only throughout their trips in this scenario.

71

Figure 4.22: iteration 200, Number of users who were assigned mixed mode routes

(scenario 4.3.2)

Figure 4.23: iteration 200, number of users who were assigned car-mode only (scenario

4.3.2)

72

Table 4.6 shows the numbers of agents who have finished departure, arrival, or are still in route,

as well as their assigned mode of travel (either car only or mixed) for each time interval since the

start of simulation until it finished. We notice that all routes are free-flowing for agents who

were assigned either car only mode or mixed mode. While traffic in both scenarios (2-A and 2-

B) was shown to be free-flowing, the average arrival duration was faster in scenario 2-B when

mixed-modes of travel was searched for the shortest-path. That is why the simulation in scenario

2-A lasted until 16:00 for the last agent to arrive to his destination while in scenario 2-B it lasted

until 15:20. Again, this result presents a strong case for implementing mixed-mode routing in the

navigational applications. Table 4.7 summarizes all the three scenarios’ results.

73

Table 4.6: Numbers of agents who have finished departure, arrival, or are still in route based on their assigned mode of travel

(scenario 3-B)

time departures_all arrivals_all stuck_all en-route_all departures_car arrivals_car stuck_car en-route_car departures_pt arrivals_pt stuck_pt en-route_pt

13:00:00 50530 0 0 50530 15354 0 0 15354 35176 0 0 35176

13:05:00 3267 4094 0 49703 896 139 0 16111 2371 3955 0 33592

13:10:00 3126 849 0 51980 1088 671 0 16528 2038 178 0 35452

13:15:00 2923 13005 0 41898 1206 1487 0 16247 1717 11518 0 25651

13:20:00 2541 10588 0 33851 1138 1998 0 15387 1403 8590 0 18464

13:25:00 2147 6356 0 29642 1037 1943 0 14481 1110 4413 0 15161

13:30:00 1980 7039 0 24583 1030 2067 0 13444 950 4972 0 11139

13:35:00 1582 5189 0 20976 877 2032 0 12289 705 3157 0 8687

13:40:00 1330 5263 0 17043 795 2040 0 11044 535 3223 0 5999

13:45:00 1088 3526 0 14605 721 1857 0 9908 367 1669 0 4697

13:50:00 992 3298 0 12299 682 1913 0 8677 310 1385 0 3622

13:55:00 847 2807 0 10339 669 1715 0 7631 178 1092 0 2708

14:00:00 669 2358 0 8650 543 1504 0 6670 126 854 0 1980

14:05:00 561 2210 0 7001 470 1541 0 5599 91 669 0 1402

14:10:00 425 1841 0 5585 343 1389 0 4553 82 452 0 1032

14:15:00 352 1638 0 4299 293 1296 0 3550 59 342 0 749

14:20:00 257 1367 0 3189 216 1150 0 2616 41 217 0 573

14:25:00 139 990 0 2338 120 822 0 1914 19 168 0 424

14:30:00 101 824 0 1615 84 721 0 1277 17 103 0 338

14:35:00 69 722 0 962 57 629 0 705 12 93 0 257

14:40:00 30 418 0 574 24 352 0 377 6 66 0 197

14:45:00 26 303 0 297 22 234 0 165 4 69 0 132

14:50:00 4 115 0 186 4 75 0 94 0 40 0 92

14:55:00 8 77 0 117 7 50 0 51 1 27 0 66

15:00:00 2 48 0 71 2 25 0 28 0 23 0 43

15:05:00 1 28 0 44 1 17 0 12 0 11 0 32

15:10:00 0 17 0 27 0 4 0 8 0 13 0 19

15:15:00 2 16 0 13 2 6 0 4 0 10 0 9

15:20:00 0 5 0 8 0 0 0 4 0 5 0 4

15:25:00 0 4 0 4 0 1 0 3 0 3 0 1

15:30:00 0 1 0 3 0 1 0 2 0 0 0 1

15:35:00 0 2 0 1 0 2 0 0 0 0 0 1

15:40:00 1 1 0 1 1 0 0 1 0 1 0 0

15:45:00 0 0 0 1 0 0 0 1 0 0 0 0

15:50:00 0 0 0 1 0 0 0 1 0 0 0 0

15:55:00 0 0 0 1 0 0 0 1 0 0 0 0

16:00:00 0 1 0 0 0 1 0 0 0 0 0 0

Total 75000 75000 0 27682 27682 0 47318 47318 0

74

Table 4.7: Summary of simulations' results
Number

of

Agents

Scenario Average

Utility

Score

(absolute)

Run time

(seconds)

Average Trip

Duration

Minutes: Seconds

Average Trip

Distances

(meters)

Mode Usage Executed

trips

Last Arrival Time

15,000 Scenario 1-

A (car

mode only)

43.7 11 23:59 17549.4 Car only All 2:45 PM

Scenario 1-

B (Mixed

mode)

43.85 12 21: 21 17516.43 82.047% Car

17.953% Mixed

All 2:55 PM

45,000 Scenario 2-

A (car

mode only)

36.9 36 45: 43 17976.4 Car only All 4:00 PM

Scenario 2-

B (Mixed

mode)

41.67 37 26:38 17891.45 54.56 % Car

45.44% Mixed

All

3:20 PM

75,000 Scenario 3-

A (car

mode only)

21.34 55 75:07 17594.33 Car only 73,371 Simulation ended at

5:00 PM while 1629

agents are either

stuck in the network

or did not depart

Scenario 3-

B (Mixed

mode)

40.98 51 27:53 18229.66 36.91 % Car

63.09% Mixed

All 4:00 PM

75

To sum up, we found that the computational complexity of both shortest path models

discussed in this study is almost the same. This was shown by similar run times for both models

when they were examined via simulation using the same set of origin-destination points on the

same network. In our reporting of the run time, we focused on the iteration’s average run time.

We explained in section 4.1.1.2 (the first scenario) that MATSim does more computational tasks

than just routing and re-routing the synthetic travelers. For example, MATSim’s simulations

include writing the results of each iteration to prespecified folder, and later writing the aggregate

results of all iterations to another folder. MATSim’s computational run time for each iteration

can be broken down into more than 20 tasks; where. These tasks and their respective run time are

reported in a text file called Stop Watch. However, these tasks are not the same tasks that would

be expected from multimodal or unimodal navigational systems.

In figure 3.7, we saw that a MATSim’s iteration goes through three main stages:

execution, scoring, and replanning. These stages are important in the “simulation” world where a

researcher or a traffic planner aims to understanding optimal traffic assignment from a “user

equilibrium” perspective. However, navigation systems would not require implementing these

stages using large number of iterations. In all scenarios, we reported the average run-time

criterion. But, routing processes of a real-world urban environment of a portable navigational

device or a cell phone, does not include all the tasks that are performed in MATSim typical

traffic assignment simulations. For example, the execution stage in which agents interact and

compete over the network resources would be replaced be real-time traffic feeds if MATSim

environment is used as a platform for a navigational system. In tables 4.8 and 4.9 we show a

breakdown of simulations’ average run-time of scenarios 3-A and 3-B.

Table 4.8: Average run-time breakdown of scenario 3-A

Scenario 3-A Replanning Execution Scoring Iteration (total)

Average Run-Time

(seconds) 26.7 26.1 00.01< 54.9

Table 4.9: Average run-time breakdown of scenario 3-A

Scenario 3-A Replanning Execution Scoring Iterations (total)

Average Run-Time

(Seconds) 36.9 12.5 00.01< 51.4

76

We notice that the total average run-time that we reported is larger than the sum of the

average run-time of the three stages of a MATSim iteration. This is due to the fact that we did

not include times encountered to fire an iteration after the previous iteration ended or the time

needed to write iterations’ results to a desk. As mentioned earlier, there are about 20

computational tasks, including the main ones reported in tables 4.8 and 4.9 that all together

contribute to the reported iterations average run-time. We notice also that in both scenarios,

scoring takes less than 0.01 seconds.

We also found that links’ capacities information is very important for a better routing

results. In our scenarios, we had issues with routing through the shortest path during the first

iterations. Our scenarios were designed to route different number of users from 30 locations

within the same business district towards the north and east sides of the city. This caused traffic

jams that delayed some users in scenarios 2 and 3.

The more sever delays were at the origin locations themselves because, as mentioned

earlier in section 3.2, MATSim uses spatial queues to model vehicles that move on links. Such

technique, which is realistic for modeling vehicles’ movement, implies that vehicles occupy

space and whenever a link is filled with vehicles no more following vehicles will enter this link.

That is why trip durations between the same origin and destination locations were different at

different traffic loads, especially in the case when the network allows only for car mode of travel.

To better understand the interplay between traffic loads and trips’ duration, we need to

look into the origin locations and how agents depart these locations towards their destinations.

Originally, we distributed the 30 origin locations as points within one area, the downtown. Many

of these origin locations are located on a one-lane street. In addition, some of these locations

exist on the same street link. We also gave the simulation a time frame of four hours while

agents were set to depart as soon as they can within that time frame. When we assigned 500

agents to depart each origin location, the 15,000 agents’ scenario, most agents finished their trips

within 45 minutes with an average trip duration of about 23 minutes. We noticed that this time

decreased by only 2 minutes as we enabled the use of mixed-modes of travel for the same

number of agents. Delays on the network became more severe as we assigned larger number of

77

users to depart the origin locations in scenarios 2 and 3. In addition, time savings on average trip

durations also became more significant in scenarios 2 and 3.

This happened because capacity constraints of street network do not allow for flowing at

the free-flow speed on a link when number of agents exceed the capacity of flow of a street link.

The flow capacity of a link was specified as 1,500 vehicles per hour for one-lane streets, 3,000

vehicles per hour for two-lanes streets, and 4,500 vehicles per hour for three-lanes streets. Since

most origin locations are located on a one-lane or in two-lanes streets links, vehicles needed to

queue up not only on the same departure location, but also on nearby links cause major spill-

backs when the number of agents was increased in scenarios two and three.

Therefore, it should not be surprising that we saw time savings as we introduced the

public transit search functionality. This allowed some agents to use the additional network

resources, namely the added public transit network, for a faster arrival. It also freed the network

from vehicles at some critical intersections. The free space of the street network was then used

by many who had better routes’ plans by using the car mode only. Figure 4.24 shows a

screenshot of the simulation video for scenario 5.3.1.

Figure 4.24: Screenshot of the simulation video for scenario 5.3.1. We notice major traffic

jams are formed in the links leading to the major (south-north) traffic corridor of the city.

78

CHAPTER 5

CONCLUSIONS

5.1 Summary and Conclusions

In this study, we tried to gain a new insight on how computationally complicated the multimodal

route finding compared to the widely used single mode route finding models. We ran several

traffic simulations in which all agents were routed using the famous least-cost algorithm by

Dijkstra. To examine the re-routing functionality, we designed a simulation in which agents were

re-routed by the software after almost all iterations of the simulation. This process happened

because the agents learned that some routes are less congested and thus can be used for a faster

arrival. This dynamic shortest-path guidance process is similar in its functionality to route-

guidance process of the single-mode routing applications discussed in the literature review

section of this study.

 This route-guidance process was tested in this study for different loads of traffic (15,000,

45,000, and 75,000 agents) in two scenarios: one in which route-guidance can only route car-

mode users only, and the other in which the route-guidance can route users who are flexible to

use any mode of travel as long as it gets them to their destination faster. To report realistic

conclusions and insights, we modeled the capacity and scheduling constraints of the public

transportation mode.

 After simulating the two scenarios for the three different traffic loads, we found that the

computational complexity in the case of single mode and multimode route-guidance models is

almost the same. Thus, the hypothesis that an optimization model for route-guidance application

that incorporates both transit mode and car mode in searching for the shortest path will suffer

long-run times and hence will not suit the computational power of a portable navigational device

or a cell phone could be refuted by the results of this experiment.

Moreover, we’ve seen that the more agents we have, the more time savings in trip-

duration will result from adopting multimodal route-guidance. In addition, we saw in Scenario 3

that, when a too-large traffic load causes traffic jams at several points of the network, more

interactions occur between agents. This process required more computing processes to re-route

79

the agents and thus more run time to compute the shortest path. Such a pattern needs to be

captured by the route-guidance application and the re-routing, or re-planning, should be done in a

way that does not cause additional computational complexity.

 This research tested whether it is possible to construct a route-finding system that allows

for a multimodal travel option (with capacity and scheduling constraints) that takes into account

the temporal aspect of travel network behaviors, while limiting the computational requirements

to a level at which the system could be implemented in the real-world urban environment of a

portable navigational device or a cell phone.

We found that this was possible in a simulation environment that was designed to capture

most of the complexities of such system. Thus, this research should be followed by building such

a functionality to close this gap in the existing navigational applications. Several implementation

issues may arise, but we have demonstrated that the computational complexities and demands

will not be major barriers. We also found that such a system would provide, on average, closer-

to-optimal routes compared to the standard car-mode, capacity-aware, shortest-path, Dijkstra-

based model.

This study succeeded in answering the research questions and in achieving other important

contributions as well. These contributions include the following:

1- Preparing a coordinate system conversion module for our study area that can be used by

other researchers to create traffic simulation scenarios using MATSim.

2- Preparing and documenting a method to convert ArcGIS data into a MATSim Network

XML file. A better contribution would be to create an ArcGIS-based tool that performs

this conversion. However, many challenges were encountered, the least is the topological

difference in the structure of streets feature classes in ArcGIS (line feature class),

whereas the MATSim street network is composed of links and nodes. This contribution

helps ArcGIS users to use their data in running dynamic traffic simulations using

MATSim.

3- We presented a simple, yet effective transitioning stage between modes. The walkways

line feature class is a logical connection between car and train modes, and it was easy to

80

model them within MATSim. It is suitable to model switching modes in park-and-ride as

well as drop-off-and-ride situations. We specified walking speed on these links and we

modeled the scheduling and capacities of transit mode. This data model, which is mostly

MATSim’s network data structure, proved to be simple yet adequate to handle

multimodal routing requirements at a very reasonable computational cost.

On the other hand, we could not achieve a very important task that would make this study

(and the simulation software) more useful within the time limits of this study. This task is

converting the selected routes that MATSim show as a text file describing executed routes into a

shapefile format. This task would facilitate a more interesting research task of comparing

geometric similarities of the resulting routes. How we plan to pursue this task as well as other

future research tasks are discussed in the next section.

5.2 Future Work

As seen in the implementation and results sections, the multiagent traffic simulation software

that we used provided great functionality and flexibility to test our model. However, it has some

limitations too. The fact that the software we used, MATSim, is an open source that makes

further improvements fairly easy. In a few points, I will summarize my personal views on how

this study could be extended.

1- At the end of this study, we suggest that the best answer the research questions is to use

MATSim’s environment, which would be a suitable testing ground, to actually test the

quality of a multimodal routes for real trips between origin and destination locations for a

sample population of Riyadh city. It is recommended that traffic volume data is used to

create a more realistic daily traffic pattern, and then run the multimodal route-guidance

for the selected, or surveyed, sample. Such study will provide a more realistic analysis of

trips’ time savings resulting from using multimodal traffic navigational systems.

2- Limitation in presenting the average executed trip duration per iteration: While the

software shows improvements in utility score per iteration, it does not show how this is

reflected in time savings. Doing so will help in comparing the utility score graph with the

trip durations to confirm that agents eventually cannot improve their selected routes.

81

3- MATSim’s default settings of writing the output agent’s plans, or selected routes, is in a

text file in which the link IDs of the selected route are shown. However, this setting could

be changed to let MATSim write this output as a KML file. KML files can be converted

into shapefile format. This could be a starting point for performing routes’ geometric

similarities analysis of the simulation results. However, this task is not trivial when we

have many agents having the same departure and arrival points. The “mode” route that

represents the most followed route for every pair of origin and destination points can be

used to compare the followed path in the case of “loaded” network against the static

shortest path to study the geometric similarities in both cases.

4- This study was completed using the Dijkstra’s algorithm as a base-algorithm for the least-

cost calculations. Luckily, MATSim has other built-in shortest-path algorithms that we

could use for our models and then compare the same metrics, especially the run time.

This will help us in gaining insight into how run time would differ at different loads of

traffic when we use different shortest-path algorithms. Depending on the produced

solutions’ quality, we may prefer using a different shortest path algorithm as a basis for

building a route-guidance application.

5- This study suggest that we could measure the city’s “work commuting” trips time

durations, assuming we can derive the proper data from the census data. Therefore, a

comparison of such metric in the case of using car mode of travel with mixed modes of

travel can provide an important insight on how the city’s mobility could be improved.

6- Last but not lease, this study suggests that it is possible to develop a mixed-mode route-

guidance application that requires a reasonable computational cost. Therefore, we

recommend building such functionality.

82

APPENDIX A

 GEOMETRIC SIMILARITY OF GENERATED SHORTEST PATHS

An important criterion for comparing the different shortest-path algorithms is the

similarity of the geometry of the generated paths. Locational proximities between the generated

shortest paths provide better insights into the shortcuts followed or modal changes due to

different traffic situations that constrain the recommendations made by each algorithm.

Geometric similarities between lines have been investigated within the GIScience literature for a

variety of applications. Goodchild and Hunter (1997) have developed a method to assess the

accuracy of linear features such as coastlines. They used a buffer zone around the lines, whereas

the accuracy of the digitization is measured in terms of how much of it lies within the buffer

zone.

 Dean et al. (2015) built on this method to compare routes’ similarities in an interesting

way. They viewed the resulting routes generated by different shortest-path algorithms as lines

connecting origins and destinations. Then they measured the similarity of these routes generated

by different algorithms by constructing a buffer zone around the route of the base algorithm

(vector-based route). Furthermore, they evaluated the total percentage of routes that resulted

from their proposed algorithm within a buffer-defined adjacency metric of the vector-based

route. Such a method is very efficient and intuitive in measuring the geometric similarity

between different routes. Other similarity metrics could include the percentage of street or rail

segments that are common in different routes.

Many other metrics could be found in the geometric similarity analysis literature, which

is covered in a wide variety of fields, including genetic studies (Seyler, et al. 2015). However, to

further improve the findings of this research, we suggest the method employed by Dean et al.

(2015) because it gives a broader sense of the contextual spatial similarity between different

routes. I would construct several buffer zones around the route generated by other algorithms.

Then I would test the percentage of the route generated by the proposed algorithm that falls

within these buffer zones. Another comparison could be conducted to check if the routes actually

83

coincide (without buffering around reference routes). The percentage of the path length that is

the same in the routes generated by the different algorithms will be reported in order to compare

the different algorithms. Results can be presented in a chart similar to the one in Figure A-1 that

was originally taken from the paper authored by Dean et al. (2015).

Figure A-1: Dean et al (2015) method of comparing routes (Dean, Thakar, & Sirdeshmukh,

Optimal Routefinding Across Landscapes Featuring High-cost Linear Obstacles, 2015)

84

APPENDIX B

MATSIM NETWORK FILE STRUCTURE, AN EXAMPLE

</network>
<!-- === -->
<nodes>
 <!--Riyadh Streets Nodes Start Here-->
 <node id="-100028" x="675796.0" y="2743173.0" />
 <node id="-100029" x="675818.0" y="2743176.0" />
 <node id="-100063" x="676159.0" y="2743254.0" />
 <node id="-100066" x="676172.0" y="2743266.0" />

<node id="-99905" x="675711.0" y="2743106.0" />
 <node id="-99947" x="675324.0" y="2742743.0" />
 <!--Riyadh Streets Nodes End Here-->
 <!--Riyadh Metro Lines and Walkway Nodes Start Here-->
 <node id="-30470" x="666385.0" y="2737486.0" />
 <node id="-30499" x="663444.0" y="2735491.0" />
 <node id="-30502" x="663441.0" y="2735494.0" />
 <node id="-30533" x="666383.0" y="2737489.0" />

<node id="-33661" x="674626.0" y="2739314.0" />
 <node id="-33720" x="666053.0" y="2756094.0" />
 <!--Riyadh Metro Lines and Walkway Nodes End Here-->
</nodes>

<!-- === -->
<links capperiod="01:00:00" effectivecellsize="7.5" effectivelanewidth="3.75">
 <!--Riyadh Streets Links Start Here-->

<link id="1" from="-90110" to="-90094" length="217.10967101056337" freespeed="22.22222222222222"
capacity="1500.0" permlanes="1.0" oneway="1" modes="car" origid="-90113" type="primary" />
<link id="10" from="-49153" to="-49119" length="376.60002614998467" freespeed="22.22222222222222"
capacity="1500.0" permlanes="1.0" oneway="1" modes="car" origid="-49155" type="primary" />
<link id="9999" from="-67689" to="-68820" length="197.6900839570807" freespeed="22.22222222222222"
capacity="1500.0" permlanes="1.0" oneway="1" modes="car" origid="-68821" type="primary" />

<!--Riyadh Streets Links End Here-->
<!--Walkways that connect streets to stations - Riyadh Streets - Walkways - Metro Station Links Start Here-->

<link id="6666661" from="-33280" to="-33321" length="3.75839991408" freespeed="0.5" capacity="600.0"
permlanes="1.0" oneway="1" modes="transit_walk" type="tertiary" />
<link id="6666662" from="-33321" to="-33280" length="3.75839991408" freespeed="0.5" capacity="600.0"
permlanes="1.0" oneway="1" modes="transit_walk" type="tertiary" />
<link id="6666815" from="-33478" to="-33481" length="19.3518055778" freespeed="0.5" capacity="600.0"
permlanes="1.0" oneway="1" modes="transit_walk" type="tertiary" />

<!--Riyadh Streets - Walkways - Metro Station Links End Here-->
<!--Riyadh Metro Lines Links Start Here-->

<link id="11111107" from="-31309" to="-31155" length="1621.8923412041506" freespeed="22.22222222222222"
permlanes="1.0" oneway="1" modes="train" origid="-31329" />
<link id="11111108" from="-31155" to="-31309" length="1621.8923412041506" freespeed="22.22222222222222"
permlanes="1.0" oneway="1" modes="train" origid="-31329" />
<link id="775544332214" from="-5555546606" to="-5555579004" length="6.082762530298219"
freespeed="22.22222222222222" permlanes="1.0" oneway="1" modes="train" />
<!--Riyadh Metro Links and Walkways Links End Here-->

</links>
<!-- === -->
</network>

85

APPENDIX C

GLOBAL MODULE’S COORDINATES TRANSFORMATION (1)

/* *** *

 * project: org.matsim.*

 * TransformationFactory.java

 * *

 * *** *

 * *

 * copyright : (C) 2007 by the members listed in the COPYING, *

 * LICENSE and WARRANTY file. *

 * email : info at matsim dot org *

 * *

 * *** *

 * *

 * This program is free software; you can redistribute it and/or modify *

 * it under the terms of the GNU General Public License as published by *

 * the Free Software Foundation; either version 2 of the License, or *

 * (at your option) any later version. *

 * See also COPYING, LICENSE and WARRANTY file *

 * *

 * *** */

package org.matsim.core.utils.geometry.transformations;

import org.matsim.core.utils.geometry.CoordinateTransformation;

/**

 * A factory to instantiate a specific coordinate transformation.

 *

 * @author mrieser

 *

 */

public abstract class TransformationFactory {

 public final static String WGS84 = "WGS84";

 public final static String ATLANTIS = "Atlantis";

 public final static String CH1903_LV03 = "CH1903_LV03"; // switzerland

 public final static String CH1903_LV03_Plus = "CH1903_LV03_Plus"; // switzerland new

 public final static String GK4 = "GK4"; // berlin/germany, own implementation

 public final static String WGS84_UTM47S = "WGS84_UTM47S"; // indonesia

 public final static String WGS84_UTM48N = "WGS84_UTM48N"; // Singapore

86

public final static String WGS84_UTM35S = "WGS84_UTM35S"; // South Africa (Gauteng)

 public final static String WGS84_UTM36S = "WGS84_UTM36S"; // South Africa (eThekwini, Kwazulu-Natal)

 public final static String WGS84_Albers = "WGS84_Albers"; // South Africa (Africa Albers Equal Conic)

 public final static String WGS84_SA_Albers = "WGS84_SA_Albers"; // South Africa (Adapted version of

Africa Albers Equal)

 public final static String WGS84_UTM33N = "WGS84_UTM33N"; // Berlin

 public final static String DHDN_GK4 = "DHDN_GK4"; // berlin/germany, for GeoTools

 public final static String WGS84_UTM29N = "WGS84_UTM29N"; // coimbra/portugal

 public final static String WGS84_UTM31N = "WGS84_UTM31N"; // Barcelona/Spain

 public final static String CH1903_LV03_GT = "CH1903_LV03_GT"; //use geotools also for swiss coordinate

system

 public final static String CH1903_LV03_Plus_GT = "CH1903_LV03_Plus_GT"; //use geotools also for swiss

coordinate system

 public final static String WGS84_SVY21 = "WGS84_SVY21"; //Singapore2

 public final static String NAD83_UTM17N = "NAD83_UTM17N"; //Toronto, Canada

 public static final String WGS84_TM = "WGS84_TM"; //Singapore3

 public static final String PCS_ITRF2000_TM_UOS = "PCS_ITRF2000_TM_UOS"; // South Korea - but used by

University of Seoul - probably a wrong one...

 public static final String WGS84_UTM = "WGS84_UTM"; // Saudi Arabia - Middle East - For Riyadh Scenario

 /**

 * Returns a coordinate transformation to transform coordinates from one

 * coordinate system to another one.

 *

 * @param fromSystem The source coordinate system.

 * @param toSystem The destination coordinate system.

 * @return Coordinate Transformation

 */

 public static CoordinateTransformation getCoordinateTransformation(final String fromSystem, final

String toSystem) {

 if (fromSystem.equals(toSystem)) return new IdentityTransformation();

 if (WGS84.equals(fromSystem)) {

 if (CH1903_LV03.equals(toSystem)) return new WGS84toCH1903LV03();

 if (CH1903_LV03_Plus.equals(toSystem)) return new WGS84toCH1903LV03Plus();

 if (ATLANTIS.equals(toSystem)) return new WGS84toAtlantis();

 if (WGS84_UTM.equals(toSystem)) return new WGS84toUTM();

 }

 if (WGS84.equals(toSystem)) {

 if (CH1903_LV03.equals(fromSystem)) return new CH1903LV03toWGS84();

 if (CH1903_LV03_Plus.equals(fromSystem)) return new CH1903LV03PlustoWGS84();

 if (GK4.equals(fromSystem)) return new GK4toWGS84();

 if (ATLANTIS.equals(fromSystem)) return new AtlantisToWGS84();

 }

 return new GeotoolsTransformation(fromSystem, toSystem);

 }

}

87

APPENDIX C

GLOBAL MODULE’S COORDINATES TRANSFORMATION (2)

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package org.matsim.core.utils.geometry.transformations;

import org.matsim.api.core.v01.Coord;

import org.matsim.core.utils.geometry.CoordinateTransformation;

/**

 * This is only for one Datum reference i.e., WGS84 with mathematical model that

 * fits the shape of the earth with this datum as reference Transforms

 * coordinates from Datum WGS84 to UTM synthetic coordinate system. The

 * transformed coordinates will lie somewhere in the Middle East, so it's not

 * disturbed by photographic texture. Coordinates in the synthetic coordinate

 * system should be in the range (-100000,-100000)-(100000,100000) to have a

 * useful transformation.

 *

 * @author Abdullah Binthunaiyan and Hassan Ahmad

 */

public class WGS84toUTM implements CoordinateTransformation {

//Class Level Variable Declarations

//WGS84 Mathematical Model Constants

 double DatumEqRad = 6378137.0; //Equatorial Radius in Metres

 double DatumFlat = 298.2572236; //Polar Flatenning

 double k0 = 0.9996; //Scale on Central Meridian

 double a = DatumEqRad; //Equatorial Radius in Metres

 double f = 1 / DatumFlat; //Polar Flattening

 double b = a * (1 - f); // polar axis

 double e = Math.sqrt(1 - b * b / a * a);//eccentricity

 double drad = Math.PI / 180;//Convert degrees to radians)

 double latd = 0;//latitude in degrees

 double phi = 0;//latitude (north +, south -), but uses phi in reference

88

 double e0 = e / Math.sqrt(1 - e * e);//e prime in reference

 double N = a / Math.sqrt(1 - Math.pow(e * Math.sin(phi), 2));

 double T = Math.pow(Math.tan(phi), 2);

 double C = Math.pow(e * Math.cos(phi), 2);

 double lng = 0;//Longitude (e = +, w = -) - can't use long - reserved word

 double lng0 = 0;//longitude of central meridian

 double lngd = 0;//longitude in degrees

 double M = 0;//M requires calculation

 double x = 0;//x coordinate

 double y = 0;//y coordinate

 double k = 1;//local scale

 double utmz = 30;//default starting utm zone

 double zcm = 0;//zone central meridian

 boolean OOZok = false;

 @Override

 public Coord transform(Coord coord) {

 //Convert Latitude and Longitude to UTM

 k0 = 0.9996;//scale on central meridian

 b = a * (1 - f);//polar axis.

 e = Math.sqrt(1 - (b / a) * (b / a));//eccentricity

 //Input Geographic Coordinates

 //Decimal Degree Option

 double latd0 = coord.getY();

 double lngd0 = coord.getX();

 lngd = lngd0;

 latd = latd0;

 phi = latd * drad;//Convert latitude to radians

 lng = lngd * drad;//Convert longitude to radians

 utmz = 1 + Math.floor((lngd+180)/6);//calculate utm zone

 double latz = 0;//Latitude zone: A-B S of -80, C-W -80 to +72, X 72-84, Y,Z N of 84

 if (latd > -80 && latd < 72){latz = Math.floor((latd + 80)/8)+2;}

if (latd > 72 && latd < 84){latz = 21;}

 if (latd > 84){latz = 23;}

 zcm = 3 + 6*(utmz-1) - 180;//Central meridian of zone

 //Calculate Intermediate Terms

 e0 = e / Math.sqrt(1 - e * e);//Called e prime in reference

 double esq = (1 - (b / a) * (b / a));//e squared for use in expansions

 double e0sq = e * e / (1 - e * e);// e0 squared - always even powers

 N = a / Math.sqrt(1 - Math.pow(e * Math.sin(phi), 2));

 T = Math.pow(Math.tan(phi), 2);

 C = e0sq * Math.pow(Math.cos(phi), 2);

89

 double A = (lngd - zcm) * drad * Math.cos(phi);

 //Calculate M

 M = phi * (1 - esq * (1 / 4 + esq * (3 / 64 + 5 * esq / 256)));

 M = M - Math.sin(2 * phi) * (esq * (3 / 8 + esq * (3 / 32 + 45 * esq / 1024)));

 M = M + Math.sin(4 * phi) * (esq * esq * (15 / 256 + esq * 45 / 1024));

 M = M - Math.sin(6 * phi) * (esq * esq * esq * (35 / 3072));

 M = M * a;//Arc length along standard meridian

 double M0 = 0;//M0 is M for some origin latitude other than zero. Not needed for standard

UTM

 //Calculate UTM Values

 x = k0 * N * A * (1 + A * A * ((1 - T + C) / 6 + A * A * (5 - 18 * T + T * T + 72 * C -

58 * e0sq) / 120));//Easting relative to CM

 x = x + 500000;//Easting standard

 y = k0 * (M - M0 + N * Math.tan(phi) * (A * A * (1 / 2 + A * A * ((5 - T + 9 * C + 4 * C

* C) / 24 + A * A * (61 - 58 * T + T * T + 600 * C - 330 * e0sq) / 720))));//Northing from

equator

 if (y < 0) {

 y = 10000000 + y;

}

 //Output

 return new Coord(Math.round(10 * (x)) / 10, Math.round(10 * y) / 10);

 }

}

90

APPENDIX D

CONFIGURATION FILE

?xml version="1.0" ?>

<!DOCTYPE config SYSTEM "http://www.matsim.org/files/dtd/config_v1.dtd">

<config>

 <module name="global">

 <param name="randomSeed" value="4711" />

 <param name="coordinateSystem" value="WGS84_UTM" />

 </module>

 <module name="network">

 <param name="inputNetworkFile"

value="riyadhMultimodeWithScheduleScenario/multimodalnetwork.xml" />

 </module>

 <module name="plans">

 <param name="inputPlansFile"

value="riyadhMultimodeWithScheduleScenario/population.xml" />

 </module>

 <module name="controler">

 <param name="outputDirectory" value="./output/riyadhMultimodeWithScheduleScenario"

/>

 <param name="firstIteration" value="0" />

 <param name="lastIteration" value="50" />

 <param name="eventsFileFormat" value="xml" />

 <param name="mobsim" value="qsim" />

 <param name="createGraphs" value="true"/>

 <param name="routingAlgorithmType" value="Dijkstra"/>

 </module>

 <module name="qsim">

 <!-- "start/endTime" of MobSim (00:00:00 == take earliest activity time/ run as

long as active vehicles exist) -->

 <param name="startTime" value="00:00:00" />

 <param name="endTime" value="30:00:00" />

 <param name = "snapshotperiod" value = "00:00:00"/> <!-- 00:00:00 means NO

snapshot writing -->

 </module>

<module name="planCalcScore">

 <param name="learningRate" value="1.0" />

 <param name="BrainExpBeta" value="2.0" />

91

 <param name="lateArrival" value="-18" />

 <param name="earlyDeparture" value="-0" />

 <param name="performing" value="+6" />

 <param name="traveling" value="-6" />

 <param name="waiting" value="-0" />

 <param name="activityType_0" value="work" /> <!-- work -->

 <param name="activityPriority_0" value="1" />

 <param name="activityTypicalDuration_0" value="12:00:00" />

 <param name="activityMinimalDuration_0" value="08:00:00" />

 <param name="activityType_1" value="home" /> <!-- home -->

 <param name="activityPriority_1" value="1" />

 <param name="activityTypicalDuration_1" value="08:00:00" />

 <param name="activityMinimalDuration_1" value="06:00:00" />

 <param name="activityOpeningTime_1" value="07:00:00" />

 <param name="activityLatestStartTime_1" value="09:00:00" />

 <param name="activityEarliestEndTime_1" value="" />

 <param name="activityClosingTime_1" value="18:00:00" />

 </module>

 <module name="strategy">

 <param name="maxAgentPlanMemorySize" value="5" /> <!-- 0 means unlimited -->

 <param name="ModuleProbability_1" value="0.7" />

 <param name="Module_1" value="BestScore" />

 <param name="ModuleProbability_2" value="0.1" />

 <param name="Module_2" value="ReRoute" />

 <param name="ModuleProbability_3" value="0.1" />

 <param name="Module_3" value="TimeAllocationMutator" />

 <param name="ModuleProbability_4" value="0.1" />

 <param name="Module_4" value="ChangeTripMode" />

 </module>

 <module name="transit">

 <param name="useTransit" value="true" />

<param name="transitScheduleFile"

value="riyadhMultimodeWithScheduleScenario/transitschedule.xml" />

<param name="vehiclesFile"

value="riyadhMultimodeWithScheduleScenario/transitVehicles.xml" />

 <param name="transitModes" value="train" />

 </module>

</config>

92

REFERENCES

American Public Transportation Association. 2016. Shared Mobility and the Transformation of

Public Transit. Washington, DC: American Public Transportation Association.

Andreas, Horni, Kay W. Axhausen, and Kai Nagel. 2016. The Multi-Agent Transport Simulation.

London: Ubiquity Press.

Apple. 2017. The future is here: iPhone X. 09 12. Accessed 10 22, 2017.

https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/.

Arriyadh Development Authority. 2014. (ADA Programs and Projects). 12 1. Accessed 12 1,

2014.

http://www.ada.gov.sa/ADA_A/DocumentShow/?url=/res/ADA/Ar/Projects/RiyadhMetr

o/index.html.

Axhausen, Kay, Andreas Horni, and Kai Nagel. 2016. The Multi-Agent Transport Simulation.

London: Ubiquity press.

Badii, Anush. 2014. A Practical Introduction to Traffic Flow Theory and on Ramp Flow Control.

San Diego: California Department of Transportation.

Bertsekas, Dimitri P. 1998. Network optimization: continuous and discrete models. . Belmont:

Athena Scientific.

Bhaskar, Umang, Lisa Fleischer, Darrell Hoy, and Chien-Chung Huang. 2009. "Equilibria of

Atomic Flow Games are not Unique." Proceedings of the twentieth Annual ACM-SIAM

Symposium on Discrete Algorithms 748-757.

Bondy, J. A., and U.S.R. Murty. 1976. Graph Theory With Applications. New York: The

Macmillan Press Ltd.

Cascetta, Ennio. 2009. "Transportation Supply Models." In Transportation systems analysis:

models and applications, by Ennio Cascetta, 29-88. Springer Science & Business Media.

Chen, S. K., S. Liu, X. Xiao, J. Hong, and B. H Mao. 2012. "M/G/C/C-Based Model of

Passenger Evacuation Capacity of Stairs and Corridors in Metro Stations." Journal of the

China Railway Society 7-12.

Coello, Carlos A., Gary B. Lamont, and David A. Van Veldhuizen. 2007. Evolutionary

algorithms for solving multi-objective problems. New York: Springer.

93

Correa, Jose., and Nicol Stier-Moses. 2010. "Wardrop Equilibria." Wiley Encyclopedia of

Operations Research and Management Science.

Dean, Denis J. 2015. "Spatial Optimization Class at UTD." 10 1.

Dean, Denis J., Vaishnavi Thakar, and Neeraj Sirdeshmukh. 2015. "Optimal Routefinding

Across Landscapes Featuring High-cost Linear Obstacles." Transactions in GIS.

Dutch, Steven. 2017. Convert Geographical Units. 08 01. Accessed 08 01, 2017.

http://www.rcn.montana.edu/resources/converter.aspx.

ESRI. 2017. "Network Analyst Tutorial." 01 01.

http://help.arcgis.com/en/arcgisdesktop/10.0/pdf/network-analyst-tutorial.pdf.

—. 2010. Network elements. 03 02.

http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Network_elements.

Fisk, C. S. 1984. "Game theory and transportation systems modelling." Methodological 301-313.

Flotterod, Gunnar. 2016. "MATSim as aMonte-Carlo Engine." In The Multi-Agent Transport

Simulation MATSim, by A Horni, K Nagel and K W. Axhausen, 327–336. London:

Ubiquity Press.

Gao, Wenli. 2009. "Comparisons between MATSim and EMME/2 on the Greater Toronto and

Hamilton Area Network." Toronto.

Goodchild, Michael F., and Gary J. Hunter. 1997. "A simple positional accuracy measure for

linear Features." International Journal of Geographical Information Science 299-306.

Goodchild, Michael. 2000. "GIS and Transportation: Status and Challenges." GeoInformatica

127–139.

Google. 2017. Google Pixel 2. 10 22. Accessed 10 22, 2017.

https://store.google.com/product/pixel_2_learn.

Google Inc. 2015. Google Maps Content Providers. 12 20.

https://maps.google.com/help/maps/mapcontent/transit/faq.html#genq1.

Google Official Blog. 2009. Google Official Blog. August 25.

https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html.

Google, Inc. 2016. Success Stories. 03 01.

http://maps.google.com/help/maps/mapcontent/transit/success-story.html.

94

Hollander, Y., and J. N. Prashker. 2006. "The applicability of non-cooperative game theory in

transport analysis." Transportation 481-496.

Iacobucci, Joe, Kirk Hovenkotter, and Jacob Anbinder. 2017. "Transit Systems and the Impacts

of Shared Mobility." In Disrupting Mobility, Impacts of Sharing Economy and

Innovative, by Gereon Meyer and Susan Shaheen, 75. Berlin: Springer International

Publishing .

intel. 2017. 50 Years of Moore's Law. 10 22. Accessed 10 22, 2017.

https://www.intel.com/content/www/us/en/silicon-innovations/moores-law-

technology.html.

Kaufman, David E., Nonis Jason, and Robert L. Smith. 1998. "A mixed integer linear

programming model for dynamic route guidance." Transportation Research Part B:

Methodological 32.6 431-440.

Kleinrock, Leonard. 1975. Queuing Systems Volum I: Theory. Los Angelese: John Wiley &

Sons.

Liu, Lu. 2010. Data Model and Algorithms for Multimodal Route Planning with Transportation

Networks. Munich: Technical University of Munich.

Macfarlane, Greg. 2017. A script to convert a lines shapefile into a MATSim network. 07 01.

https://gist.github.com/gregmacfarlane/eb5a9299b1532f4b631c.

Maerivoet, Sven, and Bart De Moor. 2005. "Traffic flow theory." physics/0507126.

Magzhan, Kairanbay, and Hajar Mat Jani. 2013. "A Review And Evaluations Of Shortest Path

Algorithms." International Journal of Scientific & Technology Research 99-104.

MATSim. 2017. Documentation. 01 01. http://www.matsim.org/docs.

McNally, Michael G. 2007. "THE FOUR STEP MODEL." In Handbook of Transport Modeling,

by Hensher and Button. eds.

Microsoft. 2017. Microsoft Lumia 950 XL. 10 22. Accessed 10 22, 2017.

https://www.microsoft.com/en-us/mobile/phone/lumia950-xl-dual-sim/.

Nagel, Kai. 2017. Testing for Nash equilibrium? 09 02.

https://matsim.atlassian.net/wiki/questions/75268118/testing-for-nash-equilibrium.

95

Nagel, Kai, Kay W. Axhausen, Benjamin Kickhofer, and Andreas Horni. 2016. "Research

Avenues." In The Multi-Agent Transport Simulation MATSim, by Kai Nagel, Kay W.

Axhausen and Andreas Horni, 533–542. London: Ubiquity Press.

Osborne, Martin J., and Ariel Rubinstein. 1994. A course in Game Theory. MIT Press.

Popovici, Elena, Anthony R Bucci, Paul Wiegand, and Edwin D. de Jong. 2012. "Coevolutionary

Principles." In Handbook of Natural Computing, by Grzegorz Rozenberg, Thomas Bck

and Joost N. Kok, 987-1033. Berlin : Springer Berlin Heidelberg.

Qualcomm. 2017. 10 22. Accessed 10 22, 2017.

https://www.qualcomm.com/products/snapdragon.

Rapino, Melanie A., and Alison K. Fields. 2013. "Mega Commuting in the U.S: Time and

Distance in Defining the Long Commute using the American Comminty Survey."

Association for Public Policy Analysis and Management Fall 2013 Conference .

Washington, DC.

Rodrigue, Jean-Paul, Claude Comtois, and Brian Slack. 2006. The Geography of Transport. New

York: Routledge.

Sam Drew Takes On. 2015. Waze Social GPS Maps & Traffic – What’s so Awesome about This

Navigation App? 05 31. http://www.samdrewtakeson.com/2015/05/waze-social-gps-

maps-traffic-whats-awesome-navigation-app/.

Schulz, Andreas S., and Nicolás Stier-Moses. 2003. "On the performance of user equilibria in

traffic networks." Fourteenth annual ACM-SIAM symposium on Discrete algorithms.

Baltimore. 86-87.

Seyler, Sean L., Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. 2015. "Path Similarity

Analysis: A Method for Quantifying Macromolecular Pathways." Computational

Biology.

The Linley Group. 2015. A Guide to Mobile Processors. 08 01. Accessed 22 2017, 10.

http://www.fiercewireless.com/wireless/report-qualcomm-led-smartphone-application-

processor-market-1h-2016.

Thunig, Theresa, and Kai Nagel. 2017. "The structure of user equilibria: Dynamic

coevolutionary simulations vs. cyclically expanded networks." Procedia Computer

Science 648–655.

96

Thuniga, Theresa, and Kai Nagel. 2017. "The structure of user equilibria: Dynamic

coevolutionary simulations vs. cyclically expanded networks." Procedia Computer

Science 648–655.

Toyota. 2016. Camry Specifications. https://www.toyota.co.nz/our-

range/camry/camry/specifications/gl/.

Trainline. 2016. Mobile App from Trainline. 04 01.

http://www.bucksfreepress.co.uk/beaconsfield/14482182.New_idea_brings_end_to_long

_queues_at_railway_stations/.

Uber. 2014. Our Committment to Safety. 12 17. https://newsroom.uber.com/our-commitment-to-

safety/.

Wardrop, John. 1952. " Some theoretical aspects of road traffic research." ICE Proceedings: Part

II, Engineering Divisions 325-362.

Xu, Xin-yue, Liu Jun, Hai-ying Li, and Jian-Qiang Hu. 2014. "Analysis of subway station

capacity with the use of queueing theory." Transportation research part C: emerging

technologies 38 28-43.

Yazicioglu, Ahmet Yasin, Xiaoli Ma, and Yucel Altunbasak. 2011. "Analyzing the Dynamics of

Evolutionary Prisoner’s Dilemma on Structured Networks." International Conference on

Game Theory for Networks. Berlin Heidelberg: Springer . 190-204.

Zakharo, Victor, Alexander Krylatov, and Dmitry Ivanov. 2013. "Equilibrium Traffic Flow

Assignment in Case of Two Navigation Providers." In Collaborative Systems for

Reindustrialization, by Luis M. Camarinha-Matos and Raimar J. Scherer, 156-163. Berlin

Heidelberg: Springer.

Zhan, F. Benjamin, and Charles E. Noon. 1998. "Shortest Path Algorithms: An Evaluation Using

Real Road Network." Transportation Science 65-73.

97

BIOGRAPHICAL SKETCH

Abdullah Binthunaiyan was born and grew up in Durma- Saudi Arabia. In 2003, he obtained his

bachelor’s degree in electrical engineering from King Fahd University of Petroleum and Minerals-

Dhahran. He joined the National Information Center in the same year and worked in the research and

development department. Then he got his master’s degree in Geographical Information Systems

from the University of Redlands in 2010. As an employee in the National Information Center, he

supervised and managed several projects and data products. In 2018, he graduated from The

University of Texas at Dallas with a PhD. in Geospatial Information Sciences.

98

CURRICULUM VITA

ABDULLAH N. BINTHUNAIYAN

Education

2003 B.Sc. in Electrical Engineering, King Fahd University of Petroleum and

Minerals, Dhahran.

2008 GIS Certificate, University of California-Riverside

2010 MS GIS, University of Redlands, California, USA

2013- 2018 PhD-GISC, University of Texas at Dallas

Work

Experience

Memberships ● American Geographers Association, GIS Corp, Academy of Science and Engineering, the

International Geographical Honor Society, and the Association for Information Systems.

Research ● Smart Cities, Opportunity, Challenges, and Economic Implications, In Progress

 ● Spatial Optimization and Multimodal Shortest Path Algorithm

 ● Multilevel Modeling of HVC Knowledge in Egypt

 ● Mapping the Feeling Thermometer of American Voters in the 2016 Election.

 Personal

Background

● National Information Center- Saudi Arabia

 R & D specialist, and GIS specialist. Researched on: GIS, APIS, RFID, Smart Cities, Data Mining,

Spatial Optimization, and Agent-Based Modeling. Surveyed and researched: Social, Public,

Labor and Political spatial-based data. Evaluated RFP responses on the following projects: GIS,

AVL, RFID, Oracle Licensing, Data Mining. Worked as MACA-GIS project Manager, GIS

application manager for Traffic and Security Patrol Departments, conducted a pilot GIS project

for the Higher Commission of Industrial Security Saudi Arabia. Served in the Information

Security Auditing Committee-NIC.

Grew up in Riyadh, Kingdom of Saudi Arabia. Interests include online gaming

and sports (soccer and squash rackets). Love horse racings.

