
RESOURCE ALLOCATION AND PERFORMANCE ANALYSIS FOR NEXT

GENERATION WIRELESS COMMUNICATION AND

RADIO ASTRONOMY SYSTEMS

by

Dong Han

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Hlaing Minn, Chair

Dr. Naofal Al-Dhahir

Dr. Aria Nosratinia

Dr. Murat Torlak



Copyright c© 2020

Dong Han

All rights reserved



Dedicated to my paternal grandmother.



RESOURCE ALLOCATION AND PERFORMANCE ANALYSIS FOR NEXT

GENERATION WIRELESS COMMUNICATION AND

RADIO ASTRONOMY SYSTEMS

by

DONG HAN, BE, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT DALLAS

May 2020



ACKNOWLEDGMENTS

I would like to thank my PhD advisor, Dr. Hlaing Minn, for his suggestions, dedicated

guidance, and constant support that made this work possible. I appreciate the valuable

remarks of my PhD committee members, Drs. Naofal Al-Dhahir, Aria Nosratinia, and

Murat Torlak.

I am also grateful to my collaborators, Drs. Teng Joon Lim and Utku Tefek, for their great

guidance and remarks on the machine-type communication part.

I would also like to say a heartfelt thank you to my parents for their patience and encouraging

me to follow my dream.

March 2020

v



RESOURCE ALLOCATION AND PERFORMANCE ANALYSIS FOR NEXT

GENERATION WIRELESS COMMUNICATION AND

RADIO ASTRONOMY SYSTEMS

Dong Han, PhD
The University of Texas at Dallas, 2020

Supervising Professor: Dr. Hlaing Minn, Chair

Radio spectrum is a limited resource for both scientific research and wireless communications

industry. The usage of spectrum can be either active, e.g., wireless data transmission and

radar detection, or passive, e.g., radio astronomy observation. However, with the rapid

growth of active communication and passive signal receiving demand, more efficient and

flexible utilization of spectrum is vital. On the other hand, achieving a high power efficiency is

also important to signal transmission and detection. This dissertation devotes to developing

machine-type communication systems and distributed radio astronomy systems with limited

spectrum and power resources.

For a radio resource limited multi-tier Machine-type Communication (MTC) network, con-

trolling random access congestion while satisfying the unique requirements of each tier and

guaranteeing fairness among nodes is always a challenge. In the first part, we study the

network dimensioning and radio resource partitioning for the uplink of an MTC network

with signal-to-interference ratio (SIR)-based clustering and relaying, where MTC gateways

(MTCGs) capture and forward the packets sent from MTC devices (MTCDs) to the base

station (BS). Specifically, under transmission outage probability constraints, we investigate

the tradeoff between network utility (in terms of transmission capacity and revenue) and
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resource allocation fairness. With both outage probability constraints and minimum MTCD

density constraints, we propose approaches to maximize the weighted sum of quality of ex-

perience (QoE) of different tiers of MTCDs. Furthermore, a transmit power control strategy

for MTCG-to-BS link is proposed to achieve a constant data rate.

In the second part of this dissertation, we consider a new large-scale communication scheme

where randomly distributed backscatter nodes are involved as secondary users to primary

transmitter and primary receiver pairs. The secondary communication between a backscatter

transmitter and a backscatter receiver introduces additional double fading channels and

has a two-side effect to the primary communications. We derive the signal-to-interference-

plus-noise ratio and signal-to-interference ratio based coverage probabilities for two network

configuration scenarios, which can provide useful insights in designing such systems.

A conflict of the spectrum rights and needs between active wireless communication systems

and passive radio astronomy systems (RASs) has become substantially greater due to the

phenomenal expansion of wireless communications and increased interest in RAS observa-

tion. For sustainable growth and coexistence of cellular wireless communications (CWC) and

RAS, a coordinated shared spectrum access paradigm was recently introduced. Embracing

such a paradigm, the third part of this dissertation proposes a distributed auxiliary radio

telescope (DART) system which can geographically and spectrally coexist with CWC while

offering additional capability or performance enhancement to RAS. Theoretical performance

analysis of the DART system with different quantization resolutions is presented, and ap-

proximate closed-form expressions are obtained. Adaptation of the cooling power of DART

receivers according to the time-varying ambient temperature is also proposed. Furthermore,

an analytical expression for the DART system parameters under the shared spectrum ac-

cess paradigm and cooling power constraint to achieve the same performance as the existing

single-dish RAS with a radio quiet zone is developed to provide guidance in the DART sys-
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tem design. The numerical and simulation results illustrate the feasibility and potentials of

the proposed DART system.
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CHAPTER 1

INTRODUCTION

1.1 Background

Spectrum and power are two major resources for signal transmission and detection. With

limited radio resources, next generation wireless communication systems aim to provide

ubiquitous connections for a massive amount of devices, next generation radio astronomy

systems (RASs) demand more observation opportunity and higher observation performance.

Thus, it is necessary to investigate spectrum access and data transmission/receiving schemes

for both the wireless communications industry and scientific research.

As part of the Internet-of-things (IoT), MTC devices (MTCDs) are expected to generate

a huge amount of data every second. However, without timely gathering and processing

of the data, useful information cannot be extracted and acted upon. For instance, future

application scenarios include automobiles and unmanned aerial vehicles (UAVs) reporting

traffic conditions to a data processing center, sensors transmitting video data to a server,

computation-limited devices offloading tasks to a cloud server, etc. These applications may

require massive numbers of simultaneous connections between devices and base stations

(BS’s), which leads to severe congestion on the random access channel (RACH) and impairs

the reliability of both the MTC and Human-to-Human (H2H) communications networks [76].

At the same time, the coexistence of diverse devices requiring different Quality of Service

(QoS) in terms of latency [58], transmission rate and outage, connection security [67], etc,

is a key desired feature of M2M networks. How to efficiently aggregate the huge amount of

transmissions while satisfying various QoS requirements and mitigating the negative effects

on H2H communication is still a problem.

For large-scale MTC networks involving different tiers of MTCDs, fair resource allocation

is always a challenge in that 1) the measurement of fairness is not unique, such as α-fairness
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[38], bargaining achievable fairness [85], and 2) the fairness maximization problem may have

no global optimal solution. On the other hand, quality of experience (QoE) has recently

received more interest in the network design and optimization of many applications such as

5G [53, 41, 82, 86] and cloud computing [10]. As defined by the International Telecommuni-

cation Union (ITU), QoE is the overall acceptability of an application or service as perceived

subjectively by the end-user [33]. Thus, improving the user experience of data-hungry ap-

plications under given QoS requirements is an interesting problem.

The backscatter mechanism enables backscatter transmitters (BTs) to have a simple

structure consisting of no active radio frequency (RF) component, which is strongly fa-

vored by the Internet-of-things (IoT) application scenarios where many power-limited de-

vices need to be connected. There are three configurations of backscatter communication

systems, namely, monostatic backscatter, bistatic backscatter and ambient backscatter [75].

Recently, two research thrusts of backscatter communications are beginning to be eagerly

investigated, i.e., the Wireless Powered Backscatter Communication (WPBC) [27] and the

Ambient Backscatter Communication (AmBC) [43, 7, 83].

AmBC was proposed to enable devices to communicate by backscattering ambient RF

signals. As shown in Fig. 3.2, the BT harvests energy from the ambient signal and quickly

transmits its own information bits to the corresponding backscatter receiver (BR) by chang-

ing the impedance of its antenna in the presence of the ambient signal [43]. For instance,

the BT transmits ’0’ by setting a high antenna impedance and transmits ’1’ by adjusting to

a low antenna impedance so that the BR can distinguish the different backscattered signal

energy levels from the BT.

Next, we consider the spectrum access issue between cellular wireless communications

(CWC) and RAS. RAS provides economically and scientifically important observations of the

cosmos which benefit the society consistently [55]. As RAS signals are very weak with signal-

to-noise power ratio (SNR) as low as −60 dB [33], they are highly sensitive to radio frequency
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interference (RFI) caused by wireless communication systems. Thus, radio telescopes are

built in remote areas surrounded by radio quiet zones for interference isolation [54], [74].

However, the expansion of wireless communication systems in terms of applications [5], radio

coverage, radio spectrum [59], and spectrum utilization [49, 30, 39] has caused increased

RFI to RAS. The direct results are RFI-corrupted radio astronomical data and less radio

astronomical observation opportunities and the consequence is a severe hindrance to science

and knowledge discovery. On the other hand, there are increased interests and needs for

expanding RAS observations, thus enlarging the conflict of spectrum access rights/needs

between the two systems [57, 32, 71].

To mitigate the conflict between CWC and RAS, [52] and [64] recently proposed a new

spectrum sharing paradigm where both systems have RFI-free guaranteed spectrum access

by means of a three-phase time-division approach. [64] also pointed out the instancy of

embracing the new paradigm and justified that different from other spectrum sharing schemes

[2, 87, 51, 84, 62, 12] for cognitive radio, the overall spectrum utilization is enhanced by

designing time-dependent durations of the spectrum access phases according to the CWC

traffic statistics (e.g., on an hourly basis). An extension for coexistence of WiFi and RAS was

addressed in [63]. Thus, to accommodate expansions of both CWC and RAS, we embrace the

shared spectrum access paradigm of [52] and propose a distributed auxiliary radio telescope

(DART) system which can coexist with CWC and conventional single-dish RAS.

1.2 Outline and Contributions

In the first part of the dissertation (CHAPTER 2), we propose a multi-tier MTC data aggre-

gation scheme under different QoS constraints. We develope spectrum resource partitioning

approaches to 1) achieve different degrees of tradeoffs between the network utility and the

fairness of radio resource allocation, and 2) maximize the weighted sum of QoEs. Next, we

3



propose an MTC gateway transmit power control strategy to accommodate the proposed

MTC data aggregation scheme.

In the second part of the dissertation (CHAPTER 3), we consider new large-scale com-

munication scenarios where AmBNs are involved as secondary users. Because of the ambi-

ent backscatter mechanism, double fading channels are involved. Then, we investigate the

backscatter nodes’ interference and/or signal enhancing effect to the primary receiver, and

derive the coverage probability of primary transmitter.

In the third part of the dissertation (CHAPTER 4), we propose a DART system to

observe and process the radio astronomical signal, which coexists with CWC systems and

conventional single-dish RAS. Theoretical performance analysis of the DART system with

different quantization resolutions is presented, and approximate closed-form expressions are

obtained. Adaptation of cooling power of DART receivers according to the time-varying

ambient temperature is also proposed.

1.3 Notations

The following notations are used in this dissertation. x is a scalar. x is a vector, and ‖x‖p

is its lp-norm, where p ≥ 0. Specifically, ‖x‖ = ‖x‖2. (·)Tand (·)H are the transpose and

conjugate transpose operators respectively. 1(·) stands for the indicator function. B(c, r)

represents a ball centered at c with radius r and bold number 0 refers to the origin. E(·) and

Var(·) denote the expectation and variance operators, respectively. Particularly, EY(·) is the

expectation operator over Y. P(x) denotes the probability of x. Re(x) and Im(x) are the

real and image parts of x, respectively. For a real number a, [a]+ represents the maxima of

a and zero. bac represents the maximum integer not larger than a, and dae is the minimum

integer not smaller than a.
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CHAPTER 2

NETWORK DIMENSIONING, QOE MAXIMIZATION AND POWER

CONTROL FOR MULTI-TIER MACHINE-TYPE COMMUNICATIONS

2.1 Introduction

In this chapter, we consider an uplink multi-tier MTC communication system and address

the spectrum and power allocation issues. Since MTC data can be efficiently aggregated by

a hierarchical network, a number of clustering and resource allocation methods have been

proposed to solve this problem[40, 72, 6, 70, 69]. For instance, in [70] and [69], SIR and

location based clustering and decode-and-forward relaying schemes for single-tier1 MTCDs

were proposed to maximize the transmission capacity of the MTC network under an outage

probability constraint.

In general, orthogonal resource allocation such as time division [47, 46, 50] significantly re-

duces the interference but has low spectrum efficiency and requires more demanding synchro-

nization. On the other hand, using nonorthogonal resource allocation such as the nonorthog-

onal multiple access (NOMA) [14, 45] enhances spectrum efficiency but introduces interfer-

ence, leading to a more complicated decoding scheme [80]. In [70, 69, 26] and this chapter,

the combination of orthogonal and nonorthogonal resource allocation approaches is used,

where every H2H user, MTCG and MTCD tier are assigned orthogonal channel resources.

MTCDs of the same tier share the same band in a nonorthogonal manner. In this way, the

conventional H2H communication is free of MTC caused interference and the MTC achieves

a higher spectrum efficiency through spectrum reuse.

0 c© 2019 IEEE. Reprinted, ”Network Dimensioning, QoE Maximization, and Power Control for Multi-Tier
Machine-Type Communications,” in IEEE Transactions on Communications, vol. 67, no. 1, pp. 859-872,
Jan. 2019.

1i.e., all MTCDs have the same QoS requirements.
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Motivated by the massive data and connection demands and challenges mentioned above,

the main goal of this chapter is to realize a cluster-based framework for efficient and flexible

MTC data aggregation under multiple QoS constraints. We consider two data aggrega-

tion optimization problems, namely 1) network dimensioning and utility maximization with

fairness constraints, where we measure fairness by how equally the radio resource is parti-

tioned to different MTCD tiers and maximize the network utility2 and 2) QoE maximization.

Next, to support the data aggregation scheme, we propose a power control strategy for the

randomly distributed MTCGs on the MTCG-to-BS link. We note that since the MTCD-

to-MTCG links accommodate large numbers of devices based on grant-free random access,

power control for MTCDs is impractical and hence is not considered in this chapter.

In the following, we distinguish our work from several state-of-the-art existing works.

Regarding the MTC data aggregation, [50] proposed a multi-hop data aggregation scheme

and found the tradeoffs between the energy density and the coverage characteristics. They

assumed TDMA for the users within each Voronoi cell for the data aggregation. In con-

trast, in this chapter we investigate a random access approach for single-hop MTC data

aggregation so that the devices with different QoS constraints can simultaneously transmit

their packets. The authors in [22] designed a two-phase MTC data aggregation scheme for a

single tier of devices and solved the problem of resource scheduling between different phases.

However, all the aggregators were assumed to have a fixed disc-shaped serving zone (i.e.,

the MTCD locations are modeled as Matern cluster point process with the aggregator lo-

cations being the parent point process), which may limit the efficiency or flexibility of the

aggregator when the device locations are uniformly distributed. In contrast, in our data ag-

gregation scheme, the locations of different tiers of devices are assumed to form independent

homogeneous PPPs without transmission boundaries and the aggregators (MTCGs) will suc-

cessfully capture the packets from any MTCD if the SIR permits. While the energy-efficient

2The network utility is defined as the weighted sum of network capacity. When the weights are regarded
as the price per unit of capacity, the network utility will represent the economic revenue of the network.
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data aggregation scheme proposed in [73] requires the MTCDs (smart meters) to know the

aggregator positions, the MTCDs in our scheme can transmit without any knowledge of the

MTCG positions. Other papers such as [18] also deal with the energy-optimal routing issues

in MTC data aggregation, but we focus on the maximization of the network utility and the

weighted sum QoE, and the MTCG power control problem.

While the effects of channel inversion power control in the stochastic geometry modeling

of cellular networks have been well studied e.g. [56, 42, 15], our proposed MTCG power

control strategy focuses on a different aspect from those papers. Specifically, [56] and [15]

investigated the channel inversion power control for different uplink transmission models

in cellular networks and found the coverage probability based on the complementary cu-

mulative distribution function (CCDF) of the signal-to-interference-plus-noise ratio (SINR).

Addationally, using channel inversion to compensate the path loss was considered in [42]

to study different spectrum sharing schemes (i.e., overlay and underlay) and transmission

mode for D2D communications in cellular networks. In our proposed MTCG power control

strategy, we apply channel inversion to compensate both the path loss and the Rayleigh fad-

ing. Since the MTCGs are allocated orthogonal radio resources, we derive the CCDF of the

received signal-to-noise ratio (SNR) at the BS instead of the SINRs that were considered in

[56] and [15], and hence obtain an accurate result without any approximation or modification

in the system model.

The main contributions of this chapter are summarized as follows:

1. We propose a multi-tier MTC data aggregation scheme under different QoS constraints.

The proposed scheme causes no interference to the conventional H2H communications

due to orthogonal resource allocation between M2M and H2H users.

2. Defining the network utility as the weighted sum of network capacity (throughput), we

develop three specific resource partitioning approaches and calculate the corresponding

MTCD transmission densities of different tiers.
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3. We develop a generalized resource partitioning approach to achieve different degrees

of tradeoffs between the network utility and fairness of radio resource allocation.

4. Using an increasingly popular performance metric, namely the weighted sum of QoE

as a measure of the satisfaction of network throughput, we also develop global optimal

resource partitioning solutions.

5. Furthermore, we propose an MTCG transmit power control strategy to enhance the

proposed MTC data aggregation scheme. The effect of the aggregated MTCG transmit

power on the resource partitioning between MTCGs and MTCDs is analyzed.

The feasibility of this work can be justified as follows. The proposed network dimen-

sioning is applied during the system design phase for the deployment of multi-tier MTCDs

and no real-time processing is required. The proposed power control achieves the maximum

MTCG-to-BS spectral efficiency with limited aggregated MTCG transmit power, provided

that the channel state information (CSI) and the distance between the MTCG and BS are

known to the transmitting MTCG. Operator installed devices as well as registered wireless

users such as cell phones, laptops and WiFi access points, can serve as MTCGs. Thus, the

proposed methods are practical.

The rest of this chapter is organized as follows. The MTC data aggregation model is

proposed in Section 2.2, where the end-to-end outage probability is derived and the back-

ground of MTCG power control is introduced. In Section 2.3, we propose the network

dimensioning and network utility maximization problem and analyze the tradeoff between

resource partitioning fairness and network utility. Then, the QoE maximization problem

under transmission outage probability constraints and minimum MTCD density constraints

is solved in Section 2.4. Next, we investigate the MTCG power control strategies to achieve a

constant MTCG-to-BS data rate in Section 2.5. Finally, Section 2.6 concludes this chapter.
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MTCD-to-MTCG (link 1)
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Figure 2.1: Network Structure (MTCGs capture and relay packets to the BS from MTCDs
belonging to different tiers.)

2.2 System Model

2.2.1 Communication System and Data Aggregation Model

We consider a single-hop MTC uplink relay scenario as shown in Fig. 2.1. A group of

packets sent from MTCDs are gathered by nearby MTCGs and then relayed (in a decode-

and-forward way) to the BS so that random access requests to the BS are moderated. The

MTCDs are classified into different tiers according to their required transmission outage

probabilities {ζj}. We assume that there are N tiers of devices and the locations of the tier

j MTCDs form a homogeneous spatial PPP, ΦDj = {Xj,k} with density λj, ∀j = 1, . . . , N .

In compact form, we use vector λλλ = (λ1, . . . , λN)T to represent the densities. Similarly the

MTCG locations form a homogeneous spatial PPP, ΦG = {Yi} with density λG. ΦDj ’s are

assumed to be pairwise independent from each other and from ΦG.
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Figure 2.2: Resource partitioning among MTCDs and MTCGs.

The total amount of radio spectrum resources for MTC is limited and it should be

partitioned among MTCGs and different tiers of MTCDs. Assuming that there are QM

resource blocks (RBs) reserved for M2M communications and Q1 = γQM RBs allocated for

MTCD-to-MTCG link (link 1), then Q2 = (1 − γ)QM RBs are allocated for MTCG-to-BS

link (link 2), where γ ∈ [0, 1]. Next, Qj
1 = βjQ1 RBs are allocated for the jth tier of MTCDs,

where 0 ≤ βj and
∑N

j=1 βj = 1. The considered resource partitioning is shown in Fig. 2.2.

We denote the spectrum partitioning factors in compact form with vector βββ = (β1, . . . , βN)T.

Since [70] stated equal resource partitioning among MTCGs is optimal by showing that all

MTCGs capture a packet with the same probability, Q2/G RBs are allocated for each MTCG,

where constant G is the number of MTCGs in the coverage of BS’s3.

Furthermore, the MTCDs use the same modulation and coding scheme to send fixed-

length packets with a constant transmit power. The MTCGs decode the captured MTCD

3While [70] considers only one BS, we consider multiple BS’s to analyze the power control problem. The
total resource QM is then from all the considered BS’s.
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packets and forward the message on orthogonal channels to the BSs under cellular standards.

In this scheme, the channel state information (CSI) of link 1 is not required by MTCDs

unless adaptive modulation schemes are used, making the system simple and scalable. The

CSI of link 2 is assumed known to the MTCGs since they are direct users in the cellular

networks. Since link 1 and link 2 use different wireless technologies, transmitting the same

message through link 1 and link 2 may require different amount of resources. We assume

each MTCD needs δ1 RBs to transmit one packet, and each MTCG needs δ2 RBs in order to

relay a MTCD’s packet to the BS. Therefore, each MTCG can have at most U2 = bQ2/(Gδ2)c

relay channels, while the jth tier of MTCDs has U j
1 = bβjQ1/δ1c orthogonal data channels

and the total number of link 1 channels is U1 =
∑N

j=1 U
j
1 ≈ bQ1/δ1c. We also assume

independent and identically distributed (i.i.d.) Rayleigh fading with unit average power

gain on each channel, and path loss with exponent α over all channels, i.e., the path loss

from the transmitter to the receiver at a distance of r is r−α.

The data aggregation process is designed as follows. First, each active MTCD randomly

selects a channel among those that are allocated for its tier. Since two or more MTCDs can

potentially transmit on the same channel, they may interfere with each other. Second, each

MTCG listens to all the MTCD-to-MTCG channels, but only chooses the MTCD with the

highest average received power (i.e., the nearest MTCD) on each channel. Also, the MTCGs

can successfully decode a packet only when their received SIR is higher than a threshold η.

Third, the MTCGs treat packets from all MTCDs equally in the sense that if no greater than

U2 packets are decoded, all of them will be relayed; otherwise, the MTCG will randomly

choose to relay U2 packets and drop the rest.

2.2.2 End-to-End Outage Probability and Capacity

In the data aggregation process, we note that the resource partitioning between link 1 and

link 2 determines the number of channels U1 and U2 for the two links, and hence affects
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the end-to-end outage probability. Intuitively, allocating more resources to link 1 leads

to greater transmission density and less interference, but higher packet drop rate at the

gateways. Therefore, there would be an optimal operating point in the resource partitioning

between link 1 and link 2 as we can see in the next section.

Note that the end-to-end outage probability for single-tier SIR-based clustering and re-

laying MTC data aggregation scheme was analyzed in [70]. Therein, it was clarified that

successful transmission is equivalent to the joint occurrence of three events, namely a) the

typical MTCD is the nearest MTCD on a randomly selected channel u to an MTCG located

at Yi, denoted by N u
X0,Yi

, b) the typical MTCD’s packet on channel u is successfully captured

by an MTCG located at Yi, denoted by CuX0,Yi
, c) the typical MTCD’s packet received on u

is successfully relayed by an MTCG located at Yi, denoted by Ru
X0,Yi

, where X0 represents

the nearest MTCD to Yi transmitting on channel u. Provided that the MTCD density is

λD, the (conditional) probabilities of these three events are

Pr(N u
X0,Yi

) = exp

(
−πλD

U1

‖X0 − Yi‖2

)
(2.1)

Pr(CuX0,Yi
|N u

X0,Yi
) = exp

(
−πλD

U1

η
2
α‖X0 − Yi‖2Kα,η

)
(2.2)

Pr(Ru
X0,Yi
|CuX0,Yi

) = 1− ε = 1−
U1−1∑
n=U2

 U1 − 1

n

 pnc,SIR × (1− pc,SIR)U1−1−n
(

1− U2

1 + n

)

(2.3)

where Kα,η =
∫∞
η−

2
α

dt
1+tα/2

, pc,SIR =
(

1 + η
2
αKα,η

)−1

is the probability of an MTCG capturing

a packet on any link 1 channel and ε represents the link 2 outage probability. We note that

if U2 ≥ U1, then ε = 0.

To be specific, Eq. (2.1) is the probability of there being no MTCDs in the circular region

B(Yi, ‖X0−Yi‖)[4], where B(xc, ρ) represents a circle centered at xc with radius ρ. Eq. (2.2)

is achieved by deriving the Laplace transform of the probability density function (PDF) of
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the sum interference observed at Yi from all MTCDs transmitting on channel u. Then, the

expression of pc,SIR is found by de-conditioning Eq. (2.2) over the distance ‖X0− Yi‖. Since

the capture events are independent and equally probable across all channels with probability

pc,SIR, the total number of the packets captured by the MTCG at Yi is Binomial distributed

as Bin(U1, pc,SIR). Finally, by considering the failure due to random packet dropping at the

MTCG when U2 < U1, Eq. (2.3) is obtained.

Next, applying the chain rule on (conditional) probabilities in (2.1) - (2.3), the end-to-end

outage probability of a typical MTCD transmission is expressed as

ε(λD, γ) =E
∏
Yi∈ΦG

[
1− Pr(Ru

X0,Yi
|CuX0,Yi

)× Pr(CuX0,Yi
|N u

X0,Yi
) Pr(N u

X0,Yi
)
]

= exp

(
− λGU1

λD (1 + η2/αKα,η)
(1− ε)

)
,

(2.4)

where in the derivation of Eq. (2.4), probability generating functional (PGFL)[23] and

variable change t← r2 (r is the radial coordinate of a two-dimensional polar coordinate) are

applied. The details of the derivation for (2.1)-(2.4) can be found in [70].

For the multi-tier scenario, we apply the same data aggregation scheme, and the gateways

treat all the packets equally. Thus, the (conditional) probabilities of the events, N uj
X0,Yi

and CujX0,Yi
|N uj

X0,Yi
are only modified by λj ← λD and U j

1 ← U1 for the jth tier, while

Pr(Ruj
X0,Yi
|CujX0,Yi

) is the same as (2.3) for all tiers because each MTCG listens to the U1

channels but not some specific U j
1 channels. Therefore, the end-to-end outage probabilities

can be easily extended from (2.4) as

ε(λj, γ) = exp

(
− λGU

j
1

λj (1 + η2/αKα,η)
(1− ε)

)
≈ exp

(
−βjφ(γ)

λj

)
, (2.5)

where we define

φ(γ)
∆
=

λGU1

1 + η2/αKα,η

(1− ε) (2.6)
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as a function4 of γ. We note that the approximation in (2.5) is due to the approximation

in allocating the resource blocks, i.e., U j
1 = bβjQ1/δ1c ≈ βjbQ1/δ1c ≈ βjU1, and it is

asymptotically close to the exact value of ε(λj, γ) when Q1/δ1 is large.

According to [78], the transmission capacity or area spectral efficiency for a single type

of device is the density of the simultaneously transmitting MTCDs multiplied with their

end-to-end transmission success probability. Thus, for an N-tier MTC network, the sum

network capacity can be expressed by
∑N

j=1 λj(1− εj), where εj = ε(λj, γ) is the end-to-end

outage probability of the jth tier of MTCDs. We may also consider the economic revenue

of this MTC network as
∑N

j=1 λjπj(1 − εj), where πj denotes the price or revenue per unit

capacity of tier j.

2.2.3 System Model for MTCG Power Control

We analyze the MTCG transmit power control strategy under an aggregated MTCG power

constraint. Recall that to analyze the worst-case interference at MTCGs and the end-

to-end MTC outage probabilities, the MTCD and MTCG locations are assumed to form

homogeneous PPPs in an infinite region. However, investigating the aggregated MTCG

transmit power consumption in an infinite region will result in unrealistically unbounded

results. Therefore, we assume the MTCG locations form a PPP with constant density λG

within a finite circular region B(0, ρ), where B(xc, ρ) represents a circle centered at xc with

radius ρ, and the BS locations form another PPP with density λB within this region. We

note that as long as the area of the finite region is large enough to contain a reasonable

number of devices, the analytical results based on the infinite region scenario can be close

to the results based on the finite region scenario, since the interference to a typical receiver

is dominated by the nearby transmitters[16]. To be more convincing, [70] shows that the

4φ(γ) is also a function of λG and maxφ(γ) determines whether the MTCG deployment is able to support
the required MTCD densities with the outage probability constraint.
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single-tier transmission capacity simulated with Monte Carlo method in a finite region is

close to the corresponding analytical capacity based on an infinite region.

We consider that the transmissions between MTCGs and the BS encounter both Rayleigh

fading and path loss. The path loss model is represented as L(r) = r−α, where r is the

distance between the MTCG and the BS. Practically, L(r) holds for r ≥ 1, meaning that the

path loss is normalized to unity at unit distance. We note that some papers use the path

loss model L′(r) = 1
1+rα

to avoid the singularity at the origin [31]. Our analysis applies to

both L(r) and L′(r) and the numerical results based on both path loss models are similar

since for most of the distances we have r � 1. Therefore, to be consistent with the data

aggregation model, we chose L(r) as the path loss model to analyze MTCG power control

strategies.

2.3 Network Dimensioning and Utility Maximization

In this section, we consider the scenario of N tiers of MTCDs for which the required outage

probabilities are ζ1, . . . , ζN . In particular, assuming the MTCGs treat all the packets equally,

for the jth tier, the outage probability ε(λj, γ) is upper bounded by ζj. Accordingly, the

network utility maximization problem can be formulated as

(P1) : max
λλλ,βββ,γ

N∑
j=1

λjπj

(
1− exp

(
−βjφ(γ)

λj

))
(2.7a)

s.t. 0 ≤ λj ≤
βjφ(γ)

ln(1/ζj)
, (2.7b)

N∑
j=1

βj = 1, 0 ≤ βj (2.7c)

0 ≤ γ ≤ 1 (2.7d)

where the right-hand-side inequality in (2.7b) comes from the requirement that ε(λj, γ) ≈

exp (−βjφ(γ)/λj) ≤ ζj. Note that λj

(
1− exp

(
−βjφ(γ)

λj

))
is the effective network through-

put of tier-j MTCDs, and thus when πj’s denote the pricing strategy (i.e., revenue per unit
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capacity) of tier j, the objective can be regarded as the economic revenue of the MTC net-

work, and when πj’s are not given specific physical meanings, the objective is the weighted

sum network capacity of the MTC network.

Lemma 1. The network utility maximization problem (P1) described by (2.7a) - (2.7d) can

be simplified to

(P1-1) : max
βββ

N∑
j=1

βjπj(1− ζj)
ln(1/ζj)

φ(γ?) (2.8a)

s.t.
N∑
j=1

βj = 1, 0 ≤ βj, (2.8b)

where γ? = arg maxφ(γ) is the optimal resource partitioning parameter that maximizes the

objective functions of (P1-1) and (P1). Correspondingly, the optimal MTCD density of the

jth tier relates to its bandwidth proportion as

λ?j =
φ(γ?)βj
ln(1/ζj)

. (2.9)

Proof. Given βββ and γ, objective function in (2.7a) increases monotonically with λj, ∀j.

Thus, according to the constraint on λj in (2.7b), the MTCD density of the jth tier should

relate to its bandwidth proportion as

λj =
φ(γ)βj
ln(1/ζj)

(2.10)

to achieve maximum network utility. Substituting λj in (2.10) into (2.7a), we simplify the

original problem to

max
βββ,γ

N∑
j=1

βjπj(1− ζj)
ln(1/ζj)

φ(γ) (2.11a)

s.t.
N∑
j=1

βj = 1, 0 ≤ βj, 0 ≤ γ ≤ 1, (2.11b)

where we can recognize that to maximize the objective function (2.11a), we should have

γ? = arg maxφ(γ). Then, the corresponding optimal λ?j is achieved according to (2.10).

Thus the problem is further simplified to (P1-1) and Lemma 1 is proved.
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In the rest of this section, we will discuss network dimensioning and resource partitioning

methods that solve the network utility maximization problem (P1) while satisfying different

fairness requirements in resource allocation.

2.3.1 Utility-Optimal Solution

According to Lemma 1, we solve (P1) with the simplified problem (P1-1). As we can always

find a tier n∗ such that n∗ = arg maxj
πj(1−ζj)
ln(1/ζj)

, allocating all resources to this tier, i.e.,

βββ∗ = eeen∗
5 and thereby λλλ∗ = φ(γ?)

ln(1/ζn∗ )
eeen∗ , will achieve the maximum network utility

R∗ =
πn∗(1− ζn∗)

ln(1/ζn∗)
φ(γ?). (2.12)

For the convenience of analysis, let z = (z1, z2, ..., zN)T where zj =
πj(1−ζj)
ln(1/ζj)

≥ 0, and we

rewrite (2.12) as

R∗ = ‖z‖∞φ(γ?) (2.13)

where ‖ · ‖∞ represents the infinity norm. We note this resource allocation method strongly

favors the tier with the least stringent outage constraint, or the one paying the highest price.

We also notice that zj monotonically increases with ζj and πj. Intuitively, zj reflects the

favorability of the jth tier from the perspective of the network operator, since a greater zj

indicates either a higher price πj or a less stringent (a greater value of) outage probability

constraint ζj. In the following subsections, we will provide other resource allocation methods

focusing on the fairness issue.

2.3.2 Geometric Mean (GM) based Resource Allocation

Instead of maximizing weighted sum network capacity, we replace the objective function of

(P1) in (2.7a) with the geometric mean of the weighted capacities of all tiers as

1

N
logRtotal =

1

N
log

(
N∏
j=1

Rj

)
=

1

N

N∑
j=1

logRj (2.14)

5We define eeei = (0, . . . , 0, 1, 0, . . . , 0)T where only the ith element is 1.
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where the tier-utility, Rj = λjπj

(
1− exp

[
−βjφ(γ)

λj

])
, represents the weighted capacity or

economic revenue of the jth tier. The motivation of using this logarithmic product function

comes from a branch of cooperative game theory, namely bargaining theory[28] and the

notion of proportional fairness[36]. Further justification of this bargaining model is beyond

the scope of this chapter, and interested readers can refer to section 7.1.3 of [28] and [36, 9]

for more details. Similar to the proof of Lemma 1, we notice that the objective increases

monotonically with λj. Thus, to satisfy the first constraint of (P1) by equality, optimal

MTCD density of the jth tier should also be the λ?j specified in (2.9). With this knowledge,

we obtain the following simplified problem,

(P1-2) : max
βββ

N∑
j=1

log

(
βjπj(1− ζj)

ln(1/ζj)
φ(γ?)

)
(2.15a)

s.t.
N∑
j=1

βj = 1, 0 ≤ βj. (2.15b)

The objective function in (2.15a) can be rewritten as

max
βββ

N∑
j=1

log βj +
N∑
j=1

log

(
πj(1− ζj)
ln(1/ζj)

φ(γ?)

)
(2.16)

which allows us to maximize the objective function over βj. Due to the concavity of log

function, equal partition is the optimal GM-based resource allocation among MTCDs, i.e.,

βGM
j = 1

N
. Thus, the corresponding MTCD density is λGM

j = φ(γ?)
N ln(1/ζj)

according to (2.9).

Substituting λj, βj and γ in the objective function of (P1) with λGM
j , βGM

j and γ? respectively,

the network utility achieved by the GM-based method is

RGM =
1

N

N∑
j=1

πj(1− ζj)
ln(1/ζj)

φ(γ?) =
1

N
‖z‖1φ(γ?) (2.17)

where ‖ · ‖1 represents the l1-norm. Different from the method introduced in section III-A,

this GM-based method achieves absolute fairness in terms of an equal resource allocation

across all tiers of MTCDs, regardless of the outage probability constraints.
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Comparing the network utility achieved by the GM-based method in (2.17) with the

maximum value in (2.13), we have RGM ≤ R∗, where equality holds when all the elements in

z are equal. Clearly, the fairness achieved by the GM-based method is at the cost of network

utility. On the other hand, if the price values (weights) πj’s are adjusted to make the value

of elements in z more uniform, the difference between RGM and R∗ will be reduced.

2.3.3 Cauchy-Schwarz (CS) based Resource Allocation

While the GM-based method results in equal partitioning, and the utility-optimal allocation

yields maximum network utility, we are also interested in a trade-off between fairness and

efficiency, which motivated us to propose the CS-based resource allocation.

We consider the optimization problem (P1-1). With Cauchy-Schwarz inequality, we have

(βββTz)2 ≤ ‖βββ‖2
2‖z‖2

2 (2.18)

where ‖·‖2 represents l2-norm and the equality holds when β1/z1 = . . . = βN/zN . Specifically,

with this equality and the fact that the summation of all the nonnegative βj is 1, we have

βCS
j =

zj
‖z‖1

=

πj(1−ζj)
ln(1/ζj)∑N
l=1

πl(1−ζl)
ln(1/ζl)

. (2.19)

We can see that this solution relates the resource partitioning parameter to the outage

probability constraints and prices. For each tier, the stricter the outage constraint is, less

resource is allocated; and the higher the price is, more resources are allocated. Therefore, we

set βCSj as the resource partitioning parameter and name this method as CS-based resource

allocation.

By substituting βj with βCS
j in (2.9), the maximum transmission density for tier j is

λCS
j =

πj(1−ζj)
[ln(1/ζj)]2∑N
l=1

πl(1−ζl)
ln(1/ζl)

φ(γ?) (2.20)
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which results in the network utility

RCS =

∑N
j=1

(
πj(1−ζj)
ln(1/ζj)

)2

∑N
j=1

πj(1−ζj)
ln(1/ζj)

φ(γ?) =
‖z‖2

2

‖z‖1

φ(γ?). (2.21)

Compared with the GM-based method that provides equal resource partitioning for all

tiers, the CS-based method provides less uniform resource allocation for different tiers. Fur-

thermore, since ‖z‖2
1 ≤ N‖z‖2

2 for z � 0, we can conclude RGM ≤ RCS. The equality holds

when all the elements in z are equal. In other words, the equality condition is

πj =
ln(1/ζj)

1− ζj
a, j = 1, ..., N (2.22)

where a is a nonnegative constant. Equation (2.22) indicates that the GM-based resource

allocation can be regarded as a special case of the CS-based method and that, this pricing

(weighting) strategy serves as a reference to evaluate fairness level in the CS-based resource

allocation process. In general, the closer to this pricing strategy, the fairer resource allocation

will be. We notice that the relationship between the three resource allocation methods is

RGM ≤ RCS ≤ R∗ (2.23)

where both inequalities are satisfied with equality when (2.22) holds. Besides, the GM-based

method and the utility-optimal allocation method achieve absolute fairness and absolute un-

fairness respectively, while the CS-based method offers a trade-off between the two extremes.

2.3.4 Generalized Expression and Utility-Fairness Tradeoff

Recalling the three proposed approaches to allocate the radio resource in the MTC data

aggregation scheme, we found the utility-optimal solution by directly solving (P1-1) but it

results in all resource being monopolized by one specific tier. We then change the linear

summation into the sum-log form which is the same to the objective in a bargaining process

and an equal resource partitioning is achieved. A heuristic CS-based resource allocation is
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then proposed to trade off the needs of maximal network utility for a fair resource allocation.

Nevertheless, whether the CS-based method keeps a good balance between utility and fairness

given the specific QoS requirements, i.e., the outage probability constraints, and the pricing

strategy, is not clarified. In this subsection, we generalize an uniform expression (2.24) from

the above three resource partitioning parameters βββ∗, βββGM and βββCS.

βj(k) =
zkj∑N
i=1 z

k
i

=



1
‖z‖0 , k = 0 (GM-based)

...

zj
‖z‖1 , k = 1 (CS-based)

...

z∞j∑N
i=1 z

∞
i

, k =∞ (Utility-optimal),

(2.24)

∀j ∈ {1, . . . , N}. This generic resource partitioning based on k-norm can achieve different

fairness levels by varying the value of a single factor k ∈ [0,+∞]. Specifically, the fairness

level increases monotonically with decreasing k. For instance, when k = 0, 1 and ∞, the

generic resource allocation parameter βj(k) corresponds to the GM-based solution βGM
j , CS-

based solution βCS
j and utility-optimal solution β∗j , respectively. Furthermore, with (2.9),

the network utility achieved by the generic resource partitioning is

N∑
i=1

λiπi(1− ζi) =

∑N
i=1 z

k+1
i∑N

i=1 z
k
i

φ(γ?) (2.25)

where k is the parameter as in (2.24).

2.3.5 Numerical Performance Comparisons

Comparisons among different resource partitioning methods are shown in Fig. 2.3-2.6 re-

spectively. To be specific, we consider N = 10 tiers of MTCDs with outage probability

constraints, ζ1, . . . , ζN , ranging from 0.05 to 0.5 (the tier with a larger number has a larger

outage probability) and assume that φ(γ?) = 1, πj = 1,∀j. As can be seen from Fig. 2.3,
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Figure 2.3: Comparison of resource partitioning parameter.
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while GM based method (when k = 0) allocates the resources equally, the increase of the

value of k tends to allocate less resources to the tiers with more stringent outage constraints as

the green and yellow bars show. Under our definition of fairness, the GM-based method pro-

vides the fairest allocation, the utility-optimal resource allocation method (when k = +∞)

is the most unfair one, and the methods when k ∈ (0,+∞) achieves different degrees of

fairness between the two extremes. The differences in the focus on fairness lead to the differ-

ences in MTCD density and transmission capacity which are shown in Fig. 2.4 and Fig. 2.5

respectively. Comparing the resource partitioning methods for different values of k in Fig.

2.4 and Fig. 2.5, it is clear that a larger k results in higher densities and per-tier utilities of

the tiers with more stringent outage constraints, than those of the other two methods. On

the other hand, as shown in Fig. 2.6, the network utility increases with the increase of the

k value and it converges to around 0.72 when all the resources are monopolized by a single

tier.

2.4 Resource partitioning with minimum density requirements and QoE maxi-

mization

2.4.1 Problem Formulation

The network dimensioning solution provides an approach to allocate the radio resources

among the gateways and different MTCD tiers under QoS constraints in terms of outage

probability such that the densities of the MTCDs of different tiers are found to maximize

the network utility. The essential of the proposed network dimensioning approach is that it

can achieve different trade-off levels between the network utility and the fairness of resource

partitioning.

On the other hand, the minimum MTCD transmission density (or equivalent capacity)

requirement might be specified in some practical scenarios such that each tier of MTCDs
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can be guaranteed to conduct some basic tasks and achieve a basic level of satisfaction.

In practice, the user’s satisfaction towards a certain tier-utility, e.g., capacity, delay, etc.,

is also regarded as quality of experience (QoE). The QoE is not a linear function of the

corresponding tier-utility but has a logarithmic relationship to it according to the Weber-

Fechner Law (WFL). Intuitively, the QoE increases rapidly when the current experience is

very poor but increases slightly when the current experience is already good enough.

In this section, our objective is to maximize the weighted sum of the QoEs of different

tiers instead of the linearly weighted sum of the capacities. The QoE is estimated by means

of how satisfiable the tier-utility Rj is to the jth tier. The QoE factor for the jth tier is

represented by

Γj = 1− exp

(
−τ Rj

R̃j

)
, j = 1, . . . , N (2.26)

according to [86], where R̃j = λ̃j(1− ζj), ∀j, is the minimum tier-utility requirement (which

also serves as a reference point for the satisfaction of tier-utility Rj), λ̃j is the corresponding

minimum density requirement and τ is a factor indicating the steepness of the QoE curve. For

instance, when the tier-utility Rj is greater than its reference value R̃j, the QoE factor of the

jth tier increases slowly. On the contrary, when Rj is lower than R̃j, the QoE factor decreases

dramatically. Considering the QoS requirements in both the maximum outage probability

and the minimum transmission density, we formulate a weighted sum QoE maximization

problem as

(P2) : max
λλλ,βββ

N∑
j=1

ωj

[
1− exp

(
−τ Rj

R̃j

)]
(2.27a)

s.t. Rj = λjπj

[
1− exp

(
−βjφ(γ?)

λj

)]
(2.27b)

λ̃j ≤ λj ≤
βjφ(γ?)

ln(1/ζj)
(2.27c)

N∑
j=1

βj = 1, 0 ≤ βj (2.27d)
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where R̃j = λ̃j(1 − ζj), ∀j. We note that in (P2) we directly use γ? = arg maxφ(γ) as

the optimal resource partitioning between link 1 and link 2, since it maximizes not only the

objective function but also the size of feasible regions of both λλλ and βββ. To solve (P2), we

have the following two propositions.

Proposition 1. The solution of (P2) can be represented by

βj = β̃j + β̄j (2.28)

λj =
βjφ(γ?)

ln(1/ζj)
(2.29)

where β̃j =
λ̃j ln(1/ζj)

φ(γ?)
and β̄j is the solution of

(P3) : min
{β̄j}

N∑
j=1

ωj exp

(
−τ β̄jzjφ(γ?)

R̃j

)
(2.30a)

s.t.
N∑
j=1

β̄j ≤ ∆β, 0 ≤ β̄j (2.30b)

where ∆β = 1−
∑
λ̃j ln(1/ζj)

φ(γ?)
.

Proof. To simplify (P2), we first recognize that the objective of (P2) monotonically increases

with the increase of λj, ∀j. In addition, the λj has both upper and lower bounds shown

in (2.27c), where the upper bound is linearly proportional to the resource ratio βj and the

lower bound is the minimum density constraint. Therefore, given a certain ratio βj, the

upper bound of MTCD density should be achieved. In other words, the optimal solution of

(P2) should guarantee

λj =
βjφ(γ?)

ln(1/ζj)
. (2.31)

Generally, these facts motivate us to solve (P2) with the following two steps:

1. allocating minimum resource to each tier to meet the minimum transmission density

requirements,
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2. maximizing the QoE with the residual resources.

Specifically, after replacing λj with
βjφ(γ?)

ln(1/ζj)
according to (2.31), (P2) is simplified as

min
βββ

N∑
j=1

ωj exp

(
−τ βjzjφ(γ?)

R̃j

)
(2.32a)

s.t. λ̃j ≤
βjφ(γ?)

ln(1/ζj)
(2.32b)

N∑
j=1

βj = 1, 0 ≤ βj. (2.32c)

where R̃j = λ̃j(1− ζj). Next, we denote

β̃j =
λ̃j ln(1/ζj)

φ(γ?)
(2.33)

according to (2.32b), and

∆β = 1−
N∑
j=1

β̃j = 1−
∑
λ̃j ln(1/ζj)

φ(γ?)
≥ 0. (2.34)

We mention that ∆β ≥ 0 since
∑N

j=1 β̃j ≤ 1 as β̃j ≤ βj according to (2.32b) and (2.33).

Furthermore, we represent the original resource ratio βj as βj = β̃j + β̄j, ∀j, where

β̃j ≥ 0 indicates the minimum resource ratio allocated to tier-j to meet the minimum MTCD

transmission density requirements and the β̄j ≥ 0 is a new optimization variable representing

the resource partitioning ratio for the residue amount of resource ∆β to tier-j. Replacing

βj with β̃j + β̄j in (2.32a) to (2.32c) and regarding β̄j as a the optimization variable, the

problem will be further simplified to (P3).

Proposition 2. The solution to (P3) is

β̄j =

[
− 1

τ z̄j
ln

(
ν

ωjτ z̄j

)]+

(2.35)

with z̄j =
zjφ(γ?)

R̃j
and ν ≥ 0, such that

∑N
j=1 β̄j = ∆β.
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Proof. (P3) is recognized as a convex optimization problem. The Lagrangian function of

(P3) is

L(β̄j, ν) =
N∑
j=1

ωj exp

(
−τ β̄jzjφ(γ?)

R̃j

)
+ ν

(
N∑
j=1

β̄j −∆β

)
. (2.36)

The solution of (P3) is then represented as the solution to ∂L(β̄j, ν)/∂β̄j = 0 where βj’s are

positive. By numerically searching for the proper value of ν such that
∑N

j=1 β̄j = ∆β, the

solution to (P3) is obtained.

Substituting z̄j =
zjφ(γ?)

R̃j
and zj =

πj(1−ζj)
ln(1/ζj)

to (2.35), the solution β̄j can be rewritten as

β̄j =

[
− λ̃j ln(1/ζj)

πjφ(γ?)τ
ln

(
νλ̃j ln(1/ζj)

ωjπjφ(γ?)τ

)]+

. (2.37)

In general, the monotonicity of β̄j over the minimum density requirement λ̃j and the maxi-

mum outage probability constraint ζj is not clear without the knowledge of other parameters

such as ν, φ(γ?), ωj, πj and τ .

2.4.2 Numerical Results

In the simulation, we assume there are two tiers of MTCDs and compare the QoE, the

network throughput, the achievable MTCD density and the resource allocation ratio under

different outage probability constraints ζj ∈ [0.002, 0.3], ∀j and the same minimum MTCD

density constraint λ̃j = 0.08, ∀j. Without loss of generality, we assume φ(γ?) = 1, τ =

1, πj = 1 and ωj = 1, ∀j. In particular, the sum QoEs for different outage probability

constraints are shown in Fig.2.7, from which we notice that the sum QoE increases with the

growth of both ζ1 and ζ2. We can also see that the sum QoE increases more rapidly when

both ζ1 and ζ2 are relatively small, which indicates the QoE is more sensitive to stringent

outage probability constraints. A similar trend can be seen in Fig. 2.8 where the QoE of

the tier-1 MTCD is shown. We also observe from Fig. 2.8 that ζ1 has a more noticeable

effect on the QoE of tier-1 than ζ2 does. Next, Fig. 2.9 and Fig. 2.10 show the throughput
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Figure 2.7: Sum QoE under different outage probability constraints.

and the corresponding MTCD density of the tier-1. In line with the relationship between

the QoE and outage probability constraints, the throughput and the MTCD density increase

with the growth of ζ1 and ζ2. Finally, the resource allocation ratio is shown in Fig. 2.11.

In contrast to the resource allocation solutions to the network utility maximization problem

we discussed in section III, we notice that to maximize the sum QoE, more resources are

allocated to the tier with more stringent constraint. For instance, when ζ1 is around zero

and ζ2 = 0.3, the resource ratio for tier-1 is more than 0.7 as Fig.2.11 shows. This fact

indicates that to achieve a satisfiable QoE under very stringent constraint, a relatively high

resource ratio must be guaranteed.
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Figure 2.8: QoE of tier-1 under different outage probability constraints.

2.5 MTCG uplink power control

In the proposed MTC scheme, the successful relaying of a MTCD packet captured by a

MTCG depends on two factors: 1) the amount of packets captured by the MTCG and 2)

the available channels for the MTCG. We assume that an MTCG needs one channel to

relay one packet so that when the amount of packets captured by a MTCG is larger than

the total number of channels allocated to it, certain packets will be randomly dropped.

Since the MTCDs are assumed always in active transmission mode with certain density

and each packet is of the same length, the MTCG-to-BS links need to keep a constant

data rate. We assume the BS locations form a PPP with density λB independent of the

MTCG locations and each MTCG only transmits to its nearest BS. We represent the MTCG

location in a two dimensional coordinate as x. Since we assume that the transmissions

between MTCGs and the BS encounters both Rayleigh fading and the exponential path
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Figure 2.9: Throughput of tier-1 under different outage probability constraints.

loss, a strictly constant data rate can hardly be achieved as the random fading could be

significantly deep. Alternatively, we consider to keep a constant outage capacity (spectral

efficiency) with truncated channel inversion policy[19]. We denote Px as the transmit power

of a MTCG located at x, hx and rx as the fading power gain and the distance between the

MTCG located at x and the target BS respectively. Let L(rx) = r−αx represents the path loss,

σ2 to be the noise power on a MTCG-to-BS channel, and Pout to be the outage probability

defined as the probability that the overall channel power gain (including both fading and path

loss) is less than a certain threshold. The outage capacity (spectral efficiency) is represented

as

C = log2

(
1 +

hxL(rx)Px
σ2

)
(1− Pout) , ∀x. (2.38)

Recalling that we assume each MTCG has U2 = bQ2/(Gδ2)c channels, where Q2 = (1−

γ)QM is the number of RBs allocated for all MTCG-to-BS links, G is the number of MTCGs
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Figure 2.10: Allowable MTCD density of tier-1 under different outage probability constraints.

and δ2 is the number of RBs needed for an MTCG to relay a packet. In general, a higher

spectral efficiency indicates a larger number of MTCG-to-BS channels U2 given the same

amount of RBs and the same data rate requirement for each MTCG packet transmission.

This fact connects the spectral efficiency in (2.38) to parameter φ(γ) in (2.6) with a common

factor U2. Thus, the network dimensioning and resource allocation problems discussed in

previous sections are affected by the spectral efficiency via φ(γ). In particular, we can adapt

the definition of U2 as Ũ2 =
⌊
Q2Cχ1

Gδ2χ2

⌋
(i.e., in this section, we use the adapted definition Ũ2

as a replacement of U2 ), where χ1 (Hz/RB) is the bandwidth per RB, χ2 (bps/RB) is the

required data rate per RB and G = πρ2λG is the average number of MTCGs within the

region B(0, ρ). Thus, the numerator Q2Cχ1 is the aggregated MTCG-to-BS data rate and

the term δ2χ2 indicates the required data rate to transmit one packet on a MTCG-to-BS

channel for each MTCG. Then, since φ(γ) defined in (2.6) is a function of both γ and U2 (Ũ2),
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Figure 2.11: Resource allocation ratio of tier-1 under different outage probability constraints.

the optimal resource partitioning γ? between link 1 and link 2 can be numerically computed

given the MTCG-to-BS spectral efficiency C.

Provided that the channel state information (CSI) and the distance between the MTCG

and BS are known to the transmitting MTCG but the average aggregated transmit power for

the MTCGs is bounded, we propose a power allocation strategy for any MTCG within the

coverage of the BS to realize the constant outage capacity. Remember that the BS locations

and the MTCG locations form independent homogeneous spatial PPPs within B(0, ρ) with

density λB and λG respectively. Similar to the MTCD-to-MTCG channel, we assume i.i.d.

Rayleigh fading with average power gain of µ on each MTCG-to-BS channel, and path

loss with exponent α over all channels. In order to maintain a constant transmission rate,

each MTCG applies truncated channel inversion to adapt its transmit power. Specifically,

two power control strategies based on truncated channel inversion are considered. The two
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strategies compensate for both fading and path loss but they differ in the criteria of when the

compensation is performed. In the first proposed strategy (S1), the MTCG transmits only

if the overall channel power gain (including both fading and path loss) is above a certain

threshold. The second strategy (S2) allows MTCG to transmit only if the fading gain is

above a certain threshold, and it is a baseline strategy proposed to compare with the first

one. The expressions of the transmit power for both strategies are represented as

(S1) : Px =


P̄

hxL(rx)
, hxL(rx) ≥ h̃

0, otherwise

(2.39)

(S2) : Px =


P̄

hxL(rx)
, hx ≥ h

0, otherwise

(2.40)

where P̄ is the constant BS received signal power and h̃ and h are the thresholds of channel

inversion for (S1) and (S2) respectively. Given an aggregated power constraint Psum, we

are interested in finding proper values of P̄ , h̃ and h so that the outage capacity of each

MTCG-to-BS link is maximized. Therefore, the problem is formulated as

(P4) : max
g

log2

(
1 +

P̄

σ2

)
P (gx ≥ g) (2.41a)

s.t. E

 ∑
x∈ΦG,x∈B(0,ρ)

Px

 = Psum (2.41b)

Px =


P̄

hxL(rx)
, gx ≥ g

0, otherwise

(2.41c)

where gx = hxL(rx), g = h̃ when applying (S1) and gx = hx, g = h for (S2). The objective

function (2.41a) is obtained by substituting Px to (2.38), while (2.41b) and (2.41c) represent

the aggregated transmit power constraint and the power control strategy.
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To solve (P4), both the distribution of gx and the expectation of the aggregated MTCG

transmit power, i.e., the left hand side of (2.41b) should be properly represented, in order to

obtain the success probability P (gx ≥ g) and the received power P̄ . In the following of this

section, both issues will be discussed.

2.5.1 Development of Outage Probability

Since the MTCGs only choose the closest BS to transmit, the BS’s form Poisson Voronoi

tessellations and each BS only receives the signals from the MTCGs within its Voronoi cell.

In this case, the PDF of the distance rx between a MTCG located at x and the corresponding

BS is [4]

frx(r) = 2πλBre
−πλBr2

, r ≥ 0. (2.42)

On the other hand, given the distance rx, the conditional cumulative density function

(CDF) of gx can be written as

Fgx|rx(g) = 1− exp

(
− µg

L(rx)

)
, g ≥ 0 (2.43)

for the first strategy (S1).

Deconditioning (2.43) with the PDFs of rx, the CDF of gx is obtained as

Fgx(g) =

∫ ρ

0

Fgx|r(g)frx(r)dr = 1− 2πλB

∫ ∞
0

e−
µg
L(r)
−πλBr2

rdr. (2.44)

for the first strategy (S1). For the baseline strategy (S2), the CDF of gx is

Fgx(g) = 1− exp(−µg) (2.45)

since gx = h ∼ exp(1/µ).

Thus, the successful transmission probability in (2.41a) can be represented as

P(gx > g) =


2πλB

∫∞
0
e−

µg
L(r)
−πλBr2

rdr, for (S1)

exp(−µg), for (S2).

(2.46)
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2.5.2 Development of Aggregated Transmit Power

To achieve a constant uplink transmission data rate, each MTCG varies its transmit power

according to its location and the fading gain of the channels. For the first strategy (S1),

given a truncated threshold g = h̃, the aggregated MTCG transmit power within B(0, ρ) is

developed as

E{ΦG}

 ∑
x∈ΦG∩B(0,ρ)

Px

 = E{ΦG}

E{hx,rx}

 ∑
x∈ΦG∩B(0,ρ), hx≥h̃/L(rx)

P̄

hxL(rx)


(a)
= E{ΦG}

 ∑
x∈ΦG∩B(0,ρ)

E{rx}

[
P̄

L(rx)

(
−µEi

(
− µh̃

L(rx)

))]
(b)
= E{ΦG}

 ∑
x∈ΦG∩B(0,ρ)

∫ ∞
0

P̄

L(r)

[
−µEi

(
− µh̃

L(r)

)]
frx(r)dr


(c)
= − 2π2ρ2λBλGµP̄

∫ ρ

0

r

L(r)
Ei

(
− µh̃

L(r)

)
e−πλBr

2

dr

(2.47)

where Ei(x) =
∫∞
−x

1
t
e−tdt is the incomplete exponential integral function, (a) follows from

deriving the expectation of 1/hx conditioning on hx ≥ g/L(rx) and (b) holds because the set

of distances {rx} is mutually independent. Then (c) follows from the Campbell’s theorem

[23]. Similarly, for the baseline strategy (S2), we have

E

 ∑
x∈ΦG∩B(0,ρ)

Px

 = E{ΦG}

E{hx,rx}

 ∑
x∈ΦG∩B(0,ρ), hx≥h

P̄

hxL(rx)


= −2π2ρ2λBλGµP̄

∫ ρ

0

Ei(−µh)

L(r)
e−πλBr

2

rdr.

(2.48)

Thus, given the average aggregated MTCG power constraint Psum, the received constant

signal power P̄ at the BS is

P̄ =


−Psum

[
2π2ρ2λBλGµ

∫ ρ
0

r
L(r)

Ei
(
− µh̃
L(r)

)
e−πλBr

2
dr
]−1

, for (S1)

−Psum

[
2π2ρ2λBλGµ

∫ ρ
0

r
L(r)

Ei(−µh)e−πλBr
2
dr
]−1

, for (S2).

(2.49)
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Figure 2.12: Comparison of outage capacities at different outage probabilities. (Psum =
65 dBW)

Therefore, with (2.46) and (2.49), the objective function (2.41a) can be maximized by

numerically searching for the optimal threshold h̃ for (S1) or h for (S2).

2.5.3 Numerical Results and Discussions

In the simulation, we use the following default settings for Fig. 2.12 - Fig. 2.14, ρ = 100,

λB = 0.008, λG = 0.005, α = 3, σ2 = 1 and µ = 1. Other specific settings are mentioned

below the corresponding figures. Fig. 2.12 compares our proposed MTCG power control

strategy (S1) and the baseline strategy (S2) in terms of the achievable outage capacity
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Figure 2.13: Comparison of outage capacities at different aggregated power levels.

under different outage probabilities. It can be observed that the (S1) outperforms (S2) for

all possible outage probabilities and that the outage probability of (S1) is slightly larger than

the outage probability of (S2) when maximum outage capacity is achieved. For instance, (S1)

achieves the maximum capacity when Pout = 0.20, while the maximum capacity of (S2) is

obtained when Pout = 0.14. Next, Fig. 2.13 shows that (S1) achieves higher outage capacity

than that of (S2) for different aggregated powers. We also notice that the difference between

the two capacities is proportionally more obvious when the aggregated power is small, which

indicates that (S1) can allocate power more efficiently in a power-limit condition.
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Figure 2.14: Comparison of φ(γ) at different γ and aggregated power levels using (S1).
(QM = 48000, δ1 = 30, δ2 = 5, η = 3, χ1/χ2 = 1)

With strategy (S1), the effect of aggregated power constraints on the resource parti-

tioning between MTCGs and MTCDs is shown in Fig, 2.14, where the values of φ(γ) are

compared. In Fig. 2.14, we can see that a greater aggregated power results in a larger φ(γ?).

Additionally, a greater aggregated power also corresponds to a greater γ?. Since the spectral

efficiency of the MTCG-to-BS link increases with Psum and if the MTCG-to-BS links have

higher spectral efficiency, more resources can be allocated the MTCD-to-MTCG links (i.e.,

γ? will be greater).
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2.6 Conclusion

We proposed network dimensioning and resource allocation approaches for the multi-tier

MTC data aggregation scheme to trade off between the network utility and the fair resource

allocation. First, we analyzed three specific scenarios of resource partitioning by means of the

utility-optimal method, the GM-based method, and the CS-based method, under maximum

transmission outage probability constraints. Then, we developed a generalized resource

partitioning for various levels of fairness. Next, considering both the maximum outage

probability constraint and the minimum MTCD density requirements, we investigated the

overall QoE maximization problem. In contrast to the resource allocation solution to the

network utility maximization problem, we found it is preferable to allocate more resource

to the tier with more stringent outage probability constraint. Finally, we investigated two

different truncated channel inversion power control strategies (S1 and S2) for the MTCG.

Our proposed strategy (S1) outperforms the baseline strategy (S2) in terms of achievable

outage capacity since it takes both the randomnesses of location and the fading factor into

account.
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CHAPTER 3

COVERAGE PROBABILITY ANALYSIS UNDER CLUSTERED AMBIENT

BACKSCATTER NODES

3.1 Introduction

This chapter investigates the coverage probability of a AmBC-embedded wireless communi-

cation network. Recent studies about AmBC mainly focus on the signal detection perspective

and most of them consider a single BT-BR pair and a primary transmitter (PT, which emits

the ambient RF signal) although multiple antennas are involved[83, 77, 61]. Concerning the

rapid growth of IoT devices, we believe investigating the scalability of AmBC is also a crucial

issue. Thus, this chapter considers to include the AmBC nodes in conventional large-scale

wireless communication networks, resulting in a heterogeneous network (HetNet).

Stochastic geometry based approaches have been realized to be efficient and tractable

for analyzing complex HetNets [16]. With some assumptions to the distribution (such as

Poisson point process (PPP)) of the node locations, the system performance of a HetNet

can be expressed by quickly computable integrals with a small number of parameters [4].

Recent studies have found that simply using a PPP based geometric model is not rich enough

to analyze the increasingly complex HetNet, yet the Poisson cluster process (PCP) based

analysis is more capable [66].

So far, most analyses on large-scale backscatter communication networks are about

WPBC networks [27, 37, 60]. For instance, [27] proposed a large-scale WPBC network

and derived the network coverage probability and capacity. A hybrid transmission scheme

that integrates AmBC and wireless powered communications was proposed in [48]. The

achievable rate region for a single-tag backscatter multiple-access channel was derived in

[44].

0 c© 2019 IEEE. Reprinted, ”Coverage Probability Analysis Under Clustered Ambient Backscatter Nodes,”
in IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1713-1717, Dec. 2019.
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However, to the best of our knowledge, none of the existing studies have considered

to apply a PCP model to an AmBC system, of which the analysis is different from those

proposed in the references. Specifically, in an existing large-scale wireless network, newly

deployed AmBC nodes will change the effective channel response between a PT and a primary

receiver (PR). In this scenario, the backscattered signals can be regarded as either decodable

signals or interference at a typical PR, which will affect the coverage probability of a typical

PT. Therefore, we derive an analysis of the signal-to-interference-plus-noise ratio (SINR)

and signal-to-interference ratio (SIR) based coverage probability at a typical PR.

This chapter is organized as follows. The system model and signal representations are

described in Section 3.2. Then, we derive the coverage probabilities in Section 3.3. Numerical

simulation results and conclusions are provided in Section 3.4 and Section 3.5, respectively.

3.2 System Model

3.2.1 Spatial Distribution Models

The system we consider consists of two tiers (layers), where the first tier includes all the PTs

and PRs, and the second tier includes all the BTs and BRs. Under such system, we study

two BT deployment scenarios. For scenario-1, each PT is surrounded by a cluster of BTs,

shown in Fig. 3.1. For scenario-2, only the typical PT is surrounded by a cluster of BTs.

Since the SINR and SIR based coverage probability derivations of both scenarios are similar,

we mainly focus on the SINR-based derivation of scenario-1 in the following. Without loss

of generality, we set a typical PR at the origin and its corresponding PT (i.e., the closest

PT to the typical PR) at coordinate Y0 = (r0, 0)1. The locations of other PTs which cause

interference to the typical PR form a PPP ΦP = {Yj}, where Yj ∈ R2, j = 1, 2, . . . ,M ,

1For a homogeneous PPP with density λ, the distance between an arbitrary (typical) point and its closest
point is Rayleigh distributed with the scale parameter 1/

√
2πλ [4]. Thus, coverage probabilities based on

a fixed distance r0 can be extended to a general coverage probability by de-conditioning them with the
distribution of r0.
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r0

Figure 3.1: Topology of the considered system (scenario-1)

represents the coordinate of the jth PT, with a constant density λP in the ring-shape region

B(0, R)−B(0, r0). The locations of the BTs2 form a Matérn cluster process[1] represented

by
⋂M
j=0 ΦB(Yj) in scenario-1 (where ΦB(Yj) = {XYj}, with XYj ∈ R2 representing the

coordinate of a BT in the disk B(Yj, ρ)) and a PPP represented by ΦB(Y0) in scenario-2.

For a compact expression, the distance between a PT at Y and the typical PR at the origin

is denoted by rY . Similarly, we use rXY ,tx (rXY ,rx) to represent the distance between the PT

at Y (the typical PR at the origin) and the offspring BT at XY .

In addition, we assume that the density of PTs is much smaller than the BTs’ density,

i.e., λP � λB, such that the distances between BTs and their non-parent PTs are relatively

large in average sense, resulting in much severer path losses than those between BTs and

their parent PTs. Thus, we further assume that the information signals sent from the parent

PT is the only RF power source of its offspring BTs and leave the analysis of multiple power

sources for future study.

2The distribution of BRs is not considered since it does not affect the coverage probability.

43



Energy 

Harvester 

Micro-

Controller

  

ηPrx  

(1-η)Prx 

Variable 

impedance
BTBR

PT

Received 

Power: Prx 

Backscattered 

Power: ηPrx  

Figure 3.2: Ambient backscatter scheme

3.2.2 Signal Communication Model

We denote the transmit symbol of the PT located at Y at time t by
√
PtxsY (t), where Ptx

is the constant transmit power and sY (t) ∼ CN (0, 1) is the normalized complex Gaussian

distributed symbol. The backscatter symbol of the BT located at XY at time t is denoted by

bXY (t). Since a BT only reflects the ambient signal using two impedance levels, we assume

that the BTs’ symbols are independent and Bernoulli-distributed with equal probability, i.e.,

bXY (t) ∼ Bernoulli
(

1
2

)
, ∀XY . As shown in Fig. 3.2, the reflection coefficient is η ∈ [0, 1],

which means ηPrx of the received power Prx is backscattered by the BT and (1 − η)Prx of

the power is harvested by the BT for modulation and control purpose. Besides, we simply

assume backlogged transmissions for both tiers so that the BTs and BRs can always be active

based on the harvested energy. The AmBC throughput maximization problem regarding to

mode switching policy has been investigated in [79].
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Furthermore, we assume independent and identically distributed (i.i.d.) Rayleigh fad-

ing with average power gain of 1/µ and path loss with exponent α over all channels. In

particular, suppose the Rayleigh fading channel power gains between the PT at Y and

the typical PR at the origin, the PT at Y and the BT at XY , and the BT at XY and

the typical PR are gY , gXY ,tx and gXY ,rx, respectively, each with exponential distribution

with parameter µ, denoted by exp(µ). Then, the channel response can be written as

hY =
√
gY e

jθY , hXY ,tx =
√
gXY ,txe

jθXY ,tx and hXY ,rx =
√
gXY ,rxe

jθXY ,rx , respectively, each

with zero-mean-complex-Gaussian distribution, where θY , θXY ,tx and θXY ,rx represent the

zero-mean uniformly distributed channel phases. To avoid the singularity at the origin, the

path loss is expressed as L(r) = (1 + rα)−1 for a distance r. Thus, we denote the received

signal at the typical PR as the summation of several signals:

y(t) = sPT(t) + sBT(t) + IPT(t) + IBT(t) + n(t) (3.1)

where n(t) ∼ CN (0, σ2) is the complex Gaussian noise at PR, sPT(t), sBT(t), IPT(t), and

IBT(t) represent the signals from the typical PT at Y0, from the offspring BTs of the typical

PT, from the atypical PTs, and from the offspring BTs of the atypical PTs, respectively.

Particularly, we have

sPT(t) = hY0

√
L(r0)PtxsY0(t− τY0), (3.2)

sBT(t) =
∑

XY0
∈ΦB(Y0)

zXY0

√
ηPtxsY0(t− τXY0

)bXY0
(3.3)

IPT(t) =
∑
Y ∈ΦP

hY
√
L(rY )PtxsY (t− τY ), (3.4)

IBT(t) =
∑
Y ∈ΦP

∑
XY ∈ΦB(Y )

zXY
√
ηPtxsY (t− τXY )bXY (3.5)

where zXY , hXY ,txhXY ,rx
√
L(rXY ,tx)L(rXY ,rx), τY and τXY are the time delays of the PT

to PR path (direct path) and the PT-BT-PR path (backscatter path), respectively, and
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the subscripts Y and XY indicate the locations of the PT and BT. We note that since the

backscatter symbol bXY (t) has a much larger symbol duration than the primary symbol sY (t)

(i.e., bXY (t) is constant in many successive symbols of sY (t)) [43], the time index of and the

time delay encountered by bXY (t) are neglected.

3.3 Analysis of Coverage Probability

3.3.1 Signal and Interference Power

For a compact expression, we use vectors zY = [. . . , zXY , . . .]
T and bY = [. . . , bXY , . . .]

T to

represent the zXY ’s and the bXY ’s in the cluster centered at Y , respectively. Given zY and

bY , we can write the power of IBT(t) as

ĨBT = EsY
[
|IBT(t)|2

]
= ηPtx

∑
Y ∈ΦP

∣∣zT
Y bY

∣∣2 . (3.6)

Next, deconditioning ĨBT on the channel phases3 and backscattered symbols, we obtain

IBT =
∑
Y ∈ΦP

E
bY ,θ

[
ĨBT

]
= ηPtx

∑
Y ∈ΦP

E
bY

[
bT
YE
θ

[
zY z

H
Y

]
bY

]
=
ηPtx

2

∑
Y ∈ΦP

∑
XY ∈ΦB

ZXY (3.7)

where ZXY , gXY ,txgXY ,rxL(rXY ,tx)L(rXY ,rx) and the last equation follows from the facts

that Eθ
[
zY z

H
Y

]
is a diagonal matrix and E[b2

XY
(n)] = 1/2, ∀XY . Similarly, the powers of

sPT(t), sBT(t), and IPT(t) can be represented as

SPT = gY0L(r0)Ptx, (3.8)

SBT =
ηPtx

2

∑
XY0
∈ΦB(Y0)

ZXY0
, (3.9)

IPT =
∑
Y ∈ΦP

gYL(rY )Ptx, (3.10)

3assuming that the channel phases change faster than amplitudes.
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respectively. We note that the mutual correlations among the signals sPT(t), sBT(t), IPT(t),

and IBT(t), can be neglected if we decondition the correlations on the channel phases and

use the fact that sY (t)’s are i.i.d. zero mean Gaussian.

The typical PR aims to receive the typical PT’s signal sY0(t), which is contained in sPT(t)

and sBT(t). However, the time delays of the PT-BT-PR paths are larger than the time delay

of the direct PT-PR path and are random due to the PPP formed by the BT locations, which

may introduce different levels of inter symbol interference (ISI) at the typical PR. Therefore,

sBT(t) has a two-side effect, i.e., causing interference or enhancing the detection at the PR.

Particularly, [65] concludes that AmBC causes little interference to legacy systems in some

deployment scenarios, and [83] indicates that detection performance can be enhanced with

the cooperation of AmBC nodes. In this chapter, we parameterize the two-side effect with

β ∈ [0, 1], which denotes the fraction of the backscattered signal power that is not regarded

as interference4. Next, given β ∈ [0, 1], we can represent the SINR at the typical PR as

SINR =
SPT + βSBT

(1− β)SBT + IPT + IBT · 1(IBT) + σ2
, (3.11)

where 1(IBT) = 1 for scenario-1, and 1(IBT) = 0 for scenario-2. We note that both scenarios

can be interference-limited if the transmit signal-to-receive-noise ratio (TSRNR) Ptx/σ
2 is

large enough.

3.3.2 Coverage Probability Expression

Denoting the SINR or SIR threshold at the typical PR as Γ, the SINR-based coverage

probability is defined as the probability that the SINR is no less than the threshold:

Pc = P (SINR ≥ Γ) = P(SPT ≥ [Γ(1− β)− β]SBT + ΓIPT + ΓIBT1(IBT) + Γσ2), (3.12)

4We note β can be estimated with several system parameters. For instance, with the distance between the
typical PT and PR, the distribution range of the BTs, the symbol rate of a PT, and the maximum tolerable
delay for the typical PR, we can compute the region where the active BTs cause interference. Then we can
calculate the ratio between the expected aggregate signal power from the BTs within and out of that area.

47



By setting σ2 = 0 in (3.12), the SIR-based coverage probability can be found. To calculate

the coverage probabilities, we will need the following lemmas.

Lemma 2. To analyze the aggregate signal power at the typical PR, the clustered BTs can

be approximately regarded as a virtual transmitter (VT) located at the center of the cluster.

The VT’s transmit power is the sum of backscattered signal powers P̃tx of all BTs in the

cluster, which is derived as

P̃tx = E

 ∑
XY ∈ΦB(Y )

gXY ,txL(rXY ,tx)Ptx

 (a)
= λB

∫
B(Y,ρ)

E [gXY,tx]L(rXY,tx)dXY Ptx

(b)
=

2π

µ
λB

(∫ ρ

0

r

rα + 1
dr

)
Ptx = γPtx

(3.13)

where (a) is from the Campbell Theorem, (b) is by changing Cartesian coordinates to polar

coordinates, and the last equality is achieved by defining γ , 2π
µ
λB

∫ ρ
0

r
rα+1

dr.

Lemma 3. The Laplace transform of the probability density function (PDF) of the double

fading random variable g = g1g2, where g1, g2 ∼ exp(µ) is

Lg(s) = E [exp(−sg)] =

∫ ∞
0

e−sg
∫ ∞

0

µ2

t
e−µ(t+

g
t )dtdg =

∫ ∞
0

µ2e−µt

st+ µ
dt (3.14)

where we use the fact that the PDF of g is

fg(g) =

∫ ∞
0

µ2

t
e−µ(t+

g
t )dt (3.15)

which can be derived according to the PDF of the product of two random variables.

Lemma 4. Denoting G = ω1g1 + ω2g2 as the nonnegative weighted sum of two indepen-

dent exponential random variables, gi ∼ exp(µi), i = 1, 2, where ωi ≥ 0, the cumulative

distribution function (CDF) of G is

FG(g) = 1− µ̃1

µ̃1 − µ̃2

e−µ̃2g +
µ̃2

µ̃1 − µ̃2

e−µ̃1g, g ≥ 0 (3.16)

where µ̃i = µi/ωi, i = 1, 2.
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Proof. Please see Appendix 3.6.1.

According to whether Γ(1−β)−β is negative or not, the coverage probabilities are shown

in the following theorems.

Theorem 1. When 0 ≤ β ≤ Γ
Γ+1

, i.e., Γ(1−β)−β ≥ 0, the SINR based coverage probabilities

for the two scenarios are

Pc ≈


ξ1ξ2ζ1, for scenario-1

ξ1ξ2,uζ1, for scenario-2,

(3.17)

where

ξ1 = exp

{
−λB

∫
XY0
∈B(Y0,ρ)

(
1−

∫ ∞
0

µ2e−µt

aXY0
t+ µ

dt

)
dXY0

}
,

ξ2 = exp

{
−2πλP

∫ R

r0

(
1− 1

1 + Γ L(r)
L(r0)

1

1 + γΓ L(r)
L(r0)

)
rdr

}
,

ξ2,u = exp

{
−2πλP

∫ R

r0

(
1− 1

1 + Γ L(r)
L(r0)

)
rdr

}
,

ζ1 = exp

(
− µσ2Γ

L(r0)Ptx

)
,

and aXY0
= µη[Γ(1−β)−β]

2L(r0)
L(rXY0

,tx)L(rXY0
,rx).

Proof. Please see Appendix 3.6.2.

Theorem 1 indicates that the coverage probabilities are the multiplications of two or three

specific terms when β is not greater than the threshold Γ
Γ+1

. In particular, ξ1 corresponds to

the effect of BTs around the typical PT, ξ2 corresponds to the interference effect of atypical

PTs and their surrounding BTs for scenario-1, ξ2,u corresponds to the interference effect of

atypical PTs for scenario-2, and ζ1 corresponds to the noise effect. Furthermore, the coverage

probabilities in scenario-1 are upper bounded by the coverage probabilities in scenario-2 since

ξ2 < ξ2,u.
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Theorem 2. When Γ
Γ+1

< β ≤ 1, i.e., Γ(1−β)−β < 0, the SINR based coverage probabilities

of the two scenarios are

Pc ≈


γ̃
γ̃−1

ξ3ζ2 − 1
γ̃−1

ξ2ζ1, for scenario-1

γ̃
γ̃−1

ξ3,uζ2 − 1
γ̃−1

ξ2,uζ1, for scenario-2,

(3.18)

where

ξ3 = exp

{
− 2πλP

∫ R

r0

(
1− 1

1 + ΓL(r)
γ̃L(r0)

1

1 + γΓL(r)
γ̃L(r0)

)
rdr

}
,

ξ3,u = exp

{
− 2πλP

∫ R

r0

(
1− 1

1 + ΓL(r)
γ̃L(r0)

)
rdr

}
,

ζ2 = exp
(
− µσ2Γ
γ̃L(r0)Ptx

)
, γ̃ = − [Γ(1− β)− β] γ > 0, and γ is defined in Lemma 2.

Proof. Please see Appendix 3.6.3.

Different from the simple multiplication forms of Theorem 1 where each term in the

multiplication corresponds to a specific effect, the coverage probabilities for β greater than

the threshold Γ
Γ+1

are more complicated. Specifically, the coverage probabilities in Theorem

2 are expressed by weighted sums of the multiplications among ξ2, ξ2,u, ξ3, ξ3,u, ζ1, and ζ2

since we use a VT to approximate the BTs around the typical PT. In this case, the VT’s

effect is embodied by γ̃, ξ3, ξ3,u, and ζ2. Furthermore, as Ptx/σ
2 increases toward infinity, ζ1

and ζ2 approach 1, so that the SINR based coverage probabilities will converge to the SIR

based coverage probabilities for an arbitrary β.

3.4 Numerical Results and Discussions

The simulation results of both scenarios are shown in Fig. 3.4-3.7 where we use Monte Carlo

simulations with 50000 independent system realizations to verify the analytical results. We

set λP = 2 × 10−4, λB = 0.1, ρ = 10, R = 100, η = 0.5, α = 3.5 by default. Other system
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Figure 3.3: Coverage probability versus TSRNR deducting the absolute value of path loss.
(r0 = 15,Γ = 3dB, µ = 1, β = 0.8)

settings are illustrated in the captions of figures. Additionally, we also compare our results

with the classic scenario (as a benchmark) where no BT exists (i.e., the interference received

by the typical PR is only from atypical PTs).

The effect of TSRNR on the coverage probabilities is shown in Fig. 3.3, where the hor-

izontal axis represents the TSRNR after deducting the absolute value of path loss (which

is 10 log10(L(r0)−1) = 41 dB). Clearly, the SIR based coverage probabilities are not affected

by the TSRNR. However, the SINR based coverage probabilities gradually increase with the

growth of TSRNR, finally converge to the SIR curves. With the listed system parameters,
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Figure 3.4: Coverage probability versus useful signal power ratio β. (r0 = 15,Γ = 3dB, µ =
1,TSRNR = 51dB)

we observe that the TSRNR should be no less than 23 dB to make the SIR based coverage

probabilities as accurate as the SINR based results. We set r0 = 15 as a standard value for

comparison and use TSRNR = 51 dB, i.e., the TSRNR after deducting the absolute value

of path loss is 10 dB (except for Fig. 3.6 where r0 is a variable).

Fig. 3.4 shows the coverage probabilities for different values of β. From 0 to 1, the

value of β indicates the fraction of backscattered signal power from the typical PT that

can enhance the SINR and SIR at the typical PR. With the growth of β, the coverage

probabilities of both scenario-1 and scenario-2 increase. In addition, when β is larger than
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Figure 3.5: Coverage probability versus mean fading power gain. (r0 = 15,Γ = 3dB, β =
0.8,TSRNR = 51dB)

a certain value, the coverage probabilities of scenario-1 and scenario-2 exceeds the coverage

probability of the benchmark scenario. These results correspond to the fact that the effect

of backscattered signals has two sides: interference inducing and signal enhancing, i.e., the

interference dominates when β is less than the specific value, while the decodable signals

dominate when β is greater than that value.

Typically, the mean power gain 1/µ can be canceled in deriving the SIR based coverage

probabilities for most of the network models (e.g., the benchmark scenario), if the channels

are described as i.i.d. Rayleigh fading. However, in the considered two AmBC network
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Figure 3.6: Coverage probability versus typical PT to PR distance r0. (Γ = 3dB, β =
0.8, µ = 1,TSRNR = 51dB)

scenarios, the channel power gains of the PT-BT path and the BT-PR path are multiplied due

to the double fading effect, making the coverage probabilities more sensitive to the channel

fading gain. As shown in Fig. 3.5, the SIR based coverage probability of the benchmark

scenario does not change with the fading power gain, but the SIR based probabilities for

scenario-1 and scenario-2 increase with the growth of 1/µ. As the fading power gain grows,

the SINR based coverage probabilities of all three scenarios increase, and tend to converge

to the SIR based results since the noise becomes less significant.
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51dB)

Fig. 3.6 shows that the coverage probabilities decrease with the increase of the typical

PT to PR distance r0. Moreover, as r0 increases, BTs’ signal enhancing effect becomes less

significant than their interference effect, leading to the coverage probability of the benchmark

scenario exceeds the coverage probability of scenario-1. Besides, the SINR based curves have

steeper inclinations than the SIR based curves do for r0 < 26, but gentler inclinations for

r0 > 28. This is because as the distance r0 increases, the signal power from the typical PT

and its surrounding BTs decreases exponentially, resulting in the SINR being dominated by

noise.
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It is observed in Fig. 3.7 that the coverage probabilities decrease as the SINR/SIR

threshold Γ increases. Moreover, with the growth of Γ, BTs’ signal enhancing effect becomes

less significant than their interference effect, leading to the coverage probabilities of the

benchmark scenario exceed the coverage probabilities of scenario-1 and scenario-2. Besides,

the SINR based curves always have greater inclinations than the SIR based curves do, due

to the noise effect formulated by ζ1 and ζ2 in Theorem 2.

3.5 Conclusion

Our considered scheme enables a branch of novel communication devices where randomly

distributed ambient backscatter nodes are involved as secondary users which have no or little

self power supply. Considering the double-fading effect, we derive the SINR and SIR based

coverage probabilities for two network configuration scenarios with two ranges of β values.

The coverage probabilities of the considered scheme lie in a wide range around the coverage

probability of the conventional model, depending on the system settings. Numerical results

indicate the possibility and advantages to involve a large amount of AmBC nodes in existing

wireless networks.

3.6 Appendix

3.6.1 Proof of Lemma 4

Let g̃i = ωigi, i = 1, 2. Then, we recognize g̃i is exponentially distributed with mean 1/µ̃i =

ωi/µi and have

FG(g) = P (g̃1 ≤ g − g̃2) =

∫ g

0

∫ g−t2

0

µ̃1e
−µ̃1t1µ̃2e

−µ̃2t2dt1dt2

= 1− µ̃1

µ̃1 − µ̃2

e−µ̃2g +
µ̃2

µ̃1 − µ̃2

e−µ̃1g

(3.19)

for g ≥ 0.
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3.6.2 Proof of Theorem 1

For scenario-1, substituting (3.7)-(3.10) to (3.12), we obtain (a) in (3.20).

P(SINR ≥ Γ)

(a)
= P

{
gY0 ≥

1

L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

ZXY0
+ Γ

∑
Y ∈ΦP

gYL(rY ) +
σ2Γ

Ptx

+ Γ
η

2

∑
Y ∈ΦP

∑
XY ∈ΦB(Y )

ZXY
]}

(b)
≈ P

{
gY0 ≥

1

L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

ZXY0
+ Γ

∑
Y ∈ΦP

(gY + γg̃Y )L(rY ) +
σ2Γ

Ptx

]}

(c)
= E

{
exp

(
−µ
L(r0)

[
(Γ(1− β)− β)

η

2

∑
XY0
∈ΦB(Y0)

ZXY0
+ Γ

∑
Y ∈ΦP

(gY + γg̃Y )L(rY ) +
σ2Γ

Ptx

])}

(d)
= E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0

,txgXY0
,rx −

µΓ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y )L(rY )

)}
exp

(
−µσ2Γ

L(r0)Ptx

)
(e)
= E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0

,txgXY0
,rx

)}
× E

{
exp

(
− µΓ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y )L(rY )

)}
ζ1

(3.20)

Then, (b) results from using Lemma 2 to replace the clustered BTs around atypical PTs with

VTs, where g̃Y ∼ exp(µ) (with Y ∈ ΦP) is the mean fading power gain of the channel between

the VT at Y (co-located with the PT) and the typical PR. (c) is from the complementary

cumulative distribution function (CCDF) of exponential random variable gY0 . Substituting

aXY0
= µη[Γ(1−β)−β]

2L(r0)
L(rXY0

,tx)L(rXY0
,rx) to (c), we obtain (d). Next, (d) is written as the

product of two expectations in (e) due to the independence between XY0 and Y .
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Furthermore, we derive (3.21) and (3.22) as follows,

E

{
exp

(
−

∑
XY0
∈ΦB(Y0)

aXY0
gXY0

,txgXY0
,rx

)}

= E
ΦB(Y0)

{ ∏
XY0
∈ΦB(Y0)

E
gXY0

[
exp

(
−aXY0

gXY0

)]}

(a)
= exp

{
−λB

∫
B(Y0,ρ)

(
1− E

gXY0

[
e
−aXY0

gXY0

])
dXY0

}
(b)
= exp

{
−λB

∫
B(Y0,ρ)

(
1−

∫ ∞
0

µ2e−µt

aXY0
t+ µ

dt

)
dXY0

}

= ξ1

(3.21)

E

{
exp

(
− µΓ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y)L(rY)

)}

= E

{ ∏
Y ∈ΦP

exp

(
− µΓ

L(r0)
(gY + γg̃Y)L(rY)

)}
(a)
= exp

{
−λP

∫
D

(
1− E

gY,g̃Y

[
e
−µΓ
L(r0)

(gY+γg̃Y)L(rY)
])
dY

}
(b)
= exp

{
−λP

∫ 2π

0

∫ R

r0

(
1− E

[
e
−µΓL(r)
L(r0)

(gY+γg̃Y)
])
rdrdθ

}
(c)
= exp

{
−2πλP

∫ R

r0

(
1− 1

1 + Γ
rα0 +1

rα+1

1

1 + γΓ
rα0 +1

rα+1

)
rdr

}

= ξ2

(3.22)

where gXY0
, gXY0

,txgXY0
,rx, and D = B(0, r0) − B(0, R) is the distribution range of Y .

(a) in (3.21) and (3.22) is from the probability generating functional (PGFL) of PPP [23].

Then, we obtain (b) in (3.21) by Lemma 3. By changing Cartesian coordinates to polar

coordinates and calculating the expectation, (b) and (c) in (3.22) are obtained in sequence.

Thus, we obtain P(SINR ≥ Γ) ≈ ξ1ξ2ζ1 by substituting (3.21) and (3.22) to (3.20). Setting

σ2

Ptx
= 0 (i.e., ζ1 = 1), we can obtain the SIR based coverage probabilities. We omit the

similar derivation for scenario-2.
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3.6.3 Proof of Theorem 2

When Γ(1 − β) − β < 0, the right-hand-side term of ≥ in (a) of (3.20) is not guaranteed

to be non-negative. In this case, we further approximate the sum power from the clustered

BTs around the typical PT as the power from a VT located at Y0. Then, from (b) in (3.20),

the coverage probability is written as

Pc
(a)
≈ P

{
gY0 + γ̃g̃Y0 ≥

Γ

L(r0)

∑
Y ∈ΦP

(gY + γg̃Y )L(rY ) +
σ2Γ

Ptx

}
(b)
=

µ

µ− µ/γ̃
E
[

exp
( −µΓ

γ̃L(rY0)

∑
Y ∈ΦP

(gY + γg̃Y )L(rY )
)]
ζ2

− µ/γ̃

µ− µ/γ̃
E
[

exp
( −µΓ

L(rY0)

∑
Y ∈ΦP

(gY + γg̃Y )L(rY )
)]
ζ1

(c)
=

γ̃

γ̃ − 1
ξ3ζ2 −

1

γ̃ − 1
ξ2ζ1

(3.23)

where γ̃ = − [Γ(1− β)− β] γ > 0. (a) results from using Lemma 2 to replace the clustered

BTs around the typical PT with a VT, where g̃Y0 ∼ exp(µ) is the mean power gain of the

channel between the VT at Y0 and the typical PR. Then, (b) is obtained by calculating the

CCDF of gY0 + γ̃g̃Y0 with Lemma 4. Finally, we have (c) using PGFL of PPP, changing

coordinates and calculating the expectation (with the same steps as in (3.22)). Setting

σ2

Ptx
= 0, we can obtain the SIR based coverage probabilities. We omit the similar derivation

for scenario-2.
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CHAPTER 4

PERFORMANCE ANALYSIS OF DISTRIBUTED AUXILIARY RADIO

TELESCOPES UNDER SHARED SPECTRUM ACCESS PARADIGM AND

COOLING POWER CONSTRAINT

4.1 Introduction

This chapter proposes a DART system which can geographically and spectrally coexist with

CWC while offering additional capability or performance enhancement to RAS. Currently,

there are two types of RAS, namely single-dish telescope and telescope array. Single-dish

telescope has unique advantages such as good potential sensitivity to large scale structure,

building and maintaining simplicity and upgrading flexibility [17]. Numerous single-dish

telescopes have been built, e.g., the 305-meter Arecibo Observatory built in 1963 and the Five

hundred meter Aperture Spherical Telescope (FAST) completed in last year. Nevertheless,

the single-dish telescope also has shortcomings in spatial frequency response and mechanical

complexity perspectives [17] compared with the radio telescope array. Processing the signals

received by a telescope array can mitigate the interference and increase the observation range

and resolution. Therefore, we have also seen the prosperity of radio telescope arrays such

as the Very Large Array (VLA) and the Square Kilometer Array (SKA) and a trend of

combination among single-dish telescopes and telescope arrays. Nevertheless, these existing

RAS sites are protected by radio quiet zones and cannot coexist with CWC.

To accommodate expansions of both CWC and RAS, we embrace the shared spectrum

access paradigm of [52] and propose a DART system which can coexist with CWC and

conventional single-dish RAS. Our DART system can either work independently as a radio

0 c© 2017 IEEE. Reprinted, ”Performance Analysis of Distributed Auxiliary Radio Telescopes Under
Shared Spectrum Access Paradigm and Cooling Power Constraint,” in IEEE Access, vol. 5, pp. 21709-
21722, Oct. 2017.
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telescope array or cooperate with an existing single-dish RAS to increase the overall perfor-

mance accuracy. We derive analytical performance expressions for signal power estimation

of the DART system with different quantization resolutions, and then obtain approximate

closed-form expressions. We observe that a larger resolution of analog-to-digital converter

(ADC) yields a smaller bias but a larger variance to the RAS signal power estimation. These

biases remain relatively constant within the typical range of RAS signal-to-noise ratio (SNR),

thus the bias can be compensated. However, after the bias compensation, the resulting vari-

ance of the RAS signal power estimate is also changed and a higher ADC resolution provides

better performance in terms of estimation variance (after the bias compensation). Next,

we also obtain an analytical expression for the DART system parameters under the shared

spectrum access paradigm to achieve the same performance as the existing single-dish RAS

with a radio quiet zone. This provides guidance in the DART system design. These con-

tributions are reported in our conference paper [25]. Additional contributions with respect

to [25] are described below. We develop efficient combination of astronomical source power

estimations between the single dish RAS and the DART system. Furthermore, cooling is a

major source of operation cost for RAS. Given finite cooling power, we propose a dynamic

cooling temperature approach to allocate the cooling power according to ambient temper-

atures and CWC traffic statistics. We investigate both perfect and imperfect temperature

information scenarios for the cooling power allocation problem and a neat solution is found

by using an alternating optimization approach. The numerical and simulation results illus-

trate performance of the proposed DART system as well as effects of ADC resolution on the

RAS signal power estimation performance.

This chapter is organized as follows. Section 4.2 introduces the RAS signal power esti-

mation method and the system structure for both single-dish RAS and the DART system.

We investigate the performance statistics of the astronomical signal power estimation under

various ADC resolutions in Section 4.3. Then in Section 4.4, we provide their closed-form
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Figure 4.1: Geometric structure of the DART system and the single-dish RAS

approximations and investigate their relationships to the accurate (non-closed-form) expres-

sions derived in the previous section. Next, Section 4.5 presents performance of the DART

system under the three-phase spectrum sharing paradigm of [52] with reference to that of the

single-dish RAS in a radio quiet zone. In Section 4.6, the cooling power allocation problem

is proposed and investigated. Finally, Section 4.7 concludes this chapter.

4.2 System Model

To enable growth in both CWC and RAS services, we consider the shared spectrum access

paradigm proposed in [52] where CWC and RAS can coexist geographically and spectrally.

Such coexistence paradigm removes the need of a radio quiet zone around each radio telescope

and hence we propose to exploit it by introducing several radio telescopes within the radio

coverage zones of CWC, which we term distributed auxiliary radio telescopes (DARTs). An
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illustration of the proposed system is shown in Fig. 4.1. The RAS data from each DART

are saved at a central station or a cloud database center and hence cross-processing of data

from different DARTs can be easily done. This coexistence paradigm could also promote

emergence of DARTs set up by public institutions, private groups or individuals with strong

interest in RAS.

In the shared spectrum access approach of [52], a time frame of duration τf , which consists

of nf subframes of duration τsf each, is divided into three phases, namely CWC only phase

of duration τCWC (nCWC subframes), CWC+RAS phase of duration τCWC+RAS (nCWC+RAS

subframes) and RAS only phase of duration τRAS (nRAS subframes), as is shown in Fig. 4.2.

The first phase is only for CWC while the last phase is only for RAS, thus providing RFI-free

spectrum access to both systems. The second phase is used to absorb different propagation

delays of CWC cells, and it could allow transmissions in some CWC cells, some practical

testing of RFI cancellation schemes, or fine tuning of the shared spectral access paradigm

[64]. The durations of the three phases can be adjusted based on the spectrum access needs,

the CWC traffic statistics, and practical fine tuning results of the shared spectrum access

parameters. An example of spectrum access duration adaptation on an hourly basis1 based

on the CWC traffic statistics was presented in [52]. For our DART deployment, to guarantee

RFI-free observation, we only use the RAS only phase for the DART. The implication of this

shared spectrum access is the reduction of the RAS observation time of a DART if compared

to the RAS in a radio quiet zone. However, more DARTs can be used to recover the loss in

the RAS observation time or to get even a larger effective observation time. In the following,

we will develop signal model, estimator, and performance analysis in a general sense based

on the number of observation samples and the noise variance. By substituting appropriate

values for those parameters, one can obtain the results for the the considered scenario or

paradigm.

1computed and designed in advance, thus no online adaptation is needed.
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Figure 4.2: Frame structure of the three-phase spectrum sharing paradigm where the dura-
tions of the phases could be different at different hours[52]

+1

-1

Switching 
Cycle

Observing 
Sky

Referencing
Noise

∑

Sampling and 
Quantizing

Square Law 
Detector

Figure 4.3: RAS receiver structure with noise referencing

The DART system aims to receive the radio waves of the astronomical radio sources,

which are commonly modeled to be zero mean complex Gaussian distributed[8, 29, 34, 68],

and then estimate the power of the source in terms of the radiation power. However, the

received radio wave sent from the source is significantly weaker than the additive thermal

noise at the receiver. To mitigate the noise impact and achieve unbiased power estimation

as accurate as possible, we apply a noise referring approach called Dicke switching (see [81,

Fig.4.8] and [13]) where the receivers switch the observations between astronomical source
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and the inner noise generating source2. The simplified receiver structure is shown in Fig. 4.3.

Each antenna element samples and quantizes the astronomical radio signal corrupted with

additive thermal noise and the reference thermal noise in a time-division manner. Next, the

quantized samples are squared by the detector to obtain the signal power. Subtracting the

averaged reference samples’ power from the averaged noise corrupted astronomical samples’

power, the power of astronomical radio signal is estimated. To be specific, for the DART

system with M antenna elements (telescopes), we assume the received astronomical source

signal at each antenna is circular symmetric complex Gaussian (CSCG) distributed with

zero mean and variance σ2
s . We also assume the additive thermal noise at each antenna is

distributed as zero mean CSCG with the same variance σ2
n. Therefore, the nth samples of the

received astronomical source signal, the noise involved in astronomical observation and the

referencing noise at the ith antenna are represented as sit(n), nit(n) and nir(n), respectively,

where i ∈ {1, ...,M}. We assume that the received signals are independent over different

samples. Besides, the quantization errors of the nth sample at the ith antenna are eit(n) and

eir(n) for astronomical observation and noise referencing, respectively. Correspondingly, the

quantized samples are represented as

yit(n)
∆
=sit(n) + nit(n) + eit(n) (4.1)

yir(n)
∆
=nir(n) + eir(n) (4.2)

where sit(n) ∼ CN (0, σ2
s ) and nit(n), nir(n) ∼ CN (0, σ2

n). Assuming we have a fixed obser-

vation time with a fixed sampling frequency, which corresponds to 2L samples, it can be

shown that the most accurate power estimation is achieved asymptotically if we allocate L

samples for astronomical observation and L samples for referencing when the following two

criteria are satisfied, 1) negligible quantization error and 2) σ2
s

σ2
n
→ 0. The proof is provided

2Other noise referencing approaches can also be applied.
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in Section IV. By applying this result, the output estimated source power is

ρarray =
1

ML

M∑
i=1

L∑
n=1

{
|yit(n)|2 − |yir(n)|2

}
. (4.3)

Since there is only one antenna element in the single-dish system, it can be regarded as

a special case of the array system. Assuming we have in total 2N samples and allocate

N samples for astronomical observation and another N samples for noise referencing, the

output estimated source power is

ρsingle =
1

N

N∑
n=1

{
|yt(n)|2 − |yr(n)|2

}
(4.4)

where yt(n) and yr(n) represent the quantized samples for astronomical observation and

noise referencing of single-dish RAS, respectively.

Suppose the hourly based resource adaptation of [52] is applied and the three phases

(see Fig. 4.2) at hour l have per-frame durations τCWC,l (nCWC,l subframes), τCWC+RAS,l

(nCWC+RAS,l subframes) and τRAS,l (nRAS,l subframes), respectively, and τCWC,l+τCWC+RAS,l+

τRAS,l = τf . The total number of frames per hour is Nf/hour = 3600/τf . Suppose the sampling

frequency is 2B for RAS and the RAS signal power estimation is done based on K hours

{lk : k = 1, · · · , K}. Then the number of samples available for a single DART is 2L =

2B
∑K

k=1 τRAS,lkNf/hour while that for the conventional single-dish RAS, since the spectrum

is not shared, is 2N = 2BKτfNf/hour. Obviously, as
∑K

k=1 τRAS,lk < Kτf , the RAS observation

time for DARTs is smaller than that for the single-dish RAS with radio quiet zones. However,

under the spectrum sharing paradigm, several (M) telescopes can coexist with CWC and the

total number of samples available is increased by M as can be seen in (4.3) for the DART

system.

66



4.3 Performance Analysis of RAS Signal Power Estimation under Finite ADC

Resolutions

In this section, we analyze the mean and variance of the estimated astronomical source power

for both systems. We mainly focus on the DART system since the results are naturally

applicable to the single-dish RAS by setting M = 1. Since the in-phase component and the

quadrature-phase component of the signals are independently and identically distributed

(i.i.d.), we represent the estimated power ρarray as the sum of two i.i.d. parts, namely the

in-phase estimated power ρin and the quadrature-phase estimated power ρquad, i.e., ρarray =

ρin + ρquad where

ρin =
1

ML

M∑
i=1

L∑
n=1

(
Re{yit(n)}2 −Re{yir(n)}2

)
(4.5)

ρquad =
1

ML

M∑
i=1

L∑
n=1

(
Im{yit(n)}2 − Im{yir(n)}2

)
. (4.6)

Given a b-bit quantizer with the quantization thresholds and quantized values being

represented as νk, k ∈ {1, . . . , 2b + 1}, and ck, k ∈ {1, . . . , 2b}, respectively, the second

moment of the real-part quantized sample is

E
[
Re{yip(n)}2

]
=

2b∑
k=1

∫ νk+1

νk

c2
kfp(x)dx =

2b∑
k=1

c2
k [Q(νk/σp)−Q(νk+1/σp)] (4.7)

where p ∈ {t, r}, σ2
t = σ2

s +σ2
n

2
, σ2

r = σ2
n

2
, fp(x) is the Gaussian probability density function with

zero mean and variance σ2
p, and Q(x) = 1√

2π

∫∞
x
e−u

2/2du. And we have E
[
Re{yip(n)}2

]
=

E
[
Im{yip(n)}2

]
. Define

ϕp
∆
=

2b∑
k=1

c2
k [Q(νk/σp)−Q(νk+1/σp)] , p ∈ {t, r} (4.8)

φp
∆
=

2b∑
k=1

c4
k [Q(νk/σp)−Q(νk+1/σp)] , p ∈ {t, r}. (4.9)
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Then, from (4.5)-(4.7), we can represent the first moment of the in-phase and quadrature-

phase estimated powers as

E[ρin] = E[ρquad] = ϕt − ϕr. (4.10)

We can also obtain their second moments E [ρ2
in] = E

[
ρ2

quad

]
as

E
[
ρ2

in

]
=

1

M2L2

M∑
i,j=1

L∑
n,m=1

E
[
Re{yit(n)}2Re{yjt (m)}2 + Re{yir(n)}2Re{yjr (m)}2

− 2Re{yit(n)}2Re{yjr (m)}2
]

(a)
≈ 1

ML

{
E[Re{yit(n)}4] + E[Re{yir(n)}4]− 2E[Re{yit(n)}2]E[Re{yir(n)}2]

}
+
ML− 1

ML

{
E
[
Re{yit(n)}2

]
− E

[
Re{yir(n)}2

]}2

=
1

ML
(φt + φr − 2ϕtϕr) +

ML− 1

ML
(ϕt − ϕr)

2.

(4.11)

where the approximation (a) is due to the independence assumption between yit(n) and

yjt (n), ∀i 6= j. As the power of astronomical source is significantly less than the power of

noise, the approximated expression in (4.11) is asymptotically accurate when the received

SNR approaches zero. According to (4.10) and (4.11), the variance of the in-phase estimated

power and that of the quadrature-phase estimate power are

Var(ρin) = Var(ρquad) ≈ 1

ML
(φt + φr − ϕ2

t − ϕ2
r ). (4.12)

Then, we obtain the mean and variance of the power estimation of the DART system as

E[ρarray] = E[ρin] + E[ρquad] = 2(ϕt − ϕr) (4.13)

Var(ρarray) = Var(ρin) + Var(ρquad)

≈ 2

ML
(φt + φr − ϕ2

t − ϕ2
r ). (4.14)

Next, by seting M = 1 and substituting L with N , we also obtain the counterparts for the

single-dish RAS as

E[ρsingle] = 2(ϕt − ϕr) (4.15)

Var(ρsingle) =
2

N
(φt + φr − ϕ2

t − ϕ2
r ). (4.16)
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Note that (4.16) is an accurate expression since for M = 1, (4.11) involves no approximation.

Besides, as the effect of the noise variance is embedded in ϕt, ϕr, φt, and φr, a different noise

variance could affect the mean and variance of the RAS power estimate. We also notice

that for both the DART system and the single-dish RAS, the mean values of the output

power estimates are the same as long as they have identical quantizer settings and the same

noise variance. However, the variances of the output power estimates have different factors

ML versus N . This clearly shows that although L < N , the DART system can improve its

performance by increasing the number of antennas, M .

4.4 Approximate Closed-Form Analysis

The means and variances of the estimated powers derived in (4.13) - (4.16) are not in

closed forms. To have better insights, in this section, we develop approximated closed-form

representations, assuming the received sample is independent from the quantization error.

For the DART system, conditioning on the quantization errors, the received signals are

regarded as being i.i.d. CSCG distributed over all the antennas, i.e.,

yit(n)|eit(n) ∼ CN (eit(n), σ2
n + σ2

s )

yir(n)|eir(n) ∼ CN (eir(n), σ2
n).

(4.17)

To prove the asymptotically optimal sample partitioning mentioned in Section II, we start the

analysis by using different numbers of samples for source observation and noise referencing,

namely, L1 and L2. Then, the estimated source power is rewritten as

ρarray =
1

ML1

M∑
i=1

L1∑
n=1

|yit(n)|2 − 1

ML2

M∑
i=1

L2∑
n=1

|yir(n)|2 (4.18)

where L1 +L2 = 2L. For compactness, we define conditional terms Zi
t

∆
=
∑L1

n=1 |yit(n)|eit(n)|2

and Zi
r

∆
=
∑L2

n=1 |yir(n)|eir(n)|2 and note that both terms, Zi
t and Zi

r, are non-central chi-square
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random variables with the means and variances being represented as

E(Zi
t) =L1(σ2

n + σ2
s ) +

L1∑
n=1

|eit(n)|2 (4.19)

E(Zi
r) =L2σ

2
n +

L2∑
n=1

|eir(n)|2 (4.20)

Var(Zi
t) =L1(σ2

n + σ2
s )2 + 2(σ2

n + σ2
s )

L1∑
n=1

|eit(n)|2 (4.21)

Var(Zi
r) =L2σ

4
n + 2σ2

n

L2∑
n=1

|eir(n)|2. (4.22)

Therefore, conditioning on the quantization error set E = {(eit(n), eir(m)) : i = 1, ...,M, n =

1, ..., L1, m = 1, ..., L2}, the estimated power is

ρarray|E =
1

ML1

M∑
i=1

Zi
t −

1

ML2

M∑
i=1

Zi
r. (4.23)

From (4.19) to (4.22), the mean and variance of ρarray|E are

µρ|E = E[ρarray|E ] = σ2
s +

MSEt(L1)

ML1

− MSEr(L2)

ML2

(4.24)

Var(ρarray|E) =
1

ML1

(σ2
n + σ2

s )2 +
1

ML2

σ4
n +

2(σ2
n + σ2

s )

M2L2
1

MSEt(L1) +
2σ2

n

M2L2
2

MSEr(L2)

(4.25)

where MSEp(L)
∆
=
∑M

i=1

∑L
n=1 |eip(n)|2, p ∈ {t, r}.

Now, we are able to find the asymptotically optimal sample numbers L1 and L2 based

on the conditional variance in (4.25). Under the condition that the quantization error is

negligible and σ2
s

σ2
n
→ 0, we have

lim
eit,e

i
r,
σ2

s
σ2

n
→0

Var(ρarray) = lim
eit,e

i
r,
σ2

s
σ2

n
→0

Var(ρarray|E) =
σ4

n

ML1

+
σ4

n

ML2

. (4.26)

With the fact that L1 + L2 = 2L, the minimum variance, i.e., the minimum of (4.26), is

achieved when

L1 = L2 = L. (4.27)
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This solution also applies to the single-dish RAS. Next, substituting (4.27) to (4.24), the

approximated mean µρ of the estimated astronomical source power is

µρ = E[µρ|E ] ≈ σ2
s (4.28)

where the approximation is due to the assumption E [|eit(n)|2] = E [|eir(n)|2] since σ2
s � σ2

n.

Substituting (4.27) to (4.25), we obtain the variance σ2
array of the estimated astronomical

source power as

σ2
array = E [Var(ρarray|E)] + Var(E[ρarray|E ])

≈ 2

ML
σ4

n +
1

ML
(2σ2

sσ
2
n + σ4

s ) +
2

ML
(σ2

n + σ2
s )E

[
|eit(n)|2

]
+

2

ML
σ2

nE
[
|eir(n)|2

]
≈ 2σ4

n

ML
.

(4.29)

The first approximation in (4.29) holds because

Var(E[ρarray|E ]) = E
[
σ2

s +
MSEt(L)

ML
− MSEr(L)

ML

]2

− σ4
s ≈ 0. (4.30)

The second approximation in (4.29) is due to σ2
s � σ2

n and E [|eit(n)|2]� σ2
n.

Similarly, we can also obtain approximate results for the single-dish RAS. The mean

value of the estimated source power is the same as (4.28) while the variance is

σ2
single ≈

2σ4
n

N
. (4.31)

Note that the approximate closed-form results correspond to the scenario with very low

SNR (relevant for RAS) and negligible quantization error. Thus, comparison between the

exact expressions from the previous section and the approximate ones will reveal the effect

of quantization errors on the RAS power estimation performance. To observe this, we define

their ratios as the normalized performance metrics as

γµ
∆
=
E[ρsingle]

µρ
=

E[ρarray]

µρ
(4.32)

γσ
∆
=

Var(ρsingle)

σ2
single

=
Var(ρarray)

σ2
array

. (4.33)
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Figure 4.4: The normalized mean of RAS signal power estimation under various ADC reso-
lutions (σ2

s = 1, N or L = 104)

We note that the single-dish RAS and the DART system share the same term of each

normalized performance metric and hence we can use variables γµ and γσ for both systems.

We present the effect of ADC resolution on the RAS power estimation performance by

plotting γµ and γσ under various ADC resolutions in Fig. 4.4 and Fig. 4.5 respectively,

where we apply trained Lloyd-Max quantizers corresponding to the noise variance. To verify

the analytical results, we conducted Monte Carlo simulations using σ2
s = 1 and SNR = −20

dB. Table 4.1 shows the corresponding simulation results which match with the analytical
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Figure 4.5: The normalized variance of RAS signal power estimation under various ADC
resolutions (σ2

s = 1, N or L = 104)

results in Fig. 4.4 and Fig. 4.5. From the results in the figures, the following observations

are in order:

1. A smaller ADC resolution introduces a larger bias to the mean of the RAS power

estimation.

2. To obtain approximately unbiased estimates without additional bias compensation, an

ADC resolution of at least 6 bits is needed.

3. The variance of the RAS power estimation reduces with decreasing ADC resolution.
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Figure 4.6: The normalized variance of RAS signal power estimation after the bias compen-
sation (σ2

s = 1, N or L = 104)

4. The effects of ADC resolution in terms of the estimation mean and variance are ap-

proximately constant within the typical SNR range of interest for RAS (< −20 dB).

This also allows us to use a small ADC resolution (causing a bias) and then compensate

the precomputed bias.

After the bias compensation (i.e., multiplying with 1/γµ), the variance of the unbiased

RAS power estimation is given by

γσ,unbiased
∆
=

Var(ρsingle/γµ)

σ2
single

=
Var(ρarray/γµ)

σ2
array

=
γσ
γ2
µ

. (4.34)
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It is crucial for the RAS power estimator to be unbiased and hence, (4.34) is a more mean-

ingful metric than (4.33).

Given the two facts, first, the ADC resolution is approximately constant within the

typical low SNR range, second, the mean E[ρsingle] (or E[ρarray]) and variance Var(ρsingle) (or

Var(ρarray)) are proportional to their closed-form approximations µρ and σ2
single (or σ2

array) by

factor γµ and γσ respectively according to (4.32) and (4.33), we will mainly use the closed

form results σ2
single and σ2

array in the following analysis for representation simplicity.

Fig. 4.6 presents the variance of the unbiased RAS power estimator for different ADC

resolutions. We can observe that a higher ADC resolution yield a smaller variance. However,

the performance saturates for ADC resolution of 6 bits or more. We also simulated 7 and 8

bits ADC resolutions and the results are indistinguishable from that of 6 bits ADC and hence

they are not plotted in Fig. 4.6 for the sake of clarity of the other curves. And γσ,unbiased

converges to 1 as the resolution increases. As a larger ADC resolution yield a higher data

rate, trade-offs can be made between data rates and estimation performance. A good choice

is 6 bits ADC resolution as more bits do not yield noticeable performance improvement.

Next, we evaluate the effect of the number of antennas. With the settings that σ2
s = 1

and N = 104, table 4.2 shows the Monte Carlo simulation results for a 4-bit quantizer at

SNR = −20 dB when the number of antenna elements varies. Comparing the multi-antenna

results to the single antenna result in this table, we observe the following.

1. The variance of estimated power decreases by a factor around M when more antennas

are combined. This illustrates a benefit of the DART system.

2. The corresponding normalized metric γσ, which in its approximate form in (4.14) is

independent of M , slightly increases with M . This is due to the mismatch between

the assumption of independence among the received signals at different antennas in

the analysis and the correlation of the received signals across antennas due to the same
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Table 4.1: Comparison of Different Quantization Resolutions

Bits 2 3 4 5 6
Simulated Mean (or γµ) 0.4967 0.8106 0.9447 0.9746 0.9986
Simulated Variance 0.9528 1.6165 1.8896 1.9871 2.0089
Corresponding γσ 0.4764 0.8082 0.9448 0.9936 1.0044

astronomical signal in the simulation. In other words, the difference between γσ for

M > 1 and γσ for M = 1 implies how accurate the approximation in (4.14) is, and the

results show good accuracy.

3. The simulation result of γµ does not grow with M (thus, maintaining unbiased estima-

tion for different values of M) since the signal correlation does not affect the mean of

the estimated power.

4.5 Combination and Performance Comparison between DART and the Single-

Dish RAS

Here, we evaluate the performance of the DART by incorporating specifics of the coexistence

paradigm and then compare it with the performance of the single-dish RAS (the isolation

paradigm). Recall the system parameters for the shared spectrum access described in Section

II. Suppose the hourly allocation of the number of subframes per frame to the three phases is

pre-designed according to the CWC traffic statistics as in [52]. Let narray,l denote the number

of subframes per frame allocated to the DARTs for the lth hour. An example of available

observation intervals of DART in terms of narray,l is shown by a line curve in Fig. 4.8 based

on the system setting in [52]. DART is allocated with longer (shorter) observation intervals

during hours with lower (higher) CWC average traffic loads. Thus, the hourly estimation

performance of DART would vary as well.

The number of samples at hour l for DART is given by 2Ll = 2Bnarray,lτsfNf/hour while

that for the single-dish RAS is 2N = 2BnfτsfNf/hour at any hour. Then, the variances of the
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Table 4.2: Comparison of Different Numbers of Antenna Elements

M 1 10 50
Simulated Mean (or γµ) 0.9447 0.9421 0.9402
Simulated Variance 1.8896 0.1896 0.0386
Corresponding γσ 0.9448 0.9481 0.9640

estimated powers in (4.29) and (4.31) for hour l are

σ2
array,l ≈

2σ4
n

MBnarray,lτsfNf/hour

, l = 1, . . . , 24 (4.35)

σ2
single,l =

2σ4
n

BnfτsfNf/hour

, l = 1, . . . , 24. (4.36)

As hourly based signal power estimates denoted by {ρarray,l} have different accuracies, if

the desired power estimation needs to be computed over K hours (l1, . . . , lK), we can apply

the best linear unbiased estimation [35] to combine the K estimates as

ρarray =
K∑
k=1

βkρarray,lk (4.37)

where

βk =
1/σ2

array,lk∑K
n=1 1/σ2

array,ln

(4.38)

minimizes the variance of combined estimation σ2
array ≈

∑K
k=1 β

2
kσ

2
array,lk

, under the unbiased

constraint
∑K

k=1 βk = 1. The approximation is due to the assumption that observations in

different hours are regarded to be independent since noise is the dominant received signal.

Thus, the corresponding estimator variance for the DART system is given by

σ2
array ≈

2σ4
n

MBτsfNf/hour

∑K
k=1 narray,lk

. (4.39)

We notice that (4.39) indicates this estimator variance is equivalent to the variance achieved

by averaging all the samples in K hours. Meanwhile, we denote r as the ratio of the total

resources allocated over the above K hours between CWC and RAS, i.e., r =
∑K
k=1 nCWC,lk∑K
k=1 nRAS,lk

. A

comparison between the variance achieved by the BLUE approach and the variance achieved
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Figure 4.7: Comparison between BLUE and simple averaging

by simply averaging σ2
array,l, l = 1, . . . , K for different values of the resource ratio r is shown

in Fig. 4.7. It can be observed that in a feasible range of the ratio r, the BLUE combining

approach always outperforms the simple averaging method in terms of the variance of the

estimated power.

For the single-dish RAS, we can simply average the K estimates as ρsingle =
∑K

k=1

ρsingle,lk

K

and the corresponding variance is

σ2
single =

2σ4
n

KBnfτsfNf/hour

. (4.40)

In a typical deployment of the shared spectrum access, a fixed minimum subframe value

of nCWC+RAS,l = nCWC+RAS would be used across time to maximize the spectrum utilization.
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Then, with η
∆
= (nf − nCWC+RAS)/nf , we have

K∑
k=1

narray,lk =
ηK

1 + r
nf . (4.41)

Next, from (4.39), (4.40) and (4.41), we obtain

σ2
array ≈

1 + r

Mη
σ2

single. (4.42)

The above equation shows the relationship between the estimation accuracy of the DART

system and that of the single-dish RAS. For example, to achieve the same or better estimation

performance than the single-dish RAS with a radio quiet zone, the DART system needs at

least M =
⌈

1+r
η

⌉
antenna elements coexisting with CWC.

To compare the estimation accuracy of different systems, we assume that σ2
n = 1, K =

24, B = 500MHz, τsf = 38.5µs, nf = 44, nCWC+RAS = 4 and r = 1.25. Then, we have M =⌈
1+r
η

⌉
= 3. Next, according to the narray,l curve shown in Fig. 4.8, the variances of estimated

power in each hour are computed and also presented in Fig. 4.8. Clearly, the variance of

estimated power of the DART system is inversely proportional to the number of allocated

subframes while the single-dish RAS’s variance remains a constant value. Combining all the

estimates by the best linear unbiased estimation, we find the corresponding variances for the

DART system and the single-dish RAS are σ2
array = 3.82× 10−14 and σ2

single = 4.63× 10−14,

respectively. Therefore, with enough numbers of DARTs, the DART system can outperform

the single-dish RAS in terms of overall estimation accuracy even though it may have worse

performance in some estimation periods.

Furthermore, instead of using the single-dish RAS and the DART system separately,

we combine the DART system with the single-dish RAS so that the overall performance

can be enhanced. In this scenario, the two systems observe the same astronomical source

from different locations and the DART is regarded as an auxiliary system which provides

additional observation samples. In particular, since the astronomical signal is significantly
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Figure 4.8: Accuracy performance comparison and optimal subframe numbers

weaker than the noise, we assume the estimated astronomical powers of both systems are

uncorrelated, i.e., ρsingle and ρarray are uncorrelated. According to the BLUE approach, the

combined estimation is

ρ̄ = θρsingle + (1− θ)ρarray (4.43)

where θ =
σ2

array

σ2
single+σ2

array
. Therefore, the variance of combined estimation is

σ̄2 =
σ2

singleσ
2
array

σ2
single + σ2

array

. (4.44)

Specifically, applying previous system settings, σ2
array = 3.82×10−14 and σ2

single = 4.63×10−14,

we have σ̄2 = 2.09×10−14, which implies with the assistance of a 3-DART system, the single-

dish RAS estimation variance can be reduced by more than half.
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4.6 Average Performance Under Cooling Power Constraint

The accuracy of radio astronomical observation is largely dependent on the noise level of

the receiver. To achieve higher observation accuracy, noise should be mitigated as much as

possible. A common physical method is cooling the hardware down to an acceptable low

temperature since thermal noise is the most dominant noise in the receiver. The cooling

process consumes a significant part of energy of the whole radio astronomy telescope [24]

which motivates us to investigate the power efficiency of the DART system.

4.6.1 DART Performance Analysis

In this section, we consider that K astronomical observations to the same object are con-

ducted hourly and aim to minimize the estimation variance based on the K observation

periods. Since the cooling process consumes a substantial part of energy, we propose an dy-

namic cooling power allocation approach to optimize the cooling temperature under a total

cooling power constraint.

The noise variance at hour lk can be represented in terms of noise temperature Tlk as

σ2
n,lk

= κTlkB (4.45)

where κ = 1.3807 × 10−23 is the Boltzmann constant and B is the noise bandwidth. With

(4.35) and (4.45), the variances of estimated power are given as

σ2
array,lk

=
2(κTlkB)2

MBnarray,lkτsfNf/hour

=
αT 2

lk

Mnarray,lk

(4.46)

where constant α = 2κ2B
τsfNf/hour

. Furthermore, the average variance of the estimated powers in

K hours is 1
K

∑K
k=1

αT 2
lk

Mnarray,lk

.

According to (4.46), in order to achieve a desired variance of the estimation, radio as-

tronomical receivers should be cooled down to certain low temperatures to mitigate the

thermal noise. Lower temperature results in higher estimation accuracy but also indicates
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higher power consumption. Thus, given a certain amount of power and the time varying

nature of the ambient temperature, dynamically allocating the power to optimize the cooling

temperature will be more preferable than the conventional approach which maintains a fixed

temperature.

Assuming an idealized scenario where there is no thermodynamic loss, the second law of

thermodynamics connects the minimum required power PMIN to cool down a surface from

ambient temperature Tamb to a desired temperature T0 in the form of Carnot equation [3],

PMIN =
Tamb − T0

T0

·Q0 (4.47)

where Q0 is called cooling capacity3 [3].

In the following parts of this section, we assume that 1) the DARTs observes the same

astronomical source signal for K hours, 2) both the CWC traffic statistics and the ambient

temperature (statistics) vary hourly and are known in advance, 3) the receiver’s temperature

can be cooled down from ambient temperature Tamb,lk to any achievable temperature Tlk in

hour lk, 4) the system has a constant cooling capacity Q0, and 5) all the K observations

are combined linearly with weighting parameter βk to improve the estimation performance.

Thus, the variance of the combined estimation is written as

σ2
array =

K∑
k=1

β2
kσ

2
array,lk

. (4.48)

Then, our problem is formulated as a joint optimization problem over the weighting

parameters {βk} and the feasible cooling temperatures {Tlk} under the total cooling power

3Cooling capacity is the measure of a cooling system’s ability to remove heat [11].
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constraint,

(P0): min
{Tlk}, {βk}

K∑
k=1

β2
k

αT 2
lk

Mnarray,lk

s.t.
K∑
k=1

(
Tamb,lk

Tlk
− 1

)
Q0 ≤ P

Tmin ≤ Tlk ≤ Tamb,lk

K∑
k=1

βk = 1, βk ≥ 0

(4.49)

where Tmin is the minimum achievable receiver temperature of the cooling system and P

is the sum of available cooling powers over K hours for an antenna. We also note that in

the second constraint of (4.49), the upper bound Tamb,lk can be replaced by any feasible

maximum temperature constraint smaller than the ambient temperature.

(P0) is convex over either {Tlk} or {βk} if the other optimization variable is fixed. There-

fore, we apply an alternating optimization approach to iteratively find the optimal values of

{Tlk} and {βk}. Specifically, let
(
T

(n)
lk
, β

(n)
k

)
denote the solutions at the nth iteration, the so-

lution of (P0) can be obtained by alternatively solving the following two convex optimization

problems,

(P1-1): {T (n)
lk
} = arg min

{Tlk}

K∑
k=1

(
β

(n−1)
k

)2 αT 2
lk

Mnarray,lk

s.t.
K∑
k=1

(
Tamb,lk

Tlk
− 1

)
Q0 ≤ P

Tmin ≤ Tlk ≤ Tamb,lk

(4.50)

and

(P1-2): {β(n)
k } = arg min

{βk≥0}

K∑
k=1

β2
k

α
(
T

(n)
lk

)2

Mnarray,lk

s.t.
K∑
k=1

βk = 1.

(4.51)
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The solution to (P1-2) can be easily obtained as

β
(n)
k =

1/π
(n)
k∑K

l=1 1/π
(n)
l

(4.52)

where π
(n)
k

∆
=

α(T
(n)
lk

)2

Mnarray,lk

. Next, we can state the following propositions.

Proposition 3. The approach of alternatively solving (P1-1) and (P1-2) is convergent.

Proof. Since both (P1-1) and (P1-2) are convex optimization problems, this approach can

be regarded as a special case of the two-block Gauss-Seidel method whose convergence is

proved in [21].

Proposition 4. Defining ωlk
∆
=

Tamb,lk

Tlk
, the following two optimization problems have the

same solution in terms of the cooling temperatures {Tlk}: i) Alternatively solving (P1-1) and

(P1-2), and ii) (P2) which is constructed as

(P2): max
{ωlk}

K∑
k=1

narray,lk

T 2
amb,lk

ω2
lk

s.t.
K∑
k=1

ωlk ≤ P̃

1 ≤ ωlk ≤
Tamb,lk

Tmin

(4.53)

where P̃ = P
Q0

+K.

Proof. The proof is in Appendix 4.8.

With the above two propositions, the solution to (P2) in terms of cooling temperature

{Tlk} can also be a near-optimal solution to the original problem (P0). Besides, the corre-

sponding weighting parameter {βk} can be computed by (4.52).

Remark 1. We can verify that (P2) is not a convex optimization problem since it aims to

maximize a convex objective function. However, the two linear constraints fortunately allow
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us to use simple power allocation algorithms to find the optimal solution. Specifically, the

first constraint of (P2) bounds the sum of ωlk ’s while the second constraint provides the lower

and upper bounds for individual ωlk ’s. On the other hand, the objective function is a weighted

sum of ω2
lk

where the non-negative weighting parameter is known. Therefore, it is always

preferable to allocate as much power4 to the lith element ωli where i = arg maxk
narray,lk

T 2
amb,lk

.

Thus the optimal solution to (P2) for the kth hour can only be chosen from three values,

the minimum value 1, the maximum value
Tamb,lk

Tmin
or a certain value between the minimum

and maximum. Likewise, only one of the three cooling temperatures at the kth hour can

be selected as the solution to alternatively solving (P1-1) and (P1-2), and they are the

minimum achievable cooling temperature Tmin, the ambient temperature Tamb,lk (i.e., the

cooling system is off) and a certain temperature between these two (i.e., when the residual

cooling power is not enough to cool the receiver down to Tmin).

Now, we summarize the above analysis for solving (P2) in Algorithm 1.

Algorithm 1 Cooling Power Allocation Algorithm for Problem (P2)

1: Initialize residual power P̃
′
= P̃ , index set K = {1, . . . , K}, and ωlk = 0, ∀k ∈ K,

2: Allocate 1 unit of power to satisfy the lower bound constraint of {ωlk} in the second
constraint of (P2), renew the residual power P̃

′
= P̃ −K;

3: while P̃
′
> 0 do

4: Next power allocation index i = arg maxk∈K
narray,lk

T 2
amb,lk

, renew K = K\i;

5: if P̃
′ ≥ narray,li

T 2
amb,li

− 1 then

6: ωli =
narray,li

T 2
amb,li

, renew P̃
′
= P̃

′ − (
narray,li

T 2
amb,li

− 1);

7: else
8: ωli = P̃

′
+ 1, renew P̃

′
= 0;

9: end if
10: end while
11: Output {ωlk}Kk=1.

Adopting previous simulation settings together withQ0 = 100W, Tmin = 60 Kelvin, Tamb,lk

= 286, 285, 283, 282, 279, 282, 285, 289, 292, 295, 297, 298, 299, 300, 301, 302, 301, 300, 297,

4Here we regard P̃ as power for convenience since P̃ is a power related factor.
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Figure 4.9: Solutions of cooling power allocation in terms of cooling temperatures.

294, 291, 290, 289, 288 Kelvin for k = 1, . . . , 24, the cooling temperatures solutions under

different cooling power constraints are shown in Fig. 4.9. To be specific, the first figure in

Fig. 4.9 shows the value of
narray,lk

T 2
amb,lk

for k = 1, . . . , 24. We can see as the total cooling power P

increases from 24dBW to 38dBW, the number of times the minimum cooling temperature is

achieved increases. And the cooling power allocation priority corresponds to the increasing

order of
narray,lk

T 2
amb,lk

.

To evaluate the power saving of this approach, we can consider the scenario where the

DART system always maintains a fixed cooling temperature Tarray no less than Tmin by

default setting and has the same cooling power constraint P at each antenna. Then, similar
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to the first constraint of (4.49), we have

K∑
k=1

(
Tamb,lk

Tarray

− 1

)
Q0 ≤ P (4.54)

which results in

Tarray ≥ max

{
Tmin,

∑K
k=1 Tamb,lkQ0

P +KQ0

}
. (4.55)

Thus, the estimation variance of the DART system with a fixed cooling temperature is

represented as [
σ2

array

]
fixed

=
K∑
k=1

β2
kσ

2
array,lk

∣∣∣∣
βk= 1

K

=
K∑
k=1

1

K2

αT 2
array

Mnarray,lk

(4.56)

according to (4.46). Similarly, to compare with the DART system with M antennas, the

total available cooling power for single-dish RAS is set as Psingle = MP and thus the minimal

achievable temperature at cooling capacity Q0 is

Tsingle ≥ max

{
Tmin,

∑K
k=1 Tamb,lkQ0

Psingle +KQ0

}
. (4.57)

Therefore, the variance of estimation for the single-dish RAS wth a fixed cooling temperature

is represented as [
σ2

single

]
fixed

=
K∑
k=1

β2
kσ

2
single

∣∣∣∣
βk= 1

K

=
1

K

αT 2
single

nf

(4.58)

according to (4.40) and the relationship σ2
n = κTsingleB.

4.6.2 Imperfect Temperature Information

We have assumed that the ambient temperature in each hour are perfectly known for cooling

power allocation. However, temperature forecasting may not be perfect and the cooling

power requirement in problem (4.49) may not be satisfied if the temperature is forecast

with error. In this scenario, we consider to use a probability constraint on the cooling power

shortage. In other words, we suppose that the probability of the required cooling power being

larger than the total available power P should be no more than ε. To be specific, we assume
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that the temperature T = [Tamb,l1 , . . . , Tamb,lK ]T is Gaussian distributed, T ∼ N (µ,Σ) where

the mean values are forecast temperatures µ = [T̄amb,l1 , . . . , T̄amb,lK ]T and the covariance is

represented by a Toeplitz matrix Σ. Then, the first constraint of (4.49) is replaced by

Pr

[
K∑
k=1

(
Tamb,lk

Tlk
− 1

)
Q0 > P

]
≤ ε. (4.59)

Defining xlk
∆
= 1/Tlk , and x = [xl1 , . . . , xlK ]T, the constraint is rewritten as Pr

(
TTx > P̃

)
≤

ε. Since TTx ∼ N (µTx, ‖Σ 1
2x‖2), (4.59) is further represented as a second order cone

constraint

µTx+Q−1(ε)‖Σ
1
2x‖2 ≤ P̃ (4.60)

where Q−1(·) is the inverse function of the Q function. Therefore, the average performance

optimization problem under imperfect temperature information is formulated as the following

problem

(P3): min
x, {βk}

K∑
k=1

β2
k

α

Mnarray,lkx
2
lk

s.t. µTx+Q−1(ε)‖Σ
1
2x‖2 ≤ P̃

1

T̄amb,lk

≤ xlk ≤
1

Tmin

K∑
k=1

βk = 1, βk ≥ 0.

(4.61)

We can observe that the modified power constraint will be reduced to the original power

constraint in (4.49) if the temperatures are perfectly forecast as all elements in the covariance

Σ would be zero. For the same power constraint, larger covariance or tighter probability

constraint can result in smaller {xlk} and therefore larger estimation variance. Likewise,

the proposed alternating approach can be used to solve (P3). However, since the total

cooling power constraint of (P3) is modified due to the uncertainty of ambient temperatures,

the proposed power allocation strategy in Algorithm 1 is not applicable. To handle this

problem, we use the convex optimization toolbox CVX[20]. Defining the variance of the nth
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iteration as
[
σ2

array

](n) ∆
=
∑K

k=1 β
(n)
k

2 α(T
(n)
lk

)2

Mnarray,lk

and the counterpart of (P1-1) for the imperfect

temperature forecast scenario as

(P3-1): {x(n)
lk
} = arg min

xlk

K∑
k=1

(
β

(n−1)
k

)2 α

Mnarray,lkx
2
lk

s.t. µTx+Q−1(ε)‖Σ
1
2x‖2 ≤ P̃

1

T̄amb,lk

≤ xlk ≤
1

Tmin

,

(4.62)

the following Algorithm 2 illustrates the proposed alternating optimization approach to find

the cooling power allocation solution for imperfect temperature information scenarios.

Algorithm 2 Cooling Power Allocation Algorithm for Problem (P3)

1: Initialize n = 1, ε > 0,
[
σ2

array

](0)
= 2ε,

[
σ2

array

](1)
= ε and β

(0)
k = 1

K
, ∀k = 1, . . . , K

2: while
([
σ2

array

](n−1) −
[
σ2

array

](n)
)
/
[
σ2

array

](n−1)
> ε do

3: Solve (P3-1) with CVX, obtain {x(n)
lk
} and compute β

(n)
k =

1/π
(n)
k∑K

l=1 1/π
(n)
l

, k = 1, . . . , K;

4: n = n + 1;
5: end while
6: Output {x(n)

lk
} and {β(n)

k }.

4.6.3 Combination of DART and Single-dish RAS

We have proposed a DART system that can achieve an estimation performance as accurate as

the conventional single-dish RAS. Now, a two-step approach to combine the observations of

both systems is proposed to achieve the minimum estimation variance of the K independent

observations: 1) the single-dish RAS and the DART system observe separately where the

DART apply the estimation optimization approach to obtain the minimum estimation vari-

ance and the optimal cooling temperature, 2) the best linear unbiased estimation (BLUE)

approach is applied to combine the two estimations from the single-dish RAS and the DART

system, using the same weighting parameter θ as shown in (4.43). In particular, since the

astronomical signal is significantly weaker than the noise, we assume the estimated signals
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Figure 4.10: Radio astronomical signal power estimation variance comparison among differ-
ent strategies.

of both systems are uncorrelated, i.e., ρsingle and ρarray are uncorrelated. Using the BLUE

approach as in (4.43), the variance of combined estimated power is σ̄2 =
σ2

singleσ
2
array

σ2
single+σ2

array
, where

σ2
array =

∑K
k=1 β

2
kσ

2
array,lk

is the variance of estimation for the DART system according to

(4.48).

4.6.4 Simulations

In the simulation, we set that 1) for the imperfect temperature information scenarios,

T̄amb,lk = 286, 285, 283, 282, 279, 282, 285, 289, 292, 295, 297, 298, 299, 300, 301, 302,

90



0 0.5 1 1.5 2 2.5

Variance of estimation ×10-37

45

50

55

60

65

70

75

80
P

er
ce

nt
ag

e 
of

 p
ow

er
 s

av
ed

 

1-DART system (perfect temperature information)
1-DART system (ǫ = 0.2)
1-DART system (ǫ = 0.05)
1-DART system (ǫ = 0.01)

Figure 4.11: Percentage of power saved by the proposed dynamic cooling power allocation.

301, 300, 297, 294, 291, 290, 289, 288 Kelvin for k = 1, . . . , 24 respectively, Σ is set to be a

symmetric Toeplitz matrix whose first row is [30, 28.75, 27.5, 26.25, 25, 23.75, 22.5, 21.25,

20, 18.75, 17.5, 16.25, 15, 15.75, 16.5, 17.25, 18, 18.75, 19.5, 20.25, 21, 21.75, 22.5, 23.25] and

2) for the perfect temperature information scenarios, Tamb,lk = T̄amb,lk , ∀k. Other settings

are adopted from previous sections and are the same for both scenarios.

Fig. 4.10 compares the average variances of the radio astronomical signal power es-

timation achieved by different strategies, namely, DART without power allocation (fixed

cooling temperature), DART with power allocation, DART with power allocation and im-

perfect ambient temperature information, single-dish RAS (fixed cooling temperature) and
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the combination of single-dish RAS and DART’s estimation, under total cooling power con-

straint for each DART ranging from 24 dBW to 42 dBW. First of all, we can observe that

with increasing cooling power, the variances decrease, and the difference between DART with

power allocation and that without power allocation converges to a very small value since all

the temperatures are cooled down to the minimum achievable temperature Tmin. We also

mention that the gap between the variance achieved by the two strategies cannot converge to

zero since the proposed power allocation contains the BLUE procedure which outperforms

the simple averaging of the different estimations, unless narray,lk is a constant for K hours.

This implies our proposed power allocation strategy preforms better, especially in a power

limited regime. Also, the relationship among the DART system with different numbers of

antennas (M = 1, 2, 3) is shown in this figure. As the number of antennas increases from 1

to M , the variance reduces to 1/M times of the original value.

Fig. 4.10 also shows the variances achieved by single-dish RAS with the cooling power

allocation strategy under different cooling power constraints. The three different Psingle

are set to compare with the DART system with different numbers of antennas. It can

be observed that larger Psingle corresponds to smaller variance. However, the decrease of

the variance becomes remarkable when Psingle increases. When M = 1 (Psingle = P ) and

M = 2 (Psingle = 2P ), the variances achieved by single-dish RAS are less than those of 1-

DART and 2-DART system respectively. While the number of antennas in DARTs increases

to 3 (Psingle = 3P ), the variances of 3-DART system are less than those of single-dish RAS

for most of the cooling power constraints. This observation indicates the combination of

more DARTs with dynamic cooling power allocation will result in higher power efficiency

than the single-dish RAS with fixed cooling temperature strategy.

Besides, the bottom curve in Fig. 4.10 shows the power estimation variance achieved by

combining both the single-dish RAS (Psingle = 3P ) and the 3-dish DART system. Obviously,

combining the observations of the two systems results in a smaller estimation variance than
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just applying individual system. For instance, the variance of combined estimation power

is as small as half of the variance achieved by the single-dish RAS. These comparisons also

imply our proposed DART system can significantly improve the accuracy performance (in

terms of estimation variance) of the current RAS systems.

For imperfect ambient temperature information scenarios, three probability constraints

are simulated and shown in Fig. 4.10. Compared with the scenario where ambient tempera-

tures are perfectly forecast, the uncertainty results in higher variance, and tighter probability

constraint corresponds to higher variance.

Fig. 4.11 shows the percentage of power saved by this strategy for certain achieved

average variances according to the curves in Fig. 4.10. We notice that the percentage can be

as high as 77 for our system settings. For imperfect temperature information scenarios, to

achieve certain variances while guaranteeing a smaller probability of cooling power outage,

i.e., from ε = 0.2 to ε = 0.01, the power saving rate decreases.

4.7 Conclusion

We have proposed a DART system to embrace the geographical and spectral coexistence

between CWC and RAS, and to enhance the capability or performance of RAS. Under the

time-division based shared spectrum access, not only RFI-free spectrum access is available

to DART during pre-designed time slots, but also more DARTs can be deployed without

requiring radio quiet zones. We have derived the theoretical performance analysis of the

RAS signal power estimation under different ADC resolutions and their closed-form approx-

imations for both the DART system without radio quiet zone and the single-dish RAS with

radio quiet zone. Different ADC resolutions introduce different biases to the RAS power

estimation but the bias compensation is feasible. With the bias compensation, higher ADC

resolution offers the better performance in terms of estimation variance but results in higher

data rate. However, the performance saturates for ADC resolution of 6 bits or more. By
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exploiting more DARTs, the proposed DART system can perform as accurate as (or better

than) the conventional single-dish RAS.

Moreover, our proposed dynamic cooling power allocation approach for perfect temper-

ature information scenarios results in a neat solution that always sets the receiver at the

minimum cooling temperature for as many duration as possible in a precomputed order of

the durations. Under our specific system settings, there is a power saving as much as 77%

comparing to the previous method that simply maintains a fixed cooling temperature. Mean-

while, the proposed DART approach has higher power efficiency than the single-dish RAS

when the number of antennas increases. For imperfect temperature information scenarios,

our alternative optimization approach achieves similar results to those of perfect temperature

information scenarios as well as significant power savings. We have also illustrated that when

DART and single-dish RAS are combined, further performance improvements achieved.

4.8 Appendix Proof of proposition 4

Assuming the alternatively solving (P1-1) and (P1-2) converges at the n̄th iteration according

to Proposition 3, we have T
(n̄)
lk

= Tlk . Then, substituting β
(n−1)
k = β

(n̄)
k =

1/π
(n̄)
k∑K

l=1 1/π
(n̄)
l

, π
(n̄)
k

∆
=

α(T
(n̄)
lk

)2

Mnarray,lk

and T
(n̄)
lk

= Tlk to the objective function of (P1-1), the objective can be simplified

to

min
{Tlk}

α

M

1∑K
k=1

narray,lk

T 2
lk

(4.63)

which is equivalent to maximizing the denominator term and the problem is simplified to

max
{Tlk}

K∑
k=1

narray,lk

T 2
lk

s.t.
K∑
k=1

(
Tamb,lk

Tlk
− 1

)
Q0 ≤ P

Tmin ≤ Tlk ≤ Tamb,lk .

(4.64)
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Next, substituting Tlk
∆
=

Tamb,lk

ωlk
and P̃ = P

Q0
+ K to this problem, (4.64) will be further

simplified to problem (P-2) defined in the Proposition 4. In summary, beginning with the

convergence condition of alternatively solving (P1-1) and (P1-2), we transfer the alternating

optimization problem to a single variable optimization problem (4.64) which is equivalent to

(P-2), hence, proving Proposition 4.
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CHAPTER 5

CONCLUSION

We proposed, analyzed and optimized three independent systems for the next generation

wireless communication and RAS. For a machine-type communication system, we devel-

oped methods 1) to enable the data aggregation of multiple tiers of MTCDs with different

QoS constraints where the device densities and resource allocation parameters are jointly

optimized, 2) to achieve variable tradeoffs between network utility and resource allocation

fairness, 3) to maximize the weighted sum of QoEs under QoS and minimum device density

constraints, and to optimize the MTCG power control strategy for randomly distributed

gateways.

Instead of optimizing the resource allocation for different objectives, we analyzed a novel

idea to extend the communication boundaries for a large-scale communication system using

AmBC mechanism. In the new scheme, randomly distributed backscatter nodes are involved

as secondary users to primary transmitter and receiver pairs. We derived the coverage prob-

abilities for two network configuration scenarios expressed by quickly computable integrals

with several system parameters. The theoretical and Monte-Carlo simulation results indi-

cated the signal enhancing and interference effects of embedding clusters of AmBC nodes in

conventional large-scale communication systems.

Besides the endless demand for spectrum in active wireless communication systems, we

notice the radio astronomy society desires higher observation sensitivity and resolution for

an RAS, as well as observation rights on more and more frequency bands. Thus, we proposed

a DART system to enhance the performance of conventional radio telescopes and to mitigate

the spectrum conflict between RAS and CWC systems. Theoretical performance analysis

of the DART system with different quantization resolutions is presented. Cooling power

allocation methods for DART receivers according to the ambient temperature are proposed.

Furthermore, we illustrated that the combination of single-dish RAS and DART system
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achieves better performance. The analytical expression for the DART system parameters

provide guidance in designing not only the DART system but also future radio telescope

arrays, such as RAS satellites on non-geostationary orbit.
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